WO2024016734A1 - 用于离心机的控制方法及离心机 - Google Patents

用于离心机的控制方法及离心机 Download PDF

Info

Publication number
WO2024016734A1
WO2024016734A1 PCT/CN2023/086088 CN2023086088W WO2024016734A1 WO 2024016734 A1 WO2024016734 A1 WO 2024016734A1 CN 2023086088 W CN2023086088 W CN 2023086088W WO 2024016734 A1 WO2024016734 A1 WO 2024016734A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
solenoid valve
centrifuge
chamber
heat exchanger
Prior art date
Application number
PCT/CN2023/086088
Other languages
English (en)
French (fr)
Inventor
陈欢
段泽鹏
王潘飞
鞠焕文
陈海涛
Original Assignee
青岛海尔生物医疗科技有限公司
青岛海尔生物医疗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔生物医疗科技有限公司, 青岛海尔生物医疗股份有限公司 filed Critical 青岛海尔生物医疗科技有限公司
Publication of WO2024016734A1 publication Critical patent/WO2024016734A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/02Other accessories for centrifuges for cooling, heating, or heat insulating

Definitions

  • the present invention relates to the technical field of centrifugal equipment, and specifically provides a control method for a centrifuge and a centrifuge.
  • Centrifuges are generally used in biological or medical laboratory scenarios to dissociate different components in liquids or to separate solid particles from liquids.
  • the centrifuge rotates at extremely high speeds, the rotor will generate a large amount of heat due to friction with the air, and the heat cannot be dissipated in a short time. Abnormal fluctuations in temperature will damage the sample, so centrifuge chamber temperature control is an important performance indicator of the centrifuge. one.
  • the temperature to be maintained is also different. Generally, the temperature is 4°C, 22°C or 37°C.
  • the temperature control of the centrifuge can be achieved by using a variable frequency compressor.
  • the cost of the centrifuge is high. Therefore, in order to save the cost of the centrifuge, most centrifuges on the market use fixed frequency.
  • the compressor controls the temperature in the centrifugal chamber.
  • the existing fixed-frequency compressor controls the temperature of the centrifugal cavity of the centrifuge
  • the compressor protection time between the start and stop of the fixed-frequency compressor due to the compressor protection time between the start and stop of the fixed-frequency compressor, the temperature control in the centrifugal cavity is not accurate enough and the centrifugal cavity becomes unstable.
  • the temperature fluctuation in the centrifuge chamber is large, which affects the centrifugation effect of the samples in the centrifuge chamber.
  • the present invention aims to solve the above technical problems, that is, to solve the existing fixed frequency compressor
  • the inability to accurately control the temperature in the centrifuge chamber results in a large temperature deviation in the centrifuge chamber.
  • the present invention provides a control method for a centrifuge.
  • the centrifuge includes a centrifugal chamber and a temperature control assembly.
  • the temperature control assembly includes a compressor, a first heat exchanger, and a section connected in sequence.
  • a refrigeration circuit composed of a flow member and a second heat exchanger.
  • the inlet end of the first heat exchanger is connected to the outlet end of the compressor.
  • the outlet end of the second heat exchanger is connected to the inlet end of the compressor.
  • the second heat exchanger can cool down the centrifugal chamber.
  • the temperature control component also includes a bypass loop and a solenoid valve disposed on the bypass loop.
  • the control method includes: obtaining the energy in the centrifugal chamber. Current temperature T1; obtain target temperature T2; selectively activate the solenoid valve or close the solenoid valve according to the current temperature T1 and the target temperature T2.
  • the specific steps of "selectively starting the solenoid valve or closing the solenoid valve according to the comparison result" include: if ⁇ 1 ⁇ A2, starting the solenoid valve.
  • the specific steps of "selectively starting the solenoid valve or closing the solenoid valve according to the comparison result" include: if A2 ⁇ ⁇ ⁇ A1, then further determine whether whether the temperature is in the temperature rising stage; according to the judgment result, the solenoid valve is selectively activated or closed.
  • the specific steps of "selectively starting the solenoid valve or closing the solenoid valve according to the judgment result” include: if the judgment result is "no", then starting the The electromagnetic valve.
  • the specific steps of “selectively starting the solenoid valve or closing the solenoid valve according to the judgment result” include: If the result is "yes", the solenoid valve is closed.
  • the specific steps of "judging whether the temperature in the centrifugal chamber is in the temperature rising stage” include: acquiring the temperature in the centrifugal chamber once at a set time interval; calculating the temperature in the centrifugal chamber obtained last time. The difference between the temperature in the centrifugal chamber and the temperature in the centrifugal chamber obtained previously is recorded as the second difference ⁇ 2; the second difference ⁇ 2 is compared with the third preset value A3; According to the comparison result, it is judged whether the temperature in the centrifugal chamber is in the temperature rising stage; wherein, A3 ⁇ 0.
  • the specific steps of "determining whether the temperature in the centrifugal chamber is in the temperature rising stage based on the comparison result" include: if ⁇ 2>A3, determine that the temperature in the centrifugal chamber is In the temperature rising stage.
  • the specific steps of "selectively adjusting the opening and closing of the solenoid valve according to the comparison result" include: if ⁇ 1>A1, close the solenoid valve.
  • the present invention provides a centrifuge.
  • the centrifuge of the present invention includes a controller configured to perform the control method described above.
  • the centrifuge of the present invention can selectively start the solenoid valve or close the solenoid valve according to the current temperature T1 and the target temperature T2 in the centrifuge chamber.
  • the solenoid valve can be started in time, so that the high-temperature and high-pressure refrigerant output from the third outlet end of the compressor can be directly passed into the second inlet end of the second heat exchanger, so that the evaporator can quickly temperature recovery, thereby preventing the temperature in the centrifugal chamber from further reducing significantly;
  • the solenoid valve can be closed in time to prevent the third outlet of the compressor from The refrigerant output from the second heat exchanger enters the second heat exchanger, thereby rapidly reducing the temperature of the second heat exchanger, preventing the temperature in the centrifugal chamber
  • first calculate the difference between the current temperature and the target temperature then compare the difference with the first preset value and the second preset value, and selectively start or close the solenoid valve according to the comparison result.
  • the deviation between the temperature in the centrifugal chamber and the target temperature can be determined based on the comparison result between the first difference value and the first preset value and the second preset value, so that the solenoid valve can be started or closed in a timely manner.
  • the deviation between temperatures is too large; on the other hand, compared to directly comparing the current temperature with the target temperature and selectively starting or closing the solenoid valve based on the comparison result, first calculating the difference between the current temperature and the target temperature value, and then compare the difference with the first preset value and the second preset value, and selectively start or close the solenoid valve according to the comparison result, which can prevent detection errors due to the current temperature in the centrifuge chamber.
  • the misjudgment caused thereby improves the accuracy of
  • the solenoid valve is activated to enable the bypass loop.
  • the high-temperature refrigerant output from the third outlet end of the compressor can be passed into the second heat exchanger from the second inlet end of the second heat exchanger through the bypass loop, so that the third The second heat exchanger quickly regenerates heat to prevent the temperature in the centrifuge chamber from further decreasing significantly, thereby preventing the current temperature in the centrifuge chamber from being too large a deviation from the target temperature, and improving the accuracy of temperature control in the centrifuge chamber.
