WO2024016179A1 - 路径选择方法及装置、设备、存储介质 - Google Patents

路径选择方法及装置、设备、存储介质 Download PDF

Info

Publication number
WO2024016179A1
WO2024016179A1 PCT/CN2022/106568 CN2022106568W WO2024016179A1 WO 2024016179 A1 WO2024016179 A1 WO 2024016179A1 CN 2022106568 W CN2022106568 W CN 2022106568W WO 2024016179 A1 WO2024016179 A1 WO 2024016179A1
Authority
WO
WIPO (PCT)
Prior art keywords
internet
things
iot
information
pine
Prior art date
Application number
PCT/CN2022/106568
Other languages
English (en)
French (fr)
Inventor
郭伯仁
郭雅莉
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/106568 priority Critical patent/WO2024016179A1/zh
Publication of WO2024016179A1 publication Critical patent/WO2024016179A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically relate to a path method and apparatus, equipment, and storage medium.
  • the Personal IoT Network (PIN) created by users can include three types of devices: ordinary personal IoT devices (PIN Element, PINE), personal IoT devices with gateway capabilities (PIN Element) with Gateway Capability, PEGC), IoT devices with management capabilities (PIN Element with Management Capability, PEMC).
  • PINE has basic communication capabilities and can communicate with each other through direct communication technologies such as Wireless Fidelity (WiFi) technology and Bluetooth technology.
  • WiFi Wireless Fidelity
  • PEMC IoT devices with Management Capability
  • PEMC IoT devices with Management Capability
  • PINE has basic communication capabilities and can communicate with each other through direct communication technologies such as Wireless Fidelity (WiFi) technology and Bluetooth technology.
  • WiFi Wireless Fidelity
  • PEMC IoT devices with Management Capability
  • PEMC IoT devices with Management Capability
  • Embodiments of the present application provide a path selection method, device, equipment, and storage medium.
  • the first aspect provides a path selection method, which includes:
  • the management device determines at least one candidate Internet of Things device for the first Internet of Things device
  • the management device determines a candidate communication path between each candidate IoT device and the first IoT device based on at least one of the following: each candidate IoT device in the at least one candidate IoT device and the first IoT device.
  • the distance of the first IoT device, the association relationship between the gateway device associated with each candidate IoT device and the first IoT device, each candidate IoT device and the first IoT device Whether it is within the service range of the IoT gateway device;
  • the candidate communication paths are used for path selection.
  • the second aspect provides a path selection method, which includes:
  • the first Internet of Things device sends first request information, the first request information is used to request the first service required by the first Internet of Things device, and/or the first Internet of Things device is related to providing the first service A communication path between business IoT devices.
  • the third aspect provides a path selection method, which includes:
  • the first IoT gateway device receives the first request information sent by the first IoT device; the first request information is used to request the first service required by the first IoT device, and/or the first A communication path between the Internet of Things device and the Internet of Things device providing the first service.
  • the fourth aspect provides a path selection method, which includes:
  • the second IoT device receives second indication information, the second indication information is used to instruct the second IoT device to communicate with the first IoT device through a third communication path, the third communication path represents the use of cellular The path through which a network communicates.
  • a path selection device applied to management equipment, and the device includes:
  • a candidate device determining unit configured to determine at least one candidate IoT device for the first IoT device
  • a candidate path determination unit configured to determine a candidate communication path between each candidate Internet of Things device and the first Internet of Things device based on at least one of the following: each candidate Internet of Things device in the at least one candidate Internet of Things device The distance between the device and the first Internet of Things device, the association relationship between the gateway device associated with each candidate Internet of Things device and the first Internet of Things device, the relationship between each candidate Internet of Things device and the third Internet of Things device 1. Whether the IoT device is within the service range of the IoT gateway device;
  • the candidate communication paths are used for path selection.
  • a path selection device applied to the first Internet of Things device, and the device includes:
  • a sending unit configured to send first request information, the first request information being used to request a first service required by the first Internet of Things device, and/or the first Internet of Things device is related to providing the said The first business communication path between IoT devices.
  • a path selection device applied to the first Internet of Things gateway device, and the device includes:
  • a receiving unit configured to receive first request information sent by the first Internet of Things device; the first request information is used to request a first service required by the first Internet of Things device, and/or the first A communication path between the Internet of Things device and the Internet of Things device providing the first service.
  • a path selection device applied to a second Internet of Things device, and the device includes:
  • a receiving unit configured to receive second indication information, the second indication information being used to instruct the second Internet of Things device to communicate with the first Internet of Things device through a third communication path, the third communication path representing utilization The path through which cellular networks communicate.
  • the communication device provided by the embodiment of the present application can be the management device, the first IoT device, the second IoT device, or the first IoT gateway device in the above solution.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to implement communication between the communication device and other devices, the memory is used to store computer programs, and the processor is used to call and run the computer program stored in the memory to execute the above path selection method.
  • the chip provided by the embodiment of the present application is used to implement the above path selection method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned path selection method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program.
  • the computer program causes the computer to execute the above path selection method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, which cause the computer to execute the above path selection method.
  • the computer program provided by the embodiment of the present application when run on a computer, causes the computer to execute the above path selection method.
  • the embodiment of the present application provides a path selection method, in which the management device determines at least one candidate IoT device for the first IoT device; further, the management device can be based on each candidate IoT device in the at least one candidate IoT device. distance from the first IoT device, and/or the relationship between the gateway device associated with each candidate IoT device and the first IoT device, and/or the relationship between each candidate IoT device and Whether the first Internet of Things device is within the service range of the Internet of Things gateway device, determine a candidate communication path between each candidate Internet of Things device and the first Internet of Things device; wherein the candidate communication path is used for path selection .
  • the management device can determine at least one of the three items according to the location of the IoT device, the association between the IoT device and the IoT gateway device, and whether the IoT device is within the service range of the IoT network element. items to select appropriate communication paths for business interactions between IoT devices. In this way, whether the IoT devices are in a close distance scenario or the IoT devices are deployed in a remote location, they can communicate through appropriate communication paths, ensuring the normal transmission of services.
  • Figure 1 is a schematic diagram of the network architecture of an exemplary personal Internet of Things provided by an embodiment of the present application
  • Figure 2A is a schematic diagram of direct communication provided by an embodiment of the present application.
  • FIG. 2B is a schematic diagram of communication through PEGC provided by an embodiment of the present application.
  • Figure 2C is a schematic diagram of communication through a cellular network provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of an application scenario provided by the embodiment of the present application.
  • Figure 4 is a schematic flowchart 1 of a path selection method provided by an embodiment of the present application.
  • Figure 5 is a schematic flowchart 2 of a path selection method provided by an embodiment of the present application.
  • Figure 6 is a schematic flowchart three of a path selection method provided by an embodiment of the present application.
  • Figure 7A is a schematic diagram 1 of the transmission flow of a data forwarding policy configuration request provided by an embodiment of the present application
  • Figure 7B is a schematic diagram 2 of the transmission flow of a data forwarding policy configuration request provided by an embodiment of the present application.
  • Figure 7C is a schematic diagram 3 of the transmission flow of a data forwarding policy configuration request provided by an embodiment of the present application.
  • Figure 7D is a schematic diagram 4 of the transmission flow of a data forwarding policy configuration request provided by an embodiment of the present application.
  • Figure 8 is a schematic flowchart 4 of a path selection method provided by an embodiment of the present application.
  • Figure 9 is a schematic flow chart 5 of a path selection method provided by an embodiment of the present application.
  • Figure 10 is a schematic flow chart 6 of a path selection method provided by an embodiment of the present application.
  • Figure 11 is a schematic flow chart 7 of a path selection method provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a path selection device 1200 provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a path selection device 1300 provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a path selection device 1400 provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a path selection device 1500 provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Figure 18 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • IoT devices can be wearable devices, such as cameras, headphones, watches, headphones, health monitors, etc.; IoT devices can also be home life devices, such as smart lights, cameras, thermostats, door sensors, voice sensors, etc. Assistants, speakers, refrigerators, washing machines, lawn mowers, robots, etc.; IoT devices can also be office or factory equipment, such as printers, meters, sensors, etc. In this way, users can use these IoT devices to create personal IoT networks in home environments, office environments, factories, or surrounding environments.
  • IoT devices can only access the Internet through relay devices and gateways or access cellular networks through smart terminals (such as mobile phones, tablets, etc.). In both cases, the core network in the cellular network is unaware that IoT devices are connected to the cellular network. However, in order to make full use of cellular networks to provide auxiliary management and business support for IoT devices, it is indispensable to enable cellular networks to participate in personal IoT.
  • Figure 1 is a schematic diagram of the network architecture of an exemplary personal Internet of Things provided by an embodiment of the present application.
  • the personal Internet of Things 100 may include an Internet of Things device, an Internet of Things gateway device, and an Internet of Things management device.
  • the IoT device can be an ordinary personal IoT device, such as PINE
  • the IoT gateway device refers to an IoT device with gateway capabilities, such as PEGC.
  • IoT management equipment refers to IoT devices with management capabilities, such as PEMC. That is to say, the IoT gateway device and the IoT management device both have the functions of the IoT device in addition to having gateway capabilities and management capabilities.
  • the embodiments of this application do not limit this.
  • communication between IoT devices, between IoT devices and IoT gateway devices, and between IoT devices and IoT management devices can be carried out through direct communication technology (such as WiFi technology, Bluetooth technology, etc.).
  • the IoT gateway device and the IoT management device have access to the cellular network (such as the Long Term Evolution LTE network, 5G system, etc.). It can be understood that the IoT gateway device and the IoT management device can use the cellular network network to provide data forwarding services and management services for the IoT devices within their communication service range.
  • PINE Internet of Things devices
  • data interaction can be performed between the Internet of Things device 1 (PINE-1) and the Internet of Things device 2 (PINE-2) through direct communication technologies such as WiFi technology and Bluetooth technology.
  • direct communication technologies such as WiFi technology and Bluetooth technology.
  • Method 2 Forward data through the IoT gateway device.
  • PINE-1 and PINE-2 can be connected to the same PEGC through direct communication technologies such as WiFi technology and Bluetooth technology, and data transmission is performed through the PEGC.
  • Method 3 Forward data through the cellular network.
  • PINE-1 and PINE-2 can access the 5G system through PEGC and connect to the user plane function (User Plane) through the Radio Access Network (RAN) in the 5G system.
  • Function, UPF Function, network element.
  • PDU Protocol Data Unit
  • the PDU session created by PEGC for PINE-1 and PINE-2 is connected to the same UPF
  • the data between PINE-1 and PINE-2 can be forwarded through the UPF.
  • the PDU sessions established by PEGC for PINE are connected to different UPFs
  • data can be forwarded through the N19 interface between UPFs.
  • data can also be forwarded through the interface N6 between UPF and the Data Network (DN).
  • DN Data Network
  • the communication path between PINEs can be divided into a communication path through a direct connection, a communication path using a gateway device, and a communication path through a cellular network.
  • PINE is often deployed in different geographical areas and requires cross-regional remote business interaction.
  • the user may need to use a laptop (PINE-1) at home or in the office to request the camera (PINE-2) deployed on the farm to provide real-time monitoring video of crops, and determine whether to monitor crops based on the monitoring video.
  • Crops are watered, fertilized, sprayed with pesticides and other management measures.
  • PINE-1 and PINE-2 belong to the same PIN, but are in different geographical areas.
  • embodiments of the present application provide a path selection method, in which the management device determines at least one candidate IoT device for the first IoT device; further, the management device can be based on each candidate in the at least one candidate IoT device.
  • the distance between the IoT device and the first IoT device, and/or the association relationship between the gateway device associated with each candidate IoT device and the first IoT device, and/or the each candidate IoT device Whether the device and the first Internet of Things device are within the service range of the Internet of Things gateway device, determine a candidate communication path between each candidate Internet of Things device and the first Internet of Things device; wherein the candidate communication path is used to perform Path Selection.
  • the management device can determine at least one of the three items according to the location of the IoT device, the association between the IoT device and the IoT gateway device, and whether the IoT device is within the service range of the IoT network element. items to select appropriate communication paths for business interactions between IoT devices. In this way, whether the IoT devices are in a close distance scenario or the IoT devices are deployed in a remote location, they can communicate through appropriate communication paths, ensuring the normal transmission of services.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , the relationship between configuring and being configured.
  • predefined can refer to what is defined in the protocol.
  • protocol may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • FIG 4 is a schematic flowchart 1 of a path selection method provided by an embodiment of the present application. As shown in Figure 4, the method includes the following contents.
  • Step 410 The management device determines at least one candidate IoT device for the first IoT device.
  • Step 420 The management device determines a candidate communication path between each candidate IoT device and the first IoT device based on at least one of the following:
  • candidate communication paths are used for path selection.
  • the management device may be an IoT device with management functions, such as PEMC.
  • the management device can also be a network element in the network.
  • the network element can be a network element dedicated to managing Internet of Things devices, or it can be a core network element in a cellular network, such as Unified Data Management (UDM). Network element, or Unified Data Repository (UDR) network element, etc.
  • UDM Unified Data Management
  • Network element or Unified Data Repository (UDR) network element, etc.
  • This network element can also be an application network element provided by a third party.
  • the embodiment of this application does not limit the type of management equipment.
  • the management device can also be a PEMC and a network element, that is, the PEMC and the network element exist at the same time and jointly manage each IoT device and the IoT gateway device in the first PIN.
  • the management device can manage all Internet of Things devices currently connected to the first PIN.
  • the management device can determine from the multiple IoT devices it manages for PINE-1 to meet its actual needs based on the actual needs of the first IoT device (for ease of understanding, PINE-1 is used to represent the first IoT device below).
  • at least one candidate IoT device at least one candidate IoT device.
  • at least one candidate IoT device selected by the management device for the first IoT device may constitute a candidate PINE list, that is, a candidate PINE list.
  • the management device can sequentially compare the distance between each candidate IoT device in the candidate PINE list and PINE-1, and the association between the gateway device associated with each candidate IoT device and PINE-1. , and at least one of whether each candidate IoT device and PINE-1 is within the service range of the IoT gateway device is analyzed and processed to obtain a candidate communication path between each candidate IoT device and PINE-1.
  • candidate communication paths may include at least one of the following:
  • a first communication path representing a path for communication via a direct connection
  • the second communication path represents a path for communication using the gateway device
  • the third communication path represents a path for communication using a cellular network.
  • the direct connection can be a WiFi connection, a Bluetooth connection, etc.
  • the cellular network may be an LTE network, a 5G network, or a future communication network, etc., and this is not limited in the embodiments of this application.
  • the management device can select the appropriate communication path for PINE-1 based on each candidate IoT device in the candidate PINE list and the candidate communication path of each candidate IoT device. path.
  • the management device can determine the location of the IoT device, the relationship between the IoT device and the IoT gateway device, and whether the IoT device is within the service scope of the IoT network element. At least one item to select appropriate communication paths for business interactions between IoT devices. In this way, whether the IoT devices are in a close distance scenario or the IoT devices are deployed in a remote location, they can communicate through appropriate communication paths to ensure normal business transmission.
  • the management device may store the IoT attribute information of the currently accessed first PIN (which may also be called PIN attribute information).
  • the IoT attribute information of the PIN may include attribute information related to all devices accessed in the first PIN. .
  • the PIN attribute information includes at least one of the following: attribute information of each PINE in the first PIN, attribute information of each PEGC in the first PIN, and attribute information of the management device in the first PIN.
  • the PIN attribute information may also include identification information of the first PIN, such as PIN ID.
  • the attribute information of each PINE mentioned above may include at least one of the following:
  • PINE identification information, such as PINE ID
  • PINE IP address information, such as PINE IP address
  • the identification information and/or IP address information of PEGC associated with PINE are The identification information and/or IP address information of PEGC associated with PINE;
  • Valid time information the valid time information is used to indicate the valid time in the first PIN
  • PINE can support one or more service types, such as positioning service, speed measurement service, health monitoring service, environment monitoring service, etc.
  • the attribute information of the PINE may also include the identification information of the PINE that is allowed to use the service, and/or the PINE that is prohibited from using the service. Identification information of PINE. That is to say, the attribute information of each PINE may include a whitelist and/or a blacklist, and the whitelist and/or blacklist is used to inform the user that services are provided for a specific device and/or that services are not provided for a specific device.
  • the location information may indicate the geographical location where PINE is located.
  • the location information may be GPS coordinate information, street address information, cell identification information, tracking area identification and other information, which are not limited in the embodiments of the present application. It should be understood that the location information of a PINE can be used to determine the distance to other PINEs.
  • the valid time information may indicate the valid time for the PINE to join the first PIN.
  • the valid time may be the time for the PINE to join the first PIN to provide services for other PINEs or to obtain services provided by other PINEs.
  • the valid time information may be PINE Add the remaining time of the first PIN.
  • the wireless access technologies supported by PINE may include one or more of WiFi technology, Bluetooth technology, and 3GPP access technologies, which are not limited in the embodiments of this application.
  • the communication path supported by PINE may include at least one of a first communication path, a second communication path, and a third communication path.
  • the first communication path represents a communication path through a direct connection
  • the second communication path represents a communication path using a gateway device
  • the third communication path represents a communication path using a cellular network.
  • the attribute information of each PEGC includes at least one of the following:
  • PEGC identification information such as PEGC ID
  • PEGC IP address information
  • the identification information of IoT devices associated with this PEGC is prohibited
  • the PEGC's location information can be used to determine the distance between the PEGC and PINE or other PEGC;
  • Valid time information is used to indicate the valid time of PEGC in the first PIN, that is, the time when PEGC joins the first PIN to provide services to other PINEs or obtain services provided by other PINEs.
  • the valid time may be the remaining time for PEGC to join the first PIN;
  • Supported wireless access technologies include, for example, one or more of WiFi technology, Bluetooth technology, and 3GPP access technologies;
  • the maximum communication distance corresponding to each wireless access technology in the wireless access technology is the maximum communication distance corresponding to each wireless access technology in the wireless access technology.
  • the attribute information of the management device includes at least one of the following:
  • IP address information of management devices
  • Location information such as GPS coordinate information, street address information, community identification information, tracking area identification, etc.
  • Valid time information which is used to indicate the valid time of the management device in the first PIN, that is, the time when the management device joins the first PIN to provide services to other PINEs or obtain services provided by other PINEs.
  • the valid time information may be the remaining time for the management device to add the first PIN;
  • Supported wireless access technologies include, for example, one or more of WiFi technology, Bluetooth technology, and 3GPP access technologies;
  • the maximum communication distance corresponding to each wireless access technology in the wireless access technology is the maximum communication distance corresponding to each wireless access technology in the wireless access technology.
  • the management device determines at least one candidate IoT device for the first IoT device, which can be implemented in the following manner:
  • the management device obtains the PIN attribute information and determines at least one candidate Internet of Things device for PINE-1 based on the PIN attribute information.
  • the management device can obtain and retrieve the PIN attribute information, and according to the attribute information of each PINE in the PIN attribute information and the attribute information of each PEGC, select the PINE-1 from multiple PINEs managed by the management device. At least one candidate PINE that matches the actual demand.
  • the management device is a second network element used to manage IoT devices
  • the IoT attribute information of all PINs can be stored in the second network element.
  • the management device can locally obtain the Internet of Things attribute information of the currently accessed first PIN, and determine a candidate Internet of Things device for the first Internet of Things device based on the Internet of Things attribute information.
  • the management device can obtain the IoT attribute information of the currently accessed first PIN from the local or second network element. According to the IoT attribute information, the first PIN is the first PIN. Device identifies candidate IoT devices.
  • the PEMC of the management device can obtain the IoT attribute information of the currently accessed first PIN from the second network element or locally, Determine candidate Internet of Things devices for the first Internet of Things device according to the Internet of Things attribute information.
  • the actual requirement of PINE-1 may be that PINE-1 notifies the management device in advance through the first request information.
  • step 410 the following steps may be performed before step 410:
  • Step 400 The management device receives first request information, which is used to request the first service required by PINE-1, and/or the communication path between PINE-1 and PINE that provides the first service.
  • the management device can determine the candidate PINE and the candidate communication path of each candidate PINE for PINE-1 according to the request of PINE-1, so as to select an appropriate communication path for PINE-1 based on the candidate communication path of the candidate PINE.
  • the first request information may be the service request information of PINE-1.
  • the first request information may include at least one of the following:
  • the identification information of the first PIN, the identification information of PINE-1, the IP address information of PINE-1, the identification information of PEGC-1, the IP address information of PEGC-1, the service type of the first service, and the demand information of the first service PINE-1 preferred access technology, PINE-1 preferred communication path.
  • the demand information of the first service may include quality of service (Quality of Service, QoS) requirements, requested service duration and other information, which are not limited in the embodiments of this application.
  • QoS Quality of Service
  • the first request information may be sent directly by PINE-1 to the management device, or may be the first IoT gateway device associated with PINE-1 (for ease of understanding, PEGC-1 is used below to represent the first IoT gateway device).
  • Networking gateway device is sent to the management device. That is to say, the management device receives the first request information sent by PINE-1, or the management device receives the first request information sent by PEGC-1.
  • PINE-1 only has the capability of direct communication.
  • PINE-1 can directly send the first request information to the management device.
  • PINE-1 is outside the service range of the direct communication of the management device, if PINE-1 is associated with an IoT gateway device, or there are IoT gateway devices around PINE-1, PINE-1 can access its neighboring PEGC -1, send the first request information to the management device through PEGC-1.
  • PEGC-1 can determine at least one target PINE from at least one PINE associated with it; and then based on at least one target PINE determines the second IoT device used to provide the first service to PINE-1 (for ease of understanding, PINE-2 is used to represent the second IoT device below).
  • PEGC-1 after PEGC-1 receives the first request information sent by PINE-1, it can first query whether at least one PINE associated with itself has a PINE that meets the PINE-1 requirements indicated in the first request information. Among them, PEGC-1 can use the service type, demand information, whether it is allowed to provide services to PINE-1, preferred access technology, and preferred communication path in the first request information as filtering conditions to query all PINEs associated with it. If If at least one PINE associated with PEGC-1 has a PINE that meets the filtering conditions, the PINE that meets the filtering conditions will be directly used as the target PINE.
  • PEGC-1 may not make recommendations for PINE-1, and send the connection information of all target PINEs that meet the filtering conditions to PINE-1 through the second response information.
  • PEGC-1 can also directly select the recommended PINE-2 for PINE-1, and send the connection information of PINE-2 to PINE-1 through the second response message. Specifically, PEGC-1 queries and finds that the number of target PINEs that meet the filtering conditions includes only one, and then uses this target PINE as PINE-2 recommended to PINE-1. If the number of target PINEs that meet the filtering conditions includes multiple ones, PEGC-1 can arbitrarily select one target PINE from the multiple target PINEs, or select the target PINE that meets the second condition as the recommended PINE-2.
  • the second condition may include at least one of the following:
  • the remaining power is the most, the remaining power is greater than the power threshold, the effective time is the longest, and the effective time is greater than the time threshold.
  • the second response information may include connection information of at least one target PINE or connection information of PINE-2.
  • PINE-1 can establish a communication connection with the recommended PINE-2 in the first response information for data exchange.
  • PINE-1 can arbitrarily select a target PINE from the multiple target PINEs as PINE-2, or select from multiple target PINEs that satisfy the first PINE.
  • the target PINE of the second condition is used as PINE-2, and a communication connection is established with the PINE-2 for data exchange.
  • connection information of PINE-2 may include at least one of the following:
  • the identification information of PINE-2 the IP address information of PINE-2, the target communication path for communication between PINE-1 and PINE-2, and the identification information and/or IP address of PEGC-1 that PINE-1 needs to associate with in the target communication path.
  • connection information of at least one target PINE includes at least one of the following:
  • the identification information and/or IP address information of each target PINE in at least one target PINE the access technology supported by each target PINE, the communication paths supported by each target PINE, and each PINE in the communication paths supported by each target PINE
  • PEGC-1 if the target PINE does not exist in at least one PINE associated with PEGC-1, PEGC-1 sends the first request information to the management device.
  • PEGC-1 after PEGC-1 receives the second request information sent by PINE-1, it can first query at least one PINE associated with itself. When there is no PINE that meets the requirements of PINE-1 among at least one of its associated PINEs, PEGC-1 may send the first request information to the management device to request the first service required by PINE-1 from the management device, and/or , the communication path between PINE-1 and the PINE providing the first service. In this way, network resources can be saved and the efficiency of path selection can be improved.
  • the first request information can be the same information as the above-mentioned second request information. That is to say, when PEGC-1 determines that there is no PINE that meets the requirements of PINE-1 among at least one PINE associated with it, PEGC-1 can directly Forward the second request information of PINE-1 to the management device.
  • PEGC-1 may not perform any processing after receiving the second request information sent by PINE-1, and directly forward the second request information as the first request information to the management device for the management device to perform physical processing. Networking device selection and routing.
  • the management device after receiving the first request sent by PINE-1 or PEGC-1, the management device can change the service type, demand information, whether to provide services for PINE-1, and preferences in the first request information.
  • the access technology and preferred communication path are used as filtering conditions, and at least one candidate PINE is selected for PINE-1 from the PIN attribute information.
  • the management device can use the distance between the candidate PINE and PINE-1, the association between the PEGC associated with the candidate PINE and PINE-1, and whether both the candidate PINE and PINE-1 are within the service range of PEGC. to determine the candidate communication path between each candidate PINE and PINE-1.
  • the manner in which the management device determines the candidate communication path between each candidate PINE and PINE-1 may include:
  • the candidate communication path may include a first communication path that represents a path for communication through a direct connection
  • the candidate communication path may include a second communication path that represents a path for communication using PEGC;
  • the candidate communication path may include a third communication path that represents a path for communication using the cellular network.
  • the specified distance may be the maximum distance for direct communication between PINE devices. That is to say, the distance between the candidate PINE and PINE-1 is less than the maximum distance required for direct communication, that is, the two are geographically close enough, then the candidate PINE and PINE-1 can conduct business through the first communication path. transmission.
  • service transmission can be performed between the candidate PINE and PINE-1 through the second communication path.
  • the service scope of PEGC may refer to the communication service scope of PEGC. That is, if the candidate PINE and PINE-1 do not have a common associated PEGC, but the candidate PINE and PINE-1 are located around different PEGCs (for example, the distance between the candidate PINE and its nearest PEGC, and the distance between PINE-1 and its nearest PEGC The distance between PEGCs is less than the specified distance, that is, the maximum distance for direct communication between PINE devices), and they can directly communicate with nearby PEGCs. In this case, the candidate PINE and PINE-1 can Service transmission is performed through the third communication path.
  • the path selection method may also include the following steps:
  • Step 430 Based on the candidate communication path between each candidate PINE and PINE-1, the management device selects a candidate PINE that satisfies the first condition from at least one candidate PINE to obtain at least one target PINE.
  • the first condition may include at least one of the following:
  • the candidate communication paths include the communication path preferred by PINE-1, the candidate communication paths include the communication path with the highest priority, and the candidate communication paths include the default communication path.
  • the management device may select a candidate PINE including the preferred communication path among the candidate communication paths for PINE-1 as the target PINE according to the preferred communication path specified by PINE-1 in the first request information.
  • the management device may also select the candidate PINE including the communication path with the highest priority among the candidate communication paths for PINE-1 as the target PINE according to the priority order of the communication paths.
  • the management device may select a candidate PINE that supports the preferred communication path as the target PINE for PINE-1. If PINE-1 does not specify a preferred communication path, the candidate PINE including the communication path with the highest priority among the candidate communication paths may be selected for PINE-1 as the target PINE according to the priority order of the communication paths.
  • the priority order of the communication paths can be sorted according to the network resources occupied by the communication paths. For example, if the first communication path occupies the least network resources, the priority of the first communication path can be set to be the highest; if the second communication path occupies moderate network resources, the priority of the second communication path can be set to medium, and the priority of the third communication path can be set to medium. has the most network resources, and sets the third communication path to have the lowest priority.
  • the management device may also select a candidate PINE that includes the default communication path among the candidate communication paths for PINE-1 as the target PINE based on the pre-specified default communication path.
  • the default communication path may be a pre-specified direct communication path, a communication path through an Internet of Things gateway device, or a communication path through a cellular network, which is not limited in the embodiments of this application.
  • the management device can directly use the candidate IoT device as a recommended one.
  • PINE-2 instructs PINE-1 to establish a communication connection with PINE-1 through this candidate communication path.
  • the management device may not recommend PINE-2 for PINE-1, but directly send the determined connection information of all target PINEs to PINE-1 through the first response information.
  • the management device may also recommend PINE-1, determine a target PINE from at least one target PINE as the recommended PINE-2, and send the connection information of the recommended PINE-2 through the first response information. Give PINE-1.
