WO2024014545A1 - Resin material for molding, resin molded article, and method for producing resin material for molding - Google Patents
Resin material for molding, resin molded article, and method for producing resin material for molding Download PDFInfo
- Publication number
- WO2024014545A1 WO2024014545A1 PCT/JP2023/026116 JP2023026116W WO2024014545A1 WO 2024014545 A1 WO2024014545 A1 WO 2024014545A1 JP 2023026116 W JP2023026116 W JP 2023026116W WO 2024014545 A1 WO2024014545 A1 WO 2024014545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin material
- molding
- molding resin
- weight
- resin
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 205
- 239000011347 resin Substances 0.000 title claims abstract description 205
- 238000000465 moulding Methods 0.000 title claims abstract description 148
- 239000000463 material Substances 0.000 title claims abstract description 146
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 239000002028 Biomass Substances 0.000 claims abstract description 43
- 229920000704 biodegradable plastic Polymers 0.000 claims abstract description 42
- 229920002678 cellulose Polymers 0.000 claims abstract description 18
- 239000001913 cellulose Substances 0.000 claims abstract description 18
- 229920001410 Microfiber Polymers 0.000 claims abstract description 17
- 239000003658 microfiber Substances 0.000 claims abstract description 17
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 30
- 239000004626 polylactic acid Substances 0.000 claims description 30
- 238000004898 kneading Methods 0.000 claims description 29
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims description 23
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims description 23
- 229920003023 plastic Polymers 0.000 claims description 21
- 239000004033 plastic Substances 0.000 claims description 21
- 239000000835 fiber Substances 0.000 claims description 19
- 238000001035 drying Methods 0.000 claims description 14
- 230000000052 comparative effect Effects 0.000 description 67
- 239000000945 filler Substances 0.000 description 34
- 239000002245 particle Substances 0.000 description 27
- 239000004743 Polypropylene Substances 0.000 description 20
- 238000002156 mixing Methods 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- 238000001816 cooling Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 12
- -1 polyethylene Polymers 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 239000008188 pellet Substances 0.000 description 10
- 241000196324 Embryophyta Species 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 229920002961 polybutylene succinate Polymers 0.000 description 6
- 239000004631 polybutylene succinate Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000004629 polybutylene adipate terephthalate Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 101710108497 p-hydroxybenzoate hydroxylase Proteins 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- WHBMMWSBFZVSSR-UHFFFAOYSA-N 3-hydroxybutyric acid Chemical compound CC(O)CC(O)=O WHBMMWSBFZVSSR-UHFFFAOYSA-N 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920013820 alkyl cellulose Polymers 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 229920000520 poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- MFJDFPRQTMQVHI-UHFFFAOYSA-N 3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound O=C1OCOC(=O)C2=CC=C1C=C2 MFJDFPRQTMQVHI-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920000007 Nylon MXD6 Polymers 0.000 description 1
- 229920006152 PA1010 Polymers 0.000 description 1
- 229920006154 PA11T Polymers 0.000 description 1
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229920006025 bioresin Polymers 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006396 polyamide 1012 Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/16—Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
Definitions
- the present invention relates to a resin material for molding, a resin molded product, and a method for producing a resin material for molding.
- bioplastics also called bioresins
- bioresins which have a lower environmental impact
- Bioplastics are broadly divided into biomass plastics (also called biomass resins), which are made from renewable organic resources such as plants, and biodegradable plastics, which can be broken down into carbon dioxide and water through the action of microorganisms.
- biomass plastics also called biomass resins
- biodegradable plastics which can be broken down into carbon dioxide and water through the action of microorganisms.
- biodegradable plastics which can be broken down into carbon dioxide and water through the action of microorganisms.
- Patent Document 1 For example, a biomass resin composition containing a biomass resin and a hydroxyalkyl (alkyl) cellulose compound has been developed (see Patent Document 1).
- Patent Document 1 by including a biomass resin and a hydroxyalkyl (alkyl) cellulose compound, an attempt is made to realize a biomass resin composition that has excellent transparency, strength, and heat resistance without adding a non-biomass filler. .
- strength is maintained by including cellulose nanofibers (hereinafter referred to as CNF) in this biomass resin composition.
- CNF cellulose nanofibers
- CNF is included to compensate for the lack of strength in biomass plastics, but in molding (e.g. injection molding) using biomass plastics mixed with CNF, the molding itself Problems have arisen in that it is difficult and the CNF is unevenly dispersed, which impairs the appearance of the molded product.
- the present invention was made to solve these problems, and its purpose is to create a molding resin material that can realize bioplastics with improved moldability and good dispersibility without impairing the appearance. , a resin molded product, and a method for producing a resin material for molding.
- the molding resin material according to the present disclosure contains biodegradable plastic and cellulose microfibers, and has a biomass ratio of 90% by mass or more.
- the resin molded product according to the present disclosure is molded using the above molding resin material.
- the method for producing a molding resin material according to the present disclosure includes a drying step of drying cellulose microfibers to a moisture content of 5% by weight or less, a cellulose microfiber dried in the drying step, and a biodegradable plastic. , and a kneading step of kneading with a pressure kneader.
- a molding resin material a method for producing a molding resin material, and a method for producing a molding resin material that can realize a bioplastic with improved moldability and good dispersibility without impairing the appearance.
- a method for producing a molding resin material that can realize a bioplastic with improved moldability and good dispersibility without impairing the appearance.
- FIG. 1 is a schematic configuration diagram of a pellet manufacturing apparatus used for manufacturing a molding resin according to the present embodiment. It is a table showing manufacturing conditions of each example and each comparative example. It is a table showing the results of each example and each comparative example.
- 3 is a photograph showing molded products using the molding resin materials of (a) Comparative Example 3, (b) Comparative Example 4, and (c) Comparative Example 5.
- 3 is a photograph showing molded products using the molding resin materials of (a) Example 2, (b) Example 2, and (c) Comparative Example 1.
- 3 is a photograph showing molded products using molding resin materials of (a) Example 5, (b) Example 6, and (c) Comparative Example 2.
- 1 is a table showing evaluation of the appearance of molding resin materials using a scanning electron microscope (SEM). It is a table and a graph showing the biomass degree of CMF and molding resin material.
- the molding resin of this embodiment is a molding resin material that contains biodegradable plastic and cellulose microfibers and has a biomass ratio of 90% by mass or more.
- the biodegradable plastic is preferably a bio-based biomass plastic. Further, the molding resin material preferably has a biomass ratio of 100% by mass.
- the plastic in this embodiment is a thermoplastic resin. In this specification, when a numerical range is expressed as A to B, it indicates a range of A or more and B or less.
- Figure 1 shows a classification table of plastics.
- plastics are classified according to whether they are biodegradable or not, and the material from which they are derived.
- plastics made of fossil-derived materials that are not biodegradable are non-bioplastics, and representative examples include PE (polyethylene), PP (polypropylene), PET (polyethylene terephthalate), and PTT (polytrisate).
- PE polyethylene
- PP polypropylene
- PET polyethylene terephthalate
- PTT polytrisate
- plastics made from biodegradable fossil-derived materials include PVA (polyvinyl alcohol), PGA (polyglycolic acid), PBS (polybutylene succinate), PBSA (polybutylene succinate-co-adipate), There are PBAT (polybutylene adipate terephthalate) and PETS (polyethylene terephthalate succinate).
- PVA polyvinyl alcohol
- PGA polyglycolic acid
- PBS polybutylene succinate
- PBSA polybutylene succinate-co-adipate
- PBAT polybutylene adipate terephthalate
- PETS polyethylene terephthalate succinate
- plastics that are not biodegradable and are made of fossil-derived and bio-derived materials include bio-PET (polyethylene terephthalate), bio-PPT (polytrimethylene terephthalate), and bio-PA (polyamide) 610, 410, 510.
- Bio PA Polyamide
- 1012, 10T, Bio PA Polyamide
- 11T MXD10 (Nylon MXD6)
- Bio PA56 Polyamide 56
- Bio PC Polystyrene
- Bio PU Polyurethane
- Aromatic Polyester Bio Unsaturated Polyester
- biophenolic resin and bioepoxy resin.
- biodegradable plastics made from fossil- and bio-derived materials include bio-PBS (polybutylene succinate), PBAT (polybutylene adipate terephthalate), PLA (polylactic acid) compounds, and starch polyester resins. There is.
- plastics that are not biodegradable and are made of bio-derived materials include Bio-PE, Bio-PA11, and Bio-PA1010.
- biodegradable plastics made from bio-derived materials include PLA (polylactic acid), PHA (polyhydroxyalkanoate) (PHBH (3-hydroxybutyric acid/3-hydroxyhexanoic acid copolymer polyester) ), etc.).
- PLA polylactic acid
- PHA polyhydroxyalkanoate
- PHBH polyhydroxybutyric acid/3-hydroxyhexanoic acid copolymer polyester
- the plastics surrounded by the dashed line in Figure 1 are biomass plastics, and the plastics surrounded by dotted lines are biodegradable plastics.
- the binder of the molding resin of this embodiment is a biodegradable plastic, particularly a biomass plastic derived only from bio-based materials. Specifically, they are PLA, PHA type (PHBH), bio-PBS, PBAT/PLA (polylactic acid) compound, and starch polyester resin, and preferably PLA and PHA type (PHBH). Further, it is preferable to use a pellet-shaped binder.
- the filler of the molding resin of this embodiment is cellulose micro fiber (hereinafter abbreviated as CMF).
- CMF cellulose micro fiber
- the fiber length is 20 to 50 ⁇ m, preferably 35 to 45 ⁇ m
- the particle size distribution (D50) is 20 to 50 ⁇ m, preferably 30 to 40 ⁇ m.
- the CMF is a cellulose fiber made from coniferous wood that has been subjected to pulverized and classified products, and has an average fiber length of 45 ⁇ m, an average fiber diameter of 35 ⁇ m, and a tentative ratio of 0.25.
- CMF may be made from broad-leaved trees or other plants.
- FIG. 2 shows a schematic explanatory diagram showing the manufacturing mechanism of the molding resin material of this embodiment, and the method for manufacturing the molding resin will be described below based on the diagram.
- the method for producing molding resin of the present embodiment mainly uses a pellet manufacturing apparatus 1 having a kneader 2 for kneading a binder and a filler, and an extruder 3 for producing pellet-shaped molding resin from a kneaded material K. .
- the kneader 2 is a pressure kneader.
- the kneader 2 has a pair of kneader screws 21 rotatably installed in a barrel 20 with an open top that allows temperature adjustment.
- the pressure press 22 of the kneader 2 can be moved up and down to open and close the upper opening, and during kneading, the pressure press 22 can be lowered to pressurize the inside of the barrel 20.
- Materials to be kneaded can be introduced into the barrel 20 through an input port 23 .
- the barrel 20 is rotatable as shown by the dotted line in FIG. 2 so as to discharge the kneaded material K.
- a conveyor 4 is provided between the kneader 2 and the extruder 3.
- the conveyor 4 has a bucket 40 that accommodates the kneaded material K discharged from the barrel 20 of the kneader 2.
- the bucket 40 can be moved above the hopper 30 of the extruder 3, which will be described later, and the kneaded material K can be thrown into the hopper 30 from above the hopper 30.
- the extruder 3 has a hopper 30 into which the kneaded material K is charged, and a hopper screw 31 is rotatably provided within the hopper 30.
- the hopper 30 is connected to a horizontally extending hollow cylinder 32, and a straight screw 33 is rotatably provided within the cylinder 32.
- the temperature of the cylinder 32 can be adjusted, and by rotating the straight screw 33 inside, the kneaded material K can be melted and extruded toward the tip side.
- a pelletizer 34 is provided on the distal end side of the straight screw 33.
- the pelletizer 34 has a die 34a that forms the molten resin into a small diameter rod, and a rotary cutter 34b that cuts the resin coming out of the die 34a into pellets.
- a sorter or the like for sorting pellets may be provided downstream of the extruder 3.
- the molding resin of this embodiment is granulated by the manufacturing apparatus 1 configured as described above in the following procedure.
- step S1 CMF, which is a filler, is introduced into the barrel 20 from the input port 23 of the kneader 2.
- step S2 the kneader screw 21 is driven to rotate while heating the barrel 20 in a non-pressurized state to reduce the water content of the CMF (drying step).
- drying step it is preferable to dry the CMF to a moisture content of 5% by weight or less.
- CMF generally contains a water content of about 7 to 10% by weight, but in order to improve its moldability as a molding resin material and to prevent steam explosions, the water content of CMF must be adjusted before kneading with the binder. It is effective to provide a drying step in which the amount of the carbon dioxide is dried to 5% by weight or less.
- step S3 after the drying of the CMF in step S2 is completed, a resin material as a binder is charged into the barrel 20 from the input port 23.
- step S4 the pressure press 22 is lowered to pressurize and heat the inside of the barrel 20, while rotating the kneader screw 21 to knead the CMF and the binder resin material (kneading step).
- step S5 after the kneading in step S4 is completed, the kneaded material K is taken out from the barrel 20 and put into the bucket 40 of the conveyor 4.
- step S6 the kneaded material K is transported by the conveyor 4 to the hopper 30 of the extruder 3, and the kneaded material K is introduced into the hopper 30.
- step S7 the hopper screw 31 is driven to draw the kneaded material K into the cylinder 32.
- step S8 the straight screw 33 rotates while heating the inside of the cylinder 32, thereby transferring the kneaded material K to the tip side while melting it.
- step S9 in the pelletizer 34, the resin is extruded into a rod shape from the die 34a, and the resin coming out from the die 34a is cut by the rotary cutter 34b to form a pellet-shaped molding resin material.
- the pellet-shaped molding resin material of this embodiment is produced using the pellet manufacturing apparatus 1 by the production method including steps S1 to S9.
- the pellet manufacturing apparatus 1 of this embodiment uses a pressure kneader to knead the binder and filler, the kneader is not limited to this.
- kneading may be performed using an extruder (for example, a twin-screw extruder).
- a molded article using the molding resin material of this embodiment is formed by injection molding the above-mentioned pellet-shaped molding resin material. That is, although not shown, a pellet-shaped molding resin material is kneaded using a kneader, and then injection molded using an extruder for molded products. Existing kneaders and injection molding machines can be used.
- Example> Examples of molded articles made of a molding resin material according to the present invention, comparative examples of molded articles made of a molding resin material whose filler is CNF, and molded articles made of a molding resin material made of bioplastics including those derived from fossils are shown below. Evaluations of moldability, appearance, and physical properties of a comparative example of a molded article and a comparative example of a molded article made of a conventional non-bioplastic molding resin material will be described with reference to FIGS. 3 to 9.
- FIG. 3 shows the manufacturing conditions of each example and each comparative example.
- the binder was PLA resin
- the binder was PHA resin
- Comparative Examples 3 to 5 the binder was bio-PBS.