  • A2 ⁇ ⁇ ⁇ A1 it means that the current temperature in the centrifuge chamber is within the set range. At this time, it is necessary to first determine whether the temperature in the centrifuge chamber is in the temperature rising stage, and then selectively adjust the temperature according to the judgment result. On the one hand, it can prevent the solenoid valve from opening when the temperature in the centrifuge chamber is in the rising stage and causing the temperature in the centrifuge chamber to rise too fast, thereby preventing the temperature in the centrifuge chamber from being higher than the target temperature.
  • the judgment result is "no"
  • the solenoid valve is not started in time, the temperature of the second heat exchanger will continue to decrease, resulting in The deviation between the temperature in the centrifuge chamber and the target temperature gradually increases.
  • the bypass valve is turned on and the second heat exchanger is quickly reheated, thereby reducing the temperature in the centrifuge chamber and the target temperature. The deviation between temperatures improves the accuracy of temperature control of the centrifugal chamber.
  • the friction between the rotor and the air will also further increase the temperature in the centrifuge chamber, which will cause the If the deviation between the temperature and the target temperature is too large, after closing the solenoid valve, the bypass valve will be cut off to prevent the high-temperature refrigerant at the third outlet end of the compressor from flowing into the second heat exchanger, thereby passing through the refrigerant in the second heat exchanger.
  • the flow in the refrigeration circuit reduces the temperature of the second heat exchanger, thereby reducing the deviation between the temperature in the centrifugal chamber and the target temperature, and improving the accuracy of temperature control of the centrifugal chamber.
  • the centrifuge further provided by the present invention on the basis of the above technical solution adopts the control method introduced above, and thus has the beneficial effects of the above control method.
  • the centrifuge of the present invention has The centrifuge makes the temperature control in the centrifuge chamber more precise, has less impact on the stability of the sample after centrifugation, has better centrifugation effect, and at the same time, the cost of the centrifuge is lower.
  • FIG. 1 is a schematic connection diagram of the temperature control assembly of the centrifuge of the present invention
  • Figure 2 is a flow chart of the control method of the present invention.
  • FIG. 3 is a flow chart of an embodiment of the control method of the present invention.
  • the terms “upper”, “inner”, “outer” and other terms indicating the direction or positional relationship are based on the direction or positional relationship shown in the drawings, which are only for convenience of description. , does not indicate or imply that the device or element must have a specific orientation, be constructed and operate in a specific orientation, and therefore cannot be construed as a limitation of the present invention. Furthermore, the terms “first,” “second,” “third,” and “fourth” are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • Figure 1 is a schematic connection diagram of the temperature control assembly of the centrifuge of the present invention.
  • the centrifuge of the present invention includes a centrifugal chamber and a temperature control assembly.
  • the temperature control assembly includes a compressor 3, a first heat exchanger 1, a throttling member 4 and a second heat exchanger 2 that are connected in sequence. refrigeration circuit.
  • the compressor 3 is configured as a fixed frequency compressor.
  • the inlet end of the first heat exchanger 1 is marked as the first inlet end 11
  • the outlet end of the first heat exchanger 1 is marked as the first outlet end 12
  • the inlet end of the second heat exchanger 2 is marked as is the second inlet end 21
  • the outlet end of the second heat exchanger 2 is marked as the second outlet end 22
  • the inlet end of the compressor 3 is marked as the third inlet end 31
  • the outlet end of the compressor 3 is marked as the third outlet end. 32.
  • the inlet end of the throttling member 4 is marked as the fourth inlet end 41
  • the outlet end of the throttling member 4 is marked as the fourth outlet end 42.
  • the third outlet end 32 of the compressor 3 is connected with the first inlet end 11 of the first heat exchanger 1 , and the first outlet end 12 of the first heat exchanger 1 is connected with the fourth end of the throttling member 4 .
  • the inlet end 41 is connected, the fourth outlet end 42 of the throttling member 4 is connected with the second inlet end 21 of the second heat exchanger 2 , and the second outlet end 22 of the second heat exchanger 2 is connected with the third inlet of the compressor 3 End 31 is connected.
  • throttling member 4 can set the throttling member 4 as a thermal expansion valve, or they can also set the throttling member 4 as a capillary tube, etc. This kind of modification of the throttling member 4 Adjustments and changes in specific setting types do not deviate from the principle and scope of the present invention, and should be included in the protection scope of the present invention.
  • the throttling member 4 is provided as a thermal expansion valve.
  • first heat exchanger 1 is a condenser
  • second heat exchanger 2 is an evaporator
  • the second heat exchanger 2 can also be configured as a plurality of cooling units that fit the walls of the centrifugal chamber, etc.
  • Such flexible adjustments and changes do not deviate from the principle and scope of the present invention and should all be included. within the protection scope of the present invention.
  • the second heat exchanger 2 is arranged outside the centrifuge chamber of the centrifuge (not shown in the figure), and the shape of the second heat exchanger 2 is adapted to the shape of the centrifuge chamber and fits the cavity wall of the centrifuge chamber. , the second heat exchanger 2 can cool the centrifugal chamber.
  • the second heat exchanger 2 is not limited to being arranged outside the centrifugal chamber.
  • the second heat exchanger 2 can also be arranged inside the centrifugal chamber.
  • such flexible adjustments and changes do not deviate from the principle and scope of the present invention, and should be included in the protection scope of the present invention.
  • the second heat exchanger 2 is arranged outside the centrifugal chamber.
  • the temperature control assembly of the present invention also includes a bypass loop 5.
  • One end of the bypass loop 5 is connected to the third outlet end 32 of the compressor 3, and the other end of the bypass loop 5 is connected to the second heat exchanger.
  • the second inlet end 21 of 2 is connected, and the bypass circuit 5 is provided with a solenoid valve 51.
  • the solenoid valve 51 can connect or cut off the bypass circuit 5.
  • the high-temperature and high-pressure gas refrigerant in the compressor 3 is output from the third outlet end 32 and enters the first heat exchanger 1 through the first inlet end 11. After condensation in the heater 1, it becomes a high-temperature and high-pressure liquid refrigerant, which is then input into the throttling member 4 through the fourth inlet end 41 of the throttling member 4. After being throttled and depressurized by the throttling member 4, it becomes a low-temperature and low-pressure liquid refrigerant. The refrigerant is output from the fourth outlet end 42, and then enters the second heat exchanger 2 through the second inlet end 21.
  • the liquid refrigerant evaporates in the second heat exchanger 2 and cools the second heat exchanger 2. Then the centrifugal cavity is cooled, and the refrigerant in the second heat exchanger 2 is output through the second outlet end 22 and returned to the compressor 3 through the third inlet end 31 of the compressor 3, completing the primary refrigerant circulation in the refrigeration circuit. flow cycle.
  • the high-temperature and high-pressure gaseous refrigerant in the compressor 3 is output from the third outlet end 32 and enters the first heat exchanger 1 through the first inlet end 11.