  • the above path selection method may also include the following steps:
  • Step 440 The management device determines PINE-2 for providing the first service to PINE-1 based on at least one target Internet of Things device.
  • the target PINE when the number of at least one target PINE is 1, the target PINE can be used as the recommended PINE-2 to provide the first service to PINE-1.
  • the number of at least one target PINE is multiple, one PINE may be randomly selected from multiple target PINEs, or the optimal PINE may be selected as the recommended PINE-2 to provide the first service to PINE-1.
  • the management device may also perform the following steps:
  • the management device selects a target PINE that satisfies the second condition from multiple target PINEs to obtain PINE-2, where the second condition includes at least one of the following:
  • the remaining power is the most, the remaining power is greater than the power threshold, the effective time is the longest, and the effective time is greater than the time threshold.
  • the power threshold and/or the time threshold can be determined based on protocol predefinition, preconfiguration information, or network configuration information, and the embodiments of this application do not limit this.
  • the power threshold and/or the time threshold may be carried in the first request information.
  • step 440 the following steps may be performed after step 440:
  • Step 450 The management device sends first response information, where the first response information is used to indicate the connection information of at least one target PINE, or the connection information of PINE-2.
  • the management device selects at least one target PINE or PINE-2, it can notify PINE-1 of the relevant connection information of at least one PINE or PINE-2 through the first response message.
  • the management device sends the first response information to PINE-1. If the first request information is sent by PEGC-1, the management device sends the first response information to PEGC-1.
  • PEGC-1 after PEGC-1 receives the first response information, it may send the second response information to PINE-1 according to the first response information. It should be noted that the second response information may be the same information as the first response information, that is to say, PEGC-1 forwards the first response information to PINE-1.
  • connection information of PINE-2 includes at least one of the following:
  • the identification information of PINE-2 the IP address information of PINE-2, the target communication path for communication between PINE-1 and PINE-2, and the identification information and/or IP address of PEGC-1 that PINE-1 needs to associate with in the target communication path.
  • connection information of at least one target PINE includes at least one of the following:
  • the identification information and/or IP address information of each target PINE in at least one target PINE the access technology supported by each target PINE, the communication path supported by each target PINE, and each target in the communication path supported by each target PINE
  • the first response information includes the connection information of PINE-2
  • PINE-1 can use direct connection communication technologies such as WiFi and Bluetooth. Establish direct communication with PINE-2.
  • the connection information of PINE-2 may not include the identification information and/or IP address information of PEGC-1 that PINE-1 needs to associate with, and the identification information and/or IP address information of PEGC-2 that PINE-2 needs to associate with.
  • PINE-1 can establish a communication connection with PINE-2 through PEGC-1 for data exchange.
  • the PEGC-1 that PINE-1 needs to be associated with and the PEGC-2 that PINE-2 needs to be associated with can be the same IoT gateway device.
  • PEGC-1 that PINE-1 needs to be associated with may be a PEGC that PINE-1 is already associated with or that is not associated with, and the embodiment of the present application does not limit this.
  • PINE-1 can be associated with PEGC-1 according to the identification information and/or IP address information of PEGC-1 carried in the first response information, and PINE-1 and PINE-2 communicates over cellular networks such as 5G systems.
  • PINE-1 can establish a communication connection with the recommended PINE-2 in the first response information for data exchange.
  • PINE-1 when the first response information includes connection information of at least one target PINE, PINE-1 can select a target PINE as PINE-2 from the at least one target PINE on its own.
  • PINE-1 may select a target PINE that satisfies the second condition from at least one target PINE to obtain PINE2, where the second condition includes at least one of the following:
  • the remaining power is the most, the remaining power is greater than the power threshold, the effective time is the longest, and the effective time is greater than the time threshold.
  • the power threshold and/or the time threshold can be determined based on protocol predefinition, preconfiguration information, or network configuration information, and the embodiments of this application do not limit this.
  • the power threshold and/or the time threshold may be carried in the first request information.
  • PINE-1 selects PINE-2, it can establish a communication connection with PINE-2 according to the communication path supported by PINE-2.
  • PINE-1 and PINE-2 can report their association with PEGC-1 and PEGC-2, the selected communication path and access technology to management device to facilitate management of the device and update PIN attribute information.
  • the following describes in detail the process for the management device to configure PINE-1 to communicate with PINE-2 through the third communication path (ie, cellular network).
  • the path selection method provided by the embodiment of the present application may include the following steps:
  • Step 601 PINE-1 establishes communication with PEGC-1.
  • PINE-1 determines the path to communicate with PINE-2 using the cellular network through negotiation with the management device. During the negotiation process, PINE-1 can obtain the identification information and/or IP address of PEGC-1 that needs to be associated, the identification information and/or IP address of PINE-2, and the identification information of PEGC-2 that PINE-2 needs to associate with. and/or IP address.
  • PINE-1 After PINE-1 determines a path to communicate with PINE-2 using the cellular network, PINE-1 can trigger the path configuration process. First, PINE-1 can associate with PEGC-1 based on the identification information and/or IP address information of PEGC-1 carried in the first response information, so as to utilize PEGC-1's ability to access the cellular network to communicate with PINE-2. Data interaction.
  • step 601 does not need to be performed.
  • Step 602 PINE-1 sends third indication information to PEGC-1.
  • the third indication information can be used to indicate at least one of the following:
  • the identification information and/or IP address information of PINE-2, PINE-1 and PINE-2 communicate through a third communication path; the third communication path represents a communication path using a cellular network, and PINE-2 in the third communication path The associated PEGC-2 identification information and/or IP address information.
  • PINE-1 determines to communicate with PINE-2 using the path of the cellular network, it can use the determined third communication path and the relevant information of PINE-2 (such as the identification information of PINE-2 and/or The IP address information, and the identification information and/or IP address information of the PEGC-2 to which PINE-2 needs to be associated) are notified to the PEGC-1 associated with PINE-1 through the third instruction information.
  • relevant information of PINE-2 such as the identification information of PINE-2 and/or The IP address information, and the identification information and/or IP address information of the PEGC-2 to which PINE-2 needs to be associated
  • the relevant information of PINE-2 can be determined through the first response information.
  • the third indication information PEGC-1 can also be instructed to establish or modify a Protocol Data Unit (PDU) session for PINE-1.
  • PDU Protocol Data Unit
  • PEGC-1 can also be instructed to modify the data transmission rules of the PDU session for PINE-1, such as packet detection rules and/or data forwarding behavior rules.
  • Step 603a If PEGC-1 has not established a PDU session for PINE-1, PEGC-1 establishes or modifies a PDU session for PINE-1.
  • Step 603b When PEGC-1 has established a PDU session for PINE-1, PEGC-1 modifies the data transmission rules corresponding to the PDU session.
  • the above-mentioned PDU session is used to transmit service data between PINE-1 and PINE-2, and is used to configure the IP address information of PINE-1 and/or PEGC-1.
  • PEGC-1 may perform the above step 603a or step 603b according to the situation of the PDU session established for PINE-1.
  • PEGC-1 can establish a PDU session for PINE-1 after receiving the third indication information for transmitting PINE-1.
  • the IP address information of PINE-1 and/or PEGC-1 is obtained from the User Plane Function (UPF) network element.
  • UPF User Plane Function
  • PEGC-1 can initiate a PDU session modification process for PINE-1 to update the packet detection rules and/or forwarding behavior rules in the N4 rules.
  • PEGC-1 can perform the above-mentioned processing according to one or more of the ID and IP address of PINE-1, the ID and IP address of PINE-2, and the ID and IP address of PEGC-2.
  • the packet detection rules and/or forwarding behavior rules in the N4 rules are updated, or PEGC-1 can update the packet detection rules and/or forwarding behavior rules in the above-mentioned N4 rules according to the third instruction information.
  • the embodiment of the present application There is no restriction on this. Among them, the ID and IP address of PINE-2 and the ID and IP address of PEGC-2 can be determined in the negotiation process corresponding to Figure 5.
  • Step 604 PINE-1/PEGC-1 sends first instruction information to the management device.
  • the first instruction information is used to instruct PINE-1 to communicate with PINE-2 through a third communication path.
  • the third communication path represents the use of a cellular network. The path for communication.
  • PINE-1/PEGC-1 can indicate to the management device through the first indication information that PINE-1 will interact with PINE-2 through the third communication path.
  • the first indication information includes at least one of the following:
  • Identification information of PINE-1 IP address information of PINE-1, identification information of PEGC-1, IP address information of PEGC-1, identification information of PINE-2, IP address information of PINE-2, identification of PEGC-2 information, PEGC-2 IP address information, association indication information, and path indication information.
  • association indication information is used to indicate that PINE-1 is associated with PEGC-1, and/or, PINE-2 is associated with PINE-2.
  • the path indication information is used for PINE-1 and PINE-2 to communicate through the third communication path. .
  • Step 605 The management device sends second instruction information to PINE-2.
  • the second instruction information is used to instruct PINE-2 to communicate with PINE-1 through the third communication path.
  • the management device can send the second indication information to PINE-2 to inform PINE-2 to perform data interaction with PINE-1 through the third communication path.
  • the management device can directly send the second indication information to PINE-2. If PINE-2 is outside the direct communication service range of the management device, the management device can forward the second request information through the PEGC-2 associated with PINE-2.
  • the embodiment of the present application does not limit the method of sending the second instruction information.
  • the second indication information includes at least one of the following:
  • Identification information of PINE-1 IP address information of PINE-1, identification information of PEGC-1, IP address information of PEGC-1, identification information of PINE-2, IP address information of PINE-2, identification of PEGC-2 information, PEGC-2 IP address information, association indication information, and path indication information.
  • association indication information is used to indicate that PINE-1 is associated with PEGC-1, and/or PINE-2 is associated with PINE-2; the path indication information is used for PINE-1 and PINE-2 to communicate through the third communication path communication.
  • the second instruction information may also be called path configuration information and is used to configure the communication path between PINE-2 and PINE-1.
  • Step 606 PINE-2 establishes communication with PEGC-2.
  • PINE-2 may associate with PEGC-2 according to the identification information of PEGC-2 and/or the IP address information of PEGC-2 indicated in the second indication information, so that It uses PEGC-2's ability to access cellular networks to interact with PINE-1.
  • Step 607 PINE-2 sends second request information to PEGC-2.
  • the second request information is used to request to establish or modify a PDU session, or to request to modify the data transmission rules corresponding to the PDU session;
  • the PDU session is used to transmit PINE-1 Business data with PINE-2, as well as IP address information used to configure PINE-2 and/or PEGC-2.
  • PINE-2 can request PEGC-2 to establish or modify a PUD session for it through the second request information, or request PEGC-2 to modify the data transmission rules in the PDU session for it through the second request information.
  • data transmission rules may include packet detection rules and/or forwarding behavior rules.
  • Step 608a If PEGC-2 does not establish a PDU session for PINE-2, PEGC-2 establishes or modifies a PDU session for PINE-2.
  • Step 608b When PEGC-1 has established a PUD session for PINE-1, and PEGC-2 has established a PDU session for PINE-2, PEGC-2 modifies the data transmission rules corresponding to the PDU session.
  • PEGC-2 may perform the above-mentioned step 608a or step 608b according to the status of the PDU session established for PINE-2.
  • PEGC-2 can establish a PDU session for PINE-2 after receiving the second request information.
  • PDU session is used to transmit service data between PINE-2 and PINE-1.
  • the IP address information of PINE-2 and/or PEGC-2 is obtained from the User Plane Function (UPF) network element.
  • UPF User Plane Function
  • step 608b if PEGC-1 has established a PUD session for PINE-1 before PINE-1 requests the service, and PEGC-2 has established a PDU session for PINE-2, then PEGC-2 receives the second After requesting information, PEGC-2 can initiate a PDU session modification process for PINE-2 to update the packet detection rules and/or forwarding behavior rules in the N4 rules.
  • PEGC-2 may perform the above-mentioned processing according to one or more of the ID and IP address of PINE-1, the ID and IP address of PEGC-1, and the ID and IP address of PINE-2.
  • the packet detection rules and/or forwarding behavior rules in the N4 rules are updated; or, PEGC-2 can update the packet detection rules and/or forwarding behavior rules in the N4 rules according to the second instruction information.
  • the embodiment of the present application There is no restriction on this. Among them, the ID and IP address of PINE-1 and the ID and IP address of PEGC-1 can be determined in the negotiation process corresponding to Figure 5.
  • step 603a may correspond to step 608a
  • step 603b may correspond to step 608b. That is, in a process of third communication path configuration, step 603a and step 608a may be performed. In another process of configuring the third communication path, steps 603b and 608b may be performed.
  • PINE-2/PEGC-2 can associate it with PINE-2
  • the identification information and/or IP address information, the identification information and/or IP address information of PEGC-2, and the path indication information instructing PINE-1 and PINE-2 to transmit through the third communication path are reported to the management device.
  • the path selection method may also include Following steps:
  • Step 609 The management device sends a data forwarding policy configuration request to the first network element of the cellular network.
  • the data forwarding policy configuration request is used to request the configuration of data transmission rules between PINE-1 and PINE-2.
  • the management device determines that data between PINE-1 and PINE-2 needs to pass through the path of the cellular network. After transmission, the configuration of the data forwarding policy may be requested from the first network element in the cellular network.
  • the first network element may be a control plane network element used to manage PDU sessions in the cellular network.
  • the first network element may be a session management function (Session Management Function, SMF) network element in the 5G system.
  • SMF Session Management Function
  • the data forwarding policy configuration request may include at least one of the following:
  • the management device when the management device is PEMC, in step 609, the management device sends a data forwarding policy configuration request to the first network element of the cellular network, which can be implemented in any of the following ways:
  • PEMC forwards the data forwarding policy configuration request to the first network element through the second network element;
  • PEMC sends a data forwarding policy configuration request to the first network element through the second network element and the Policy Control Function (PCF) network element;
  • PCF Policy Control Function
  • PEMC forwards the data forwarding policy configuration request to the first network element through the second network element and the Network Exposure Function (NEF) network element;
  • NEF Network Exposure Function
  • PEMC sends a data forwarding policy configuration request to the first network element through the second network element, NEF and PCF.
  • the second network element may be a core network element in the cellular network, such as a UDM network element or a UDR network element, or it may be a network element dedicated to managing Internet of Things devices, or it may be provided by a third party.
  • Application network element may be a core network element in the cellular network, such as a UDM network element or a UDR network element, or it may be a network element dedicated to managing Internet of Things devices, or it may be provided by a third party.
  • the first network element is an SMF network element and the second network element is a trusted network element within the core network of the cellular network, as shown in Figure 7A
  • PEGC-1 is established for PINE-1 /Modify the PDU session
  • PEMC can send a policy configuration request to the second network element, and the second network element directly sends the data forwarding policy configuration request to the first network element.
  • the first network element can configure the data forwarding policy for UPF-1 corresponding to PEGC-1 and UPF-2 corresponding to PEGC-2 based on the local preconfigured policy, such as configuring packet detection rules and /or forwarding behavioral rules, etc.
  • PEGC-1 is PINE-1
  • PEMC can send a policy configuration request to the second network element.
  • the second network element sends the data forwarding policy configuration request to the PCF network element.
  • the PCF network element sends a policy configuration request to the first network element.
  • the first network element can configure a data forwarding policy for UPF-1 corresponding to PEGC-1 and UPF-2 corresponding to PEGC-2 based on the local preconfigured policy, such as configuring packet detection rules. and/or forward rules of conduct, etc.
  • PEGC-1 is established for PINE-1 /Modify the PDU session, and after PEGC-2 establishes/modifies the PDU session for PINE-2, PEMC can send a policy configuration request to the second network element. Then, the second network element sends a data forwarding policy configuration request to NEF, and NEF will receive it. The received data forwarding policy configuration request is sent to the first network element.
  • the first network element can configure the data forwarding policy for UPF-1 corresponding to PEGC-1 and UPF-2 corresponding to PEGC-2 based on the local preconfigured policy, such as configuring packet detection rules and /or forwarding behavioral rules, etc.
  • PEGC-1 establishes/ After modifying the PDU session and PEGC-2 establishing/modifying the PDU session for PINE-2, PEMC can send a policy configuration request to the second network element. Then, the second network element sends a data forwarding policy configuration request to NEF, which NEF will receive. The data forwarding policy configuration request is sent to the PCF network element, and the PCF network element sends the received data forwarding policy configuration request to the first network element.
  • the first network element can configure the data forwarding policy for UPF-1 corresponding to PEGC-1 and UPF-2 corresponding to PEGC-2 based on the local preconfigured policy, such as configuring packet detection rules and /or forwarding behavioral rules, etc.
  • UPF-1 and UPF-2 in the above four implementation methods may be the same network element, or may be two different network elements, and the embodiment of the present application does not limit this.
  • packet detection rules are used to filter out data packets that need to be forwarded
  • forwarding behavior rules are used to indicate whether data packets should be buffered, discarded, or forwarded, how to encapsulate/decapsulate data packets, and the destination of forwarding.
  • the management device when the management device is the second network element, in step 609, the management device sends a data forwarding policy configuration request to the first network element of the cellular network, which can be implemented in any of the following ways:
  • the second network element sends a data forwarding policy configuration request to the first network element
  • the second network element sends a data forwarding policy configuration request to the first network element through the PCF;
  • the second network element forwards the data forwarding policy configuration request to the first network element through NEF;
  • the second network element sends a data forwarding policy configuration request to the first network element through NEF and PCF.
  • the management device may be a network element in the network, and may directly manage the IoT devices in the PIN.
  • the second network element can directly send a data forwarding policy configuration request to the first network element. If the second network element is a trusted network element within the core network, the second network element can also send a data forwarding policy configuration request to the PCF, and send the data forwarding policy configuration request to the first network element through the PCF. If the second network element is an untrusted network element within the core network, the second network element can send a data forwarding policy configuration request to the NEF, and send the data forwarding policy configuration request to the first network element through the NEF.
  • the second network element can also send a data forwarding policy configuration request to NEF, and NEF sends the data forwarding policy configuration request to PCF, and then PCF forwards the received data.
  • the policy configuration request is sent to the first network element.
  • the first network element receives the forwarding policy configuration request, it can configure the data forwarding policy for UPF-1 corresponding to PEGC-1 and UPF-2 corresponding to PEGC-2 based on the local preconfigured policy, such as configuring packet detection rules and/or Or forward rules of conduct, etc.
  • the data forwarding policy configuration request can be transmitted in the manner of Figures 7A to 7D.
  • the management device is the PEMC and the second network element, that is, both the PEMC and the second network element exist at the same time.
  • the management device can not only allocate PINE-2 that meets its service requirements to PINE-1 that initiates the service request, but can also ensure the reachability between PINE-1 and PINE-2.
  • PINE-1 and PINE-2 are unreachable, the management device can configure the associated PEGC-1 for PINE-1 to access the cellular network, and configure the associated PEGC-2 for PINE-2 to access the cellular network.
  • the management device can also configure corresponding data forwarding policies for PINE in the core network.
  • the path selection method provided by the embodiment of this application can provide certain guidelines for PINEs requesting services to select target PINEs, ensure the reachability between PINEs deployed in different places, and ensure the accessibility of PINEs deployed in different places through the data forwarding policy configuration scheme. Data between PINEs can be forwarded over the cellular network.
  • the user needs to use the smartphone (PINE-1) at home or in the office to request the camera (PINE-2) deployed on the farm to provide real-time monitoring video of crops, and according to the monitoring Video to determine whether to water, fertilize, spray pesticides and other management measures for crops.
  • IoT devices can also be deployed on the farm, such as sensor devices used to collect environmental information such as farm temperature and/or humidity, or devices used to water, fertilize, and spray pesticides on crops.
  • PINE-1 and PINE-2 belong to the same PIN and are managed through PEMC. PINE-1 and PINE-2 are in different geographical areas. Furthermore, the attribute information of PINE-1, PINE-2, PEGC-1, PEGC-2, and PEMC can be stored in PEMC in advance.
  • PINE-1 is within the service scope of PEMC, and PINE-1 can directly initiate service requests to PEMC.
  • the path selection method provided by the embodiment of the present application may include the following steps:
  • Step 1 PINE-1 sends service request information to PEMC (that is, the first request information above).
  • the service request information may include at least one of the following: PIN ID, PINE-1 ID, PINE-1 IP address, PEGC-1 ID, PEGC-1 IP address, service type of the requested service, and demand information of the requested service. , preferred access technology, preferred communication path.
  • the service request information may include PEGC-1 ID and/or PEGC-1 IP address information, otherwise the service request information may not carry these two pieces of information.
  • Step 2 PEMC retrieves the PIN attribute information (that is, the IoT attribute information above) from the PEMC local or second network element, and determines the target PINE and/or PINE-2.
  • PIN attribute information that is, the IoT attribute information above
  • PEMC After PEMC receives the service request information, it can use the PINE-1 ID, service type, demand information, preferred access technology, preferred communication path, etc. in the service request information as filtering conditions, from PEMC local or secondary A candidate PINE list is selected for PINE-1 from the PIN attribute information stored in the network element.
  • PEMC can be determined by the geographical distance between the candidate PINE and PINE-1, the geographical distance between the PEGC associated with the candidate PINE and PINE-1, and whether there is the same association between the candidate PINE and PINE-1.
  • PEGC determines the candidate communication path between each candidate PINE and PINE-1. Specifically, the candidate communication path judgment criteria are as follows:
  • the candidate communication path may include a first communication path, which represents a direct connection through the path through which communication takes place;
  • the candidate communication path may include a second communication path that represents a path for communication using the gateway device;
  • the candidate communication paths may include a third communication path that is representative of a path for communicating using a cellular network.
  • PEMC selects the candidate PINE whose preferred communication path is included in the candidate paths for PINE-1 as the target PINE. If PINE-1 does not specify a preferred communication path, PEMC can select the target PINE for it according to the priority of the first communication path, the second communication path, and the third communication path (that is, in the order of occupying network resources from low to high). If there are multiple target PINEs at the same time, you can select the target PINE with the longest validity time and the most remaining power as the recommended PINE-2.
  • Step 3 PEMC sends service response information to PINE-1 (that is, the first response information above).
  • the service response information may include at least one of the following:
  • PINE-2 ID IP address information of PINE-2, target communication path for communication between PINE-1 and PINE-2, identification information and/or IP address information of PEGC-1 that PINE-1 needs to be associated with in the target communication path , the identification information and/or IP address information of the PEGC-2 that PINE-2 needs to be associated with in the target communication path, the identification information and/or IP address information of each target PINE in at least one target PINE, and the information supported by each target PINE.
  • Access technology, the communication path supported by each target PINE, the identification information and/or IP address information of the PEGC that each target PINE needs to be associated with in the communication path supported by each target PINE, and the communication path supported by each target PINE PINE-1 requires identification information and/or IP address information of the associated PEGC.
  • the recommended PINE-2 can be selected from at least one target PINE.
  • Step 4a If the business response information received by PIEN-1 includes PINE-2 ID and direct connection communication indication, PINE-1 can establish a communication connection with PINE-2 through direct connection communication technologies such as WiFi and Bluetooth for data exchange. .
  • Step 4b If the business response information received by PINE-1 includes PINE-2 ID, PEGC-1 ID, and instructions for communication through PEGC, then PINE-1 can establish a communication connection with PINE-2 through PEGC-1. Perform data interaction.
  • Step 4c If the service request response message received by PINE-1 includes the PINE-2 ID and its associated PEGC-2 ID, PEGC-1 ID, and communication instructions through the 5G system, then PINE-1 can be associated with PEGC-1 1. The two communicate through the 5G system.
  • PINE-1 can select a target PINE as PINE-2 and perform the above corresponding steps according to the determined communication path.
  • Step 5 After the communication connection between PINE-1 and PINE-2 is successfully established, PINE-1 and PINE-2 report their association with PEGC-1 and PEGC-2, the selected communication path and access technology to PEMC and /or the second network element is used to update the stored PIN attribute information.
  • PINE-1 can initiate a service request to its associated PEGC-1.
  • the path selection method provided by the embodiment of the present application may include the following steps:
  • Step 1 PINE-1 sends service request information to PEGC-1 (that is, the first request information above).
  • the service request information may include at least one of the following: PIN ID, PINE-1 ID, PINE-1 IP address, service type of the requested service, demand information of the requested service, preferred access technology, preferred communication path .
  • PEGC-1 After PEGC-1 receives the business request information, it can query all PINEs associated with it. If there are candidate PINEs that meet the filtering conditions specified by PINE-1 in the business request information, steps 2 to 4 will be skipped, and the PINEs will be Candidate PINE serves as target PINE.
  • Step 2. PEGC-1 forwards the service request information to PEMC.
  • the service request information may also carry PEGC-1 ID and/or PEGC-1 IP address information.
  • Step 3 PEMC retrieves the PIN attribute information (that is, the IoT attribute information above) from the PEMC local or second network element, and determines the target PIN and/or PINE-2.
  • PIN attribute information that is, the IoT attribute information above
  • This step 3 is the same as step 2 in Embodiment 1, and will not be repeated here for the sake of simplicity.
  • Step 4 PEMC sends service response information to PEGC-1 (that is, the first response information above).
  • the service response information may include at least one of the following:
  • PINE-2 ID IP address information of PINE-2, target communication path for communication between PINE-1 and PINE-2, identification information and/or IP address information of PEGC-1 that PINE-1 needs to be associated with in the target communication path , the identification information and/or IP address information of the PEGC-2 that PINE-2 needs to be associated with in the target communication path, the identification information and/or IP address information of each target PINE in at least one target PINE, and the information supported by each target PINE.
  • Access technology, the communication path supported by each target PINE, the identification information and/or IP address information of the PEGC that each target PINE needs to be associated with in the communication path supported by each target PINE, and the communication path supported by each target PINE PINE-1 requires identification information and/or IP address information of the associated PEGC.
  • Step 5 PEGC-1 sends service response information to PINE-1 (that is, the first response information above).
  • the content of the business response information in step 5 is similar to the content of the business response information in step 4. For the sake of simplicity, details will not be described here.
  • Step 6a If the business response information received by PIEN-1 includes PINE-2 ID and direct connection communication instructions, PINE-1 and PINE-2 can establish a communication connection through direct connection communication technologies such as WiFi and Bluetooth for data exchange. .
  • Step 6b If the business response information received by PINE-1 includes PINE-2 ID, PEGC ID, and instructions for communication through PEGC, then PINE-1 can establish a communication connection with PINE-2 through PEGC-1 for data processing. Interaction.
  • the PEGC ID in the service response information may be the ID of PEGC-1.
  • PINE-1 establishes a communication connection with PINE-2 through PEGC-1 for data exchange.
  • the PEGC ID in the service response information can be the ID of other PEGCs (such as PEGC-2) other than PEGC-1.
  • PINE-1 can be associated with PEGC-2, and PINE-1 establishes a communication connection with PINE-2 through PEGC-2 for data exchange.
  • Step 6c If the service request response message received by PINE-1 includes the PINE-2 ID and its associated PEGC-2 ID, PEGC-1 ID, and instructions for communication through the 5G system, then PINE-1 can be associated with PEGC-1, the two communicate through the 5G system.
  • Step 7 After the communication connection between PINE-1 and PINE-2 is successfully established, PINE-1 and PINE-2 report their association with PEGC-1 and PEGC-2, the selected communication path and access technology to PEMC and /or the second network element is used to update the stored PIN attribute information.
  • Embodiment 3 mainly focuses on the process of PEMC configuring the communication path through the 5G system for PINE-1.
  • the process for PEMC to configure the communication path through the 5G system for the PINE requesting the service includes the following steps:
  • Step 0 PINE-1 negotiates with PEMC or the second network element and chooses to communicate with PINE-2 through 5GS.
  • the negotiation process may be steps 1 to 3 in Embodiment 1, steps 1 to 5 in Embodiment 2, or other signaling interaction processes.
  • Step 1 PINE-1 associates with PEGC-1 and sends instruction information (that is, the third instruction information above) to PEGC-1.
  • the instruction information is used to inform PEGC-1 of the relevant information of PINE-2 selected by PINE-1 and the communication path between the two.
  • PEGC-1 establishes or modifies a PDU session for PINE-1, which is used for data exchange between PINE-1 and PINE-2, and for configuring PEGC-1 IP address and/or PINE-1 IP address.
  • the PEGC-1 IP address and/or PINE-1 IP address can be configured by the 5G core network element during the establishment or modification of the PDU session.
  • the SMF network element is PEGC-1 and/or PINE-1. Assign an IP address.
  • Step 3 PINE-1 or PEGC-1 sends association update notification information (that is, the first indication information above) to PEMC and/or the second network element.
  • the association update notification information may include PINE-1 ID, PEGC-1 ID, PINE-1 IP address, PEGC-1 IP address, PINE-2 ID, PEGC-2 ID, PINE-2 IP address, PEGC-2 At least one of the IP address, association indication information, and path indication information.
  • the association indication information is used to indicate that PINE-1 is associated with PEGC-1, and PINE-2 is associated with PEGC-2.
  • the path indication information is used to indicate to PEMC and/or the second network element that PINE-1 needs to be associated with PEGC-1 through the 5G system. PINE-2 communicates.
  • Step 4 PEMC sends communication path configuration information to PINE-2 (that is, the second instruction information above).
  • the association update notification information may include PINE-1 ID, PEGC-1 ID, PINE-1 IP address, PEGC-1 IP address, PINE-2 ID, PEGC-2 ID, PINE-2 IP address, PEGC-2 At least one of the IP address, association indication information, and path indication information.
  • the association indication information is used to indicate that PINE-1 is associated with PEGC-1, and PINE-2 is associated with PEGC-2.
  • the path indication information is used to indicate to PEMC and/or the second network element that PINE-1 needs to communicate with PINE through 5GS. -2 for communication.
  • Step 5 PINE-2 associates with PEGC-2 and sends request information to PEGC-2 (that is, the second request information above).
  • PINE-2 can establish a communication connection with PEGC-2 based on the PEGC-2 ID and/or PEGC-2 IP address in the path configuration information.
  • PINE-2 uses the request information to request PEGC-2 to establish or modify a PDU session for it.
  • step 5 can be skipped.
  • PEGC-2 establishes or modifies a PDU session for PINE-2 for data exchange between PINE-1 and PINE-2, and for configuring the PEGC-2 IP address and/or PINE-2 IP address.
  • the PEGC-2 IP address and/or PINE-2 IP address can be configured by the 5G core network element during the establishment or modification of the PDU session.
  • the SMF network element is PEGC-2 and/or PINE-2 Assign an IP address.
  • Step 7 PINE-2/PEGC-2 sends association update notification information to PEMC and/or the second network element.
  • PINE-2/PEGC-2 can report its association relationship, PINE-2 ID, PEGC-2 ID, PINE-2 IP address, PEGC-2 IP address, and path indication information to PEMC and/or the third party.
  • the path indication information is used to indicate to PEMC and/or the second network element that PINE-1 needs to communicate with PINE-2 through the 5G system.
  • Step 8 PEMC sends a data forwarding policy configuration request to the SMF network element in the 5G system (that is, the first network element in the above embodiment).
  • the data forwarding policy configuration request is used to request the configuration between PINE-1 and PINE-2. Configure the data transmission rules.
  • Embodiment 4 mainly focuses on the process of PEMC configuring the communication path through the 5G system for PINE-1.
  • PINE-1's associated PEGC-1 has established a PDU session for it, and PINE-1 and/or PEGC-1 have been assigned the IP address information of PINE-1 and the IP address of PEGC-1 by the 5G core network. Address information.
  • PINE-2's associated PEGC-2 has also established a PDU session for it.
  • PINE-1 and/or PEGC-1 have been assigned the IP address information of PINE-2 and the IP address information of PEGC-2 by the 5G core network. .
  • PEGC-1 and PEGC-2 can directly initiate the PDU session modification process to update the data transmission rules (such as N4 rules). Specifically, update the configuration packet detection rules and forwarding behavior rules.