- the binder was PP resin.
- a molding resin material is manufactured using the pellet manufacturing apparatus 1 described above, and a molded product is molded using an injection molding machine using the molding resin material.
- the kneading conditions shown in FIG. 3 are the kneading conditions in the kneader 2 of the pellet manufacturing apparatus 1, and the molding conditions are the molding conditions in the injection molding machine.
- CMF cellulose powder obtained by dry-pulverizing coniferous wood was used.
- the CNF used as the filler was cellulose fiber obtained by pulverizing coniferous wood using the TEMPO oxidation method, and had a water content of 7.96% by weight, a tentative specific gravity of 0.35, and a top size of 209.3 ⁇ m.
- the PLA resins of Examples 1 to 4 and Comparative Example 1 are plant-derived PLA resins made from starch contained in corn, etc., and have an MFR (melt flow rate) of 10 to 15 (g/10min) and a specific gravity. 1.25 and a melting point of 165-175°C was used.
- Example 1 a molding resin material was manufactured using 100% by weight of PLA resin, that is, only PLA resin without mixing filler.
- the molding conditions for a molded article using the molding resin material of Example 1 were injection time of 45 seconds, temperature of 180° C., and cooling time of 40 seconds.
- Example 2 a molding resin material was produced by mixing 80% by weight of PLA resin with 20% by weight of CMF having a fiber length of 35 to 45 ⁇ m and a particle size distribution D50 of 33.09 ⁇ m as a filler.
- the molding resin material of Example 2 was produced by kneading at 190° C. and 40 rpm for 27 minutes. Further, the molding conditions for the molded product using the molding resin material of Example 2 were: injection time 15 seconds, temperature 180° C., and cooling time 5 seconds.
- Example 3 a molding resin material was produced by mixing 40% by weight of PLA resin with 60% by weight of CMF having a fiber length of 35 to 45 ⁇ m and a particle size distribution D50 of 33.09 ⁇ m as a filler.
- the molding resin material of Example 3 was produced by kneading at 185° C. and a rotation speed of 40 rpm for 25 minutes.
- Example 4 a molding resin material was produced by mixing 30% by weight of PLA resin with 70% by weight of CMF having a fiber length of 35 to 45 ⁇ m and a particle size distribution D50 of 33.09 ⁇ m as a filler.
- the molding resin material of Example 4 was produced by kneading at 195° C. and a rotation speed of 40 rpm for 25 minutes.
- Comparative Example 1 a molding resin material was produced by mixing 80% by weight of PLA resin with 20% by weight of CNF having a fiber length of 3 nm to 1 ⁇ m and a particle size distribution D50 of 26.30 ⁇ m as a filler.
- the molding resin material of Comparative Example 1 was manufactured by kneading at 180° C. and a rotation speed of 40 rpm for 15 minutes. However, the quality of the molding resin material of Comparative Example 1 was poor, and a molded article could not be molded.
- the PHA resins (PHBV resins) of Examples 5 to 7 and Comparative Example 2 are plastics produced in vivo by microorganisms using biomass such as vegetable oil as raw materials, and have an MFR (melt flow rate) of 8 to 15. , specific gravity 1.25, and melting point 175 to 180°C.
- Example 5 a molding resin material was manufactured using 100% by weight of PHA resin, that is, only PHA resin without mixing filler.
- the molding conditions for a molded article using the molding resin material of Example 5 were injection time of 12 seconds, temperature of 170° C., and cooling time of 40 seconds.
- Example 6 a molding resin material was produced by mixing 80% by weight of PHA resin with 20% by weight of CMF having a fiber length of 35 to 45 ⁇ m and a particle size distribution D50 of 33.09 ⁇ m as a filler.
- the molding resin material of Example 6 was produced by kneading at 160° C. and a rotation speed of 40 rpm for 20 minutes. Further, the molding conditions for the molded product using the molding resin material of Example 6 were: injection time 12 seconds, temperature 160° C., and cooling time 40 seconds.
- Example 7 a molding resin material was produced by mixing 40% by weight of PHA resin with 60% by weight of CMF having a fiber length of 35 to 45 ⁇ m and a particle size distribution D50 of 33.09 ⁇ m as a filler.
- the molding resin material of Example 7 was manufactured by kneading at 176° C. and a rotation speed of 40 rpm for 25 minutes.
- a molding resin material was produced by mixing 80% by weight of PHA resin with 20% by weight of CNF having a fiber length of 3 nm to 1 ⁇ m and a particle size distribution D50 of 26.30 ⁇ m as a filler.
- the molding resin material of Example 9 was produced by kneading at 145° C. and 40 rpm for 15 minutes.
- the molding conditions for the molded product using the molding resin material of Comparative Example 2 were: injection time 12 seconds, temperature 170° C., and cooling time 40 seconds.
- the bio-PBS of Comparative Examples 3 to 5 is a bioplastic with a biomass ratio of 50% by weight produced from biosuccinic acid and 1,4-butanediol from corn, cassava, sugarcane, etc., and has an MFR (melt flow rate) of 50% by weight. 5, a specific gravity of 1.26 and a melting point of 115°C was used.
- the molding resin material was manufactured using 100% by weight of bio-PBS, that is, only bio-PBS without mixing filler.
- the molding conditions for the molded article using the molding resin material of Comparative Example 3 were injection time of 30 seconds, temperature of 130° C., and cooling time of 40 seconds.
- Comparative Example 4 a molding resin material was produced by mixing 80% by weight of bio-PBS with 20% by weight of CMF having a fiber length of 35 to 45 ⁇ m and a particle size distribution D50 of 33.09 ⁇ m as a filler.
- the molding resin material of Comparative Example 2 was manufactured by kneading at 130° C. and a rotation speed of 40 rpm for 25 minutes.
- the molding conditions for the molded article using the molding resin material of Comparative Example 4 are the same as in Example 1: injection time 30 seconds, temperature 130° C., and cooling time 40 seconds.
- Comparative Example 5 66.2% by weight of bio-PBS was mixed with 28.4% by weight of CMF having a fiber length of 35 to 45 ⁇ m and a particle size distribution D50 of 33.09 ⁇ m as a filler, and 5.7% by weight of rubber and wax.
- a resin material for molding was produced by adding % by weight.
- the molding resin material of Comparative Example 5 was manufactured by kneading at 130° C. and a rotation speed of 40 rpm for 25 minutes. Further, the molding conditions for the molded product using the molding resin material of Example 2 were: injection time 12 seconds, temperature 190° C., and cooling time 40 seconds.
- the PP resin used in Comparative Examples 6 to 10 was homopolypropylene F113G manufactured by Prime Polymer Co., Ltd., which had an MFR (melt flow rate) of 3, a specific gravity of 0.90, and a melting point of 165°C.
- Comparative Example 6 a molding resin material was manufactured using 100% by weight of PP resin, that is, only PP resin without mixing filler.
- the molding conditions for the molded article using the molding resin material of Comparative Example 6 were injection time of 14 seconds, temperature of 200° C., and cooling time of 40 seconds.
- a molding resin material was produced by mixing 80% by weight of PP resin with 20% by weight of CMF having a fiber length of 35 to 45 ⁇ m and a particle size distribution D50 of 33.09 ⁇ m as a filler.
- the molding resin material of Comparative Example 8 was manufactured by kneading at 200° C. and a rotation speed of 40 rpm for 26 minutes. Furthermore, the molding conditions for the molded product using the molding resin material of Comparative Example 8 were: injection time 14 seconds, temperature 200° C., and cooling time 60 seconds.
- Comparative Example 8 59.2% by weight of PP resin was mixed with 39.5% by weight of CMF having a fiber length of 35 to 45 ⁇ m and a particle size distribution D50 of 33.09 ⁇ m as a filler, and 1.3% of wax was added as an additive.
- a resin material for molding was produced by adding % by weight.
- the molding resin material of Comparative Example 9 was manufactured by kneading at 175° C. and a rotation speed of 40 rpm for 45 minutes. Furthermore, the molding conditions for the molded product using the molding resin material of Comparative Example 9 were: injection time 14 seconds, temperature 200° C., and cooling time 60 seconds.
- Comparative Example 9 39.2% by weight of PP resin was mixed with 58.8% by weight of CMF having a fiber length of 35 to 45 ⁇ m and a particle size distribution D50 of 33.09 ⁇ m as a filler, and 2.0% of wax was added as an additive. % was added to produce a molding resin material.
- the molding resin material of Comparative Example 9 was manufactured by kneading at 175° C. and a rotation speed of 40 rpm for 45 minutes. Furthermore, the molding conditions for the molded product using the molding resin material of Comparative Example 9 were: injection time 14 seconds, temperature 200° C., and cooling time 60 seconds.
- Comparative Example 10 19.6% by weight of PP resin was mixed with 78.4% by weight of CMF having a fiber length of 35 to 45 ⁇ m and a particle size distribution D50 of 33.09 ⁇ m as a filler, and 2.0% of wax was added as an additive.
- a resin material for molding was produced by adding % by weight.
- the molding resin material of Comparative Example 9 was manufactured by kneading at 176° C. and a rotation speed of 40 rpm for 44 minutes.
- FIG. 4 shows the results of each example and each comparative example for each molding resin material and molded product manufactured under such manufacturing conditions.
- Figures 5 to 7 show photographs of the molded products of each example and each comparison
- Figure 8 shows a table showing the appearance of the resin material for molding using press sheets
- Figure 9 shows the appearance of the molded products using a scanning electron microscope.
- a table showing the appearance properties of the molding resin material by (SEM) is shown, and the characteristics of the molding resin material and molded product of this embodiment will be described below based on FIGS. 4 to 9.
- the moldability will be explained based on FIGS. 4 to 7.
- the moldability is based on the presence or absence of defects such as burrs, short shots, warping, sink marks, voids, flow marks, weld lines, and silver streaks in the molded product (test piece).
- Comparative Examples 6 to 10 which use PP resin that has been commonly used, there is no problem in moldability. Furthermore, Comparative Examples 3 to 5, in which bio-PBS of which 50% is derived from fossils, have no problems in moldability. On the other hand, regarding Examples 1 to 7 and Comparative Examples 1 and 2, which are bioplastics with a biomass ratio of 100%, only Examples 3 to 7, in which CMF is mixed, meet the moldability as a product. It is.
- Comparative Example 3 (Bio PBS 100% by weight) shown in FIG. 5(a)
- Comparative Example 4 (Bio PBS 80% by weight, CMF 20%) shown in FIG. 5(b)
- Comparative Example 4 shown in FIG. 5(c)
- Comparative Example 5 Bio PBS 66, 2% by weight, CMF 28.4%, rubber, wax 5.7% by weight
- Example 1 (100% by weight of PLA resin) shown in FIG. 6(a)
- Example 2 PLA resin 80% by weight, CMF 20%
- Example 2 PLA resin 80% by weight, CMF 20%
- FIG. 6(c) Comparative Example 1 (PLA resin 80% by weight, CNF 20%)
- the test piece broke during molding, and molding could not be performed.
- Example 5 (PHA 100% by weight) shown in FIG. 7(a)
- Example 6 (PHA 80% by weight, CMF 20%) shown in FIG. 7(b)
- Comparative Example 2 (PHA 80% by weight) shown in FIG. 7(c).
- CNF 20% there were no defects in the molded products (test pieces), and there was no problem in moldability.
- Comparative Examples 6 to 11 using PP resin have no problems in appearance.
- Examples 1 to 7 and Comparative Examples 1 and 2 which are bioplastics with a biomass ratio of 100%
- Examples 2 to 4 in which CMF is mixed, satisfy the appearance as a product.
- FIG. 8 shows the evaluation of the appearance of the molding resin material using a press sheet.
- the heat press machine First, prepare the heat press machine, turn on the heat press machine, and raise the temperature for 2 hours.
- the heat press machine is equipped with one pressure detection section and one heater at the top and bottom.
- the set temperature was set at 200°C.
- the Lumirror containing the sample was placed in a heat press machine, a load of 0.95 to 1 t was applied, and it was heated for 1 minute. After 1 minute had passed, a load of 8.95 to 9 t was applied and heating was continued for 1 minute. Thereafter, immediately remove the Lumirror from the heat press.
- the molding resin materials of PLA resin (Comparative Example 1) and PHA resin (Comparative Example 2) mixed with CNF as a filler had many aggregates and poor dispersibility in the press sheet evaluation. Recognize.
- the molding resin materials of PLA resin (Examples 2 to 4) and PHA resin (Examples 6 and 7) mixed with CMF as a filler had almost no agglomerates in the press sheet evaluation, and had excellent dispersibility. I know that there is. In Examples 3, 4, and 7, some color unevenness occurred on the surface, but there were no agglomerates and no major problem occurred in terms of appearance quality.
- PP resin a similar press sheet evaluation was performed by mixing paper powder (actually measured particle size 55 to 65 ⁇ m) and paper pieces (catalog value particle size 1 to 2 mm, measured particle size 1000 to 2000 ⁇ m), but there were many aggregates. Dispersibility was poor.
- the molding resin materials of bio-PBS resin (Comparative Examples 4 and 5) and PP resin (Comparative Examples 9 and 10) mixed with CMF (catalog value particle size 35 to 45 ⁇ m, measured particle size 25 to 35 ⁇ m) as a filler are as follows: In the press sheet evaluation, there were almost no agglomerates, indicating excellent dispersibility.
- FIG. 9 shows a table showing the evaluation of the appearance of the molding resin material using a scanning electron microscope (SEM). Note that the molding resin material to be evaluated in FIG. 9 is obtained by observing pellets using an SEM.
- SEM scanning electron microscope
- the molding resin materials of PLA resin (Comparative Example 1) and PHA resin (Comparative Example 2) mixed with CNF as a filler have large variations in particle size and poor dispersibility as seen from the SEM images. I understand.
- the molding resin materials of PLA resin (Example 2), PHA resin (Example 6), and bio-PBS (Example 2) mixed with CMF as a filler have small variations in particle size as seen from SEM images, and are dispersed. It turns out that he has excellent sex.
- FIG. 9 also shows an SEM image of bio-PBS (comparative example 4) mixed with CMF as a filler, which also had small variations in particle size and excellent dispersibility.
- the physical property evaluation will be explained based on FIG. 4.
- the required physical properties and their values change depending on the use of the molded product. For example, strength is primarily required for molded products such as automobile parts. On the other hand, items that do not require much strength include so-called daily necessities. Indices for determining strength include bending strength and bending elasticity. IZOD impact strength is important for things that affect impact, such as car bumpers. Additionally, molding shrinkage is generally evaluated as dimensional formability.
