WO2024014454A1 - Solid oxide electrolysis cell and solid oxide electrolysis cell system - Google Patents

Solid oxide electrolysis cell and solid oxide electrolysis cell system Download PDF

Info

Publication number
WO2024014454A1
WO2024014454A1 PCT/JP2023/025575 JP2023025575W WO2024014454A1 WO 2024014454 A1 WO2024014454 A1 WO 2024014454A1 JP 2023025575 W JP2023025575 W JP 2023025575W WO 2024014454 A1 WO2024014454 A1 WO 2024014454A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
metal
solid oxide
fuel electrode
oxide
Prior art date
Application number
PCT/JP2023/025575
Other languages
French (fr)
Japanese (ja)
Inventor
ハルディヤント 栗田
洋史 加賀
喜丈 戸田
秀雄 上杉
暁 留野
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024014454A1 publication Critical patent/WO2024014454A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/042Hydrogen or oxygen by electrolysis of water by electrolysis of steam
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide electrolytic cell and a solid oxide electrolytic cell system.
  • SOEC solid oxide electrolysis cells
  • the basic unit is a cell (single cell) that has two electrodes (oxygen electrode and fuel electrode) and a solid electrolyte layer placed between the two electrodes.
  • a SOEC system is constructed by modularizing a multi-stack that is a combination of a plurality of these cell stacks.
  • Patent Document 1 a cerium-based composite oxide layer called an intermediate layer is arranged between an electrolyte layer and each electrode, and a multilayer structure of a catalyst layer and a current collecting layer is used as an oxygen electrode. It is proposed to do so.
  • the present invention has been made in view of this background, and an object of the present invention is to provide a SOEC that can suppress changes in operating voltage compared to conventional ones. Another object of the present invention is to provide a SOEC system including such a SOEC.
  • the present invention provides a solid oxide electrolysis cell having a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode, further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
  • the fuel electrode includes a metal or a metal oxide and a compound A, The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
  • the metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). including,
  • a solid oxide type electrolytic cell is provided in which the compound A includes a mayenite type compound and/or a perovskite type compound containing an alkaline earth metal element.
  • the present invention provides a solid oxide electrolytic cell system, comprising: a module comprising a plurality of solid oxide electrolytic cell stacks, each solid oxide electrolytic cell being a solid oxide electrolytic cell having the characteristics described above; a power supply device that supplies power to the module; a gas supply device that supplies water vapor and/or carbon dioxide to the module; a gas separation device that separates hydrogen and/or carbon monoxide generated from the module; a storage device that stores the hydrogen and/or carbon monoxide separated by the gas separation device;
  • a solid oxide electrolytic cell system is provided having the following.
  • the present invention provides a solid oxide electrolysis cell having a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode, further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
  • the fuel electrode includes a metal or a metal oxide and a compound A, The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
  • the metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn).
  • the compound A contains an oxide containing an alkaline earth metal element and/or a rare earth element other than Sc and Y, and the ratio of the alkaline earth metal element and/or rare earth element other than Sc and Y to the metal is molar.
  • a solid oxide type electrolytic cell is provided in which the ratio is 1.0% or more.
  • the present invention it is possible to provide a SOEC that can suppress changes in operating voltage compared to conventional ones. Furthermore, the present invention can provide a SOEC system including such a SOEC.
  • 1 is a cross-sectional view schematically showing an example of the configuration of a SOEC according to an embodiment of the present invention.
  • 1 is a diagram schematically showing an example of the configuration of a system including a SOEC module according to an embodiment of the present invention.
  • 1 is a flow diagram schematically showing an example of a method for manufacturing a SOEC according to an embodiment of the present invention.
  • 1 is a graph showing changes over time in electrolysis voltage measured in a SOEC according to an embodiment of the present invention (cell 1) and a conventional SOEC (cell 21).
  • a solid oxide electrolytic cell in one embodiment, includes a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode, further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
  • the fuel electrode includes a metal or a metal oxide and a compound A, The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
  • the metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn).
  • a solid oxide type electrolytic cell is provided in which the compound A includes a mayenite type compound and/or a perovskite type compound containing an alkaline earth metal element.
  • a mayenite type compound has a C12A7 (12CaO.7Al 2 O 3 ) type crystal structure, and means a substance with a characteristic crystal structure having three-dimensionally connected cavities (cages). .
  • the skeleton that constitutes the cage of the mayenite-type compound is positively charged and includes 12 cage structures per unit cell.
  • 1/6 of this cage contains oxide ions inside to satisfy the electrical neutrality condition of the crystal.
  • the oxide ions in this cage are particularly called free oxide ions because they are chemically bonded more loosely than other oxide ions constituting the crystal skeleton.
  • Representative materials of the mayenite type compound are, for example, 12CaO.7Al 2 O 3 , 12SrO.7Al 2 O 3 , and 12MgO.7Al 2 O 3 . However, in these materials, some of the cations (Ca, Al, Sr, and Mg) may be replaced with other cations.
  • ⁇ -based mayenite-type compounds materials in which some of such cations are replaced with other cations are referred to as " ⁇ -based mayenite-type compounds.”
  • a material in which some of the Ca and/or Al sites are replaced with different cations is called a "12CaO.7Al 2 O 3 -based mayenite-type compound.”
  • a material in which some of the Sr and/or Al sites are replaced with different cations is called a "12SrO.7Al 2 O 3 -based mayenite-type compound”.
  • the fuel electrode includes compound A, that is, a mayenite-type compound and/or a perovskite-type compound containing an alkaline earth metal element, in addition to a metal or a metal oxide.
  • Such a compound A has a strong affinity for CO2 . Therefore, during the electrolytic treatment of SOEC according to an embodiment of the present invention, the reactive gas CO 2 is strongly adsorbed on the compound A. Therefore, during the reduction reaction at the fuel electrode, electrons are smoothly supplied to CO 2 at the three-phase interface between the metal and compound A (the reaction field where the reaction gas, electrons, and ions meet).
  • the fuel electrode contains, in addition to the metal or the oxide of the metal, an oxide containing compound A, that is, an alkaline earth metal element and/or a rare earth element other than Sc and Y.
  • the ratio of alkaline earth metal elements and/or rare earth elements excluding Sc and Y to the metal is 1.0% or more in terms of molar ratio.
  • Such a compound A has a strong affinity for CO2 . Therefore, during the electrolytic treatment of SOEC according to an embodiment of the present invention, the reactive gas CO 2 is strongly adsorbed on the compound A. Therefore, electrons are smoothly supplied to CO 2 during the reduction reaction at the fuel electrode.
  • compound A does not need to have oxide ion conductivity.
  • electrolysis proceeds at a three-phase interface formed by the gas phase, the metal contained in the fuel electrode, and the cerium oxide as an intermediate layer.
  • Compound A existing near the three-phase interface adsorbs and activates CO 2 , and electrons are smoothly supplied to CO 2 .
  • current flows more easily, and deterioration of the reaction field due to this is suppressed.
  • FIG. 1 schematically shows a configuration example of a SOEC according to an embodiment of the present invention.
  • a SOEC (hereinafter referred to as "first cell") 100 includes a fuel electrode 110, an oxygen electrode 120, and a space between the fuel electrode 110 and the oxygen electrode 120. and a solid electrolyte layer 130 disposed in the solid electrolyte layer 130 .
  • the first cell 100 also has a first intermediate layer 150 between the fuel electrode 110 and the solid electrolyte layer 130, and a second intermediate layer between the oxygen electrode 120 and the solid electrolyte layer 130. It has 160.
  • the first intermediate layer 150 and the second intermediate layer 160 are provided to suppress solid phase reactions between the respective electrodes 110 and 120 and the solid electrolyte layer 130.
  • a more suitable three-phase interface is formed by the intermediate layer 150, the metal (for example, Ni) contained in the fuel electrode 110, and the gas phase, and the fuel electrode 110 is Electrolysis proceeds even if it is not included.
  • the second intermediate layer 160 may be omitted.
  • the fuel electrode 110 includes a metal or a metal oxide and a compound A.
  • compound A includes a mayenite type compound and/or a CaTiO 3 -based perovskite type compound.
  • the fuel electrode 110 has the role of electrolyzing water vapor and/or carbon dioxide at an operating temperature.
  • the fuel electrode 110 includes metal and compound A.
  • the fuel electrode 110 may be composed of a binder resin such as a green sheet, a powder of compound A, and a powder of a metal or a metal compound, and is a substrate formed by sintering these powders. Good too. If it is a substrate, it can be used as a fuel electrode support type SOEC using the substrate as a support. Further, the fuel electrode may be laminated on a porous support made of metal, ceramics, or a composite thereof.
  • the metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). .
  • the metal is contained in a volume ratio of 40 vol % to 80 vol % in the entire fuel electrode 110 in terms of metal.
  • the metal may be provided in a metal oxide state as well as a metal state. This is because during the electrolysis of the first SOEC 100, the metal oxide is reduced to a metallic state.
  • the oxide is contained in a volume ratio of 40 vol % to 80 vol % based on the metal equivalent of the entire fuel electrode 110 .
  • the compound A contained in the fuel electrode 110 includes a mayenite type compound and/or a CaTiO 3 -based perovskite type compound.
  • the mayenite-type compound is a 12CaO.7Al2O3 - based mayenite-type compound, a 12SrO.7Al2O3 - based mayenite-type compound, or a 12MgO.7Al2O3 -based mayenite- type compound. There may be.
  • compound A when compound A contains a mayenite type compound, compound A may further contain another compound B.
  • Such other compounds B include lithium (Li), sodium (Na), potassium (K), barium (Ba), magnesium (Mg), strontium (Sr), titanium (Ti), yttrium (Y), cerium (Ce), lanthanum (La), and neodymium (Nd).
  • a part of element X may be introduced into the lattice sites of the mayenite-type compound.
  • Element X may be contained in the range of 0.1 mol% to 30 mol% in terms of oxide based on the entire compound A.
  • the perovskite type compound is not particularly limited . ) (here, 0 ⁇ x ⁇ 1), lanthanum-strontium-gallium-based oxide (La 1-x Sr x GaO 3 ) (here, 0 ⁇ x ⁇ 1), lanthanum-barium-gallium-based oxide ( In addition to La 1-x Bax GaO 3 ) (where 0 ⁇ x ⁇ 1) and solid solutions and/or mixtures based thereon, compounds that function as electrolytes can be applied.
  • CaTiO 3 , SrTiO 3 , BaTiO 3 , and solid solutions and/or mixtures based on these are preferred, and CaTiO 3 and solid solutions and/or mixtures based on these are particularly preferred.
  • the perovskite compound is CaTiO 3
  • a portion of Ca and/or Ti sites may be each substituted with another cation.