  • the process for PEMC to configure the communication path through the 5G system for the PINE requesting the service includes the following steps:
  • Step 0 PINE-1 negotiates with PEMC and/or the second network element and chooses to communicate with PINE-2 through the 5G system.
  • the negotiation process may be steps 1 to 3 in Embodiment 1, steps 1 to 5 in Embodiment 2, or other signaling interaction processes.
  • Step 1 PINE-1 sends a data forwarding policy configuration request to PEGC-1 (that is, the third instruction information above).
  • the data forwarding policy configuration request can include PINE-2 ID, PINE-2 IP address, PEGC-2 ID and PEGC-2 IP address that PINE-2 needs to be associated with.
  • This data forwarding policy configuration request can also be used to request PEGC-1 to modify the corresponding PDU session for PINE-1 to update the data transmission rules.
  • Step 2 PEGC-1 modifies the data transmission rules in the PDU session for PINE-1.
  • Step 3 PINE-1/PEGC-1 sends communication path configuration request information (that is, the first instruction information above) to PEMC.
  • the communication path configuration request information may include at least one of the following: PINE-1 ID, PINE-1 IP address, PEGC-1 ID, PEGC-1 IP address, PINE-2 ID, PINE-2 IP address, PINE- 2Need to associate the PEGC-2 ID, PEGC-2 IP address, and path indication information.
  • the path indication information is used to indicate to PEMC and/or the second network element that PINE-1 needs to communicate with PINE-2 through the 5G system.
  • Step 4 PEMC and/or the second network element sends data forwarding policy configuration request information (ie, the second instruction information above) to PINE-2.
  • data forwarding policy configuration request information ie, the second instruction information above
  • the data forwarding policy configuration request information may include at least one of the following: PINE-1 ID, PINE-1 IP address, PEGC-1 ID, PEGC-1 IP address, PINE-2 ID, PINE-2 IP address, PINE -2Need to associate the PEGC-2 ID, PEGC-2 IP address, and path indication information.
  • the path indication information is used to indicate to PEMC and/or the second network element that PINE-1 needs to communicate with PINE-2 through the 5G system.
  • the data forwarding policy configuration request information is also used to inform PINE-2 that a corresponding forwarding policy needs to be configured for communication with PINE-1 through the 5G system.
  • Step 5 PINE-2 sends data forwarding policy configuration request information to PEGC-2.
  • PINE-2 uses the data forwarding policy configuration request information to request PEGC-2 to modify the corresponding PDU session to update the data transmission rules.
  • the content included in the data forwarding policy configuration request information is similar to that in step 4. For the sake of brevity, it will not be described again here.
  • Step 6 PEGC-2 initiates a PDU session modification process for PINE-2 to update the data transmission rules.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the execution of the examples does not constitute any limitations.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the station.
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction from the user equipment of the cell to the site
  • sidelink is used to indicate that the transmission direction of the signal or data is A third direction sent from User Device 1 to User Device 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • Figure 12 is a schematic structural diagram of a path selection device 1200 provided by an embodiment of the present application, which is applied to management equipment. As shown in Figure 12, the path selection device 1200 includes:
  • the candidate device determining unit 1201 is configured to determine at least one candidate IoT device for the first IoT device
  • the candidate path determination unit 1202 is configured to determine a candidate communication path between each candidate Internet of Things device and the first Internet of Things device based on at least one of the following: each candidate object in the at least one candidate Internet of Things device The distance between the Internet of Things device and the first Internet of Things device, the association relationship between the gateway device associated with each candidate Internet of Things device and the first Internet of Things device, the relationship between each candidate Internet of Things device and the Whether the first IoT device is within the service range of the IoT gateway device;
  • the candidate communication paths are used for path selection.
  • the candidate communication path includes at least one of the following:
  • first communication path representing a path for communication via a direct connection
  • the second communication path represents a path for communication using the gateway device
  • a third communication path, the third communication path represents a path for communication using a cellular network.
  • the path selection device 1200 further includes a receiving unit configured to receive first request information, the first request information being used to request the first service required by the first Internet of Things device, and/or , a communication path between the first Internet of Things device and the Internet of Things device providing the first service, and the at least one candidate Internet of Things device is determined based on the first service.
  • a receiving unit configured to receive first request information, the first request information being used to request the first service required by the first Internet of Things device, and/or , a communication path between the first Internet of Things device and the Internet of Things device providing the first service, and the at least one candidate Internet of Things device is determined based on the first service.
  • the receiving unit is further configured to receive the first request information sent by the first Internet of Things device;
  • the first Internet of Things gateway device receives the first request information sent by the first Internet of Things gateway device, and the first Internet of Things gateway device is associated with the first Internet of Things device.
  • the first request information includes at least one of the following:
  • the identification information of the first IoT PIN; the first PIN is the personal IoT accessed by the first IoT device;
  • the identification information of the first Internet of Things device is the identification information of the first Internet of Things device
  • the IP address information of the first Internet of Things device
  • Identification information of a first IoT gateway device associated with the first IoT device
  • the IP address information of the first Internet of Things gateway device is the IP address information of the first Internet of Things gateway device
  • the service type of the first service is the service type of the first service
  • the access technology preferred by the first Internet of Things device is the first Internet of Things device
  • the communication path preferred by the first IoT device is preferred by the first IoT device.
  • the candidate device determining unit 1201 is also configured to obtain IoT attribute information, which includes at least one of the following: attribute information of each IoT device in the first PIN, where the first PIN Attribute information of each Internet of Things gateway device, attribute information of the management device; the first PIN is the personal Internet of Things accessed by the first Internet of Things device; based on the Internet of Things attribute information, is the The first Internet of Things device determines the at least one candidate Internet of Things device.
  • the attribute information of each Internet of Things device includes at least one of the following:
  • the identification information of the Internet of Things device the IP address information of the Internet of Things device, the identification information and/or IP address information of the Internet of Things gateway device associated with the Internet of Things device, the identification information and/or the identification information of other Internet of Things devices associated with the Internet of Things device Or IP address information, service type supported by the Internet of Things device, location information, and valid time information; the valid time information is used to indicate the valid time, remaining power information, and supported wireless access in the first Internet of Things. technology, the maximum communication distance corresponding to each wireless access technology, and the supported communication paths.
  • the attribute information of each IoT gateway device includes at least one of the following:
  • the identification information of the Internet of Things gateway device the IP address information of the Internet of Things gateway device, the identification information and/or IP address information of the Internet of Things device associated with the Internet of Things gateway device, and the identification information and/or IP address information of the Internet of Things device that is allowed to be associated with the Internet of Things gateway device.
  • Identification information, identification information, location information, and valid time information of IoT devices that are prohibited from being associated with the IoT gateway device.
  • the valid time information is used to indicate the valid time and remaining power information in the first IoT gateway device. , supported wireless access technologies, and the maximum communication distance corresponding to each wireless access technology in the wireless access technologies.
  • the attribute information of the management device includes at least one of the following:
  • the management device 's IP address information, location information, valid time information, supported wireless access technologies, and the maximum communication distance corresponding to each wireless access technology in the wireless access technologies.
  • the candidate path determination unit 1202 is also configured to, when the distance between the candidate IoT device and the first IoT device is less than a specified distance, the candidate communication path includes the first communication path, and the first communication path represents A path for communication through a direct connection; in the case that the IoT gateway device associated with the candidate IoT device is the same as the IoT gateway device associated with the first IoT device, the candidate communication path includes a second communication path, and the second communication path Characterizes a path for communication using a gateway device; in the case where both the candidate IoT device and the first IoT device are within the service range of the IoT gateway device, the candidate communication path includes a third communication path, and the third communication path represents a path using a cellular The path through which a network communicates.
  • the path selection apparatus 1200 further includes an Internet of Things device determination unit configured to select from at least one candidate Internet of Things device that satisfies the first Internet of Things device based on the candidate communication path between each candidate Internet of Things device and the first Internet of Things device.
  • a condition for candidate IoT devices is to obtain at least one target IoT device.
  • the first condition includes at least one of the following:
  • the candidate communication paths include the communication path preferred by the first Internet of Things device, the candidate communication paths include the communication path with the highest priority, and the candidate communication paths include the default communication path.
  • the IoT device determining unit is further configured to determine, based on the at least one target IoT device, a second IoT device for providing the first service to the first IoT device.
  • the number of the at least one target IoT device includes multiple, and the IoT device determination unit is further configured to select a target IoT device that satisfies the second condition from a plurality of target IoT devices to obtain the target IoT device.
  • the second Internet of Things device is further configured to select a target IoT device that satisfies the second condition from a plurality of target IoT devices to obtain the target IoT device.
  • the second condition includes at least one of the following:
  • the remaining power is the most, the remaining power is greater than the power threshold, the effective time is the longest, and the effective time is greater than the time threshold.
  • the path selection device 1200 further includes a sending unit configured to send first response information, where the first response information is used to indicate at least one of the following:
  • connection information of the at least one target Internet of Things device and the connection information of the second Internet of Things device.
  • connection information of the second Internet of Things device includes at least one of the following:
  • the identification information of the second Internet of Things device the IP address information of the second Internet of Things device, the target communication path for communicating with the second Internet of Things device, and the first Internet of Things in the target communication path.
  • connection information of the at least one target Internet of Things device includes at least one of the following:
  • each target IoT device in the at least one target IoT device, the access technology supported by each target IoT device, and the communication supported by each target IoT device Path, the communication path supported by each target IoT device.
  • each target IoT device needs to be associated with the identification information of the IoT gateway device, and/or IP address information, and the communication path supported by each target IoT device.
  • the first Internet of Things device in the communication path needs identification information and/or IP address information of the associated Internet of Things gateway device.
  • the receiving unit is further configured to receive first indication information, the first indication information being used to instruct the first Internet of Things device to communicate with the second Internet of Things device through a third communication path, so
  • the third communication path represents a path for communication using a cellular network.
  • the sending unit is further configured to send second instruction information to a second Internet of Things device, where the second instruction information is used to instruct the second Internet of Things device to communicate with the third Internet of Things device through a third communication path.
  • An IoT device communicates.
  • the first indication information and/or the second indication information includes at least one of the following:
  • the identification information of the first Internet of Things device the IP address information of the first Internet of Things device, the identification information of the first Internet of Things gateway device, the IP address information of the first Internet of Things gateway device, the second Internet of Things
  • the identification information of the device the IP address information of the second Internet of Things device, the identification information of the second Internet of Things gateway device, the IP address information of the second Internet of Things gateway device, association indication information, and path indication information; wherein,
  • the association indication information is used to indicate that the first IoT device is associated with the first IoT gateway device, and/or the second IoT device is associated with the second IoT gateway device;
  • the path indication information is used to indicate that the first IoT device is associated with the first IoT gateway device.
  • the second Internet of Things device communicates through the third communication path.
  • the sending unit is also configured to send a data forwarding policy configuration request to the first network element of the cellular network, where the data forwarding policy configuration request is used to request data transmission between the first Internet of Things device and the second Internet of Things device. Configure the rules.
  • the management device is an Internet of Things device with management functions
  • the first network element is a session management function SMF network element
  • the sending unit is further configured to be at least one of the following:
  • the second network element is used to manage the personal Internet of Things
  • the data forwarding policy configuration request is sent to the first network element through the second network element, NEF and PCF.
  • the management device is the second network element
  • the first network element is the SMF network element
  • the sending unit is further configured to be at least one of the following:
  • Figure 13 is a schematic structural diagram of the path selection device 1300 provided by the embodiment of the present application, which is applied to the first Internet of Things device. As shown in Figure 13, the path selection device 1300 includes:
  • the sending unit 1301 is configured to send first request information, the first request information is used to request the first service required by the first Internet of Things device, and/or the first Internet of Things device is related to providing the required The communication path between the Internet of Things devices of the first service.
  • the first request information includes at least one of the following:
  • the identification information of the first IoT PIN; the first PIN is the personal IoT accessed by the first IoT device;
  • the identification information of the first Internet of Things device is the identification information of the first Internet of Things device
  • the IP address information of the first Internet of Things device
  • Identification information of a first IoT gateway device associated with the first IoT device
  • the IP address information of the first Internet of Things gateway device is the IP address information of the first Internet of Things gateway device
  • the service type of the first service is the service type of the first service
  • the access technology preferred by the first Internet of Things device is the first Internet of Things device
  • the communication path preferred by the first IoT device is preferred by the first IoT device.
  • the sending unit 1301 is also configured to send the first request information to a management device; or, send the first request information to a first Internet of Things gateway device, the first Internet of Things gateway device Associated with the management device.
  • the path selection device 1300 may also include a receiving unit configured to receive the first response information sent by the management device, or receive the second response information sent by the first Internet of Things gateway device, the first response
  • the information and/or the second response information is used to indicate the connection information of at least one target Internet of Things device, and/or the connection information of the second Internet of Things device; the at least one target Internet of Things device is based on at least one candidate object.
  • the at least one candidate Internet of Things device is determined based on the first service; the second Internet of Things device is selected based on the at least one target Internet of Things device.
  • connection information of the second Internet of Things device includes at least one of the following: identification information of the second Internet of Things device, IP address information of the second Internet of Things device, and target communication for communicating with the second Internet of Things device. path, the identification information and/or IP address information of the first IoT gateway device that the first IoT device in the target communication path needs to be associated with, and the identification of the second IoT gateway device that the second IoT device in the target communication path needs to be associated with. information and/or IP address information;
  • connection information of at least one target IoT device includes at least one of the following:
  • Identification information and/or IP address information of each target IoT device in at least one target IoT device access technology supported by each target IoT device, communication path supported by each target IoT device, each target IoT device
  • the path selection device 1300 may further include an Internet of Things device determination unit.
  • the Internet of Things device determination unit is Configured to select a target Internet of Things device that satisfies the second condition from the at least one target Internet of Things device to obtain a second Internet of Things device;
  • the second condition includes at least one of the following: the most remaining power, the remaining power is greater than the power threshold, the longest valid time, and the valid time is greater than the time threshold.
  • the path selection device 1300 may further include a communication establishment unit configured to establish communication with the first Internet of Things gateway device.
  • the sending unit 1301 is further configured to send third indication information to the first IoT gateway device, where the third indication information is used to indicate at least one of the following: the identity of the second IoT device. information and/or IP address information, the first Internet of Things device and the second Internet of Things device communicate through a third communication path, the third communication path represents a path for communication using a cellular network, and the second Internet of Things device in the third communication path The identification information and/or IP address information of the associated second Internet of Things gateway device.
  • the sending unit 1301 is also configured to send first indication information to the management device; the first indication information is used to instruct the first Internet of Things device to communicate with the second Internet of Things device through the third communication path, and the third communication path Characterizes paths for communication using cellular networks.
  • the first indication information includes at least one of the following: identification information of the first IoT device, IP address information of the first IoT device, identification information of the first IoT gateway device, IP address information of an Internet of Things gateway device, identification information of a second Internet of Things device, IP address information of the second Internet of Things device, identification information of the second Internet of Things gateway device, IP address information, association indication information, and path indication information;
  • the association indication information is used to indicate that the first IoT device is associated with the first IoT gateway device, and/or the second IoT device is associated with the second IoT gateway device;
  • the path indication information is used to instruct the first Internet of Things device and the second Internet of Things device to communicate through the third communication path.
  • FIG 14 is a schematic structural diagram of the path selection device 1400 provided by the embodiment of the present application. It is applied to the first Internet of Things gateway device. As shown in Figure 14, the path selection device 1400 includes:
  • the receiving unit 1401 is configured to receive the first request information sent by the first Internet of Things device; the first request information is used to request the first service required by the first Internet of Things device, and/or the third A communication path between an Internet of Things device and an Internet of Things device that provides the first service.
  • the first request information includes at least one of the following:
  • the identification information of the first IoT PIN; the first PIN is the personal IoT accessed by the first IoT device;
  • the identification information of the first Internet of Things device is the identification information of the first Internet of Things device
  • the IP address information of the first Internet of Things device
  • Identification information of a first IoT gateway device associated with the first IoT device
  • the IP address information of the first Internet of Things gateway device is the IP address information of the first Internet of Things gateway device
  • the service type of the first service is the service type of the first service
  • the access technology preferred by the first Internet of Things device is the first Internet of Things device
  • the communication path preferred by the first IoT device is preferred by the first IoT device.
  • the path selection device 1400 may also include an Internet of Things device determination unit configured to determine at least one target Internet of Things device from at least one Internet of Things device associated with it; based on the at least one target Internet of Things device , determining a second Internet of Things device used to provide the first service to the first Internet of Things device.
  • an Internet of Things device determination unit configured to determine at least one target Internet of Things device from at least one Internet of Things device associated with it; based on the at least one target Internet of Things device , determining a second Internet of Things device used to provide the first service to the first Internet of Things device.
  • the path selection device 1400 may further include a sending unit configured to send the target IoT device to the management device if the target IoT device does not exist in at least one IoT device associated with the first IoT gateway device. the first request information.
  • a sending unit configured to send the target IoT device to the management device if the target IoT device does not exist in at least one IoT device associated with the first IoT gateway device. the first request information.
  • the receiving unit 1401 is also configured to receive the first response information sent by the management device; the first response information is used to indicate the connection information of at least one target Internet of Things device, and/or, the first Connection information of two Internet of Things devices; wherein the at least one target Internet of Things device is determined based on at least one candidate Internet of Things device, and the at least one candidate Internet of Things device is determined based on the first service; the second Internet of Things device The Internet of Things device is selected based on the at least one target Internet of Things device.
  • the sending unit is further configured to send the second response information to the first Internet of Things device.
  • connection information of the second Internet of Things device includes at least one of the following:
  • the identification information of the second Internet of Things device the IP address information of the second Internet of Things device, the target communication path for communicating with the second Internet of Things device, and the first Internet of Things in the target communication path.
  • connection information of the at least one target IoT device includes at least one of the following: the identification information and/or IP address information of each target IoT device in the at least one target IoT device, the IP address information supported by each target IoT device.
  • Access technology, communication path supported by each target IoT device, identification information of the IoT gateway device that each target IoT device needs to be associated with in the communication path supported by each target IoT device, and/or IP address information In the communication path supported by each target IoT device, the first IoT device needs identification information and/or IP address information of an associated IoT gateway device.
  • the receiving unit 1401 is further configured to receive third indication information, the third indication information being used to indicate at least one of the following: the identification information and/or IP address information of the second Internet of Things device, the third An Internet of Things device communicates with the second Internet of Things device through a third communication path, the third communication path represents a path for communication using a cellular network, and the second thing associated with the second Internet of Things device in the third communication path Identification information and/or IP address information of the networking gateway device.
  • the path selection device 1400 may further include a PDU session management unit configured to provide a PDU session for the first IoT device when the first IoT gateway device does not establish a PDU session for the first IoT device.
  • a PDU session management unit configured to provide a PDU session for the first IoT device when the first IoT gateway device does not establish a PDU session for the first IoT device.
  • An Internet of Things device establishes or modifies a PDU session; or, when the first Internet of Things gateway device has established a PDU session for the first Internet of Things device, modify the data transmission rules corresponding to the PDU session;
  • the PDU session is used to transmit business data between the first IoT device and the second IoT device, and to configure the first IoT device and/or the first IoT gateway device IP address information.
  • the sending unit is further configured to send first instruction information to the management device, where the first instruction information is used to instruct the first Internet of Things device to communicate with the second Internet of Things device through the third communication path.
  • Communication the third communication path represents a path for communication using a cellular network.
  • the first indication information includes at least one of the following: identification information of the first Internet of Things device, IP address information of the first Internet of Things device, identification information of the first Internet of Things gateway device, the first Internet of Things gateway device IP address information of the device, identification information of the second Internet of Things device, IP address information of the second Internet of Things device, identification information of the second Internet of Things gateway device, IP address information of the second Internet of Things gateway device, Association indication information, path indication information; association indication information is used to indicate that the first IoT device is associated with the first IoT gateway device, and/or the second IoT device is associated with the second IoT gateway device; the path indication information is used to indicate Instructing the first Internet of Things device and the second Internet of Things device to communicate through the third communication path.
  • Figure 15 is a schematic structural diagram of the path selection device 1500 provided by the embodiment of the present application. It is applied to the second Internet of Things device. As shown in Figure 15, the path selection device 1500 includes:
  • a receiving unit configured to receive second indication information, the second indication information being used to instruct the second Internet of Things device to communicate with the first Internet of Things device through a third communication path, the third communication path representing utilization The path through which cellular networks communicate.
  • the second indication information includes at least one of the following:
  • the identification information of the first Internet of Things device, the IP address information of the first Internet of Things device, the identification information of the first Internet of Things gateway device, the IP address information of the first Internet of Things gateway device, the second Internet of Things The identification information of the device, the IP address information of the second Internet of Things device, the identification information of the second Internet of Things gateway device, the IP address information of the second Internet of Things gateway device, association indication information, and path indication information; association indication
  • the information is used to indicate that the first IoT device is associated with the first IoT gateway device, and/or the second IoT device is associated with the second IoT gateway device;
  • the path indication information is used to indicate that the first IoT device is associated with the second IoT gateway device.
  • IoT devices communicate through a third communication path.
  • the path selection device 1500 further includes a communication establishment unit configured to establish communication with the second Internet of Things gateway device.
  • the path selection device 1500 further includes a sending unit configured to send second request information to the second Internet of Things gateway device, where the second request information is used to request to establish or modify the PDU session, or to request to modify the PDU session.
  • a sending unit configured to send second request information to the second Internet of Things gateway device, where the second request information is used to request to establish or modify the PDU session, or to request to modify the PDU session.
  • Data transmission rules corresponding to the PDU session; the PDU session is used to transmit business data between the first IoT device and the second IoT device, and to configure the second IoT device and/or The IP address information of the second IoT gateway device.
  • Figure 16 is a schematic structural diagram of a communication device 1600 provided by an embodiment of the present application.
  • the communication device may be a management device, an IoT device, or an IoT gateway device.
  • the communication device 1600 shown in Figure 16 includes a processor 1610.
  • the processor 1610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 1600 may further include a memory 1620.
  • the processor 1610 can call and run the computer program from the memory 1620 to implement the method in the embodiment of the present application.
  • the memory 1620 may be a separate device independent of the processor 1610, or may be integrated into the processor 1610.
  • the communication device 1600 can also include a transceiver 1630, and the processor 1610 can control the transceiver 1630 to communicate with other devices. Specifically, it can send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1630 may include a transmitter and a receiver.
  • the transceiver 1630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1600 can be specifically the management device of the embodiment of the present application, and the communication device 1600 can implement the corresponding processes implemented by the management device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be described again here. .
  • the communication device 1600 may specifically be an Internet of Things device (including a first Internet of Things device and/or a second Internet of Things device) according to the embodiment of the present application, and the communication device 1600 may implement various methods in the embodiment of the present application.
  • the corresponding processes implemented by IoT devices will not be described here for the sake of brevity.
  • the communication device 1600 may specifically be an IoT gateway device (including a first IoT gateway device and/or a second IoT gateway device) according to the embodiment of the present application, and the communication device 1600 may implement the embodiment of the present application.
  • the corresponding processes implemented by the IoT gateway device in each method will not be described again for the sake of simplicity.
  • Figure 17 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1700 shown in Figure 17 includes a processor 1710.
  • the processor 1710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1700 may also include a memory 1720.
  • the processor 1710 can call and run the computer program from the memory 1720 to implement the method in the embodiment of the present application.
  • the memory 1720 may be a separate device independent of the processor 1710, or may be integrated into the processor 1910.
  • the chip 1700 may also include an input interface 1730.
  • the processor 1710 can control the input interface 1730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 1700 may also include an output interface 1740.
  • the processor 1710 can control the output interface 1740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the management device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the management device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the Internet of Things devices (including the first Internet of Things device and/or the second Internet of Things device) in the embodiments of the present application, and the chip can implement the various methods in the embodiments of the present application.
  • the corresponding process for implementing networked devices will not be described again here.
  • the chip can be applied to the IoT gateway device (including the first IoT gateway device and/or the second IoT gateway device) in the embodiment of the present application, and the chip can implement various methods in the embodiment of the present application.
  • the corresponding process implemented by the IoT gateway device will not be repeated here for the sake of simplicity.
  • the chips mentioned in the embodiments of this application may also be called system-level chips, system chips, system-on-chips or system-on-chips, etc.
  • Figure 18 is a schematic block diagram of a communication system 1800 provided by an embodiment of the present application.
  • the communication system 1800 includes a management device 1810, an Internet of Things device 1820, and an Internet of Things gateway device 1830.
  • the management device 1810 can be used to implement the corresponding functions implemented by the management device in the above method
  • the IoT device 1820 can be used to implement the functions implemented by the first IoT device and/or the second IoT device in the above method
  • the IoT gateway device 1830 can be used to implement corresponding functions implemented by the first IoT gateway device and/or the second IoT gateway device in the above method. For the sake of brevity, they will not be described again here.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the management device, the Internet of Things device, or the Internet of Things gateway device in the embodiment of the present application, and the computer program causes the computer to execute the various methods in the embodiment of the present application by the management device. , Internet of Things equipment, or the corresponding process implemented by Internet of Things gateway equipment. For the sake of simplicity, we will not repeat them here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the management device, the Internet of Things device, or the Internet of Things gateway device in the embodiment of the present application, and the computer program instructions cause the computer to execute the various methods in the embodiment of the present application by the management device,
  • the management device the Internet of Things device, or the Internet of Things gateway device
  • the computer program instructions cause the computer to execute the various methods in the embodiment of the present application by the management device.
  • the corresponding processes implemented by IoT devices or IoT gateway devices will not be described in detail here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the management device, the Internet of Things device, or the Internet of Things gateway device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to perform various methods in the embodiments of the present application.
  • the corresponding process implemented by the management device, IoT device, or IoT gateway device will not be described again here for the sake of brevity.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请实施例提供一种路径选择方法及装置、设备、存储介质,该方法包括:管理设备为第一物联网设备确定至少一个候选物联网设备(410);管理设备基于以下至少一项,确定每个候选物联网设备与第一物联网设备之间的候选通信路径:至少一个候选物联网设备中每个候选物联网设备与第一物联网设备的距离、每个候选物联网设备关联的网关设备与第一物联网设备之间的关联关系、每个候选物联网设备和第一物联网设备是否在物联网网关设备的服务范围内;候选通信路径用于进行路径选择(420)。