- Examples 2 and 6 which have a biomass ratio of 100% by weight (CMF 20% by weight) and satisfy moldability and appearance, have the bending strength and bending elasticity of the PP resin mixed with talc. It has been possible to achieve physical properties that are equivalent to or better than Comparative Example 7, which is a mixture of PP resin and CMF, and Comparative Example 8, which is a mixture of PP resin and CMF.For molded products that require strength, the biomass ratio of PP resin molded products is 100% by weight. It turns out that it can be replaced.
- Examples 2 and 6 are superior in bending elasticity and bending strength to bio-PBS with a biomass ratio of 50% by weight and a mixture of 20% by weight of CMF. For this reason, Examples 2 and 6, for example, can be applied to molded products that require a certain strength, such as automobile parts.
- the molding resin material of this embodiment achieves a biomass ratio of 100% by weight (a high biomass ratio of at least 90% by weight) while maintaining moldability and appearance. It is characterized by its ability to be molded while satisfying its properties.
- biodegradable plastics as bioplastics made only from bio-derived materials, it is possible to realize molding resin materials with lower environmental impact.
- the environmental load reduction effect can be maximized.
- biodegradable plastic 30% by weight or more and the CMF to 20% by weight or more, it is possible to realize a bioplastic molding resin material with sufficient moldability and appearance.
- PLA polylactic acid
- PHA PHBV
- CMF cellulose microfiber
- the resin molded product molded using the molding resin material of this embodiment has excellent moldability and appearance.
- the production method for resin materials for molding includes a drying process in which the moisture content of CMF is dried to 5% by weight or less, and a pressure kneading machine to mix the CMF dried in the drying process and biodegradable plastic.
- a drying process in which the moisture content of CMF is dried to 5% by weight or less
- a pressure kneading machine to mix the CMF dried in the drying process and biodegradable plastic.
- the first sample is CMF (sample name: ARBOCEL FD600/30)
- the second sample is a molding resin material (sample name: PHA(CMF60)-MB)
- the third sample is a molding resin material.
- a sample (sample name: PLA(CMF70)-MB) was prepared.
- the second sample contained PHA resin and CMF in a weight percent ratio of 40:60.
- the third sample contained PLA resin and CMF in a weight percent ratio of 30:70.
- Carbon dioxide was generated by burning each sample without pretreatment, and the generated carbon dioxide was purified using a vacuum line.
- graphite was produced by reducing purified carbon dioxide with hydrogen using iron as a catalyst. The produced graphite was packed into a cathode with an inner diameter of 1 mm using a hand press machine, which was fitted into a wheel and attached to a measuring device.
- the measuring device used was a 14 C-AMS dedicated device (manufactured by NEC Corporation) based on a tandem accelerator, which counted 14 C, 13 C concentration ( 13 C/ 12 C), and 14 C concentration ( 14 C/ 12 C). C) was measured.
- oxalic acid (HOxII) provided by the US National Institute of Standards (NIST) was used as a standard sample, and measurements of this standard sample and a background sample were also performed at the same time. The measurement results are shown in Table 1 below.
- ⁇ 13 C is a value obtained by measuring the 13 C concentration ( 13 C/ 12 C) of sample carbon and expressing the deviation from the standard sample in thousandth deviation ( ⁇ ). This value is a value measured by an AMS device, and is also noted as “AMS” in Table 1 below.
- pMC percent Modern Carbon
- ⁇ 14 C is the deviation of the 14 C concentration of the sample carbon relative to standard modern carbon expressed in thousandths of a deviation ( ⁇ ), and the value obtained by correcting this with ⁇ 13 C is ⁇ 14 C.
- the biomass degree of the sample calculated using ⁇ 13 C-corrected pMC according to ASTM D6866-22 is shown in FIG.
- the standard value atmospheric correction factor REF (pMC)
- REF atmospheric correction factor
- the carbon contained in the sample is derived from terrestrial plants
- the carbon-based biomass degree for each year of production is as shown in Figure 10. However, if the carbon source is not a terrestrial plant, or if it is terrestrial but is expected to be older than 2004, the calculation will be different.
- the bar graph in FIG. 10 shows the ratio of biomass-derived carbon and petroleum-derived carbon to the total carbon contained in the sample. Note that the mixing weight ratio of the biomass raw material and the petroleum raw material does not necessarily match the above ratio. IAAA-220645 shows very high pMC values for modern atmospheres. There is a high possibility that the biomass used as raw material, such as wood, is old, and in that case, it is not suitable to use the 2022 REF (pMC) in ASTM D6866-22.
- the biomass degree of each of the first sample, second sample, and third sample was 90% by mass or more.
- a molding resin material containing biodegradable plastic and cellulose microfibers and having a biomass ratio of 90% by mass or more [2] The molding resin material according to [1], wherein the biodegradable plastic is a biomass plastic made only of bio-derived materials. [3] The molding resin material according to [1] or [2], wherein the biomass ratio is 100% by mass. [4] The molding resin material according to any one of [1] to [3], wherein the biodegradable plastic is 30% by weight or more, and the cellulose microfiber is 20% by weight or more. [5] The molding resin material according to any one of [1] to [4], wherein the biodegradable plastic is a polylactic acid resin.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
This resin material for molding contains biodegradable plastic and cellulose microfibers and has a biomass ratio of 90 mass% or more.
Description
本発明は成形用樹脂材、樹脂成形品、及び成形用樹脂材の生産方法に関する。
The present invention relates to a resin material for molding, a resin molded product, and a method for producing a resin material for molding.
近年、石油等の化石由来の従来のプラスチックに対して、環境負荷の低いバイオプラスチック(バイオ樹脂ともいう)が注目されている。バイオプラスチックは、植物等の再生可能な有機資源を原料とするバイオマスプラスチック(バイオマス樹脂ともいう)と、微生物等の働きにより二酸化炭素と水にまで分解可能な生分解性プラスチックとに大別される。なお、バイオプラスチックの中でも生分解性を有するプラスチックもある。
In recent years, bioplastics (also called bioresins), which have a lower environmental impact, have been attracting attention compared to conventional plastics derived from fossils such as petroleum. Bioplastics are broadly divided into biomass plastics (also called biomass resins), which are made from renewable organic resources such as plants, and biodegradable plastics, which can be broken down into carbon dioxide and water through the action of microorganisms. . Note that among bioplastics, there are also plastics that are biodegradable.
例えば、バイオマス樹脂とヒドロキシアルキル(アルキル)セルロース化合物を含有するバイオマス樹脂組成物、等が開発されている(特許文献1参照)。この特許文献1では、バイオマス樹脂とヒドロキシアルキル(アルキル)セルロース化合物とを含むことにより、非バイオマスのフィラーを添加せずとも透明性、強度及び耐熱性に優れるバイオマス樹脂組成物の実現を図っている。また、このバイオマス樹脂組成物にセルロースナノファイバー(以下、CNFという)を含ませることで強度を維持も図っている。
For example, a biomass resin composition containing a biomass resin and a hydroxyalkyl (alkyl) cellulose compound has been developed (see Patent Document 1). In Patent Document 1, by including a biomass resin and a hydroxyalkyl (alkyl) cellulose compound, an attempt is made to realize a biomass resin composition that has excellent transparency, strength, and heat resistance without adding a non-biomass filler. . Furthermore, strength is maintained by including cellulose nanofibers (hereinafter referred to as CNF) in this biomass resin composition.
特許文献1の技術のように、バイオマスプラスチックの強度不足を補うためにCNFを含ませることが行われているが、CNFを混ぜたバイオマスプラスチックを用いた成形(例えば射出成形)では、成形自体が難しかったり、CNFの分散にムラができ成形品の外観を損ねたり、という問題が生じている。
As in the technology of Patent Document 1, CNF is included to compensate for the lack of strength in biomass plastics, but in molding (e.g. injection molding) using biomass plastics mixed with CNF, the molding itself Problems have arisen in that it is difficult and the CNF is unevenly dispersed, which impairs the appearance of the molded product.
本発明はこのような問題点を解決するためになされたもので、その目的とするところはより成形性を向上し、外観も損なうことのない分散性の良いバイオプラスチックを実現できる成形用樹脂材、樹脂成形品、及び成形用樹脂材の生産方法を提供することにある。
The present invention was made to solve these problems, and its purpose is to create a molding resin material that can realize bioplastics with improved moldability and good dispersibility without impairing the appearance. , a resin molded product, and a method for producing a resin material for molding.
上記した目的を達成するために、本開示に係る成形用樹脂材は、生分解性プラスチックと、セルロースマイクロファイバーとを含有し、バイオマス比率が90質量%以上である。
In order to achieve the above object, the molding resin material according to the present disclosure contains biodegradable plastic and cellulose microfibers, and has a biomass ratio of 90% by mass or more.
本開示に係る樹脂成形品は、上記成形用樹脂材を用いて成形されている。
The resin molded product according to the present disclosure is molded using the above molding resin material.
本開示に係る成形用樹脂材の生産方法は、セルロースマイクロファイバーの水分量を5重量%以下まで乾燥させる乾燥工程と、前記乾燥工程にて乾燥させたセルロースマイクロファイバーと、生分解性プラスチックとを、加圧混錬機により混練する混練工程と、とを含む。
The method for producing a molding resin material according to the present disclosure includes a drying step of drying cellulose microfibers to a moisture content of 5% by weight or less, a cellulose microfiber dried in the drying step, and a biodegradable plastic. , and a kneading step of kneading with a pressure kneader.
上記手段を用いる本発明によれば、より成形性を向上し、外観も損なうことのない分散性の良いバイオプラスチックを実現できる成形用樹脂材、成形用樹脂材の製造方法、及びこの成形用樹脂材からなる成形品を提供できる。
According to the present invention using the above means, there is provided a molding resin material, a method for producing a molding resin material, and a method for producing a molding resin material that can realize a bioplastic with improved moldability and good dispersibility without impairing the appearance. We can provide molded products made from materials.
本実施形態の成形用樹脂は、生分解性プラスチックと、セルロースマイクロファイバーとを含有し、バイオマス比率が90質量%以上である成形用樹脂材である。生分解性プラスチックは、好ましくはバイオ由来のバイオマスプラスチックである。また、成形用樹脂材は、好ましくはバイオマス比率が100質量%である。本実施形態でのプラスチックとは、熱可塑性樹脂である。なお、本明細書において、数値範囲をA~Bで表記する場合、A以上B以下を示す。
The molding resin of this embodiment is a molding resin material that contains biodegradable plastic and cellulose microfibers and has a biomass ratio of 90% by mass or more. The biodegradable plastic is preferably a bio-based biomass plastic. Further, the molding resin material preferably has a biomass ratio of 100% by mass. The plastic in this embodiment is a thermoplastic resin. In this specification, when a numerical range is expressed as A to B, it indicates a range of A or more and B or less.
図1には、プラスチックの分類表が示されている。図1では、プラスチックを生分解性の有無と、由来となる材料に応じてプラスチックを分類している。
Figure 1 shows a classification table of plastics. In Figure 1, plastics are classified according to whether they are biodegradable or not, and the material from which they are derived.
具体的には、生分解性を有さない化石由来の材料からなるプラスチックは、非バイオプラスチックであり、代表例としてPE(ポリエチレン)、PP(ポリプロピレン)、PET(ポリエチレンテレフタレート)、PTT(ポリトリメチレンテレフタレート)、PVC(ポリ塩化ビニル)、PS(ポリスチレン)、ABS(アクリロニトリル-ブタジエン-スチレン樹脂)、PC(ポリカーボネート)、PBT(ポリブチレンテレフタレート)、POM(ポリアセタール)、PMMA(ポリメタクリル酸メチル)、PPS(ポリフェニレンサルファイド)、PA6(ポリアミド6)、PA66(ポリアミド66)、PU(ポリウレタン)、フェノール樹脂、エポキシ樹脂がある。
Specifically, plastics made of fossil-derived materials that are not biodegradable are non-bioplastics, and representative examples include PE (polyethylene), PP (polypropylene), PET (polyethylene terephthalate), and PTT (polytrisate). (methylene terephthalate), PVC (polyvinyl chloride), PS (polystyrene), ABS (acrylonitrile-butadiene-styrene resin), PC (polycarbonate), PBT (polybutylene terephthalate), POM (polyacetal), PMMA (polymethyl methacrylate) , PPS (polyphenylene sulfide), PA6 (polyamide 6), PA66 (polyamide 66), PU (polyurethane), phenol resin, and epoxy resin.
生分解性を有する化石由来の材料からプラスチックとしては、代表例としてPVA(ポリビニルアルコール)、PGA(ポリグリコール酸)、PBS(ポリブチレンサクシネート)、PBSA(ポリブチレンサクシネート-co-アジペート)、PBAT(ポリブチレンアジペートテレフタレート)、PETS(ポリエチレンテレフタレートサクシネート)、がある。
Representative examples of plastics made from biodegradable fossil-derived materials include PVA (polyvinyl alcohol), PGA (polyglycolic acid), PBS (polybutylene succinate), PBSA (polybutylene succinate-co-adipate), There are PBAT (polybutylene adipate terephthalate) and PETS (polyethylene terephthalate succinate).
生分解性を有さず、化石由来とバイオ由来の材料からなるプラスチックとしては、代表例としてバイオPET(ポリエチレンテレフタレート)、バイオPPT(ポリトリメチレンテレフタレート)、バイオPA(ポリアミド)610,410,510、バイオPA(ポリアミド)1012,10T、バイオPA(ポリアミド)11T、MXD10(ナイロンMXD6)、バイオPA56(ポリアミド56)、バイオPC(ポリスチレン)、バイオPU(ポリウレタン)、芳香族ポリエステル、バイオ不飽和ポリエステル、バイオフェノール樹脂、バイオエポキシ樹脂がある。
Typical examples of plastics that are not biodegradable and are made of fossil-derived and bio-derived materials include bio-PET (polyethylene terephthalate), bio-PPT (polytrimethylene terephthalate), and bio-PA (polyamide) 610, 410, 510. , Bio PA (Polyamide) 1012, 10T, Bio PA (Polyamide) 11T, MXD10 (Nylon MXD6), Bio PA56 (Polyamide 56), Bio PC (Polystyrene), Bio PU (Polyurethane), Aromatic Polyester, Bio Unsaturated Polyester , biophenolic resin, and bioepoxy resin.
生分解性を有し、化石由来とバイオ由来の材料からなるプラスチックとしては、代表例としてバイオPBS(ポリブチレンサクシネート)、PBAT(ポリブチレンアジペートテレフタレート)・PLA(ポリ乳酸)コンパウンド、澱粉ポリエステル樹脂がある。
Typical examples of biodegradable plastics made from fossil- and bio-derived materials include bio-PBS (polybutylene succinate), PBAT (polybutylene adipate terephthalate), PLA (polylactic acid) compounds, and starch polyester resins. There is.