  • some Ti sites may be replaced with Al.
  • compound A may further contain another compound C.
  • Such another compound C may include a compound of aluminum (Al).
  • Al may be contained in the range of 0.1 mol % to 30 mol % based on the entire compound A in terms of oxide.
  • the compound A contained in the fuel electrode 110 may further include a cerium-based oxide.
  • cerium-based oxides include cerium oxide, cerium oxide doped with rare earth elements such as gadolinium (Gd) or samarium (Sm), and alkaline earth metal elements.
  • the doping amount of rare earth elements such as gadolinium or samarium or alkaline earth metal elements is, for example, in the range of 0 to 20 mol %.
  • the compound A may include an oxide containing an alkaline earth metal element and/or a rare earth element other than Sc and Y.
  • the ratio of the alkaline earth metal element and/or the rare earth element other than Sc and Y to the metal is 1.0% or more in terms of molar ratio.
  • the compound A preferably contains an alkaline earth metal element, more preferably contains Al, and is particularly preferably a mayenite type compound.
  • the oxygen electrode 120 is made of a material that can remove electrons from oxide ions and generate gaseous oxygen molecules.
  • the oxygen electrode 120 is made of lanthanum-strontium-cobalt-based oxide (La 1-x Sr x CoO 3 ) (where 0 ⁇ x ⁇ 1), lanthanum-strontium-cobalt-iron-based oxide (La 1- x Sr x Co 1-y Fe y O 3 ) (here, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), lanthanum-strontium-manganese oxide (La 1-x Sr x MnO 3 ) (here, , 0 ⁇ x ⁇ 1), ceria-based oxides, and mixtures thereof.
  • La 1-x Sr x CoO 3 lanthanum-strontium-cobalt-based oxide
  • La 1- x Sr x Co 1-y Fe y O 3 lanthanum-strontium-manganese oxide
  • La 1-x Sr x MnO 3 lanthanum-strontium-manganese oxide
  • a perovskite oxide containing two or more elements selected from the group consisting of La, Sr, Co, Fe, and Mn In the case of a fuel electrode supporting type, after forming the solid electrolyte layer, a paste containing powder for the oxygen electrode may be applied and fired to form the oxygen electrode. In the case of a solid electrolyte layer supporting type, the oxygen electrode may be formed by applying a paste containing powder for an oxygen electrode onto the solid electrolyte substrate and baking the paste. A ceria-based electrolyte may be formed as a reaction prevention layer between the solid electrolyte layer and the oxygen electrode.
  • Solid electrolyte layer 130 The solid electrolyte layer 130 is made of a material that has oxide ion conductivity at operating temperatures.
  • solid electrolyte layer 130 conventionally known materials may be used.
  • YSZ yttria-stabilized zirconia
  • ScSZ scandia-stabilized zirconia
  • La 1-x Sr x Ga 1-y Fe y O 3 lanthanum-strontium-gallium-magnesium oxide
  • any material other than the above compounds can be used as long as it has oxide ion conductivity.
  • First intermediate layer 150 is arranged between fuel electrode 110 and solid electrolyte layer 130. Further, the second intermediate layer 160 is arranged between the oxygen electrode 120 and the solid electrolyte layer 130.
  • the solid phase reaction between the fuel electrode 110 and the solid electrolyte layer 130 can be suppressed, and deterioration of the solid electrolyte layer 130 and the fuel electrode 110 can be prevented.
  • the first and second intermediate layers 150 and 160 are made of, for example, an oxide containing cerium. Oxides containing cerium are preferred because they have excellent ionic conductivity.
  • the cerium-containing oxide may be, for example, cerium oxide doped with a rare earth element such as gadolinium (Gd) or samarium (Sm), or an alkaline earth metal element.
  • a rare earth element such as gadolinium (Gd) or samarium (Sm)
  • the doping amount of rare earth elements such as Gd or samarium or alkaline earth metal elements is, for example, in the range of 0 to 20 mol %.
  • the SOEC according to an embodiment of the present invention may be of any type, such as an electrolyte layer supported type, a fuel electrode supported type, or a porous substrate supported type.
  • SOEC system A SOEC according to an embodiment of the present invention is used as an SOEC system including a stack configured by laminating a plurality of SOECs and a module combining a plurality of these stacks.
  • FIG. 2 schematically shows an example of the configuration of such a SOEC system.
  • the SOEC system 201 includes a SOEC module 210, a power supply device 220, a gas supply device 230, a gas separation device 240, and a storage device 250.
  • the SOEC module 210 is constructed by stacking multiple SOECs in series.
  • the power supply device 220 has a role of supplying necessary power to the SOEC module 210.
  • the gas supply device 230 has the role of supplying a reactive gas such as water vapor and/or carbon dioxide to the SOEC module 210.
  • the gas separation device 240 has a role of separating the generated gas generated in the SOEC module 210.
  • the storage device 250 has a role of storing hydrogen and/or carbon monoxide separated by the gas separation device 240.
  • the SOEC module 210 When the SOEC system 201 is in operation, the SOEC module 210 is heated to the operating temperature by power from the power supply device 220.
  • the operating temperature is 700°C or higher, for example in the range of 700°C to 900°C.
  • a reaction gas is supplied from the gas supply device 230 to the high temperature SOEC module 210.
  • the reaction gas includes water vapor and/or carbon dioxide.
  • the reaction gas is supplied to the fuel electrode side of each SOEC that constitutes the SOEC module 210.
  • an electrolysis voltage is applied from the power supply device 220 to the SOEC module 210, and electrolysis is started in the SOEC module 210.
  • Electrolytic gas is generated in each SOEC included in the SOEC module 210 by electrolysis. That is, hydrogen and/or carbon monoxide is produced from the fuel electrode, and oxygen is produced from the oxygen electrode.
  • Hydrogen and/or carbon monoxide generated at the fuel electrode is separated by a gas separation device 240. Furthermore, hydrogen and/or carbon monoxide separated by the gas separation device 240 is stored in a storage device 250.
  • oxygen generated at the oxygen electrode may be recovered and stored by another device.
  • each SOEC configuring the SOEC module 210 uses a SOEC according to an embodiment of the present invention.
  • FIG. 3 schematically shows a flow of a SOEC manufacturing method according to an embodiment of the present invention.
  • the SOEC manufacturing method (hereinafter referred to as "first method") according to one embodiment of the present invention is as follows: (1) a step of installing a first intermediate layer on the first surface of the electrolyte layer (step S110); (2) a step of installing a fuel electrode on the first intermediate layer (step S120); (3) installing an oxygen electrode on the side of the electrolyte layer opposite to the first intermediate layer (step S130); has.
  • Step S110 First, a solid electrolyte layer 130 having a first surface and a second surface facing each other is prepared.
  • the shape of the solid electrolyte layer 130 is not particularly limited, and the solid electrolyte layer 130 may be plate-shaped or disc-shaped.
  • the solid electrolyte layer 130 may be made of YSZ or ScSZ, as described above.
  • a first intermediate layer 150 is formed on the first surface of the solid electrolyte layer 130. Further, if necessary, a second intermediate layer 160 may be formed on the second surface of the solid electrolyte layer 130.
  • the first intermediate layer 150 is formed as follows.
  • a first intermediate layer paste is installed on the first surface of the solid electrolyte layer 130.
  • the first intermediate layer paste includes, for example, a solvent, cerium-based oxide particles, and a binder.
  • the cerium-based oxide may be Gd-doped cerium oxide.
  • the method of installing the first intermediate layer paste is not particularly limited.
  • the first intermediate layer paste may be applied to the first surface of the solid electrolyte layer 130, for example, by brush coating, screen printing, or the like.
  • the firing temperature is, for example, in the range of 1200°C to 1400°C. As a result, the first intermediate layer 150 is formed.
  • the second intermediate layer 160 is also formed in a similar manner.
  • Step S120 Next, the fuel electrode 110 is formed on the first intermediate layer 150.
  • the fuel electrode 110 is formed as follows.
  • a fuel electrode paste is placed on the surface of the first intermediate layer 150.
  • the fuel electrode paste includes, for example, a solvent, mixed particles, and a binder.
  • ⁇ -terpineol and polyethylene glycol (PEG) can be used as the solvent.
  • PEG polyethylene glycol
  • Polyvinyl butyral (PVB), ethyl cellulose (EC), etc. can be used as the binder.
  • the mixed particles contain a metal or a metal oxide and a compound A.
  • the metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). .
  • the ratio of the metal or metal oxide to the entire mixed particles is in the range of 40 vol% to 80 vol% in terms of metal volume ratio.
  • compound A includes a mayenite type compound and/or a CaTiO 3 -based perovskite type compound.
  • the mayenite-type compound may be a 12CaO.7Al 2 O 3 -based mayenite-type compound, a 12SrO.7Al 2 O 3 -based mayenite-type compound, or a 12MgO.7Al 2 O 3 -based mayenite-type compound.
  • compound A may have a mayenite type compound and another compound B.
  • another compound B is lithium (Li), sodium (Na), potassium (K), barium (Ba), magnesium (Mg), strontium (Sr), titanium (Ti), yttrium (Y), cerium (Ce), lanthanum (La), and neodymium (Nd). This increases ionic conductivity and/or affinity with CO 2 and suppresses an increase in electrolytic voltage.
  • Such another compound B may be added in an amount of 0.1 mol % to 30 mol % based on the entire compound A in terms of oxide.
  • compound A may include a perovskite-type compound and another compound C.
  • Such another compound C may include a compound of aluminum (Al), such as aluminum oxide.
  • Another compound C may be added in an amount of 0.1 mol % to 30 mol % based on the entire compound A in terms of oxide.
  • compound A may further contain a cerium-based oxide.
  • the content of the cerium-based oxide relative to the compound A is, for example, 80 vol% or less in volume ratio.
  • the method of installing the fuel electrode paste is not particularly limited.
  • the fuel electrode paste may be applied onto the first intermediate layer 150 by, for example, brushing, screen printing, or the like.
  • the firing temperature varies depending on the mixed particles contained in the fuel electrode paste, but is, for example, in the range of 1100°C to 1300°C.
  • the fuel electrode 110 is formed.
  • Step S130 Next, the oxygen electrode 120 is formed on the second surface of the solid electrolyte layer 130 (the second intermediate layer 160, if present; the same applies hereinafter).
  • the oxygen electrode 120 is formed as follows.
  • an oxygen electrode paste is placed on the second surface of the solid electrolyte layer 130.
  • the oxygen electrode paste includes, for example, a solvent, mixed particles, and a binder.
  • the solvent and binder for example, the solvent and binder used in the above-mentioned fuel electrode paste can be used.
  • the mixed particles may be composed of materials that constitute conventional oxygen electrodes.
