WO2024014624A1 - Photothermal microneedle patch containing gold nanoparticles - Google Patents

Photothermal microneedle patch containing gold nanoparticles Download PDF

Info

Publication number
WO2024014624A1
WO2024014624A1 PCT/KR2022/017835 KR2022017835W WO2024014624A1 WO 2024014624 A1 WO2024014624 A1 WO 2024014624A1 KR 2022017835 W KR2022017835 W KR 2022017835W WO 2024014624 A1 WO2024014624 A1 WO 2024014624A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
photothermal
patch
gold nanoparticles
skin
Prior art date
Application number
PCT/KR2022/017835
Other languages
French (fr)
Korean (ko)
Inventor
장의순
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Publication of WO2024014624A1 publication Critical patent/WO2024014624A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/242Gold; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0204Specific forms not provided for by any of groups A61K8/0208 - A61K8/14
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/81Preparation or application process involves irradiation

Definitions

  • the present invention is a microneedle photothermal patch containing gold nanoparticles that has the effect of increasing the efficiency of cosmetic/drug delivery into the skin by using the action of gold nanoparticles that cause an exothermic reaction in visible and near-infrared wavelengths of 400 to 1,400 nm. It's about.
  • LED masks have been in the spotlight, and various LED masks have been developed based on the fact that skin treatment effects differ depending on the wavelength of the light source.
  • existing LED masks are expensive for the general public to purchase, the treatment is mainly performed at dermatology hospitals or skin care shops, and it is reported that the effect is insufficient compared to the cost and the healing speed is slow.
  • Most of the representative LED masks sold at home and abroad use a mixture of UV and near-infrared wavelengths of light based on the skin improvement effect of each wavelength of light.
  • IR-B or IR-C it penetrates to the epidermal layer, but about 65% of IR-A, which is near infrared ray, penetrates through the near infrared window of our body to the dermis layer and the subcutaneous fat layer below. It is known to happen.
  • the near infrared wavelength region is called the near infrared window or optical window of our body and is widely used for medical treatment purposes. .
  • Metal nanoparticles such as gold have free electrons on the surface that vibrate through mutual interference with electromagnetic waves from external light, forming Surface Plasmon Resonance (SPR).
  • SPR Surface Plasmon Resonance
  • gold nanoparticles with a particle size of about 10 nm satisfy the SPR conditions at light with a wavelength of about 520 nm according to Mie theory and cause strong extinction (scattering + absorption) (Phys. Chem. Chem. Phys. , 2005, 7, 3258-3268; Solid State Physics, 1976, Brooks Cole).
  • transdermal drug absorption rate according to skin temperature has been proven through many academic studies, and an increase in blood flow in the dermal layer is observed without damage to skin tissue at a temperature of about 30 to 40 degrees Celsius.
  • the transdermal absorption rate of Lidocaine, a local anesthetic and anti-arrhythmic drug is greatly improved by the thermophoresis effect when the skin temperature is above 32°C, which is due to the covalent lipid layer connecting the stratum corneum cells. This can be explained by increased liquidity.
  • the direct passage through keratinocytes and the passage through the lipid layer between keratinocytes depend on the molecular weight of the drug, and polymers over 500 Dalton (1,000 g/mol) are difficult to penetrate.
  • drug delivery through pores or sweat pores is relatively easy for polymers to pass through, but it is small at 0.1% of the total skin area and is filled with sebum, so the transdermal absorption rate is low.
  • Microneedles have been developed and commercialized to increase transdermal drug delivery efficiency.
  • the global market share by microneedle type in 2020 is in the order of Solid, Hollow, and Dissolving.
  • Solid and Hollow types made of metal or silicon have a needle length of 500 ⁇ m or more and are mainly used for medical purposes, and the Dissolving type using biocompatible polymers has a needle length of 500 ⁇ m or more. It is less than 500 ⁇ m and is mainly used for beauty purposes.
  • Dissolving type microneedles made of polymer materials have the advantage of being able to deliver macromolecular drugs directly intradermally without pain and without reducing the drug due to liver metabolism, and without the problems of bleeding/infection, which are problems with medical products.
  • it has the disadvantage that it is difficult to insert into the dermal layer due to its low hardness, and the drug diffusion rate to the dermal layer is very slow due to the binding protein (Corneodesmosome) in the stratum corneum.
  • microneedle photothermal patch containing gold nanoparticles with excellent cosmetic/drug delivery properties.
  • the invention was completed.
  • the purpose of the present invention is to provide a microneedle photothermal patch containing gold nanoparticles, which has the effect of increasing the efficiency of cosmetic/drug delivery into the skin by using the exothermic reaction of gold nanoparticles.
  • the present invention relates to a microneedle photothermal patch containing gold nanoparticles.
  • the patch may have a plurality of microneedles 100 formed on one side of a film 200 containing gold nanoparticles.
  • the film is preferably made of a biocompatible matrix material that is not toxic to the skin, and may preferably be made of a biodegradable resin.
  • a biocompatible matrix material that is not toxic to the skin
  • PCL polycaprolactone
  • PLA polylactic acid
  • PBS polybutylene succinate
  • PBA polybutylene adipate
  • PBAT polybutylene adipate-terephthalade
  • PBSA polybutylene succinate-adipate
  • PBST polybutylene succinate-terephthalate
  • PBST polybutylene succinate-terephthalate
  • the film may contain more than 30 ppm of gold nanoparticles, preferably 30 to 1000 ppm.
  • the thickness of the film may be about 20 to 100 ⁇ m, preferably 30 to 80 ⁇ m, and more preferably 40 to 60 ⁇ m.
  • the patch preferably has 120 to 150 microneedles formed on the skin-adhesive side of the film, based on a film area of '60 to 70' mm x '30 to 35' mm, and the average upper diameter of one microneedle is 30. It can be formed to be ⁇ 60 ⁇ m, with an average height of 200 ⁇ 600 ⁇ m, the strength of the microneedle is 0.05 ⁇ 0.2N, and the pH when formed as a needle is preferably 5.5 ⁇ 7.5.
  • the biocompatible matrix material can be used with a molecular weight of 10,000 to 30,000, preferably with a molecular weight of 15,000 to 25,000, and more preferably with a molecular weight of 18,000 to 20,000.
  • the gold nanoparticles are characterized by causing an exothermic reaction in visible and near-infrared wavelengths of 400 to 1,400 nm.
  • the gold nanoparticles of the present invention preferably have a rod shape, are characterized by an aspect ratio of 3 to 5, and are preferably 70 to 300 nm in length.
  • the photothermal effect occurs at a wavelength in the near-infrared region of about 700 to 1,400 nm. (Photothermal effect) is excellent.
  • the gold nanoparticle having the rod shape may have an axial surface plasmon resonance wavelength ( ⁇ LSPR) of 800 ⁇ 15 nm.
  • gold nanoparticles when manufacturing gold nanoparticles, all gold nanoparticles that cause an exothermic reaction in the visible and near-infrared wavelengths of 400 to 1,400 nm are manufactured through crystal growth control, such as plate-shaped prisms, star shapes, nanocages, etc. Gold nanoparticles can be used.
  • the film can cause an exothermic reaction at 40 to 45°C at a light output of 20 to 51 mW/cm 2 .
  • the film may be formed by forming a biocompatible matrix material into a film form through a blowing method.
  • the biocompatible matrix material may be dissolved in a solvent at 80-90°C, gold nanoparticles added, mixed, blown, and dried at 140-160°C.
  • the solvent is water
  • the biocompatible matrix material can be mixed with water at a weight ratio of 1:0.1 to 1:5.
  • it may be manufactured by melting and blowing the biocompatible matrix material at a temperature of 200°C or higher, preferably 200 to 250°C.
  • the microneedles may be formed by dropping a plurality of needle compositions on one side of the film and then using a blowing-prepared solid microstructures (BSM, or Droplet extension; DEN) method. (In this case, instillation has the same meaning as spotting).
  • BSM blowing-prepared solid microstructures
  • DEN Droplet extension
  • the composition for needles may have a viscosity of 10,000 to 200,000 cSt.
  • the microneedles preferably include (step a) dropping a plurality of needle compositions on one side of a film containing gold nanoparticles; (Step b) bringing the protrusions of the support for needle production into contact with the needle composition; (step c) lifting the support; (Step d) blowing the lifted needle composition to solidify the needle composition; And (step e) cutting the solidified needle composition to form microneedles in a solid state.
  • the support for manufacturing needles is formed on one side of a plate with protrusions corresponding to the number of needles to be manufactured, and when the protrusions come into contact with a plurality of needle compositions dropped on a film, the needle composition lifts due to the viscosity of the needle composition. It has the role of being able to dry in a dry state.
  • the support for manufacturing the needle is formed with one or more air vents, so that air for drying the composition for needles can be blown through the air vents.
  • the needle composition may include a thickener.
  • the thickening agent includes hyaluronic acid and its salts, polyvinylpyrrolidone, cellulose polymer, dextran, gelatin, glycerin, polyethylene glycol, polysorbate, propylene glycol, povidone, carbomer, and gum gum. (gum ghatti), guar gum, glucomannan, glucosamine, dammer resin, rennet casein, locust bean gum, microfibrillated cellulose, psyllium seed gum.
  • xanthan gum arabino galactan
  • gum arabic alginic acid
  • gelatin gellan gum
  • carrageenan karaya gum
  • curdlan chitosan
  • chitin tara gum
  • It may include one selected from the group consisting of tara gum, tamarind gum, tragacanth gum, furcelleran, pectin, and pullulan.
  • the needle composition (or microneedle) of the patch of the present invention may contain (enclose) a drug.
  • the above drugs include skin cancer treatments, allergy suppressants, atopy suppressants, anti-inflammatory drugs, painkillers, anti-arthritis drugs, antispasmodics, antidepressants, antipsychotics, tranquilizers, anti-anxiety drugs, narcotic antagonists, anti-Parkinson's disease drugs, cholinergic agonists, anticancer drugs, and anti-inflammatory drugs.
  • Angiogenesis inhibitors immunosuppressants, antivirals, antibiotics, appetite suppressants, analgesics, anticholinergics, antihistamines, antimigraine drugs, hormones, coronary, cerebrovascular or peripheral vasodilators, contraceptives, antithrombotic agents, diuretics, antihypertensive agents.
  • it may include, but is not limited to, a treatment for cardiovascular disease.
  • the drug may be selected in the form of chemical drugs, protein drugs, peptide drugs, nucleic acid molecules for gene therapy, nanoparticles, etc.
  • the form of the drug that can be contained in the needle composition (or microneedle) is not particularly limited.
  • the drug may include chemical drugs, protein drugs, peptide drugs, nucleic acid molecules for gene therapy, nanoparticles, etc.
  • Protein drugs or peptide drugs that can be contained in the needle composition (or microneedle) are not particularly limited, and include hormones, hormone analogs, enzymes, enzyme inhibitors, signal transduction proteins or parts thereof, antibodies or parts thereof, and single chain antibodies. , binding proteins or their binding domains, antigens, attachment proteins, structural proteins, regulatory proteins, toxin proteins, cytokines, transcriptional regulatory factors, blood coagulation factors, vaccines, etc., but are not limited thereto.
  • the protein medicine or peptide medicine contains insulin, IGF-1 (insulin-like growth factor 1), growth hormone, erythropoietin, G-CSFs (granulocyte-colony stimulating factors), and GM-CSFs ( granulocyte/macrophage-colony stimulating factors), interferon alpha, interferon beta, interferon gamma, interleukin-1 alpha and beta, interleukin-3, interleukin-4, interleukin-6, interleukin-2, EGFs (epidermal growth factors), calcitonin ( calcitonin), ACTH (adrenocorticotropic hormone), TNF (tumor necrosis factor), atobisban, buserelin, cetrorelix, deslorelin, desmopressin ( desmopressin, dynorphin A (1-13), elcatonin, eleidosin, eptifibatide, growth hormone releasing hormone-II (GHRH
  • the needle composition may include (enclose) a cosmetic composition.
  • the cosmetic composition may include a wrinkle improving agent, a skin aging inhibitor, a skin whitening agent, an antioxidant, a skin anti-inflammatory agent, a moisturizer, or a hair growth agent.
  • the wrinkle improvement agent is a substance that inhibits MMP-1, an extracellular matrix (ECM) proteolytic enzyme, and includes silicic acid, N-Methyl-Lserine, and isoflavonoids ( Isoflavonoids, Dehydroepiendrosterone, Paoniflorin, etc. can be selected, and Benzastatins, a substance that prevents skin aging by removing free radicals that promote the breakdown of ECM, Coenzyme Q10, etc. can be used, and in addition, adenosine, ascorbyl glucoside, kinetin, auxin, peptide, etc., which are known to have various anti-wrinkle effects. Retinol, retinyl palmitate, polyethoxylated retinamide, alpha hydroxyl acid, etc. are available.
  • the whitening agent is arbutin, niacinamide, ascorbic acid, magnesium ascorbyl phosphate, ascorbyl acid-2-glucoside, and mulberry extract. , Ethyl ascorbyl ether, oil-soluble licorice extract, etc. can be used.
  • the moisturizing agent may be one or more selected from the group consisting of hydroxyproline, glycerin, glycerol, urea, amino acids, lactate, and pyroglutamic acid.
  • the needle composition for the manufacture of microneedles may, if necessary, be thinly applied to the entire film and dried for ease of attachment to the film before instillation.
  • the thickness after drying is preferably thinner than the biocompatible matrix material film.
  • an adhesive sheet with a larger area than the film may be attached to the film on one side opposite to where the microneedles are formed, in order to facilitate adhesion of the film to the skin.
  • Adhesive sheets can be made of any adhesive material that does not cause friction or damage to the skin, and can also be manufactured in a form that adheres closely to the skin, such as hydrogel.
  • each raw material included may be dissolved in a solvent.
  • the solvent used at this time is not particularly limited, and solvents include water, anhydrous or hydrous lower alcohols having 1-4 carbon atoms, acetone, ethyl acetate, chloroform, 1,3-butylene glycol, hexane, diethyl ether, or butyl acetate. It can be used, preferably water or lower alcohol, and most preferably water.
  • gold nanoparticles can be produced through the following method.
  • Step 1 Add sodium borohydride aqueous solution to a mixed solution of hexadecylcetyltrimethylammonium bromide aqueous solution and hydrogen tetrachloroaurate(III) tetrahydrate aqueous solution to create a solution containing gold seeds. manufacture,
  • the aqueous solution of chloroauric acid, hexadecylcetyltrimethylammonium bromide, and benzyldimethylhexadecylammonium chloride After mixing the aqueous solution of chloroauric acid, hexadecylcetyltrimethylammonium bromide, and benzyldimethylhexadecylammonium chloride, the aqueous solution of silver nitrate, which is a catalyst for the synthesis of gold nanoparticles, and the aqueous solution of ascorbic acid, which is a reducing agent, are added under stirring to form a growth solution. manufacturing step; and,
  • Step 2 Mixing and stirring the solution containing the gold seeds and the growth solution, centrifuging to remove the upper layer solution, and dispersing the remaining solution in distilled water to obtain a solution containing gold nanoparticles; can be manufactured.
  • the volume and concentration of each solution are not greatly limited, but preferably the aqueous solution of hexadecylcetyltrimethylammonium bromide is 0.05-5mM, hydrogen tetrachloroaurate (III) tetrahydrate It is preferable to use an aqueous solution with a concentration of 0.05 to 5mM and an aqueous sodium borohydride solution with a concentration of 1 to 50mM, and the mixing ratio of each solution is preferably 1:0.1 to 5:0.05 to 0.5 by volume.
  • the solution containing gold seeds is preferably aged for at least 90 minutes after preparation.
  • the longer time is not greatly limited, but it is preferably used after aging for 90 minutes to 6 hours.
  • the solution containing gold seeds and the growth solution of gold nanoparticles may be mixed at a volume ratio of 1:500 to 2000.
  • the volume and concentration of each solution or sample for preparing the growth solution are also not greatly limited, but preferably 300 to 3000 ml of 0.5 to 5mM chloroauric acid (HAuCl 4 ⁇ 4H 2 O) is used.
  • aqueous solution of a mixture of hexadecylcetyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL) (40-300 mM hexadecylcetyltrimethylammonium bromide (CTAB) and 30-70 mM sodium oleate (NaOL)) 300 ⁇
  • CTAB hexadecylcetyltrimethylammonium bromide
  • NaOL sodium oleate
  • the solution containing the gold nanoparticles is centrifuged again, the upper solution is removed, and the remaining solution is dispersed in distilled water.
  • a washing step may be added 1 to 3 times, through which hexadecylcetyltrimethylammonium bromide is produced. is removed, allowing a solution containing more purified gold nanoparticles to be obtained.
  • gold nanoparticles with a 9000-1500 ppm Au concentration ( ⁇ g Au/ml) can be obtained, preferably with a yield of 70-80%.
  • the present invention relates to a microneedle photothermal patch containing gold nanoparticles.
  • the patch of the present invention is made by forming skin-soluble microneedles containing a drug or cosmetic composition on a film containing gold nanoparticles. After attaching the microneedle photothermal patch to the skin where skin wrinkles or blemishes, such as around the eyes, are formed, near-infrared rays are applied.
  • the skin temperature is increased to about 40°C, increasing the dissolution of microneedles in the skin and increasing the delivery efficiency of useful substances to the skin to the maximum.
  • Figure 1 is a transmission electron microscope photograph of gold nanoparticles prepared in Example 1 of the present invention.
  • Figure 2 is a graph showing the UV-Vis absorption spectrum of gold nanoparticles prepared in Example 1 of the present invention.
  • Figure 3 is a graph showing the cytotoxicity of gold nanoparticles prepared in Example 1 of the present invention.
  • Figure 4 is a photograph of a film containing gold nanoparticles and a graph showing the results of confirming the photothermal effect of the film containing gold nanoparticles.
  • Figure 5 is a perspective view of the microneedle photothermal patch manufactured in Example 4 of the present invention (100: microneedle 200: film containing gold nanoparticles).
  • Figure 6 is a photograph of the microneedle photothermal patch manufactured in Example 4 of the present invention.
  • Figure 7 is a graph showing the process of adjusting the optical power to raise the microneedle photothermal patch manufactured in Example 4 of the present invention to around 40°C, the target temperature.
  • Figure 8 is a photograph confirming that the microneedles created in the patch were dissolved into the skin due to the photothermal effect through laser irradiation.
  • Figure 9 is a photograph showing the standards for skin patch reaction.
  • a mixed solution of hexadecylcetyltrimethylammonium bromide (CTAB) and Benzylhexadecylammonium chloride (BDAC) was used in the gold growth solution, but in this case, the surface plasmon resonance (LSPR) of the gold nanoparticles was used. It was not easy to manufacture gold nanorods with an absorption wavelength ( ⁇ LSPR) of about 716 nm and a peak of about 785 to 815 nm that responds to a near-infrared LED of about 790 nm. Accordingly, in the present invention, NaOL (Sodium Oleate) was used instead of Benzylhexadecylammonium chloride (BDAC) to synthesize gold nanoparticles using a more improved method.
  • CAB hexadecylcetyltrimethylammonium bromide
  • BDAC Benzylhexadecylammonium chloride
  • Example 1-1 Gold seed synthesis
  • Gold seed is prepared by mixing 5 ml of 0.5 mM hexadecylcetyltrimethylammonium bromide (CTAB) aqueous solution and 5 ml of 0.5mM hydrogen tetrachloroaurate(III) tetrahydrate (HAuCl 4 ⁇ 4H 2 O) aqueous solution with 0.01 M NaBH 4 aqueous solution cooled to about 4°C. After adding 0.6 ml, vortexing was performed for 3 minutes to prepare a solution containing gold seeds with a size of 2 to 3 nm. The synthesized seed solution was aged at room temperature for more than 2 hours and 30 minutes before use and used to grow gold nanoparticles.
  • CAB hexadecylcetyltrimethylammonium bromide
  • HuCl 4 ⁇ 4H 2 O 0.5mM hydrogen tetrachloroaurate(III) tetrahydrate
  • a gold nanoparticle growth solution was prepared to convert gold seeds into gold nanoparticles.
  • 1mM HAuCl 4 4H 2 O After mixing 1,000 ml of the aqueous solution with 1,000 ml of a mixed aqueous solution of hexadecylcetyltrimethylammonium bromide (CTAB) and NaOL (Sodium Oleate) (CTAB 150mM, NaOL 50mM, NaOL/CTAB is about 1/3), the gold nanoparticle synthesis catalyst A 4 mM (50 mL) aqueous solution of AgNO 3 was added, and 79 mM (14 mL) of an aqueous solution of Ascorbic acid, a reducing agent, was added under stirring. At this time, the color of the solution changes from dark yellow to colorless as Au(III) is reduced to Au(I).
  • Example 1-3 Gold nanoparticle growth and washing
  • Example 1-1 When 2.4 mL of the aged gold seed solution prepared in Example 1-1 is added to the gold nanoparticle growth solution (2064 mL) under stirring, the color of the solution changes from colorless to wine color within about 1 hour, and the color of the solution changes for another 24 hours. By reacting, a solution containing gold nanoparticles (aspect ratio approximately 4, length: approximately 88 nm, width: approximately 22 nm) was obtained. Next, to remove excess CTAB in the solution, the solution was centrifuged at 15,000 rpm for 20 minutes, the upper layer solution was removed, and the remaining solution was dispersed in 200 ml of distilled water. This washing process was repeated twice to prepare the final gold nanoparticle solution. The concentration of the final gold nanoparticle solution was measured using AAS (Atomic absorption spectroscopy) analysis to prepare a gold nanoparticle solution with a concentration of about 1,096 ppm.
  • AAS Anatomic absorption spectroscopy
  • gold nanoparticles were additionally manufactured by applying BDAC as in the existing method, and gold nanoparticles with an aspect ratio of about 4, a length of about 60 nm, and a width of about 15 nm were obtained.
  • the state of the gold nanoparticles prepared in Example 1 was photographed using a transmission electron microscope (TEM) and shown in Figure 1. At this time, the size of the synthesized gold nanoparticles was uniform on the TEM of about 88 nm in length and about 22 nm in diameter, and the same pattern was shown through repeated experiments, and the longitudinal surface plasmon resonance wavelength ( ⁇ LSPR) was about It was confirmed to be a gold nanoparticle of 800 ⁇ 15 nm.
  • TEM transmission electron microscope
  • gold nanoparticles were manufactured under the most effective conditions for causing a photothermal reaction at 790 nm, which is the wavelength of most LED masks used on the market.
  • the ⁇ LSPR of the gold nanoparticles manufactured using the existing method using BDAC instead of NaOL was found to be about 710 nm, as expected, making it unsuitable for use at 790 nm, the wavelength of the LED mask.
  • the tetrazolium assay using the MTT ([3-(4,5)-dimethylthiahiazo-2-yl]-2,5-diphenyltetrazolium bromide) reagent is performed by treating cells with a yellow water-soluble MTT reagent, causing the formation of tetrazolium by dehydrogenase in the mitochondria. Because the ring structure is reduced to formazan crystals, living cells can be quantitatively evaluated by dissolving these crystals in DMSO and measuring the amount of formazan crystals produced by spectroscopic methods.
  • Example 4-1 Preparation of films containing gold nanoparticles
  • a film containing gold nanoparticles having a rod shape to be used as a skin adhesive patch is prepared by mixing the gold nanoparticles prepared in Example 1 with polyvinyl alcohol (PVA) with a molecular weight of 18,000 to 20,000 mw at different concentrations (60 to 120 ppm). It was manufactured by molding into a film using a blowing method. At this time, when producing a film using PVA containing gold nanoparticles using a conventional spreading method, bubbles are formed when the solvent is removed, which is not desirable.
  • PVA polyvinyl alcohol
  • PVA was mixed with water at a weight ratio of 1:2, dissolved at a temperature of 80 ⁇ 90°C, blown, and dried at about 150°C.
  • the thickness of the final film containing gold nanoparticles was about 50 ⁇ m.
  • the needle composition included 1g sodium hyaluronate, 1g sucrose, 0.1g niacinamide, 10g cyclodextrin, 0.1g soybean oil, and 0.01g sodium hydroxide. , 1g of allantoin, 1g of panthenol, 0.1g of adenosine, 0.1g of acetyloctapeptide-3, 0.1g of BHT, and the remainder of purified water were mixed to make a total of 100g.
  • This composition for needles is only an example and is not limited thereto.
  • composition for needles prepared in this way was dropped on the PVA film containing gold nanoparticles. At this time, when the composition was dropped on the film, it was set so that 133 ⁇ 15 microneedles were formed based on the film area of '60 ⁇ 70' mm x '30 ⁇ 35' mm.
  • each composition dropped on the film was brought into contact with the protrusions of the support for needle production. Due to the viscosity of the composition itself, the needle composition was blown into the film-composition-protrusion connected state and solidified. Afterwards, the solidified needle composition was cut to form microneedles on the PVA film.
  • microneedles are characterized by penetrating into the skin and dissolving into the skin, thereby increasing the absorption rate of the drug or cosmetic composition contained within the needle into the skin.
  • Example 4-4 Manufacturing of microneedle photothermal patch for eye area
  • Each film on which microneedles were formed was divided into 66 mm x 31 mm to provide a patch for alleviating wrinkles around the eyes. Approximately 148 microneedles were formed per divided film area, and the total weight of each individual film was 631.5 mg. Based on one microneedle, the upper diameter was 39.13 ⁇ m, the average height was 354.87 ⁇ m, the strength was about 0.157N, and the pH was about 6.0.
  • the temperature of the patch between 40 and 70% of its optical power is found to be appropriate for controlling the target temperature.
  • the optical power of the LED lamp is set to 70% and then maintained at 40%, and the temperature of the microneedle photothermal patch is maintained at 40°C by turning the LED on and off using the temperature sensor built into the LED device. It was confirmed that this would be appropriate for delivering a drug or cosmetic composition to the skin. Therefore, the final adjusted near-infrared LED output was 20 to 51 mW/cm 2 (18 to 46 J/cm 2 ).
  • the microneedle photothermal patch of Example 4 was adhered to the skin around the eyes, an LED device was installed, and a laser was irradiated. At this time, a PVA film that did not contain gold nanoparticles was used as a control.
  • PRIMOS-CR Canfield Scientific, Inc., USA, wrinkles under the eyes
  • VISIA-CR Canfield Scientific, Inc., USA, skin brightness
  • the overall wrinkle value under the eyes was confirmed to be reduced and skin brightness increased, as shown in Tables 2 and 3, confirming that there is a significant skin improvement effect compared to before use. .
  • the wrinkle improvement effect was found to be reduced by more than half after 4 weeks of using the microneedle photothermal patch containing gold nanoparticles.
  • the overall satisfaction with use was 3.0 or more with a maximum of 4.0, as shown in Table 4, showing very high satisfaction.
  • patches that did not contain gold nanoparticles were evaluated as low in satisfaction because the photothermal effect was not sufficiently observed and skin adhesion was not increased.
  • Hygiene was also found to be more affected by the thermal effect. there is.
  • Microneedle 200 Film containing gold nanoparticles