  • the gaseous refrigerant from the compressor 3 Part of the high-temperature and high-pressure refrigerant output from the third outlet end 32 can flow along the bypass loop 5 and enter the second heat exchanger 2 through the second inlet end 21 of the second heat exchanger 2.
  • the refrigerant can be mixed with the low-temperature and low-pressure refrigerant that enters the second heat exchanger 2 through the compressor 3, the first heat exchanger 1, and the throttling member 4 in sequence, so that the second heat exchanger 2 can quickly regenerate heat, thereby This prevents the temperature of the second heat exchanger 2 from further decreasing significantly, thereby preventing the temperature in the centrifugal chamber from further decreasing.
  • Figure 2 is a flow chart of the control method of the present invention.
  • control method of the present invention includes the following steps:
  • S3000 Selectively start the power supply based on the current temperature T1 and target temperature T2
  • the solenoid valve 51 or the solenoid valve 51 is closed.
  • the solenoid valve 51 can be activated in time, so that the high-temperature and high-pressure refrigerant output from the third outlet end 32 of the compressor 3 can be directly passed into The second inlet end 21 of the second heat exchanger 2 can quickly recover the temperature of the second heat exchanger 2, thereby preventing the temperature in the centrifuge chamber from further decreasing significantly.
  • the solenoid valve 51 can be closed in time to prevent the refrigerant output from the third outlet end 32 of the compressor 3 from directly entering the second heat exchanger 2, thereby increasing the temperature of the second heat exchanger 2. Reduce the temperature in the centrifuge chamber to prevent the temperature in the centrifuge chamber from rising significantly and improve the accuracy of temperature control in the centrifuge chamber.
  • a temperature detection component (not shown in the figure) is provided in the centrifuge chamber, and the current temperature in the centrifuge chamber is obtained through data from the temperature detection component.
  • the temperature detection component can be set as a temperature sensor, or they can also set the temperature detection component as a thermometer, etc. This specific type of setting of the temperature detection component is not Adjustments and changes do not deviate from the principle and scope of the present invention, and should be included in the protection scope of the present invention.
  • the temperature detection member is provided as a temperature sensor.
  • the target temperature is set to a set value input by the user, and the target temperature is obtained according to the numerical value input by the user.
  • the user can set the settings according to the different samples being centrifuged. Different target temperatures are set so that the sample can be centrifuged at its corresponding appropriate temperature to improve the centrifugation effect and stability of the sample.
  • Figure 3 is a flow chart of an embodiment of the control method of the present invention.
  • the specific steps of “selectively starting the solenoid valve 51 or closing the solenoid valve 51 according to the current temperature T1 and the target temperature T2" include:
  • the deviation between the temperature in the centrifugal chamber and the target temperature can be determined based on the comparison result between the first difference value and the first preset value and the second preset value, so that the electromagnetic field can be started in a timely manner.
  • the valve 51 or the method of closing the solenoid valve 51 can prevent misjudgments caused by detection errors of the current temperature in the centrifuge chamber, thereby improving the accuracy of temperature control of the centrifuge chamber.
  • the electromagnetic The specific steps for closing the valve 51 or closing the solenoid valve 51 include:
  • the specific steps of "selectively adjusting the opening and closing of the solenoid valve 51 according to the comparison results" include:
  • the specific steps of “selectively starting the solenoid valve 51 or closing the solenoid valve 51 according to the comparison result” include:
  • the range above the target temperature is too large; on the other hand, it can prevent the solenoid valve 51 from being closed when the temperature in the centrifuge chamber is in the decreasing stage, causing the temperature in the centrifuge chamber to further drop significantly, thereby preventing the centrifuge chamber from being The deviation between the internal temperature and the target temperature is too large.
  • the specific steps of “selectively starting the solenoid valve 51 or closing the solenoid valve 51 according to the judgment result” include:
  • the specific steps of “selectively starting the solenoid valve 51 or closing the solenoid valve 51 according to the judgment result” include:
  • the high-temperature refrigerant at the third outlet end 32 of the machine 3 passes into the second heat exchanger 2, so that the temperature of the second heat exchanger 2 is reduced by the refrigerant flowing in the refrigeration circuit, thereby reducing the temperature in the centrifugal chamber.
  • the deviation between the temperature and the target temperature improves the accuracy of the temperature control of the centrifugal chamber.
  • the specific steps of "determining whether the temperature in the centrifuge chamber is in the temperature rising stage” include:
  • A3 is set to 0.2°C.
  • the specific steps of "determining whether the temperature in the centrifuge chamber is in the temperature rising stage based on the comparison results" include:
  • the temperature in the centrifuge chamber is acquired 4 times in a row, and the difference between the temperatures in the centrifuge chamber acquired twice is calculated, and then the 3 differences are compared with the third preset value respectively. If the 3 If each difference value is greater than the third preset value, it means that the temperature in the centrifuge chamber is in the temperature rising stage.
  • the specific steps of "determining whether the temperature in the centrifuge chamber is in the temperature rising stage based on the comparison results" include:
  • the centrifugal chamber can be cooled when the solenoid valve 51 is closed, and the centrifugal chamber can be reheated when the solenoid valve 51 is started. Therefore, the temperature in the centrifugal chamber is at The time for which the temperature is constant is very short and can be ignored.
  • control method of the present invention also includes: comparing the first difference ⁇ 1 with the fourth preset value A4;
  • control method of the present invention also includes: comparing the first difference ⁇ 1 with the fourth preset value A5;
  • the amount of refrigerant entering the second heat exchanger 2 from the third outlet end 32 of the compressor 3 can be set based on experience or experiments, so that when the compressor 3 operates normally , the temperature in the centrifugal chamber can be kept within the set temperature range by opening or closing the solenoid valve 51.
  • control method of the present invention is introduced below based on several scenarios.
  • A2 ⁇ 1 ⁇ A1 it means that the temperature in the centrifuge chamber is within the set temperature range. At this time, it is necessary to judge whether the temperature in the centrifugal chamber is in the temperature rising stage, and according to the judgment result, the solenoid valve 51 is selectively activated or closed.
  • the following combines several situations to introduce whether the temperature in the centrifuge chamber is above the temperature. specific embodiments of rising stages and selectively activating or closing solenoid valves.
  • the difference ⁇ 2 between the two adjacent temperatures in the centrifugal chamber is less than A3, which means that the temperature curve in the centrifugal chamber is not in the temperature rising stage, and the solenoid valve 51 is started.
  • the centrifuge of the present invention further includes a controller (not shown in the figure), and the controller is configured to execute the control method introduced above.
  • the controller is configured to communicate with the temperature detection component in order to realize intelligent collection of the temperature in the centrifugal chamber.
  • the controller is also configured to communicate with the solenoid valve 51 in order to realize the control of the solenoid valve. 51 intelligent control of turning on or off.