生分解性を有さず、バイオ由来の材料からなるプラスチックとしては、代表例としてバイオPE、バイオPA11、バイオPA1010がある。
Typical examples of plastics that are not biodegradable and are made of bio-derived materials include Bio-PE, Bio-PA11, and Bio-PA1010.
生分解性を有し、バイオ由来の材料からなるプラスチックとしては、代表例としてPLA(ポリ乳酸)、PHA(ポリヒドロキシアルカノエート)系(PHBH(3-ヒドロキシ酪酸・3-ヒドロキシヘキサン酸共重合ポリエステル)等)がある。
Typical examples of biodegradable plastics made from bio-derived materials include PLA (polylactic acid), PHA (polyhydroxyalkanoate) (PHBH (3-hydroxybutyric acid/3-hydroxyhexanoic acid copolymer polyester) ), etc.).
図1の一点鎖線で囲まれているプラスチックがバイオマスプラスチックであり、点線で囲まれているプラスチックが生分解性プラスチックである。
The plastics surrounded by the dashed line in Figure 1 are biomass plastics, and the plastics surrounded by dotted lines are biodegradable plastics.
<バインダ>
本実施形態の成形用樹脂のバインダは、生分解性プラスチックであり、特にバイオ由来のみのバイオマスプラスチックである。具体的には、PLA、PHA系(PHBH)、バイオPBS、PBAT・PLA(ポリ乳酸)コンパウンド、澱粉ポリエステル樹脂であり、好ましくはPLA、PHA系(PHBH)である。またバインダは、ペレット状のものを用いるのが好ましい。 <Binder>
The binder of the molding resin of this embodiment is a biodegradable plastic, particularly a biomass plastic derived only from bio-based materials. Specifically, they are PLA, PHA type (PHBH), bio-PBS, PBAT/PLA (polylactic acid) compound, and starch polyester resin, and preferably PLA and PHA type (PHBH). Further, it is preferable to use a pellet-shaped binder.
本実施形態の成形用樹脂のバインダは、生分解性プラスチックであり、特にバイオ由来のみのバイオマスプラスチックである。具体的には、PLA、PHA系(PHBH)、バイオPBS、PBAT・PLA(ポリ乳酸)コンパウンド、澱粉ポリエステル樹脂であり、好ましくはPLA、PHA系(PHBH)である。またバインダは、ペレット状のものを用いるのが好ましい。 <Binder>
The binder of the molding resin of this embodiment is a biodegradable plastic, particularly a biomass plastic derived only from bio-based materials. Specifically, they are PLA, PHA type (PHBH), bio-PBS, PBAT/PLA (polylactic acid) compound, and starch polyester resin, and preferably PLA and PHA type (PHBH). Further, it is preferable to use a pellet-shaped binder.
<フィラー>
本実施形態の成形用樹脂のフィラーは、セルロースマイクロファイバー(以下、Cellulose Micro Fiber:以下CMFと略す)である。具体的には、繊維長が20~50μm、好ましくは35~45μmであり、粒度分布(D50)が20~50μm、好ましくは30~40μmである。例えば、本実施形態では、CMFは針葉樹を原料として粉砕・分級品処理されたセルロースファイバーで、均繊維長45μm、平均繊維径35μm、仮比0.25のものを使用する。なお、CMFは広葉樹やその他の植物を原料としたものでもよい。 <Filler>
The filler of the molding resin of this embodiment is cellulose micro fiber (hereinafter abbreviated as CMF). Specifically, the fiber length is 20 to 50 μm, preferably 35 to 45 μm, and the particle size distribution (D50) is 20 to 50 μm, preferably 30 to 40 μm. For example, in this embodiment, the CMF is a cellulose fiber made from coniferous wood that has been subjected to pulverized and classified products, and has an average fiber length of 45 μm, an average fiber diameter of 35 μm, and a tentative ratio of 0.25. Note that CMF may be made from broad-leaved trees or other plants.
本実施形態の成形用樹脂のフィラーは、セルロースマイクロファイバー(以下、Cellulose Micro Fiber:以下CMFと略す)である。具体的には、繊維長が20~50μm、好ましくは35~45μmであり、粒度分布(D50)が20~50μm、好ましくは30~40μmである。例えば、本実施形態では、CMFは針葉樹を原料として粉砕・分級品処理されたセルロースファイバーで、均繊維長45μm、平均繊維径35μm、仮比0.25のものを使用する。なお、CMFは広葉樹やその他の植物を原料としたものでもよい。 <Filler>
The filler of the molding resin of this embodiment is cellulose micro fiber (hereinafter abbreviated as CMF). Specifically, the fiber length is 20 to 50 μm, preferably 35 to 45 μm, and the particle size distribution (D50) is 20 to 50 μm, preferably 30 to 40 μm. For example, in this embodiment, the CMF is a cellulose fiber made from coniferous wood that has been subjected to pulverized and classified products, and has an average fiber length of 45 μm, an average fiber diameter of 35 μm, and a tentative ratio of 0.25. Note that CMF may be made from broad-leaved trees or other plants.
<製造方法>
図2には本実施形態の成形用樹脂材の製造機構を示す概略説明図が示されており、以下同図に基づき、成形用樹脂の製造方法について説明する。 <Manufacturing method>
FIG. 2 shows a schematic explanatory diagram showing the manufacturing mechanism of the molding resin material of this embodiment, and the method for manufacturing the molding resin will be described below based on the diagram.
図2には本実施形態の成形用樹脂材の製造機構を示す概略説明図が示されており、以下同図に基づき、成形用樹脂の製造方法について説明する。 <Manufacturing method>
FIG. 2 shows a schematic explanatory diagram showing the manufacturing mechanism of the molding resin material of this embodiment, and the method for manufacturing the molding resin will be described below based on the diagram.
本実施形態の成形用樹脂の製造方法では、主に、バインダとフィラーを混練するニーダー2と、混練物Kからペレット状の成形用樹脂を製造する押出機3とを有するペレット製造装置1を用いる。
The method for producing molding resin of the present embodiment mainly uses a pellet manufacturing apparatus 1 having a kneader 2 for kneading a binder and a filler, and an extruder 3 for producing pellet-shaped molding resin from a kneaded material K. .
ニーダー2は、加圧式ニーダーである。ニーダー2は、温度調節可能な上部が開口したバレル20内に一対のニーダースクリュー21が回転可能に設けられている。また、ニーダー2は上部の開口を開閉するように加圧プレス22が昇降可能であり、混練時には加圧プレス22が下降してバレル20内を加圧可能である。バレル20内には投入口23を介して混練対象の材料を投入可能である。また、バレル20は混練物Kを排出するよう図2の点線で示すように回転可能である。
The kneader 2 is a pressure kneader. The kneader 2 has a pair of kneader screws 21 rotatably installed in a barrel 20 with an open top that allows temperature adjustment. Further, the pressure press 22 of the kneader 2 can be moved up and down to open and close the upper opening, and during kneading, the pressure press 22 can be lowered to pressurize the inside of the barrel 20. Materials to be kneaded can be introduced into the barrel 20 through an input port 23 . Moreover, the barrel 20 is rotatable as shown by the dotted line in FIG. 2 so as to discharge the kneaded material K.
ニーダー2と押出機3との間には搬送機4が設けられている。搬送機4はニーダー2のバレル20から排出された混練物Kを収容するバケット40を有している。バケット40は、後述する押出機3のホッパー30の上方にまで移動可能であり、当該ホッパー30上方からホッパー30内に混練物Kを投入可能である。
A conveyor 4 is provided between the kneader 2 and the extruder 3. The conveyor 4 has a bucket 40 that accommodates the kneaded material K discharged from the barrel 20 of the kneader 2. The bucket 40 can be moved above the hopper 30 of the extruder 3, which will be described later, and the kneaded material K can be thrown into the hopper 30 from above the hopper 30.
押出機3は、混練物Kが投入されるホッパー30を有し、当該ホッパー30内にはホッパースクリュー31が回転可能に設けられている。ホッパー30は水平方向に延びる中空のシリンダ32と連結されており、シリンダ32内にはストレートスクリュー33が回転可能に設けられている。
The extruder 3 has a hopper 30 into which the kneaded material K is charged, and a hopper screw 31 is rotatably provided within the hopper 30. The hopper 30 is connected to a horizontally extending hollow cylinder 32, and a straight screw 33 is rotatably provided within the cylinder 32.
シリンダ32は温度調節可能であり、内部をストレートスクリュー33が回転することで混練物Kを溶融しつつ先端側に押し出し可能である。ストレートスクリュー33の先端側にはペレタイザ34が設けられている。ペレタイザ34は、溶融された樹脂を小径の棒状に形成するダイス34aと、ダイス34aから出てきた樹脂をペレット状にカットするロータリーカッター34bを有している。
The temperature of the cylinder 32 can be adjusted, and by rotating the straight screw 33 inside, the kneaded material K can be melted and extruded toward the tip side. A pelletizer 34 is provided on the distal end side of the straight screw 33. The pelletizer 34 has a die 34a that forms the molten resin into a small diameter rod, and a rotary cutter 34b that cuts the resin coming out of the die 34a into pellets.
図示しないが、押出機3より下流にはペレットを選別する選別機等が設けられていてもよい。
Although not shown, a sorter or the like for sorting pellets may be provided downstream of the extruder 3.
本実施形態の成形用樹脂は、このように構成された製造装置1により、以下の手順で造粒される。
The molding resin of this embodiment is granulated by the manufacturing apparatus 1 configured as described above in the following procedure.
まずステップS1として、ニーダー2の投入口23からバレル20内にフィラーであるCMFを投入する。
First, in step S1, CMF, which is a filler, is introduced into the barrel 20 from the input port 23 of the kneader 2.
ステップS2では、バレル20を無加圧の状態で加熱しつつニーダースクリュー21を回転駆動して、CMFの水分を減じる(乾燥工程)。この乾燥工程では、CMFの水分量を5重量%以下まで乾燥させるのが好ましい。CMFは一般的に7~10重量%程度の水分量を含んでいるものが多いが、成形用樹脂材としての成形性や、水蒸気爆発等を防ぐため、バインダとの混練前にCMFの水分量を5重量%以下まで乾燥させる乾燥工程を設けることが有効である。
In step S2, the kneader screw 21 is driven to rotate while heating the barrel 20 in a non-pressurized state to reduce the water content of the CMF (drying step). In this drying step, it is preferable to dry the CMF to a moisture content of 5% by weight or less. CMF generally contains a water content of about 7 to 10% by weight, but in order to improve its moldability as a molding resin material and to prevent steam explosions, the water content of CMF must be adjusted before kneading with the binder. It is effective to provide a drying step in which the amount of the carbon dioxide is dried to 5% by weight or less.
ステップS3では、ステップS2におけるCMFの乾燥完了後、投入口23からバレル20内にバインダである樹脂材を投入する。
In step S3, after the drying of the CMF in step S2 is completed, a resin material as a binder is charged into the barrel 20 from the input port 23.
ステップS4では、圧力プレス22を下降させてバレル20内を加圧し且つ加熱しながらニーダースクリュー21を回転駆動して、CMFとバインダの樹脂材を混練する(混練工程)。
In step S4, the pressure press 22 is lowered to pressurize and heat the inside of the barrel 20, while rotating the kneader screw 21 to knead the CMF and the binder resin material (kneading step).
ステップS5では、ステップS4における混練完了後、バレル20から混練物Kを取り出し搬送機4のバケット40に投入する。
In step S5, after the kneading in step S4 is completed, the kneaded material K is taken out from the barrel 20 and put into the bucket 40 of the conveyor 4.
ステップS6では、搬送機4により混練物Kが押出機3のホッパー30まで搬送し、当該ホッパー内に30内に混練物Kを投入する。
In step S6, the kneaded material K is transported by the conveyor 4 to the hopper 30 of the extruder 3, and the kneaded material K is introduced into the hopper 30.
ステップS7では、ホッパースクリュー31を駆動し、混練物Kをシリンダ32に引き込んでいく。
In step S7, the hopper screw 31 is driven to draw the kneaded material K into the cylinder 32.
ステップS8では、シリンダ32内を加熱しつつ、ストレートスクリュー33が回転することで、混練物Kを溶融しながら先端側に移送する。
In step S8, the straight screw 33 rotates while heating the inside of the cylinder 32, thereby transferring the kneaded material K to the tip side while melting it.
ステップS9では、ペレタイザ34において、ダイス34aから樹脂を棒状に押し出し、このダイス34aから出てきた樹脂をロータリーカッター34bによりカットしてペレット状の成形用樹脂材とする。
In step S9, in the pelletizer 34, the resin is extruded into a rod shape from the die 34a, and the resin coming out from the die 34a is cut by the rotary cutter 34b to form a pellet-shaped molding resin material.
以上のように、ペレット製造装置1を用いて、ステップS1~S9の工程を有する生産方法により、本実施形態におけるペレット状の成形用樹脂材が生産される。なお、本実施形態のペレット製造装置1は、バインダとフィラーとの混練を加圧式ニーダーにより行っているが、混練機はこれに限られるものではない。例えば、押出機(例えば二軸押出機)により、混練を行ってもよい。
As described above, the pellet-shaped molding resin material of this embodiment is produced using the pellet manufacturing apparatus 1 by the production method including steps S1 to S9. Although the pellet manufacturing apparatus 1 of this embodiment uses a pressure kneader to knead the binder and filler, the kneader is not limited to this. For example, kneading may be performed using an extruder (for example, a twin-screw extruder).
<成形用樹脂を用いた成形品>
本実施形態の成形用樹脂材を使用した成形品は、上述したペレット状の成形用樹脂材を射出成形により成形する。つまり、図示しないが、ペレット状の成形用樹脂材をニーダーにより混練して、成形品用の押出機により射出成形する。ニーダーや射出成形機は既存のものを使用可能である。 <Molded products using molding resin>
A molded article using the molding resin material of this embodiment is formed by injection molding the above-mentioned pellet-shaped molding resin material. That is, although not shown, a pellet-shaped molding resin material is kneaded using a kneader, and then injection molded using an extruder for molded products. Existing kneaders and injection molding machines can be used.
本実施形態の成形用樹脂材を使用した成形品は、上述したペレット状の成形用樹脂材を射出成形により成形する。つまり、図示しないが、ペレット状の成形用樹脂材をニーダーにより混練して、成形品用の押出機により射出成形する。ニーダーや射出成形機は既存のものを使用可能である。 <Molded products using molding resin>
A molded article using the molding resin material of this embodiment is formed by injection molding the above-mentioned pellet-shaped molding resin material. That is, although not shown, a pellet-shaped molding resin material is kneaded using a kneader, and then injection molded using an extruder for molded products. Existing kneaders and injection molding machines can be used.