  • the mixed particles may be, for example, lanthanum-strontium-cobalt-based oxide (La 1-z Sr z CoO 3 ) (where 0 ⁇ z ⁇ 1).
  • the method of installing the oxygen electrode paste is not particularly limited.
  • the oxygen electrode paste may be applied onto the second surface of the solid electrolyte layer 130, for example, by brush coating, screen printing, or the like.
  • the oxygen electrode paste is dried and further subjected to a firing process.
  • the firing temperature varies depending on the mixed particles contained in the oxygen electrode paste, but is, for example, in the range of 900°C to 1100°C.
  • the oxygen electrode 120 is formed.
  • a SOEC according to an embodiment of the present invention can be manufactured.
  • the SOEC according to one embodiment of the present invention may be manufactured by another method. That is, the SOEC according to an embodiment of the present invention may be manufactured by any method as long as a fuel electrode having the above-described characteristics can be obtained.
  • Examples of the present invention will be described below. In the following description, Examples 1 to 20 and Examples 31 to 35 are examples, and Examples 21 and 22 are comparative examples.
  • an intermediate layer was formed on each surface of the solid electrolyte layer by the following procedure.
  • a YSZ substrate manufactured by Tosoh, thickness 500 ⁇ m was used for the solid electrolyte layer.
  • a paste-like composition (referred to as "first paste") was prepared by kneading at a mass ratio of: :50.
  • the first paste was applied to the first surface of the YSZ substrate.
  • the YSZ substrate was turned over, and the first paste was also applied to the second surface using the same procedure.
  • the YSZ substrate was heated to 1400°C. As a result, a first intermediate layer with a diameter of 12 mm ⁇ was formed on the first surface of the YSZ substrate, and a second intermediate layer with a diameter of 12 mm ⁇ was formed on the second surface.
  • a paste-like composition (hereinafter referred to as "second paste") was prepared by adding a solvent (polyethylene glycol PEG400, manufactured by Kokusan Kagaku) to this mixed powder and kneading it.
  • a solvent polyethylene glycol PEG400, manufactured by Kokusan Kagaku
  • a masking tape was applied to the first intermediate layer except for a 10 mm diameter area approximately at the center, and then a second paste was applied onto the first intermediate layer.
  • the second paste was then dried at 230°C.
  • NiO paste (NiO-AFL; manufactured by Kceracell) was applied thereon as a current collecting member. After drying the NiO paste at 140°C, the assembly was fired at 1300°C to form the fuel electrode and current collector member thereon.
  • a paste-like composition (hereinafter referred to as "third paste") was prepared.
  • the third paste is a paste containing powder with a composition of (La 0.60 Sr 0.40 ) 0.95 (Co 0.20 Fe 0.80 )O 3 (LSCF-1; manufactured by Fuel Cell Materials). .
  • Cell 1 The obtained SOEC is referred to as "Cell 1".
  • Example 2 to Example 4 A SOEC was produced in the same manner as in Example 1.
  • Example 4 the composition of the fuel electrode was changed from that in Example 1.
  • a mixture of 12CaO.7Al 2 O 3 mayenite powder and ceria powder GDC standard product for test and research, manufactured by AGC Seimi Chemical
  • the amount of Al 2 O 3 was adjusted as follows.
  • the other cell configurations are the same as in Example 1.
  • Example 21 A SOEC was produced in the same manner as in Example 1.
  • the fuel electrode was composed of a mixture of NiO and YSZ.
  • the mixing ratio of NiO and YSZ was 50:50 (volume ratio) in terms of Ni metal.
  • the other cell configurations are the same as in Example 1.
  • cell 21 The obtained SOEC is referred to as "cell 21".
  • Table 1 summarizes the composition of the fuel electrode in each cell.
  • a single cell evaluation device for solid oxide fuel cells BEL-SOFC (manufactured by Microtrack Bell Co., Ltd.), was used.
  • the hydrogen feed rate was 10 ml/min
  • the argon feed rate was 70 ml/min
  • the water vapor feed rate was 10 ml/min
  • the carbon dioxide feed rate was 10 ml/min.
  • pure oxygen was supplied to the oxygen electrode side at a supply rate of 100 ml/min.
  • the electrolytic current density was 0.1 A/cm 2 .
  • FIG. 4 also shows changes over time in the electrolytic voltage measured in cell 1 and cell 21.
  • the electrolysis voltage on the vertical axis was a value normalized to the initial voltage V 0 of each cell.
  • cell 1 the electrolytic voltage hardly changes with respect to the operating time. From this, it was found that cell 1 allows more stable electrolysis than cell 21.
  • Table 2 summarizes the voltage change rates after 10 hours of electrolysis obtained in each cell.
  • Example 5 the voltage change rate of a cell having a fuel electrode containing Compound A with a predetermined composition was estimated.
  • Powder of compound A was prepared in the same manner as in Example 1.
  • a predetermined amount of LiCO 3 manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • the amount of CaCO3 was adjusted accordingly.
  • Other manufacturing conditions are the same as in Example 1.
  • Example 6 to Example 16 Powders of various compounds A were prepared in the same manner as in Example 5. However, in Examples 6 to 16, instead of Li 2 CO 3 , Na 2 CO 3 (manufactured by Kanto Kagaku), K 2 CO 3 (manufactured by Fuji Film Wako Pure Chemical), MgO (manufactured by Fuji Film Wako Pure Chemical), SrCO 3 (manufactured by Fuji Film Wako Pure Chemical), BaCO 3 (manufactured by Fuji Film Wako Pure Chemical), Y 2 O 3 (manufactured by Shin-Etsu Chemical), La 2 O 3 (manufactured by Junsei Chemical), CeO 2 (manufactured by Kanto Chemical) , Nd 2 O 3 (manufactured by Shin-Etsu Chemical), and TiO 2 (manufactured by Kojundo Kagaku) were added.
  • Na 2 CO 3 manufactured by Kanto Kagaku
  • K 2 CO 3 manufactured by Fuji Film Wako Pure Chemical
  • Na 2 CO 3 , K 2 CO 3 , MgO, SrCO 3 , and BaCO 3 were added in an amount of 5 mol % in terms of Na 2 O, K 2 O, MgO, SrO, and BaO.
  • Y 2 O 3 , La 2 O 3 , and Nd 2 O 3 were added in an amount of 3 mol % in terms of Y 2 O 3 , La 2 O 3 , and Nd 2 O 3 .
  • CeO 2 and TiO 2 were added in amounts of 11 mol % and 14 mol %, respectively, in terms of CeO 2 and TiO 2 .
  • Other manufacturing conditions are the same as in Example 1.
  • the obtained mixed powder was kept in the atmosphere at high temperature for 2 hours to dry it.
  • the treatment temperature was 140°C. This yielded a dry mixed powder from which the solvent had been removed.
  • the treatment temperature was 1400°C and the treatment time was 10 hours.
  • the obtained treated body was pulverized in a mortar to produce powder of CaTiO 3 and aluminum oxide as compound A.
  • a mixed powder was prepared by mixing nickel oxide (NiO, manufactured by Kojundo Kagaku Kenkyusho) powder and the powder of the above compound A at a volume ratio of 50:50 in terms of Ni metal.
  • cell 17 The obtained SOEC is referred to as "cell 17".
  • Example 18 to Example 19 A SOEC was produced in the same manner as in Example 17.
  • Example 18 a mixed powder was prepared by mixing strontium carbonate powder, titanium oxide powder, and ⁇ -alumina powder, respectively.
  • the amount of Al contained in the mixed powder was 14 mol % in terms of Al 2 O 3 .
  • Example 19 a mixed powder was prepared by mixing barium carbonate powder, titanium oxide powder, and ⁇ -alumina powder, respectively.
  • the amount of Al contained in the mixed powder was 14 mol % in terms of Al 2 O 3 .
  • Example 20 A SOEC was produced in the same manner as in Example 1. However, in this example 20, when forming the fuel electrode, nickel oxide powder and 12CaO.7Al2O3 mayenite powder as compound A were mixed at a volume ratio of 70:30 in terms of Ni metal, A mixed powder was prepared.
  • Table 3 shows the composition of the fuel electrode containing Compound A assumed in each example.
  • Table 4 summarizes the estimated cell voltage change rates after 10 hours of electrolysis in each example.
  • Example 22 A SOEC was produced in the same manner as in Example 1. However, in this Example 22, CSZ (CaO stabilized zirconia, manufactured by Kojundo Kagaku Co., Ltd.) was used as the compound A, the volume ratio of Ni in terms of metal was 75%, and the sintering temperature of the fuel electrode was 1100°C.
  • CSZ CaO stabilized zirconia, manufactured by Kojundo Kagaku Co., Ltd.
  • Example 31 A SOEC was produced in the same manner as in Example 1. However, in this Example 31, the volume ratio of Ni in terms of metal was 75%, and the sintering temperature of the fuel electrode was 1100°C.
  • Example 32 A SOEC was produced in the same manner as in Example 1. However, in this Example 32, the weighed value during the preparation of Compound A was changed so that the final composition was Ca 3 Al 2 O 6 . Further, the volume ratio of Ni in terms of metal was set to 75%, and the sintering temperature of the fuel electrode was set to 1200°C.
  • Example 33 A SOEC was produced in the same manner as in Example 1. However, in this Example 33, the weighing value during the preparation of Compound A was changed so that the final composition was CaAl 2 O 4 . Further, the volume ratio of Ni in terms of metal was set to 75%, and the sintering temperature of the fuel electrode was set to 1100°C.
  • Example 34 A SOEC was produced in the same manner as in Example 1. However, in this Example 34, calcium carbonate powder (manufactured by Kojundo Kagaku Kenkyusho) was used as compound A. Further, the volume ratio of Ni in terms of metal was set to 75%, and the sintering temperature of the fuel electrode was set to 1100°C.
  • Example 35 A SOEC was produced in the same manner as in Example 1. However, in this Example 35, La 2 O 3 powder (manufactured by Junsei Kagaku) was used as compound A. Further, the volume ratio of Ni in terms of metal was set to 75%, and the sintering temperature of the fuel electrode was set to 1100°C.
  • Each cell was operated at 800°C, and changes in operating voltage during electrolysis were measured.
  • As the measurement device a single cell evaluation device for solid oxide fuel cells, BEL-SOFC (manufactured by Microtrack Bell Co., Ltd.), was used.
  • the hydrogen feed rate was 10 ml/min
  • the argon feed rate was 70 ml/min
  • the water vapor feed rate was 10 ml/min
  • the carbon dioxide feed rate was 10 ml/min.
  • pure oxygen was supplied to the oxygen electrode side at a supply rate of 100 ml/min.
  • the electrolysis current density was 0.2 A/cm 2 and the electrolysis time was 5 to 50 hours.