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a photothermal microneedle patch containing gold nanoparticles. The patch of the present invention is a patch in which a skin-soluble microneedle containing a drug or a cosmetic composition is formed on a film containing gold nanoparticles, wherein, by adhering the photothermal microneedle patch to the skin with wrinkles, blemishes or the like around the eyes, and then inducing the photothermal effect of gold nanoparticles by using a near-infrared LED light source, dissolution of the microneedle in the skin is increased while raising the skin temperature up to about 40 °C, and the delivery efficiency of an oil-soluble substance into the skin is increased to the maximum level.

Description

금 나노입자를 함유하는 마이크로니들 광열 패치Microneedle photothermal patch containing gold nanoparticles
본 발명은 400 ~ 1,400nm의 가시광선 및 근적외선 파장에서 발열반응을 일으키는 금 나노입자의 작용을 이용하여 피부 내로의 화장료/약물 전달효율을 증가시키는 효과가 있는 금 나노입자를 함유하는 마이크로니들 광열 패치에 관한 것이다.The present invention is a microneedle photothermal patch containing gold nanoparticles that has the effect of increasing the efficiency of cosmetic/drug delivery into the skin by using the action of gold nanoparticles that cause an exothermic reaction in visible and near-infrared wavelengths of 400 to 1,400 nm. It's about.
근래 LED 광원을 이용한 마스크 제품들이 각광받고 있는데 광원 파장에 따라 피부치료 효과가 다르다는 것을 근거로 하여 다양한 LED 마스크들이 개발되어 있다. 그러나 기존의 LED 마스크들은 일반인들이 구매하기에는 가격이 고가이기 때문에 주로 피부과 병원 혹은 피부 미용숍에서 시술이 이루어지며 비용 대비 그 효과가 미흡하고 치유 속도도 느린 것으로 보고되고 있다. 국내외에 판매되고 있는 대표적인 LED 마스크들은 대부분 빛의 파장별 피부 개선효과를 바탕으로 UV 파장과 근적외선 파장 영역의 빛을 혼합하여 사용하고 있다. 적외선은 700nm ~ 1mm의 파장을 갖으며 파장에 따라 IR-A(Near IR, λ = 750 ~ 1,400nm), IR-B(Mid IR, λ = 1,400 ~ 3,000nm), IR-C(Far IR, λ = 3,000nm ~ 1mm)로 나뉠 수 있는데 IR-B나 IR-C의 경우 표피층까지 투과되지만 근적외선인 IR-A의 약 65%가 우리 몸의 근적외선 창을 통해 진피층과 그 아래의 피하지방층까지 투과되는 것으로 알려져 있다. 이처럼 우리 생체 내에는 근적외선(Near infrared, NIR) 영역의 빛을 흡수하는 물질이 거의 없기 때문에 인체 투과력이 가장 높으며 따라서 근적외선 파장 영역을 우리 몸의 근적외선 창 또는 광학적 창이라고 부르며 의학적 치료용도로 널리 사용되고 있다. Recently, mask products using LED light sources have been in the spotlight, and various LED masks have been developed based on the fact that skin treatment effects differ depending on the wavelength of the light source. However, because existing LED masks are expensive for the general public to purchase, the treatment is mainly performed at dermatology hospitals or skin care shops, and it is reported that the effect is insufficient compared to the cost and the healing speed is slow. Most of the representative LED masks sold at home and abroad use a mixture of UV and near-infrared wavelengths of light based on the skin improvement effect of each wavelength of light. Infrared rays have a wavelength of 700 nm ~ 1 mm, and depending on the wavelength, they are divided into IR-A (Near IR, λ = 750 ~ 1,400 nm), IR-B (Mid IR, λ = 1,400 ~ 3,000 nm), and IR-C (Far IR, λ = 3,000 nm ~ 1 mm). In the case of IR-B or IR-C, it penetrates to the epidermal layer, but about 65% of IR-A, which is near infrared ray, penetrates through the near infrared window of our body to the dermis layer and the subcutaneous fat layer below. It is known to happen. As there are few substances in our body that absorb light in the near infrared (NIR) region, it has the highest penetration power in the human body. Therefore, the near infrared wavelength region is called the near infrared window or optical window of our body and is widely used for medical treatment purposes. .
금과 같은 메탈 나노입자는 표면에 존재하는 자유전자(Free electron)들이 외부 빛의 전자기파와 상호간섭을 통하여 자유전자 구름들이 진동함으로써 표면 플라스몬 공명(Surface Plasmon Resonance, SPR)를 형성하게 된다. 예를 들면, 약 10nm의 입자크기를 갖는 금 나노입자는 Mie theory에 따라 약 520nm 파장의 빛에서 SPR 조건을 만족시키게 되고 강한 Extinction(Scattering + Absorption)을 일으키게 된다(Phys. Chem. Chem. Phys., 2005, 7, 3258-3268; Solid State Physics, 1976, Brooks Cole). 구형 금 나노입자는 모든 방향에서 SPR 현상이 동일한 반면 금 나노막대(Gold nanorod)는 외부 전자기파에 의하여 종축 방향과 횡축방향으로 전자구름들이 진동하는 경로가 다르게 되고 종축 방향에서 발생하는 SPR 조건은 횡축 방향의 SPR 조건 보다 더 장파장의 빛에 의하여 발생하게 된다. 즉 종횡비(aspect ratio)가 커질수록 즉, 금 나노막대의 길이가 길어질수록 장파장에서의 흡수 피크가 적색편이(Red-shift)를 일으키면서 일반적으로 종횡비에 따라 약 700~1,200nm 근적외선 영역의 파장에서 강한 흡수를 일으킨다. 이 때 강한 근적외선 영역의 빛을 금 나노막대에 조사하면 금 나노막대의 종축방향을 따라 자유전자들이 빠르게 진동하면서 금 원자와 충돌을 일으키면서 열로 전환되는데 이와 같이 광자 에너지가 열에너지로 변환되는 과정을 광열효과(Photothermal effect)라고 한다. Metal nanoparticles such as gold have free electrons on the surface that vibrate through mutual interference with electromagnetic waves from external light, forming Surface Plasmon Resonance (SPR). For example, gold nanoparticles with a particle size of about 10 nm satisfy the SPR conditions at light with a wavelength of about 520 nm according to Mie theory and cause strong extinction (scattering + absorption) (Phys. Chem. Chem. Phys. , 2005, 7, 3258-3268; Solid State Physics, 1976, Brooks Cole). While spherical gold nanoparticles have the same SPR phenomenon in all directions, gold nanorods have different paths through which electron clouds vibrate in the longitudinal and transverse directions due to external electromagnetic waves, and the SPR conditions that occur in the longitudinal direction are different in the transverse direction. It is caused by light with a longer wavelength than the SPR conditions. In other words, as the aspect ratio increases, that is, as the length of the gold nanorod becomes longer, the absorption peak at long wavelengths red-shifts, generally at a wavelength in the near-infrared range of about 700 to 1,200 nm depending on the aspect ratio. Causes strong absorption. At this time, when light in the strong near-infrared range is irradiated to the gold nanorod, free electrons rapidly vibrate along the longitudinal axis of the gold nanorod and collide with the gold atom, converting into heat. This process of converting photon energy into heat energy is photoheat. It is called photothermal effect.
한편, 피부 온도에 따른 경피 내 약물 흡수율 증가는 많은 학술연구를 통해 증명되었으며 약 30~40℃의 온도에서 피부 조직의 손상 없이 진피층에서의 혈류량 증가가 관찰된다. 이에 대한 예로서, 국소마취제이자 항부정맥제인 리도카인(Lidocaine)의 경피 흡수율이 피부온도가 32℃ 이상일 때 열역동(Thermophoresis) 효과에 의해 크게 향상됨을 보여주었으며 이는 각질층 세포들을 연결하는 공유결합성 지질층의 유동성이 증가함에 따른 것으로 설명할 수 있다. Meanwhile, the increase in transdermal drug absorption rate according to skin temperature has been proven through many academic studies, and an increase in blood flow in the dermal layer is observed without damage to skin tissue at a temperature of about 30 to 40 degrees Celsius. As an example of this, it was shown that the transdermal absorption rate of Lidocaine, a local anesthetic and anti-arrhythmic drug, is greatly improved by the thermophoresis effect when the skin temperature is above 32℃, which is due to the covalent lipid layer connecting the stratum corneum cells. This can be explained by increased liquidity.
약물의 경피 흡수 경로 중 각질세포의 직접통과, 각질세포 사이의 지질층 통과 경로는 약물의 분자량에 의존적이며 500 Dalton(1,000g/mol) 이상의 고분자는 투과되기 어렵다. 또한 모공 또는 땀구멍을 통한 약물전달은 고분자가 통과하기에 비교적 용이하나 전체 피부면적의 0.1%로 작고 피지가 차 있어 경피 흡수율이 낮다. Among the transdermal absorption routes of drugs, the direct passage through keratinocytes and the passage through the lipid layer between keratinocytes depend on the molecular weight of the drug, and polymers over 500 Dalton (1,000 g/mol) are difficult to penetrate. In addition, drug delivery through pores or sweat pores is relatively easy for polymers to pass through, but it is small at 0.1% of the total skin area and is filled with sebum, so the transdermal absorption rate is low.
위와 같은 이유로 약물 또는 미용제품을 피부에 도포하였을 때 경피 내 흡수율이 약 5% 이하로 낮다고 알려져 있으며 따라서 피부 장벽을 뚫고 약물을 경피 내로 효과적으로 전달하는 것이 미용, 탈모, 각종 피부질환, 및 관절염 치료에 핵심 이슈로 떠오르고 있다. For the above reasons, it is known that when drugs or beauty products are applied to the skin, the transdermal absorption rate is low at about 5% or less. Therefore, effectively delivering drugs through the skin barrier and transdermally is effective in the treatment of beauty, hair loss, various skin diseases, and arthritis. It is emerging as a key issue.
경피 내 약물전달 효율을 증가시키기 위해 마이크로 니들이 개발 및 제품화 되어 있다. 2020년 마이크로 니들 타입 별 글로벌 시장 점유율은 Solid, Hollow, Dissolving 순이며 금속이나 실리콘을 소재로 한 Solid, Hollow type은 니들 길이가 500μm 이상으로 주로 의료용으로 사용되며 생체 적합성 폴리머를 이용한 Dissolving type은 니들 길이가 500μm 이하로 주로 뷰티용으로 사용된다. 고분자를 소재로한 Dissolving type의 마이크로 니들은 통증 없이 거대분자 약물을 간대사로 인한 약물 감소 없이 경피 내로 직접전달이 가능하고, 의료 제품의 문제점인 출혈/감염 문제가 없다는 장점이 있다. 다만, 낮은 경도로 인해 진피층까지 삽입이 어렵고, 각질층 내 결합 단백질(Corneodesmosome)로 인해 진피층까지 약물 확산 속도가 매우 느리다는 단점이 있다. Microneedles have been developed and commercialized to increase transdermal drug delivery efficiency. The global market share by microneedle type in 2020 is in the order of Solid, Hollow, and Dissolving. Solid and Hollow types made of metal or silicon have a needle length of 500μm or more and are mainly used for medical purposes, and the Dissolving type using biocompatible polymers has a needle length of 500μm or more. It is less than 500μm and is mainly used for beauty purposes. Dissolving type microneedles made of polymer materials have the advantage of being able to deliver macromolecular drugs directly intradermally without pain and without reducing the drug due to liver metabolism, and without the problems of bleeding/infection, which are problems with medical products. However, it has the disadvantage that it is difficult to insert into the dermal layer due to its low hardness, and the drug diffusion rate to the dermal layer is very slow due to the binding protein (Corneodesmosome) in the stratum corneum.
이에 본 발명자들은 금 나노입자가 갖는 광열전환 효과와 마이크로니들을 활용한 겔 패치에 대해 다양한 특징을 연구하던 중, 화장료/약물 전달성이 우수한 금 나노입자를 함유한 마이크로니들 광열 패치를 개발함으로써 본 발명을 완성하게 되었다. Accordingly, while researching various characteristics of the light-to-heat conversion effect of gold nanoparticles and gel patches using microneedles, the present inventors developed a microneedle photothermal patch containing gold nanoparticles with excellent cosmetic/drug delivery properties. The invention was completed.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
1. 대한민국 등록특허 제10-1333962호 (발명의 명칭 : 금 나노입자 제조 방법, 출원인 : 금오공과대학교 산학협력단, 등록일 : 2013년11월21일)1. Republic of Korea Patent No. 10-1333962 (Title of Invention: Gold Nanoparticle Manufacturing Method, Applicant: Kumoh Institute of Technology Industry-Academic Cooperation Foundation, Registration Date: November 21, 2013)
2. 대한민국 등록특허 제10-1819713호 (발명의 명칭 : 금 나노로드를 함유하는 패치 조성물, 출원인 : 금오공과대학교 산학협력단, 등록일 : 2018년01월11일)2. Republic of Korea Patent No. 10-1819713 (Title of invention: Patch composition containing gold nanorods, Applicant: Kumoh Institute of Technology Industry-Academic Cooperation Foundation, Registration date: January 11, 2018)
3. 대한민국 등록특허 제10-2367746호 (발명의 명칭 : 경피 투입형 약물 패치 마이크로 니들 제조 방법, 출원인 : 주식회사 동우글로발, 등록일 : 2022년02월22일)3. Republic of Korea Patent No. 10-2367746 (Title of invention: Transdermal drug patch microneedle manufacturing method, Applicant: Dongwoo Global Co., Ltd., Registration date: February 22, 2022)
4. 대한민국 등록특허 제10-2222704호 (발명의 명칭 : 하이드로겔 제형 기반의 마이크로니들 접착 패치, 출원인 : 포항공과대학교 산학협력단, 등록일 : 2021년02월25일)4. Republic of Korea Patent No. 10-2222704 (Title of invention: Microneedle adhesive patch based on hydrogel formulation, Applicant: Pohang University of Science and Technology Industry-Academic Cooperation Foundation, Registration date: February 25, 2021)
5. 대한민국 등록특허 제10-1386442호 (발명의 명칭 : 송풍방식을 이용하여 제조된 솔리드 마이크로 구조체 및 그의 제조방법, 출원인 : 주식회사 라파스, 등록일 : 2014년04월11일)5. Republic of Korea Patent No. 10-1386442 (Title of the invention: Solid microstructure manufactured using the blowing method and its manufacturing method, Applicant: Raphas Co., Ltd., Registration date: April 11, 2014)
6. 대한민국 등록특허 제10-1435888호 (발명의 명칭 : 히알루론산을 이용한 생분해성 마이크로니들 제조방법, 출원인 : 연세대학교 산학협력단, 등록일 : 2014년08월25일)6. Republic of Korea Patent No. 10-1435888 (Title of Invention: Method for manufacturing biodegradable microneedles using hyaluronic acid, Applicant: Yonsei University Industry-Academic Cooperation Foundation, Registration date: August 25, 2014)