Description

路径选择方法及装置、设备、存储介质 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种路径方法及装置、设备、存储介质。
背景技术
实际应用中,用户创建的个人物联网(Personal IoT Network,PIN)中可以包括三种类型的设备:普通的个人物联网设备(PIN Element,PINE),具有网关能力的个人物联网设备(PIN Element with Gateway Capability,PEGC),具有管理能力的物联网设备(PIN Element with Management Capability,PEMC)。其中,PINE具有基本的通信能力,相互之间可以通过无线保真(Wireless Fidelity,WiFi)技术、蓝牙技术等直连通信技术进行通信,PINE相互之间还可以通过PEGC进行通信。除此之外,PEGC与PEMC具有接入蜂窝网络(例如5G系统)的能力,可以利用蜂窝网络为PINE之间提供数据转发服务和管理服务。虽然PINE之间可以通过以上三种不同的方式进行通信,但是,如何为PINE选择合适的通信方式,并没有明确的方法。
发明内容
本申请实施例提供一种路径选择方法及装置、设备、存储介质。
第一方面,提供一种路径选择方法,该方法包括:
管理设备为第一物联网设备确定至少一个候选物联网设备;
所述管理设备基于以下至少一项,确定每个候选物联网设备与所述第一物联网设备之间的候选通信路径:所述至少一个候选物联网设备中每个候选物联网设备与所述第一物联网设备的距离、所述每个候选物联网设备关联的网关设备与所述第一物联网设备之间的关联关系、所述每个候选物联网设备和所述第一物联网设备是否在物联网网关设备的服务范围内;
其中,所述候选通信路径用于进行路径选择。
第二方面,提供一种路径选择方法,该方法包括:
第一物联网设备发送第一请求信息,所述第一请求信息用于请求所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径。
第三方面,提供一种路径选择方法,该方法包括:
第一物联网网关设备接收第一物联网设备发送的第一请求信息;所述第一请求信息用于请求所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径。
第四方面,提供一种路径选择方法,该方法包括:
第二物联网设备接收第二指示信息,所述第二指示信息用于指示所述第二物联网设备通过第三通信路径与第一物联网设备进行通信,所述第三通信路径表征利用蜂窝网络进行通信的路径。
第五方面,提供一种路径选择装置,应用于管理设备,所述装置包括:
候选设备确定单元,被配置为针对第一物联网设备确定至少一个候选物联网设备;
候选路径确定单元,被配置为基于以下至少一项,确定每个候选物联网设备与所述第一物联网设备之间的候选通信路径:所述至少一个候选物联网设备中每个候选物联网设备与所述第一物联网设备的距离、所述每个候选物联网设备关联的网关设备与所述第一物联网设备之间的关联关系、所述每个候选物联网设备和所述第一物联网设备是否在物联网网关设备的服务范围内;
其中,所述候选通信路径用于进行路径选择。
第六方面,提供一种路径选择装置,应用于第一物联网设备,所述装置包括:
发送单元,被配置为发送第一请求信息,所述第一请求信息用于请求所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径。
第七方面,提供一种路径选择装置,应用于第一物联网网关设备,所述装置包括:
接收单元,被配置为接收第一物联网设备发送的第一请求信息;所述第一请求信息用于请求所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径。
第八方面,提供一种路径选择装置,应用于第二物联网设备,所述装置包括:
接收单元,被配置为接收第二指示信息,所述第二指示信息用于指示所述第二物联网设备通过第三通信路径与第一物联网设备进行通信,所述第三通信路径表征利用蜂窝网络进行通信的路径。
本申请实施例提供的通信设备,可以是上述方案中的管理设备、第一物联网设备、第二物联网设备、或者第一物联网网关设备,该通信设备包括处理器、存储器和收发器。该收发器用于实现所述通信设备与其他设备之间的通信,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的路径选择方法。
本申请实施例提供的芯片,用于实现上述的路径选择方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的路径选择方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的路径选择方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的路径选择方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述路径选择方法。
本申请实施例提供了一种路径选择方法,其中,管理设备为第一物联网设备确定至少一个候选物联网设备;进而,该管理设备可以基于至少一个候选物联网设备中每个候选物联网设备与所述第一物联网设备的距离,和/或,每个候选物联网设备关联的网关设备与第一物联网设备之间及关联关系,和/或,所述每个候选物联网设备和所述第一物联网设备是否在物联网网关设备的服务范围内,确定每个候选物联网设备与所述第一物联网设备之间的候选通信路径;其中,候选通信路径用于进行路径选择。也就是说,管理设备可以通过物联网设备所处的位置、物联网设备与物联网网关设备的关联关系、以及物联网设备是否在物联网网元的服务范围内,该三项中的至少一项来为物联网设备之间的业务交互选择合适的通信路径。这样,无论物联网设备之间处于距离较近的场景,还是物联网设备之间处于异地部署场景,都能够通过合适的通信路径进行通信,保证了业务的正常传输。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种示例性的个人物联网的网络架构示意图;
图2A是本申请实施例提供的一种直连通信示意图;
图2B是本申请实施例提供的一种通过PEGC进行通信的示意图;
图2C是本申请实施例提供的一种通过蜂窝网络进行通信的示意图;
图3是本申请实施例提供的一种应用场景示意图;
图4是本申请实施例提供的一种路径选择方法的流程示意图一;
图5是本申请实施例提供的一种路径选择方法的流程示意图二;
图6是本申请实施例提供的一种路径选择方法的流程示意图三;
图7A是本申请实施例提供的一种数据转发策略配置请求的传输流程示意图一;
图7B是本申请实施例提供的一种数据转发策略配置请求的传输流程示意图二;
图7C是本申请实施例提供的一种数据转发策略配置请求的传输流程示意图三;
图7D是本申请实施例提供的一种数据转发策略配置请求的传输流程示意图四;
图8是本申请实施例提供的一种路径选择方法的流程示意图四;
图9是本申请实施例提供的一种路径选择方法的流程示意图五;
图10是本申请实施例提供的一种路径选择方法的流程示意图六;
图11是本申请实施例提供的一种路径选择方法的流程示意图七;
图12是本申请实施例提供的一种路径选择装置1200的结构示意图;
图13是本申请实施例提供的一种路径选择装置1300的结构示意图;
图14是本申请实施例提供的一种路径选择装置1400的结构示意图;
图15是本申请实施例提供的一种路径选择装置1500的结构示意图;
图16是本申请实施例提供的一种通信设备示意性结构图;
图17是本申请实施例的芯片的示意性结构图;
图18是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实际应用中,物联网设备可以为可穿戴设备,例如相机、耳机、手表、耳机、健康监视器等;物联网设备也可以为家居生活设备,例如智能灯、相机、恒温器、门传感器、语音助手、扬声器、冰箱、洗衣机、割草机、机器人等;物联网设备也可以是办公或者工厂设备,例如打印机、仪表、传感器等。这样,用户可以在居家环境、办公环境、工厂或者周围环境中使用这些物联网设备创建个人物联网网络。
目前物联网设备只能通过中继设备、网关接入互联网或者通过智能终端(例如手机、平板电脑等)接入蜂窝网络。在这两种情况下,蜂窝网络中的核心网是无法意识到物联网设备接入到了蜂窝网络中。然而,为了充分利用蜂窝网络来对物联网设备进行辅助管理与业务支持,赋能蜂窝网络参与个人物联网是不可或缺的。
图1是本申请实施例提供的一种示例性的个人物联网的网络架构示意图。
如图1所示,个人物联网100可以包括物联网设备、物联网网关设备和物联网管理设备。其中,物联网设备可以是普通的个人物联网设备,例如PINE,物联网网关设备是指具有网关能力的物联网设备,例如PEGC。物联网管理设备是指具有管理能力的物联网设备,例如PEMC。也就是说,物联网网关设备和物联网管理设备除了具有网关能力和管理能力之外,均具有物联网设备的功能。本申请实施例对此不做限制。
应理解,物联网设备之间、物联网设备与物联网网关设备、以及物联网设备与物联网管理设备之间可以通过直连通信技术(例如WiFi技术、蓝牙技术等)进行通信。另外,物联网网关设备和物联网管理设备具有接入蜂窝网络(例如长期演进LTE网络、5G系统等)。可以理解的是,物联网网关设备和物联网管理设备可以利用蜂窝网网络为其通信服务范围内的物联网设备提供数据转发服务和管理服务。
具体来说,物联网设备(PINE)之间的通信可以分为以下三种方式。
方式一、直连通信。
示例性的,参考图2A所示,物联网设备1(PINE-1)与物联网设备2(PINE-2)之间可以通过WiFi技术、蓝牙技术等直连通信技术进行数据交互。
方式二、通过物联网网关设备转发数据。
示例性的,参考图2B所示,PINE-1与PINE-2可以分别通过WiFi技术、蓝牙技术等直连通信技术连接到同一个PEGC,通过该PEGC进行数据传输。
方式三、通过蜂窝网络转发数据。
示例性的,参考图2C所示,PINE-1和PINE-2可以通过PEGC,接入5G系统,通过5G系统中的无线接入网(Radio Access Network,RAN)连接到用户面功能(User Plane Function,UPF)网元。其中,当PEGC为PINE-1和PINE-2创建的协议数据单元(Protocol Data Unit,PDU)会话连接到同一个UPF上时,PINE-1和PINE-2之间的数据可以通过该UPF转发。而当PEGC为PINE建立的PDU会话连接到不同的UPF时,数据可以通过UPF之间的N19接口进行转发。此外,还可以通过UPF与数据网络(Data Network,DN)之间的接口N6进行数据转发。
也就是说,PINE之间的通信路径可以分为通过直连连接进行通信的路径、利用网关设备进行通信的路径,以及通过蜂窝网络进行通信的路径。
应理解,尽管PINE之间的通信有上述三种方式,但是如何为PINE选择合适的通信路径进行数据传输尚不明确。此外,目前的PIN的信令控制与数据交互主要针对的是PINE距离较近,处于同一片地理区域内的场景(即PINE、PEGC、PEMC之间可以直连通信)。而对于异地部署场景下的PINE之间的信令控制与数据交互则较少涉及。
示例性的,在智慧农业、智能工厂等场景中,PINE往往会被部署在不同的地理区域,并且需要进行跨区域的远程业务交互。参考图3所示,用户可能需要使用家中或者办公室中的笔记本电脑(PINE-1)请求部署在农场中的摄像头(PINE-2)提供农作物的实时监控视频,并根据监控视频来判断是否要对农作物进行浇水、施肥、喷洒农药等治理措施。其中,PINE-1和PINE-2属于同一个PIN,但是处于不同地理区域。在这种场景下,异地部署的PINE-1和PINE-2之间可能无法直连通信,需要使用蜂窝网络以及多个异地部署PEGC来为这些异地部署的PINE提供信令控制与数据交互服务。对于异地部署的PINE,如何保证PEMC为请求业务的PINE配置的目标PINE的可达性也没有明确的说明。
基于此,本申请实施例提供了一种路径选择方法,其中,管理设备为第一物联网设备确定至少一个 候选物联网设备;进而,该管理设备可以基于至少一个候选物联网设备中每个候选物联网设备与所述第一物联网设备的距离,和/或,每个候选物联网设备关联的网关设备与第一物联网设备之间的关联关系、和/或所述每个候选物联网设备和所述第一物联网设备是否在物联网网关设备的服务范围内,确定每个候选物联网设备与所述第一物联网设备之间的候选通信路径;其中,候选通信路径用于进行路径选择。也就是说,管理设备可以通过物联网设备所处的位置、物联网设备与物联网网关设备的关联关系、以及物联网设备是否在物联网网元的服务范围内,该三项中的至少一项来为物联网设备之间的业务交互选择合适的通信路径。这样,无论物联网设备之间处于距离较近的场景,还是物联网设备之间处于异地部署场景,都能够通过合适的通信路径进行通信,保证了业务的正常传输。
需要说明的是,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图4是本申请实施例提供的路径选择方法的流程示意图一,如图4所示,该方法包括以下内容。
步骤410、管理设备为第一物联网设备确定至少一个候选物联网设备。
步骤420、管理设备基于以下至少之一确定每个候选物联网设备与第一物联网设备之间的候选通信路径:
至少一个候选物联网设备中每个候选物联网设备与第一物联网设备的距离、每个候选物联网设备关联的网关设备与第一物联网设备之间的距离及关联关系、所述每个候选物联网设备和所述第一物联网设备是否在物联网网关设备的服务范围内;
其中,候选通信路径用于进行路径选择。
本申请实施例中,管理设备可以是具有管理功能的物联网设备,例如PEMC。管理设备还可以是网络中的网元,例如该网元可以是专用于管理物联网设备的网元,也可以是蜂窝网络中核心网网元,例如统一数据管理功能(Unified Data Management,UDM)网元,或者统一数据仓储功能(Unified Data Repository,UDR)网元等,该网元还可以是第三方提供的应用网元。本申请实施例对管理设备的类型不做限制。
需要说明的是,管理设备还可以为PEMC和网元,即PEMC和网元同时存在,共同管理第一PIN中的各个物联网设备以及物联网网关设备。
应理解,管理设备可以管理当前接入的第一PIN的全部物联网设备。管理设备可以根据第一物联网设备(为了方便理解,下文中使用PINE-1表示第一物联网设备)的实际需求,从其管理的多个物联网设备中为PINE-1确定满足其实际需求的至少一个候选物联网设备。其中,管理设备为第一物联网设备选择出的至少一个候选物联网设备可以构成候选PINE列表,即候选PINE list。
在得到候选PINE list之后,管理设备可以依次对候选PINE list中每个候选物联网设备与PINE-1之间的距离、每个候选物联网设备关联的网关设备与PINE-1之间的关联关系、以及每个候选物联网设备与PINE-1是否在物联网网关设备服务范围内中的至少一项进行分析处理,得到每个候选物联网设备与PINE-1之间的候选通信路径。
可选地,候选通信路径可以包括以下中的至少一项:
第一通信路径,该第一通信路径表征通过直接连接进行通信的路径;
第二通信路径,该第二通信路径表征利用网关设备进行通信的路径;
第三通信路径,该第三通信路径表征利用蜂窝网络进行通信的路径。
其中,直接连接可以是WiFi连接、蓝牙连接等。蜂窝网络可以是LTE网络、5G网络、或者未来 的通信网络等,本申请实施例对此不做限制。
这样,在得到每个候选物联网设备的候选通信路径后,管理设备可以根据候选PINE list中每个候选物联网设备,以及每个候选物联网设备的候选通信路径为PINE-1选择合适的通信路径。
综上所述,管理设备可以通过物联网设备所处的位置物联网设备与物联网网关设备之间的关联关系、以及物联网设备是否在物联网网元的服务范围内,该三项中的至少一项来为物联网设备之间的业务交互选择合适的通信路径。这样,无论物联网设备之间处于距离较近的场景,还是物联网设备之间处于异地部署场景,都能够通过合适的通信路径进行通信,保证业务的正常传输。
可选地,管理设备可以存储当前接入的第一PIN的物联网属性信息(也可以称为PIN属性信息),该物PIN属性信息中可以包括接入第一PIN中全部设备的相关属性信息。
可选地,PIN属性信息包括以下至少之一:第一PIN中每个PINE的属性信息,第一PIN中每个PEGC的属性信息,以及第一PIN中管理设备的属性信息。
此外,PIN属性信息中还可以包括第一PIN的标识信息,例如PIN ID。
可选地,上述每个PINE的属性信息,可以包括以下至少之一:
PINE的标识信息,例如PINE ID;
PINE的IP地址信息,例如PINE IP地址;
与PINE关联的PEGC的标识信息和/或IP地址信息;
与PINE关联的其他PINE的标识信息和/或IP地址信息;
PINE支持的业务类型;
位置信息;
有效时间信息;有效时间信息用于指示在第一PIN中的有效时间;
剩余电量信息;
支持的无线接入技术;
上述无线接入技术中每种无线接入技术对应的最大通信距离;
支持的通信路径。
应理解,PINE可以支持一种或多种业务类型,例如定位业务、测速业务、健康监测业务、环境监测业务等。
可选地,在某个PINE的配属性信息中包括该PINE支持的业务类型时,该PINE的属性信息中还可以包括允许使用该业务的PINE的标识信息,和/或,禁止使用该业务的PINE的标识信息。也就是说,每个PINE的属性信息中可以包括白名单和/或黑名单,通过白名单和/或黑名单来告知为特定设备提供业务,和/或,不为特定的设备提供业务。
本申请实施例中,位置信息可以指示PINE所处的地理位置。示例性的,位置信息可以是GPS坐标信息、街道地址信息、小区标识信息、追踪区域标识等信息,本申请实施例对此不做限制。应理解,PINE的位置信息可以用于确定与其他PINE之间的距离。
有效时间信息可以指示PINE加入第一PIN的有效时间,该有效时间可以是PINE加入第一PIN中为其他PINE提供业务或者获取其他PINE提供的业务的时间,示例性的,有效时间信息可以是PINE加入第一PIN的剩余时间。
PINE支持的无线接入技术可以包括WiFi技术、蓝牙技术、3GPP接入技术中的一种或多种,本申请实施例对此不做限制。
PINE支持的通信路径可以包括第一通信路径、第二通信路径、以及第三通信路径中的至少一种。其中,第一通信路径表征通过直接连接进行通信的路径,第二通信路径表征利用网关设备进行通信的路径,第三通信路径表征利用蜂窝网络进行通信的路径。
可选地,本申请实施例中每个PEGC的属性信息包括以下至少之一:
PEGC的标识信息,例如PEGC ID;
PEGC的IP地址信息;
与PEGC关联的PINE的标识信息和/或IP地址信息;
允许与该PEGC关联的物联网设备的标识信息;
禁止与该PEGC关联的物联网设备的标识信息;
位置信息,例如GPS坐标信息、街道地址信息、小区标识信息、追踪区域标识等,PEGC的位置信息可以用于确定该PEGC与PINE或其他PEGC之间的距离;
有效时间信息,该有效时间信息用于指示PEGC在第一PIN中的有效时间,也就是PEGC加入第一PIN中向其他PINE提供业务或者获取其他PINE提供的业务的时间,示例性的,有效时间信息可以 是PEGC加入第一PIN的剩余时间;
剩余电量信息;
支持的无线接入技术,例如包括WiFi技术、蓝牙技术、3GPP接入技术中的一种或多种;
无线接入技术中每种无线接入技术对应的最大通信距离。
可选地,管理设备的属性信息包括以下至少之一:
管理设备的IP地址信息;
位置信息,例如GPS坐标信息、街道地址信息、小区标识信息、追踪区域标识等;
有效时间信息,该有效时间信息用于指示管理设备在第一PIN中的有效时间,也就是管理设备加入第一PIN中向其他PINE提供业务或者获取其他PINE提供的业务的时间,示例性的,有效时间信息可以是管理设备加入第一PIN的剩余时间;
支持的无线接入技术,例如包括WiFi技术、蓝牙技术、3GPP接入技术中的一种或多种;
无线接入技术中每种无线接入技术对应的最大通信距离。
可选地,步骤410中管理设备为第一物联网设备确定至少一个候选物联网设备,可以通过以下方式实现:
管理设备获取PIN属性信息,并基于PIN属性信息为PINE-1确定至少一个候选物联网设备。
也就是说,管理设备可以获取并检索PIN属性信息,根据该PIN属性信息中每个PINE的属性信息,以及每个PEGC的属性信息,从管理设备管理的多个PINE中选择与PINE-1的实际需求匹配的至少一个候选PINE。
在一些实施例中,若管理设备为用于管理物联网设备的第二网元,该第二网元中可以存储所有PIN的物联网属性信息,当管理设备需要为第一物联网设备确定通信路径时,则管理设备可以从本地获取当前接入的第一PIN的物联网属性信息,根据该物联网属性信息为第一物联网设备确定候选物联网设备。
在另一些实施例中,若管理设备为PEMC,则管理设备可以从本地或者第二网元中获取当前接入的第一PIN的物联网属性信息,根据该物联网属性信息为第一物联网设备确定候选物联网设备。
在又一些实施例中,若管理设备为PEMC和第二网元二者时,管理设备的PEMC可以从第二网元,或者从自己本地获取当前接入的第一PIN的物联网属性信息,根据该物联网属性信息为第一物联网设备确定候选物联网设备。
可选地,PINE-1的实际需求可以是PINE-1预先通过第一请求信息告知管理设备。
可选地,在本申请一实施例中,参考图5所示,步骤410之前还可以执行以下步骤:
步骤400、管理设备接收第一请求信息,第一请求信息用于请求PINE-1所需的第一业务,和/或,PINE-1与提供第一业务的PINE之间的通信路径。
也就是说,管理设备可以根据PINE-1的请求,为PINE-1确定候选PINE以及每个候选PINE的候选通信路径,以便于基于候选PINE的候选通信路径为PINE-1选择合适的通信路径。
需要说明的是,该第一请求信息可以是PINE-1的业务请求信息。
可选地,第一请求信息可以包括以下中的至少一项:
第一PIN的标识信息、PINE-1的标识信息、PINE-1的IP地址信息、PEGC-1的标识信息、PEGC-1的IP地址信息、第一业务的业务类型、第一业务的需求信息、PINE-1偏好的接入技术、PINE-1偏好的通信路径。
其中,第一业务的需求信息可以包括服务质量(Quality of Service,QoS)需求、请求服务时长等信息,本申请实施例对此不做限制。
可选地,该第一请求信息可以是PINE-1直接发送给管理设备的,也可以是PINE-1关联的第一物联网网关设备(为了方便理解,下文中使用PEGC-1表示第一物联网网关设备)发送给管理设备。也就是说,管理设备接收PINE-1发送的第一请求信息,或者,管理设备接收PEGC-1发送的第一请求信息。
应理解,PINE-1仅具有直连通信的能力,当PINE-1处于管理设备的直连通信的服务范围内,PINE-1可以直接向管理设备发送第一请求信息。当PINE-1处于管理设备的直连通信的服务范围之外,若PINE-1关联有物联网网关设备,或者PINE-1周围存在物联网网关设备,则PINE-1可以接入与其邻近的PEGC-1,通过PEGC-1向管理设备发送第一请求信息。
可选地,在一些实施例中,PEGC-1接收到PINE-1发送的第一请求信息后,PEGC-1可以从与其关联的至少一个PINE中,确定至少一个目标PINE;进而基于至少一个目标PINE,确定用于向PINE-1提供第一业务的第二物联网设备(为了方便理解,下文中使用PINE-2表示第二物联网设备)。
也就是说,PEGC-1接收到PINE-1发送的第一请求信息后,可以先查询自己关联的至少一个PINE是否有满足第一请求信息中指示的PINE-1需求的PINE。其中,PEGC-1可以将第一请求信息中的业务 类型、需求信息、是否允许为PINE-1提供服务、偏好的接入技术、偏好的通信路径作为筛选条件,查询自己关联的所有PINE,如果PEGC-1关联的至少一个PINE中有满足筛选条件的PINE,则直接将满足筛选条件的PINE作为目标PINE。
在一些实施例中,PEGC-1可以不为PINE-1进行推荐,将满足筛选条件的所有目标PINE的连接信息通过第二响应信息发送给PINE-1。
在一些实施例中,PEGC-1还可以直接为PINE-1选择出推荐的PINE-2,将该PINE-2的连接信息通过第二响应信息发送给PINE-1。具体地,PEGC-1查询出满足筛选条件的目标PINE的数量仅包括一个,则将该目标PINE作为向PINE-1推荐的PINE-2。若满足筛选条件的目标PINE的数量包括多个,则PEGC-1可以从多个目标PINE中任意选择一个目标PINE,或者选择满足第二条件的目标PINE,作为推荐的PINE-2。
其中,第二条件可以包括以下至少之一:
剩余电量最多、剩余电量大于电量阈值、有效时间最长、有效时间大于时间阈值。
应理解,第二响应信息中可以包括至少一个目标PINE的连接信息或PINE-2的连接信息。
在一些实施例中,若第二响应信息中包括推荐的PINE-2,PINE-1可以与第一响应信息中推荐的PINE-2建立通信连接以进行数据交互。
在另一些实施例中,若第二响应信息中包括多个目标PINE,则PINE-1可以从多个目标PINE中任意选择一个目标PINE作为PINE-2,或者从多个目标PINE中选择满足第二条件的目标PINE作为PINE-2,与该PINE-2建立通信连接以进行数据交互。
可选地,PINE-2的连接信息可以包括以下至少之一:
PINE-2的标识信息、PINE-2的IP地址信息、PINE-1与PINE-2进行通信的目标通信路径、目标通信路径中PINE-1需要关联的PEGC-1的标识信息和/或IP地址信息、目标通信路径中PINE-2需要关联的PEGC-2的标识信息和/或IP地址信息;
可选地,至少一个目标PINE的连接信息包括以下至少之一:
至少一个目标PINE中每个目标PINE的标识信息和/或IP地址信息、每个目标PINE支持的接入技术、每个目标PINE支持的通信路径、每个目标PINE支持的通信路径中每个PINE需要关联的PEGC的标识信息和/或IP地址信息、每个目标PINE支持的通信路径中PINE-1需要关联的PEGC-1的标识信息,和/或IP地址信息。
可选地,在一些实施例中,若PEGC-1关联的至少一个PINE中不存在目标PINE,则PEGC-1将第一请求信息发送给管理设备。
也就是说,PEGC-1接收到PINE-1发送的第二请求信息后,可以先查询自己关联的至少一个PINE。在自己关联的至少一个PINE中没有满足PINE-1需求的PINE的情况下,PEGC-1可以向管理设备发送第一请求信息,向管理设备请求PINE-1所需的第一业务,和/或,PINE-1与提供第一业务的PINE之间的通信路径。这样,可以节约网络资源,并提高路径选择的效率。
需要说明的是,第一请求信息可以与上述第二请求信息为同一信息,也就是说,PEGC-1在确定自己关联的至少一个PINE中没有满足PINE-1需求的PINE的情况下,可以直接向管理设备转发PINE-1的第二请求信息。
在另一些实施例中,PEGC-1接收到PINE-1发送的第二请求信息后可以不做任何处理,将第二请求信息直接作为第一请求信息转发给管理设备,以供管理设备进行物联网设备的选择和路径选择。
进一步地,本申请实施例中,管理设备接收到PINE-1或PEGC-1发送的第一请求之后可以将第一请求信息中的业务类型、需求信息、是否允许为PINE-1提供服务、偏好的接入技术、偏好的通信路径作为筛选条件,从PIN属性信息中为PINE-1选择至少一个候选PINE。
本申请实施例中,管理设备可以通过候选PINE与PINE-1之间的距离、候选PINE关联的PEGC与PINE-1之间的关联关系、以及候选PINE和PINE-1是否均处于PEGC的服务范围内来判断每个候选PINE与PINE-1之间的候选通信路径。
可选地,管理设备确定每个候选PINE与PINE-1之间的候选通信路径的方式可以包括:
在候选PINE与PINE-1之间的距离小于指定距离的情况下,候选通信路径可以包括第一通信路径,第一通信路径表征通过直接连接进行通信的路径;
在候选PINE关联的PEGC,与PINE-1关联的PEGC相同的情况下,候选通信路径可以包括第二通信路径,该第二通信路径表征利用PEGC进行通信的路径;
在候选PINE和PINE-1均在PEGC服务范围内的情况下,候选通信路径可以包括第三通信路径,该第三通信路径表征利用蜂窝网络进行通信的路径。
其中,指定距离可以是PINE设备之间进行直连通信的最大距离。也就是说,候选PINE与PINE-1之间的距离小于直连通信要求的最大距离,即二者的地理位置足够近,则该候选PINE与PINE-1之间可以通过第一通信路径进行业务传输。
若候选PINE与PINE-1具有公共的关联PEGC,则该候选PINE与PINE-1之间可以通过第二通信路径进行业务传输。
此外,PEGC的服务范围可以是指PEGC的通信服务范围。也就是说,若候选PINE与PINE-1没有公共关联的PEGC,但是候选PINE与PINE-1均位于不同的PEGC周围(例如,候选PINE与其最近PEGC之间的距离,以及PINE-1与其最近的PEGC之间的距离均小于指定距离,即PINE设备之间进行直连通信的最大距离),能够与附近的PEGC进行直连通信,在这种情况下,该候选PINE与PINE-1之间可以通过第三通信路径进行业务传输。
可选地,在确定了每个候选PINE与PINE-1之间的候选通信之后,参考图5所示,本申请实施例提供的路径选择方法还可以包括以下步骤:
步骤430、管理设备基于每个候选PINE与PINE-1之间的候选通信路径,从至少一个候选PINE中选择满足第一条件的候选PINE,得到至少一个目标PINE。
其中,第一条件可以包括以下至少之一:
候选通信路径中包括PINE-1偏好的通信路径、候选通信路径包括优先级最高的通信路径、候选通信路径包括默认通信路径。
应理解,管理设备可以根据PINE-1在第一请求信息中指定的偏好的通信路径,为PINE-1选择候选通信路径中包括该偏好的通信路径的候选PINE作为目标PINE。
另外,管理设备也可以按照通信路径的优先级顺序,为PINE-1选择候选通信路径中包括优先级最高的通信路径的候选PINE作为目标PINE。
示例性的,如果PINE-1在第一请求信息中指定了偏好的通信路径,则管理设备可以为PINE-1选择支持偏好通信路径的候选PINE作为目标PINE。如果PINE-1未指定偏好的通信路径,则可以按照通信路径的优先级顺序,为PINE-1选择候选通信路径中包括优先级最高的通信路径的候选PINE作为目标PINE。
可选地,通信路径的优先级顺序可以按照通信路径占用网络资源进行排序。例如,第一通信路径占用的网络资源最少,可以设置第一通信路径的优先级最高;第二通信路径占用的网络资源适中,可以设置第二通信路径的优先级为中等,第三通信路径占用的网络资源最多,设置该第三通信路径的优先级最低。
此外,管理设备也可以根据预先指定的默认通信路径,为PINE-1选择候选通信路径中包括该默认通信路径的候选PINE作为目标PINE。这里,默认通信路径可以预先指定的直连通信路径、通过物联网网关设备进行通信的路径、或者通过蜂窝网络通信的路径,本申请实施例对此不做限制。
需要说明的是,若管理设备确定出的候选物联网设备的数量仅包括一个,且该候选物联网设备的候选通信路径也仅包括一个,则管理设备可以直接将该候选物联网设备作为推荐的PINE-2,指示PINE-1通过该候选通信路径与PINE-1建立通信连接。
