WO2024016645A1 - 基站下行干扰检测方法、电路、控制单元及存储介质 - Google Patents

基站下行干扰检测方法、电路、控制单元及存储介质 Download PDF

Info

Publication number
WO2024016645A1
WO2024016645A1 PCT/CN2023/076155 CN2023076155W WO2024016645A1 WO 2024016645 A1 WO2024016645 A1 WO 2024016645A1 CN 2023076155 W CN2023076155 W CN 2023076155W WO 2024016645 A1 WO2024016645 A1 WO 2024016645A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
link
unit
selection unit
detected
Prior art date
Application number
PCT/CN2023/076155
Other languages
English (en)
French (fr)
Inventor
张志锋
闫鹏周
杨易
张纲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024016645A1 publication Critical patent/WO2024016645A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a base station downlink interference detection method, circuit, control unit and storage medium.
  • low-frequency signals Since low-frequency signals have the advantages of small propagation loss and wide coverage, low-frequency signals have become the main communication frequency band for mobile communication services. However, since low-frequency signals are also used in terrestrial digital television broadcasting services, there is a technical problem of digital television broadcasting interfering with the uplink and downlink signals of mobile communication base stations.
  • the present disclosure provides a base station downlink interference detection method, circuit, control unit and storage medium to solve the technical problem of digital television broadcasting's interference with downlink signals of mobile communication base stations.
  • the present disclosure provides a base station downlink interference detection method.
  • the method includes: in response to a downlink interference signal detection instruction to the base station, controlling the signal transmission link of the signal transceiver circuit to close based on the detection instruction; when the signal transmission link is detected After closing, the signal coupling link of the control signal transceiver circuit is connected to the signal receiving link, so that the signal to be detected is transmitted to the signal receiving link through the signal coupling link, and the signal to be detected is detected through the baseband unit in the signal receiving link. downlink interference signal.
  • the present disclosure provides a signal transceiver circuit that is communicatively connected to a control unit and includes: a duplex filter; a signal transmitting link for transmitting downlink target signals; and a signal receiving link for receiving uplink Target signal; signal coupling link.
  • the control unit controls the signal transmitting link to close based on the detection instruction, it controls the connection with the signal receiving link, so that the signal to be detected is transmitted to the signal receiving link through the signal coupling link, and the signal is received through the signal receiving link.
  • the baseband unit in the link detects the downlink interference signal in the signal to be detected.
  • the present disclosure provides a control unit, which includes a processor, a memory, a computer program stored on the memory and executable by the processor, and a data bus for realizing connection communication between the processor and the memory,
  • a control unit which includes a processor, a memory, a computer program stored on the memory and executable by the processor, and a data bus for realizing connection communication between the processor and the memory,
  • the computer program is executed by the processor, the steps of the base station downlink interference detection method described in the first aspect are implemented.
  • the present disclosure provides a storage medium for computer-readable storage.
  • the storage medium stores one or more programs.
  • the one or more programs can be executed by one or more processors to implement the first aspect as above.
  • the steps of the base station downlink interference detection method are described below.
  • Figure 1 is a schematic block diagram of a scenario to which this disclosure is applicable
  • FIG. 2 is a schematic block diagram of the signal transceiver circuit in Figure 1;
  • FIG. 3 is a schematic block diagram of the signal transmission link in Figure 2;
  • Figure 4 is a schematic block diagram of the connection between the signal transmitting link and the signal coupling link in Figure 2;
  • Figure 5 is an implementation flow chart of the base station downlink interference detection method provided by the present disclosure.
  • Figure 6 is a schematic block diagram of a control unit provided by the present disclosure.
  • the communication frequency band used by a mobile communication system with frequency division duplexing (Frequency Division Duplexing, FDD) working mode is the 703MHz to 743MHz frequency band, or the 758MHz to 798MHz frequency band.
  • FDD Frequency Division Duplexing
  • low-frequency base stations can directly receive the signal through the existing base station signal receiving link, and detect the size of the uplink interference signal at each frequency point to avoid interference frequency points.
  • the duplex filter of the mobile communication base station only detects the standing wave ratio VSWR.
  • the VSWR detection is mainly through the reverse RF link detection, which is configured to detect the standing wave ratio of the antenna feed.
  • the corresponding reverse RF link couples a reverse RF signal of about 0dBm through a 30-40dB coupler; but the low-frequency signal passes through the space After propagation, the signal power received by the base station is usually below -30dBm. Therefore, the existing base station radio frequency link design cannot meet the detection of low-frequency signal downlink signal interference, causing interference to mobile communication services and seriously affecting user experience.
  • the downlink interference detection of low-frequency base stations is usually determined by mobile terminal detection and feedback of the subband channel quality indicator CQI to the base station. Whether there is downlink interference signal.
  • the mobile terminal detects the channel quality and interference conditions at consecutive subcarrier positions over the entire bandwidth and feeds them back to the base station. Because the mobile terminal is constantly moving freely as the user, and the user's position is constantly changing, affected by the obstruction of surrounding objects, etc., the low-frequency downlink interference signal measured by the mobile terminal is fluctuating high and low, which is not very accurate. It is stable and cannot truly reflect the downlink interference situation of low-frequency signals in the area.
  • the mobile terminal moves at high speed, there will be a delay.
  • the interference of the sub-band CQI feedback is the interference of the previous moment, and the interference of the current moment cannot be truly fed back. Not only is the downlink interference signal detection efficiency low, but the detection is also inaccurate, affecting user experience.
  • the present disclosure provides a base station downlink interference detection method, circuit, control unit and storage medium, which can effectively improve downlink interference signal detection efficiency and detection accuracy, thereby improving user experience.
  • the base station downlink interference detection method provided by the present disclosure can be applied to a control unit, which may be a microprocessor or chip with a data processing function.
  • control unit is communicatively connected with the signal transceiver circuit, and can control the signal transmission link of the signal transceiver circuit to close based on the detection command in response to the downlink interference signal detection instruction to the base station; after detecting that the signal transmission link is closed, The signal coupling link of the signal transceiver circuit is connected to the signal receiving link, so that the signal to be detected is transmitted to the signal receiving link through the signal coupling link, and the downlink interference in the signal to be detected is detected through the baseband unit in the signal receiving link. Signal.
  • the signal to be detected is coupled through the signal
  • the link is transmitted to the signal receiving link, and then the downlink interference signal in the signal to be detected can be detected through the baseband unit on the signal receiving link, aiming to improve the efficiency and accuracy of downlink interference signal detection by the base station to improve the user experience. .
  • Figure 1 is a schematic block diagram of a scenario to which this disclosure is applicable.
  • the base station downlink interference detection method provided by the present disclosure is applicable to the base station 100 including a signal transceiver circuit 102 and a control unit 104.
  • the signal transceiver circuit 102 and the control unit 104 can be connected through a network.
  • the control unit 104 may respond to the downlink interference signal detection instruction to the base station 100 and control the signal transmission link of the signal transceiver circuit 102 to close based on the received detection instruction; after detecting that the signal transmission link of the signal transceiver circuit 102 is closed, control
  • the signal coupling link of the signal transceiver circuit 102 is connected to the signal receiving link, so that the signal to be detected is transmitted to the signal receiving link through the signal coupling link, and the downlink interference in the signal to be detected is detected through the baseband unit in the signal receiving link. Signal.
  • the signal to be detected is transmitted to the signal receiving link through the signal coupling link, and then the signal to be detected can be detected through the baseband unit on the signal receiving link.
  • Detecting downlink interference signals in signals aims to improve the efficiency and accuracy of base station downlink interference signal detection to improve user experience.
  • FIG. 2 is a schematic block diagram of the signal transceiver circuit in FIG. 1 .
  • the signal transceiver circuit 102 includes a duplex filter 1021, a signal transmitting link 1022, a signal receiving link 1024 and a signal coupling link 1026; wherein, the signal transmitting link 1022, used to transmit the downlink target signal; the signal receiving link 1024 is used to receive the uplink target signal; the signal coupling link 1026 is controlled by the control unit 104 based on the detection instruction.
  • the signal transmitting link 1022 After the signal transmitting link 1022 is closed, it is controlled to be connected to the signal receiving link 1024 , so that the signal to be detected is transmitted to the signal receiving link 1024 through the signal coupling link 1026, and the downlink interference signal in the signal to be detected is detected through the baseband unit in the signal receiving link 1024.