Landscapes

  • Centrifugal Separators (AREA)

Abstract

用于离心机的控制方法及离心机,离心机包括离心腔以及温度控制组件,温度控制组件包括由依次连通的压缩机(3)、第一换热器(1)、节流构件(4)以及第二换热器(2)组成的制冷回路,第二换热器(2)能够对离心腔进行降温,温度控制组件还包括旁通回路(5)以及电磁阀(51),在启动压缩机(3)之后,控制方法包括:获取离心腔内的当前温度T1;获取目标温度T2;根据当前温度T1和目标温度T2,选择性地启动电磁阀(51)或者关闭电磁阀(51)。

Description

用于离心机的控制方法及离心机
本申请要求2022年7月21日提交的、发明名称为“用于离心机的控制方法及离心机”的中国专利申请CN202210863296.4的优先权,上述中国专利申请的全部内容通过引用并入本申请中。
技术领域
本发明涉及离心设备技术领域,具体提供一种用于离心机的控制方法及离心机。
背景技术
离心机一般用在生物或医疗实验室场景中,用于在液体中离解不同的组成成分,或是将固体颗粒从液体中分离。当离心机以极高的转速进行旋转时,转子会与空气摩擦产生大量的热,且热量无法短时间消散,而温度的异常波动会使样品损坏,所以离心腔控温是离心机重要性能指标之一。根据要离心的样本不同,保持的温度也不同,通常以为温度4℃、22℃或37℃居多。
离心机的温度控制可以采用变频压缩机来实现,但是,由于变频压缩机的成本较高而使得离心机的成本较高,因此,为了节省离心机的成本,市面上的离心机多采用定频压缩机来对离心腔内的温度进行控制。
现有的定频压缩机在对离心机的离心腔进行温度控制时,由于定频压缩机的启停之间会有压缩机保护时间,导致对离心腔内的温度控制不够精准而使得离心腔内的温度波动幅度较大,从而影响对离心腔内样品的离心效果。
发明内容
本发明旨在解决上述技术问题,即,解决现有的定频压缩机 无法精准地控制离心腔内的温度而导致离心腔内的温度偏差较大的问题。
在第一方面,本发明提供了一种用于离心机的控制方法,该离心机包括离心腔以及温度控制组件,所述温度控制组件包括由依次连通的压缩机、第一换热器、节流构件以及第二换热器组成的制冷回路,所述第一换热器的入口端与所述压缩机的出口端连通,所述第二换热器的出口端与所述压缩机的入口端连通,所述第二换热器能够对所述离心腔进行降温,所述温度控制组件还包括旁通回路以及设置于所述旁通回路上的电磁阀,所述旁通回路的一端与所述压缩机的出口端连通,所述旁通回路的另一端与所述第二换热器的入口端连通,在启动所述压缩机之后,该控制方法包括:获取所述离心腔内的当前温度T1;获取目标温度T2;根据所述当前温度T1和所述目标温度T2,选择性地启动所述电磁阀或者关闭所述电磁阀。
在上述控制方法的优选技术方案中,“根据所述当前温度T1和所述目标温度T2,选择性地启动所述电磁阀或者关闭所述电磁阀”的具体步骤包括:计算第一差值△1=T1-T2;将所述第一差值△1分别与第一预设值A1和第二预设值A2进行比较;根据比较结果,选择性地启动所述电磁阀或者关闭所述电磁阀;其中,A1>0,A2<0。
在上述控制方法的优选技术方案中,“根据比较结果,选择性地启动所述电磁阀或者关闭所述电磁阀”的具体步骤包括:如果△1<A2,则启动所述电磁阀。
在上述控制方法的优选技术方案中,“根据比较结果,选择性地启动所述电磁阀或者关闭所述电磁阀”的具体步骤包括:如果A2≤△≤A1,则进一步判断所述离心腔内的温度是否处于温度上升阶段;根据判断结果,选择性地启动所述电磁阀或者关闭所述电磁阀。
在上述控制方法的优选技术方案中,“根据判断结果,选择性地启动所述电磁阀或者关闭所述电磁阀”的具体步骤包括:在判断结果为“否”的情形下,则启动所述电磁阀。
在上述控制方法的优选技术方案中,“根据判断结果,选择性地启动所述电磁阀或者关闭所述电磁阀”的具体步骤包括:在判断结 果为“是”的情形下,则关闭所述电磁阀。
在上述控制方法的优选技术方案中,“判断所述离心腔内的温度是否处于温度上升阶段”的具体步骤包括:间隔设定时间获取一次所述离心腔内的温度;计算后一次获取的所述离心腔内的温度与前一次获取的所述离心腔内的温度的差值,记为第二差值△2;将所述第二差值△2与第三预设值A3进行比较;根据比较结果,判断所述离心腔内的温度是否处于温度上升阶段;其中,A3≥0。
在上述控制方法的优选技术方案中,“根据比较结果,判断所述离心腔内的温度是否处于温度上升阶段”的具体步骤包括:如果△2>A3,则判定为所述离心腔内的温度处于温度上升阶段。
在上述控制方法的优选技术方案中,“根据比较结果,选择性地调节所述电磁阀的启闭”的具体步骤包括:如果△1>A1,则关闭所述电磁阀。
在第二方面,本发明提供了一种离心机,本发明的离心机包括控制器,所述控制器配置成能够执行上述所述的控制方法。
在采用上述技术方案的情况下,本发明的离心机能够根据离心腔内的当前温度T1和目标温度T2,选择性地启动电磁阀或者关闭电磁阀,一方面,当离心腔内的当前温度低于目标温度一定的范围时能够及时地启动电磁阀,以便于将压缩机的第三出口端输出的高温高压制冷剂直接通入到第二换热器的第二入口端,从而使蒸发器快速回温,进而避免离心腔内的温度进一步大幅度降低;另一方面,当离心腔内的当前温度高于目标温度一定的范围时能够及时地关闭电磁阀,以防止从压缩机的第三出口端输出的制冷剂进入到第二换热器内,从而使第二换热器的温度快速降低,避免离心腔内的温度进一步大幅度升高,提高离心腔的温度控制的精准度。
进一步地,先计算当前温度和目标温度的差值,再将该差值与第一预设值和第二预设值进行比较,并根据比较结果选择性地启动电磁阀或者关闭电磁阀,一方面,能够根据第一差值与第一预设值和第二预设值的比较结果,判断离心腔内的温度与目标温度之间的偏差,从而能够及时地启动电磁阀或者关闭电磁阀,以防止离心腔内的温度与目标 温度之间的偏差过大;另一方面,与直接将当前温度与目标温度进行比较,根据比较结果选择性地启动电磁阀或者关闭电磁阀的情形相比,先计算当前温度和目标温度的差值,再将该差值与第一预设值和第二预设值进行比较,并根据比较结果选择性地启动电磁阀或者关闭电磁阀的方式能够防止因离心腔内的当前温度的检测误差而造成的误判,从而提高对离心腔的温度控制的精准度。
又进一步地,在△1<A2的情形下,说明离心腔内的当前温度低于目标温度且当前温度低于目标温度的幅度超过设定的范围,此时启动电磁阀,能够使旁通回路处于导通的状态,即能够使从压缩机的第三出口端输出的高温制冷剂经旁通回路从第二换热器的第二入口端通入到第二换热器内,从而使第二换热器快速回热,避免离心腔内的温度进一步大幅度的降低,进而避免离心腔内的当前温度与目标温度的偏差过大,提高离心腔的温度控制的精准度。
又进一步地,在A2≤△≤A1的情形下,说明离心腔内的当前温度处于设定范围之内,此时需要先判断离心腔内的温度是否处于温度上升阶段,再根据判断结果选择性地启动电磁阀或者关闭电磁阀,一方面,能够防止当离心腔内的温度处于上升阶段时开启电磁阀而使离心腔内的温度升高过快,从而避免离心腔内的温度高于目标温度的幅度过大;另一方面,能够防止当离心腔内的温度处于下降阶段时关闭电磁阀而使离心腔内的温度进一步大幅度降低,从而避免离心腔内的温度与目标温度的偏差过大。
又进一步地,在判断结果为“否”的情形下,说明离心腔内的温度正处于温度下降阶段,此时如不及时地启动电磁阀会使第二换热器的温度持续降低,从而使得离心腔内的温度与目标温度之间的偏差逐渐增大,在开启电磁阀之后,会使旁通阀导通并使第二换热器快速回热,从而减小离心腔内的温度与目标温度之间的偏差,从而提高离心腔的温度控制的精准度。
又进一步地,在判断结果为“是”的情形下,说明离心腔内的温度正处于温度上升阶段,此时如果不及时地关闭电磁阀来切断旁通回路,会从压缩机的第三出口端输出的高温制冷剂持续输送到第二换热 器内,从而使第二换热器的温度持续升高,同时,在离心过程中,由于转子与空气之间的摩擦也会使离心腔内的温度进一步升高,就会使得离心腔内的温度与目标温度之间的偏差过大,在关闭电磁阀之后,会使旁通阀切断,避免压缩机的第三出口端的高温制冷剂通入到第二换热器内,从而通过制冷剂在制冷回路内流动而使得第二换热器的温度降低,进而降低离心腔内的温度与目标温度之间的偏差,提高离心腔的温度控制的精准度。