在一些实施例中,管理设备可以不为PINE-1推荐PINE-2,直接将确定出的所有目标PINE的连接信息通过第一响应信息发送给PINE-1。
在一些实施例中,管理设备也可以为PINE-1进行推荐,从至少一个目标PINE确定出一个目标PINE作为推荐的PINE-2,并将推荐的PINE-2的连接信息通过第一响应信息发送给PINE-1。
可选地,参考图5所示,在步骤430的基础上,上述路径选择方法还可以包括以下步骤:
步骤440、管理设备基于至少一个目标物联网设备,确定用于向PINE-1提供第一业务的PINE-2。
本申请实施例中,当至少一个目标PINE的数量为1时,可以将该目标PINE作为推荐的PINE-2为PINE-1提供第一业务。当至少一个目标PINE的数量为多个时,可以从多个目标PINE中随机选择一个PINE,或者选择最优的一个PINE作为推荐的PINE-2为PINE-1提供第一业务。
可选地,若至少一个目标物联网设备的数量包括多个,管理设备还可以执行以下步骤:
管理设备从多个目标PINE中选择满足第二条件的目标PINE,得到PINE-2,其中,第二条件包括以下至少之一:
剩余电量最多、剩余电量大于电量阈值、有效时间最长、有效时间大于时间阈值。
其中,电量阈值和/或时间阈值可以根据协议预定义、预配置信息或网络配置信息确定,本申请实施例对此不做限制。
可选地,电量阈值和/或时间阈值可以在第一请求信息中携带。
可选地,在本申请一实施例中,参考图5所示,步骤440之后还可以执行以下步骤:
步骤450、管理设备发送第一响应信息,其中,第一响应信息用于指示至少一个目标PINE的连接信息,或PINE-2的连接信息。
也就说是,管理设备在选择出至少一个目标PINE或PINE-2之后,可以将至少一个PINE或PINE-2的相关连接信息通过第一响应信息告知给PINE-1。
应理解,若第一请求信息是PINE-1发送的,则管理设备将第一响应信息发送给PINE-1。若第一请求信息是PEGC-1发送的,则管理设备将该第一响应信息发送给PEGC-1。
本申请实施例中,在PEGC-1接收到第一响应信息后,可以根据第一响应信息向PINE-1发送第二响应信息。需要说明的是,第二响应信息可以与第一响应信息为同一信息,也就是说,PEGC-1将该第一响应信息转发给PINE-1。
可选地,PINE-2的连接信息包括以下至少之一:
PINE-2的标识信息、PINE-2的IP地址信息、PINE-1与PINE-2进行通信的目标通信路径、目标通信路径中PINE-1需要关联的PEGC-1的标识信息和/或IP地址信息、目标通信路径中PINE-2需要关联的PEGC-2的标识信息和/或IP地址信息;
可选地,至少一个目标PINE的连接信息包括以下至少之一:
至少一个目标PINE中每个目标PINE的标识信息和/或IP地址信息、每个目标PINE支持的接入技术、每个目标PINE支持的通信路径、每个目标PINE支持的通信路径中每个目标PINE需要关联的PEGC的标识信息和/或IP地址信息、每个目标PINE支持的通信路径中PINE-1需要关联的PEGC的标识信息和/或IP地址信息。
应理解,在第一响应信息中包括PINE-2的连接信息的情况下,若第一响应信息中指示目标通信路径为第一通信路径,则PINE-1可以通过WiFi、蓝牙等直连通信技术与PINE-2建立直连通信。此时PINE-2的连接信息中可以不包括PINE-1需要关联的PEGC-1的标识信息和/或IP地址信息,以及PINE-2需要关联的PEGC-2的标识信息和/或IP地址信息
若第一响应信息中指示目标通信路径为第二通信路径,则PINE-1可以通过PEGC-1与PINE-2建立通信连接进行数据交互。此时,PINE-1需要关联的PEGC-1与PINE-2需要关联的PEGC-2可以是同一个物联网网关设备。
需要说明的是,PINE-1需要关联的PEGC-1可以是PINE-1已经关联的或者未关联的PEGC,本申请实施例对此不做限制。
若第一响应信息中指示目标通信路径为第三通信路径,则PINE-1可以根据第一响应信息携带的PEGC-1的标识信息和/或IP地址信息关联到PEGC-1,PINE-1与PINE-2通过蜂窝网络(例如5G系统)进行通信。
也就是说,在一些实施例中,若第一响应信息中包括推荐的PINE-2,PINE-1可以与第一响应信息中推荐的PINE-2建立通信连接以进行数据交互。
在另一些实施例中,在第一响应信息中包括至少一个目标PINE的连接信息的情况下,PINE-1可以自行从至少一个目标PINE中选择一个目标PINE作为PINE-2。可选地,PINE-1可以从至少一个目标PINE中选择满足第二条件的目标PINE得到PINE2,其中,第二条件包括以下至少之一:
剩余电量最多、剩余电量大于电量阈值、有效时间最长、有效时间大于时间阈值。
其中,电量阈值和/或时间阈值可以根据协议预定义、预配置信息或网络配置信息确定,本申请实施例对此不做限制。
可选地,电量阈值和/或时间阈值可以在第一请求信息中携带。
进一步,PINE-1选择出PINE-2之后可以按照PINE-2支持的通信路径与PINE-2建立通信连接。
可选地,PINE-1与PINE-2通信连接建立成功后,PINE-1与PINE-2可以将其与PEGC-1、PEGC-2的关联关系、选择的通信路径以及接入技术上报给管理设备,以便于管理设备更新PIN属性信息。
以下详细介绍管理设备为PINE-1配置通过第三通信路径(即蜂窝网络)与PINE-2通信的流程。
应理解,以下实施例主要针对PINE-1与管理设备协商后选择通过第三通信路径与PINE-2进行通信的场景。PINE-1与管理设备协商过程详见上述实施例中的描述,为了简洁,此处不再赘述。
可选地,参考图6所示,本申请实施例提供的路径选择方法可以包括以下步骤:
步骤601、PINE-1建立与PEGC-1之间的通信。
应理解,PINE-1经过与管理设备协商确定与PINE-2利用蜂窝网络的路径进行通信。在协商过程中,PINE-1可以得到需要关联的PEGC-1的标识信息和/或IP地址、PINE-2的标识信息和/或IP地址、以及PINE-2需要关联的PEGC-2的标识信息和/或IP地址。
在PINE-1确定与PINE-2利用蜂窝网络的路径进行通信后,PINE-1可以触发路径配置过程。首先,PINE-1可以根据第一响应信息中携带的PEGC-1的标识信息和/或IP地址信息关联到PEGC-1,以便于利用PEGC-1能够接入蜂窝网络的能力与PINE-2进行数据交互。
需要说明的是,若在协商过程中PINE-1已经关联到PEGC-1,则可以不执行步骤601。
步骤602、PINE-1向PEGC-1发送第三指示信息,第三指示信息可以用于指示以下至少之一:
PINE-2的标识信息和/或IP地址信息、PINE-1与PINE-2通过第三通信路径进行通信;第三通信路径表征利用蜂窝网络进行通信的路径、该第三通信路径中PINE-2关联的PEGC-2的标识信息和/或IP地址信息。
本申请实施例中,PINE-1确定与PINE-2利用蜂窝网络的路径进行通信后,可以将确定的第三通信路径,以及PINE-2的相关信息(例如PINE-2的标识信息和/或IP地址信息、以及PINE-2需要关联的PEGC-2的标识信息和/或IP地址信息)通过第三指示信息告知给与PINE-1关联的PEGC-1。
其中,PINE-2的相关信息可以通过第一响应信息确定。
在一些实施例中,若在上述协商过程中,PINE-1未与PEGC-1关联,或者PINE-1已经与PEGC-1关联但是PEGC-1没有为PINE-1建立PDU会话,第三指示信息还可以指示PEGC-1为PINE-1建立或修改协议数据单元(Protocol Data Unit,PDU)会话。
在另一些实施例中,若PINE-1与PEGC-1已经建立关联关系,且PEGC-1针对PINE-1建立PDU会话,以及PEGC-2针对PINE-2建立了PDU会话,则第三指示信息还可以指示PEGC-1为PINE-1修改PDU会话的数据传输规则,例如包检测规则和/或数据转发行为规则等。
步骤603a、在PEGC-1未针对PINE-1建立PDU会话的情况下,该PEGC-1为PINE-1建立或修改PDU会话。
步骤603b、在PEGC-1已针对PINE-1建立PDU会话的情况下,PEGC-1修改PDU会话对应的数据传输规则。
其中,上述PDU会话用于传输PINE-1与PINE-2之间的业务数据,以及用于配置PINE-1和/或PEGC-1的IP地址信息。
应理解,PEGC-1接收到第三指示信息之后,可以根据其为PINE-1建立的PDU会话的情况,执行上述步骤603a或步骤603b。
具体来说,若PEGC-1在PINE-1请求业务之前未针对该PINE-1建立PDU会话,则PEGC-1接收到第三指示信息之后可以为PINE-1建立PDU会话用于传输PINE-1与PINE-2之间的业务数据。并且,在PDU会话建立之后,从用户面功能(User Plane Function,UPF)网元获取PINE-1和/或PEGC-1的IP地址信息。
另外,若PEGC-1在PINE-1请求业务之前已经针对该PINE-1建立PDU会话,并且PEGC-2也已经为PINE-2建立了PDU会话,则PEGC-1接收到第三指示信息之后,PEGC-1可以为PINE-1发起PDU会话修改流程更新N4规则中的包检测规则和/或转发行为规则。
需要说明的是,在步骤603b中PEGC-1可以根据PINE-1的ID和IP地址、PINE-2的ID和IP地址、以及PEGC-2的ID和IP地址中的一个或多个,对上述N4规则中的包检测规则和/或转发行为规则进行更新,或者,PEGC-1可以根据第三指示信息对上述N4规则中的包检测规则和/或转发行为规则进行更新,本申请实施例对此不做限制。其中,PINE-2的ID和IP地址、以及PEGC-2的ID和IP地址可以在图5对应的协商过程中确定。
步骤604、PINE-1/PEGC-1向管理设备发送第一指示信息,第一指示信息用于指示PINE-1通过第三通信路径与PINE-2进行通信,该第三通信路径表征利用蜂窝网络进行通信的路径。
应理解,在PDU会话建立/修改之后,PINE-1/PEGC-1可以通过第一指示信息,向管理设备指示PINE-1将与PINE-2通过第三通信路径进行数据交互。
可选地,第一指示信息包括以下至少之一:
PINE-1的标识信息、PINE-1的IP地址信息、PEGC-1的标识信息、PEGC-1的IP地址信息、PINE-2的标识信息、PINE-2的IP地址信息、PEGC-2的标识信息、PEGC-2的IP地址信息、关联指示信息、路径指示信息。
其中,该关联指示信息用于指示PINE-1与PEGC-1关联,和/或,PINE-2与PINE-2关联该路径指示信息用于PINE-1与PINE-2通过第三通信路径进行通信。
步骤605、管理设备向PINE-2发送第二指示信息,第二指示信息用于指示PINE-2通过第三通信路径与PINE-1进行通信。
应理解,管理设备在接收到第一指示信息之后,可以向PINE-2发送第二指示信息,以告知PINE-2 通过第三通信路径与PINE-1进行数据交互。
可选地,若PINE-2在管理设备的直连通信服务范围内,则管理设备可以直接向PINE-2发送第二指示信息。若PINE-2在管理设备的直连通信服务范围之外,则管理设备可以通过PINE-2关联的PEGC-2转发第二请求信息。本申请实施例对发送第二指示信息的方式不做限制。
可选地,第二指示信息包括以下至少之一:
PINE-1的标识信息、PINE-1的IP地址信息、PEGC-1的标识信息、PEGC-1的IP地址信息、PINE-2的标识信息、PINE-2的IP地址信息、PEGC-2的标识信息、PEGC-2的IP地址信息、关联指示信息、路径指示信息。
其中,该关联指示信息用于指示PINE-1与PEGC-1关联,和/或,PINE-2与PINE-2关联;该路径指示信息用于PINE-1与PINE-2通过第三通信路径进行通信。
需要说明的是,第二指示信息也可以称为路径配置信息,用于配置PINE-2与PINE-1之间的通信路径。
步骤606、PINE-2建立与PEGC-2之间的通信。
本申请实施例中,PINE-2在接收到第二指示信息之后,可以根据第二指示信息中指示的PEGC-2的标识信息和/或PEGC-2的IP地址信息关联到PEGC-2,以便于利用PEGC-2能够接入蜂窝网络的能力与PINE-1进行数据交互。
需要说明的是,若PINE-2已经与PEGC-2建立通信连接,则可以不执行该步骤606。
步骤607、PINE-2向PEGC-2发送第二请求信息,第二请求信息用于请求建立或修改PDU会话,或者,请求修改PDU会话对应的数据传输规则;该PDU会话用于传输PINE-1与PINE-2之间的业务数据,以及用于配置PINE-2和/或PEGC-2的IP地址信息。
本申请实施例中,PINE-2可以通过第二请求信息请求PEGC-2为其建立或修改PUD会话,或者通过第二请求信息请求PEGC-2为其修改PDU会话中数据传输规则。
可选地,数据传输规则可以包括包检测规则和/或转发行为规则。
步骤608a、在PEGC-2未针对PINE-2建立PDU会话的情况下,该PEGC-2为PINE-2建立或修改PDU会话。
步骤608b、在PEGC-1已针对PINE-1建立PUD会话,且PEGC-2已针对PINE-2建立PDU会话的情况下,PEGC-2修改PDU会话对应的数据传输规则。
应理解,PEGC-2接收到第二请求信息之后,可以根据其为PINE-2建立的PDU会话的情况,执行上述步骤608a或步骤608b。
具体来说,在步骤608a中,若PEGC-2在PINE-2发送第二请求信息之前未针对该PINE-2建立PDU会话,则PEGC-2接收到第二请求信息之后可以为PINE-2建立PDU会话用于传输PINE-2与PINE-1之间的业务数据。并且,在PUD会话建立之后,从用户面功能(User Plane Function,UPF)网元获取PINE-2和/或PEGC-2的IP地址信息。
另外,在步骤608b中,若PINE-1在请求业务之前,PEGC-1已针对PINE-1建立PUD会话,且PEGC-2已经针对该PINE-2建立PDU会话,则PEGC-2接收到第二请求信息之后,PEGC-2可以为PINE-2发起PDU会话修改流程更新N4规则中的包检测规则和/或转发行为规则。
需要说明的是,在步骤608b中PEGC-2可以根据PINE-1的ID和IP地址、PEGC-1的ID和IP地址、以及PINE-2的ID和IP地址中的一个或多个,对上述N4规则中的包检测规则和/或转发行为规则进行更新;或者,PEGC-2可以根据第二指示信息对上述N4规则中的包检测规则和/或转发行为规则进行更新,本申请实施例对此不做限制。其中,PINE-1的ID和IP地址、以及PEGC-1的ID和IP地址可以在图5对应的协商过程中确定。
本申请实施例中,步骤603a可以与步骤608a对应,步骤603b可以与步骤608b对应。也就是说,在第三通信路径配置的一种过程中,可以执行步骤603a和步骤608a。在第三通信路径配置的另一种过程中,可以步骤603b和步骤608b。
可选地,PEGC-2针对PINE-2建立/修改PDU会话,或者针对PINE-2对应的PDU会话对应的数据传输规则修改之后,PINE-2/PEGC-2可以将其关联关系,PINE-2的标识信息和/或IP地址信息、PEGC-2的标识信息和/或IP地址信息、以及指示PINE-1与PINE-2通过第三通信路径进行传输的路径指示信息上报给管理设备。
可选地,在本申请一实施例中,在PEGC-1和/或PEGC-2未针对PINE-1和PINE-2建立PDU会话的情况下,本申请实施例提供的路径选择方法还可以包括以下步骤:
步骤609、管理设备向蜂窝网络的第一网元发送数据转发策略配置请求,数据转发策略配置请求用 于请求对PINE-1和PINE-2之间的数据传输规则进行配置。
也就是说,在PEGC-1和/或PEGC-2未针对PINE-1和PINE-2建立PDU会话的情况下,管理设备确定PINE-1与PINE-2之间需要通过蜂窝网络的路径进行数据传输之后,可以向蜂窝网络中的第一网元请求配置数据转发策略。
可选地,第一网元可以是蜂窝网络中用于管理PDU会话的控制面网元。示例性的,第一网元可以是5G系统中的会话管理功能(Session Management Function,SMF)网元。
可选地,数据转发策略配置请求中可以包括以下中的至少一项:
PINE-1的标识信息和/或IP地址信息、PEGC-1的标识信息和/或IP地址信息、PINE-2的标识信息和/或IP地址信息、PEGC-2的标识信息和/或IP地址信息、路径指示信息,该路径指示信息指示PINE-1与PINE-2通过第三通信路径进行通信。
在一些实施例中,当管理设备为PEMC时,步骤609中管理设备向蜂窝网络的第一网元发送数据转发策略配置请求,可以通过以下方式中的任意一项实现:
PEMC通过第二网元,向第一网元转发数据转发策略配置请求;
PEMC通过第二网元和策略控制功能(Policy Control Function,PCF)网元,向第一网元发送数据转发策略配置请求;
PEMC通过第二网元和网络开放功能(Network Exposure Function,NEF)网元,向第一网元转发数据转发策略配置请求;
PEMC通过第二网元、NEF和PCF,向第一网元发送数据转发策略配置请求。
本申请实施例中,第二网元可以是蜂窝网络中核心网网元,例如UDM网元或者UDR网元等,也可以是专用于管理物联网设备的网元,还可以是第三方提供的应用网元。
在一种可能的实现方式中,若第一网元为SMF网元,第二网元为蜂窝网络的核心网内部受信任的网元,参考图7A所示,PEGC-1为PINE-1建立/修改PDU会话,以及PEGC-2为PINE-2建立/修改PDU会话之后,PEMC可以向第二网元发送策略配置请求,第二网元直接将数据转发策略配置请求发送给第一网元。这样,第一网元接收到转发策略配置请求之后,可以基于本地预配置的策略为PEGC-1对应的UPF-1和PEGC-2对应的UPF-2配置数据转发策略,例如配置包检测规则和/或转发行为规则等。
在另一种可能的实现方式中,若第一网元为SMF网元,第二网元为蜂窝网络的核心网内部受信任的网元,参考图7B所示,PEGC-1为PINE-1建立/修改PDU会话,以及PEGC-2为PINE-2建立/修改PDU会话之后,PEMC可以向第二网元发送策略配置请求,接着,第二网元将数据转发策略配置请求发送给PCF网元,进而PCF网元向第一网元发送策略配置请求。进一步地,第一网元接收到转发策略配置请求之后,可以基于本地预配置的策略为PEGC-1对应的UPF-1和PEGC-2对应的UPF-2配置数据转发策略,例如配置包检测规则和/或转发行为规则等。
在又一种可能的实现方式中,若第一网元为SMF网元,第二网元为核心网外部的第三方应用网元时,参考图7C所示,PEGC-1为PINE-1建立/修改PDU会话,以及PEGC-2为PINE-2建立/修改PDU会话之后,PEMC可以向第二网元发送策略配置请求,接着,第二网元向NEF发送数据转发策略配置请求,NEF将接收到的数据转发策略配置请求发送给第一网元。这样,第一网元接收到转发策略配置请求之后,可以基于本地预配置的策略为PEGC-1对应的UPF-1和PEGC-2对应的UPF-2配置数据转发策略,例如配置包检测规则和/或转发行为规则等。
在一种可能的实现方式中,若第一网元为SMF网元,第二网元为核心网外部的第三方应用网元时,参考图7D所示,PEGC-1为PINE-1建立/修改PDU会话,以及PEGC-2为PINE-2建立/修改PDU会话之后,PEMC可以向第二网元发送策略配置请求,接着,第二网元向NEF发送数据转发策略配置请求,NEF将接收到的数据转发策略配置请求发送给PCF网元,PCF网元将接收到的数据转发策略配置请求发送给第一网元。这样,第一网元接收到转发策略配置请求之后,可以基于本地预配置的策略为PEGC-1对应的UPF-1和PEGC-2对应的UPF-2配置数据转发策略,例如配置包检测规则和/或转发行为规则等。
应理解,以上四种实现方式中的UPF-1和UPF-2可以是相同的网元,也可以是两个不同的网元,本申请实施例对此不做限制。另外,包检测规则用于筛选出需要进行转发的数据包,转发行为规则用于指示数据包是否应被缓冲、丢弃或转发,如何进行数据包封装/解封装,以及转发的目的地。
在另一些实施例中,当管理设备为第二网元时,步骤609中管理设备向蜂窝网络的第一网元发送数据转发策略配置请求,可以通过以下方式中的任意一项实现:
第二网元向第一网元发送数据转发策略配置请求;
第二网元通过PCF,向第一网元发送数据转发策略配置请求;
第二网元通过NEF,向第一网元转发数据转发策略配置请求;
第二网元通过NEF和PCF,向第一网元发送数据转发策略配置请求。
本申请实施例中,管理设备可以是网络中的网元,可以直接对PIN中的物联网设备进行管理。
在该场景中,若第二网元为核心网内部受信任的网元,则第二网元可以直接向第一网元发送数据转发策略配置请求。若第二网元为核心网内部受信任的网元,第二网元还可以向PCF发送数据转发策略配置请求,通过PCF将数据转发策略配置请求发送给第一网元。若第二网元为核心网内部不受信任的网元,则第二网元可以向NEF发送数据转发策略配置请求,通过NEF将数据转发策略配置请求发送给第一网元。若第二网元为核心网内部不受信任的网元,第二网元还可以向NEF发送数据转发策略配置请求,NEF将数据转发策略配置请求发送给PCF,进而PCF将接收到的数据转发策略配置请求发送给第一网元。这样第一网元接收到转发策略配置请求之后,可以基于本地预配置的策略为PEGC-1对应的UPF-1和PEGC-2对应的UPF-2配置数据转发策略,例如配置包检测规则和/或转发行为规则等。
在一些实施例中,当管理设备为PEMC和第二网元,即PEMC和第二网元二者同时存在,可以按照图7A-图7D的方式进行数据转发策略配置请求的传输。为了简洁,此处不再赘述。
综上所述,本申请实施例中,管理设备不仅可以为发起业务请求的PINE-1分配满足其业务需求的PINE-2,还可以确保PINE-1与PINE-2之间的可达性。当PINE-1与PINE-2不可达时,管理设备可以为PINE-1配置接入蜂窝网络的关联的PEGC-1,以及为PINE-2配置接入蜂窝网络的关联的PEGC-2。此外,多个PINE设备通过蜂窝网络进行通信时,管理设备还可以为PINE在核心网中配置相应的数据转发策略。本申请实施例提供的路径选择方法可以为请求业务的PINE选择目标PINE提供了一定的指导准则,保证了异地部署的PINE之间的可达性,并通过数据转发策略配置方案保证了异地部署的PINE之间的数据可以通过蜂窝网络进行转发。
以下结合具体应用场景对本申请实施例提供的路径选择方法进行详细阐述。
在智慧农业应用场景中,参考图3所示,用户需要使用家中或者办公室中的智能手机(PINE-1)请求部署在农场中的摄像头(PINE-2)提供农作物的实时监控视频,并根据监控视频来判断是否要对农作物进行浇水、施肥、喷洒农药等治理措施。需要说明的是,农场中还可以部署其他物联网设备,例如用于采集农场温度和/或湿度等环境信息的传感器设备,或者用于对农作物进行浇水、施肥、喷洒农药的设备等。在该应用场景中,PINE-1和PINE-2属于同一个PIN,通过PEMC进行管理,PINE-1和PINE-2处于不同地理区域。并且,PINE-1、PINE-2、PEGC-1、PEGC-2、以及PEMC的属性信息可以预先存储在PEMC中。
实施例一
基于图3所示的应用场景,PINE-1在PEMC服务范围内,PINE-1可以直接向PEMC发起业务请求。参考图8所示,本申请实施例提供的路径选择方法可以包括以下步骤:
步骤1、PINE-1向PEMC发送业务请求信息(也就是上文中的第一请求信息)。
其中,业务请求信息可以包括以下至少之一:PIN ID、PINE-1 ID、PINE-1 IP地址、PEGC-1 ID、PEGC-1 IP地址、请求的业务的业务类型、请求的业务的需求信息、偏好的接入技术、偏好的通信路径。
需要说明的是,如果PINE-1具有关联的PEGC,则业务请求信息中可以包括PEGC-1 ID和/或PEGC-1的IP地址信息,否则业务请求信息中可以不携带这两种信息。
步骤2、PEMC从PEMC本地或者第二网元中检索PIN属性信息(也就是上文中的物联网属性信息),确定目标PINE和/或PINE-2。
具体地,PEMC收到业务请求信息后,可以将业务请信息中的PINE-1 ID、业务类型、需求信息、偏好的接入技术、偏好的通信路径等作为筛选条件,从PEMC本地或第二网元存储的PIN属性信息中为PINE-1选择出候选PINE list。
本申请实施例中,PEMC可以通过候选PINE与PINE-1之间的地理距离,候选PINE关联的PEGC与PINE-1之间的地理距离,以及候选PINE与PINE-1之间是否存在相同的关联PEGC来判断每个候选PINE与PINE-1之间的候选通信路径。具体地,候选通信路径判断准则如下:
在候选PINE与PINE-1之间的距离小于指定距离(例如PINE设备之间进行直连通信的最大距离)的情况下,候选通信路径可以包括第一通信路径,第一通信路径表征通过直接连接进行通信的路径;
在候选PINE关联的PEGC,与PINE-1关联的PEGC相同的情况下,候选通信路径可以包括第二通信路径,该第二通信路径表征利用网关设备进行通信的路径;
在候选PINE和PINE-1均在PEGC服务范围内(即候选PINE与其最近PEGC之间的距离,以及PINE-1与其最近的PEGC之间的距离均小于直连通信的最大距离)的情况下,候选通信路径可以包括第三通信路径,该第三通信路径表征利用蜂窝网络进行通信的路径。
进一步地,如果PINE-1在业务请求信息中指定了偏好的通信路径,则PEMC为PINE-1选择候选 路径中包括其偏好的通信路径的候选PINE作为目标PINE。如果PINE-1未指定偏好的通信路径,则PEMC可以按照第一通信路径、第二通信路径、第三通信路径(即占用网络资源从低到高的顺序)的优先级为其选择目标PINE。如果同时存在多个目标PINE,则可以选择有效时间最长,剩余电量最多的目标PINE作为推荐的PINE-2。
步骤3、PEMC向PINE-1发送业务响应信息(也就是上文中的第一响应信息)。
其中,业务响应信息可以包括以下至少之一:
PINE-2 ID、PINE-2的IP地址信息、PINE-1与PINE-2进行通信的目标通信路径、该目标通信路径中PINE-1需要关联的PEGC-1的标识信息和/或IP地址信息、该目标通信路径中PINE-2需要关联的PEGC-2的标识信息和/或IP地址信息、至少一个目标PINE中每个目标PINE的标识信息和/或IP地址信息、每个目标PINE支持的接入技术、每个目标PINE支持的通信路径、每个目标PINE支持的通信路径中每个目标PINE需要关联的PEGC的标识信息和/或IP地址信息、以及每个目标PINE支持的通信路径中PINE-1需要关联的PEGC的标识信息和/或IP地址信息。
其中,推荐的PINE-2可以从至少一个目标PINE中选出。
步骤4a、若PIEN-1收到的业务响应信息中包括PINE-2 ID和直连通信指示,则PINE-1可以与PINE-2通过WiFi、蓝牙等直连通信技术建立通信连接,进行数据交互。
步骤4b、若PINE-1收到的业务响应信息中包括PINE-2 ID、PEGC-1 ID、以及通过PEGC进行通信的指示,则PINE-1可以通PEGC-1与PINE-2建立通信连接,进行数据交互。
步骤4c、若PINE-1收到的业务请求响应消息中包括PINE-2 ID及其关联的PEGC-2 ID、PEGC-1 ID、以及通过5G系统通信指示,则PINE-1可以关联到PEGC-1,二者通过5G系统进行通信。
需要说明的是,当PINE-1收到的业务响应信息中包括目标PINE的连接信息时,PINE-1可以自行选择一个目标PINE作为PINE-2,按照确定的通信路径执行上述对应的步骤。
步骤5、PINE-1与PINE-2的通信连接建立成功后,PINE-1与PINE-2将其与PEGC-1、PEGC-2的关联关系、选择的通信路径以及接入技术上报给PEMC和/或第二网元,用于更新存储的PIN属性信息。
实施例二
基于图3所示的应用场景,PINE-1可以向其关联的PEGC-1发起业务请求。参考图9所示,本申请实施例提供的路径选择方法可以包括以下步骤:
步骤1、PINE-1向PEGC-1发送业务请求信息(也就是上文中的第一请求信息)。
其中,业务请求信息可以包括以下至少之一:PIN ID、PINE-1 ID、PINE-1 IP地址、请求的业务的业务类型、请求的业务的需求信息、偏好的接入技术、偏好的通信路径。
PEGC-1接收到业务请求信息之后,可以查询自己所关联的全部PINE,如果有满足业务请求信息中PINE-1所示指定的筛选条件的候选PINE,则跳过步骤2~4,并将该候选PINE作为目标PINE。
如果没有满足业务请求信息中PINE-1所示指定的筛选条件的候选PINE,则继续执行以下步骤。
步骤2、PEGC-1向PEMC转发业务请求信息。
需要说明的是,该业务请求信息中除了步骤1中业务请求信息中包括的信息之外,还可以携带PEGC-1 ID和/或PEGC-1的IP地址信息。
步骤3、PEMC从PEMC本地或者第二网元中检索PIN属性信息(也就是上文中的物联网属性信息),确定目标PIN和/或PINE-2。
该步骤3与实施例一中的步骤2相同,为了简洁,此处不再赘述。
步骤4、PEMC向PEGC-1发送业务响应信息(也就是上文中的第一响应信息)。
其中,业务响应信息可以包括以下至少之一:
PINE-2 ID、PINE-2的IP地址信息、PINE-1与PINE-2进行通信的目标通信路径、该目标通信路径中PINE-1需要关联的PEGC-1的标识信息和/或IP地址信息、该目标通信路径中PINE-2需要关联的PEGC-2的标识信息和/或IP地址信息、至少一个目标PINE中每个目标PINE的标识信息和/或IP地址信息、每个目标PINE支持的接入技术、每个目标PINE支持的通信路径、每个目标PINE支持的通信路径中每个目标PINE需要关联的PEGC的标识信息和/或IP地址信息、以及每个目标PINE支持的通信路径中PINE-1需要关联的PEGC的标识信息和/或IP地址信息。
步骤5、PEGC-1向PINE-1发送业务响应信息(也就是上文中的第一响应信息)。
其中,步骤5中的业务响应信息与步骤4中的业务响应信息内容类似,为了简洁,此处不再赘述。
步骤6a、若PIEN-1收到的业务响应信息中包括PINE-2 ID和直连通信指示,则PINE-1与PINE-2可以通过WiFi、蓝牙等直连通信技术建立通信连接,进行数据交互。
步骤6b、若PINE-1收到的业务响应信息中包括PINE-2 ID、PEGC ID、以及通过PEGC进行通信 的指示,则PINE-1可以通过PEGC-1与PINE-2建立通信连接,进行数据交互。
其中,在PEGC-1为PINE-1选择PINE-2的场景中,业务响应信息中的PEGC ID可以是PEGC-1的ID。此时,PINE-1通PEGC-1与PINE-2建立通信连接,进行数据交互。
在PEMC为PINE-1选择PINE-2的场景中,业务响应信息中的PEGC ID可以是PEGC-1之外的其他PEGC(例如PEGC-2)的ID。此时,PINE-1可以关联到PEGC-2,PINE-1通PEGC-2与PINE-2建立通信连接,进行数据交互。