  • the baseband unit is not shown in Figure 2. It should be noted that the process of the baseband unit detecting the downlink interference signal in the signal to be detected is consistent with the existing uplink interference detection process, that is, the baseband unit can determine whether there is interference at each frequency point by detecting the signal power of each frequency point. The size of the signal and interference signal can be used to detect downlink interference signals.
  • scheduling methods such as frequency selection can be used to effectively avoid interference frequency points to schedule services to improve user experience.
  • the process of the baseband unit detecting the downlink interference signal in the signal to be detected can specifically refer to the existing uplink interference detection process, and will not be described in detail here.
  • the present disclosure controls the connection of the signal coupling link and the signal receiving link through the control unit, so that the downlink interference signal enters the receiving channel of the signal receiving link through the signal coupling link, thereby realizing the detection method of the uplink interference signal in the receiving channel, realizing The detection of downlink interference signals can effectively improve the detection efficiency and accuracy of downlink interference signals.
  • the base station antenna is usually located at a high place with no obstruction from the interference source. It is similar to free space propagation.
  • the frequency band of the low-frequency interference signal received by the base station antenna is fixed, the power is basically stable, and the detected low-frequency downlink interference signal It is closer to the real transmission signal of the interference source. Therefore, the present disclosure can be used to detect downlink interference signals on the low-frequency base station side.
  • Figure 3 is a schematic block diagram of the signal transmission link in Figure 2.
  • the signal transmission link 1022 includes a power amplifier unit 301 , a coupling unit 302 , a first switching device 304 , a feedback channel 305 , a transmission channel 306 , an antenna standing wave calculation unit 306 and a digital power calculation unit 308 .
  • the power amplifier unit 301 is connected to the duplex filter 1021, and is used to transmit the downlink signal transmitted by the transmission channel 306 to the antenna, so that the antenna radiates out.
  • the coupling unit 302 can couple the forward power and the reverse power, and is used by the antenna standing wave calculation unit 306 to calculate the antenna standing wave, and the digital power calculation unit 308 is used to calculate the power of the transmission signal.
  • the specific structures of the power amplifier unit 301, the forward coupling unit 302, the backward coupling unit 303, the first switching device 304, the feedback channel 305, the transmitting channel 306, the antenna standing wave calculation unit 306 and the digital power calculation unit 308 can be referred to The structure of each corresponding unit in the existing base station radio frequency link will not be explained in detail here.
  • the duplex filter includes a transmit frequency band filter and a receive frequency band filter
  • the downlink interference signal cannot be filtered by the receive frequency band filter of the duplex filter. is transmitted to the signal receive chain, but can be transmitted to the signal transmit link through the transmit band filter of the duplex filter.
  • the downlink interference signal is transmitted to the signal transmission link, only the antenna standing wave ratio VSWR is detected on the signal transmission link.
  • VSWR is mainly detected through the reverse radio frequency link formed by the backward coupling unit and the feedback channel.
  • the reverse coupling unit since the base station transmits high-power signals, the reverse coupling unit often uses a 30-40dB coupler to couple a reverse radio frequency signal of about 0dBm; if the low-frequency signal propagates through space, the signal received by the base station The power is usually below -30dBm, making it impossible to detect low-frequency downlink interference signals.
  • the control unit 104 that is communicatively connected with the signal transceiver circuit 102 controls the signal transmission link 1022 to be closed. , and after the signal transmitting link 1022 is closed, the signal coupling link 1026 is controlled to be connected to the signal receiving link 1024, so that the signal to be detected is transmitted to the signal receiving link 1024 through the signal coupling link 1026, and through the signal receiving link 1024
  • the baseband unit detects the downlink interference signal in the signal to be detected.
  • the baseband unit can detect the signal size at each frequency point and calculate the interference signal size at each frequency point, it can effectively detect downlink interference signals, especially low-frequency downlink interference signals, to improve low-frequency downlink interference. Interference signal detection accuracy and detection efficiency. And the baseband unit can adopt scheduling methods such as frequency selection, which can effectively avoid interfering frequencies and schedule services. Therefore, the user experience effect can be improved.
  • Figure 4 is a schematic block diagram of the connection between the signal transmission link and the signal coupling link in Figure 2.
  • the signal transmission link 1022 includes: a low-noise amplification unit 401 , a surface acoustic filter 402 and a receiving channel 403 .
  • the low-noise amplification unit 401 is used to amplify the uplink signal received by the antenna.
  • the uplink signal received by the antenna can be transmitted to the low-noise amplification unit through the duplex filter 1021.
  • the low-noise amplification unit 401 amplifies the uplink signal and then transmits it to the surface acoustic filter.
  • the low-noise amplification unit 401 may be an amplifier with a noise coefficient lower than a preset noise threshold, and there is no specific limitation on the low-noise amplification unit 401.
  • the surface acoustic filter 402 is used to filter out interference signals outside the receiving frequency band.
  • the surface acoustic filter utilizes the piezoelectric properties of piezoelectric materials and uses input and output transducers (Transducers) to convert the input signal of the electric wave into mechanical energy. After processing, the mechanical energy is converted into electrical energy. signal to achieve the purpose of filtering unnecessary interference signals.
  • Transducers input and output transducers
  • the receiving channel 403 is used to receive the signal filtered by the surface acoustic filter.
  • the surface acoustic filter causes the target uplink signal to reach the receiving channel.
  • interference frequency point detection needs to be performed through the baseband unit. According to the detected interference frequency points, Size, adopt frequency selection and other scheduling methods to avoid interference frequency points to schedule services.
  • the signal coupling link is set up so that the downlink interference signal passes through the low-noise amplification unit, and the downlink signal that passes through the low-noise amplification unit enters the receiving channel through the impedance matching unit, so as to realize the matching through the baseband unit.
  • the detection process of downlink interference signals is the same as that of uplink interference signals.
  • the signal coupling link 1026 includes: a coupling unit 404, a first link selection unit 405, a second link selection unit 406, an impedance matching unit 407 and a third link Select unit 408.
  • the input end of the coupling unit 404 is connected to the antenna of the base station, the first link selection unit 402 is disposed between the output end of the coupling unit 404 and the input end of the low-noise amplification unit 401; the input of the second link selection unit 406 The terminal is connected to the output terminal of the low-noise amplification unit 401, and the impedance matching unit 407 and the surface acoustic filter unit 402 are connected in parallel between the output terminal of the second link selection unit 406 and the input terminal of the third link selection unit 408; The output end of the link selection unit 408 is connected to the receiving channel 403 .
  • the coupling unit is used to couple out the signal to be detected from the signal received by the antenna.
  • the control unit controls the first link selection unit to connect the coupling unit with the low-noise amplification unit.
  • the signal transmission link no longer transmits the target downlink signal, and there is a large amount of downlink interference signal in the signal received by the corresponding antenna.
  • the downlink interference signal is filtered by the duplex filter. effect, the low-noise amplification unit cannot be reached.
  • the control unit controls the first link selection unit to connect the coupling unit with the low-noise amplification unit, so that the downlink interference signal can be transmitted to the low-noise amplification unit through the coupling unit.
  • the downlink interference signal is the signal to be detected.
  • the coupling unit involved in this disclosure is not limited to using existing couplers, and also includes other customized coupling circuits, which are not limited here.
  • the first link selection unit is used to transmit the signal to be detected to the low-noise amplifier unit.
  • the first link selection unit includes but is not limited to a radio frequency switch, a channel selection switch, etc.
  • the first link selection unit serves as a channel selection switch, and the control unit controls the channel selection switch to connect the link between the coupling unit and the low-noise amplification unit, so that the signal to be detected is transmitted to the low-noise amplification unit.
  • the second link selection unit is used to transmit the signal to be detected that passes through the low-noise amplifier unit to the third link selection unit.
  • the second link selection unit includes but is not limited to a radio frequency switch, a channel selection switch, etc.
  • the third link selection unit is used to transmit the signal to be detected to the receiving channel.
  • the third link selection unit includes but is not limited to a radio frequency switch, a channel selection switch, etc.
  • an impedance mismatch problem between the second link selection unit and the third link selection unit there may be an impedance mismatch problem between the second link selection unit and the third link selection unit.
  • An impedance matching unit is provided to adjust the impedance between the second link selection unit and the third link selection unit so that the impedance between the second link selection unit and the third link selection unit matches.
  • the existing signal receiving link is reused, so that downlink interference signals can be detected, allowing the base station to avoid downlink interference frequency bands, perform service scheduling, and improve spectrum efficiency and users in downlink interference scenarios. experience.