본 발명의 목적은 금 나노입자의 발열반응 작용을 이용하여 피부 내로의 화장료/약물 전달효율을 증가시키는 효과가 있는 금 나노입자를 함유하는 마이크로니들 광열 패치를 제공하는 데에 있다. The purpose of the present invention is to provide a microneedle photothermal patch containing gold nanoparticles, which has the effect of increasing the efficiency of cosmetic/drug delivery into the skin by using the exothermic reaction of gold nanoparticles.
본 발명은 금 나노입자를 함유하는 마이크로니들 광열 패치에 관한 것이다. The present invention relates to a microneedle photothermal patch containing gold nanoparticles.
상기 패치는 금 나노입자가 포함된 필름(200)의 일면에 복수의 마이크로니들(100)이 형성된 것일 수 있다. The patch may have a plurality of microneedles 100 formed on one side of a film 200 containing gold nanoparticles.
상기 필름은 바람직하게는 피부에 독성이 없는 생체 적합성 매트릭스 소재로 제조된 것으로서 바람직하게는 생분해성 수지로 제조된 것일 수 있다. 일 예로서, 폴리비닐알코올(PVA), 폴리히드록시부틸레이트-발레레이트(PHBV), 폴리안하이드라이드(Polyanhydrides), 폴리포스파젠(Polyphosphazenes), 폴리오르쏘에스테르(Polyorthoesters), 폴리카프로락톤(PCL), 폴리락트산(PLA), 폴리부틸렌숙시네이트(PBS), 폴리부틸렌아디페이트(PBA), 폴리부틸렌아디페이트-테레프탈레이드(PBAT), 폴리부틸렌숙시네이트-아디페이트(PBSA) 및 폴리부틸렌숙시네이트-테레프탈레이트(PBST) 중 선택되는 소재의 필름 중 선택되는 소재의 필름일 수 있다. The film is preferably made of a biocompatible matrix material that is not toxic to the skin, and may preferably be made of a biodegradable resin. As an example, polyvinyl alcohol (PVA), polyhydroxybutyrate-valerate (PHBV), polyanhydrides, polyphosphazenes, polyorthoesters, polycaprolactone ( PCL), polylactic acid (PLA), polybutylene succinate (PBS), polybutylene adipate (PBA), polybutylene adipate-terephthalade (PBAT), polybutylene succinate-adipate (PBSA) and polybutylene succinate-terephthalate (PBST).
상기 필름에는 금 나노입자가 30ppm 이상 함유될 수 있고, 바람직하게는 30~1000ppm이 포함될 수 있다. 상기 필름의 두께는 약 20~100㎛, 바람직하게는 30~80㎛, 더 바람직하게는 40~60㎛일 수 있다. The film may contain more than 30 ppm of gold nanoparticles, preferably 30 to 1000 ppm. The thickness of the film may be about 20 to 100 μm, preferably 30 to 80 μm, and more preferably 40 to 60 μm.
상기 패치는 '60~70'㎜ x '30~35'㎜의 필름 면적 기준으로, 필름의 피부접착면에 120~150개의 마이크로니들이 형성되는 것이 바람직하고, 상기 마이크로니들 1개의 평균 상부 직경은 30~60㎛, 평균 높이는 200~600㎛인 상태로 형성될 수 있고, 마이크로니들의 강도는 0.05~0.2N이고, 니들로 형성된 상태에서의 pH는 5.5~7.5인 것이 바람직하다. The patch preferably has 120 to 150 microneedles formed on the skin-adhesive side of the film, based on a film area of '60 to 70' mm x '30 to 35' mm, and the average upper diameter of one microneedle is 30. It can be formed to be ~60㎛, with an average height of 200~600㎛, the strength of the microneedle is 0.05~0.2N, and the pH when formed as a needle is preferably 5.5~7.5.
상기 생체 적합성 매트릭스 소재는 분자량 10,000~30,000인 것을 사용할 수 있고, 바람직하게는 분자량 15,000~25,000인 것을 사용할 수 있으며, 더 바람직하게는 분자량 18,000~20,000인 것을 사용할 수 있다. The biocompatible matrix material can be used with a molecular weight of 10,000 to 30,000, preferably with a molecular weight of 15,000 to 25,000, and more preferably with a molecular weight of 18,000 to 20,000.
상기 금 나노입자는 400 ~ 1,400nm의 가시광선 및 근적외선 파장에서 발열반응을 일으키는 것을 특징으로 한다. The gold nanoparticles are characterized by causing an exothermic reaction in visible and near-infrared wavelengths of 400 to 1,400 nm.
본 발명의 금 나노입자는 바람직하게는 로드 형태를 가지며, 종횡비가 3~5인 것을 특징으로 하며, 길이가 70~300nm인 것이 더 좋으며, 이 경우 약 700~1,400nm 근적외선 영역의 파장에서 광열효과(Photothermal effect)가 우수하다. 상기 로드 형태를 갖는 금 나노입자는 축 표면 플라즈몬 공명 파장(λLSPR)이 800±15 nm인 것일 수 있다.The gold nanoparticles of the present invention preferably have a rod shape, are characterized by an aspect ratio of 3 to 5, and are preferably 70 to 300 nm in length. In this case, the photothermal effect occurs at a wavelength in the near-infrared region of about 700 to 1,400 nm. (Photothermal effect) is excellent. The gold nanoparticle having the rod shape may have an axial surface plasmon resonance wavelength (λLSPR) of 800 ± 15 nm.
또한, 본 발명에서, 금 나노입자의 제조 시, 결정 성장 조절을 통해 로드 타입이 아닌 판상형 프리즘, 별 모양, 나노케이지 등과 같이 제조된 400 ~ 1,400nm의 가시광선 및 근적외선 파장에서 발열반응을 일으키는 모든 금 나노입자를 사용할 수 있다. In addition, in the present invention, when manufacturing gold nanoparticles, all gold nanoparticles that cause an exothermic reaction in the visible and near-infrared wavelengths of 400 to 1,400 nm are manufactured through crystal growth control, such as plate-shaped prisms, star shapes, nanocages, etc. Gold nanoparticles can be used.
또한 상기 필름은 20 ~ 51 mW/cm2 의 광출력에서 40~45℃의 발열 반응을 일으킬 수 있다. Additionally, the film can cause an exothermic reaction at 40 to 45°C at a light output of 20 to 51 mW/cm 2 .
상기 필름은 생체 적합성 매트릭스 소재를 블로잉 공법을 통해 필름 형태로 형성한 것 수 있다. 바람직하게는 상기 생체 적합성 매트릭스 소재를 80~90℃에서 용매에 용해하여 금 나노입자를 첨가하고 혼합 후, 블로잉하여 140~160℃에서 건조한 것일 수 있다. 상기 용매는 물이며, 생체 적합성 매트릭스 소재를 물과 1:0.1 내지 1:5의 중량비로 혼합될 수 있다. 또는 상기 생체 적합성 매트릭스 소재를 200℃ 이상의 온도, 바람직하게는 200~250℃의 온도로 용융시켜 블로잉하여 제조한 것일 수 있다. The film may be formed by forming a biocompatible matrix material into a film form through a blowing method. Preferably, the biocompatible matrix material may be dissolved in a solvent at 80-90°C, gold nanoparticles added, mixed, blown, and dried at 140-160°C. The solvent is water, and the biocompatible matrix material can be mixed with water at a weight ratio of 1:0.1 to 1:5. Alternatively, it may be manufactured by melting and blowing the biocompatible matrix material at a temperature of 200°C or higher, preferably 200 to 250°C.
상기 마이크로니들은 니들용 조성물을 필름의 일면에 복수의 개수로 점적한 후 송풍인장방식(Blowing-prepared Solid Microstructures;BSM, 또는 Droplet extension; DEN) 을 통해 형성된 것일 수 있다. (이 때, 점적은 스팟팅(spotting)과 동일한 의미이다). 상기 니들용 조성물은 점도가 10000~200000 cSt인 것일 수 있다. The microneedles may be formed by dropping a plurality of needle compositions on one side of the film and then using a blowing-prepared solid microstructures (BSM, or Droplet extension; DEN) method. (In this case, instillation has the same meaning as spotting). The composition for needles may have a viscosity of 10,000 to 200,000 cSt.
상기 마이크로니들은 바람직하게는 (a단계) 금 나노입자가 함유된 필름의 일면에 니들용 조성물을 복수의 개수로 점적하는 단계; (b단계) 니들 제조용 지지체의 돌기부를 상기 니들 조성물에 접촉시키는 단계; (c단계) 상기 지지체를 리프팅 하는 단계; (d단계) 리프팅된 니들 조성물에 송풍하여, 상기 니들 조성물을 응고시키는 단계; 및 (e단계) 응고된 니들 조성물을 절단하여 고체 상태의 마이크로니들을 형성시키는 단계;를 통해 제조될 수 있다. The microneedles preferably include (step a) dropping a plurality of needle compositions on one side of a film containing gold nanoparticles; (Step b) bringing the protrusions of the support for needle production into contact with the needle composition; (step c) lifting the support; (Step d) blowing the lifted needle composition to solidify the needle composition; And (step e) cutting the solidified needle composition to form microneedles in a solid state.
상기 니들 제조용 지지체는 판상의 일면에 제조하고자 하는 니들의 개수만큼 돌기부가 형성된 것이며, 필름에 복수의 개수로 점적된 니들 조성물과 상기 돌기부가 접촉할 때, 니들 조성물의 점성으로 인해, 니들 조성물이 리프팅 된 상태로 건조될 수 있는 역할을 한다. 상기 니들 제조용 지지체에는 하나 또는 그 이상의 송풍구가 형성되어 있어, 니들용 조성물의 건조를 위한 송풍이 상기 송풍구를 통해 이루어질 수 있다. The support for manufacturing needles is formed on one side of a plate with protrusions corresponding to the number of needles to be manufactured, and when the protrusions come into contact with a plurality of needle compositions dropped on a film, the needle composition lifts due to the viscosity of the needle composition. It has the role of being able to dry in a dry state. The support for manufacturing the needle is formed with one or more air vents, so that air for drying the composition for needles can be blown through the air vents.
상기 니들용 조성물(또는 마이크로니들)에는 점증제가 포함될 수 있다. 상기 점증제는 히알루론산과 그의 염, 폴리비닐피롤리돈, 셀룰로오스 폴리머(cellulose polymer), 덱스트란, 젤라틴, 글리세린, 폴리에틸렌글리콜, 폴리소르베이트, 프로필렌글리콜, 포비돈, 카보머(carbomer), 가티검(gum ghatti), 구아검, 글루코만난, 글루코사민, 담마검(dammer resin), 렌넷카제인(rennet casein), 로커스트콩검(locust bean gum), 미소섬유상셀룰로오스(microfibrillated cellulose), 사일리움씨드검(psyllium seed gum), 잔탄검, 아라비노갈락탄(arabino galactan), 아라비아검, 알긴산, 젤라틴, 젤란검(gellan gum), 카라기난, 카라야검(karaya gum), 커드란(curdlan), 키토산, 키틴, 타라검(tara gum), 타마린드검(tamarind gum), 트라가칸스검(tragacanth gum), 퍼셀레란(furcelleran), 펙틴(pectin) 및 풀루란(pullulan)으로 구성된 군으로부터 선택되는 것이 포함될 수 있다. The needle composition (or microneedle) may include a thickener. The thickening agent includes hyaluronic acid and its salts, polyvinylpyrrolidone, cellulose polymer, dextran, gelatin, glycerin, polyethylene glycol, polysorbate, propylene glycol, povidone, carbomer, and gum gum. (gum ghatti), guar gum, glucomannan, glucosamine, dammer resin, rennet casein, locust bean gum, microfibrillated cellulose, psyllium seed gum. ), xanthan gum, arabino galactan, gum arabic, alginic acid, gelatin, gellan gum, carrageenan, karaya gum, curdlan, chitosan, chitin, tara gum ( It may include one selected from the group consisting of tara gum, tamarind gum, tragacanth gum, furcelleran, pectin, and pullulan.
본 발명 패치의 니들용 조성물(또는 마이크로니들)에는 약물이 포함(내포)될 수 있다. 상기 약물은 피부암 치료제, 알레르기 억제제, 아토피 억제제, 항염증제, 진통제, 항관절염제, 진경제, 항우울증제, 항정신병약물, 신경안정제, 항불안제, 마약길항제, 항파킨스질환 약물, 콜린성 아고니스트, 항암제, 항혈관신생억제제, 면역억제제, 항바이러스제, 항생제, 식욕억제제, 진통제, 항콜린제, 항히스타민제, 항편두통제, 호르몬제, 관상혈관, 뇌혈관 또는 말초혈관 확장제, 피임약, 항혈전제, 이뇨제, 항고혈압제 또는 심혈관질환 치료제가 포함될 수 있으나, 이에 한정되는 것은 아니다. 선택될 수 있다. 또한 상기 약물은 화학약물, 단백질 의약품, 펩타이드 의약품, 유전자 치료용 핵산 분자, 나노입자 등의 형태로 선택될 수 있다. The needle composition (or microneedle) of the patch of the present invention may contain (enclose) a drug. The above drugs include skin cancer treatments, allergy suppressants, atopy suppressants, anti-inflammatory drugs, painkillers, anti-arthritis drugs, antispasmodics, antidepressants, antipsychotics, tranquilizers, anti-anxiety drugs, narcotic antagonists, anti-Parkinson's disease drugs, cholinergic agonists, anticancer drugs, and anti-inflammatory drugs. Angiogenesis inhibitors, immunosuppressants, antivirals, antibiotics, appetite suppressants, analgesics, anticholinergics, antihistamines, antimigraine drugs, hormones, coronary, cerebrovascular or peripheral vasodilators, contraceptives, antithrombotic agents, diuretics, antihypertensive agents. Alternatively, it may include, but is not limited to, a treatment for cardiovascular disease. can be selected Additionally, the drug may be selected in the form of chemical drugs, protein drugs, peptide drugs, nucleic acid molecules for gene therapy, nanoparticles, etc.
본 발명에서 니들용 조성물(또는 마이크로니들)에 함유될 수 있는 약물의 형태는 특별하게 제한되지 않는다. 예를 들어, 상기 약물은 화학약물, 단백질 의약, 펩타이드 의약, 유전자 치료용 핵산 분자, 나노입자 등을 포함할 수 있다. In the present invention, the form of the drug that can be contained in the needle composition (or microneedle) is not particularly limited. For example, the drug may include chemical drugs, protein drugs, peptide drugs, nucleic acid molecules for gene therapy, nanoparticles, etc.