步骤6c、若PINE-1收到的业务请求响应消息中包括PINE-2 ID及其关联的PEGC-2 ID、PEGC-1 ID、以及通过5G系统进行通信的指示,则PINE-1可以关联到PEGC-1,二者通过5G系统进行通信。
步骤7、PINE-1与PINE-2的通信连接建立成功后,PINE-1与PINE-2将其与PEGC-1、PEGC-2的关联关系、选择的通信路径以及接入技术上报给PEMC和/或第二网元,用于更新存储的PIN属性信息。
实施例三
应注意,实施例三主要针对PEMC为PINE-1配置通过5G系统通信路径的流程。参考图10所示,PEMC为请求业务的PINE配置通过5G系统通信路径的流程包括以下步骤:
步骤0、PINE-1与PEMC或第二网元协商后选择与PINE-2通过5GS通信。该协商过程可以为实施例一步骤1~3,实施例二步骤1~5,或者别的信令交互过程。
步骤1、PINE-1关联到PEGC-1,并向PEGC-1发送指示信息(也就是上文中的第三指示信息)。
其中,指示信息用于将PINE-1选择的PINE-2的相关信息,以及两者的通信路径告知给PEGC-1。
步骤2、PEGC-1为PINE-1建立或修改PDU会话,用于PINE-1与PINE-2之间的数据交互,以及用于配置PEGC-1 IP地址和/或PINE-1 IP地址。
需要说明的是,PEGC-1 IP地址和/或PINE-1 IP地址可以是建立或修改PDU会话过程中5G核心网网元配置的,例如,SMF网元为PEGC-1和/或PINE-1分配IP地址。
步骤3、PINE-1或者PEGC-1向PEMC和/或第二网元发送关联更新通知信息(也就是上文中的第一指示信息)。
其中,关联更新通知信息中可以包括PINE-1 ID、PEGC-1 ID、PINE-1 IP地址、PEGC-1 IP地址、PINE-2 ID、PEGC-2 ID、PINE-2 IP地址、PEGC-2 IP地址、关联指示信息、路径指示信息中的至少一项。该关联指示信息用于指示PINE-1与PEGC-1关联,PINE-2与PEGC-2关联,另外该路径指示信息用于向PEMC和/或第二网元指示PINE-1需要通过5G系统与PINE-2进行通信。
步骤4、PEMC向PINE-2发送通信路径配置信息(也就是上文中的第二指示信息)。
其中,关联更新通知信息中可以包括PINE-1 ID、PEGC-1 ID、PINE-1 IP地址、PEGC-1 IP地址、PINE-2 ID、PEGC-2 ID、PINE-2 IP地址、PEGC-2 IP地址、关联指示信息、路径指示信息中的至少一项。该关联指示信息用于指示PINE-1与PEGC-1关联,PINE-2与PEGC-2关联,另外该路径指示信息用于向PEMC和/或第二网元指示PINE-1需要通过5GS与PINE-2进行通信。
步骤5、PINE-2关联到PEGC-2,并向PEGC-2发送请求信息(也就是上文中的第二请求信息)。
其中,PINE-2可以根据路径配置信息中PEGC-2 ID和/或PEGC-2 IP地址,与PEGC-2建立通信连接。另外,PINE-2通过该请求信息以请求PEGC-2为其建立或修改PDU会话。
需要说明的是,若步骤5之前PINE-2已经关联到PEGC-2,则可以跳过步骤5。
步骤6、PEGC-2为PINE-2建立或修改PDU会话用于PINE-1与PINE-2之间的数据交互,以及用于配置PEGC-2 IP地址和/或PINE-2 IP地址。
需要说明的是,PEGC-2 IP地址和/或PINE-2 IP地址可以是建立或修改PDU会话过程中5G核心网网元配置的,例如,SMF网元为PEGC-2和/或PINE-2分配IP地址。
步骤7、PINE-2/PEGC-2向PEMC和/或第二网元发送关联更新通知信息。
可以理解的是,PINE-2/PEGC-2可以将其关联关系、PINE-2 ID、PEGC-2 ID、PINE-2 IP地址、PEGC-2 IP地址、路径指示信息上报给PEMC和/或第二网元。该路径指示信息用于向PEMC和/或第二网元指示PINE-1需要通过5G系统与PINE-2进行通信。
步骤8、PEMC向5G系统中的SMF网元(也就是上述实施例中的第一网元)发送数据转发策略配置请求,数据转发策略配置请求用于请求对PINE-1和PINE-2之间的数据传输规则进行配置。
需要说明的是,PEMC向第一网元发送数据转发策略配置请求的方式可以参考图7A-7D所示,为了简洁,此处不再赘述。
实施例四
应注意,实施例四主要针对PEMC为PINE-1配置通过5G系统通信路径的流程。本实施例中,PINE-1的关联PEGC-1已经为其建立了PDU会话,PINE-1和/或PEGC-1已被5G核心网分配了PINE-1的IP 地址信息、PEGC-1的IP地址信息。同时,PINE-2的关联PEGC-2也已经为其建立了PDU会话,PINE-1和/或PEGC-1已被5G核心网分配了PINE-2的IP地址信息、PEGC-2的IP地址信息。在这种场景下,PEGC-1和PEGC-2可以直接发起PDU会话修改流程以更新数据传输规则(例如N4规则)具体地,更新配置包检测规则和转发行为规则。参考图11所示,PEMC为请求业务的PINE配置通过5G系统通信路径的流程包括以下步骤:
步骤0、PINE-1与PEMC和/或第二网元协商后选择与PINE-2通过5G系统通信。该协商过程可以为实施例一步骤1~3,实施例二步骤1~5,或者别的信令交互过程。
步骤1、PINE-1向PEGC-1发送数据转发策略配置请求(也就是上文中的第三指示信息)。
其中,该数据转发策略配置请求中可以包括PINE-2 ID,PINE-2 IP地址,PINE-2需要关联的PEGC-2 ID,PEGC-2 IP地址。
该数据转发策略配置请求还可以用于请求PEGC-1为PINE-1修改对应的PDU会话以更新数据传输规则。
步骤2、PEGC-1为PINE-1修改PDU会话中的数据传输规则。
步骤3、PINE-1/PEGC-1向PEMC发送通信路径配置请求信息(也就是上文中的第一指示信息)。
其中,该通信路径配置请求信息可以包括以下至少之一:PINE-1 ID、PINE-1 IP地址、PEGC-1 ID,PEGC-1 IP地址、PINE-2 ID、PINE-2 IP地址、PINE-2需要关联的PEGC-2 ID、PEGC-2 IP地址、路径指示信息。
该路径指示信息用于向PEMC和/或第二网元指示PINE-1需要通过5G系统与PINE-2进行通信。
步骤4、PEMC和/或第二网元向PINE-2发送数据转发策略配置请求信息(即上文中的第二指示信息)。
其中,该数据转发策略配置请求信息可以包括以下至少之一:PINE-1 ID、PINE-1 IP地址、PEGC-1 ID,PEGC-1 IP地址、PINE-2 ID、PINE-2 IP地址、PINE-2需要关联的PEGC-2 ID、PEGC-2 IP地址、路径指示信息。路径指示信息用于向PEMC和/或第二网元指示PINE-1需要通过5G系统与PINE-2进行通信。
本申请实施例中,数据转发策略配置请求信息还用于告知PINE-2需要配置相应的转发策略用于和PINE-1通过5G系统通信。
步骤5、PINE-2向PEGC-2发送数据转发策略配置请求信息。
应理解,PINE-2通过数据转发策略配置请求信息,以请求PEGC-2为其修改对应的PDU会话以更新数据传输规则。数据转发策略配置请求信息中包括的内容与步骤4中的类似,为了简洁,此处不再赘述。
步骤6、PEGC-2为PINE-2发起PDU会话修改流程更新数据传输规则。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图12是本申请实施例提供的路径选择装置1200的结构组成示意图,应用于管理设备,如图12所示,所述路径选择装置1200包括:
候选设备确定单元1201,被配置为针对第一物联网设备确定至少一个候选物联网设备;
候选路径确定单元1202,被配置为基于以下至少一项,确定每个候选物联网设备与所述第一物联 网设备之间的候选通信路径:所述至少一个候选物联网设备中每个候选物联网设备与所述第一物联网设备的距离、所述每个候选物联网设备关联的网关设备与所述第一物联网设备之间的关联关系、所述每个候选物联网设备和所述第一物联网设备是否在物联网网关设备的服务范围内;
其中,所述候选通信路径用于进行路径选择。
可选地,所述候选通信路径包括以下至少之一:
第一通信路径,所述第一通信路径表征通过直接连接进行通信的路径;
第二通信路径,所述第二通信路径表征利用网关设备进行通信的路径;
第三通信路径,所述第三通信路径表征利用蜂窝网络进行通信的路径。
可选地,所述路径选择装置1200还包括接收单元,被配置为接收第一请求信息,所述第一请求信息用于请求所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径,所述至少一个候选物联网设备基于所述第一业务确定。
可选地,所述接收单元,还被配置为接收第一物联网设备发送的第一请求信息;
或者,接收第一物联网网关设备发送的第一请求信息,所述第一物联网网关设备与所述第一物联网设备关联。
可选地,所述第一请求信息包括以下至少之一:
第一个人物联网PIN的标识信息;所述第一PIN为所述第一物联网设备接入的个人物联网;
所述第一物联网设备的标识信息;
所述第一物联网设备的IP地址信息;
第一物联网网关设备的标识信息,所述第一物联网网关设备与所述第一物联网设备关联;
所述第一物联网网关设备的IP地址信息;
所述第一业务的业务类型;
所述第一业务的需求信息;
所述第一物联网设备偏好的接入技术;
所述第一物联网设备偏好的通信路径。
可选地,候选设备确定单元1201,还被配置为获取物联网属性信息,所述物联网属性信息包括以下至少之一:第一PIN中每个物联网设备的属性信息,所述第一PIN中每个物联网网关设备的属性信息,所述管理设备的属性信息;所述第一PIN为所述第一物联网设备接入的个人物联网;基于所述物联网属性信息,为所述第一物联网设备确定所述至少一个候选物联网设备。
可选地,所述每个物联网设备的属性信息,包括以下至少之一:
物联网设备的标识信息、物联网设备的IP地址信息、与物联网设备关联的物联网网关设备的标识信息和/或IP地址信息、与物联网设备关联的其他物联网设备的标识信息和/或IP地址信息、物联网设备支持的业务类型、位置信息、有效时间信息;所述有效时间信息用于指示在所述第一个人物联网中的有效时间、剩余电量信息、支持的无线接入技术、所述无线接入技术中每种无线接入技术对应的最大通信距离、支持的通信路径。
可选地,所述每个物联网网关设备的属性信息包括以下至少之一:
物联网网关设备的标识信息、物联网网关设备的IP地址信息、与物联网网关设备关联的物联网设备的标识信息和/或IP地址信息、允许与该物联网网关设备关联的物联网设备的标识信息、禁止与该物联网网关设备关联的物联网设备的标识信息、位置信息、有效时间信息,所述有效时间信息用于指示在所述第一个人物联网中的有效时间、剩余电量信息、支持的无线接入技术、所述无线接入技术中每种无线接入技术对应的最大通信距离。
可选地,所述管理设备的属性信息包括以下至少之一:
所述管理设备的IP地址信息、位置信息、有效时间信息、支持的无线接入技术、所述无线接入技术中每种无线接入技术对应的最大通信距离。
可选地,候选路径确定单元1202,还被配置为在候选物联网设备与第一物联网设备之间的距离小于指定距离的情况下,候选通信路径包括第一通信路径,第一通信路径表征通过直接连接进行通信的路径;在候选物联网设备关联的物联网网关设备,与第一物联网设备关联的物联网网关设备相同的情况下,候选通信路径包括第二通信路径,第二通信路径表征利用网关设备进行通信的路径;在候选物联网设备和第一物联网设备均在物联网网关设备的服务范围内的情况下,候选通信路径包括第三通信路径,第三通信路径表征利用蜂窝网络进行通信的路径。
可选地,路径选择装置1200还包括物联网设备确定单元,被配置为基于每个候选物联网设备与第一物联网设备之间的候选通信路径,从至少一个候选物联网设备中选择满足第一条件的候选物联网设备, 得到至少一个目标物联网设备。
可选地,所述第一条件包括以下至少之一:
候选通信路径中包括所述第一物联网设备偏好的通信路径、候选通信路径包括优先级最高的通信路径、候选通信路径包括默认通信路径。
可选地,所述物联网设备确定单元,还被配置为基于所述至少一个目标物联网设备,确定用于向所述第一物联网设备提供所述第一业务的第二物联网设备。
可选地,所述至少一个目标物联网设备的数量包括多个,所述物联网设备确定单元还被配置为从多个目标物联网设备中选择满足第二条件的目标物联网设备,得到所述第二物联网设备;
所述第二条件包括以下至少之一:
剩余电量最多、剩余电量大于电量阈值、有效时间最长、有效时间大于时间阈值。
可选地,所述路径选择装置1200还包括发送单元,被配置为发送第一响应信息,所述第一响应信息用于指示以下至少之一:
所述至少一个目标物联网设备的连接信息、第二物联网设备的连接信息。
可选地,所述第二物联网设备的连接信息包括以下至少之一:
所述第二物联网设备的标识信息、所述第二物联网设备的IP地址信息、与所述第二物联网设备进行通信的目标通信路径、所述目标通信路径中所述第一物联网设备需要关联的第一物联网网关设备的标识信息和/或IP地址信息、所述目标通信路径中所述第二物联网设备需要关联的第二物联网网关设备的标识信息和/或IP地址信息;
以及,所述至少一个目标物联网设备的连接信息包括以下至少之一:
所述至少一个目标物联网设备中每个目标物联网设备的标识信息和/或IP地址信息、所述每个目标物联网设备支持的接入技术、所述每个目标物联网设备支持的通信路径、所述每个目标物联网设备支持的通信路径中所述每个目标物联网设备需要关联的物联网网关设备的标识信息,和/或IP地址信息、所述每个目标物联网设备支持的通信路径中所述第一物联网设备需要关联的物联网网关设备的标识信息,和/或IP地址信息。
可选地,所述接收单元,还被配置为接收第一指示信息,所述第一指示信息用于指示所述第一物联网设备通过第三通信路径与第二物联网设备进行通信,所述第三通信路径表征利用蜂窝网络进行通信的路径。
可选地,所述发送单元,还被配置为向第二物联网设备发送第二指示信息,所述第二指示信息用于指示所述第二物联网设备通过第三通信路径与所述第一物联网设备进行通信。
可选地,所述第一指示信息和/或所述第二指示信息包括以下至少之一:
所述第一物联网设备的标识信息、所述第一物联网设备的IP地址信息、第一物联网网关设备的标识信息、所述第一物联网网关设备的IP地址信息、第二物联网设备的标识信息、所述第二物联网设备的IP地址信息、第二物联网网关设备的标识信息、所述第二物联网网关设备的IP地址信息、关联指示信息、路径指示信息;其中,关联指示信息用于指示第一物联网设备与第一物联网网关设备关联,和/或,第二物联网设备与第二物联网网关设备关联;路径指示信息用于指示第一物联网设备与第二物联网设备通过第三通信路径进行通信。
可选地,发送单元,还被配置为向蜂窝网络的第一网元发送数据转发策略配置请求,数据转发策略配置请求用于请求对第一物联网设备和第二物联网设备之间数据传输规则进行配置。
可选地,管理设备为具有管理功能的物联网设备,所述第一网元为会话管理功能SMF网元,所述发送单元还被配置为以下至少之一:
通过第二网元,向第一网元转发数据转发策略配置请求;第二网元用于管理个人物联网;
通过第二网元和策略控制功能网元PCF,向第一网元发送所述数据转发策略配置请求;
通过第二网元和网络开放功能NEF,向第一网元转发所述数据转发策略配置请求;
通过第二网元、NEF和PCF,向第一网元发送所述数据转发策略配置请求。
可选地,管理设备为第二网元,第一网元为SMF网元,所述发送单元还配置为以下至少之一:
向第一网元发送所述数据转发策略配置请求;
通过PCF网元,向第一网元发送所述数据转发策略配置请求;
通过NEF网元,向所述第一网元转发所述数据转发策略配置请求;
通过NEF网元和PCF网元,向第一网元发送所述数据转发策略配置请求。
图13是本申请实施例提供的路径选择装置1300的结构组成示意图,应用于第一物联网设备,如图13所示,所述路径选择装置1300包括:
发送单元1301,被配置为发送第一请求信息,所述第一请求信息用于请求所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径。
可选地,所述第一请求信息包括以下至少之一:
第一个人物联网PIN的标识信息;所述第一PIN为所述第一物联网设备接入的个人物联网;
所述第一物联网设备的标识信息;
所述第一物联网设备的IP地址信息;
第一物联网网关设备的标识信息,所述第一物联网网关设备与所述第一物联网设备关联;
所述第一物联网网关设备的IP地址信息;
所述第一业务的业务类型;
所述第一业务的需求信息;
所述第一物联网设备偏好的接入技术;
所述第一物联网设备偏好的通信路径。
可选地,所述发送单元1301,还被配置为向管理设备发送所述第一请求信息;或者,向第一物联网网关设备发送所述第一请求信息,所述第一物联网网关设备与管理设备关联。
可选地,所述路径选择装置1300还可以包括接收单元,被配置为接收管理设备发送的第一响应信息,或者,接收第一物联网网关设备发送的第二响应信息,所述第一响应信息和/或所述第二响应信息用于指示至少一个目标物联网设备的连接信息,和/或,第二物联网设备的连接信息;所述至少一个目标物联网设备是基于至少一个候选物联网设备确定的,所述至少一个候选物联网设备基于所述第一业务确定;所述第二物联网设备是基于所述至少一个目标物联网设备选择的。
可选地,所述第二物联网设备的连接信息包括以下至少之一:第二物联网设备的标识信息、第二物联网设备的IP地址信息、与第二物联网设备进行通信的目标通信路径、目标通信路径中第一物联网设备需要关联的第一物联网网关设备的标识信息和/或IP地址信息、目标通信路径中第二物联网设备需要关联的第二物联网网关设备的标识信息和/或IP地址信息;
以及,至少一个目标物联网设备的连接信息包括以下至少之一:
至少一个目标物联网设备中每个目标物联网设备的标识信息和/或IP地址信息、每个目标物联网设备支持的接入技术、每个目标物联网设备支持的通信路径、每个目标物联网设备支持的通信路径中每个目标物联网设备需要关联的物联网网关设备的标识信息和/或IP地址信息、每个目标物联网设备支持的通信路径中第一物联网设备需要关联的物联网网关设备的标识信息,和/或IP地址信息。
可选地,所述路径选择装置1300还可以包括物联网设备确定单元,在所述第一响应信息用于指示至少一个目标物联网设备的连接信息的情况下,所述物联网设备确定单元被配置为从所述至少一个目标物联网设备中选择满足第二条件的目标物联网设备,得到第二物联网设备;
所述第二条件包括以下至少之一:剩余电量最多、剩余电量大于电量阈值、有效时间最长、有效时间大于时间阈值。
可选地,所述路径选择装置1300还可以包括通信建立单元,被配置为建立与所述第一物联网网关设备之间的通信。
可选地,所述发送单元1301,还被配置为向所述第一物联网网关设备发送第三指示信息,所述第三指示信息用于指示以下至少之一:第二物联网设备的标识信息和/或IP地址信息、第一物联网设备与第二物联网设备通过第三通信路径进行通信、第三通信路径表征利用蜂窝网络进行通信的路径、第三通信路径中第二物联网设备关联的第二物联网网关设备的标识信息和/或IP地址信息。
可选地,发送单元1301还被配置为向管理设备发送第一指示信息;第一指示信息用于指示第一物联网设备通过第三通信路径与第二物联网设备进行通信,第三通信路径表征利用蜂窝网络进行通信的路径。
可选地,第一指示信息包括以下至少之一:所述第一物联网设备的标识信息、所述第一物联网设备的IP地址信息、第一物联网网关设备的标识信息、所述第一物联网网关设备的IP地址信息、第二物联网设备的标识信息、所述第二物联网设备的IP地址信息、第二物联网网关设备的标识信息、所述第二物联网网关设备的IP地址信息、关联指示信息、路径指示信息;关联指示信息用于指示第一物联网设备与第一物联网网关设备关联,和/或,第二物联网设备与第二物联网网关设备关联;路径指示信息用于指示第一物联网设备与第二物联网设备通过第三通信路径进行通信。
图14是本申请实施例提供的路径选择装置1400的结构组成示意图一,应用于第一物联网网关设备,如图14所示,所述路径选择装置1400包括:
接收单元1401,被配置为接收第一物联网设备发送的第一请求信息;所述第一请求信息用于请求 所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径。
可选地,所述第一请求信息包括以下至少之一:
第一个人物联网PIN的标识信息;所述第一PIN为所述第一物联网设备接入的个人物联网;
所述第一物联网设备的标识信息;
所述第一物联网设备的IP地址信息;
第一物联网网关设备的标识信息,所述第一物联网网关设备与所述第一物联网设备关联;
所述第一物联网网关设备的IP地址信息;
所述第一业务的业务类型;
所述第一业务的需求信息;
所述第一物联网设备偏好的接入技术;
所述第一物联网设备偏好的通信路径。
可选地,所述路径选择装置1400还可以包括物联网设备确定单元,被配置为从与其关联的至少一个物联网设备中,确定至少一个目标物联网设备;基于所述至少一个目标物联网设备,确定用于向所述第一物联网设备提供所述第一业务的第二物联网设备。
可选地,所述路径选择装置1400还可以包括发送单元,被配置为若所述第一物联网网关设备关联的至少一个物联网设备中不存在所述目标物联网设备,则向管理设备发送所述第一请求信息。
可选地,所述接收单元1401,还被配置为接收所述管理设备发送的第一响应信息;所述第一响应信息用于指示至少一个目标物联网设备的连接信息,和/或,第二物联网设备的连接信息;其中,所述至少一个目标物联网设备是基于至少一个候选物联网设备确定的,所述至少一个候选物联网设备基于所述第一业务确定;所述第二物联网设备是基于所述至少一个目标物联网设备选择的。
可选地,所述发送单元,还被配置为向所述第一物联网设备发送第二响应信息。
可选地,所述第二物联网设备的连接信息包括以下至少之一:
所述第二物联网设备的标识信息、所述第二物联网设备的IP地址信息、与所述第二物联网设备进行通信的目标通信路径、所述目标通信路径中所述第一物联网设备需要关联的第一物联网网关设备的标识信息和/或IP地址信息、所述目标通信路径中所述第二物联网设备需要关联的第二物联网网关设备的标识信息和/或IP地址信息;
以及,所述至少一个目标物联网设备的连接信息包括以下至少之一:至少一个目标物联网设备中每个目标物联网设备的标识信息和/或IP地址信息、每个目标物联网设备支持的接入技术、每个目标物联网设备支持的通信路径、每个目标物联网设备支持的通信路径中每个目标物联网设备需要关联的物联网网关设备的标识信息,和/或IP地址信息、每个目标物联网设备支持的通信路径中所述第一物联网设备需要关联的物联网网关设备的标识信息和/或IP地址信息。
可选地,所述接收单元1401,还被配置为接收第三指示信息,所述第三指示信息用于指示以下至少之一:第二物联网设备的标识信息和/或IP地址信息、第一物联网设备与所述第二物联网设备通过第三通信路径进行通信,第三通信路径表征利用蜂窝网络进行通信的路径、第三通信路径中所述第二物联网设备关联的第二物联网网关设备的标识信息和/或IP地址信息。
可选地,所述路径选择装置1400还可以包括PDU会话管理单元,被配置为在所述第一物联网网关设备未针对所述第一物联网设备建立PDU会话的情况下,为所述第一物联网设备建立或修改PDU会话;或,在所述第一物联网网关设备已针对所述第一物联网设备建立PDU会话的情况下,修改所述PDU会话对应的数据传输规则;
所述PDU会话用于传输所述第一物联网设备与所述第二物联网设备之间的业务数据,以及用于配置所述第一物联网设备和/或所述第一物联网网关设备的IP地址信息。
可选地,所述发送单元,还被配置为向管理设备发送第一指示信息,所述第一指示信息用于指示所述第一物联网设备通过第三通信路径与第二物联网设备进行通信,所述第三通信路径表征利用蜂窝网络进行通信的路径。
可选地,第一指示信息包括以下至少之一:第一物联网设备的标识信息、第一物联网设备的IP地址信息、第一物联网网关设备的标识信息、所述第一物联网网关设备的IP地址信息、第二物联网设备的标识信息、所述第二物联网设备的IP地址信息、第二物联网网关设备的标识信息、所述第二物联网网关设备的IP地址信息、关联指示信息、路径指示信息;关联指示信息用于指示第一物联网设备与第一物联网网关设备关联,和/或,第二物联网设备与第二物联网网关设备关联;路径指示信息用于指示第一物联网设备与第二物联网设备通过第三通信路径进行通信。
图15是本申请实施例提供的路径选择装置1500的结构组成示意图一,应用于第二物联网设备,如图15所示,所述路径选择装置1500包括:
接收单元,被配置为接收第二指示信息,所述第二指示信息用于指示所述第二物联网设备通过第三通信路径与第一物联网设备进行通信,所述第三通信路径表征利用蜂窝网络进行通信的路径。
可选地,所述第二指示信息包括以下至少之一:
所述第一物联网设备的标识信息、所述第一物联网设备的IP地址信息、第一物联网网关设备的标识信息、所述第一物联网网关设备的IP地址信息、第二物联网设备的标识信息、所述第二物联网设备的IP地址信息、第二物联网网关设备的标识信息、所述第二物联网网关设备的IP地址信息、关联指示信息、路径指示信息;关联指示信息用于指示第一物联网设备与第一物联网网关设备关联,和/或,第二物联网设备与第二物联网网关设备关联;路径指示信息用于指示第一物联网设备与第二物联网设备通过第三通信路径进行通信。
可选地,路径选择装置1500还包括通信建立单元,被配置为建立与第二物联网网关设备之间的通信。
可选地,路径选择装置1500还包括发送单元,被配置为向第二物联网网关设备发送第二请求信息,所述第二请求信息用于请求建立或修改PDU会话,或者,请求修改所述PDU会话对应的数据传输规则;所述PDU会话用于传输所述第一物联网设备与所述第二物联网设备之间的业务数据,以及用于配置所述第二物联网设备和/或所述第二物联网网关设备的IP地址信息。
本领域技术人员应当理解,本申请实施例的上述路径选择装置的相关描述可以参照本申请实施例的路径选择方法的相关描述进行理解。
图16是本申请实施例提供的一种通信设备1600示意性结构图。该通信设备可以是管理设备,物联网设备,或者物联网网关设备。图16所示的通信设备1600包括处理器1610,处理器1610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图16所示,通信设备1600还可以包括存储器1620。其中,处理器1610可以从存储器1620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1620可以是独立于处理器1610的一个单独的器件,也可以集成在处理器1610中。
可选地,如图16所示,通信设备1600还可以包括收发器1630,处理器1610可以控制该收发器1630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1630可以包括发射机和接收机。收发器1630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1600具体可为本申请实施例的管理设备,并且该通信设备1600可以实现本申请实施例的各个方法中由管理设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1600具体可为本申请实施例的物联网设备(包括第一物联网设备和/或第二物联网设备),并且该通信设备1600可以实现本申请实施例的各个方法中由物联网设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1600具体可为本申请实施例的物联网网关设备(包括第一物联网网关设备和/或第二物联网网关设备),并且该通信设备1600可以实现本申请实施例的各个方法中由物联网网关设备实现的相应流程,为了简洁,在此不再赘述。
图17是本申请实施例的芯片的示意性结构图。图17所示的芯片1700包括处理器1710,处理器1710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图17所示,芯片1700还可以包括存储器1720。其中,处理器1710可以从存储器1720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1720可以是独立于处理器1710的一个单独的器件,也可以集成在处理器1910中。
可选地,该芯片1700还可以包括输入接口1730。其中,处理器1710可以控制该输入接口1730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1700还可以包括输出接口1740。其中,处理器1710可以控制该输出接口1740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的管理设备,并且该芯片可以实现本申请实施例的各个方法中由管理设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的物联网设备(包括第一物联网设备和/或第二物联网设备),并且该芯片可以实现本申请实施例的各个方法中由物联网设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的物联网网关设备(包括第一物联网网关设备和/或第二物联网网关设备),并且该芯片可以实现本申请实施例的各个方法中由物联网网关设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图18是本申请实施例提供的一种通信系统1800的示意性框图。如图18所示,该通信系统1800包括管理设备1810、物联网设备1820和物联网网关设备1830。
其中,该管理设备1810可以用于实现上述方法中由管理设备实现的相应的功能,该物联网设备1820可以用于实现上述方法中由第一物联网设备和/或第二物联网设备实现的相应的功能,该物联网网关设备1830可以用于实现上述方法中由第一物联网网关设备和/或第二物联网网关设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的管理设备、物联网设备、或物联网网关设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由管理设备、物联网设备、或物联网网关设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的管理设备、物联网设备、或物联网网关设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由管理设备、物联网设备、或物联网网关设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。可选的,该计算机程序可应用于本申请实施例中的管理设备、物联网设备、或物联网网关设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由管理设备、物联网设备、或物联网网关设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能 够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (58)