  • signaling resource consumption is saved, and interference detection accuracy and timeliness are higher.
  • the signal transceiver circuit includes a duplex filter, a signal transmitting link, a signal receiving link and a signal coupling link.
  • the signal transceiving circuit is connected to the control unit through communication and responds to the control unit.
  • the signal coupling link and the signal receiving link can be further controlled to be connected, so that the signal to be detected is transmitted to the signal receiving link through the signal coupling link.
  • the downlink interference signal in the signal to be detected is detected through the baseband unit in the signal receiving link. While improving the efficiency and accuracy of base station downlink interference signal detection, it also improves user experience.
  • Figure 5 is a flow chart of the implementation of the base station downlink interference detection method provided by the present disclosure.
  • the base station downlink interference detection method can be implemented by the control unit shown in Figure 1.
  • the base station downlink interference detection method includes steps S501 to S502, which are described in detail below.
  • Step S501 In response to the downlink interference signal detection instruction to the base station, control the signal transceiver circuit based on the detection instruction. The signal transmission link is closed.
  • the downlink interference signal detection command for the base station can be triggered by the staff.
  • a downlink interference signal detection instruction can be triggered through a preset monitoring device, and the downlink interference signal detection instruction can be sent to the control unit.
  • the signal transmission link of the signal transceiver circuit is controlled based on the detection instruction to close, preventing the transmission link from continuing to transmit the target downlink signal, so that the target downlink signal is incompatible with the downlink signal.
  • Interference signals are mixed to improve the detection efficiency and accuracy of downlink interference signals.
  • Step S502 after detecting that the signal transmitting link is closed, control the signal coupling link of the signal transmitting and receiving circuit to connect with the signal receiving link, so that the signal to be detected is transmitted to the signal receiving link through the signal coupling link, and through the signal receiving chain
  • the baseband unit in the path detects the downlink interference signal in the signal to be detected.
  • the signal receiving link includes: a low-noise amplification unit, a surface acoustic filter and a receiving channel;
  • the signal coupling link includes: a coupling unit, a first link selection unit, a second link selection unit, Impedance matching unit and third link selection unit.
  • the input end of the coupling unit is connected to the antenna of the base station, the first link selection unit is disposed between the output end of the coupling unit and the input end of the low-noise amplification unit; the input end of the second link selection unit is connected to the input end of the low-noise amplification unit.
  • the output end is connected, and the impedance matching unit and the surface acoustic filter unit are connected in parallel between the output end of the second link selection unit and the input end of the third link selection unit; the output end of the third link selection unit is connected to the receiving channel.
  • controlling the preset signal coupling link and the signal receiving link to connect may include: after detecting that the signal transmitting link is closed, controlling the first link selection unit to connect the coupling unit
  • the output port of the low-noise amplification unit is connected to the input port of the low-noise amplification unit; if a signal is detected to flow through the low-noise amplification unit, the second link selection unit is controlled to be connected to the impedance matching circuit; if a signal is detected to pass through the impedance matching circuit, the second link selection unit is controlled to be connected to the impedance matching circuit.
  • the three-link selection unit is connected to the signal receiving link.
  • the base station downlink interference detection method controls the shutdown of the signal transmission link of the base station based on the detection instruction by responding to the downlink interference signal detection instruction for the base station; and after detecting that the signal transmission link is closed,
  • the signal coupling link of the signal transceiver circuit is connected to the signal receiving link, so that the signal to be detected is transmitted to the signal receiving link through the signal coupling link, and the downlink interference in the signal to be detected is detected through the baseband unit in the signal receiving link.
  • the signal to be detected is transmitted to the signal receiving link through the signal coupling link, and then the signal to be detected can be detected through the baseband unit on the signal receiving link.
  • Detecting downlink interference signals in signals aims to improve the efficiency and accuracy of base station downlink interference signal detection to improve user experience.
  • FIG. 6 is a schematic block diagram of a control unit provided by the present disclosure.
  • the control unit 104 includes a processor 601 , a memory 602 , a communication interface 603 and a bus 604 .
  • the processor 601, the memory 602, and the communication interface 603 communicate through the bus 604. Communication can also be achieved through other means such as wireless transmission.
  • the memory 602 stores executable program codes, and the processor 601 can call the program codes stored in the memory 602 to execute the base station downlink interference detection method in the foregoing method embodiment. That is to say, the above-mentioned base station downlink interference detection method shown in Figure 6 can be implemented by the processor 601 in the control unit shown in Figure 6 calling the program code stored in the memory 602.
  • the processor 601 can be a central processing unit CPU, and the processor 601 can also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits) circuit (ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor can be a microprocessor or any conventional processor, etc.
  • the memory 602 may include read-only memory and random access memory and provides instructions and data to the processor 601. Memory 602 may also include non-volatile random access memory. For example, memory 602 may also store data sets.
  • the memory 602 may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • Double data rate synchronous dynamic random access memory double data date SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory direct rambus RAM, DR RAM
  • bus 604 may also include a power bus, a control bus, a status signal bus, etc.
  • bus 604 may also include a power bus, a control bus, a status signal bus, etc.
  • the various buses are labeled bus 604 in the figure.
  • control unit 104 corresponds to the corresponding subject in executing the method shown in FIG. 6 according to the present disclosure, and for the sake of brevity, the details will not be described again.
  • the following steps are implemented: in response to the downlink interference signal detection instruction to the base station, based on The detection instruction controls the signal transmitting link of the signal transceiver circuit to be closed; after detecting that the signal transmitting link is closed, the signal coupling link of the control signal transceiver circuit is connected to the signal receiving link, so that the signal to be detected The signal is transmitted to the signal receiving link through the signal coupling link, and the downlink interference signal in the signal to be detected is detected through the baseband unit in the signal receiving link.
  • the signal receiving link includes: a low-noise amplification unit, a surface acoustic filter and a receiving channel;
  • the signal coupling link includes: a coupling unit, a first link selection unit, a second link selection unit, and an impedance matching unit.
  • the input end of the coupling unit is connected to the antenna of the base station, and the first link selection unit is disposed between the output end of the coupling unit and the input end of the low-noise amplification unit;
  • the second link The input end of the selection unit is connected to the output end of the low-noise amplification unit, and the impedance matching unit and the surface acoustic filter unit are connected in parallel between the output end of the second link selection unit and the input end of the third link selection unit;
  • the third link The output end of the path selection unit is connected to the receiving channel; after detecting that the signal transmitting link is closed, controlling the preset signal coupling link to connect with the signal receiving link, including: after detecting that the signal transmitting link is closed, controlling the first A link selection unit connects the output port of the coupling unit to the input port of the low-noise amplification unit; if a signal is detected to flow through the low-noise amplification unit, it controls the second link selection unit
  • the present disclosure also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program includes program instructions.
  • the processor executes the program instructions to implement the base station downlink interference detection provided by the above embodiments of the disclosure. Method steps.
  • the present disclosure provides a base station downlink interference detection method, circuit, control unit and storage medium.
  • the base station downlink interference detection method provided by the present disclosure controls the signal transmission chain of the base station based on the detection instruction by responding to the downlink interference signal detection instruction for the base station. circuit is closed; and after detecting that the signal transmitting link is closed, the signal coupling link of the signal transmitting and receiving circuit is connected to the signal receiving link, so that the signal to be detected is transmitted to the signal receiving link through the signal coupling link, and the signal is received through the signal receiving link.
  • the baseband unit in the link detects the downlink interference signal in the signal to be detected.
  • the signal to be detected is transmitted to the signal receiving link through the signal coupling link, and then the signal to be detected can be detected through the baseband unit on the signal receiving link.
  • Detecting downlink interference signals in signals aims to improve the efficiency and accuracy of base station downlink interference signal detection to improve user experience.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Abstract