<実施例>
以下、本発明に係る成形用樹脂材からなる成形品の実施例と、フィラーがCNFである成形用樹脂材からなる成形品の比較例、化石由来も含むバイオプラスチックからなる成形用樹脂材からなる成形品の比較例、及び従来の非バイオプラスチックからなる成形用樹脂材からなる成形品の比較例との成形性、外観性、物性評価について図3~図9を参照しつつ説明する。 <Example>
Examples of molded articles made of a molding resin material according to the present invention, comparative examples of molded articles made of a molding resin material whose filler is CNF, and molded articles made of a molding resin material made of bioplastics including those derived from fossils are shown below. Evaluations of moldability, appearance, and physical properties of a comparative example of a molded article and a comparative example of a molded article made of a conventional non-bioplastic molding resin material will be described with reference to FIGS. 3 to 9.
以下、本発明に係る成形用樹脂材からなる成形品の実施例と、フィラーがCNFである成形用樹脂材からなる成形品の比較例、化石由来も含むバイオプラスチックからなる成形用樹脂材からなる成形品の比較例、及び従来の非バイオプラスチックからなる成形用樹脂材からなる成形品の比較例との成形性、外観性、物性評価について図3~図9を参照しつつ説明する。 <Example>
Examples of molded articles made of a molding resin material according to the present invention, comparative examples of molded articles made of a molding resin material whose filler is CNF, and molded articles made of a molding resin material made of bioplastics including those derived from fossils are shown below. Evaluations of moldability, appearance, and physical properties of a comparative example of a molded article and a comparative example of a molded article made of a conventional non-bioplastic molding resin material will be described with reference to FIGS. 3 to 9.
図3には各実施例及び各比較例の製造条件が示されている。同図に示すように実施例1~4及び比較例1はバインダがPLA樹脂であり、実施例5~7及び比較例2はバインダがPHA樹脂であり、比較例3~5はバインダがバイオPBSであり、比較例6~10はバインダがPP樹脂である。いずれの実施例及び比較例も上述したペレット製造装置1を用いて成形用樹脂材を製造し、当該成形用樹脂材を用いて射出成形機により成形品を成形している。図3に示す混練条件はペレット製造装置1のニーダー2における混練条件であり、成形条件は射出成形機における成形条件である。
FIG. 3 shows the manufacturing conditions of each example and each comparative example. As shown in the figure, in Examples 1 to 4 and Comparative Example 1, the binder was PLA resin, in Examples 5 to 7 and Comparative Example 2, the binder was PHA resin, and in Comparative Examples 3 to 5, the binder was bio-PBS. In Comparative Examples 6 to 10, the binder was PP resin. In each of the Examples and Comparative Examples, a molding resin material is manufactured using the pellet manufacturing apparatus 1 described above, and a molded product is molded using an injection molding machine using the molding resin material. The kneading conditions shown in FIG. 3 are the kneading conditions in the kneader 2 of the pellet manufacturing apparatus 1, and the molding conditions are the molding conditions in the injection molding machine.
また、フィラーとしてのCMFは、針葉樹を乾式粉砕したセルロースパウダーを使用した。フィラーとしてのCNFは、針葉樹をTEMPO酸化法により粉砕したセルロースファイバーであり、水分7.96重量%、仮比重0.35、トップサイズ209.3μmのものを使用した。
Furthermore, as CMF as a filler, cellulose powder obtained by dry-pulverizing coniferous wood was used. The CNF used as the filler was cellulose fiber obtained by pulverizing coniferous wood using the TEMPO oxidation method, and had a water content of 7.96% by weight, a tentative specific gravity of 0.35, and a top size of 209.3 μm.
実施例1~4及び比較例1のPLA樹脂は、トウモロコシなどに含まれるデンプンを原料とした植物由来のPLA樹脂であって、MFR(メルトフローレート)が10~15(g/10min)、比重1.25、融点165~175℃のものを使用した。
The PLA resins of Examples 1 to 4 and Comparative Example 1 are plant-derived PLA resins made from starch contained in corn, etc., and have an MFR (melt flow rate) of 10 to 15 (g/10min) and a specific gravity. 1.25 and a melting point of 165-175°C was used.
具体的には、実施例1は、PLA樹脂が100重量%、つまりフィラーを混ぜずにPLA樹脂のみで成形用樹脂材を製造した。この実施例1の成形用樹脂材を用いた成形品の成形条件は射出時間45秒、温度180℃、冷却時間40秒である。
Specifically, in Example 1, a molding resin material was manufactured using 100% by weight of PLA resin, that is, only PLA resin without mixing filler. The molding conditions for a molded article using the molding resin material of Example 1 were injection time of 45 seconds, temperature of 180° C., and cooling time of 40 seconds.
実施例2は、PLA樹脂が80重量%に対して、フィラーとして繊維長35~45μm、粒度分布D50が33.09μmのCMFを20重量%混ぜて成形用樹脂材を製造した。この実施例2の成形用樹脂材は190℃で40rpmの回転数で27分間混練を行って製造されたものである。また実施例2の成形用樹脂材を用いた成形品の成形条件は、射出時間15秒、温度180℃、冷却時間5秒である。
In Example 2, a molding resin material was produced by mixing 80% by weight of PLA resin with 20% by weight of CMF having a fiber length of 35 to 45 μm and a particle size distribution D50 of 33.09 μm as a filler. The molding resin material of Example 2 was produced by kneading at 190° C. and 40 rpm for 27 minutes. Further, the molding conditions for the molded product using the molding resin material of Example 2 were: injection time 15 seconds, temperature 180° C., and cooling time 5 seconds.
実施例3は、PLA樹脂が40重量%に対して、フィラーとして繊維長35~45μm、粒度分布D50が33.09μmのCMFを60重量%混ぜて成形用樹脂材を製造した。この実施例3の成形用樹脂材は185℃で40rpmの回転数で25分間混練を行って製造されたものである。
In Example 3, a molding resin material was produced by mixing 40% by weight of PLA resin with 60% by weight of CMF having a fiber length of 35 to 45 μm and a particle size distribution D50 of 33.09 μm as a filler. The molding resin material of Example 3 was produced by kneading at 185° C. and a rotation speed of 40 rpm for 25 minutes.
実施例4は、PLA樹脂が30重量%に対して、フィラーとして繊維長35~45μm、粒度分布D50が33.09μmのCMFを70重量%混ぜて成形用樹脂材を製造した。この実施例4の成形用樹脂材は195℃で40rpmの回転数で25分間混練を行って製造されたものである。
In Example 4, a molding resin material was produced by mixing 30% by weight of PLA resin with 70% by weight of CMF having a fiber length of 35 to 45 μm and a particle size distribution D50 of 33.09 μm as a filler. The molding resin material of Example 4 was produced by kneading at 195° C. and a rotation speed of 40 rpm for 25 minutes.
比較例1は、PLA樹脂が80重量%に対して、フィラーとして繊維長3nm~1μm、粒度分布D50が26.30μmのCNFを20重量%混ぜて成形用樹脂材を製造した。この比較例1の成形用樹脂材は180℃で40rpmの回転数で15分間混練を行って製造されたものである。しかし、比較例1の成形用樹脂材の品質が悪く、成形品を成形できなかった。
In Comparative Example 1, a molding resin material was produced by mixing 80% by weight of PLA resin with 20% by weight of CNF having a fiber length of 3 nm to 1 μm and a particle size distribution D50 of 26.30 μm as a filler. The molding resin material of Comparative Example 1 was manufactured by kneading at 180° C. and a rotation speed of 40 rpm for 15 minutes. However, the quality of the molding resin material of Comparative Example 1 was poor, and a molded article could not be molded.
実施例5~7及び比較例2のPHA樹脂(PHBV樹脂)は、微生物が植物油などのバイオマスを原料として、微生物生体内で作製されたプラスチックであって、MFR(メルトフローレート)が8~15、比重1.25、融点175~180℃のものを使用した。
The PHA resins (PHBV resins) of Examples 5 to 7 and Comparative Example 2 are plastics produced in vivo by microorganisms using biomass such as vegetable oil as raw materials, and have an MFR (melt flow rate) of 8 to 15. , specific gravity 1.25, and melting point 175 to 180°C.
具体的には、実施例5は、PHA樹脂が100重量%、つまりフィラーを混ぜずにPHA樹脂のみで成形用樹脂材を製造した。この実施例5の成形用樹脂材を用いた成形品の成形条件は射出時間12秒、温度170℃、冷却時間40秒である。
Specifically, in Example 5, a molding resin material was manufactured using 100% by weight of PHA resin, that is, only PHA resin without mixing filler. The molding conditions for a molded article using the molding resin material of Example 5 were injection time of 12 seconds, temperature of 170° C., and cooling time of 40 seconds.
実施例6は、PHA樹脂が80重量%に対して、フィラーとして繊維長35~45μm、粒度分布D50が33.09μmのCMFを20重量%混ぜて成形用樹脂材を製造した。この実施例6の成形用樹脂材は160℃で40rpmの回転数で20分間混練を行って製造されたものである。また実施例6の成形用樹脂材を用いた成形品の成形条件は、射出時間12秒、温度160℃、冷却時間40秒である。
In Example 6, a molding resin material was produced by mixing 80% by weight of PHA resin with 20% by weight of CMF having a fiber length of 35 to 45 μm and a particle size distribution D50 of 33.09 μm as a filler. The molding resin material of Example 6 was produced by kneading at 160° C. and a rotation speed of 40 rpm for 20 minutes. Further, the molding conditions for the molded product using the molding resin material of Example 6 were: injection time 12 seconds, temperature 160° C., and cooling time 40 seconds.
実施例7は、PHA樹脂が40重量%に対して、フィラーとして繊維長35~45μm、粒度分布D50が33.09μmのCMFを60重量%混ぜて成形用樹脂材を製造した。この実施例7の成形用樹脂材は176℃で40rpmの回転数で25分間混練を行って製造されたものである。
In Example 7, a molding resin material was produced by mixing 40% by weight of PHA resin with 60% by weight of CMF having a fiber length of 35 to 45 μm and a particle size distribution D50 of 33.09 μm as a filler. The molding resin material of Example 7 was manufactured by kneading at 176° C. and a rotation speed of 40 rpm for 25 minutes.
比較例2は、PHA樹脂が80重量%に対して、フィラーとして繊維長3nm~1μm、粒度分布D50が26.30μmのCNFを20重量%混ぜて成形用樹脂材を製造した。この実施例9の成形用樹脂材は145℃で40rpmの回転数で15分間混練を行って製造されたものである。また比較例2の成形用樹脂材を用いた成形品の成形条件は、射出時間12秒、温度170℃、冷却時間40秒である。
In Comparative Example 2, a molding resin material was produced by mixing 80% by weight of PHA resin with 20% by weight of CNF having a fiber length of 3 nm to 1 μm and a particle size distribution D50 of 26.30 μm as a filler. The molding resin material of Example 9 was produced by kneading at 145° C. and 40 rpm for 15 minutes. Furthermore, the molding conditions for the molded product using the molding resin material of Comparative Example 2 were: injection time 12 seconds, temperature 170° C., and cooling time 40 seconds.
比較例3~5のバイオPBSは、とうもろこし、キャッサバ、サトウキビ等からのバイオコハク酸、1,4-ブタンジオールにより生成されたバイオマス比率50重量%のバイオプラスチックであり、MFR(メルトフローレート)が5、比重1.26、融点115℃のものを使用した。
The bio-PBS of Comparative Examples 3 to 5 is a bioplastic with a biomass ratio of 50% by weight produced from biosuccinic acid and 1,4-butanediol from corn, cassava, sugarcane, etc., and has an MFR (melt flow rate) of 50% by weight. 5, a specific gravity of 1.26 and a melting point of 115°C was used.
具体的には、比較例3は、バイオPBSが100重量%、つまりフィラーを混ぜずにバイオPBSのみで成形用樹脂材を製造した。この比較例3の成形用樹脂材を用いた成形品の成形条件は射出時間30秒、温度130℃、冷却時間40秒である。
Specifically, in Comparative Example 3, the molding resin material was manufactured using 100% by weight of bio-PBS, that is, only bio-PBS without mixing filler. The molding conditions for the molded article using the molding resin material of Comparative Example 3 were injection time of 30 seconds, temperature of 130° C., and cooling time of 40 seconds.
比較例4は、バイオPBSが80重量%に対して、フィラーとして繊維長35~45μm、粒度分布D50が33.09μmのCMFを20重量%混ぜて成形用樹脂材を製造した。この比較例2の成形用樹脂材は130℃で40rpmの回転数で25分間混練を行って製造されたものである。また比較例4の成形用樹脂材を用いた成形品の成形条件は実施例1と同様に、射出時間30秒、温度130℃、冷却時間40秒である。
In Comparative Example 4, a molding resin material was produced by mixing 80% by weight of bio-PBS with 20% by weight of CMF having a fiber length of 35 to 45 μm and a particle size distribution D50 of 33.09 μm as a filler. The molding resin material of Comparative Example 2 was manufactured by kneading at 130° C. and a rotation speed of 40 rpm for 25 minutes. The molding conditions for the molded article using the molding resin material of Comparative Example 4 are the same as in Example 1: injection time 30 seconds, temperature 130° C., and cooling time 40 seconds.
比較例5は、バイオPBSが66.2重量%に対して、フィラーとして繊維長35~45μm、粒度分布D50が33.09μmのCMFを28.4重量%混ぜ、さらにゴム、ワックスを5.7重量%添加して成形用樹脂材を製造した。この比較例5の成形用樹脂材は、130℃で40rpmの回転数で25分間混練を行って製造されたものである。また実施例2の成形用樹脂材を用いた成形品の成形条件は、射出時間12秒、温度190℃、冷却時間40秒である。
In Comparative Example 5, 66.2% by weight of bio-PBS was mixed with 28.4% by weight of CMF having a fiber length of 35 to 45 μm and a particle size distribution D50 of 33.09 μm as a filler, and 5.7% by weight of rubber and wax. A resin material for molding was produced by adding % by weight. The molding resin material of Comparative Example 5 was manufactured by kneading at 130° C. and a rotation speed of 40 rpm for 25 minutes. Further, the molding conditions for the molded product using the molding resin material of Example 2 were: injection time 12 seconds, temperature 190° C., and cooling time 40 seconds.
比較例6~10のPP樹脂は、プライムポリマー社製ホモポリプロピレンF113Gであり、MFR(メルトフローレート)が3、比重0.90、融点165℃のものを使用した。
The PP resin used in Comparative Examples 6 to 10 was homopolypropylene F113G manufactured by Prime Polymer Co., Ltd., which had an MFR (melt flow rate) of 3, a specific gravity of 0.90, and a melting point of 165°C.
具体的には、比較例6は、PP樹脂が100重量%、つまりフィラーを混ぜずにPP樹脂のみで成形用樹脂材を製造した。この比較例6の成形用樹脂材を用いた成形品の成形条件は射出時間14秒、温度200℃、冷却時間40秒である。
Specifically, in Comparative Example 6, a molding resin material was manufactured using 100% by weight of PP resin, that is, only PP resin without mixing filler. The molding conditions for the molded article using the molding resin material of Comparative Example 6 were injection time of 14 seconds, temperature of 200° C., and cooling time of 40 seconds.