상기 니들용 조성물(또는 마이크로니들)에 함유될 수 있는 단백질 의약 또는 펩타이드 의약은 특별하게 제한되지 않으며, 호르몬, 호르몬 유사체, 효소, 효소저해제, 신호전달단백질 또는 그 일부분, 항체 또는 그 일부분, 단쇄항체, 결합단백질 또는 그 결합도메인, 항원, 부착단백질, 구조단백질, 조절단백질, 독소단백질, 사이토카인, 전사조절 인자, 혈액 응고 인자, 백신 등을 포함하나, 이에 한정되지 않는다. 보다 상세하게는, 상기 단백질 의약 또는 펩타이드 의약은 인슐린, IGF-1(insulin-like growth factor 1), 성장호르몬, 에리쓰로포이에틴, G-CSFs (granulocyte-colony stimulating factors), GM-CSFs (granulocyte/macrophage-colony stimulating factors), 인터페론 알파, 인터페론 베타, 인터페론 감마, 인터루킨-1 알파 및 베타, 인터루킨-3, 인터루킨-4, 인터루킨-6, 인터루킨-2, EGFs (epidermal growth factors), 칼시토닌(calcitonin), ACTH (adrenocorticotropic hormone), TNF (tumor necrosis factor), 아토비스반(atobisban), 부세레린(buserelin), 세트로렉릭스(cetrorelix), 데스로레린(deslorelin), 데스모프레신(desmopressin), 디노르핀 A (dynorphin A) (1-13), 엘카토닌(elcatonin), 엘레이도신(eleidosin), 엡티피바타이드(eptifibatide), GHRH-II(growth hormone releasing hormone-II), 고나도레린(gonadorelin), 고세레린(goserelin), 히스트레린(histrelin), 류프로레린(leuprorelin), 라이프레신(lypressin), 옥트레오타이드(octreotide), 옥시토신(oxytocin), 피트레신(pitressin), 세크레틴(secretin), 신칼라이드(sincalide), 테르리프레신(terlipressin), 티모펜틴(thymopentin), 티모신(thymosine) α1, 트리프토레린(triptorelin), 바이발리루딘(bivalirudin), 카르베토신(carbetocin), 사이클로스포린, 엑세딘(exedine), 란레오타이드(lanreotide), LHRH (luteinizing hormone-releasing hormone), 나파레린(nafarelin), 부갑상선 호르몬, 프람린타이드(pramlintide), T-20 (enfuvirtide), 타이말파신(thymalfasin), 지코노타이드에서 선택되는 1종을 포함할 수 있다.Protein drugs or peptide drugs that can be contained in the needle composition (or microneedle) are not particularly limited, and include hormones, hormone analogs, enzymes, enzyme inhibitors, signal transduction proteins or parts thereof, antibodies or parts thereof, and single chain antibodies. , binding proteins or their binding domains, antigens, attachment proteins, structural proteins, regulatory proteins, toxin proteins, cytokines, transcriptional regulatory factors, blood coagulation factors, vaccines, etc., but are not limited thereto. More specifically, the protein medicine or peptide medicine contains insulin, IGF-1 (insulin-like growth factor 1), growth hormone, erythropoietin, G-CSFs (granulocyte-colony stimulating factors), and GM-CSFs ( granulocyte/macrophage-colony stimulating factors), interferon alpha, interferon beta, interferon gamma, interleukin-1 alpha and beta, interleukin-3, interleukin-4, interleukin-6, interleukin-2, EGFs (epidermal growth factors), calcitonin ( calcitonin), ACTH (adrenocorticotropic hormone), TNF (tumor necrosis factor), atobisban, buserelin, cetrorelix, deslorelin, desmopressin ( desmopressin, dynorphin A (1-13), elcatonin, eleidosin, eptifibatide, growth hormone releasing hormone-II (GHRH-II), gona Gonadorelin, goserelin, histrelin, leuprorelin, lypressin, octreotide, oxytocin, pitressin , secretin, sincalide, terlipressin, thymopentin, thymosine α1, triptorelin, bivalirudin, carbeto Carbetocin, cyclosporine, exedine, lanreotide, LHRH (luteinizing hormone-releasing hormone), nafarelin, parathyroid hormone, pramlintide, T-20 ( It may include one selected from enfuvirtide, thymalfasin, and ziconotide.
상기 니들용 조성물(또는 마이크로니들)에는 화장료 조성물이 포함(내포)될 수 있다. 상기 화장료 조성물로는 주름개선제, 피부노화억제제, 피부미백제, 항산화제, 피부 항염제, 보습제 또는 발모제가 포함될 수 있다. The needle composition (or microneedle) may include (enclose) a cosmetic composition. The cosmetic composition may include a wrinkle improving agent, a skin aging inhibitor, a skin whitening agent, an antioxidant, a skin anti-inflammatory agent, a moisturizer, or a hair growth agent.
상기 주름개선제로서는 세포외 기질(Extracellular matrix, ECM) 단백질 분해 효소인 MMP-1을 저해하는 물질로서, 규산(Silicic acid), N-메틸-L-세린(N-Methyl-Lserine), 이소플라보노이드(Isoflavonoids), 디히드로에피엔드로스테론(Dehydroepiendrosteron), 파오니플로린 (Paoniflorin) 등이 선택될 수 있으며, ECM의 붕괴를 촉진하는 활성산소를 제거하여 피부의 노화 방지하는 물질로서 벤자스타틴(Benzastatins), 코엔자임 큐10(Coenzyme Q10) 등이 사용될 수 있고, 이 외에도 각종 주름개선효과가 알려진 아데노신(adenosine), 아스코르빌글루코사이드(ascorbyl glucoside), 키네틴(kinetin), 옥신(auxin), 펩타이드(peptide), 레티놀(retinol), 레티닐팔미테이트(retinyl palmitate), 폴리에톡실레이티드레틴아마이드(Polyethoxylated Retinamide), 알파-하이드록시산(alpha hydroxyl acid) 등이 이용가능하다.The wrinkle improvement agent is a substance that inhibits MMP-1, an extracellular matrix (ECM) proteolytic enzyme, and includes silicic acid, N-Methyl-Lserine, and isoflavonoids ( Isoflavonoids, Dehydroepiendrosterone, Paoniflorin, etc. can be selected, and Benzastatins, a substance that prevents skin aging by removing free radicals that promote the breakdown of ECM, Coenzyme Q10, etc. can be used, and in addition, adenosine, ascorbyl glucoside, kinetin, auxin, peptide, etc., which are known to have various anti-wrinkle effects. Retinol, retinyl palmitate, polyethoxylated retinamide, alpha hydroxyl acid, etc. are available.
상기 미백제는 알부틴(arbutin), 나이아신아마이드(niacinamide), 아스코르빈산(ascorbic acid), 마그네슘 아스코빌 포스페이트(magnesium ascorbyl phosphate), 아스코빌 애시드-2-글루코사이드(ascorbyl acid-2-glucoside), 닥나무 추출물, 에틸아스코빌에티르(Ethyl ascorbyl ether, 유용성 감초 추출물 등이 사용 가능하다.The whitening agent is arbutin, niacinamide, ascorbic acid, magnesium ascorbyl phosphate, ascorbyl acid-2-glucoside, and mulberry extract. , Ethyl ascorbyl ether, oil-soluble licorice extract, etc. can be used.
상기 보습제로는 하이드록시 프롤린, 글리세린, 글리세롤, 우레아, 아미노산, 락테이트 및 피로글루탐산으로 이루어진 군 중에서 선택되는 1종 이상을 사용할 수 있다. The moisturizing agent may be one or more selected from the group consisting of hydroxyproline, glycerin, glycerol, urea, amino acids, lactate, and pyroglutamic acid.
마이크로니들의 제조를 위한 니들용 조성물은, 필요에 따라, 점적하기 전에 필름으로의 부착의 용이성을 위해, 필름 전체에 얇게 도포되고 건조될 수도 있다. 건조된 후의 두께는 생체 적합성 매트릭스 소재 필름보다 얇은 두께인 것이 바람직하다. The needle composition for the manufacture of microneedles may, if necessary, be thinly applied to the entire film and dried for ease of attachment to the film before instillation. The thickness after drying is preferably thinner than the biocompatible matrix material film.
또 다른 양태에서, 필요에 따라, 필름에서 마이크로니들이 형성된 반대측 일면에는, 피부로의 필름의 접착을 용이하게 하기 위해, 필름보다 더 큰 면적의 점착시트가 필름에 접착될 수 있다. 점착시트는 피부에 마찰이나 손상을 주지 않는 점착성 물질이라면 어느 것이나 사용 가능하며, 하이드로겔과 같이 피부에 밀착되는 형태로도 제조될 수도 있다. In another aspect, if necessary, an adhesive sheet with a larger area than the film may be attached to the film on one side opposite to where the microneedles are formed, in order to facilitate adhesion of the film to the skin. Adhesive sheets can be made of any adhesive material that does not cause friction or damage to the skin, and can also be manufactured in a form that adheres closely to the skin, such as hydrogel.
니들용 조성물은 포함되는 각 원료가 용매를 통해 용해된 상태일 수 있다. 이 때 사용되는 용매는 특별하게 제한되지 않으며, 물, 탄소수 1-4의 무수 또는 함수 저급 알코올, 아세톤, 에틸 아세테이트, 클로로포름, 1,3-부틸렌글리콜, 헥산, 디에틸에테르 또는 부틸아세테이트가 용매로 이용될 수 있으며, 바람직하게는 물 또는 저급 알코올이고, 가장 바람직하게는 물이다. In the composition for needles, each raw material included may be dissolved in a solvent. The solvent used at this time is not particularly limited, and solvents include water, anhydrous or hydrous lower alcohols having 1-4 carbon atoms, acetone, ethyl acetate, chloroform, 1,3-butylene glycol, hexane, diethyl ether, or butyl acetate. It can be used, preferably water or lower alcohol, and most preferably water.
본 발명에서 금 나노입자는 다음의 방법을 통해 제조될 수 있다. In the present invention, gold nanoparticles can be produced through the following method.
(제1단계) 헥사데실세틸트리메틸암모늄 브로마이드 수용액과 히드로겐 테트라크로로아우레이트(III) 테트라히드레이트 수용액을 혼합한 용액에 수소화붕소나트륨 수용액을 첨가하여 금 시드(Gold seed)가 포함된 용액을 제조하고, (Step 1) Add sodium borohydride aqueous solution to a mixed solution of hexadecylcetyltrimethylammonium bromide aqueous solution and hydrogen tetrachloroaurate(III) tetrahydrate aqueous solution to create a solution containing gold seeds. manufacture,
염화금산 수용액, 헥사데실세틸트리메틸암모늄 브로마이드와 벤질디메틸헥사데실암모늄 크로라이드의 혼합 수용액을 혼합한 후, 금 나노입자의 합성 촉매제인 질산은 수용액과 환원제인 아스코르브산 수용액을 교반 하에 첨가하여 성장용액을 제조하는 단계; 및, After mixing the aqueous solution of chloroauric acid, hexadecylcetyltrimethylammonium bromide, and benzyldimethylhexadecylammonium chloride, the aqueous solution of silver nitrate, which is a catalyst for the synthesis of gold nanoparticles, and the aqueous solution of ascorbic acid, which is a reducing agent, are added under stirring to form a growth solution. manufacturing step; and,
(제2단계) 금 시드가 포함된 용액과 성장용액을 혼합하고 교반한 후, 원심분리하여 상층 용액을 제거한 뒤, 남은 용액을 증류수에 분산시켜 금 나노입자가 포함된 용액을 얻는 단계;를 통해 제조될 수 있다. (Step 2) Mixing and stirring the solution containing the gold seeds and the growth solution, centrifuging to remove the upper layer solution, and dispersing the remaining solution in distilled water to obtain a solution containing gold nanoparticles; can be manufactured.
이 때, 제1단계에 있어서, 각 용액의 부피와 농도는 크게 제한되지는 않으나 바람직하게는 헥사데실세틸트리메틸암모늄 브로마이드 수용액은 0.05~5mM, 히드로겐 테트라크로로아우레이트(III) 테트라히드레이트 수용액은 0.05~5mM, 수소화붕소나트륨 수용액은 1~50mM의 농도를 갖는 것을 사용하는 것이 바람직하며, 각 용액의 혼합비는 1:0.1~5:0.05~0.5의 부피비인 것이 바람직하다. At this time, in the first step, the volume and concentration of each solution are not greatly limited, but preferably the aqueous solution of hexadecylcetyltrimethylammonium bromide is 0.05-5mM, hydrogen tetrachloroaurate (III) tetrahydrate It is preferable to use an aqueous solution with a concentration of 0.05 to 5mM and an aqueous sodium borohydride solution with a concentration of 1 to 50mM, and the mixing ratio of each solution is preferably 1:0.1 to 5:0.05 to 0.5 by volume.
또한 상기 제1단계에서, 금 시드가 포함된 용액은 제조 후 90분 이상 인 것이 좋으며, 그 이상의 시간은 크게 제한되지는 않으나, 바람직하게는 90분~6시간 동안 숙성시켜 사용하는 것이 바람직하다. In addition, in the first step, the solution containing gold seeds is preferably aged for at least 90 minutes after preparation. The longer time is not greatly limited, but it is preferably used after aging for 90 minutes to 6 hours.
상기 제2단계에서, 금 시드가 포함된 용액과 금 나노입자의 성장용액은 1: 500~2000의 부피비로 혼합될 수 있다.In the second step, the solution containing gold seeds and the growth solution of gold nanoparticles may be mixed at a volume ratio of 1:500 to 2000.
상기 제2단계에서, 상기 성장용액을 제조하기 위한 각 용액 또는 시료의 부피와 농도 또한 크게 제한되지는 않지만, 바람직하게는 0.5~5mM의 염화금산(HAuCl4·4H2O) 300~3000㎖를, 헥사데실세틸트리메틸암모늄 브로마이드(CTAB)와 30올레인산 나트륨(NaOL)이 혼합된 수용액(40~300 mM 헥사데실세틸트리메틸암모늄 브로마이드(CTAB) 및 30~70 mM 올레인산 나트륨(NaOL)) 300~3000㎖와 혼합한 후 금 나노입자의 합성 촉매제인 1~10mM 질산은 20~70 ㎖ 수용액을 넣고 환원제인 50~100 mM 아스코르브산 수용액 10~20 ㎖을 교반 하에 첨가하여 제조할 수 있다. In the second step, the volume and concentration of each solution or sample for preparing the growth solution are also not greatly limited, but preferably 300 to 3000 ml of 0.5 to 5mM chloroauric acid (HAuCl 4 ·4H 2 O) is used. , aqueous solution of a mixture of hexadecylcetyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL) (40-300 mM hexadecylcetyltrimethylammonium bromide (CTAB) and 30-70 mM sodium oleate (NaOL)) 300~ After mixing with 3000 ml, it can be prepared by adding 20-70 ml of 1-10mM silver nitrate aqueous solution, which is a catalyst for the synthesis of gold nanoparticles, and adding 10-20 ml of 50-100mM ascorbic acid aqueous solution, which is a reducing agent, under stirring.
상기 제2단계에서 금 나노입자가 포함된 용액을 다시 원심분리하고 상층 용액을 제거하고, 남은 용액을 증류수에 분산시키는 세척 단계를 1~3회 추가할 수도 있으며 이를 통해 헥사데실세틸트리메틸암모늄 브로마이드가 제거되어 보다 정제된 금 나노입자가 포함된 용액을 얻을 수 있다. In the second step, the solution containing the gold nanoparticles is centrifuged again, the upper solution is removed, and the remaining solution is dispersed in distilled water. A washing step may be added 1 to 3 times, through which hexadecylcetyltrimethylammonium bromide is produced. is removed, allowing a solution containing more purified gold nanoparticles to be obtained.
이 단계를 거쳐, 바람직하게는 결과적으로 수율 70~80%의 9000~1500 ppm Au 농도(㎍ Au/㎖)인 금 나노입자를 얻을 수 있다. Through this step, gold nanoparticles with a 9000-1500 ppm Au concentration (μg Au/ml) can be obtained, preferably with a yield of 70-80%.
본 발명은 금 나노입자를 함유하는 마이크로니들 광열 패치에 관한 것이다. 본 발명의 패치는 금 나노입자가 포함된 필름에 약물이나 화장료 조성물이 내포된 피부 용해성 마이크로니들이 형성된 것으로서, 눈가 등의 피부 주름이나 잡티 등이 생성된 피부에 마이크로니들 광열 패치를 접착시킨 후, 근적외선 LED 광원을 이용하여 금 나노입자의 광열효과를 유도함으로써 피부온도를 약 40℃까지 상승시키면서 마이크로니들의 피부 내 용해를 증가시키고 피부로의 유용성 물질의 전달효율을 최대치로 증가시킨다. The present invention relates to a microneedle photothermal patch containing gold nanoparticles. The patch of the present invention is made by forming skin-soluble microneedles containing a drug or cosmetic composition on a film containing gold nanoparticles. After attaching the microneedle photothermal patch to the skin where skin wrinkles or blemishes, such as around the eyes, are formed, near-infrared rays are applied. By inducing the photothermal effect of gold nanoparticles using an LED light source, the skin temperature is increased to about 40℃, increasing the dissolution of microneedles in the skin and increasing the delivery efficiency of useful substances to the skin to the maximum.
도 1은 본 발명의 실시예 1에서 제조한 금 나노입자의 투과전자현미경 사진이다. Figure 1 is a transmission electron microscope photograph of gold nanoparticles prepared in Example 1 of the present invention.
도 2는 본 발명의 실시예 1에서 제조한 금 나노입자의 UV-Vis 흡수 스펙트럼을 나타내는 그래프이다.Figure 2 is a graph showing the UV-Vis absorption spectrum of gold nanoparticles prepared in Example 1 of the present invention.
도 3은 본 발명의 실시예 1에서 제조한 금 나노입자의 세포독성을 나타내는 그래프이다. Figure 3 is a graph showing the cytotoxicity of gold nanoparticles prepared in Example 1 of the present invention.
도 4는 금 나노입자가 포함된 필름의 사진과 이 금 나노입자 함유 필름의 광열효과를 확인한 결과 그래프이다. Figure 4 is a photograph of a film containing gold nanoparticles and a graph showing the results of confirming the photothermal effect of the film containing gold nanoparticles.