本公开提供一种基站下行干扰检测方法、电路、控制单元及存储介质,该方法通过响应于对基站的下行干扰信号检测指令,基于检测指令控制基站的信号发射链路关闭;并在检测到信号发射链路关闭后,控制信号收发电路的信号耦合链路与信号接收链路连通,以使待检测信号通过信号耦合链路传输至信号接收链路,通过信号接收链路中的基带单元检测待检测信号中的下行干扰信号。

Description

基站下行干扰检测方法、电路、控制单元及存储介质
相关申请的交叉引用
本公开要求享有2022年07月18日提交的名称为“基站下行干扰检测方法、电路、控制单元及存储介质”的中国专利申请CN202210841692.7的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种基站下行干扰检测方法、电路、控制单元及存储介质。
背景技术
由于低频信号具有传播损耗小,覆盖范围广的优点,使得低频信号成为移动通信业务的主要通信频段。但是由于低频信号还用于地面数字电视广播业务,这样就存在数字电视广播对移动通信基站的上下行信号干扰的技术问题。
发明内容
本公开提供了一种基站下行干扰检测方法、电路、控制单元及存储介质,以解决数字电视广播对移动通信基站的下行信号干扰的技术问题。
第一方面,本公开提供一种基站下行干扰检测方法,方法包括:响应于对基站的下行干扰信号检测指令,基于检测指令控制信号收发电路的信号发射链路关闭;在检测到信号发射链路关闭后,控制信号收发电路的信号耦合链路与信号接收链路连通,以使待检测信号通过信号耦合链路传输至信号接收链路,通过信号接收链路中的基带单元对检测待检测信号中的下行干扰信号。
第二方面,本公开提供一种信号收发电路,信号收发电路与控制单元通信连接,包括:双工滤波器;信号发射链路,用于发射下行目标信号;信号接收链路,用于接收上行目标信号;信号耦合链路,由控制单元基于检测指令控制信号发射链路关闭后,控制与信号接收链路连通,以使待检测信号通过信号耦合链路传输至信号接收链路,通过信号接收链路中的基带单元检测待检测信号中的下行干扰信号。
第三方面,本公开提供一种控制单元,控制单元包括处理器、存储器、存储在存储器上并可被处理器执行的计算机程序以及用于实现处理器和存储器之间的连接通信的数据总线,其中,计算机程序被处理器执行时,实现如上第一方面所述的基站下行干扰检测方法的步骤。
第四方面,本公开提供一种存储介质,用于计算机可读存储,存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现如上第一方面所述的基站下行干扰检测方法的步骤。
附图说明
为了更清楚地说明本公开技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开适用的场景示意框图;
图2是图1中信号收发电路的示意性框图;
图3是图2中信号发射链路的示意性框图;
图4是图2中信号发射链路与信号耦合链路的连接示意性框图;
图5是本公开提供的基站下行干扰检测方法的实现流程图;
图6是本公开提供的控制单元的示意性框图。
具体实施方式
下面将结合本公开中的附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应当理解,在本公开说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本公开。如在本公开说明书和所附权利要求书中所使用的那样,除非上下文清楚地指 明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
由于低频信号具有传播损耗小,覆盖范围广的优点,使得低频信号成为移动通信业务的主要通信频段。例如,具有频分双工(Frequency Division Duplexing,FDD)工作方式的移动通信系统采用的通信频段为703MHz至743MHz频段,或者758MHz至798MHz频段。但是由于低频信号还用于地面数字电视广播业务,这样就存在数字电视广播对移动通信基站的上下行信号干扰。
目前,对于上行信号干扰,低频基站可以通过现有的基站信号接收链路直接接收,并进行各个频点上行干扰信号大小的检测,以避开干扰频点。但是对于下行信号干扰,由于移动通信基站的双工滤波器只有驻波比VSWR检测。而VSWR检测主要通过反向射频链路检测,配置为检测天馈的驻波比,对应的反向射频链路通过30-40dB的耦合器耦合0dBm左右的反向射频信号;但是低频信号经过空间传播后,被基站接收到的信号功率通常都在-30dBm以下。因此,现有的基站射频链路设计无法满足低频信号下行信号干扰检测,导致移动通信业务受到干扰,严重影响用户体验效果。
需要说明的是,由于现有基站的射频链路无法满足低频信号的下行干扰检测,目前对于低频基站的下行干扰检测,通常采用移动终端检测并给基站反馈子带信道质量指示CQI的方式来确定是否存在下行干扰信号。而移动终端在整个带宽上检测连续子载波位置上的信道质量和受干扰情况并反馈给基站。移动终端因为随着使用者在不停的自由移动,而使用者所处位置在不停变化,受周围物体的遮挡等影响,导致移动终端测到的低频下行干扰信号忽高忽低,不太稳定,不能真实反映该地区低频信号下行干扰的情况。而且移动终端高速移动的话,存在时延,子带CQI反馈的干扰是前一时刻的干扰,不能真实反馈当前时刻的干扰。不仅存在下行干扰信号检测效率低下,且检测不准确,影响用户体验效果的问题。
本公开提供一种基站下行干扰检测方法、电路、控制单元及存储介质,能够有效提高下行干扰信号检测效率以及检测准确性,进而提高用户体验效果。
在一示例性实施例中,本公开提供的基站下行干扰检测方法可应用于控制单元,该控制单元可以是具有数据处理功能的微处理器或者芯片。
其中,该控制单元与信号收发电路通信连接,可以通过响应于对基站的下行干扰信号检测指令,基于该检测指令控制信号收发电路的信号发射链路关闭;在检测到信号发射链路关闭后,控制信号收发电路的信号耦合链路与信号接收链路连通,以使待检测信号通过信号耦合链路传输至信号接收链路,通过信号接收链路中的基带单元检测待检测信号中的下行干扰信号。实现了通过控制信号耦合链路与信号接收链路的导通,使得待检测信号通过信号耦合 链路传输至信号接收链路,进而能够通过信号接收链路上的基带单元检测到待检测信号中的下行干扰信号,旨在提高基站下行干扰信号检测的效率和准确性,以提高用户体验效果。
下面结合附图,对本公开的一些实施例作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参照图1,图1是本公开适用的场景示意框图。
如图1所示,本公开提供的基站下行干扰检测方法适用于包括信号收发电路102和控制单元104的基站100。