  • Table 5 summarizes the composition of the fuel electrode containing Compound A assumed in each example and the evaluation results.
  • a solid oxide electrolysis cell having a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode, further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
  • the fuel electrode includes a metal or a metal oxide and a compound A, The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
  • the metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn).
  • the compound A is a solid oxide electrolytic cell containing a mayenite-type compound and/or a perovskite-type compound containing an alkaline earth metal element.
  • (Aspect 2) The solid oxide according to aspect 1, wherein the mayenite-type compound is a 12CaO.7Al2O3 - based mayenite-type compound, a 12SrO.7Al2O3 - based mayenite-type compound, or a 12MgO.7Al2O3 - based mayenite-type compound. shaped electrolytic cell.
  • Compound A is The mayenite type compound; with another compound B, has The other compound B is lithium (Li), sodium (Na), potassium (K), barium (Ba), magnesium (Mg), strontium (Sr), titanium (Ti), yttrium (Y), cerium (Ce). ), lanthanum (La), and neodymium (Nd),
  • Compound A is The perovskite compound; Another compound C, has The other compound C includes an aluminum (Al) compound, 5.
  • a solid oxide electrolytic cell system The module according to aspect 9, a power supply device that supplies power to the module; a gas supply device that supplies water vapor and/or carbon dioxide to the module; a gas separation device that separates hydrogen and/or carbon monoxide generated from the module; a storage device that stores the hydrogen and/or carbon monoxide separated by the gas separation device; A solid oxide electrolytic cell system with
  • a solid oxide electrolysis cell having a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode, further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
  • the fuel electrode includes a metal or a metal oxide and a compound A, The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
  • the metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn).
  • the compound A contains an oxide containing an alkaline earth metal element and/or a rare earth element other than Sc and Y, and the ratio of the alkaline earth metal element and/or rare earth element other than Sc and Y to the metal is molar.
  • Solid oxide type electrolytic cell with a ratio of 1.0% or more.
  • a solid oxide electrolytic cell system The module according to aspect 12, a power supply device that supplies power to the module; a gas supply device that supplies water vapor and/or carbon dioxide to the module; a gas separation device that separates hydrogen and/or carbon monoxide generated from the module; a storage device that stores the hydrogen and/or carbon monoxide separated by the gas separation device; A solid oxide electrolytic cell system with
  • First cell 110
  • Fuel electrode 120
  • Oxygen electrode 130
  • Solid electrolyte layer 150
  • External power supply 201
  • SOEC system 210
  • Power supply device 230
  • Gas supply device 240
  • Gas separation device 250
  • Storage device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

Provided is a solid oxide electrolysis cell (SOEC) comprising a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode, the SOEC further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode. The intermediate layer comprises cerium oxide, and the fuel electrode comprises a metal or metal oxide, and a compound A. The proportion of the metal or metal oxide in relation to the entire fuel electrode as a volume ratio in terms of metal is in the range of 40-80 vol%, and the metal includes at least one metal selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). The compound A includes a mayenite-type compound and/or a perovskite-type compound containing an alkaline earth metal element.

Description

固体酸化物形電解セルおよび固体酸化物形電解セルシステムSolid oxide electrolytic cells and solid oxide electrolytic cell systems
 本発明は、固体酸化物形電解セルおよび固体酸化物形電解セルシステムに関する。 The present invention relates to a solid oxide electrolytic cell and a solid oxide electrolytic cell system.
 近年、高効率な水素燃料製造方法として、固体酸化物形電解セル(SOEC)が注目されている。SOECでは、高温下で水蒸気および/または二酸化炭素を電気分解し、水素および/または一酸化炭素を生成することができる。 In recent years, solid oxide electrolysis cells (SOEC) have been attracting attention as a highly efficient hydrogen fuel production method. In SOEC, water vapor and/or carbon dioxide can be electrolyzed at high temperatures to produce hydrogen and/or carbon monoxide.
 SOECでは、2つの電極(酸素極および燃料極)と、両電極の間に配置された固体電解質層とを有するセル(単セル)が基本単位となり、複数のセルを積層してスタック化し、さらにこれらのセルスタックを複数組み合わせたマルチスタックをモジュール化することにより、SOECシステムが構成される。 In SOEC, the basic unit is a cell (single cell) that has two electrodes (oxygen electrode and fuel electrode) and a solid electrolyte layer placed between the two electrodes. A SOEC system is constructed by modularizing a multi-stack that is a combination of a plurality of these cell stacks.
特開2009-263741号公報JP2009-263741A
 SOECの電解効率を高めるため、構成部材の最適化の研究が進められている。 In order to increase the electrolytic efficiency of SOEC, research on optimizing its constituent parts is underway.
 例えば、特許文献1には、電解質層とそれぞれの電極との間に中間層と呼ばれるセリウム系複合酸化物層を配置するとともに、酸素極として、触媒層と集電層との複層構造を使用することが提案されている。 For example, in Patent Document 1, a cerium-based composite oxide layer called an intermediate layer is arranged between an electrolyte layer and each electrode, and a multilayer structure of a catalyst layer and a current collecting layer is used as an oxygen electrode. It is proposed to do so.
 しかしながら、現在のSOECでは、使用中に作動電圧が変化するという問題がある。このため、長期作動においても作動電圧の変化を抑制できるSOECが要求されている。 However, current SOECs have a problem in that the operating voltage changes during use. Therefore, there is a need for an SOEC that can suppress changes in operating voltage even during long-term operation.
 本発明は、このような背景に鑑みなされたものであり、本発明では、従来に比べて、作動電圧の変化を抑制できるSOECを提供することを目的とする。また、本発明では、そのようなSOECを備えたSOECシステムを提供することを目的とする。 The present invention has been made in view of this background, and an object of the present invention is to provide a SOEC that can suppress changes in operating voltage compared to conventional ones. Another object of the present invention is to provide a SOEC system including such a SOEC.
 本発明では、燃料極、酸素極、および前記燃料極と前記酸素極との間の固体電解質層を有する固体酸化物形電解セルであって、
 さらに、前記固体電解質層と前記燃料極との間に中間層を有し、前記中間層は、セリウム酸化物を有し、
 前記燃料極は、金属または金属の酸化物と、化合物Aとを有し、
 前記燃料極全体に対する前記金属または前記金属の酸化物の割合は、金属換算の体積比で、40vol%~80vol%の範囲であり、
 前記金属は、ニッケル(Ni)、銅(Cu)、銀(Ag)、タングステン(W)、白金(Pt)、鉄(Fe)、およびスズ(Sn)からなる群から選定された少なくとも一つを含み、
 前記化合物Aは、マイエナイト型化合物および/またはアルカリ土類金属元素を含むペロブスカイト型化合物を含む、固体酸化物形電解セルが提供される。
The present invention provides a solid oxide electrolysis cell having a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode,
further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
The fuel electrode includes a metal or a metal oxide and a compound A,
The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
The metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). including,
A solid oxide type electrolytic cell is provided in which the compound A includes a mayenite type compound and/or a perovskite type compound containing an alkaline earth metal element.
 また、本発明では、固体酸化物形電解セルシステムであって、
 複数の固体酸化物形電解セルスタックを含むモジュールであって、各固体酸化物形電解セルは前述の特徴を有する固体酸化物形電解セルである、モジュールと、
 前記モジュールに電力を供給する電力供給装置と、
 水蒸気および/または二酸化炭素を前記モジュールに供給するガス供給装置と、
 前記モジュールから生じる水素および/または一酸化炭素を分離するガス分離装置と、
 前記ガス分離装置により分離された前記水素および/または一酸化炭素を貯蔵する貯蔵装置と、
 を有する、固体酸化物形電解セルシステムが提供される。
Further, the present invention provides a solid oxide electrolytic cell system, comprising:
a module comprising a plurality of solid oxide electrolytic cell stacks, each solid oxide electrolytic cell being a solid oxide electrolytic cell having the characteristics described above;
a power supply device that supplies power to the module;
a gas supply device that supplies water vapor and/or carbon dioxide to the module;
a gas separation device that separates hydrogen and/or carbon monoxide generated from the module;
a storage device that stores the hydrogen and/or carbon monoxide separated by the gas separation device;
A solid oxide electrolytic cell system is provided having the following.
 さらに、本発明では、燃料極、酸素極、および前記燃料極と前記酸素極との間の固体電解質層を有する固体酸化物形電解セルであって、
 さらに、前記固体電解質層と前記燃料極との間に中間層を有し、前記中間層は、セリウム酸化物を有し、
 前記燃料極は、金属または金属の酸化物と、化合物Aとを有し、
 前記燃料極全体に対する前記金属または前記金属の酸化物の割合は、金属換算の体積比で、40vol%~80vol%の範囲であり、
 前記金属は、ニッケル(Ni)、銅(Cu)、銀(Ag)、タングステン(W)、白金(Pt)、鉄(Fe)、およびスズ(Sn)からなる群から選定された少なくとも一つを含み、
 前記化合物Aは、アルカリ土類金属元素ならびに/またはScおよびYを除く希土類元素を含む酸化物を含み、アルカリ土類金属元素ならびに/またはScおよびYを除く希土類元素の前記金属に対する比率は、モル比換算で1.0%以上である、固体酸化物形電解セルが提供される。
Furthermore, the present invention provides a solid oxide electrolysis cell having a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode,
further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
The fuel electrode includes a metal or a metal oxide and a compound A,
The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
The metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). including,
The compound A contains an oxide containing an alkaline earth metal element and/or a rare earth element other than Sc and Y, and the ratio of the alkaline earth metal element and/or rare earth element other than Sc and Y to the metal is molar. A solid oxide type electrolytic cell is provided in which the ratio is 1.0% or more.
 本発明では、従来に比べて、作動電圧の変化を抑制できるSOECを提供することができる。また、本発明では、そのようなSOECを備えたSOECシステムを提供することができる。 According to the present invention, it is possible to provide a SOEC that can suppress changes in operating voltage compared to conventional ones. Furthermore, the present invention can provide a SOEC system including such a SOEC.
本発明の一実施形態によるSOECの構成の一例を模式的に示した断面図である。1 is a cross-sectional view schematically showing an example of the configuration of a SOEC according to an embodiment of the present invention. 本発明の一実施形態によるSOECのモジュールを備えるシステムの構成の一例を模式的に示した図である。1 is a diagram schematically showing an example of the configuration of a system including a SOEC module according to an embodiment of the present invention. 本発明の一実施形態によるSOECの製造方法の一例を模式的に示したフロー図である。1 is a flow diagram schematically showing an example of a method for manufacturing a SOEC according to an embodiment of the present invention. 本発明の一実施形態によるSOEC(セル1)および従来のSOEC(セル21)において測定された電解電圧の経時変化を示したグラフである。1 is a graph showing changes over time in electrolysis voltage measured in a SOEC according to an embodiment of the present invention (cell 1) and a conventional SOEC (cell 21).