又进一步地,通过先计算前后两次获取的离心腔内的温度的差值,再将该差值与第三预设值进行比较,与直接将两次获取的离心腔内的温度进行比较并根据比较结果判断离心腔内的温度是否处于温度上升阶段的情形相比,能够避免因对离心腔内的温度的检测误差而造成的误判,从而能够准确地判断离心腔内的温度是否处于温度上升阶段。
又进一步地,在△1>A1的情形下,说明离心腔内的当前温度高于目标温度且当前温度高于目标温度的幅度超过设定的范围,此时及时地关闭电磁阀,能够使旁通回路切断,从而防止从压缩机的第三出口端输出的高温冷媒通过旁通回路进入到第二换热器内,进而防止离心腔内的温度进一步大幅度的提高,即避免离心腔内的当前温度与目标温度之间的偏差过大,提高离心腔的温度控制的精准度。
此外,本发明在上述技术方案的基础上进一步提供的离心机,由于采用了上述介绍的控制方法,进而具备了上述控制方法所具备的有益效果,相比于改进前的离心机,本发明的离心机使得离心腔内的温度控制更加精准,对离心之后的样品的稳定性影响更小,离心效果更好,同时,离心机的成本更低。
附图说明
下面结合附图来描述本发明的优选实施方式,附图中:
图1是本发明的离心机的温度控制组件的连接示意图;
图2是本发明的控制方法的流程图;
图3是本发明的控制方法的实施例的流程图。
附图标记列表:
1、第一换热器;11、第一入口端;12、第一出口端;2、第
二换热器;21、第二入口端;22、第二出口端;3、压缩机;31、第三入口端;32、第三出口端;4、节流构件;41、第四入口端;42、第四出口端;5、旁通回路;51、电磁阀。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“内”、“外”等指示方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“连接”应作广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
请参阅图1,图1是本发明的离心机的温度控制组件的连接示意图。
如图1所示,本发明的离心机包括离心腔以及温度控制组件,温度控制组件包括由依次连通的压缩机3、第一换热器1、节流构件4以及第二换热器2组成的制冷回路。
需要说明的是,在实际应用中,本领域技术人员可以将压缩机3设置成定频压缩机,或者,也可以将压缩机3设置成变频压缩机,等等,这种对压缩机3的具体设置类型的调整和改变并不偏离本发明的原理和范围,均应包含在本发明的保护范围之内。
优选地,将压缩机3设置成定频压缩机。
通过这样的设置,与将压缩机3设置成变频压缩机相比,将 压缩机3设置成定频压缩机能够大大降低压缩机3的成本,进而大大降低离心机的成本。
如图1所示,第一换热器1的入口端记为第一入口端11,第一换热器1的出口端记为第一出口端12,第二换热器2的入口端记为第二入口端21,第二换热器2的出口端记为第二出口端22,压缩机3的入口端记为第三入口端31,压缩机3的出口端记为第三出口端32,节流构件4的入口端记为第四入口端41,节流构件4的出口端记为第四出口端42。
如图1所示,压缩机3的第三出口端32与第一换热器1的第一入口端11连通,第一换热器1的第一出口端12与节流构件4的第四入口端41连通,节流构件4的第四出口端42与第二换热器2的第二入口端21连通,第二换热器2的第二出口端22与压缩机3的第三入口端31连通。
需要说明的是,在实际应用中,本领域技术人员可以将节流构件4设置成热力膨胀阀,或者,也可以将节流构件4设置成毛细管,等等,这种对节流构件4的具体设置类型的调整和改变并不偏离本发明的原理和范围,均应包含在本发明的保护范围之内。
优选地,将节流构件4设置成热力膨胀阀。
需要说明的是,第一换热器1为冷凝器,第二换热器2为蒸发器。
还需要说明的是,在实际应用中,本领域技术人员可以将第二换热器2设置成与离心腔的形状相适应,并使第二换热器2与离心腔的腔壁贴合,或者,也可以将第二换热器2设置成多个与离心腔的腔壁贴合的降温单元,等等,这种灵活地调整和改变并不偏离本发明的原理和范围,均应包含在本发明的保护范围之内。
优选地,第二换热器2设置在离心机的离心腔的外部(图中未示出),第二换热器2的形状与离心腔的形状相适应且与离心腔的腔壁贴合,第二换热器2能够对离心腔进行降温。
需要说明的是,在实际应用中,并不限于将第二换热器2设置在离心腔的外部,例如,还可以将第二换热器2设置在离心腔的内部, 等等,这种灵活地调整和改变并不偏离本发明的原理和范围,均应包含在本发明的保护范围之内。当然优选地,第二换热器2设置在离心腔的外部。
如图1所示,本发明的温度控制组件还包括旁通回路5,旁通回路5的一端与压缩机3的第三出口端32连通,旁通回路5的另一端与第二换热器2的第二入口端21连通,旁通回路5上设置有电磁阀51,电磁阀51能够使旁通回路5连通或切断。
在旁通回路5切断的情形下,压缩机3内的高温高压气态制冷剂从第三出口端32输出并经第一入口端11进入到第一换热器1内,制冷剂在第一换热器1内冷凝后成为高温高压的液态制冷剂,再经节流构件4的第四入口端41输入节流构件4内,经节流构件4节流降压后变成低温低压的液态制冷剂并从第四出口端42输出,再经第二入口端21进入到第二换热器2内,液态制冷剂在第二换热器2内蒸发并对第二换热器2进行降温,进而对离心腔进行降温,第二换热器2内的制冷剂通过第二出口端22输出并经压缩机3的第三入口端31回到压缩机3内,完成一次制冷剂在制冷回路中的流动循环。
在旁通回路5连通的情形下,压缩机3内的高温高压气态制冷剂从第三出口端32输出并经第一入口端11进入到第一换热器1内,同时,从压缩机3的第三出口端32输出的部分高温高压制冷剂能够沿旁通回路5流动,并经第二换热器2的第二入口端21进入到第二换热器2内,这部分高温高压制冷剂能够与依次经压缩机3、第一换热器1、节流构件4进入到第二换热器2内的低温低压制冷剂进行混合,能够使第二换热器2快速回热,从而防止第二换热器2的温度进一步大幅度降低,进而防止离心腔内的温度进一步降低。
接着参阅图2,图2是本发明的控制方法的流程图。
如图2所示,在启动压缩机3之后,本发明的控制方法包括以下步骤:
S1000:获取离心腔内的当前温度T1;
S2000:获取目标温度T2;
S3000:根据当前温度T1和目标温度T2,选择性地启动电 磁阀51或者关闭电磁阀51。
通过这样的设置,当离心腔内的当前温度低于目标温度一定的范围时能够及时地启动电磁阀51,以便于将压缩机3的第三出口端32输出的高温高压制冷剂直接通入到第二换热器2的第二入口端21,从而使第二换热器2快速回温,进而避免离心腔内的温度进一步大幅度降低,同时,当离心腔内的当前温度高于目标温度一定的范围时能够及时地关闭电磁阀51,以防止从压缩机3的第三出口端32输出的制冷剂直接进入到第二换热器2内,从而使第二换热器2的温度快速降低,避免离心腔内的温度进一步大幅度升高,提高离心腔的温度控制的精准度。
需要说明的是,在实际应用中,本领域技术人员可以在离心腔内设置温度检测构件,根据温度检测构件的数值来获取离心腔内的当前温度,或者,也可以在第二换热器2上设置温度检测构件,根据温度检测构件的数值来反馈离心腔内的当前温度,等等,这种对离心腔内的温度的具体获取方式的调整和改变并不偏离本发明的原理和范围,均应包含在本发明的保护范围之内。
优选地,在离心腔内设置温度检测构件(图中未示出),通过温度检测构件的数据来获取离心腔内的当前温度。
需要说明的是,在实际应用中,本领域技术人员可以将温度检测构件设置成温度传感器,或者,也可以将温度检测构件设置成温度计,等等,这种对温度检测构件的具体设置类型的调整和改变并不偏离本发明的原理和范围,均应包含在本发明的保护范围之内。
优选地,将温度检测构件设置成温度传感器。
需要说明的是,在实际应用中,本领域技术人员可以将目标温度设置为固定值,或者,也可以将目标温度设置成通过用户输入的设定值,根据用户输入的数值来获取目标温度,等等,这种对目标温度的具体获取方式的调整和改变并不偏离本发明的原理和范围,均应包含在本发明的保护范围之内。
优选地,将目标温度设置成通过用户输入的设定值,根据用户输入的数值来获取目标温度。
通过这样的设置,能够使用户根据所离心的样品的不同来设 定不同的目标温度,从而使样品在其相应的适宜温度下进行离心处理,提高样品的离心效果和稳定性。