比較例7は、PP樹脂が80重量%に対して、フィラーとして繊維長35~45μm、粒度分布D50が33.09μmのCMFを20重量%混ぜて成形用樹脂材を製造した。この比較例8の成形用樹脂材は、200℃で40rpmの回転数で26分間混練を行って製造されたものである。また比較例8の成形用樹脂材を用いた成形品の成形条件は、射出時間14秒、温度200℃、冷却時間60秒である。
In Comparative Example 7, a molding resin material was produced by mixing 80% by weight of PP resin with 20% by weight of CMF having a fiber length of 35 to 45 μm and a particle size distribution D50 of 33.09 μm as a filler. The molding resin material of Comparative Example 8 was manufactured by kneading at 200° C. and a rotation speed of 40 rpm for 26 minutes. Furthermore, the molding conditions for the molded product using the molding resin material of Comparative Example 8 were: injection time 14 seconds, temperature 200° C., and cooling time 60 seconds.
比較例8は、PP樹脂が59.2重量%に対して、フィラーとして繊維長35~45μm、粒度分布D50が33.09μmのCMFを39.5重量%混ぜ、添加物としてワックスを1.3重量%添加して成形用樹脂材を製造した。この比較例9の成形用樹脂材は、175℃で40rpmの回転数で45分間混練を行って製造されたものである。また比較例9の成形用樹脂材を用いた成形品の成形条件は、射出時間14秒、温度200℃、冷却時間60秒である。
In Comparative Example 8, 59.2% by weight of PP resin was mixed with 39.5% by weight of CMF having a fiber length of 35 to 45 μm and a particle size distribution D50 of 33.09 μm as a filler, and 1.3% of wax was added as an additive. A resin material for molding was produced by adding % by weight. The molding resin material of Comparative Example 9 was manufactured by kneading at 175° C. and a rotation speed of 40 rpm for 45 minutes. Furthermore, the molding conditions for the molded product using the molding resin material of Comparative Example 9 were: injection time 14 seconds, temperature 200° C., and cooling time 60 seconds.
比較例9は、PP樹脂が39.2重量%に対して、フィラーとして繊維長35~45μm、粒度分布D50が33.09μmのCMFを58.8重量%混ぜ、添加物としてワックスを2.0%添加して成形用樹脂材を製造した。この比較例9の成形用樹脂材は、175℃で40rpmの回転数で45分間混練を行って製造されたものである。また比較例9の成形用樹脂材を用いた成形品の成形条件は、射出時間14秒、温度200℃、冷却時間60秒である。
In Comparative Example 9, 39.2% by weight of PP resin was mixed with 58.8% by weight of CMF having a fiber length of 35 to 45 μm and a particle size distribution D50 of 33.09 μm as a filler, and 2.0% of wax was added as an additive. % was added to produce a molding resin material. The molding resin material of Comparative Example 9 was manufactured by kneading at 175° C. and a rotation speed of 40 rpm for 45 minutes. Furthermore, the molding conditions for the molded product using the molding resin material of Comparative Example 9 were: injection time 14 seconds, temperature 200° C., and cooling time 60 seconds.
比較例10は、PP樹脂が19.6重量%に対して、フィラーとして繊維長35~45μm、粒度分布D50が33.09μmのCMFを78.4重量%混ぜ、添加物としてワックスを2.0重量%添加して成形用樹脂材を製造した。この比較例9の成形用樹脂材は、176℃で40rpmの回転数で44分間混練を行って製造されたものである。
In Comparative Example 10, 19.6% by weight of PP resin was mixed with 78.4% by weight of CMF having a fiber length of 35 to 45 μm and a particle size distribution D50 of 33.09 μm as a filler, and 2.0% of wax was added as an additive. A resin material for molding was produced by adding % by weight. The molding resin material of Comparative Example 9 was manufactured by kneading at 176° C. and a rotation speed of 40 rpm for 44 minutes.
このような製造条件で製造された各成形用樹脂材及び成形品に対して、図4に各実施例及び各比較例の結果が示されている。また、図5~図7には各実施例及び各比較の成形品の写真が示され、図8にはプレスシートによる成形用樹脂材の外観性を示す表が、図9には走査電子顕微鏡(SEM)による成形用樹脂材の外観性を示す表が示されており、以下、図4~9に基づいて、本実施形態の成形用樹脂材及び成形品の特性について説明する。
FIG. 4 shows the results of each example and each comparative example for each molding resin material and molded product manufactured under such manufacturing conditions. In addition, Figures 5 to 7 show photographs of the molded products of each example and each comparison, Figure 8 shows a table showing the appearance of the resin material for molding using press sheets, and Figure 9 shows the appearance of the molded products using a scanning electron microscope. A table showing the appearance properties of the molding resin material by (SEM) is shown, and the characteristics of the molding resin material and molded product of this embodiment will be described below based on FIGS. 4 to 9.
成形性について、図4~図7に基づき説明する。なお、成形性は、成形品(試験片)のバリ、ショートショット、反り、ヒケ、ボイド、フローマーク、ウェルドライン、シルバーストリーク等の不具合の有無を基準としている。
The moldability will be explained based on FIGS. 4 to 7. The moldability is based on the presence or absence of defects such as burrs, short shots, warping, sink marks, voids, flow marks, weld lines, and silver streaks in the molded product (test piece).
図4に示すように、従来から一般的に使用されているPP樹脂を用いている比較例6~10については、成形性はいずれも問題ない。また、50%が化石由来であるバイオPBSを用いている比較例3~5も、成形性はいずれも問題ない。一方で、バイオマス比率が100%となるバイオプラスチックである実施例1~7及び比較例1、2については、製品としての成形性を満たしているのは、CMFを混ぜている実施例3~7である。
As shown in FIG. 4, in Comparative Examples 6 to 10, which use PP resin that has been commonly used, there is no problem in moldability. Furthermore, Comparative Examples 3 to 5, in which bio-PBS of which 50% is derived from fossils, have no problems in moldability. On the other hand, regarding Examples 1 to 7 and Comparative Examples 1 and 2, which are bioplastics with a biomass ratio of 100%, only Examples 3 to 7, in which CMF is mixed, meet the moldability as a product. It is.
具体的には、図5(a)に示す比較例3(バイオPBS100重量%)、図5(b)に示す比較例4(バイオPBS80重量%、CMF20%)、および図5(c)に示す比較例5(バイオPBS66、2重量%、CMF28.4%、ゴム、ワックス5.7重量%)では、いずれも成形品(試験片)に不具合なく、成形性に問題はない。
Specifically, Comparative Example 3 (Bio PBS 100% by weight) shown in FIG. 5(a), Comparative Example 4 (Bio PBS 80% by weight, CMF 20%) shown in FIG. 5(b), and Comparative Example 4 shown in FIG. 5(c) In Comparative Example 5 (Bio PBS 66, 2% by weight, CMF 28.4%, rubber, wax 5.7% by weight), there were no defects in the molded products (test pieces), and there was no problem in moldability.
また図6(a)に示す実施例1(PLA樹脂100重量%)では、試験片の一部に気泡が含まれており、成形性に問題がある。図6(b)に示す実施例2(PLA樹脂80重量%、CMF20%)は、成形品(試験片)に不具合なく、成形性に問題はない。図6(c)に示すように、比較例1(PLA樹脂80重量%、CNF20%)に関しては成形時に試験片が折れてしまい、成形ができなかった。
In addition, in Example 1 (100% by weight of PLA resin) shown in FIG. 6(a), some of the test pieces contained air bubbles, which caused problems in moldability. In Example 2 (PLA resin 80% by weight, CMF 20%) shown in FIG. 6(b), there were no defects in the molded product (test piece) and no problems in moldability. As shown in FIG. 6(c), in Comparative Example 1 (PLA resin 80% by weight, CNF 20%), the test piece broke during molding, and molding could not be performed.
図7(a)に示す実施例5(PHA100重量%)、図7(b)に示す実施例6(PHA80重量%、CMF20%)、及び図7(c)に示す比較例2(PHA80重量%、CNF20%)では、いずれも成形品(試験片)に不具合なく、成形性には問題はない。
Example 5 (PHA 100% by weight) shown in FIG. 7(a), Example 6 (PHA 80% by weight, CMF 20%) shown in FIG. 7(b), and Comparative Example 2 (PHA 80% by weight) shown in FIG. 7(c). , CNF 20%), there were no defects in the molded products (test pieces), and there was no problem in moldability.
外観性について、図4、図8、図9に基づき説明する。外観性は、型通りの外観を良品として判断し、粉状やグラデーションをなしている外観は不良と判断している。また、外観性は、形を保っているものを良品と判断し、触れると脆く壊れるものは不良と判断している。
The appearance will be explained based on FIGS. 4, 8, and 9. Regarding the appearance, a regular appearance is judged as a good product, and a powdery or gradated appearance is judged as poor. In terms of appearance, products that retain their shape are considered good, and products that become brittle and break when touched are considered defective.
図4に示すように、PP樹脂を用いている比較例6~11については、外観性はいずれも問題ない。一方で、バイオマス比率が100%となるバイオプラスチックである実施例1~7及び比較例1、2については、製品としての外観性を満たしているのは、CMFを混ぜている実施例2~4及び実施例6、7である。
As shown in FIG. 4, Comparative Examples 6 to 11 using PP resin have no problems in appearance. On the other hand, regarding Examples 1 to 7 and Comparative Examples 1 and 2, which are bioplastics with a biomass ratio of 100%, Examples 2 to 4, in which CMF is mixed, satisfy the appearance as a product. and Examples 6 and 7.
具体的には、図8にプレスシートによる成形用樹脂材の外観性の評価が表で示されている。
Specifically, FIG. 8 shows the evaluation of the appearance of the molding resin material using a press sheet.
このプレスシートによる評価は以下の手順で行っている。
The evaluation using this press sheet is performed according to the following procedure.
まず、熱プレス機の準備し、熱プレス機の電源を入れ、2時間昇温する。熱プレス機には圧力検知部1か所、ヒーター上下1か所ずつ設けられている。設定温度は200℃に設定した。
First, prepare the heat press machine, turn on the heat press machine, and raise the temperature for 2 hours. The heat press machine is equipped with one pressure detection section and one heater at the top and bottom. The set temperature was set at 200°C.
次に試料となる成形用樹脂材を準備し、ルミラーを振るい、付着しているごみを取り除く。そして、ルミラーを紙等の上に置き、ルミラーの中央に試料をスパーテル1杯分程度乗せ、平らにならす。なお、樹脂分が多い場合は融けたときに広がりやすいため、試料を少なめにした。さらに、別のルミラーも同様に振るい、付着しているごみを取り除き、試料の上にルミラーを重ねる。
Next, prepare the molding resin material that will be the sample, and shake it with a Lumirror to remove any adhering dust. Then, place the Lumirror on a piece of paper, etc., place about a spatula's worth of the sample in the center of the Lumirror, and smooth it out. Note that if the resin content is high, it tends to spread when melted, so the sample size was kept small. Furthermore, shake another Lumirror in the same way to remove any adhering dust, and place the Lumirror on top of the sample.
続いて、試料を含むルミラーを熱プレス機に挟み、0.95~1tの荷重をかけ、1分間加熱した。1分経過後、8.95~9tまで荷重をかけ、さらに1分間加熱した。その後、直ちにルミラーを熱プレス機から取り出す。
Subsequently, the Lumirror containing the sample was placed in a heat press machine, a load of 0.95 to 1 t was applied, and it was heated for 1 minute. After 1 minute had passed, a load of 8.95 to 9 t was applied and heating was continued for 1 minute. Thereafter, immediately remove the Lumirror from the heat press.
取り出したルミラーにおいて試料に凝縮塊の有無を確認し、試料全体が冷めたことを確認し、さらに光に透かして再度凝集塊の有無を確認した。その他、色の異常や、異物についても確認した。異常が確認された場合は、上記手順に従いもう一枚作製した。
The presence or absence of condensation was confirmed in the sample using the Lumirror, which was taken out, to confirm that the entire sample had cooled down, and the presence or absence of condensation was confirmed again by looking through the sample with light. We also checked for color abnormalities and foreign substances. If an abnormality was confirmed, another sheet was produced according to the above procedure.
図8に示すように、フィラーとしてCNFを混ぜたPLA樹脂(比較例1)及びPHA樹脂(比較例2)の成形用樹脂材は、プレスシート評価において凝集塊が多く、分散性が悪いことがわかる。
As shown in Figure 8, the molding resin materials of PLA resin (Comparative Example 1) and PHA resin (Comparative Example 2) mixed with CNF as a filler had many aggregates and poor dispersibility in the press sheet evaluation. Recognize.
一方で、フィラーとしてCMFを混ぜたPLA樹脂(実施例2~4)及びPHA樹脂(実施例6、7)の成形用樹脂材は、プレスシート評価において凝集塊はほとんどなく、分散性に優れていることがわかる。なお、実施例3、4、7には、表面に多少の色ムラが生じているが、凝集塊はなく外観の品質としては大きな問題は生じない。
On the other hand, the molding resin materials of PLA resin (Examples 2 to 4) and PHA resin (Examples 6 and 7) mixed with CMF as a filler had almost no agglomerates in the press sheet evaluation, and had excellent dispersibility. I know that there is. In Examples 3, 4, and 7, some color unevenness occurred on the surface, but there were no agglomerates and no major problem occurred in terms of appearance quality.
なお、PP樹脂については紙粉(実測粒度55~65μm)、紙片(カタログ値粒度1~2mm、実測粒度1000~2000μm)を混ぜて、同様のプレスシート評価を行ったが、凝集塊が多く、分散性が悪かった。一方で、フィラーとしてCMF(カタログ値粒度35~45μm、実測粒度25~35μm)を混ぜたバイオPBS樹脂(比較例4、5)及びPP樹脂(比較例9、10)の成形用樹脂材は、プレスシート評価において凝集塊はほとんどなく、分散性に優れていることがわかる。
Regarding PP resin, a similar press sheet evaluation was performed by mixing paper powder (actually measured particle size 55 to 65 μm) and paper pieces (catalog value particle size 1 to 2 mm, measured particle size 1000 to 2000 μm), but there were many aggregates. Dispersibility was poor. On the other hand, the molding resin materials of bio-PBS resin (Comparative Examples 4 and 5) and PP resin (Comparative Examples 9 and 10) mixed with CMF (catalog value particle size 35 to 45 μm, measured particle size 25 to 35 μm) as a filler are as follows: In the press sheet evaluation, there were almost no agglomerates, indicating excellent dispersibility.