 以下、本発明の一実施形態について説明する。 An embodiment of the present invention will be described below.
 本発明の一実施形態では、燃料極、酸素極、および前記燃料極と前記酸素極との間の固体電解質層を有する固体酸化物形電解セルであって、
 さらに、前記固体電解質層と前記燃料極との間に中間層を有し、前記中間層は、セリウム酸化物を有し、
 前記燃料極は、金属または金属の酸化物と、化合物Aとを有し、
 前記燃料極全体に対する前記金属または前記金属の酸化物の割合は、金属換算の体積比で、40vol%~80vol%の範囲であり、
 前記金属は、ニッケル(Ni)、銅(Cu)、銀(Ag)、タングステン(W)、白金(Pt)、鉄(Fe)、およびスズ(Sn)からなる群から選定された少なくとも一つを含み、
 前記化合物Aは、マイエナイト型化合物および/またはアルカリ土類金属元素を含むペロブスカイト型化合物を含む、固体酸化物形電解セルが提供される。
In one embodiment of the present invention, a solid oxide electrolytic cell includes a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode,
further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
The fuel electrode includes a metal or a metal oxide and a compound A,
The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
The metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). including,
A solid oxide type electrolytic cell is provided in which the compound A includes a mayenite type compound and/or a perovskite type compound containing an alkaline earth metal element.
 本願において、マイエナイト型化合物とは、C12A7(12CaO・7Al)型の結晶構造を有し、三次元的に連結された空隙(ケージ)を有する特徴的な結晶構造を持つ物質を意味する。 In this application, a mayenite type compound has a C12A7 (12CaO.7Al 2 O 3 ) type crystal structure, and means a substance with a characteristic crystal structure having three-dimensionally connected cavities (cages). .
 マイエナイト型化合物のケージを構成する骨格は、正電荷を帯びており、単位格子当たり12個のケージ構造を含む。化学量論どおりの代表物質であれば、このケージの1/6は、結晶の電気的中性条件を満たすため、内部に酸化物イオンを包接している。このケージ内の酸化物イオンは、結晶骨格を構成する他の酸化物イオンと比較して緩く化学結合しているため、特にフリー酸化物イオンと呼ばれている。 The skeleton that constitutes the cage of the mayenite-type compound is positively charged and includes 12 cage structures per unit cell. In the case of a representative substance with stoichiometry, 1/6 of this cage contains oxide ions inside to satisfy the electrical neutrality condition of the crystal. The oxide ions in this cage are particularly called free oxide ions because they are chemically bonded more loosely than other oxide ions constituting the crystal skeleton.
 マイエナイト型化合物の代表材料は、例えば、12CaO・7Al、12SrO・7Al、および12MgO・7Alである。ただし、これらの材料において、カチオン(Ca、Al、Sr、およびMg)の一部は、それぞれ、別のカチオンと置換されてもよい。 Representative materials of the mayenite type compound are, for example, 12CaO.7Al 2 O 3 , 12SrO.7Al 2 O 3 , and 12MgO.7Al 2 O 3 . However, in these materials, some of the cations (Ca, Al, Sr, and Mg) may be replaced with other cations.
 従って、本願では、そのようなカチオンの一部が別のカチオンと置換された材料を含めて、「○○系マイエナイト型化合物」と称する。 Therefore, in this application, materials in which some of such cations are replaced with other cations are referred to as "○○-based mayenite-type compounds."
 例えば、12CaO・7Al化合物において、Caおよび/またはAlのサイトの一部が、それぞれ別のカチオンで置換された材料は、「12CaO・7Al系マイエナイト型化合物」と称される。同様に、12SrO・7Al化合物において、Srおよび/またはAlのサイトの一部が、それぞれ別のカチオンで置換された材料は、「12SrO・7Al系マイエナイト型化合物」と称される。また、12MgO・7Al化合物において、Mgおよび/またはAlのサイトの一部が、それぞれ別のカチオンで置換された材料は、「12MgO・7Al系マイエナイト型化合物」と称される。 For example, in a 12CaO.7Al 2 O 3 compound, a material in which some of the Ca and/or Al sites are replaced with different cations is called a "12CaO.7Al 2 O 3 -based mayenite-type compound." . Similarly, in a 12SrO.7Al 2 O 3 compound, a material in which some of the Sr and/or Al sites are replaced with different cations is called a "12SrO.7Al 2 O 3 -based mayenite-type compound". Ru. In addition, in the 12MgO.7Al 2 O 3 compound, a material in which some of the Mg and/or Al sites are replaced with different cations is called a "12MgO.7Al 2 O 3 -based mayenite-type compound". .
 本発明の一実施形態によるSOECでは、作動電圧の変化を抑制することができる。 In the SOEC according to an embodiment of the present invention, changes in operating voltage can be suppressed.
 なお、理論に拘束されるものではないが、本発明の一実施形態によるSOECにおいて、作動電圧の変化が抑制できるのは、使用中の燃料極において、三相界面の劣化が抑制されるためであると考えられる。 Although not bound by theory, in the SOEC according to an embodiment of the present invention, changes in operating voltage can be suppressed because deterioration of the three-phase interface is suppressed in the fuel electrode during use. It is believed that there is.
 すなわち、本発明の一実施形態によるSOECでは、燃料極は、金属または金属の酸化物の他、化合物A、すなわちマイエナイト型化合物および/またはアルカリ土類金属元素を含むペロブスカイト型化合物を含む。 That is, in the SOEC according to one embodiment of the present invention, the fuel electrode includes compound A, that is, a mayenite-type compound and/or a perovskite-type compound containing an alkaline earth metal element, in addition to a metal or a metal oxide.
 そのような化合物Aは、COに対して強い親和性を有する。従って、本発明の一実施形態によるSOECの電解処理の間、反応ガスのCOは、化合物Aに強く吸着された状態となる。このため、燃料極における還元反応の際に、金属と化合物Aの三相界面(反応ガス、電子、およびイオンが出会う反応場)でCOに円滑に電子が供給される。 Such a compound A has a strong affinity for CO2 . Therefore, during the electrolytic treatment of SOEC according to an embodiment of the present invention, the reactive gas CO 2 is strongly adsorbed on the compound A. Therefore, during the reduction reaction at the fuel electrode, electrons are smoothly supplied to CO 2 at the three-phase interface between the metal and compound A (the reaction field where the reaction gas, electrons, and ions meet).
 その結果、燃料極全体にわたって電流が流れやすくなり、それによる三相界面の劣化が抑制される。 As a result, current flows more easily throughout the fuel electrode, and the resulting deterioration of the three-phase interface is suppressed.
 また、本発明の別の実施形態によるSOECでは、燃料極は、金属または金属の酸化物の他、化合物A、すなわちアルカリ土類金属元素ならびに/またはScおよびYを除く希土類元素を含む酸化物を含み、アルカリ土類金属元素ならびに/またはScおよびYを除く希土類元素の前記金属に対する比率は、モル比換算で1.0%以上である。そのような化合物Aは、COに対して強い親和性を有する。従って、本発明の一実施形態によるSOECの電解処理の間、反応ガスのCOは、化合物Aに強く吸着された状態となる。このため、燃料極における還元反応の際に、COに円滑に電子が供給される。 In addition, in the SOEC according to another embodiment of the present invention, the fuel electrode contains, in addition to the metal or the oxide of the metal, an oxide containing compound A, that is, an alkaline earth metal element and/or a rare earth element other than Sc and Y. The ratio of alkaline earth metal elements and/or rare earth elements excluding Sc and Y to the metal is 1.0% or more in terms of molar ratio. Such a compound A has a strong affinity for CO2 . Therefore, during the electrolytic treatment of SOEC according to an embodiment of the present invention, the reactive gas CO 2 is strongly adsorbed on the compound A. Therefore, electrons are smoothly supplied to CO 2 during the reduction reaction at the fuel electrode.
 ここで、化合物Aは、酸化物イオン伝導性を有さなくてもよい。化合物Aが酸化物イオン伝導性を有さない場合、気相、燃料極に含まれる金属、及び中間層であるセリウム酸化物とで形成された三相界面で電解が進行する。この場合、三相界面近傍に存在する化合物AがCOを吸着及び活性化し、COに円滑に電子が供給される。その結果、電流が流れやすくなり、それによる反応場の劣化が抑制される。 Here, compound A does not need to have oxide ion conductivity. When compound A does not have oxide ion conductivity, electrolysis proceeds at a three-phase interface formed by the gas phase, the metal contained in the fuel electrode, and the cerium oxide as an intermediate layer. In this case, Compound A existing near the three-phase interface adsorbs and activates CO 2 , and electrons are smoothly supplied to CO 2 . As a result, current flows more easily, and deterioration of the reaction field due to this is suppressed.
 以上の効果の結果、本発明の一実施形態によるSOECでは、良好な耐久性が得られると考えられる。 As a result of the above effects, it is thought that good durability can be obtained in the SOEC according to one embodiment of the present invention.
 (本発明の一実施形態によるSOEC)
 次に、図面を参照して、本発明の一実施形態によるSOECの構成についてより詳しく説明する。
(SOEC according to one embodiment of the present invention)
Next, the configuration of the SOEC according to an embodiment of the present invention will be described in more detail with reference to the drawings.
 図1には、本発明の一実施形態によるSOECの構成例を模式的に示す。 FIG. 1 schematically shows a configuration example of a SOEC according to an embodiment of the present invention.
 図1に示すように、本発明の一実施形態によるSOEC(以下、「第1のセル」と称する)100は、燃料極110と、酸素極120と、燃料極110と酸素極120との間に配置された固体電解質層130と、を有する。 As shown in FIG. 1, a SOEC (hereinafter referred to as "first cell") 100 according to an embodiment of the present invention includes a fuel electrode 110, an oxygen electrode 120, and a space between the fuel electrode 110 and the oxygen electrode 120. and a solid electrolyte layer 130 disposed in the solid electrolyte layer 130 .
 また、第1のセル100は、燃料極110と固体電解質層130との間に、第1の中間層150を有し、酸素極120と固体電解質層130との間に、第2の中間層160を有する。 The first cell 100 also has a first intermediate layer 150 between the fuel electrode 110 and the solid electrolyte layer 130, and a second intermediate layer between the oxygen electrode 120 and the solid electrolyte layer 130. It has 160.