도 5는 본 발명의 실시예 4에서 제조한 마이크로니들 광열 패치에 대한 사시도이다(100 : 마이크로니들 200 : 금 나노입자가 포함된 필름).Figure 5 is a perspective view of the microneedle photothermal patch manufactured in Example 4 of the present invention (100: microneedle 200: film containing gold nanoparticles).
도 6는 본 발명의 실시예 4에서 제조한 마이크로니들 광열 패치에 대한 사진이다. Figure 6 is a photograph of the microneedle photothermal patch manufactured in Example 4 of the present invention.
도 7은 본 발명의 실시예 4에서 제조한 마이크로니들 광열 패치를 목표 온도인 40℃ 전후로 상승시키기 위해 광파워를 조절하는 과정을 나타내는 그래프이다. Figure 7 is a graph showing the process of adjusting the optical power to raise the microneedle photothermal patch manufactured in Example 4 of the present invention to around 40°C, the target temperature.
도 8은 패치에 생성된 마이크로니들이 레이저 조사를 통한 광열 효과로 인해 피부 내로 용해되었음을 확인한 사진이다. Figure 8 is a photograph confirming that the microneedles created in the patch were dissolved into the skin due to the photothermal effect through laser irradiation.
도 9는 피부 첩포 반응의 기준을 나타내는 사진이다. Figure 9 is a photograph showing the standards for skin patch reaction.
이하 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 내용이 철저하고 완전해지도록, 당업자에게 본 발명의 사상을 충분히 전달하기 위해 제공하는 것이다. Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, it is provided to ensure that the content introduced here is thorough and complete, and to sufficiently convey the spirit of the present invention to those skilled in the art.
<실시예 1. 금 나노입자의 제조><Example 1. Preparation of gold nanoparticles>
기존에는 금 나노입자를 제조할 때, 금 성장용액에 hexadecylcetyltrimethylammonium bromide(CTAB)와 Benzylhexadecylammonium chloride(BDAC)의 혼합용액을 사용하였으나, 이 경우, 금 나노입자의 표면플라즈몬 공명(Longitudinal surface plasmon resonance, LSPR) 흡수파장(λLSPR)이 약 716 nm로 약 790 nm의 근적외선 LED에 반응하는 약 785~815nm 피크를 갖는 금나노로드의 제작이 용이하지 않았다. 이에 본 발명에서는 보다 개선된 방법으로 금 나노입자를 합성하기 위해 Benzylhexadecylammonium chloride(BDAC) 대신 NaOL(Sodium Oleate)를 이용하였다. Previously, when manufacturing gold nanoparticles, a mixed solution of hexadecylcetyltrimethylammonium bromide (CTAB) and Benzylhexadecylammonium chloride (BDAC) was used in the gold growth solution, but in this case, the surface plasmon resonance (LSPR) of the gold nanoparticles was used. It was not easy to manufacture gold nanorods with an absorption wavelength (λLSPR) of about 716 nm and a peak of about 785 to 815 nm that responds to a near-infrared LED of about 790 nm. Accordingly, in the present invention, NaOL (Sodium Oleate) was used instead of Benzylhexadecylammonium chloride (BDAC) to synthesize gold nanoparticles using a more improved method.
실시예 1-1. Gold seed의 합성Example 1-1. Gold seed synthesis
로드 형태를 갖는 금 나노입자를 합성하기 위해 먼저, Gold seed를 합성하였다. Gold seed는 0.5 mM의 hexadecylcetyltrimethylammonium bromide(CTAB) 수용액 5㎖와 0.5mM hydrogen tetrachloroaurate(III) tetrahydrate(HAuCl4·4H2O) 수용액 5㎖을 섞은 용액에 약 4℃로 냉각된 0.01 M NaBH4 수용액을 0.6 ㎖를 첨가한 후 3분간 Vortexing 하여 2 ~ 3nm 크기의 Gold seed가 포함된 용액을 제조하였다. 합성된 seed 용액은 사용 전 실온에서 2시간 30분 이상 숙성시켜 금 나노입자 성장에 이용하였다. To synthesize gold nanoparticles having a rod shape, gold seeds were first synthesized. Gold seed is prepared by mixing 5 ml of 0.5 mM hexadecylcetyltrimethylammonium bromide (CTAB) aqueous solution and 5 ml of 0.5mM hydrogen tetrachloroaurate(III) tetrahydrate (HAuCl 4 ·4H 2 O) aqueous solution with 0.01 M NaBH 4 aqueous solution cooled to about 4°C. After adding 0.6 ml, vortexing was performed for 3 minutes to prepare a solution containing gold seeds with a size of 2 to 3 nm. The synthesized seed solution was aged at room temperature for more than 2 hours and 30 minutes before use and used to grow gold nanoparticles.
실시예 1-2. 성장 용액 제조Example 1-2. Growth solution preparation
Gold seed를 금 나노입자로 제조하기 위한 금 나노입자 성장 용액을 제조하였다. 먼저 1mM의 HAuCl4·4H2O 수용액 1,000 ㎖를 hexadecylcetyltrimethylammonium bromide(CTAB)와 NaOL(Sodium Oleate)를 혼합한 수용액(CTAB 150 mM, NaOL 50 mM로서 NaOL/CTAB가 약 1/3임) 1,000 ㎖와 혼합한 후 금 나노입자 합성 촉매제인 AgNO3 4 mM(50 ㎖) 수용액을 넣고 환원제인 Ascorbic acid 수용액 79 mM(14 ㎖)을 교반 하에 첨가하였다. 이 때 용액의 색깔은 Au(III)가 Au(I)로 환원되면서 진한 노란색에서 무색으로 변하게 된다. A gold nanoparticle growth solution was prepared to convert gold seeds into gold nanoparticles. First, 1mM HAuCl 4 4H 2 O After mixing 1,000 ㎖ of the aqueous solution with 1,000 ㎖ of a mixed aqueous solution of hexadecylcetyltrimethylammonium bromide (CTAB) and NaOL (Sodium Oleate) (CTAB 150mM, NaOL 50mM, NaOL/CTAB is about 1/3), the gold nanoparticle synthesis catalyst A 4 mM (50 mL) aqueous solution of AgNO 3 was added, and 79 mM (14 mL) of an aqueous solution of Ascorbic acid, a reducing agent, was added under stirring. At this time, the color of the solution changes from dark yellow to colorless as Au(III) is reduced to Au(I).
실시예 1-3. 금 나노입자 성장 및 세척Example 1-3. Gold nanoparticle growth and washing
실시예 1-1에서 제조한 숙성된 Gold seed 용액 2.4㎖를 교반 하에 금 나노입자 성장용액(2064mL)에 첨가하면 약 1시간 이내에 용액의 색깔이 무색에서 와인 색깔로 변하게 되며 이로부터 24시간을 더 반응시켜 금 나노입자(종횡비 약 4, 길이 : 약 88nm, 폭 : 약 22nm)가 포함된 용액을 얻었다. 다음으로는 이 용액 내에 과량으로 존재하는 CTAB을 제거하기 위해 15,000 rpm에서 20분간 원심분리한 후 상층 용액을 제거하고 남은 용액을 200㎖의 증류수에 분산시켰다. 이와 같은 세척 과정을 2회 반복하여 최종 금 나노입자 용액을 준비하였다. 최종 생산된 금 나노입자 용액의 농도는 AAS(Atomic absorption spectroscopy) 분석을 이용하여 측정하여 약 1,096 ppm 농도를 갖는 금 나노입자 용액을 제조하였다. When 2.4 mL of the aged gold seed solution prepared in Example 1-1 is added to the gold nanoparticle growth solution (2064 mL) under stirring, the color of the solution changes from colorless to wine color within about 1 hour, and the color of the solution changes for another 24 hours. By reacting, a solution containing gold nanoparticles (aspect ratio approximately 4, length: approximately 88 nm, width: approximately 22 nm) was obtained. Next, to remove excess CTAB in the solution, the solution was centrifuged at 15,000 rpm for 20 minutes, the upper layer solution was removed, and the remaining solution was dispersed in 200 ml of distilled water. This washing process was repeated twice to prepare the final gold nanoparticle solution. The concentration of the final gold nanoparticle solution was measured using AAS (Atomic absorption spectroscopy) analysis to prepare a gold nanoparticle solution with a concentration of about 1,096 ppm.
한편, 추가적으로 기존 방법처럼 BDAC을 적용한 방법으로 금 나노입자를 제조한 바, 종횡비 약 4, 길이 : 약 60nm, 폭 : 약 15nm의 금 나노입자를 얻을 수 있었다. Meanwhile, gold nanoparticles were additionally manufactured by applying BDAC as in the existing method, and gold nanoparticles with an aspect ratio of about 4, a length of about 60 nm, and a width of about 15 nm were obtained.
<실시예 2. 금 나노입자의 투과전자현미경 사진><Example 2. Transmission electron micrograph of gold nanoparticles>
실시예 1에서 제조한 금 나노입자의 상태를 투과전자현미경(TEM)으로 찍어 도 1에 나타내었다. 이 때, 합성된 금 나노입자의 크기는 TEM 상에서 길이가 약 88 nm, 직경이 약 22 nm 정도로 균일한 상태였고, 반복적으로 실험하여 같은 패턴을 나타내었으며, 종축 표면 플라즈몬 공명 파장(λLSPR)이 약 800 ± 15 nm인 금 나노입자인 것으로 확인된다. The state of the gold nanoparticles prepared in Example 1 was photographed using a transmission electron microscope (TEM) and shown in Figure 1. At this time, the size of the synthesized gold nanoparticles was uniform on the TEM of about 88 nm in length and about 22 nm in diameter, and the same pattern was shown through repeated experiments, and the longitudinal surface plasmon resonance wavelength (λLSPR) was about It was confirmed to be a gold nanoparticle of 800 ± 15 nm.
이 경우, 시중에서 대부분 사용 중인 LED 마스크의 파장인 790 nm에서 광열 반응을 일으키기에 가장 효과적인 조건으로 금 나노입자가 제조되었음을 알 수 있다. In this case, it can be seen that gold nanoparticles were manufactured under the most effective conditions for causing a photothermal reaction at 790 nm, which is the wavelength of most LED masks used on the market.
그러나 NaOL 대신 BDAC을 적용한 기존 방법으로 제조한 금 나노입자의 λLSPR은 예상한 바와 같이 약 710 nm로 확인되어 LED 마스크의 파장인 790 nm에서 사용하기에는 적합하지 않는 것으로 나타났다. However, the λLSPR of the gold nanoparticles manufactured using the existing method using BDAC instead of NaOL was found to be about 710 nm, as expected, making it unsuitable for use at 790 nm, the wavelength of the LED mask.
이에, 이후로는 NaOL을 적용한 금 나노입자만을 실험에 사용하였다. Therefore, from now on, only gold nanoparticles to which NaOL was applied were used in the experiment.
<실시예 3. 금 나노입자 및 광원 파장에 따른 세포독성 테스트><Example 3. Cytotoxicity test according to gold nanoparticles and light source wavelength>
MTT ([3-(4,5)-dimethylthiahiazo-2-yl]-2,5-diphenyltetrazolium bromide) 시약을 이용하는 tetrazolium assay는 노란색의 수용성 MTT 시약을 세포에 처리하면 미토콘드리아에 있는 탈수소효소에 의해 tetrazolium의 고리 구조가 formazan 결정으로 환원되기 때문에 이 결정을 DMSO에 녹여 생성된 formazan 결정의 양을 분광학적 방법으로 측정함으로써 살아있는 세포를 정량적으로 평가할 수 있다. The tetrazolium assay using the MTT ([3-(4,5)-dimethylthiahiazo-2-yl]-2,5-diphenyltetrazolium bromide) reagent is performed by treating cells with a yellow water-soluble MTT reagent, causing the formation of tetrazolium by dehydrogenase in the mitochondria. Because the ring structure is reduced to formazan crystals, living cells can be quantitatively evaluated by dissolving these crystals in DMSO and measuring the amount of formazan crystals produced by spectroscopic methods.
합성한 금 나노입자에 대한 세포 독성을 확인하기 위하여 BLO-11 (mouse muscle fibroblast cell) 세포를 대상으로 MTT assay를 수행한 결과, 금 나노입자의 농도를 200 μg Au/mL(ppm)까지 증가시켜도 도 3과 같이 80% 이상의 세포생존율을 나타내어 세포 독성이 거의 없는 것으로 확인된다. 따라서 본 발명에서 제조할 광열패치에 금 나노입자를 200μg Au/mL(ppm) 농도 이하까지 포함시키더라도 안전할 것임을 알 수 있다. To confirm the cytotoxicity of synthesized gold nanoparticles, MTT assay was performed on BLO-11 (mouse muscle fibroblast cell) cells. As a result, even if the concentration of gold nanoparticles was increased to 200 μg Au/mL (ppm), As shown in Figure 3, the cell survival rate was over 80%, confirming that there was almost no cytotoxicity. Therefore, it can be seen that the photothermal patch to be manufactured in the present invention will be safe even if gold nanoparticles are included at a concentration of 200 μg Au/mL (ppm) or less.
<실시예 4. 마이크로니들 패치의 제조> <Example 4. Preparation of microneedle patch>
실시예 4-1. 금 나노입자가 포함된 필름의 제조Example 4-1. Preparation of films containing gold nanoparticles
피부 접착용 패치로 이용할 로드 형태를 갖는 금 나노입자가 포함된 필름은 분자량 18000~20000mw의 폴리비닐알코올(PVA)에 실시예 1에서 제조한 금 나노입자를 농도별(60~120ppm)로 혼합하여 블로잉(blowing) 공법을 이용하여 필름 형태로 성형하여 제조하였다. 이 때, 금 나노입자가 포함된 PVA로 필름을 통상적인 스프레드 등의 방법으로 제조시, 용매를 제거할 때 기포가 형성되어 바람직하지 않다. A film containing gold nanoparticles having a rod shape to be used as a skin adhesive patch is prepared by mixing the gold nanoparticles prepared in Example 1 with polyvinyl alcohol (PVA) with a molecular weight of 18,000 to 20,000 mw at different concentrations (60 to 120 ppm). It was manufactured by molding into a film using a blowing method. At this time, when producing a film using PVA containing gold nanoparticles using a conventional spreading method, bubbles are formed when the solvent is removed, which is not desirable.
이를 위해 PVA는 물에 1:2의 중량비로 혼합하여 80~90℃ 온도에서 용해시키고 블로잉 후 약 150℃에서 건조하였다. 최종 제조된 금 나노입자가 포함된 필름의 두께는 약 50㎛가 되었다. For this purpose, PVA was mixed with water at a weight ratio of 1:2, dissolved at a temperature of 80~90℃, blown, and dried at about 150℃. The thickness of the final film containing gold nanoparticles was about 50㎛.
이 필름의 사진은 도 4의 좌측에 나타내었다. 실험결과, 필름 내 금 나노입자 함량이 100ppm 이상에서 40 ~ 45℃의 광열효과를 나타냄을 확인할 수 있었는데, 실험 결과 중, 대표적으로, 필름 내 로드 형태를 갖는 금 나노입자(GNR) 함량이 60ppm인 것과 120ppm인 것의 결과를 도 4의 우측에 그래프로 나타내었다. A photograph of this film is shown on the left side of Figure 4. As a result of the experiment, it was confirmed that the gold nanoparticle content in the film exhibited a photothermal effect of 40 to 45 ℃ at a content of 100ppm or more. Among the experimental results, representatively, the content of gold nanoparticles (GNR) having a rod shape in the film was 60ppm. The results of 120ppm and 120ppm are graphed on the right side of Figure 4.
실시예 4-2. 니들용 조성물의 제조 Example 4-2. Preparation of composition for needles