  1. 一种路径选择方法,所述方法包括:
    管理设备为第一物联网设备确定至少一个候选物联网设备;
    所述管理设备基于以下至少一项,确定每个候选物联网设备与所述第一物联网设备之间的候选通信路径:所述至少一个候选物联网设备中每个候选物联网设备与所述第一物联网设备的距离、所述每个候选物联网设备关联的网关设备与所述第一物联网设备之间的关联关系、所述每个候选物联网设备和所述第一物联网设备是否在物联网网关设备的服务范围内;
    其中,所述候选通信路径用于进行路径选择。
  2. 根据权利要求1所述的方法,其中,所述候选通信路径包括以下至少之一:
    第一通信路径,所述第一通信路径表征通过直接连接进行通信的路径;
    第二通信路径,所述第二通信路径表征利用网关设备进行通信的路径;
    第三通信路径,所述第三通信路径表征利用蜂窝网络进行通信的路径。
  3. 根据权利要求1或2所述的方法,其中,所述管理设备为第一物联网设备确定至少一个候选物联网设备之前,还包括:
    所述管理设备接收第一请求信息,所述第一请求信息用于请求所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径,所述至少一个候选物联网设备基于所述第一业务确定。
  4. 根据权利要求3所述的方法,其中,所述管理设备接收第一请求信息,包括:
    所述管理设备接收第一物联网设备发送的第一请求信息;
    或者,
    所述管理设备接收第一物联网网关设备发送的第一请求信息,所述第一物联网网关设备与所述第一物联网设备关联。
  5. 根据权利要求3或4所述的方法,其中,所述第一请求信息包括以下至少之一:
    第一个人物联网PIN的标识信息;所述第一PIN为所述第一物联网设备接入的个人物联网;
    所述第一物联网设备的标识信息;
    所述第一物联网设备的IP地址信息;
    第一物联网网关设备的标识信息,所述第一物联网网关设备与所述第一物联网设备关联;
    所述第一物联网网关设备的IP地址信息;
    所述第一业务的业务类型;
    所述第一业务的需求信息;
    所述第一物联网设备偏好的接入技术;
    所述第一物联网设备偏好的通信路径。
  6. 根据权利要求1-5任一项所述的方法,其中,所述管理设备为第一物联网设备确定至少一个候选物联网设备,包括:
    所述管理设备获取物联网属性信息,所述物联网属性信息包括以下至少之一:第一PIN中每个物联网设备的属性信息,所述第一PIN中每个物联网网关设备的属性信息,所述管理设备的属性信息;所述第一PIN为所述第一物联网设备接入的个人物联网;
    所述管理设备基于所述物联网属性信息,为所述第一物联网设备确定所述至少一个候选物联网设备。
  7. 根据权利要求6所述的方法,其中,所述每个物联网设备的属性信息,包括以下至少之一:
    物联网设备的标识信息;
    物联网设备的IP地址信息;
    与物联网设备关联的物联网网关设备的标识信息和/或IP地址信息;
    与物联网设备关联的其他物联网设备的标识信息和/或IP地址信息;
    物联网设备支持的业务类型;
    位置信息;
    有效时间信息;所述有效时间信息用于指示在所述第一个人物联网中的有效时间;
    剩余电量信息;
    支持的无线接入技术;
    所述无线接入技术中每种无线接入技术对应的最大通信距离;
    支持的通信路径。
  8. 根据权利要求6或7所述的方法,其中,所述每个物联网网关设备的属性信息包括以下至少之一:
    物联网网关设备的标识信息;
    物联网网关设备的IP地址信息;
    与物联网网关设备关联的物联网设备的标识信息和/或IP地址信息;
    允许与该物联网网关设备关联的物联网设备的标识信息;
    禁止与该物联网网关设备关联的物联网设备的标识信息;
    位置信息;
    有效时间信息;所述有效时间信息用于指示在所述第一个人物联网中的有效时间;
    剩余电量信息;
    支持的无线接入技术;
    所述无线接入技术中每种无线接入技术对应的最大通信距离。
  9. 根据权利要求6-8任一项所述的方法,其中,所述管理设备的属性信息包括以下至少之一:
    所述管理设备的IP地址信息;
    位置信息;
    有效时间信息;
    支持的无线接入技术;
    所述无线接入技术中每种无线接入技术对应的最大通信距离。
  10. 根据权利要求1-9任一项所述的方法,其中,所述确定每个候选物联网设备与所述第一物联网设备之间的候选通信路径,包括:
    在候选物联网设备与所述第一物联网设备之间的距离小于指定距离的情况下,所述候选通信路径包括第一通信路径,所述第一通信路径表征通过直接连接进行通信的路径;
    在候选物联网设备关联的物联网网关设备,与所述第一物联网设备关联的物联网网关设备相同的情况下,所述候选通信路径包括第二通信路径,所述第二通信路径表征利用网关设备进行通信的路径;
    在候选物联网设备和所述第一物联网设备均在物联网网关设备的服务范围内的情况下,所述候选通信路径包括第三通信路径,所述第三通信路径表征利用蜂窝网络进行通信的路径。
  11. 根据权利要求1-10任一项所述的方法,其中,还包括:
    所述管理设备基于所述每个候选物联网设备与所述第一物联网设备之间的候选通信路径,从所述至少一个候选物联网设备中选择满足第一条件的候选物联网设备,得到至少一个目标物联网设备。
  12. 根据权利要求10所述的方法,其中,所述第一条件包括以下至少之一:
    候选通信路径中包括所述第一物联网设备偏好的通信路径;
    候选通信路径包括优先级最高的通信路径;
    候选通信路径包括默认通信路径。
  13. 根据权利要求11或12所述的方法,其中,还包括:
    所述管理设备基于所述至少一个目标物联网设备,确定用于向所述第一物联网设备提供所述第一业务的第二物联网设备。
  14. 根据权利要求11或12所述的方法,其中,所述至少一个目标物联网设备的数量包括多个,还包括:
    所述管理设备从多个目标物联网设备中选择满足第二条件的目标物联网设备,得到所述第二物联网设备;
    所述第二条件包括以下至少之一:
    剩余电量最多;
    剩余电量大于电量阈值;
    有效时间最长;
    有效时间大于时间阈值。
  15. 根据权利要求11-14任一项所述的方法,其中,所述方法还包括:
    所述管理设备发送第一响应信息,所述第一响应信息用于指示所述至少一个目标物联网设备的连接信息,或第二物联网设备的连接信息。
  16. 根据权利要求15所述的方法,其中,所述第二物联网设备的连接信息包括以下至少之一:
    所述第二物联网设备的标识信息;
    所述第二物联网设备的IP地址信息;
    与所述第二物联网设备进行通信的目标通信路径;
    所述目标通信路径中所述第一物联网设备需要关联的第一物联网网关设备的标识信息和/或IP地址信息;
    所述目标通信路径中所述第二物联网设备需要关联的第二物联网网关设备的标识信息和/或IP地址信息;
    以及,所述至少一个目标物联网设备的连接信息包括以下至少之一:
    所述至少一个目标物联网设备中每个目标物联网设备的标识信息和/或IP地址信息;
    所述每个目标物联网设备支持的接入技术;
    所述每个目标物联网设备支持的通信路径;
    所述每个目标物联网设备支持的通信路径中所述每个目标物联网设备需要关联的物联网网关设备的标识信息,和/或IP地址信息;
    所述每个目标物联网设备支持的通信路径中所述第一物联网设备需要关联的物联网网关设备的标识信息,和/或IP地址信息。
  17. 根据权利要求1-16任一项所述的方法,其中,还包括:
    所述管理设备接收第一指示信息,所述第一指示信息用于指示所述第一物联网设备通过第三通信路径与第二物联网设备进行通信,所述第三通信路径表征利用蜂窝网络进行通信的路径。
  18. 根据权利要求17所述的方法,其中,还包括:
    所述管理设备向第二物联网设备发送第二指示信息,所述第二指示信息用于指示所述第二物联网设备通过第三通信路径与所述第一物联网设备进行通信。
  19. 根据权利要求17或18所述的方法,其中,所述第一指示信息和/或所述第二指示信息包括以下至少之一:
    所述第一物联网设备的标识信息;
    所述第一物联网设备的IP地址信息;
    第一物联网网关设备的标识信息;
    所述第一物联网网关设备的IP地址信息;
    第二物联网设备的标识信息;
    所述第二物联网设备的IP地址信息;
    第二物联网网关设备的标识信息;
    所述第二物联网网关设备的IP地址信息;
    关联指示信息;所述关联指示信息用于指示所述第一物联网设备与所述第一物联网网关设备关联,和/或,所述第二物联网设备与所述第二物联网网关设备关联;
    路径指示信息;所述路径指示信息用于指示所述第一物联网设备与所述第二物联网设备通过第三通信路径进行通信。
  20. 根据权利要求17-19任一项所述的方法,其中,
    所述管理设备向所述蜂窝网络的第一网元发送数据转发策略配置请求,所述数据转发策略配置请求用于请求对所述第一物联网设备和所述第二物联网设备之间数据传输规则进行配置。
  21. 根据权利要求20所述的方法,其中,所述管理设备为具有管理功能的物联网设备,所述第一网元为会话管理功能SMF网元,所述管理设备向所述蜂窝网络的第一网元发送数据转发策略配置请求,包括以下至少之一:
    所述管理设备通过第二网元,向所述第一网元转发所述数据转发策略配置请求;所述第二网元用于管理个人物联网;
    所述管理设备通过第二网元和策略控制功能网元PCF,向所述第一网元发送所述数据转发策略配置请求;
    所述管理设备通过第二网元和网络开放功能NEF,向所述第一网元转发所述数据转发策略配置请求;
    所述管理设备通过第二网元、NEF和PCF,向所述第一网元发送所述数据转发策略配置请求。
  22. 根据权利要求20所述的方法,其中,所述管理设备为第二网元,所述第二网元用于管理个人物联网,所述第一网元为会话管理功能SMF网元,所述管理设备向所述蜂窝网络的第一网元发送数据转发策略配置请求,包括以下至少之一:
    所述管理设备向所述第一网元发送所述数据转发策略配置请求;
    所述管理设备通过策略控制功能网元PCF,向所述第一网元发送所述数据转发策略配置请求;
    所述管理设备通过网络开放功能NEF,向所述第一网元转发所述数据转发策略配置请求;
    所述管理设备通过NEF和PCF,向所述第一网元发送所述数据转发策略配置请求。
  23. 一种路径选择方法,所述方法包括:
    第一物联网设备发送第一请求信息,所述第一请求信息用于请求所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径。
  24. 根据权利要求23所述的方法,其中,所述第一请求信息包括以下至少之一:
    第一个人物联网PIN的标识信息;所述第一PIN为所述第一物联网设备接入的个人物联网;
    所述第一物联网设备的标识信息;
    所述第一物联网设备的IP地址信息;
    第一物联网网关设备的标识信息,所述第一物联网网关设备与所述第一物联网设备关联;
    所述第一物联网网关设备的IP地址信息;
    所述第一业务的业务类型;
    所述第一业务的需求信息;
    所述第一物联网设备偏好的接入技术;
    所述第一物联网设备偏好的通信路径。
  25. 根据权利要求23或24所述的方法,其中,所述第一物联网设备发送第一请求信息,包括:
    所述第一物联网设备向管理设备发送所述第一请求信息;
    或者,
    所述第一物联网设备向第一物联网网关设备发送所述第一请求信息,所述第一物联网网关设备与管理设备关联。
  26. 根据权利要求23-25任一项所述的方法,其中,所述方法还包括:
    所述第一物联网设备接收管理设备发送的第一响应信息,
    或者,
    所述第一物联网设备接收第一物联网网关设备发送的第二响应信息;
    所述第一响应信息和/或所述第二响应信息用于指示至少一个目标物联网设备的连接信息,或第二物联网设备的连接信息;所述至少一个目标物联网设备是基于至少一个候选物联网设备确定的,所述至少一个候选物联网设备基于所述第一业务确定;所述第二物联网设备是基于所述至少一个目标物联网设备选择的。
  27. 根据权利要求26所述的方法,其中,所述第二物联网设备的连接信息包括以下至少之一:
    所述第二物联网设备的标识信息;
    所述第二物联网设备的IP地址信息;
    与所述第二物联网设备进行通信的目标通信路径;
    所述目标通信路径中所述第一物联网设备需要关联的第一物联网网关设备的标识信息和/或IP地址信息;
    所述目标通信路径中所述第二物联网设备需要关联的第二物联网网关设备的标识信息和/或IP地址信息;
    以及,所述至少一个目标物联网设备的连接信息包括以下至少之一:
    所述至少一个目标物联网设备中每个目标物联网设备的标识信息和/或IP地址信息;
    所述每个目标物联网设备支持的接入技术;
    所述每个目标物联网设备支持的通信路径;
    所述每个目标物联网设备支持的通信路径中所述每个目标物联网设备需要关联的物联网网关设备的标识信息,和/或IP地址信息;
    所述每个目标物联网设备支持的通信路径中所述第一物联网设备需要关联的物联网网关设备的标识信息,和/或IP地址信息。
  28. 根据权利要求26或27所述的方法,其中,在所述第一响应信息用于指示至少一个目标物联网设备的连接信息的情况下,所述方法还包括:
    所述第一物联网设备从所述至少一个目标物联网设备中选择满足第二条件的目标物联网设备,得到第二物联网设备;
    所述第二条件包括以下至少之一:
    剩余电量最多;
    剩余电量大于电量阈值;
    有效时间最长;
    有效时间大于时间阈值。
  29. 根据权利要求26-28任一项所述的方法,其中,所述方法还包括:
    所述第一物联网设备建立与所述第一物联网网关设备之间的通信。
  30. 根据权利要求26-29任一项所述的方法,其中,所述方法还包括:
    所述第一物联网设备向所述第一物联网网关设备发送第三指示信息,所述第三指示信息用于指示以下至少之一:
    第二物联网设备的标识信息和/或IP地址信息;
    所述第一物联网设备与所述第二物联网设备通过第三通信路径进行通信;所述第三通信路径表征利用蜂窝网络进行通信的路径;
    所述第三通信路径中所述第二物联网设备关联的第二物联网网关设备的标识信息和/或IP地址信息。
  31. 根据权利要求26-30任一项所述的方法,其中,所述方法还包括:
    所述第一物联网设备向管理设备发送第一指示信息;所述第一指示信息用于指示所述第一物联网设备通过第三通信路径与第二物联网设备进行通信,所述第三通信路径表征利用蜂窝网络进行通信的路径。
  32. 根据权利要求31所述的方法,其中,所述第一指示信息包括以下至少之一:
    所述第一物联网设备的标识信息;
    所述第一物联网设备的IP地址信息;
    第一物联网网关设备的标识信息;
    所述第一物联网网关设备的IP地址信息;
    第二物联网设备的标识信息;
    所述第二物联网设备的IP地址信息;
    第二物联网网关设备的标识信息;
    所述第二物联网网关设备的IP地址信息;
    关联指示信息;所述关联指示信息用于指示所述第一物联网设备与所述第一物联网网关设备关联,和/或,所述第二物联网设备与所述第二物联网网关设备关联;
    路径指示信息;所述路径指示信息用于指示所述第一物联网设备与所述第二物联网设备通过第三通信路径进行通信。
  33. 一种路径选择方法,所述方法包括:
    第一物联网网关设备接收第一物联网设备发送的第一请求信息;所述第一请求信息用于请求所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径。
  34. 根据权利要求33所述的方法,其中,所述第一请求信息包括以下至少之一:
    第一个人物联网PIN的标识信息;所述第一PIN为所述第一物联网设备接入的个人物联网;
    所述第一物联网设备的标识信息;
    所述第一物联网设备的IP地址信息;
    第一物联网网关设备的标识信息,所述第一物联网网关设备与所述第一物联网设备关联;
    所述第一物联网网关设备的IP地址信息;
    所述第一业务的业务类型;
    所述第一业务的需求信息;
    所述第一物联网设备偏好的接入技术;
    所述第一物联网设备偏好的通信路径。
  35. 根据权利要求33或34所述的方法,其中,还包括:
    所述第一物联网网关设备从与其关联的至少一个物联网设备中,确定至少一个目标物联网设备;
    所述第一物联网网关设备基于所述至少一个目标物联网设备,确定用于向所述第一物联网设备提供所述第一业务的第二物联网设备。
  36. 根据权利要求35所述的方法,其中,所述方法还包括:
    若所述第一物联网网关设备关联的至少一个物联网设备中不存在所述目标物联网设备,则所述第一物联网网关设备向管理设备发送所述第一请求信息。
  37. 根据权利要求36所述的方法,其中,所述方法还包括:
    所述第一物联网网关设备接收所述管理设备发送的第一响应信息;所述第一响应信息用于指示至少一个目标物联网设备的连接信息,和/或,第二物联网设备的连接信息;
    其中,所述至少一个目标物联网设备是基于至少一个候选物联网设备确定的,所述至少一个候选物联网设备基于所述第一业务确定;所述第二物联网设备是基于所述至少一个目标物联网设备选择的。
  38. 根据权利要求36或37所述的方法,其中,所述方法还包括:
    所述第一物联网网关设备向所述第一物联网设备发送第二响应信息。
  39. 根据权利要求37或38所述的方法,其中,所述第二物联网设备的连接信息包括以下至少之一:
    所述第二物联网设备的标识信息;
    所述第二物联网设备的IP地址信息;
    与所述第二物联网设备进行通信的目标通信路径;
    所述目标通信路径中所述第一物联网设备需要关联的第一物联网网关设备的标识信息和/或IP地址信息;
    所述目标通信路径中所述第二物联网设备需要关联的第二物联网网关设备的标识信息和/或IP地址信息;
    以及,所述至少一个目标物联网设备的连接信息包括以下至少之一:
    所述至少一个目标物联网设备中每个目标物联网设备的标识信息和/或IP地址信息;
    所述每个目标物联网设备支持的接入技术;
    所述每个目标物联网设备支持的通信路径;
    所述每个目标物联网设备支持的通信路径中所述每个目标物联网设备需要关联的物联网网关设备的标识信息,和/或IP地址信息;
    所述每个目标物联网设备支持的通信路径中所述第一物联网设备需要关联的物联网网关设备的标识信息,和/或IP地址信息。
  40. 根据权利33-39任一项所述的方法,其中,所述方法还包括:
    所述第一物联网网关设备接收第三指示信息,所述第三指示信息用于指示以下至少之一:
    第二物联网设备的标识信息和/或IP地址信息;
    所述第一物联网设备与所述第二物联网设备通过第三通信路径进行通信;所述第三通信路径表征利用蜂窝网络进行通信的路径;
    所述第三通信路径中所述第二物联网设备关联的第二物联网网关设备的标识信息和/或IP地址信息。
  41. 根据权利要求40所述的方法,其中,所述方法还包括:
    在所述第一物联网网关设备未针对所述第一物联网设备建立PDU会话的情况下,所述第一物联网网关设备为所述第一物联网设备建立或修改PDU会话;
    或,
    在所述第一物联网网关设备已针对所述第一物联网设备建立PDU会话的情况下,所述第一物联网网关设备修改所述PDU会话对应的数据传输规则;
    所述PDU会话用于传输所述第一物联网设备与所述第二物联网设备之间的业务数据,以及用于配置所述第一物联网设备和/或所述第一物联网网关设备的IP地址信息。
  42. 根据权利要求41所述的方法,其中,所述方法还包括:
    所述第一物联网网关设备向管理设备发送第一指示信息,所述第一指示信息用于指示所述第一物联网设备通过第三通信路径与第二物联网设备进行通信,所述第三通信路径表征利用蜂窝网络进行通信的路径。
  43. 根据权利要求42所述的方法,其中,所述第一指示信息包括以下至少之一:
    所述第一物联网设备的标识信息;
    所述第一物联网设备的IP地址信息;
    第一物联网网关设备的标识信息;
    所述第一物联网网关设备的IP地址信息;
    第二物联网设备的标识信息;
    所述第二物联网设备的IP地址信息;
    第二物联网网关设备的标识信息;
    所述第二物联网网关设备的IP地址信息;
    关联指示信息;所述关联指示信息用于指示所述第一物联网设备与所述第一物联网网关设备关联,和/或,所述第二物联网设备与所述第二物联网网关设备关联;
    路径指示信息;所述路径指示信息用于指示所述第一物联网设备与所述第二物联网设备通过第三通信路径进行通信。
  44. 一种路径选择方法,所述方法包括:
    第二物联网设备接收第二指示信息,所述第二指示信息用于指示所述第二物联网设备通过第三通信路径与第一物联网设备进行通信,所述第三通信路径表征利用蜂窝网络进行通信的路径。
  45. 根据权利要求44所述的方法,其中,所述第二指示信息包括以下至少之一:
    所述第一物联网设备的标识信息;
    所述第一物联网设备的IP地址信息;
    第一物联网网关设备的标识信息;
    所述第一物联网网关设备的IP地址信息;
    第二物联网设备的标识信息;
    所述第二物联网设备的IP地址信息;
    第二物联网网关设备的标识信息;
    所述第二物联网网关设备的IP地址信息;
    关联指示信息;所述关联指示信息用于指示所述第一物联网设备与所述第一物联网网关设备关联,和/或,所述第二物联网设备与所述第二物联网网关设备关联;
    路径指示信息;所述路径指示信息用于指示所述第一物联网设备与所述第二物联网设备通过第三通信路径进行通信。
  46. 根据权利要求44或45所述的方法,其中,所述方法还包括:
    所述第二物联网设备建立与第二物联网网关设备之间的通信。
  47. 根据权利要求44-46任一项所述的方法,其中,所述方法还包括:
    所述第二物联网设备向第二物联网网关设备发送第二请求信息,所述第二请求信息用于请求建立或修改PDU会话,或者,请求修改所述PDU会话对应的数据传输规则;所述PDU会话用于传输所述第一物联网设备与所述第二物联网设备之间的业务数据,以及用于配置所述第二物联网设备和/或所述第二物联网网关设备的IP地址信息。
  48. 一种路径选择装置,应用于管理设备,所述装置包括:
    候选设备确定单元,被配置为针对第一物联网设备确定至少一个候选物联网设备;
    候选路径确定单元,被配置为基于所述至少一个候选物联网设备中每个候选物联网设备与所述第一物联网设备的距离,和/或,所述每个候选物联网设备关联的网关设备与所述第一物联网设备之间的距离及关联关系,确定每个候选物联网设备与所述第一物联网设备之间的候选通信路径;所述候选通信路径用于进行路径选择。
  49. 一种路径选择装置,应用于第一物联网设备,所述装置包括:
    发送单元,被配置为发送第一请求信息,所述第一请求信息用于请求所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径。
  50. 一种路径选择装置,应用于第一物联网网关设备,所述装置包括:
    接收单元,被配置为接收第一物联网设备发送的第一请求信息;所述第一请求信息用于请求所述第一物联网设备所需的第一业务,和/或,所述第一物联网设备与提供所述第一业务的物联网设备之间的通信路径。
  51. 一种路径选择装置,应用于第二物联网设备,所述装置包括:
    接收单元,被配置为接收第二指示信息,所述第二指示信息用于指示所述第二物联网设备通过第三通信路径与第一物联网设备进行通信,所述第三通信路径表征利用蜂窝网络进行通信的路径。
  52. 一种管理设备,包括:存储器、处理器和收发器,
    所述收发器用于实现所述管理设备的通信;
    所述存储器存储有可在处理器上运行的计算机程序,
    所述处理器结合所述收发器执行所述程序时实现权利要求1至22任一项所述方法。
  53. 一种物联网设备,包括存储器、处理器和收发器,
    所述收发器用于实现所述物联网设备的通信;
    所述存储器存储有可在处理器上运行的计算机程序,
    所述处理器结合所述收发器执行所述程序时实现权利要求23至32,或权利要求44至47任一项所述方法。
  54. 一种物联网网关设备,包括存储器、处理器和收发器,
    所述收发器用于实现所述物联网网关设备的通信;
    所述存储器存储有可在处理器上运行的计算机程序,
    所述处理器结合所述收发器执行所述程序时实现权利要求33至43任一项所述方法。
  55. 一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求1至22、或权利要求23至32、或权利要求33至43、或权利要求44至47任一项所述方法。
  56. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至22、或权利要求23至32、或权利要求33至43、或权利要求44至47任一项所述方法。
  57. 一种计算机程序产品,所述计算机程序产品包括计算机存储介质,所述计算机存储介质存储计算机程序,所述计算机程序包括能够由至少一个处理器执行的指令,当所述指令由所述至少一个处理器执行时实现权利要求122、或权利要求23至32、或权利要求33至43、或权利要求44至47任一项所述方法。
  58. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至22、或权利要求23至32、或权利要求33至43、或权利要求44至47任一项所述方法。
PCT/CN2022/106568 2022-07-19 2022-07-19 路径选择方法及装置、设备、存储介质 WO2024016179A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106568 WO2024016179A1 (zh) 2022-07-19 2022-07-19 路径选择方法及装置、设备、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106568 WO2024016179A1 (zh) 2022-07-19 2022-07-19 路径选择方法及装置、设备、存储介质