需要说明的是,在实际应用中,本领域技术人员可以直接将当前温度与目标温度进行比较,根据比较结果选择性地启动电磁阀51或者关闭电磁阀51,或者,也可以先计算当前温度和目标温度的差值,再将该差值与第一预设值和第二预设值进行比较,根据比较结果选择性地启动电磁阀51或者关闭电磁阀51,再或者,还可以先计算当前温度和目标温度的比值,再将该比值与第一预设值和第二预设值进行比较,根据比较结果选择性地启动电磁阀51或者关闭电磁阀51,等等,这种灵活地调整和改变并不偏离本发明的原理和范围,均应包含在本发明的保护范围之内。
接着参阅图3,图3是本发明的控制方法的实施例的流程图。
优选地,如图3所示,“根据当前温度T1和目标温度T2,选择性地启动电磁阀51或者关闭电磁阀51”的具体步骤包括:
S3100:计算第一差值△1=T1-T2;
S3200:将第一差值△1分别与第一预设值A1和第二预设值A2进行比较;
S3300:根据比较结果,选择性地启动电磁阀51或者关闭电磁阀51;
其中,A1>0,A2<0。
通过这样的设置,一方面,能够根据第一差值与第一预设值和第二预设值的比较结果,判断离心腔内的温度与目标温度之间的偏差,从而能够及时地启动电磁阀51或者关闭电磁阀51,以防止离心腔内的温度与目标温度之间的偏差过大;另一方面,与直接将当前温度与目标温度进行比较,根据比较结果选择性地启动电磁阀51或者关闭电磁阀51的情形相比,先计算当前温度和目标温度的差值,再将该差值与第一预设值和第二预设值进行比较,并根据比较结果选择性地启动电磁阀51或者关闭电磁阀51的方式能够防止因离心腔内的当前温度的检测误差而造成的误判,从而提高对离心腔的温度控制的精准度。
优选地,如图3所示,“根据比较结果,选择性地启动电磁 阀51或者关闭电磁阀51”的具体步骤包括:
S3310:如果△1<A2,则启动电磁阀51。
通过这样的设置,在△1<A2的情形下,说明离心腔内的当前温度低于目标温度且当前温度低于目标温度的幅度超过设定的范围,此时启动电磁阀51,能够使旁通回路5处于导通的状态,即能够使从压缩机3的第三出口端32输出的高温制冷剂经旁通回路5从第二换热器2的第二入口端21通入到第二换热器2内,从而使第二换热器2快速回热,避免离心腔内的温度进一步大幅度的降低,进而避免离心腔内的当前温度与目标温度的偏差过大,提高离心腔的温度控制的精准度。
优选地,如图3所示,“根据比较结果,选择性地调节电磁阀51的启闭”的具体步骤包括:
S3320:如果△1>A1,则关闭电磁阀51。
通过这样的设置,在△1>A1的情形下,说明离心腔内的当前温度高于目标温度且当前温度高于目标温度的幅度超过设定的范围,此时关闭电磁阀51,能够使旁通回路5切断,从而防止从压缩机3的第三出口端32输出的高温制冷剂通过旁通回路5进入到第二换热器2内,进而防止离心腔内的温度进一步大幅度的提高,即避免离心腔内的当前温度与目标温度之间的偏差过大,提高离心腔的温度控制的精准度。
优选地,如图3所示,“根据比较结果,选择性地启动电磁阀51或者关闭电磁阀51”的具体步骤包括:
S3330:如果A2≤△≤A1,则进一步判断离心腔内的温度是否处于温度上升阶段;根据判断结果,选择性地启动电磁阀51或者关闭电磁阀51。
通过这样的设置,在A2≤△≤A1的情形下,说明离心腔内的当前温度处于设定范围之内,此时需要先判断离心腔内的温度是否处于温度上升阶段,再根据判断结果选择性地启动电磁阀51或者关闭电磁阀51,一方面,能够防止当离心腔内的温度处于上升阶段时开启电磁阀51而使离心腔内的温度升高过快,从而避免离心腔内的温度高于目标温度的幅度过大;另一方面,能够防止当离心腔内的温度处于下降阶段时关闭电磁阀51而使离心腔内的温度进一步大幅度降低,从而避免离心腔 内的温度与目标温度的偏差过大。
优选地,如图3所示,“根据判断结果,选择性地启动电磁阀51或者关闭电磁阀51”的具体步骤包括:
S3331:在判断结果为“否”的情形下,则启动电磁阀51。
通过这样的设置,在判断结果为“否”的情形下,说明离心腔内的温度正处于温度下降阶段或者温度不变的阶段,此时如不及时地启动电磁阀51会使第二换热器2的温度持续降低,从而使得离心腔内的温度与目标温度之间的偏差逐渐增大,在开启电磁阀51之后,会使旁通回路5导通并使第二换热器2快速回热,从而减小离心腔内的温度与目标温度之间的偏差,从而提高离心腔的温度控制的精准度。
优选地,如图3所示,“根据判断结果,选择性地启动电磁阀51或者关闭电磁阀51”的具体步骤包括:
S3332:在判断结果为“是”的情形下,则关闭电磁阀51。
通过这样的设置,在判断结果为“是”的情形下,说明离心腔内的温度正处于温度上升阶段,此时如果不及时地关闭电磁阀51来切断旁通回路5,会使从压缩机3的第三出口端32输出的高温高压制冷剂持续输送到第二换热器2内,从而使第二换热器2的温度持续升高,同时,在离心过程中,由于转子与空气之间的摩擦也会使离心腔内的温度进一步升高,就会使得离心腔内的温度与目标温度之间的偏差过大,在关闭电磁阀51之后,会使旁通回路5切断,避免压缩机3的第三出口端32的高温制冷剂通入到第二换热器2内,从而通过制冷剂在制冷回路内流动而使得第二换热器2的温度降低,进而降低离心腔内的温度与目标温度之间的偏差,提高离心腔的温度控制的精准度。
需要说明的是,在实际应用中,本领域技术人员可以直接将连续获取离心腔内的温度进行比较,根据比较结果来判断离心腔内的温度是否处于温度上升阶段,或者,也可以先计算前后两次获取的离心腔内的温度的差值,再将该差值与第三预设值进行比较,根据比较结果来判断离心腔内的温度是否处于温度上升阶段,再或者,还可以先计算前后两次获取的离心腔内的温度的比值,再将该比值与第三预设值进行比较,根据比较结果来判断离心腔内的温度是否处于温度上升阶段,等等, 这种对离心腔内的温度是否处于上升阶段的具体判定方式的调整和改变并不偏离本发明的原理和范围,均应包含在本发明的保护范围之内。
优选地,“判断离心腔内的温度是否处于温度上升阶段”的具体步骤包括:
间隔设定时间获取一次离心腔内的温度;
计算后一次获取的所述离心腔内的温度Ti+1与前一次获取的所述离心腔内的温度Ti的差值,记为第二差值△2=Ti+1-Ti
将第二差值△2与第三预设值A3进行比较;
根据比较结果,判断离心腔内的温度是否处于温度上升阶段;
其中,A3≥0。
通过这样的设置,通过先计算前后两次获取的离心腔内的温度的差值,再将该差值与第三预设值进行比较,与直接将两次获取的离心腔内的温度进行比较并根据比较结果判断离心腔内的温度是否处于温度上升阶段的情形相比,能够避免因对离心腔内的温度的检测误差而造成的误判,从而能够准确地判断离心腔内的温度是否处于温度上升阶段。
需要说明的是,在实际应用中,本领域技术人员可以根据经验或者试验来确定A3的具体数值。
示例性地,将A3设置成0.2℃。
优选地,“根据比较结果,判断离心腔内的温度是否处于温度上升阶段”的具体步骤包括:
如果△2>A3,则判定为离心腔内的温度处于温度上升阶段。
通过这样的设置,在△2>A3的情形下,说明当前获取的离心腔内的温度高于前一次获取的离心腔内的温度,因此,可以判断为离心腔内的温度处于温度上升阶段;同时,用户可以根据实际情况来设置A3的具体数值从而允许温度检测构件存在一定的检测误差,降低对温度检测构件的精度要求。
需要说明的是,在实际应用中,本领域技术人员可以将前后两次获取的离心腔内的温度的差值与第三预设值进行比较,根据比较结 果判断离心腔内的温度是否处于温度上升阶段,或者,也可以连续多次获取离心腔内的温度,并计算相邻两次获取的离心腔内的温度之间的差值,再将该差值与第三预设值进行比较,如果相邻两次获取的离心腔内的温度之间的差值均大于第三预设值,则说明离心腔内的温度处于温度上升阶段。
优选地,连续4次获取离心腔内的温度,并计算相邻两次获取的离心腔内的温度的差值,再将该3个差值分别与第三预设值进行比较,如果该3个差值均大于第三预设值,则说明离心腔内的温度处于温度上升阶段。
优选地,“根据比较结果,判断离心腔内的温度是否处于温度上升阶段”的具体步骤包括:
如果△2≤A3,则判定为离心腔内的温度处于温度下降或温度不变的阶段。
需要说明的是,由于压缩机3处于运行状态,在电磁阀51关闭时,能够对离心腔进行降温,在电磁阀51启动时,能够对离心腔进行回热,因此,离心腔内的温度处于温度恒定的时间很短,可以忽略不计。
需要说明的是,在实际应用中,本领域技术人员可以在离心机工作时即启动压缩机3,或者,也可以在离心腔内的温度高于目标温度设定的范围时启动压缩机3,等等,这种灵活地调整和改变并不偏离本发明的原理和范围,均应包含在本发明的保护范围之内。