如图1所示,信号收发电路102与控制单元104可以通过网络连接。控制单元104可以响应于对基站100的下行干扰信号检测指令,基于接收到的检测指令控制信号收发电路102的信号发射链路关闭;在检测到信号收发电路102的信号发射链路关闭后,控制信号收发电路102的信号耦合链路与信号接收链路连通,以使待检测信号通过信号耦合链路传输至信号接收链路,通过信号接收链路中的基带单元检测待检测信号中的下行干扰信号。通过控制信号收发电路中的信号耦合链路与信号接收链路的导通,使得待检测信号通过信号耦合链路传输至信号接收链路,进而能够通过信号接收链路上的基带单元检测到待检测信号中的下行干扰信号,旨在提高基站下行干扰信号检测的效率和准确性,以提高用户体验效果。
在一示例性实施例中,如图2所示,图2是图1中信号收发电路的示意性框图。由图2可知,在本公开的实施例中,信号收发电路102包括双工滤波器1021、信号发射链路1022、信号接收链路1024以及信号耦合链路1026;其中,信号发射链路1022,用于发射下行目标信号;信号接收链路1024,用于接收上行目标信号;信号耦合链路1026,由控制单元104基于检测指令控制信号发射链路1022关闭后,控制与信号接收链路1024连通,以使待检测信号通过信号耦合链路1026传输至信号接收链路1024,通过信号接收链路1024中的基带单元检测待检测信号中的下行干扰信号。其中,基带单元在图2中未示出。需要说明的是,基带单元检测待检测信号中的下行干扰信号的过程与现有的上行干扰检测流程一致,即基带单元可以通过检测各个频点信号功率的大小,来确定各个频点是否存在干扰信号以及干扰信号的大小,实现下行干扰信号的检测,进一步,采用频选等调度方式,可以有效避开干扰频点来调度业务,以提高用户的体验效果。其中,基带单元检测待检测信号中的下行干扰信号的过程可以具体参考现有的上行干扰检测过程,在此不再做详细赘述。本公开通过控制单元控制信号耦合链路与信号接收链路连通,使得下行干扰信号通过信号耦合链路进入信号接收链路的接收通道,进而实现利用接收通道中对上行干扰信号的检测方法,实现对下行干扰信号的检测,能够有效提高下行干扰信号检测效率以及检测准确性。
需要说明的是,通常基站天线位于高处,与干扰源之间无遮挡,类似于自由空间传播,基站天线接收到的低频干扰信号的频段固定,功率基本稳定,并且检测到的低频下行干扰信号更接近于干扰源真实的发射信号。因此,可以本公开可以采用在低频基站侧进行下行干扰信号的检测。
在具体实施时,如图3所示,图3是图2中信号发射链路的示意性框图。由图3可知,信号发射链路1022包括功放单元301、耦合单元302、第一切换开关器件304、反馈通道305、发射通道306、天线驻波计算单元306和数字功率计算单元308。其中,功放单元301与双工滤波器1021连接,用于将发射通道306发射的下行信号传输至天线,使天线辐射出去。耦合单元302可以耦合前向功率和反向功率,并用于天线驻波计算单元306进行天线驻波的计算,数字功率计算单元308用于计算传输信号的功率。
其中,功放单元301、前向耦合单元302、后向耦合单元303、第一切换开关器件304、反馈通道305、发射通道306、天线驻波计算单元306和数字功率计算单元308的具体结构可以参考现有基站射频链路中对应的各单元的结构,在此不再详细解释。
应理解,在信号收发电路102工作时,如果存在下行干扰信号,由于双工滤波器包括发射频段滤波器和接收频段滤波器,通过双工滤波器的接收频段滤波器滤波,使得下行干扰信号无法传输至信号接收链路,但是可以通过双工滤波器的发射频段滤波器传输至信号发射链路。但是下行干扰信号传输至信号发射链路后,由于信号发射链路上只有天线驻波比VSWR的检测。其中,VSWR主要通过后向耦合单元与反馈通道形成的反向射频链路检测。在一示例性实施例中,由于基站发射大功率信号,反向耦合单元常采用30-40dB的耦合器耦合0dBm左右的反向射频信号;如果低频信号经过空间传播后,被基站接收到的信号功率通常都在-30dBm以下,导致无法对低频的下行干扰信号进行检测。
在本公开的实施例中,通过在信号收发电路102中设置信号耦合链路1026,在需要进行下行干扰信号检测时,通过与信号收发电路102通讯连接的控制单元104控制信号发射链路1022关闭,并在信号发射链路1022关闭后,控制信号耦合链路1026与信号接收链路1024连通,以使待检测信号通过信号耦合链路1026传输至信号接收链路1024,通过信号接收链路1024中的基带单元检测待检测信号中的下行干扰信号。由于基带单元能够检测到各个频点的信号大小,以及计算出各个频点的干扰信号大小,因此,可以有效检测到下行干扰信号,尤其是能够准确检测到低频下行干扰信号,以提高对低频下行干扰信号的检测准确性以及检测效率。且基带单元能够采取频选等调度方式,可以有效避开干扰频点,来调度业务。因此,能够提高用户体验效果。
在一示例性实施例中,如图4所示,图4是图2中信号发射链路与信号耦合链路的连接示意性框图。由图4可知,在本公开的实施例中,信号发射链路1022包括:低噪放大单元401、声表滤波器402和接收通道403。
在具体实施时,低噪放大单元401用于对天线接收到的上行信号进行放大。通常天线接收到的上行信号能够经过双工滤波器1021传输至低噪放大单元,低噪放大单元401对上行信号进行放大后,传输至声表滤波器。在一示例性实施例中,低噪放大单元401可以是噪声系数低于预设噪声阈值的放大器,具体对低噪放大单元401不做任何限定。
声表滤波器402,用于滤除接收频段外的干扰信号。在一示例性实施例中,声表滤波器利用压电材料的压电特性,利用输入与输出换能器(Transducer)将电波的输入信号转换成机械能,经过处理后,再把机械能转换成电的信号,以达到过滤不必要的干扰信号的目的。
接收通道403,用于接收声表滤波器滤波之后的信号。
需要说明的是,现有方案中,声表滤波器使目标上行信号到达接收通道,在目标上行信号进入接收通道之后,还需要通过基带单元进行干扰频点检测,根据检测到的各个频点干扰大小,采取频选等调度方式,避开干扰频点来调度业务。
而在本公开的实施例中,通过设置信号耦合链路,使得下行干扰信号经过低噪放大单元,且经过低噪放大单元的下行信号通过阻抗匹配单元进入至接收通道,以实现通过基带单元对下行干扰信号与上行干扰信号相同的检测过程。
在一示例性实施例中,如图4所示,信号耦合链路1026包括:耦合单元404、第一链路选择单元405、第二链路选择单元406、阻抗匹配单元407和第三链路选择单元408。
其中,耦合单元404的输入端与基站的天线连接,第一链路选择单元402设置于耦合单元404的输出端与低噪放大单元401的输入端之间;第二链路选择单元406的输入端与低噪放大单元401的输出端连接,阻抗匹配单元407与声表滤波单元402并联于第二链路选择单元406的输出端以及第三链路选择单元408的输入端之间;第三链路选择单元408的输出端与接收通道403连接。
在具体实施时,耦合单元用于从天线接收到的信号中耦合出待检测信号。