Publications (1)

Publication Number Publication Date
WO2024016179A1 true WO2024016179A1 (zh) 2024-01-25

Family

ID=89616794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106568 WO2024016179A1 (zh) 2022-07-19 2022-07-19 路径选择方法及装置、设备、存储介质

Country Status (1)

Country Link
WO (1) WO2024016179A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130254277A1 (en) * 2012-03-21 2013-09-26 Alcatel-Lucent Usa Inc. Methods And Networks For Device To Device Communication
WO2016145751A1 (zh) * 2015-03-13 2016-09-22 宇龙计算机通信科技(深圳)有限公司 物联网中的数据传输方法、系统、物联网设备、终端
WO2017099828A1 (en) * 2015-12-07 2017-06-15 Intel IP Corporation Devices and methods of mobility enhancement and wearable device path selection
CN107113902A (zh) * 2015-01-08 2017-08-29 瑞典爱立信有限公司 在无线通信网络中选择通信模式的网络节点、无线设备及其方法
CN112385269A (zh) * 2018-07-19 2021-02-19 Oppo广东移动通信有限公司 路径选择的方法、终端设备和网络设备
CN113615257A (zh) * 2019-08-16 2021-11-05 Oppo广东移动通信有限公司 一种路径选择方法及装置、终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130254277A1 (en) * 2012-03-21 2013-09-26 Alcatel-Lucent Usa Inc. Methods And Networks For Device To Device Communication
CN107113902A (zh) * 2015-01-08 2017-08-29 瑞典爱立信有限公司 在无线通信网络中选择通信模式的网络节点、无线设备及其方法
WO2016145751A1 (zh) * 2015-03-13 2016-09-22 宇龙计算机通信科技(深圳)有限公司 物联网中的数据传输方法、系统、物联网设备、终端
WO2017099828A1 (en) * 2015-12-07 2017-06-15 Intel IP Corporation Devices and methods of mobility enhancement and wearable device path selection
CN112385269A (zh) * 2018-07-19 2021-02-19 Oppo广东移动通信有限公司 路径选择的方法、终端设备和网络设备
CN113615257A (zh) * 2019-08-16 2021-11-05 Oppo广东移动通信有限公司 一种路径选择方法及装置、终端

Similar Documents

Publication Publication Date Title
EP3100471B1 (en) Context-aware and proximity-aware service layer connectivity management
CN109997334B (zh) 具有用于3gpp网络中物联网应用的间接连接的中继和收费的会话管理
US20220369215A1 (en) Relay selection in cellular sliced networks
JP7183416B2 (ja) 時間依存ネットワーキング通信方法及び装置
CN113841432A (zh) 用于提供与终端的连接以便使用边缘计算服务的方法和设备
KR20240036599A (ko) 통신 방법 및 장치
WO2020143564A1 (zh) 一种通信方法和通信装置
WO2020034919A1 (zh) 定位方法和通信装置
US10051561B2 (en) Methods and nodes for M2M communication
CN111149379A (zh) 无线通信系统中的接入层安全性
JP2021530171A (ja) 経路選択方法、端末デバイス及びネットワークデバイス
JP2007028233A (ja) 無線lanシステム
TW202025696A (zh) 一種控制數據傳輸方法、網路設備和儲存媒介
KR20190056914A (ko) 네트워크 슬라이스를 통한 서비스 제공 방법 및 장치
CN103036729A (zh) 一种开放网络能力的系统、方法和相关网元
CN108353263B (zh) 处理无线通信系统中的服务请求的方法及其设备
WO2023082878A1 (zh) 一种通信方法及装置
WO2022151420A1 (zh) 一种数据包传输的方法、装置和系统
WO2024016179A1 (zh) 路径选择方法及装置、设备、存储介质
JP2007028234A (ja) 無線lanシステム
JP6781272B2 (ja) 情報下り送信方法、データ送信方法、装置及びシステム
CN115835184A (zh) 终端设备的管理方法及装置
US20220124008A1 (en) Automated Service Layer Message Flow Management In A Communications Network
JP2023510410A (ja) マルチアクセス関連情報を伴うプロビジョニングトラフィック操向
WO2023213177A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951457

Country of ref document: EP

Kind code of ref document: A1