다음으로는 하기의 원료를 혼합하여 니들용 조성물을 제조하였는데, 니들용 조성물에는 소듐하이알루로네이트 1g, 수크로오스 1g, 나이아신아마이드 0.1g, 사이클로덱스트린 10g, 돌콩오일 0.1g, 소듐하이드록사이드 0.01g, 알란토인 1g, 판테놀 1g, 아데노신 0.1g, 아세틸옥타펩타이드-3 0.1g, 비에이치티(BHT) 0.1g, 정제수 잔량으로 하여 총 100g이 되도록 혼합하여 제조하였다. 이와 같은 니들용 조성물은 일 예일 뿐, 이에 한정되지 않는다. Next, a needle composition was prepared by mixing the following raw materials. The needle composition included 1g sodium hyaluronate, 1g sucrose, 0.1g niacinamide, 10g cyclodextrin, 0.1g soybean oil, and 0.01g sodium hydroxide. , 1g of allantoin, 1g of panthenol, 0.1g of adenosine, 0.1g of acetyloctapeptide-3, 0.1g of BHT, and the remainder of purified water were mixed to make a total of 100g. This composition for needles is only an example and is not limited thereto.
실시예 4-3. 마이크로니들의 형성 Example 4-3. Formation of microneedles
이렇게 제조된 니들용 조성물을 금 나노입자가 포함된 PVA 필름 위에 떨어뜨렸다. 이 때, 조성물을 필름에 떨어뜨릴 때, '60~70'㎜ x '30~35'㎜의 필름 면적 기준으로, 133±15개의 마이크로니들이 형성되도록 설정하였다. The composition for needles prepared in this way was dropped on the PVA film containing gold nanoparticles. At this time, when the composition was dropped on the film, it was set so that 133 ± 15 microneedles were formed based on the film area of '60 ~ 70' mm x '30 ~ 35' mm.
니들 형상의 제조를 위해, 필름 위에 떨어진 각 조성물을 니들 제조용 지지체의 돌기부와 접촉시켰다. 조성물 자체의 점성으로 인해 필름-조성물-돌기부가 연결된 상태로 니들용 조성물에 송풍하여 이를 응고시켰다. 이 후, 응고된 니들용 조성물을 절단하여 PVA 필름 위에 마이크로니들이 형성되도록 하였다. For the production of needle shapes, each composition dropped on the film was brought into contact with the protrusions of the support for needle production. Due to the viscosity of the composition itself, the needle composition was blown into the film-composition-protrusion connected state and solidified. Afterwards, the solidified needle composition was cut to form microneedles on the PVA film.
이 마이크로니들은 피부 내로 침투하여 니들 자체가 피부 내로 용해되면서 니들 내에 함유된 약물이나 화장료 조성물이 피부로 흡수되는 흡수율을 높이는 것이 특징이다. These microneedles are characterized by penetrating into the skin and dissolving into the skin, thereby increasing the absorption rate of the drug or cosmetic composition contained within the needle into the skin.
실시예 4-4. 눈가용 마이크로니들 광열 패치의 제조 Example 4-4. Manufacturing of microneedle photothermal patch for eye area
마이크로니들이 형성된 각 필름은 눈가 주름완화용 패치로 제공하기 위해 66㎜ x 31㎜로 분할하였다. 분할된 필름 면적당 약 148개의 마이크로니들이 형성되었고, 각 개별 필름의 총 무게는 631.5mg이었다. 마이크로니들 1개 기준으로 상부 직경은 39.13㎛, 평균 높이는 354.87㎛, 강도 약 0.157N, 약 pH 6.0이었다. Each film on which microneedles were formed was divided into 66 mm x 31 mm to provide a patch for alleviating wrinkles around the eyes. Approximately 148 microneedles were formed per divided film area, and the total weight of each individual film was 631.5 mg. Based on one microneedle, the upper diameter was 39.13㎛, the average height was 354.87㎛, the strength was about 0.157N, and the pH was about 6.0.
<실시예 5. 온도 상승 확인을 위한 광열 테스트><Example 5. Photothermal test to confirm temperature rise>
마이크로니들 광열 패치의 사시도 및 사진은 도 5와 도 6에 나타내었고, 이렇게 제조된 마이크로니들 광열 패치를 이용하여 광열 테스트를 실시하였다. Perspective views and photographs of the microneedle photothermal patch are shown in Figures 5 and 6, and a photothermal test was performed using the microneedle photothermal patch manufactured in this way.
그 결과는 도 7에 나타내었는데, 근적외선 LED 출력 83 mW/cm2 (74 J/cm2) 기준으로 할 때, 이의 광파워 40~70% 사이에 패치의 온도가 목표온도를 조절하기에 적절한 것으로 판단하여 피부용 패치로 이용할 경우, LED 램프의 광파워는 70%로 하고 이후 40%로 유지하면서 LED 기기에 내장된 온도센서에 의해서 LED를 On-off 하면서 마이크로 니들 광열패치의 온도를 40℃로 유지시키는 것이 피부로의 약물 또는 화장료 조성물 전달에 적절할 것으로 확인되었다. 따라서, 최종 조절된 근적외선 LED 출력은 20 ~ 51 mW/cm2 (18 ~ 46 J/cm2)가 되었다. The results are shown in Figure 7. Based on the near-infrared LED output of 83 mW/cm 2 (74 J/cm 2 ), the temperature of the patch between 40 and 70% of its optical power is found to be appropriate for controlling the target temperature. When using it as a skin patch, the optical power of the LED lamp is set to 70% and then maintained at 40%, and the temperature of the microneedle photothermal patch is maintained at 40°C by turning the LED on and off using the temperature sensor built into the LED device. It was confirmed that this would be appropriate for delivering a drug or cosmetic composition to the skin. Therefore, the final adjusted near-infrared LED output was 20 to 51 mW/cm 2 (18 to 46 J/cm 2 ).
<실시예 6. 마이크로니들의 피부 내 용해를 위한 광열 테스트><Example 6. Photothermal test for dissolution of microneedles in the skin>
또한, PVA 필름에 마이크로니들이 형성되어 있더라도, 이를 피부에 접착하고 LED를 이용하여 레이저 조사할 때 광열 효과가 뒷받침되지 않으면 피부 내 용해성에 영향을 줄 수 있다. In addition, even if microneedles are formed on the PVA film, if the photothermal effect is not supported when it is attached to the skin and laser irradiated using an LED, it may affect the solubility in the skin.
이에 눈가 피부에 실시예 4의 마이크로니들 광열 패치를 접착시키고 LED 기기를 장착하고 레이저를 조사하였다. 이 때 대조군으로는 PVA 필름에 금 나노입자가 포함되지 않은 것을 사용하였다. Accordingly, the microneedle photothermal patch of Example 4 was adhered to the skin around the eyes, an LED device was installed, and a laser was irradiated. At this time, a PVA film that did not contain gold nanoparticles was used as a control.
그 결과, 도 8과 같이 PVA 필름 내의 금 나노입자의 함유 유무에 따라 마이크로니들이 피부 내에서 용해되는 정도가 다름을 확인할 수 있고, 금 나노입자가 함유되어 광열효과가 나타나야만 마이크로니들의 피부내 용해가 완전히 나타남을 알 수 있다. As a result, as shown in Figure 8, it can be confirmed that the degree to which microneedles are dissolved in the skin varies depending on the presence or absence of gold nanoparticles in the PVA film, and that the microneedles are dissolved in the skin only when gold nanoparticles are contained and a photothermal effect occurs. It can be seen that appears completely.
이로 인해, 니들 내에 화장료 조성물이나 약물이 포함되어 있을 때, 피부 내로의 흡수도가 현저하게 다를 것임이 확인된다. Due to this, it is confirmed that when a cosmetic composition or drug is included in the needle, the degree of absorption into the skin will be significantly different.
<실시예 7. 피부 자극성 시험> <Example 7. Skin irritation test>
만 20 ~ 59세 (평균 47.4 ± 7.0세) 여성 32명을 대상으로 실시예 4의 마이크로니들 광열 패치 1 ㎠를 등 부위에 첩포 후 24시간 후 제거, 첩포 제거 30분 및 48시간 경과 후 국제 접촉 피부염 연구회(International Contact Dermatitis Research Group, ICDRG)의 판정기준(표 1 및 도 9 참조)에 따라 연구자 육안평가를 통해 피부 반응도를 판독하고 피부 자극지수 범위를 확인한 결과 마이크로니들 광열패치의 평균 피부반응도는 0.24이며 판정기준에 따라 자극이 거의 없는 것으로 판정되었다. For 32 women aged 20 to 59 years (average 47.4 ± 7.0 years), 1 cm2 of the microneedle photothermal patch of Example 4 was applied to the back and removed 24 hours later. International contact was made 30 minutes and 48 hours after the patch was removed. According to the International Contact Dermatitis Research Group (ICDRG) criteria (see Table 1 and Figure 9), the researcher read the skin reactivity through visual evaluation and confirmed the skin irritation index range. As a result, the average skin reactivity of the microneedle photothermal patch was It was 0.24, and according to the judgment criteria, it was judged to be almost non-irritating.
표기Mark ScoreScore 평가기준Evaluation standard
-- 00 00
±± 0.50.5 0.50.5
++ 1One 1One
++++ 22 22
평균 피부 반응도 (Mean Score)
= (Σ(Score × No.of Responders))/(3(Maximum Score)×No.of Total Subjects))×100×(1/2)
Average skin reactivity (Mean Score)
= (Σ(Score × No.of Responders))/(3(Maximum Score)×No.of Total Subjects))×100×(1/2)
<실시예 8. 미백 및 주름개선 효과 확인><Example 8. Confirmation of whitening and wrinkle improvement effects>
실시예 8-1. 기기를 이용한 평가Example 8-1. Evaluation using devices
만 30 ~ 59세 (평균 50.1 ± 6.3세) 여성 20명을 대상으로 근적외선 LED 기기와 실시예 4의 마이크로니들 광열 패치를 하루 15분씩 사용하여 4주간 사용하고 눈밑 주름과 피부 밝기에 대한 개선효과를 평가하여 하기의 표 2와 표 3에 나타내었다. Twenty women aged 30 to 59 years (average 50.1 ± 6.3 years) were tested for improvement in wrinkles under the eyes and skin brightness after using the near-infrared LED device and the microneedle photothermal patch of Example 4 for 15 minutes a day for 4 weeks. The evaluation was performed and is shown in Tables 2 and 3 below.
- 기기 평가로 실시 : PRIMOS-CR (Canfield Scientific, Inc., USA, 눈밑 주름), VISIA-CR (Canfield Scientific, Inc., USA, 피부밝기)- Conducted by device evaluation: PRIMOS-CR (Canfield Scientific, Inc., USA, wrinkles under the eyes), VISIA-CR (Canfield Scientific, Inc., USA, skin brightness)
사용자user 눈 밑 주름값 (%)Wrinkle value under the eyes (%)
사용전Before use 1주1 week 2주2 weeks 4주4 weeks
금 나노입자 포함 제품의 사용자 평균값User average values for products containing gold nanoparticles 28.228.2 22.022.0 19.719.7 15.115.1
금 나노입자 미포함 제품의 사용자 평균값User average values for products without gold nanoparticles 28.228.2 25.625.6 24.124.1 23.423.4
※: Friedman Test, Wilcoxon Signed Rank Test with Bonferroni correction※: Friedman Test, Wilcoxon Signed Rank Test with Bonferroni correction
사용자user 눈 밑 피부밝기 (%)Skin brightness under eyes (%)
사용전Before use 1주1 week 2주2 weeks 4주4 weeks
금 나노입자 포함 제품의 사용자 평균값User average values for products containing gold nanoparticles 72.472.4 73.373.3 73.873.8 75.475.4
금 나노입자 미포함 제품의 사용자 평균값User average values for products without gold nanoparticles 72.472.4 72.972.9 73.173.1 73.273.2
※: Repeated Measures ANOVA, Bonferroni correction※: Repeated Measures ANOVA, Bonferroni correction
그 결과, 본 발명에서 제조한 마이크로니들 광열 패치에 대해, 표 2와 표 3과 같이 전체적인 눈 밑 주름값이 줄어들고, 피부밝기는 증가하는 것으로 확인되어 사용전에 비해 현저한 피부 개선 효과가 있는 것으로 확인된다. 특히 주름개선 효과는 금 나노입자가 포함된 마이크로니들 광열 패치 사용 4주 후 그 수치가 반 이상 줄어드는 것으로 나타났다. As a result, for the microneedle photothermal patch manufactured in the present invention, the overall wrinkle value under the eyes was confirmed to be reduced and skin brightness increased, as shown in Tables 2 and 3, confirming that there is a significant skin improvement effect compared to before use. . In particular, the wrinkle improvement effect was found to be reduced by more than half after 4 weeks of using the microneedle photothermal patch containing gold nanoparticles.
실시예 8-2. 사용자 평가 Example 8-2. User Rating
다음으로는 동일한 사람들을 대상으로 4주간의 실험이 마쳤을 때에, 피부 촉촉함, 부착력, 위생성, 전반적 사용감에 대해 설문조사를 통해 확인하였다. Next, when the four-week experiment with the same people was completed, skin moisture, adhesion, hygiene, and overall feeling of use were confirmed through a survey.
- 유효성 평가 : 시험대상자에 대한 설문 자가 평가 (5점 타점법 - 4점 : 매우 좋음, 0점 : 매우 나쁨)- Validity evaluation: Survey self-evaluation of test subjects (5-point scoring method - 4 points: very good, 0 points: very bad)
피부 촉촉함skin moisturized 부착력Adhesion 위생성hygiene 사용감feeling of use
금 나노입자 포함 제품의 사용자 평균값User average values for products containing gold nanoparticles 3.53.5 3.43.4 3.53.5 3.053.05
금 나노입자 미포함 제품의 사용자 평균값User average values for products without gold nanoparticles 2.12.1 2.62.6 2.92.9 2.342.34
그 결과, 본 발명에서 제조한 마이크로니들 광열 패치에 대해, 표 4와 같이 전체적인 사용 만족도가 최고 4.0 기준으로 3.0 이상으로서, 매우 높은 만족도를 갖는 것으로 나타났다. 부착력이나 사용감의 경우 금 나노입자가 포함되지 않은 패치에서는 광열효과가 충분히 나타나지 않아 피부 밀착도가 높아지지 않아 만족도 또한 낮은 것으로 평가된 것으로 확인되며, 위생성은 온열효과로 인해 더 영향을 받는 것으로도 파악할 수 있다. As a result, for the microneedle photothermal patch manufactured in the present invention, the overall satisfaction with use was 3.0 or more with a maximum of 4.0, as shown in Table 4, showing very high satisfaction. In terms of adhesion and feeling of use, it was confirmed that patches that did not contain gold nanoparticles were evaluated as low in satisfaction because the photothermal effect was not sufficiently observed and skin adhesion was not increased. Hygiene was also found to be more affected by the thermal effect. there is.
<실시예 9. 이상반응 평가><Example 9. Adverse reaction evaluation>
한편, 연구자에 의한 이상반응 평가 및 시험대상자 자가 이상반응 평가 결과, 시험기간 4주 동안 모든 시험대상자에서 시험제품 사용으로 인한 홍반(붉어짐), 부종(부어오름), 인설 생성(각질)과 같은 이상반응은 관찰되지 않았다. 또한 모든 시험대상자에서 가려움, 자통(찌르는 듯한 통증), 작열감, 뻣뻣함, 따끔거림과 같은 이상반응도 전혀 관찰되지 않았다. Meanwhile, as a result of adverse reaction evaluation by the researcher and self-assessment of adverse reactions by the test subjects, abnormalities such as erythema (reddening), edema (swelling), and scaling (scaling) due to use of the test product were observed in all test subjects during the 4-week test period. No reaction was observed. Additionally, no adverse reactions such as itching, stinging pain, burning, stiffness, or tingling were observed in all test subjects.
[부호의 설명][Explanation of symbols]
100 : 마이크로니들 200 : 금 나노입자가 포함된 필름 100: Microneedle 200: Film containing gold nanoparticles