优选地,本发明的控制方法还包括:将第一差值△1与第四预设值A4进行比较;
如果△1≥A4时,则启动压缩机3;
其中A4>A1。
通过这样的设置,在△1≥A4的情形下,说明离心腔内的温度高于目标温度且超出目标温度一定的范围,此时,需要将压缩机3开启,并对离心腔进行降温,防止离心腔内的温度进一步升高而影响离心腔内的样品的稳定性。
需要说明的是,在实际应用中,本领域技术人员可以在离心 机关闭时即关闭压缩机3,或者,也可以在离心腔内的温度低于目标温度设定的范围时关闭压缩机3,等等,这种灵活地调整和改变并不偏离本发明的原理和范围,均应包含在本发明的保护范围之内。
优选地,本发明的控制方法还包括:将第一差值△1与第四预设值A5进行比较;
如果△1≤A5,则关闭压缩机3;
其中A5<A2。
通过这样的设置,在△1≤A5的情形下,说明离心腔内的温度低于目标温度且低于目标温度的幅度达到设定的范围,此时即使打开电磁阀51,从压缩机3的第三出口端32输出的制冷剂也无法使离心腔内的温度快速回升到设定的温度,因此,如果不将压缩机3关闭,很有可能会使离心腔内的温度进一步降低,从而影响离心腔内的样品的稳定性。
需要说明的是,在实际应用中,可以根据经验或试验来设定从压缩机3的第三出口端32进入到第二换热器2内的制冷剂的量,使得在压缩机3正常运行时,通过打开或者关闭电磁阀51即可使离心腔内的温度处于设定的温度范围之内。
下面结合几个情形介绍本发明的控制方法的具体实施例。
设定目标温度T2=37.0℃,A1=1.0℃,A2=-1.0℃.
情形1:
如果离心腔内的温度T1=35.5℃,则△1=T1-T2=(35.5-37)℃=-1.5℃,△1<A2,则说明离心腔内的温度过低,此时,启动电磁阀51;
情形2:
如果离心腔内的温度T1=38.5℃,则△1=T1-T2=(38.5-37)℃=1.5℃,△1>A1,则说明离心腔内的温度过高,此时,关闭电磁阀51;
情形3:
如果离心腔内的温度T1=36.5℃,则△1=T1-T2=(36.5-37)℃=-0.5℃,A2≤△1≤A1,则说明离心腔内的温度处于设定温度范围之内,此时需要判断离心腔内的温度是否处于温度上升阶段,根据判断结果,选择性地启动电磁阀51或者关闭电磁阀51。
下面结合几个情形介绍对离心腔内的温度是否处于温度上 升阶段以及选择性地启动或者关闭电磁阀的具体实施例。
设定A3=0.2℃,目标温度T2=37.0℃;
情形1:
连续4次检测到离心腔内的温度分别为:Ti=36.6℃,Ti+1=37.0℃,Ti+2=37.3℃,Ti+3=37.7℃,
相邻两次获取的离心腔内的温度之间的差值△2分别为:
△2=(37.0-36.6)℃=0.4℃>A3;
△2=(37.3-37.0)℃=0.3℃>A3;
△2=(37.7-37.3)℃=0.4℃>A3;
则说明相邻两次获取的离心腔内的温度之间的差值△2均大于A3,说明离心腔内的温度曲线处于温度上升阶段,则关闭电磁阀51。
情形2:
连续4次检测到离心腔内的温度分别为:Ti=36.6℃,Ti+1=36.1℃,Ti+2=35.7℃,Ti+3=35.3℃,
相邻两次获取的离心腔内的温度之间的差值△2分别为:
△2=(36.1-36.6)℃=-0.5℃<A3;
△2=(35.7-36.1)℃=-0.4℃<A3;
△2=(35.3-35.7)℃=-0.4℃<A3;
则说明相邻两次获取的离心腔内的温度之间的差值△2均小于A3,说明离心腔内的温度曲线不处于温度上升阶段,则启动电磁阀51。
情形3:
连续4次检测到离心腔内的温度分别为:Ti=36.6℃,Ti+1=36.7℃,Ti+2=36.9℃,Ti+3=37.2℃,
相邻两次获取的离心腔内的温度之间的差值△2分别为:
△2=(36.7-36.6)℃=0.1℃<A3;
△2=(36.9-36.7)℃=0.2℃=A3;
△2=(37.2-36.9)℃=0.3℃>A3;
则说明相邻两次获取的离心腔内的温度之间的差值△2不是均大于A3,说明离心腔内的温度曲线不处于温度上升阶段,则启动电磁阀51。
优选地,本发明的离心机还包括控制器(图中未示出),控制器配置成能够执行上述介绍的控制方法。
需要说明的是,在实际应用中,控制器设置成与温度检测构件通讯连接,以便实现对离心腔内的温度的智能采集,控制器还设置成与电磁阀51通讯连接,以便实现对电磁阀51的开启或关闭的智能控制。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种用于离心机的控制方法,其特征在于,所述离心机包括离心腔以及温度控制组件,所述温度控制组件包括由依次连通的压缩机、第一换热器、节流构件以及第二换热器组成的制冷回路,所述第一换热器的入口端与所述压缩机的出口端连通,所述第二换热器的出口端与所述压缩机的入口端连通,所述第二换热器能够对所述离心腔进行降温,所述温度控制组件还包括旁通回路以及设置于所述旁通回路上的电磁阀,所述旁通回路的一端与所述压缩机的出口端连通,所述旁通回路的另一端与所述第二换热器的入口端连通,在启动所述压缩机之后,所述控制方法包括:
    获取所述离心腔内的当前温度T1;
    获取目标温度T2;
    根据所述当前温度T1和所述目标温度T2,选择性地启动所述电磁阀或者关闭所述电磁阀。
  2. 根据权利要求1所述的控制方法,其特征在于,“根据所述当前温度T1和所述目标温度T2,选择性地启动所述电磁阀或者关闭所述电磁阀”的具体步骤包括:
    计算第一差值△1=T1-T2;
    将所述第一差值△1分别与第一预设值A1和第二预设值A2进行比较;
    根据比较结果,选择性地启动所述电磁阀或者关闭所述电磁阀;
    其中,A1>0,A2<0。
  3. 根据权利要求2所述的控制方法,其特征在于,“根据比较结果,选择性地启动所述电磁阀或者关闭所述电磁阀”的具体步骤包括:
    如果△1<A2,则启动所述电磁阀。
  4. 根据权利要求2所述的控制方法,其特征在于,“根据比较结果, 选择性地启动所述电磁阀或者关闭所述电磁阀”的具体步骤包括:
    如果A2≤△1≤A1,则进一步判断所述离心腔内的温度是否处于温度上升阶段;
    根据判断结果,选择性地启动所述电磁阀或者关闭所述电磁阀。
  5. 根据权利要求4所述的控制方法,其特征在于,“根据判断结果,选择性地启动所述电磁阀或者关闭所述电磁阀”的具体步骤包括:
    在判断结果为“否”的情形下,则启动所述电磁阀。
  6. 根据权利要求4所述的控制方法,其特征在于,“根据判断结果,选择性地启动所述电磁阀或者关闭所述电磁阀”的具体步骤包括:
    在判断结果为“是”的情形下,则关闭所述电磁阀。
  7. 根据权利要求4所述的控制方法,其特征在于,“判断所述离心腔内的温度是否处于温度上升阶段”的具体步骤包括:
    间隔设定时间获取一次所述离心腔内的温度;
    计算后一次获取的所述离心腔内的温度与前一次获取的所述离心腔内的温度的差值,记为第二差值△2;
    将所述第二差值△2与第三预设值A3进行比较;
    根据比较结果,判断所述离心腔内的温度是否处于温度上升阶段;
    其中,A3≥0。
  8. 根据权利要求7所述的控制方法,其特征在于,“根据比较结果,判断所述离心腔内的温度是否处于温度上升阶段”的具体步骤包括:
    如果△2>A3,则判定为所述离心腔内的温度处于温度上升阶段。
  9. 根据权利要求2所述的控制方法,其特征在于,“根据比较结果,选择性地调节所述电磁阀的启闭”的具体步骤包括:
    如果△1>A1,则关闭所述电磁阀。
  10. 一种离心机,包括控制器,其特征在于,所述控制器配置成能够执行权利要求1至9中任一项所述的控制方法。
PCT/CN2023/086088 2022-07-21 2023-04-04 用于离心机的控制方法及离心机 WO2024016734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210863296.4A CN115338046A (zh) 2022-07-21 2022-07-21 用于离心机的控制方法及离心机
CN202210863296.4 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024016734A1 true WO2024016734A1 (zh) 2024-01-25