 第1の中間層150および第2の中間層160は、それぞれの電極110、120と固体電解質層130との間の固相反応を抑制するために設置される。特に、第1の中間層150を設置することで、中間層150、燃料極110に含まれる金属(例えば、Ni)、および気相によってより好適な三相界面が形成され、燃料極110が電解質を含まなくても電解が進行する。 The first intermediate layer 150 and the second intermediate layer 160 are provided to suppress solid phase reactions between the respective electrodes 110 and 120 and the solid electrolyte layer 130. In particular, by installing the first intermediate layer 150, a more suitable three-phase interface is formed by the intermediate layer 150, the metal (for example, Ni) contained in the fuel electrode 110, and the gas phase, and the fuel electrode 110 is Electrolysis proceeds even if it is not included.
 ただし、第2の中間層160は、省略されてもよい。 However, the second intermediate layer 160 may be omitted.
 第1のセル100を外部電源170に接続した場合、燃料極110において、例えば、以下の反応が生じる:
 
   2HO+4e→2H+2O2-   (1)式
   2CO+4e→2CO+2O2-   (2)式
 
 燃料極110で生じた酸化物イオンは、固体電解質層130内を通り、反対側の酸素極120に達する。
When the first cell 100 is connected to the external power source 170, the following reaction occurs at the fuel electrode 110, for example:

2H 2 O+4e - →2H 2 +2O 2- (1) formula 2CO 2 +4e - →2CO+2O 2- (2) formula
Oxide ions generated at the fuel electrode 110 pass through the solid electrolyte layer 130 and reach the oxygen electrode 120 on the opposite side.
 酸素極120では、例えば、以下の反応が生じる:
 
   2O2-→O+4e   (3)式
 
 従って、(1)式~(3)式の反応が継続されることにより、燃料極110から水素および/または一酸化炭素のような燃料を得ることができる。
For example, the following reaction occurs at the oxygen electrode 120:

2O 2- →O 2 +4e - Formula (3)
Therefore, by continuing the reactions of formulas (1) to (3), fuel such as hydrogen and/or carbon monoxide can be obtained from the fuel electrode 110.
 ここで、第1のセル100において、燃料極110は、金属または金属の酸化物と、化合物Aとを有する。また、前述のように、化合物Aは、マイエナイト型化合物および/またはCaTiO系ペロブスカイト型化合物を含む。 Here, in the first cell 100, the fuel electrode 110 includes a metal or a metal oxide and a compound A. Further, as described above, compound A includes a mayenite type compound and/or a CaTiO 3 -based perovskite type compound.
 従って、第1のセル100では、電解の間、作動電圧の変化を抑制することができる。 Therefore, in the first cell 100, changes in operating voltage can be suppressed during electrolysis.
 (各構成部材について)
 次に、本発明の一実施形態によるSOECを構成する各部材について、より詳しく説明する。なお、以下の記載では、明確化のため、図1に示した第1のセルを例に、その構成部材について説明する。従って、各部材を表す際には、図1に示した参照符号を使用する。
(About each component)
Next, each member constituting the SOEC according to an embodiment of the present invention will be described in more detail. In the following description, for clarity, the constituent members will be explained using the first cell shown in FIG. 1 as an example. Therefore, when representing each member, the reference numerals shown in FIG. 1 will be used.
 (燃料極110)
 燃料極110は、作動温度において、水蒸気および/または二酸化炭素を電解する役割を有する。
(Fuel electrode 110)
The fuel electrode 110 has the role of electrolyzing water vapor and/or carbon dioxide at an operating temperature.
 前述のように、燃料極110は、金属と、化合物Aとを有する。燃料極110は、グリーンシートのようなバインダ樹脂と化合物Aの粉末および金属または金属の化合物の粉末から構成されるものであってもよく、それらの粉末が焼結により成型された基板であってもよい。基板であれば、それを支持体とした燃料極支持型のSOECとして供される。また、金属やセラミックスまたはそれらの複合体からなる多孔質支持体上に燃料極が積層されてもよい。 As described above, the fuel electrode 110 includes metal and compound A. The fuel electrode 110 may be composed of a binder resin such as a green sheet, a powder of compound A, and a powder of a metal or a metal compound, and is a substrate formed by sintering these powders. Good too. If it is a substrate, it can be used as a fuel electrode support type SOEC using the substrate as a support. Further, the fuel electrode may be laminated on a porous support made of metal, ceramics, or a composite thereof.
 金属は、ニッケル(Ni)、銅(Cu)、銀(Ag)、タングステン(W)、白金(Pt)、鉄(Fe)、およびスズ(Sn)からなる群から選定された少なくとも一つを含む。 The metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). .
 金属は、燃料極110全体に対して、金属換算の体積比で、40vol%~80vol%の範囲となるように含有される。 The metal is contained in a volume ratio of 40 vol % to 80 vol % in the entire fuel electrode 110 in terms of metal.
 なお、金属は金属の状態の他、金属の酸化物の状態で提供されてもよい。第1のSOEC100の電解の際に、金属の酸化物は、金属状態にまで還元されるからである。 Note that the metal may be provided in a metal oxide state as well as a metal state. This is because during the electrolysis of the first SOEC 100, the metal oxide is reduced to a metallic state.
 燃料極110が金属の酸化物を含む場合、該酸化物は、燃料極110全体に対して、金属換算の体積比で、40vol%~80vol%の範囲となるように含有される。 When the fuel electrode 110 contains a metal oxide, the oxide is contained in a volume ratio of 40 vol % to 80 vol % based on the metal equivalent of the entire fuel electrode 110 .
 また、燃料極110に含まれる化合物Aは、マイエナイト型化合物および/またはCaTiO系ペロブスカイト型化合物を含む。 Moreover, the compound A contained in the fuel electrode 110 includes a mayenite type compound and/or a CaTiO 3 -based perovskite type compound.
 化合物Aがマイエナイト型化合物を含む場合、該マイエナイト型化合物は、12CaO・7Al系マイエナイト型化合物、12SrO・7Al系マイエナイト型化合物、または12MgO・7Al系マイエナイト型化合物であってもよい。 When compound A contains a mayenite-type compound, the mayenite-type compound is a 12CaO.7Al2O3 - based mayenite-type compound, a 12SrO.7Al2O3 - based mayenite-type compound, or a 12MgO.7Al2O3 -based mayenite- type compound. There may be.
 また、化合物Aがマイエナイト型化合物を含む場合、化合物Aは、さらに、別の化合物Bを含んでもよい。 Moreover, when compound A contains a mayenite type compound, compound A may further contain another compound B.
 そのような別の化合物Bは、リチウム(Li)、ナトリウム(Na)、カリウム(K)、バリウム(Ba)、マグネシウム(Mg)、ストロンチウム(Sr)、チタン(Ti)、イットリウム(Y)、セリウム(Ce)、ランタン(La)、およびネオジム(Nd)からなる群から選定された少なくとも一つの元素Xの化合物を含んでもよい。 Such other compounds B include lithium (Li), sodium (Na), potassium (K), barium (Ba), magnesium (Mg), strontium (Sr), titanium (Ti), yttrium (Y), cerium (Ce), lanthanum (La), and neodymium (Nd).
 また、元素Xの一部は、マイエナイト型化合物の格子サイトに導入されてもよい。 Further, a part of element X may be introduced into the lattice sites of the mayenite-type compound.
 元素Xは、化合物A全体に対して、酸化物換算で、0.1mol%~30mol%の範囲で含有されてもよい。 Element X may be contained in the range of 0.1 mol% to 30 mol% in terms of oxide based on the entire compound A.
 一方、化合物Aがペロブスカイト型化合物を含む場合、ペロブスカイト型化合物としては特に制限されず、例えば、CaTiO、SrTiO、BaTiO、ランタン・カルシウム・ガリウム系酸化物(La1-xCaGaO)(ここで、0≦x≦1)、ランタン・ストロンチウム・ガリウム系酸化物(La1-xSrGaO)(ここで、0≦x≦1)、ランタン・バリウム・ガリウム系酸化物(La1-xBaGaO)(ここで、0≦x≦1)、ならびにこれらを基礎とした固溶体および/または混合物の他、電解質として機能する化合物を適用できる。COとの親和性の観点から、CaTiO、SrTiO、BaTiO、ならびにこれらを基礎とした固溶体および/または混合物が好ましく、CaTiO、ならびにこれを基礎とした固溶体および/または混合物が特に好ましい。 On the other hand, when Compound A contains a perovskite type compound, the perovskite type compound is not particularly limited . ) (here, 0≦x≦1), lanthanum-strontium-gallium-based oxide (La 1-x Sr x GaO 3 ) (here, 0≦x≦1), lanthanum-barium-gallium-based oxide ( In addition to La 1-x Bax GaO 3 ) (where 0≦x≦1) and solid solutions and/or mixtures based thereon, compounds that function as electrolytes can be applied. From the viewpoint of affinity with CO 2 , CaTiO 3 , SrTiO 3 , BaTiO 3 , and solid solutions and/or mixtures based on these are preferred, and CaTiO 3 and solid solutions and/or mixtures based on these are particularly preferred. .
 また、ペロブスカイト型化合物がCaTiOの場合、Caおよび/またはTiのサイトの一部は、それぞれ、別のカチオンと置換されてもよい。例えば、CaTiO系ペロブスカイト型化合物において、Tiサイトの一部は、Alと置換されてもよい。 Further, when the perovskite compound is CaTiO 3 , a portion of Ca and/or Ti sites may be each substituted with another cation. For example, in a CaTiO 3 -based perovskite compound, some Ti sites may be replaced with Al.
 また、化合物Aは、さらに、別の化合物Cを含んでもよい。 Moreover, compound A may further contain another compound C.
 そのような別の化合物Cは、アルミニウム(Al)の化合物を含んでもよい。この場合、Alは、化合物A全体に対して、酸化物換算で、0.1mol%~30mol%の範囲で含有されてもよい。 Such another compound C may include a compound of aluminum (Al). In this case, Al may be contained in the range of 0.1 mol % to 30 mol % based on the entire compound A in terms of oxide.
 また、本発明の一実施形態において、燃料極110に含まれる化合物Aは、さらに、セリウム系酸化物を有してもよい。 Furthermore, in one embodiment of the present invention, the compound A contained in the fuel electrode 110 may further include a cerium-based oxide.
 そのようなセリウム系酸化物には、酸化セリウム、およびガドリニウム(Gd)またはサマリウム(Sm)等の希土類元素や、アルカリ土類金属元素がドープされた酸化セリウムなどが含まれる。ガドリニウムまたはサマリウム等の希土類元素やアルカリ土類金属元素のドープ量は、例えば、0~20mol%の範囲である。 Such cerium-based oxides include cerium oxide, cerium oxide doped with rare earth elements such as gadolinium (Gd) or samarium (Sm), and alkaline earth metal elements. The doping amount of rare earth elements such as gadolinium or samarium or alkaline earth metal elements is, for example, in the range of 0 to 20 mol %.