Claims (11)

  1. 금 나노입자가 포함된 필름(200)의 일면에 복수의 마이크로니들(100)이 형성된 것을 특징으로 하는 마이크로니들 광열 패치. A microneedle photothermal patch, characterized in that a plurality of microneedles (100) are formed on one side of a film (200) containing gold nanoparticles.
  2. 제1항에 있어서, According to paragraph 1,
    상기 필름은 폴리비닐알코올(PVA), 폴리히드록시부틸레이트-발레레이트(PHBV), 폴리안하이드라이드(Polyanhydrides), 폴리포스파젠(Polyphosphazenes), 폴리오르쏘에스테르(Polyorthoesters), 폴리카프로락톤(PCL), 폴리락트산(PLA), 폴리부틸렌숙시네이트(PBS), 폴리부틸렌아디페이트(PBA), 폴리부틸렌아디페이트-테레프탈레이드(PBAT), 폴리부틸렌숙시네이트-아디페이트(PBSA) 및 폴리부틸렌숙시네이트-테레프탈레이트(PBST) 중 선택되는 소재의 필름인 것을 특징으로 하는 마이크로니들 광열 패치. The film is made of polyvinyl alcohol (PVA), polyhydroxybutyrate-valerate (PHBV), polyanhydrides, polyphosphazenes, polyorthoesters, and polycaprolactone (PCL). ), polylactic acid (PLA), polybutylene succinate (PBS), polybutylene adipate (PBA), polybutylene adipate-terephthalade (PBAT), polybutylene succinate-adipate (PBSA), and Microneedle photothermal patch, characterized in that it is a film made of a material selected from polybutylene succinate-terephthalate (PBST).
  3. 제1항에 있어서, According to paragraph 1,
    상기 필름은 블로잉 공법을 통해 형성된 것을 특징으로 하는 마이크로니들 광열 패치. The film is a microneedle photothermal patch, characterized in that formed through a blowing method.
  4. 제1항에 있어서, According to paragraph 1,
    상기 필름에는 금 나노입자가 30ppm 이상 함유되는 것을 특징으로 하는 마이크로니들 광열 패치. A microneedle photothermal patch, characterized in that the film contains more than 30ppm of gold nanoparticles.
  5. 제1항에 있어서, According to paragraph 1,
    상기 금 나노입자는 400 ~ 1,400nm의 가시광선 및 근적외선 파장에서 발열반응을 일으키는 것을 특징으로 하는 마이크로니들 광열 패치. The gold nanoparticles are a microneedle photothermal patch, characterized in that they cause an exothermic reaction in visible and near-infrared wavelengths of 400 to 1,400 nm.
  6. 제1항에 있어서,According to paragraph 1,
    상기 마이크로니들은 니들용 조성물을 필름의 일면에 복수의 개수로 점적한 후 송풍인장방식(Blowing-prepared Solid Microstructures;BSM)을 통해 형성된 것을 특징으로 하는 마이크로니들 광열 패치. The microneedle is a microneedle photothermal patch, characterized in that the needle composition is dropped in plural numbers on one side of the film and then formed through blowing-prepared solid microstructures (BSM).
  7. 제6항에 있어서,According to clause 6,
    상기 니들용 조성물은 점증제를 포함하는 것을 특징으로 하는 마이크로니들 광열 패치. The composition for the needle is a microneedle photothermal patch, characterized in that it contains a thickener.
  8. 제6항에 있어서,According to clause 6,
    상기 니들용 조성물에 약물이 포함되는 것을 특징으로 하는 마이크로니들 광열 패치. A microneedle photothermal patch, characterized in that the needle composition contains a drug.
  9. 제8항에 있어서,According to clause 8,
    상기 약물은 피부암 치료제, 알레르기 억제제, 아토피 억제제, 항염증제, 진통제, 항관절염제, 진경제, 항우울증제, 항정신병약물, 신경안정제, 항불안제, 마약길항제, 항파킨스질환 약물, 콜린성 아고니스트, 항암제, 항혈관신생억제제, 면역억제제, 항바이러스제, 항생제, 식욕억제제, 진통제, 항콜린제, 항히스타민제, 항편두통제, 호르몬제, 관상혈관, 뇌혈관 또는 말초혈관 확장제, 피임약, 항혈전제, 이뇨제, 항고혈압제 또는 심혈관질환 치료제에서 선택되는 것을 특징으로 하는 마이크로니들 광열 패치. The above drugs include skin cancer treatments, allergy suppressants, atopy suppressants, anti-inflammatory drugs, painkillers, anti-arthritis drugs, antispasmodics, antidepressants, antipsychotics, tranquilizers, anti-anxiety drugs, narcotic antagonists, anti-Parkinson's disease drugs, cholinergic agonists, anticancer drugs, and anti-inflammatory drugs. Angiogenesis inhibitors, immunosuppressants, antivirals, antibiotics, appetite suppressants, analgesics, anticholinergics, antihistamines, antimigraine drugs, hormones, coronary, cerebrovascular or peripheral vasodilators, contraceptives, antithrombotic agents, diuretics, antihypertensive agents. Or a microneedle photothermal patch selected from cardiovascular disease treatments.
  10. 제8항에 있어서,According to clause 8,
    상기 니들용 조성물에 화장료 조성물이 포함되는 것을 특징으로 하는 마이크로니들 광열 패치. A microneedle photothermal patch, characterized in that the composition for the needle includes a cosmetic composition.
  11. 제10항에 있어서,According to clause 10,
    상기 화장료 조성물은 주름개선제, 피부노화억제제, 피부미백제, 항산화제, 피부 항염제, 보습제 또는 발모제가 포함되는 것을 특징으로 하는 마이크로니들 광열 패치. The cosmetic composition is a microneedle photothermal patch comprising a wrinkle improving agent, a skin aging inhibitor, a skin whitening agent, an antioxidant, a skin anti-inflammatory agent, a moisturizer, or a hair growth agent.
PCT/KR2022/017835 2022-07-13 2022-11-14 Photothermal microneedle patch containing gold nanoparticles WO2024014624A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220086129A KR20240009072A (en) 2022-07-13 2022-07-13 Microneedle-hydrogel patch comprising gold nano-particle
KR10-2022-0086129 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014624A1 true WO2024014624A1 (en) 2024-01-18