应理解,由于控制单元在控制信号发射链路关闭后,再控制第一链路选择单元,将耦合单元与低噪放大单元连通。此时,由于信号发射链路已经关闭,信号发射链路不再发射目标下行信号,对应天线接收到的信号中存在大量的下行干扰信号,通常情况下,下行干扰信号由于双工滤波器的滤波作用,到达不了低噪放大单元。但是在本公开的实施例中,通过控制 单元控制第一链路选择单元,将耦合单元与低噪放大单元连通,使得下行干扰信号能够通过耦合单元传输至低噪放大单元。其中,下行干扰信号为待检测信号。
其中,本公开中涉及的耦合单元不限定于使用现有的耦合器,也包括其它定制的耦合电路,在此不做任何限定。
在一示例性实施例中,第一链路选择单元用于使待检测信号传输至低噪放单元。其中,第一链路选择单元包括但不限于射频开关、通道选择开关等。
应理解,第一链路选择单元作为通道选择开关,控制单元控制通道选择开关将耦合单元与低噪放大单元之间的链路连通,使得待检测信号传输至低噪放单元。
第二链路选择单元用于使经过低噪放单元的待检测信号传输至第三链路选择单元。其中,第二链路选择单元包括但不限于射频开关、通道选择开关等。
第三链路选择单元用于使待检测信号传输至接收通道。其中,第三链路选择单元包括但不限于射频开关、通道选择开关等。
其中,第二链路选择单元与第三链路选择单元之间可能存在阻抗不匹配的问题,在本公开的实施例中,通过在第二链路选择单元与第三链路选择单元之间设置阻抗匹配单元,以调整第二链路选择单元与第三链路选择单元之间的阻抗,使得第二链路选择单元与第三链路选择单元之间的阻抗匹配。通过引入信号耦合链路,复用了现有的信号接收链路,使得下行干扰信号可以被检测到,使得基站可以规避下行干扰频段,进行业务调度,提高了下行干扰场景下的频谱效率和用户体验。相比于目前的终端设备反馈子带CQI方式,节省了信令资源消耗,并且干扰检测准确性和及时性更高。
通过上述分析可知,本公开提供的信号收发电路,包括双工滤波器、信号发射链路、信号接收链路以及信号耦合链路,该信号收发电路通过与控制单元通信连接,在控制单元基响应于下行信号检测指令,基于对应的检测指令控制信号发射链路关闭后,进一步可以控制信号耦合链路与信号接收链路连通,以使待检测信号通过信号耦合链路传输至信号接收链路,通过信号接收链路中的基带单元检测待检测信号中的下行干扰信号。在提高基站下行干扰信号检测的效率和准确性的同时,提高用户体验效果。
请参阅图5所示,图5是本公开提供的基站下行干扰检测方法的实现流程图。该基站下行干扰检测方法可以由图1所示的控制单元执行实现。
如图5所示,该基站下行干扰检测方法包括步骤S501至步骤S502,详述如下。
步骤S501,响应于对基站的下行干扰信号检测指令,基于检测指令控制信号收发电路的 信号发射链路关闭。
其中,对基站的下行干扰信号检测指令可以由工作人员触发。在一示例性实施例中,可以在检测到通信质量不佳或者是接收到检测通知后,通过预设监控设备触发下行干扰信号检测指令,并将下行干扰信号检测指令发送至控制单元。
在本公开的实施例中,在响应对基站的下行干扰信号检测指令后,基于检测指令控制信号收发电路的信号发射链路关闭,防止发射链路继续发射目标下行信号,使得目标下行信号与下行干扰信号混肴,以提高对下行干扰信号的检测效率以及准确性。
步骤S502,在检测到信号发射链路关闭后,控制信号收发电路的信号耦合链路与信号接收链路连通,以使待检测信号通过信号耦合链路传输至信号接收链路,通过信号接收链路中的基带单元检测待检测信号中的下行干扰信号。
在一示例性实施例中,信号接收链路包括:低噪放大单元、声表滤波器和接收通道;信号耦合链路包括:耦合单元、第一链路选择单元、第二链路选择单元、阻抗匹配单元和第三链路选择单元。耦合单元的输入端与基站的天线连接,第一链路选择单元设置于耦合单元的输出端与低噪放大单元的输入端之间;第二链路选择单元的输入端与低噪放大单元的输出端连接,阻抗匹配单元与声表滤波单元并联于第二链路选择单元的输出端以及第三链路选择单元的输入端之间;第三链路选择单元的输出端与接收通道连接。
其中,在检测到信号发射链路关闭后,控制预设的信号耦合链路与信号接收链路连通,可以包括:在检测到信号发射链路关闭后,控制第一链路选择单元将耦合单元的输出端口与低噪放大单元的输入端口连通;若检测到有信号流过低噪放大单元,控制第二链路选择单元与阻抗匹配电路连通;若检测到有信号经过阻抗匹配电路,控制第三链路选择单元与信号接收链路连通。
通过上述分析可知,本公开提供的基站下行干扰检测方法,通过响应于对基站的下行干扰信号检测指令,基于检测指令控制基站的信号发射链路关闭;并在检测到信号发射链路关闭后,控制信号收发电路的信号耦合链路与信号接收链路连通,以使待检测信号通过信号耦合链路传输至信号接收链路,通过信号接收链路中的基带单元检测待检测信号中的下行干扰信号。通过控制信号收发电路中的信号耦合链路与信号接收链路的导通,使得待检测信号通过信号耦合链路传输至信号接收链路,进而能够通过信号接收链路上的基带单元检测到待检测信号中的下行干扰信号,旨在提高基站下行干扰信号检测的效率和准确性,以提高用户体验效果。
请参阅图6所示,图6是本公开提供的控制单元的示意性框图。
如图6所示,控制单元104包括处理器601、存储器602、通信接口603和总线604。其中,处理器601、存储器602、通信接口603通过总线604进行通信,也可以通过无线传输等其他手段实现通信。该存储器602存储可执行程序代码,且处理器601可以调用存储器602中存储的程序代码执行前述方法实施例中的基站下行干扰检测方法。也就是说,上述图6所示的基站下行干扰检测方法可以由图6所示的控制单元中处理器601调用存储器602中存储的程序代码执行实现。
应理解,在本公开中,该处理器601可以是中央处理单元CPU,该处理器601还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者是任何常规的处理器等。
该存储器602可以包括只读存储器和随机存取存储器,并向处理器601提供指令和数据。存储器602还可以包括非易失性随机存取存储器。例如,存储器602还可以存储数据集。
该存储器602可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data date SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
该总线604除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线604。
应理解,根据本公开的控制单元104对应于执行根据本公开中图6所示方法中的相应主体,为了简洁,在此不再赘述。在一示例性实施例中,控制单元104中存储在存储器602上并可被处理器601执行的计算机程序被处理器601执行时,实现如下步骤:响应于对基站的下行干扰信号检测指令,基于检测指令控制信号收发电路的信号发射链路关闭;在检测到信号发射链路关闭后,控制信号收发电路的信号耦合链路与信号接收链路连通,以使待检测信 号通过信号耦合链路传输至信号接收链路,通过信号接收链路中的基带单元检测待检测信号中的下行干扰信号。