 また、前記化合物Aは、アルカリ土類金属元素ならびに/またはScおよびYを除く希土類元素を含む酸化物を含んでもよい。この場合、アルカリ土類金属元素ならびに/またはScおよびYを除く希土類元素の前記金属に対する比率は、モル比換算で1.0%以上である。前記化合物Aは、アルカリ土類金属元素を含むことが好ましく、さらにAlを含むことがより好ましく、マイエナイト型化合物であることが特に好ましい。このような要件を満たすことで、化合物AにおけるCOの吸脱着特性が好適化され、COに円滑に電子が供給されるようになり、劣化が抑制される。 Further, the compound A may include an oxide containing an alkaline earth metal element and/or a rare earth element other than Sc and Y. In this case, the ratio of the alkaline earth metal element and/or the rare earth element other than Sc and Y to the metal is 1.0% or more in terms of molar ratio. The compound A preferably contains an alkaline earth metal element, more preferably contains Al, and is particularly preferably a mayenite type compound. By satisfying such requirements, the adsorption and desorption properties of CO 2 in Compound A are optimized, electrons are smoothly supplied to CO 2 , and deterioration is suppressed.
 (酸素極120)
 酸素極120は、酸化物イオンから電子を脱離し、気体の酸素分子を生成できる材料で構成される。
(Oxygen electrode 120)
The oxygen electrode 120 is made of a material that can remove electrons from oxide ions and generate gaseous oxygen molecules.
 酸素極120には、従来から知られる材料が使用されてもよい。例えば、酸素極120は、ランタン・ストロンチウム・コバルト系酸化物(La1-xSrCoO)(ここで、0≦x≦1)、ランタン・ストロンチウム・コバルト・鉄系酸化物(La1-xSrCo1-yFe)(ここで、0≦x≦1、0≦y≦1)、ランタン・ストロンチウム・マンガン系酸化物(La1-xSrMnO)(ここで、0≦x≦1)、セリア系酸化物、およびこれらの混合物を用いることができる。特にLa、Sr、Co、Fe、Mnからなる群から選ばれる2種類以上の元素を含有するペロブスカイト型酸化物を含むことが好ましい。燃料極支持型であれば、固体電解質層を形成した後に、酸素極用の粉末を含むペーストを塗布して焼成して酸素極を形成してもよい。固体電解質層支持型であれば、固体電解質基板上に酸素極用の粉末を含むペーストを塗布して焼成して酸素極を形成してもよい。固体電解質層と酸素極の間には反応防止層として、セリア系電解質を形成してもよい。 For the oxygen electrode 120, conventionally known materials may be used. For example, the oxygen electrode 120 is made of lanthanum-strontium-cobalt-based oxide (La 1-x Sr x CoO 3 ) (where 0≦x≦1), lanthanum-strontium-cobalt-iron-based oxide (La 1- x Sr x Co 1-y Fe y O 3 ) (here, 0≦x≦1, 0≦y≦1), lanthanum-strontium-manganese oxide (La 1-x Sr x MnO 3 ) (here, , 0≦x≦1), ceria-based oxides, and mixtures thereof. In particular, it is preferable to include a perovskite oxide containing two or more elements selected from the group consisting of La, Sr, Co, Fe, and Mn. In the case of a fuel electrode supporting type, after forming the solid electrolyte layer, a paste containing powder for the oxygen electrode may be applied and fired to form the oxygen electrode. In the case of a solid electrolyte layer supporting type, the oxygen electrode may be formed by applying a paste containing powder for an oxygen electrode onto the solid electrolyte substrate and baking the paste. A ceria-based electrolyte may be formed as a reaction prevention layer between the solid electrolyte layer and the oxygen electrode.
 (固体電解質層130)
 固体電解質層130は、作動温度において酸化物イオン伝導性を有する材料で構成される。
(Solid electrolyte layer 130)
The solid electrolyte layer 130 is made of a material that has oxide ion conductivity at operating temperatures.
 固体電解質層130には、従来から知られる材料が使用されてもよい。例えば、イットリア安定化ジルコニア(YSZ)、スカンジア安定化ジルコニア(ScSZ)、ランタン・ストロンチウム・ガリウム・マグネシウム系酸化物(La1-xSrGa1-yFe)(ここで、0≦x≦1、0≦y≦1)が使用される。この他、酸化物イオン伝導性を有する材料であれば、上記化合物でなくとも使用することができる。 For the solid electrolyte layer 130, conventionally known materials may be used. For example, yttria-stabilized zirconia (YSZ), scandia-stabilized zirconia (ScSZ), lanthanum-strontium-gallium-magnesium oxide (La 1-x Sr x Ga 1-y Fe y O 3 ) (where 0≦ x≦1, 0≦y≦1). In addition, any material other than the above compounds can be used as long as it has oxide ion conductivity.
 (第1の中間層150および第2の中間層160)
 第1の中間層150は、燃料極110と固体電解質層130との間に配置される。また、第2の中間層160は、酸素極120と固体電解質層130との間に配置される。
(First intermediate layer 150 and second intermediate layer 160)
First intermediate layer 150 is arranged between fuel electrode 110 and solid electrolyte layer 130. Further, the second intermediate layer 160 is arranged between the oxygen electrode 120 and the solid electrolyte layer 130.
 第1の中間層150を設置することにより、燃料極110と固体電解質層130との間の固相反応を抑制し、固体電解質層130と燃料極110の劣化を防止することができる。 By installing the first intermediate layer 150, the solid phase reaction between the fuel electrode 110 and the solid electrolyte layer 130 can be suppressed, and deterioration of the solid electrolyte layer 130 and the fuel electrode 110 can be prevented.
 第2の中間層160についても同様である。 The same applies to the second intermediate layer 160.
 第1および第2の中間層150、160は、例えば、セリウムを含む酸化物で構成される。セリウムを含む酸化物は、イオン伝導性に優れるため、好ましい。 The first and second intermediate layers 150 and 160 are made of, for example, an oxide containing cerium. Oxides containing cerium are preferred because they have excellent ionic conductivity.
 セリウムを含む酸化物は、例えば、ガドリニウム(Gd)またはサマリウム(Sm)等の希土類元素や、アルカリ土類金属元がドープされた酸化セリウムであってもよい。Gdまたはサマリウム等の希土類元素やアルカリ土類金属元素のドープ量は、例えば、0~20mol%の範囲である。 The cerium-containing oxide may be, for example, cerium oxide doped with a rare earth element such as gadolinium (Gd) or samarium (Sm), or an alkaline earth metal element. The doping amount of rare earth elements such as Gd or samarium or alkaline earth metal elements is, for example, in the range of 0 to 20 mol %.
 以上、第1のセルおよびその構成部材について説明した。しかしながら、本発明の一実施形態によるSOECは、電解質層支持型の他、燃料極支持型または多孔質基材支持型など、いずれの形態であってもよいことに留意する必要がある。 The first cell and its constituent members have been described above. However, it should be noted that the SOEC according to an embodiment of the present invention may be of any type, such as an electrolyte layer supported type, a fuel electrode supported type, or a porous substrate supported type.
 (SOECシステム)
 本発明の一実施形態によるSOECは、該SOECを複数積層させて構成されたスタックを、さらにこれらのスタックを複数組み合わせたモジュールを備えるSOECシステムとして利用される。
(SOEC system)
A SOEC according to an embodiment of the present invention is used as an SOEC system including a stack configured by laminating a plurality of SOECs and a module combining a plurality of these stacks.
 図2には、そのようなSOECシステムの構成の一例を模式的に示す。 FIG. 2 schematically shows an example of the configuration of such a SOEC system.
 図2に示すように、SOECシステム201は、SOECモジュール210と、電力供給装置220と、ガス供給装置230と、ガス分離装置240と、貯蔵装置250とを備える。 As shown in FIG. 2, the SOEC system 201 includes a SOEC module 210, a power supply device 220, a gas supply device 230, a gas separation device 240, and a storage device 250.
 SOECモジュール210は、複数のSOECを直列に積層させることにより構成される。電力供給装置220は、SOECモジュール210に必要な電力を供給する役割を有する。ガス供給装置230は、水蒸気および/または二酸化炭素のような反応ガスを、SOECモジュール210に供給する役割を有する。ガス分離装置240は、SOECモジュール210で生じた生成ガスを分離する役割を有する。貯蔵装置250は、ガス分離装置240で分離された水素および/または一酸化炭素を貯蔵する役割を有する。 The SOEC module 210 is constructed by stacking multiple SOECs in series. The power supply device 220 has a role of supplying necessary power to the SOEC module 210. The gas supply device 230 has the role of supplying a reactive gas such as water vapor and/or carbon dioxide to the SOEC module 210. The gas separation device 240 has a role of separating the generated gas generated in the SOEC module 210. The storage device 250 has a role of storing hydrogen and/or carbon monoxide separated by the gas separation device 240.
 SOECシステム201の作動の際には、電力供給装置220からの電力により、SOECモジュール210が作動温度に加熱される。作動温度は、700℃以上であり、例えば、700℃~900℃の範囲である。 When the SOEC system 201 is in operation, the SOEC module 210 is heated to the operating temperature by power from the power supply device 220. The operating temperature is 700°C or higher, for example in the range of 700°C to 900°C.
 次に、ガス供給装置230から高温のSOECモジュール210に、反応ガスが供給される。反応ガスは、水蒸気および/または二酸化炭素を含む。反応ガスは、SOECモジュール210を構成する各SOECの燃料極側に供給される。 Next, a reaction gas is supplied from the gas supply device 230 to the high temperature SOEC module 210. The reaction gas includes water vapor and/or carbon dioxide. The reaction gas is supplied to the fuel electrode side of each SOEC that constitutes the SOEC module 210.
 次に、電力供給装置220からSOECモジュール210に電解電圧が印加され、SOECモジュール210において電解が開始される。 Next, an electrolysis voltage is applied from the power supply device 220 to the SOEC module 210, and electrolysis is started in the SOEC module 210.
 電解により、SOECモジュール210に含まれる各SOECにおいて、電解ガスが生成される。すなわち、燃料極からは、水素および/または一酸化炭素が生成され、酸素極からは酸素が生成される。 Electrolytic gas is generated in each SOEC included in the SOEC module 210 by electrolysis. That is, hydrogen and/or carbon monoxide is produced from the fuel electrode, and oxygen is produced from the oxygen electrode.
 燃料極で生成された水素および/または一酸化炭素は、ガス分離装置240により分離される。また、ガス分離装置240により分離された水素および/または一酸化炭素は、貯蔵装置250に貯蔵される。 Hydrogen and/or carbon monoxide generated at the fuel electrode is separated by a gas separation device 240. Furthermore, hydrogen and/or carbon monoxide separated by the gas separation device 240 is stored in a storage device 250.