さらに、図9に走査電子顕微鏡(SEM)による成形用樹脂材の外観性の評価が表で示されている。なお、図9の評価対象である成形用樹脂材は、ペレットをSEM観察したものである。
Further, FIG. 9 shows a table showing the evaluation of the appearance of the molding resin material using a scanning electron microscope (SEM). Note that the molding resin material to be evaluated in FIG. 9 is obtained by observing pellets using an SEM.
図9に示すように、フィラーとしてCNFを混ぜたPLA樹脂(比較例1)及びPHA樹脂(比較例2)の成形用樹脂材は、SEM画像からも粒度のばらつきが大きく、分散性が悪いことがわかる。
As shown in Figure 9, the molding resin materials of PLA resin (Comparative Example 1) and PHA resin (Comparative Example 2) mixed with CNF as a filler have large variations in particle size and poor dispersibility as seen from the SEM images. I understand.
一方で、フィラーとしてCMFを混ぜたPLA樹脂(実施例2)、PHA樹脂(実施例6)、バイオPBS(実施例2)の成形用樹脂材は、SEM画像からも粒度のばらつきは小さく、分散性に優れていることがわかる。なお、図9ではフィラーとしてCMFを混ぜたバイオPBS(比較例4)のSEM画像も示されており、これも粒度のばらつきは小さく、分散性に優れていた。
On the other hand, the molding resin materials of PLA resin (Example 2), PHA resin (Example 6), and bio-PBS (Example 2) mixed with CMF as a filler have small variations in particle size as seen from SEM images, and are dispersed. It turns out that he has excellent sex. Note that FIG. 9 also shows an SEM image of bio-PBS (comparative example 4) mixed with CMF as a filler, which also had small variations in particle size and excellent dispersibility.
なお、PP樹脂に紙粉、紙片を混ぜたものについては、粒度のばらつきが大きく、分散性が悪かった。PLA樹脂にも同様の紙粉を混ぜてSEMで観察してみたが、粒度のばらつきが大きく、分散性が悪かった。一方で、フィラーとしてCMF(カタログ値粒度35~45μm、実測粒度25μm~35μm)を混ぜたPP樹脂(比較例10)の成形用樹脂材は、粒度のばらつきは小さく、分散性に優れていた。
Note that when PP resin was mixed with paper powder and pieces of paper, the particle size varied widely and the dispersibility was poor. Similar paper powder was mixed with PLA resin and observed under SEM, but the particle size varied widely and the dispersibility was poor. On the other hand, the molding resin material of PP resin (Comparative Example 10) mixed with CMF (catalog particle size 35 to 45 μm, measured particle size 25 μm to 35 μm) as a filler had small variations in particle size and had excellent dispersibility.
物性評価について、図4に基づき説明する。物性評価は、成形品の用途に応じて要求される物性及びその値は変化する。例えば自動車部品等の成形品では主に強度が求められる。一方、強度がそれほど求められないものとしては、いわゆる日用品等がある。強度が求められる指標としては、曲げ強度、曲げ弾性がある。車のバンパー等衝撃に影響するものは、IZOD衝撃度が重要となる。また一般的には成形収縮率が寸法成形性として評価される。
The physical property evaluation will be explained based on FIG. 4. In physical property evaluation, the required physical properties and their values change depending on the use of the molded product. For example, strength is primarily required for molded products such as automobile parts. On the other hand, items that do not require much strength include so-called daily necessities. Indices for determining strength include bending strength and bending elasticity. IZOD impact strength is important for things that affect impact, such as car bumpers. Additionally, molding shrinkage is generally evaluated as dimensional formability.
図4に示すように、バイオマス比率100重量%(CMF20重量%)であり且つ成形性及び外観性を満たしている実施例2、6は曲げ強度、曲げ弾性が、PP樹脂にタルクを混ぜた従来からある比較例7や、PP樹脂にCMFを混ぜた比較例8と同等からそれ以上の物性を実現できており、強度を必要とする成形品においてPP樹脂の成形品をバイオマス比率100重量%に置き換えることができることがわかる。また、実施例2、6は、バイオマス比率50重量%のバイオPBSにおいて、CMF20重量%混ぜたものよりも曲げ弾性や曲げ強度に優れている。このようなことから、例えば実施例2、6は自動車部位品等の一定の強度を必要とする成形品に適用できる。
As shown in Fig. 4, Examples 2 and 6, which have a biomass ratio of 100% by weight (CMF 20% by weight) and satisfy moldability and appearance, have the bending strength and bending elasticity of the PP resin mixed with talc. It has been possible to achieve physical properties that are equivalent to or better than Comparative Example 7, which is a mixture of PP resin and CMF, and Comparative Example 8, which is a mixture of PP resin and CMF.For molded products that require strength, the biomass ratio of PP resin molded products is 100% by weight. It turns out that it can be replaced. In addition, Examples 2 and 6 are superior in bending elasticity and bending strength to bio-PBS with a biomass ratio of 50% by weight and a mixture of 20% by weight of CMF. For this reason, Examples 2 and 6, for example, can be applied to molded products that require a certain strength, such as automobile parts.
また実施例2、6の成形収縮率は1.00%以下であり、比較的寸法安定性に優れていることがわかる。
Furthermore, the molding shrinkage rates of Examples 2 and 6 were 1.00% or less, indicating that they had relatively excellent dimensional stability.
このように成形する製品に応じて求められる物性は異なるが、本実施形態の成形用樹脂材はバイオマス比率100重量%(少なくとも90重量%以上の高バイオマス比率)を実現しつつ、成形性や外観性を満たしつつ成形できることに特徴がある。
Although the required physical properties differ depending on the product to be molded, the molding resin material of this embodiment achieves a biomass ratio of 100% by weight (a high biomass ratio of at least 90% by weight) while maintaining moldability and appearance. It is characterized by its ability to be molded while satisfying its properties.
以上の結果から、バイオプラスチックの成形用樹脂材として、生分解性プラスチックにフィラーとしてCMFを混ぜることで、成形性を向上し、外観性も損なうことのない分散性の良い生分解性を有した高バイオマス比率の成形用樹脂材を実現することができる。
From the above results, by mixing CMF as a filler with biodegradable plastics as a molding resin material for bioplastics, moldability can be improved, and the resin material has good dispersibility and biodegradability without impairing appearance. It is possible to realize a molding resin material with a high biomass ratio.
また、生分解性プラスチックをバイオ由来のみからなるバイオプラスチックとすることで、より環境負荷の低い成形用樹脂材を実現することができる。
Furthermore, by using biodegradable plastics as bioplastics made only from bio-derived materials, it is possible to realize molding resin materials with lower environmental impact.
特にバイオマス比率を100重量%とすることで、環境負荷低減効果を最大化することができる。
In particular, by setting the biomass ratio to 100% by weight, the environmental load reduction effect can be maximized.
また、生分解性プラスチックを30重量%以上であり、CMFを20重量%以上とすることで、十分な成形性及び外観性を備えたバイオプラスチックの成形用樹脂材を実現することができる。
Furthermore, by setting the biodegradable plastic to 30% by weight or more and the CMF to 20% by weight or more, it is possible to realize a bioplastic molding resin material with sufficient moldability and appearance.
また、上記図3、4から、生分解性プラスチックとしてPLA(ポリ乳酸)樹脂が適している。また上記図3、4から、生分解性プラスチックとしてPHA(PHBV)樹脂が適している。さらに上記図3、4から、CMF(セルロースマイクロファイバー)は、繊維長が35μm以上45μm以下であるのが適している。
Furthermore, from FIGS. 3 and 4 above, PLA (polylactic acid) resin is suitable as the biodegradable plastic. Further, from FIGS. 3 and 4 above, PHA (PHBV) resin is suitable as the biodegradable plastic. Further, from FIGS. 3 and 4 above, it is suitable that CMF (cellulose microfiber) has a fiber length of 35 μm or more and 45 μm or less.
そして、本実施形態の成形用樹脂材を用いて成形された樹脂成形品は、成形性及び外観性に優れたものとなる。
The resin molded product molded using the molding resin material of this embodiment has excellent moldability and appearance.
また、成形用樹脂材の生産方法としては、CMFの水分量を5重量%以下まで乾燥させる乾燥工程と、当該乾燥工程にて乾燥させたCMFと生分解性プラスチックとを加圧混錬機により混練する混練工程と、を有することで、水蒸気爆発等の不具合を防ぎつつ、高バイオマス比率の成形用樹脂材を生産することができる。
In addition, the production method for resin materials for molding includes a drying process in which the moisture content of CMF is dried to 5% by weight or less, and a pressure kneading machine to mix the CMF dried in the drying process and biodegradable plastic. By having the kneading step of kneading, it is possible to produce a molding resin material with a high biomass ratio while preventing problems such as steam explosion.
<放射性炭素濃度測定(AMS測定)>
試料として、CMFである第1の試料(試料名:ARBOCEL FD600/30)、成形用樹脂材である第2の試料(試料名:PHA(CMF60)-MB)、成形用樹脂材である第3の試料(試料名:PLA(CMF70)-MB)を準備した。第2の試料は、PHA樹脂とCMFとを重量%比率で40:60としたものである。第3の試料は、PLA樹脂とCMFとを重量%比率で30:70としたものである。それぞれの試料を前処理せずに燃焼させることにより二酸化炭素を発生させ、発生した二酸化炭素を真空ラインにより精製した。さらに、精製した二酸化炭素を、鉄を触媒として水素で還元することにより、グラファイトを生成させた。生成させたグラファイトを、内径1mmのカソードにハンドプレス機で詰め、それをホイールにはめ込んで測定装置に装着した。 <Radiocarbon concentration measurement (AMS measurement)>
As samples, the first sample is CMF (sample name: ARBOCEL FD600/30), the second sample is a molding resin material (sample name: PHA(CMF60)-MB), and the third sample is a molding resin material. A sample (sample name: PLA(CMF70)-MB) was prepared. The second sample contained PHA resin and CMF in a weight percent ratio of 40:60. The third sample contained PLA resin and CMF in a weight percent ratio of 30:70. Carbon dioxide was generated by burning each sample without pretreatment, and the generated carbon dioxide was purified using a vacuum line. Furthermore, graphite was produced by reducing purified carbon dioxide with hydrogen using iron as a catalyst. The produced graphite was packed into a cathode with an inner diameter of 1 mm using a hand press machine, which was fitted into a wheel and attached to a measuring device.
試料として、CMFである第1の試料(試料名:ARBOCEL FD600/30)、成形用樹脂材である第2の試料(試料名:PHA(CMF60)-MB)、成形用樹脂材である第3の試料(試料名:PLA(CMF70)-MB)を準備した。第2の試料は、PHA樹脂とCMFとを重量%比率で40:60としたものである。第3の試料は、PLA樹脂とCMFとを重量%比率で30:70としたものである。それぞれの試料を前処理せずに燃焼させることにより二酸化炭素を発生させ、発生した二酸化炭素を真空ラインにより精製した。さらに、精製した二酸化炭素を、鉄を触媒として水素で還元することにより、グラファイトを生成させた。生成させたグラファイトを、内径1mmのカソードにハンドプレス機で詰め、それをホイールにはめ込んで測定装置に装着した。 <Radiocarbon concentration measurement (AMS measurement)>
As samples, the first sample is CMF (sample name: ARBOCEL FD600/30), the second sample is a molding resin material (sample name: PHA(CMF60)-MB), and the third sample is a molding resin material. A sample (sample name: PLA(CMF70)-MB) was prepared. The second sample contained PHA resin and CMF in a weight percent ratio of 40:60. The third sample contained PLA resin and CMF in a weight percent ratio of 30:70. Carbon dioxide was generated by burning each sample without pretreatment, and the generated carbon dioxide was purified using a vacuum line. Furthermore, graphite was produced by reducing purified carbon dioxide with hydrogen using iron as a catalyst. The produced graphite was packed into a cathode with an inner diameter of 1 mm using a hand press machine, which was fitted into a wheel and attached to a measuring device.
測定装置としては、タンデム加速器をベースとした14C-AMS専用装置(NEC社製)を使用し、14Cの計数、13C濃度(13C/12C)、14C濃度(14C/12C)の測定を行った。測定では、米国国立標準局(NIST)から提供されたシュウ酸(HOxII)を標準試料とし、この標準試料とバックグラウンド試料との測定も同時に実施した。測定結果を下記の表1に示す。
The measuring device used was a 14 C-AMS dedicated device (manufactured by NEC Corporation) based on a tandem accelerator, which counted 14 C, 13 C concentration ( 13 C/ 12 C), and 14 C concentration ( 14 C/ 12 C). C) was measured. In the measurements, oxalic acid (HOxII) provided by the US National Institute of Standards (NIST) was used as a standard sample, and measurements of this standard sample and a background sample were also performed at the same time. The measurement results are shown in Table 1 below.
なお、下記表1において、δ13Cは、試料炭素の13C濃度(13C/12C)を測定し、標準試料からのずれを千分偏差(‰)で表した値である。この値は、AMS装置による測定値であり、下記の表1においても「AMS」と注記した。pMC(percent Modern Carbon)は、標準現代炭素に対する試料炭素の14C濃度の割合である。下記表1においては、δ13Cによって補正した値と補正していない値を示した。δ14Cは、標準現代炭素に対する試料炭素の14C濃度のずれを千分偏差(‰)で表したもので、これをδ13C補正した値がΔ14Cである。
In Table 1 below, δ 13 C is a value obtained by measuring the 13 C concentration ( 13 C/ 12 C) of sample carbon and expressing the deviation from the standard sample in thousandth deviation (‰). This value is a value measured by an AMS device, and is also noted as "AMS" in Table 1 below. pMC (percent Modern Carbon) is the ratio of the 14 C concentration of sample carbon to standard modern carbon. Table 1 below shows values corrected by δ 13 C and values not corrected. δ 14 C is the deviation of the 14 C concentration of the sample carbon relative to standard modern carbon expressed in thousandths of a deviation (‰), and the value obtained by correcting this with δ 13 C is Δ 14 C.
さらに、ASTM D6866-22に従い、δ13C補正されたpMCを用いて算出した試料のバイオマス度を図10に示す。バイオマス原料が生産された年によって基準となる値(大気補正係数REF(pMC))が異なるため、原料の由来が明らかな場合はその年のREF(pMC)を用いた方が正確な値となる。試料に含まれる炭素が陸生の植物に由来する場合、生産年ごとの炭素ベースバイオマス度は図10のようになる。なお、炭素の由来が陸生の植物でない、または陸生でも2004年より古いと見込まれる場合は別計算になる。REF(pMC)の参考として、白河分析センター周辺(日本国福島県)の植物は2022年7月にpMC=98.9を示した。現在、天然に近い環境では、pMC=99~102程度を示す事が多い。
Furthermore, the biomass degree of the sample calculated using δ 13 C-corrected pMC according to ASTM D6866-22 is shown in FIG. The standard value (atmospheric correction factor REF (pMC)) differs depending on the year in which the biomass raw material was produced, so if the origin of the raw material is clear, it is more accurate to use the REF (pMC) of that year. . If the carbon contained in the sample is derived from terrestrial plants, the carbon-based biomass degree for each year of production is as shown in Figure 10. However, if the carbon source is not a terrestrial plant, or if it is terrestrial but is expected to be older than 2004, the calculation will be different. As a reference for REF(pMC), plants around the Shirakawa Analysis Center (Fukushima Prefecture, Japan) showed pMC=98.9 in July 2022. Currently, in environments close to natural, pMC often shows around 99 to 102.