Family

ID=83950588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086088 WO2024016734A1 (zh) 2022-07-21 2023-04-04 用于离心机的控制方法及离心机

Country Status (2)

Country Link
CN (1) CN115338046A (zh)
WO (1) WO2024016734A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115338046A (zh) * 2022-07-21 2022-11-15 青岛海尔生物医疗科技有限公司 用于离心机的控制方法及离心机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295377A2 (de) * 1987-06-16 1988-12-21 Maschinenfabrik Berthold Hermle Aktiengesellschaft Verfahren und Anordnung zur Temperaturregelung insbesondere bei Kühlzentrifugen
JP2010008022A (ja) * 2008-06-30 2010-01-14 Tomy Ltd 冷凍回路及び遠心分離機
CN203672002U (zh) * 2013-12-30 2014-06-25 广州特域机电有限公司 一种使用电磁阀旁通冷媒进行控温的制冷装置
CN104203422A (zh) * 2012-02-13 2014-12-10 埃佩多夫股份公司 具有压缩机冷却装置的离心机及控制离心机的压缩机冷却装置的方法
CN113909006A (zh) * 2021-10-18 2022-01-11 青岛海尔生物医疗科技有限公司 用于离心机温度控制的方法及装置、离心机
CN114234464A (zh) * 2021-12-15 2022-03-25 青岛澳柯玛生物医疗有限公司 一种回热制冷优化系统及方法
CN115338046A (zh) * 2022-07-21 2022-11-15 青岛海尔生物医疗科技有限公司 用于离心机的控制方法及离心机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295377A2 (de) * 1987-06-16 1988-12-21 Maschinenfabrik Berthold Hermle Aktiengesellschaft Verfahren und Anordnung zur Temperaturregelung insbesondere bei Kühlzentrifugen
JP2010008022A (ja) * 2008-06-30 2010-01-14 Tomy Ltd 冷凍回路及び遠心分離機
CN104203422A (zh) * 2012-02-13 2014-12-10 埃佩多夫股份公司 具有压缩机冷却装置的离心机及控制离心机的压缩机冷却装置的方法
CN203672002U (zh) * 2013-12-30 2014-06-25 广州特域机电有限公司 一种使用电磁阀旁通冷媒进行控温的制冷装置
CN113909006A (zh) * 2021-10-18 2022-01-11 青岛海尔生物医疗科技有限公司 用于离心机温度控制的方法及装置、离心机
CN114234464A (zh) * 2021-12-15 2022-03-25 青岛澳柯玛生物医疗有限公司 一种回热制冷优化系统及方法
CN115338046A (zh) * 2022-07-21 2022-11-15 青岛海尔生物医疗科技有限公司 用于离心机的控制方法及离心机

Also Published As

Publication number Publication date
CN115338046A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
US10508850B2 (en) Method for controlling a vapour compression system in a flooded state
WO2024016734A1 (zh) 用于离心机的控制方法及离心机
WO2014102940A1 (ja) 冷凍サイクル装置、及び冷凍サイクル装置の制御方法
CN109341122B (zh) 一种制冷系统和控制方法
JPS62248942A (ja) 温度調節装置
KR20130041640A (ko) 공기조화기 및 그 운전 방법
EP4206556A1 (en) Control method and device for heat pump water heater
EP2839226B1 (en) A heat rejecting heat exchanger and a method of controlling one or more fans thereof
JP2008249239A (ja) 冷却装置の制御方法、冷却装置および冷蔵倉庫
US11874038B2 (en) Thermostatic expansion valves and methods of control
US10234147B2 (en) Air conditioner
US8205463B2 (en) Air conditioner and method of controlling the same
CN109341121B (zh) 一种制冷系统和控制方法
CN112303972B (zh) 电子膨胀阀控制方法、系统及制冷系统
JP2007225213A (ja) 温度調整装置および冷凍サイクル
CN106288032A (zh) 一种利用双回气压缩机降低变频板芯片温升的方法和空调
CN106766416B (zh) 定频机调节系统及其调节方法和定频空调机
JP5989534B2 (ja) 冷凍システム装置および空気調和機
TWI718985B (zh) 多段熱泵性能測試系統
US20170343260A1 (en) Perturbation of expansion valve in vapor compression system
CN109341126B (zh) 一种制冷系统和控制方法
CN209085106U (zh) 一种制冷系统
KR100557038B1 (ko) 히트펌프의 팽창밸브 제어방법
KR20170087752A (ko) 공기조화기 및 그 제어방법
CN104214982A (zh) 一种精度高、成本低的风冷螺杆冷水机组及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841807

Country of ref document: EP

Kind code of ref document: A1