在一实施例中,信号接收链路包括:低噪放大单元、声表滤波器和接收通道;信号耦合链路包括:耦合单元、第一链路选择单元、第二链路选择单元、阻抗匹配单元和第三链路选择单元;其中,耦合单元的输入端与基站的天线连接,第一链路选择单元设置于耦合单元的输出端与低噪放大单元的输入端之间;第二链路选择单元的输入端与低噪放大单元的输出端连接,阻抗匹配单元与声表滤波单元并联于第二链路选择单元的输出端以及第三链路选择单元的输入端之间;第三链路选择单元的输出端与接收通道连接;在检测到信号发射链路关闭后,控制预设的信号耦合链路与信号接收链路连通,包括:在检测到信号发射链路关闭后,控制第一链路选择单元将耦合单元的输出端口与低噪放大单元的输入端口连通;若检测到有信号流过低噪放大单元,控制第二链路选择单元与阻抗匹配电路连通;若检测到有信号经过阻抗匹配电路,控制第三链路选择单元与信号接收链路连通。
此外,本公开还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序中包括程序指令,处理器执行程序指令,实现本公开上述各实施例提供的基站下行干扰检测方法的步骤。
本公开提供一种基站下行干扰检测方法、电路、控制单元及存储介质,本公开提供的基站下行干扰检测方法,通过响应于对基站的下行干扰信号检测指令,基于检测指令控制基站的信号发射链路关闭;并在检测到信号发射链路关闭后,控制信号收发电路的信号耦合链路与信号接收链路连通,以使待检测信号通过信号耦合链路传输至信号接收链路,通过信号接收链路中的基带单元检测待检测信号中的下行干扰信号。通过控制信号收发电路中的信号耦合链路与信号接收链路的导通,使得待检测信号通过信号耦合链路传输至信号接收链路,进而能够通过信号接收链路上的基带单元检测到待检测信号中的下行干扰信号,旨在提高基站下行干扰信号检测的效率和准确性,以提高用户体验效果。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施例中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或 暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
应当理解,在本公开说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本公开序号仅仅为了描述,不代表实施例的优劣。以上所述,仅为本公开的具体实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种基站下行干扰检测方法,包括:
    响应于对基站的下行干扰信号检测指令,基于所述检测指令控制信号收发电路的信号发射链路关闭;
    在检测到所述信号发射链路关闭后,控制所述信号收发电路的信号耦合链路与信号接收链路连通,以使待检测信号通过所述信号耦合链路传输至所述信号接收链路,通过所述信号接收链路中的基带单元检测所述待检测信号中的下行干扰信号。
  2. 根据权利要求1所述的基站下行干扰检测方法,其中,所述信号接收链路包括:低噪放大单元、声表滤波器和接收通道;所述信号耦合链路包括:耦合单元、第一链路选择单元、第二链路选择单元、阻抗匹配单元和第三链路选择单元;其中,所述耦合单元的输入端与所述基站的天线连接,所述第一链路选择单元设置于所述耦合单元的输出端与所述低噪放大单元的输入端之间;所述第二链路选择单元的输入端与所述低噪放大单元的输出端连接,所述阻抗匹配单元与所述声表滤波单元并联于所述第二链路选择单元的输出端以及所述第三链路选择单元的输入端之间;所述第三链路选择单元的输出端与所述接收通道连接;
    在检测到所述信号发射链路关闭后,控制预设的信号耦合链路与信号接收链路连通,包括:
    在检测到所述信号发射链路关闭后,控制所述第一链路选择单元将所述耦合单元的输出端口与所述低噪放大单元的输入端口连通;
    若检测到有信号流过所述低噪放大单元,控制所述第二链路选择单元与所述阻抗匹配电路连通;
    若检测到有信号经过所述阻抗匹配电路,控制所述第三链路选择单元与所述信号接收链路连通。
  3. 一种信号收发电路,所述信号收发电路与控制单元通信连接,包括:
    双工滤波器;
    信号发射链路,用于发射下行目标信号;
    信号接收链路,用于接收上行目标信号;
    信号耦合链路,由所述控制单元基于检测指令控制所述信号发射链路关闭后,控制与所述信号接收链路连通,以使待检测信号通过所述信号耦合链路传输至所述信号接收链路,通 过所述信号接收链路中的基带单元检测所述待检测信号中的下行干扰信号。
  4. 根据权利要求3所述的信号收发电路,其中,所述信号接收链路包括低噪放大单元、声表滤波器和接收通道;所述信号耦合链路包括耦合单元、第一链路选择单元、第二链路选择单元、阻抗匹配单元和第三链路选择单元;其中,所述耦合单元的输入端与所述基站的天线连接,所述第一链路选择单元设置于所述耦合单元的输出端与所述低噪放大单元的输入端之间;所述第二链路选择单元的输入端与所述低噪放大单元的输出端连接,所述阻抗匹配单元与所述声表滤波单元并联于所述第二链路选择单元的输出端以及所述第三链路选择单元的输入端之间;所述第三链路选择单元的输出端与所述接收通道连接。
  5. 根据权利要求4所述的信号收发电路,其中,所述耦合单元用于从所述天线接收到的信号中耦合出所述待检测信号。
  6. 根据权利要求4所述的信号收发电路,其中,所述第一链路选择单元用于使所述待检测信号传输至所述低噪放单元。
  7. 根据权利要求4所述的信号收发电路,其中,所述第二链路选择单元用于使经过所述低噪放单元的所述待检测信号传输至第三链路选择单元。
  8. 根据权利要求4所述的信号收发电路,其中,所述第三链路选择单元用于使所述待检测信号传输至所述接收通道。
  9. 一种控制单元,包括处理器、存储器、存储在所述存储器上并可被所述处理器执行的计算机程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中,所述计算机程序被所述处理器执行时,实现如权利要求1或2中任一项所述的基站下行干扰检测方法的步骤。
  10. 一种存储介质,用于计算机可读存储,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求1或2中任一项所述的基站下行干扰检测方法的步骤。
PCT/CN2023/076155 2022-07-18 2023-02-15 基站下行干扰检测方法、电路、控制单元及存储介质 WO2024016645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210841692.7 2022-07-18
CN202210841692.7A CN117459957A (zh) 2022-07-18 2022-07-18 基站下行干扰检测方法、电路、控制单元及存储介质