図10の棒グラフは、試料に含まれる全炭素のうちバイオマス由来炭素と石油由来炭素との割合を示している。なお、バイオマス原料と石油原料との混合重量比が必ずしも上記割合に一致するとは限らない。IAAA-220645は現代の大気に対し非常に高いpMC値を示している。原料となる木材などバイオマスが古い可能性が高く、その場合ASTM D6866-22における2022年のREF(pMC)を利用するには適さない。
The bar graph in FIG. 10 shows the ratio of biomass-derived carbon and petroleum-derived carbon to the total carbon contained in the sample. Note that the mixing weight ratio of the biomass raw material and the petroleum raw material does not necessarily match the above ratio. IAAA-220645 shows very high pMC values for modern atmospheres. There is a high possibility that the biomass used as raw material, such as wood, is old, and in that case, it is not suitable to use the 2022 REF (pMC) in ASTM D6866-22.
図10に示されるように、第1の試料、第2の試料及び第3の試料のいずれについてもバイオマス度が90質量%以上であることを確認することができた。
As shown in FIG. 10, it was confirmed that the biomass degree of each of the first sample, second sample, and third sample was 90% by mass or more.
以上で本発明の実施形態及び実施例の説明を終えるが、本発明の態様はこの実施形態及び実施例に限定されるものではない。
This concludes the description of the embodiments and examples of the present invention, but aspects of the present invention are not limited to these embodiments and examples.
上記実施形態に係る開示を例示すると以下のとおりである。
[1] 生分解性プラスチックと、セルロースマイクロファイバーとを含有し、バイオマス比率が90質量%以上である成形用樹脂材。
[2] 前記生分解性プラスチックはバイオ由来のみからなるバイオマスプラスチックである[1]に記載の成形用樹脂材。
[3]バイオマス比率が100質量%である[1]又は[2]に記載の成形用樹脂材。
[4] 前記生分解性プラスチックが30重量%以上であり、前記セルロースマイクロファイバーが20重量%以上である[1]~[3]のいずれか1つに記載の成形用樹脂材。
[5] 前記生分解性プラスチックは、ポリ乳酸樹脂である[1]~[4]のいずれか1つに記載の成形用樹脂材。
[6] 前記生分解性プラスチックは、ポリヒドロキシアルカノエート樹脂である[1]~[4]のいずれか1つに記載の成形用樹脂材。
[7] 前記セルロースマイクロファイバーは、繊維長が35μm以上45μm以下である[1]~[6]のいずれか1つに記載の成形用樹脂材。
[8] 前記[1]から[5]のいずれか一つに記載の成形用樹脂材を用いて成形された樹脂成形品。
[9] セルロースマイクロファイバーの水分量を5重量%以下まで乾燥させる乾燥工程と、前記乾燥工程にて乾燥させたセルロースマイクロファイバーと、生分解性プラスチックとを、加圧混錬機により混練する混練工程と、を含む、成形用樹脂材の生産方法。 Examples of the disclosure related to the above embodiments are as follows.
[1] A molding resin material containing biodegradable plastic and cellulose microfibers and having a biomass ratio of 90% by mass or more.
[2] The molding resin material according to [1], wherein the biodegradable plastic is a biomass plastic made only of bio-derived materials.
[3] The molding resin material according to [1] or [2], wherein the biomass ratio is 100% by mass.
[4] The molding resin material according to any one of [1] to [3], wherein the biodegradable plastic is 30% by weight or more, and the cellulose microfiber is 20% by weight or more.
[5] The molding resin material according to any one of [1] to [4], wherein the biodegradable plastic is a polylactic acid resin.
[6] The molding resin material according to any one of [1] to [4], wherein the biodegradable plastic is a polyhydroxyalkanoate resin.
[7] The molding resin material according to any one of [1] to [6], wherein the cellulose microfiber has a fiber length of 35 μm or more and 45 μm or less.
[8] A resin molded article molded using the molding resin material according to any one of [1] to [5] above.
[9] A drying step in which the water content of cellulose microfibers is dried to 5% by weight or less, and a kneading step in which the cellulose microfibers dried in the drying step and biodegradable plastic are kneaded using a pressure kneader. A method for producing a molding resin material, including a process.
[1] 生分解性プラスチックと、セルロースマイクロファイバーとを含有し、バイオマス比率が90質量%以上である成形用樹脂材。
[2] 前記生分解性プラスチックはバイオ由来のみからなるバイオマスプラスチックである[1]に記載の成形用樹脂材。
[3]バイオマス比率が100質量%である[1]又は[2]に記載の成形用樹脂材。
[4] 前記生分解性プラスチックが30重量%以上であり、前記セルロースマイクロファイバーが20重量%以上である[1]~[3]のいずれか1つに記載の成形用樹脂材。
[5] 前記生分解性プラスチックは、ポリ乳酸樹脂である[1]~[4]のいずれか1つに記載の成形用樹脂材。
[6] 前記生分解性プラスチックは、ポリヒドロキシアルカノエート樹脂である[1]~[4]のいずれか1つに記載の成形用樹脂材。
[7] 前記セルロースマイクロファイバーは、繊維長が35μm以上45μm以下である[1]~[6]のいずれか1つに記載の成形用樹脂材。
[8] 前記[1]から[5]のいずれか一つに記載の成形用樹脂材を用いて成形された樹脂成形品。
[9] セルロースマイクロファイバーの水分量を5重量%以下まで乾燥させる乾燥工程と、前記乾燥工程にて乾燥させたセルロースマイクロファイバーと、生分解性プラスチックとを、加圧混錬機により混練する混練工程と、を含む、成形用樹脂材の生産方法。 Examples of the disclosure related to the above embodiments are as follows.
[1] A molding resin material containing biodegradable plastic and cellulose microfibers and having a biomass ratio of 90% by mass or more.
[2] The molding resin material according to [1], wherein the biodegradable plastic is a biomass plastic made only of bio-derived materials.
[3] The molding resin material according to [1] or [2], wherein the biomass ratio is 100% by mass.
[4] The molding resin material according to any one of [1] to [3], wherein the biodegradable plastic is 30% by weight or more, and the cellulose microfiber is 20% by weight or more.
[5] The molding resin material according to any one of [1] to [4], wherein the biodegradable plastic is a polylactic acid resin.
[6] The molding resin material according to any one of [1] to [4], wherein the biodegradable plastic is a polyhydroxyalkanoate resin.
[7] The molding resin material according to any one of [1] to [6], wherein the cellulose microfiber has a fiber length of 35 μm or more and 45 μm or less.
[8] A resin molded article molded using the molding resin material according to any one of [1] to [5] above.
[9] A drying step in which the water content of cellulose microfibers is dried to 5% by weight or less, and a kneading step in which the cellulose microfibers dried in the drying step and biodegradable plastic are kneaded using a pressure kneader. A method for producing a molding resin material, including a process.
1 ペレット製造装置
2 ニーダー
3 押出機
4 搬送機
20 バレル
21 ニーダースクリュー
22 加圧プレス
23 投入口
30 ホッパー
31 ホッパースクリュー
32 シリンダ
33 ストレートスクリュー
34 ペレタイザ
34a ダイス
34b ロータリーカッター
40 バケット
1Pellet production device 2 Kneader 3 Extruder 4 Conveyor 20 Barrel 21 Kneader screw 22 Pressure press 23 Inlet 30 Hopper 31 Hopper screw 32 Cylinder 33 Straight screw 34 Pelletizer 34a Die 34b Rotary cutter 40 Bucket
2 ニーダー
3 押出機
4 搬送機
20 バレル
21 ニーダースクリュー
22 加圧プレス
23 投入口
30 ホッパー
31 ホッパースクリュー
32 シリンダ
33 ストレートスクリュー
34 ペレタイザ
34a ダイス
34b ロータリーカッター
40 バケット
1
Claims (9)
- 生分解性プラスチックと、セルロースマイクロファイバーとを含有し、バイオマス比率が90質量%以上である成形用樹脂材。 A molding resin material containing biodegradable plastic and cellulose microfibers and having a biomass ratio of 90% by mass or more.
- 前記生分解性プラスチックはバイオ由来のみからなるバイオマスプラスチックである請求項1に記載の成形用樹脂材。 The molding resin material according to claim 1, wherein the biodegradable plastic is a biomass plastic made only of bio-derived materials.
- バイオマス比率が100質量%である請求項1に記載の成形用樹脂材。 The molding resin material according to claim 1, wherein the biomass ratio is 100% by mass.
- 前記生分解性プラスチックが30重量%以上であり、
前記セルロースマイクロファイバーが20重量%以上である請求項1に記載の成形用樹脂材。 The biodegradable plastic is 30% by weight or more,
The molding resin material according to claim 1, wherein the cellulose microfiber is 20% by weight or more. - 前記生分解性プラスチックは、ポリ乳酸樹脂である請求項1記載の成形用樹脂材。 The molding resin material according to claim 1, wherein the biodegradable plastic is a polylactic acid resin.
- 前記生分解性プラスチックは、ポリヒドロキシアルカノエート樹脂である請求項1記載の成形用樹脂材。 The molding resin material according to claim 1, wherein the biodegradable plastic is a polyhydroxyalkanoate resin.
- 前記セルロースマイクロファイバーは、繊維長が35μm以上45μm以下である請求項1に記載の成形用樹脂材。 The molding resin material according to claim 1, wherein the cellulose microfiber has a fiber length of 35 μm or more and 45 μm or less.
- 前記請求項1から5のいずれか一項に記載の成形用樹脂材を用いて成形された樹脂成形品。 A resin molded article molded using the molding resin material according to any one of claims 1 to 5.
- セルロースマイクロファイバーの水分量を5重量%以下まで乾燥させる乾燥工程と、
前記乾燥工程にて乾燥させたセルロースマイクロファイバーと、生分解性プラスチックとを、加圧混錬機により混練する混練工程と、
を含む、成形用樹脂材の生産方法。
a drying step of drying the cellulose microfiber to a moisture content of 5% by weight or less;
a kneading step of kneading the cellulose microfibers dried in the drying step and biodegradable plastic using a pressure kneader;
A method for producing a resin material for molding, including:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022114356 | 2022-07-15 | ||
JP2022-114356 | 2022-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024014545A1 true WO2024014545A1 (en) | 2024-01-18 |
Family
ID=89536848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/026116 WO2024014545A1 (en) | 2022-07-15 | 2023-07-14 | Resin material for molding, resin molded article, and method for producing resin material for molding |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024014545A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001192401A (en) * | 2000-01-02 | 2001-07-17 | Nippon Koonsutaac Kk | Biodegradable block material for model |
JP2007112859A (en) * | 2005-10-19 | 2007-05-10 | Nissan Motor Co Ltd | Aliphatic polyester resin composition |
JP2008150599A (en) * | 2006-12-13 | 2008-07-03 | Cheil Industries Inc | Natural fiber-reinforced polylactic acid resin composition |
-
2023
- 2023-07-14 WO PCT/JP2023/026116 patent/WO2024014545A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001192401A (en) * | 2000-01-02 | 2001-07-17 | Nippon Koonsutaac Kk | Biodegradable block material for model |
JP2007112859A (en) * | 2005-10-19 | 2007-05-10 | Nissan Motor Co Ltd | Aliphatic polyester resin composition |
JP2008150599A (en) * | 2006-12-13 | 2008-07-03 | Cheil Industries Inc | Natural fiber-reinforced polylactic acid resin composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7846991B2 (en) | Biodegradable resin composition and method for producing the same | |
Gamon et al. | Twin-screw extrusion impact on natural fibre morphology and material properties in poly (lactic acid) based biocomposites | |
JP4572516B2 (en) | Method for producing resin composition | |
WO2017165957A1 (en) | Cellulosic composites comprising wood pulp | |
WO2016079414A1 (en) | Composition of polyester and thermoplastic starch, having improved mechanical properties | |
BR112015019216B1 (en) | microstructured composite material; method for the production of a microstructured composite material; molded, granulated or main mix article; and use of a microstructured composite material | |
Sciancalepore et al. | Preparation and characterization of innovative poly (butylene adipate terephthalate)‐based biocomposites for agri‐food packaging application | |
Ding et al. | The effects of extrusion parameters and blend composition on the mechanical, rheological and thermal properties of LDPE/PS/PMMA ternary polymer blends | |
CN104371296A (en) | Poly-methyl ethylene carbonate composition and preparation method thereof | |
Liu et al. | Different effects of water and glycerol on morphology and properties of poly (lactic acid)/soy protein concentrate blends | |
WO2024014545A1 (en) | Resin material for molding, resin molded article, and method for producing resin material for molding | |
US20220275202A1 (en) | Flexible wood composite material | |
KR20170059175A (en) | Method for manufacturing bioplastic composite using wood flour and bioplastic composite produced by using the same | |
EP4013818A1 (en) | A biodegradable biocomposite and a process for its preparation | |
Dobrzyńska-Mizera et al. | Walnut shells as a filler for polymeric materials | |
KR101467255B1 (en) | Bio Plastic Products Using Trimmed Branch of Roadside Trees Forming Method and Bio Plastic Products By Same The Methods | |
CN107793592B (en) | Biodegradable aliphatic aromatic copolyester toughened thermoplastic polysaccharide blend and preparation method and film thereof | |
JP7549484B2 (en) | Inflation molding | |
Pouriman et al. | Monolayer films from poly (lactic acid) PLA/poly (3-hydroxybutyrate-co-hydroxyvalerate) PHBV blends for food packaging applications. | |
JP2015516895A (en) | Plastic molded product for automobile interior material using biomass pellet and method for producing the same | |
Głogowska et al. | Assessment of the resistance to external factors of low-density polyethylene modified with natural fillers | |
US20240018343A1 (en) | Composite resin molded article and method for producing same | |
WO2021021033A1 (en) | Biomass-containing plastic composition and preparation process thereof | |
La Mantia et al. | Effect of the processing on the properties of biopolymer based composites filled with wood flour | |
Aversa et al. | A method for pet mechanical properties enhancement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23839712 Country of ref document: EP Kind code of ref document: A1 |