Family

ID=89536774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017835 WO2024014624A1 (en) 2022-07-13 2022-11-14 Photothermal microneedle patch containing gold nanoparticles

Country Status (2)

Country Link
KR (1) KR20240009072A (en)
WO (1) WO2024014624A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819713B1 (en) * 2017-01-16 2018-01-17 금오공과대학교 산학협력단 Patch composition comprising gold nanoroad
KR101945112B1 (en) * 2017-07-31 2019-02-01 금오공과대학교 산학협력단 Patch composition comprising graphene oxide gold nanoroad
KR20190123642A (en) * 2018-04-24 2019-11-01 주식회사 엠씨넷 Multi-layer microneedles having excellent skin permeability, patches comprising the same and a method for preparing the patches
US20200179272A1 (en) * 2017-05-19 2020-06-11 Boryung Pharmaceutical Co., Ltd. Microneedle percutaneous patch containing donepezil
KR102233393B1 (en) * 2020-06-11 2021-03-30 주식회사 더마젝 Microneedles comprising antimicrobial agent for acne improvement, treatment or prevention and method for preparing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386442B1 (en) 2010-04-01 2014-04-18 주식회사 라파스 Process for Preparing Solid Microstructures by Blowing and Solid Microstructures Prepared by the Same
KR101333962B1 (en) 2012-02-16 2013-11-27 금오공과대학교 산학협력단 Preparation method for Au nanorod
KR101435888B1 (en) 2012-10-23 2014-09-01 연세대학교 산학협력단 Process for preparing bio-degradable microneedle using hyaluronic acid
KR102222704B1 (en) 2018-05-18 2021-03-04 포항공과대학교 산학협력단 Hydrogel formulation based microneedle adhesive patch
KR102367746B1 (en) 2021-07-27 2022-02-25 주식회사 동우글로발 Method of manufacturing micro needle transdermal drug patch and ultrasonic delivery device thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819713B1 (en) * 2017-01-16 2018-01-17 금오공과대학교 산학협력단 Patch composition comprising gold nanoroad
US20200179272A1 (en) * 2017-05-19 2020-06-11 Boryung Pharmaceutical Co., Ltd. Microneedle percutaneous patch containing donepezil
KR101945112B1 (en) * 2017-07-31 2019-02-01 금오공과대학교 산학협력단 Patch composition comprising graphene oxide gold nanoroad
KR20190123642A (en) * 2018-04-24 2019-11-01 주식회사 엠씨넷 Multi-layer microneedles having excellent skin permeability, patches comprising the same and a method for preparing the patches
KR102233393B1 (en) * 2020-06-11 2021-03-30 주식회사 더마젝 Microneedles comprising antimicrobial agent for acne improvement, treatment or prevention and method for preparing the same

Also Published As

Publication number Publication date
KR20240009072A (en) 2024-01-22

Similar Documents

Publication Publication Date Title
Amani et al. Microneedles for painless transdermal immunotherapeutic applications
Yu et al. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite
US10555896B2 (en) Skin penetration enhancing method and its penetration enhancer
CN112472660B (en) Azelaic acid-containing microneedle patch and preparation method thereof
KR20190080549A (en) Dissolvable microneedles for whitening, and manufacturing method thereof
WO2017119612A1 (en) Cosmetic composition for peel-off-type packs, and method for producing same
KR101174786B1 (en) Skin care melting roots mircroneedle patch and the processing method thereof
WO2011162478A2 (en) Cosmetic composition containing retinol stabilized by porous polymer beads and nanoemulsion
WO1999017738A1 (en) A prolamine-plant polar lipid composition, its method of preparation and applications thereof
Wang et al. Dissolvable layered microneedles with core-shell structures for transdermal drug delivery
KR20110062277A (en) Cosmetic composition of multi-pore patch for skin improvement of two-form type using lyophilization
Cao et al. Development of sinomenine hydrochloride-loaded polyvinylalcohol/maltose microneedle for transdermal delivery
CN108379095A (en) A kind of solubility microneedle patch and preparation method thereof
WO2017176077A1 (en) Microneedle using biodegradable metal
Bahamonde-Norambuena et al. Polymeric nanoparticles in dermocosmetic Nanopartículas poliméricas en dermocosmética
KR101376135B1 (en) Physical encapsulation method of liposome containing bio-active material into the hydrogel particles and cosmetics thereof
KR102009937B1 (en) Compositions for micro-needle
EP2692336B1 (en) Externally used drug kit
Wang et al. Flexible monitoring, diagnosis, and therapy by microneedles with versatile materials and devices toward multifunction scope
WO2024014624A1 (en) Photothermal microneedle patch containing gold nanoparticles
ITMI20002216A1 (en) FILM FOR DERMAL AND TRANSDERMAL ADMINISTRATION OF ACTIVE INGREDIENTS
CN109464308B (en) Essential oil composition with blue light resisting and skin caring effects and application thereof
DE19911262A1 (en) Device for dispensing cosmetic active ingredients
Jeong et al. Polyvinylpyrrolidone based graphene oxide hydrogels by radiation crosslinking for conductive microneedle patches
WO2020085857A1 (en) Transdermal delivery system comprising reverse micelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951279

Country of ref document: EP

Kind code of ref document: A1