Publications (1)

Publication Number Publication Date
WO2024016645A1 true WO2024016645A1 (zh) 2024-01-25

Family

ID=89595345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076155 WO2024016645A1 (zh) 2022-07-18 2023-02-15 基站下行干扰检测方法、电路、控制单元及存储介质

Country Status (2)

Country Link
CN (1) CN117459957A (zh)
WO (1) WO2024016645A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070155432A1 (en) * 2003-07-24 2007-07-05 Yun Kyoung D Apparatus for improved reception sensitivity of base transceiver station
CN102811069A (zh) * 2012-07-25 2012-12-05 华为技术有限公司 一种收发信机和干扰对消方法
WO2015100665A1 (zh) * 2013-12-31 2015-07-09 华为技术有限公司 降低干扰的方法、基带处理单元及基站
CN105474549A (zh) * 2013-12-04 2016-04-06 华为技术有限公司 收发共用天线的自干扰消除方法、收发机和通信设备
CN106330241A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 放大集成电路
CN113906706A (zh) * 2019-06-26 2022-01-07 英特尔公司 用于消除收发器中干扰的方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070155432A1 (en) * 2003-07-24 2007-07-05 Yun Kyoung D Apparatus for improved reception sensitivity of base transceiver station
CN102811069A (zh) * 2012-07-25 2012-12-05 华为技术有限公司 一种收发信机和干扰对消方法
CN105474549A (zh) * 2013-12-04 2016-04-06 华为技术有限公司 收发共用天线的自干扰消除方法、收发机和通信设备
WO2015100665A1 (zh) * 2013-12-31 2015-07-09 华为技术有限公司 降低干扰的方法、基带处理单元及基站
CN106330241A (zh) * 2015-06-30 2017-01-11 中兴通讯股份有限公司 放大集成电路
CN113906706A (zh) * 2019-06-26 2022-01-07 英特尔公司 用于消除收发器中干扰的方法和设备

Also Published As

Publication number Publication date
CN117459957A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
CA2566644C (en) Processor-controlled variable gain cellular network amplifier
US8965311B2 (en) Method for controlling terminal signal transmission, and terminal
US20110151775A1 (en) Repeating apparatus and method in wireless communication system
US20080076437A1 (en) Cellular network amplifier with automated output power control
US20160036482A1 (en) Apparatus and method for antenna tuning
US20180083695A1 (en) Gain/flatness enhancement for rf switch matrix
US20080299897A1 (en) Variable Gain Antenna For Cellular Repeater
US20060209997A1 (en) Amplifiers with cutoff circuit to avoid overloading cellular network sites
KR101751630B1 (ko) 신호 조절 방법, 장치, 및 셀
WO2019109723A1 (zh) 全时双工系统、全时双工电路以及控制方法
WO2018152709A1 (zh) 一种通信方法及移动终端
JP5619996B2 (ja) 同一周波数帯域におけるラジオ周波数信号に対するアンテナ共有
CN109347508B (zh) 一种移动终端及功率检测方法
US20180083658A1 (en) Multiplexing an rf signal with a control signal and/or a feedback signal
WO2020093394A1 (zh) 通信方法、终端设备和网络设备
US20130225097A1 (en) Method for cancelling intermodulation noise signal between antennas and communication terminal apparatus
TWI601388B (zh) 對稱式中繼器及其測量天線隔離度的方法
US11888510B2 (en) Transmission/reception separation circuit, transceiver, and wireless communications device
WO2024016645A1 (zh) 基站下行干扰检测方法、电路、控制单元及存储介质
WO2023169466A1 (zh) 车用信号放大器、系统及信号传输方法
WO2024066674A1 (zh) 射频系统及通信设备
CN112491434A (zh) 一种射频前端电路、射频信号接收方法、通信方法及设备
US10389430B2 (en) Multi-amplifier booster for a wireless communication system
CN103916864A (zh) 一种无线直放站及其传输信号方法
KR20130073609A (ko) 무선 통신 시스템의 전송 전력 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841723

Country of ref document: EP

Kind code of ref document: A1