 なお、酸素極で生成された酸素は、別の装置により回収され、貯蔵されてもよい。 Note that the oxygen generated at the oxygen electrode may be recovered and stored by another device.
 ここで、SOECシステム201において、SOECモジュール210を構成する各SOECには、本発明の一実施形態によるSOECが使用される。 Here, in the SOEC system 201, each SOEC configuring the SOEC module 210 uses a SOEC according to an embodiment of the present invention.
 従って、SOECシステム201では、作動電圧の変化を抑制することができる。 Therefore, in the SOEC system 201, changes in the operating voltage can be suppressed.
 (本発明の一実施形態によるSOECの製造方法)
 次に、図3を参照して、本発明の一実施形態によるSOECの製造方法の一例について説明する。
(Method for manufacturing SOEC according to an embodiment of the present invention)
Next, with reference to FIG. 3, an example of a method for manufacturing an SOEC according to an embodiment of the present invention will be described.
 図3には、本発明の一実施形態によるSOECの製造方法のフローを模式的に示す。 FIG. 3 schematically shows a flow of a SOEC manufacturing method according to an embodiment of the present invention.
 図3に示すように、本発明の一実施形態によるSOECの製造方法(以下、「第1の方法」と称する)は、
(1)電解質層の第1の表面に第1の中間層を設置する工程(工程S110)と、
(2)前記第1の中間層の上に、燃料極を設置する工程(工程S120)と、
(3)前記電解質層の前記第1の中間層とは反対の側に、酸素極を設置する工程(工程S130)と、
 を有する。
As shown in FIG. 3, the SOEC manufacturing method (hereinafter referred to as "first method") according to one embodiment of the present invention is as follows:
(1) a step of installing a first intermediate layer on the first surface of the electrolyte layer (step S110);
(2) a step of installing a fuel electrode on the first intermediate layer (step S120);
(3) installing an oxygen electrode on the side of the electrolyte layer opposite to the first intermediate layer (step S130);
has.
 以下、電解質層支持型を例に各工程について説明する。なお、以下の記載では、明確化のため、前述の第1のセル100を例に、その製造方法について説明する。従って、各部材を表す際には、図1に示した参照符号を使用する。 Hereinafter, each process will be explained using the electrolyte layer supported type as an example. Note that, in the following description, for clarity, a manufacturing method thereof will be explained using the above-described first cell 100 as an example. Therefore, when representing each member, the reference numerals shown in FIG. 1 will be used.
 (工程S110)
 まず、相互に対向する第1の表面および第2の表面を有する固体電解質層130が準備される。
(Step S110)
First, a solid electrolyte layer 130 having a first surface and a second surface facing each other is prepared.
 固体電解質層130の形状は、特に限られず、固体電解質層130は、板状またはディスク状であってもよい。 The shape of the solid electrolyte layer 130 is not particularly limited, and the solid electrolyte layer 130 may be plate-shaped or disc-shaped.
 固体電解質層130は、前述のように、YSZまたはScSZで構成されてもよい。 The solid electrolyte layer 130 may be made of YSZ or ScSZ, as described above.
 次に、固体電解質層130の第1の表面に、第1の中間層150が形成される。また、必要な場合、固体電解質層130の第2の表面に、第2の中間層160が形成されてもよい。 Next, a first intermediate layer 150 is formed on the first surface of the solid electrolyte layer 130. Further, if necessary, a second intermediate layer 160 may be formed on the second surface of the solid electrolyte layer 130.
 第1の中間層150は、以下のように形成される。 The first intermediate layer 150 is formed as follows.
 固体電解質層130の第1の表面に、第1の中間層用ペーストが設置される。第1の中間層用ペーストは、例えば、溶媒、セリウム系酸化物の粒子、およびバインダを含む。セリウム系酸化物は、Gdドープされた酸化セリウムであってもよい。 A first intermediate layer paste is installed on the first surface of the solid electrolyte layer 130. The first intermediate layer paste includes, for example, a solvent, cerium-based oxide particles, and a binder. The cerium-based oxide may be Gd-doped cerium oxide.
 第1の中間層用ペーストの設置方法は、特に限られない。第1の中間層用ペーストは、例えば、刷毛塗り、またはスクリーン印刷法等により、固体電解質層130の第1の表面に塗布されてもよい。 The method of installing the first intermediate layer paste is not particularly limited. The first intermediate layer paste may be applied to the first surface of the solid electrolyte layer 130, for example, by brush coating, screen printing, or the like.
 その後、第1の中間層用ペーストは乾燥され、さらに焼成処理される。焼成温度は、例えば、1200℃~1400℃の範囲である。これにより、第1の中間層150が形成される。 Thereafter, the first intermediate layer paste is dried and further subjected to a firing process. The firing temperature is, for example, in the range of 1200°C to 1400°C. As a result, the first intermediate layer 150 is formed.
 必要な場合、第2の中間層160も、同様の方法で形成される。 If necessary, the second intermediate layer 160 is also formed in a similar manner.
 (工程S120)
 次に、第1の中間層150の上に、燃料極110が形成される。
(Step S120)
Next, the fuel electrode 110 is formed on the first intermediate layer 150.
 燃料極110は、以下のように形成される。 The fuel electrode 110 is formed as follows.
 まず、第1の中間層150の表面に、燃料極用ペーストが設置される。燃料極用ペーストは、例えば、溶媒、混合粒子、およびバインダを含む。 First, a fuel electrode paste is placed on the surface of the first intermediate layer 150. The fuel electrode paste includes, for example, a solvent, mixed particles, and a binder.
 溶媒には、例えば、α―テルピネオールおよびポリエチレングリコール(PEG)などが使用できる。 For example, α-terpineol and polyethylene glycol (PEG) can be used as the solvent.
 バインダには、ポリビニルブチラール(PVB)、エチルセルロース(EC)などが使用できる。 Polyvinyl butyral (PVB), ethyl cellulose (EC), etc. can be used as the binder.
 混合粒子は、金属または金属の酸化物と、化合物Aとを含む。 The mixed particles contain a metal or a metal oxide and a compound A.
 金属は、ニッケル(Ni)、銅(Cu)、銀(Ag)、タングステン(W)、白金(Pt)、鉄(Fe)、およびスズ(Sn)からなる群から選定された少なくとも一つを含む。 The metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). .
 混合粒子全体に対する金属または金属の酸化物の割合は、金属換算の体積比で、40vol%~80vol%の範囲である。 The ratio of the metal or metal oxide to the entire mixed particles is in the range of 40 vol% to 80 vol% in terms of metal volume ratio.
 また、化合物Aは、マイエナイト型化合物および/またはCaTiO系ペロブスカイト型化合物を含む。 Further, compound A includes a mayenite type compound and/or a CaTiO 3 -based perovskite type compound.
 特に、マイエナイト型化合物は、12CaO・7Al系マイエナイト型化合物、12SrO・7Al系マイエナイト型化合物、または12MgO・7Al系マイエナイト型化合物であってもよい。 In particular, the mayenite-type compound may be a 12CaO.7Al 2 O 3 -based mayenite-type compound, a 12SrO.7Al 2 O 3 -based mayenite-type compound, or a 12MgO.7Al 2 O 3 -based mayenite-type compound.
 また、化合物Aは、マイエナイト型化合物と、別の化合物Bとを有してもよい。ここで、別の化合物Bは、リチウム(Li)、ナトリウム(Na)、カリウム(K)、バリウム(Ba)、マグネシウム(Mg)、ストロンチウム(Sr)、チタン(Ti)、イットリウム(Y)、セリウム(Ce)、ランタン(La)、およびネオジム(Nd)からなる群から選定された少なくとも一つの元素Xの化合物を含んでもよい。これにより、イオン伝導性および/またはCOとの親和性が高まり、電解電圧の上昇を抑制できる。 Moreover, compound A may have a mayenite type compound and another compound B. Here, another compound B is lithium (Li), sodium (Na), potassium (K), barium (Ba), magnesium (Mg), strontium (Sr), titanium (Ti), yttrium (Y), cerium (Ce), lanthanum (La), and neodymium (Nd). This increases ionic conductivity and/or affinity with CO 2 and suppresses an increase in electrolytic voltage.
 そのような別の化合物Bは、化合物A全体に対して、酸化物換算で、0.1mol%~30mol%の範囲で添加されてもよい。 Such another compound B may be added in an amount of 0.1 mol % to 30 mol % based on the entire compound A in terms of oxide.
 あるいは、化合物Aは、ペロブスカイト型化合物と、別の化合物Cとを有してもよい。 Alternatively, compound A may include a perovskite-type compound and another compound C.
 そのような別の化合物Cは、アルミニウム(Al)の化合物、例えば酸化アルミニウムを含んでもよい。 Such another compound C may include a compound of aluminum (Al), such as aluminum oxide.
 別の化合物Cは、化合物A全体に対して、酸化物換算で、0.1mol%~30mol%の範囲で添加されてもよい。 Another compound C may be added in an amount of 0.1 mol % to 30 mol % based on the entire compound A in terms of oxide.
 また、化合物Aは、さらに、セリウム系酸化物を有してもよい。その場合、化合物Aに対するセリウム系酸化物の含有量は、例えば、体積比で、80vol%以下である。 Moreover, compound A may further contain a cerium-based oxide. In that case, the content of the cerium-based oxide relative to the compound A is, for example, 80 vol% or less in volume ratio.
 燃料極用ペーストの設置方法は、特に限られない。燃料極用ペーストは、例えば、刷毛塗り、またはスクリーン印刷法等により、第1の中間層150の上に塗布されてもよい。 The method of installing the fuel electrode paste is not particularly limited. The fuel electrode paste may be applied onto the first intermediate layer 150 by, for example, brushing, screen printing, or the like.
 その後、燃料極用ペーストは乾燥され、さらに焼成処理される。焼成温度は、燃料極用ペーストに含まれる混合粒子によっても変化するが、例えば、1100℃~1300℃の範囲である。 Thereafter, the fuel electrode paste is dried and further subjected to a firing process. The firing temperature varies depending on the mixed particles contained in the fuel electrode paste, but is, for example, in the range of 1100°C to 1300°C.
 これにより、燃料極110が形成される。 As a result, the fuel electrode 110 is formed.
 (工程S130)
 次に、固体電解質層130の第2の表面(存在する場合、第2の中間層160。以下同じ)の上に、酸素極120が形成される。
(Step S130)
Next, the oxygen electrode 120 is formed on the second surface of the solid electrolyte layer 130 (the second intermediate layer 160, if present; the same applies hereinafter).
 酸素極120は、以下のように形成される。 The oxygen electrode 120 is formed as follows.
 まず、固体電解質層130の第2の表面に、酸素極用ペーストが設置される。酸素極用ペーストは、例えば、溶媒、混合粒子、およびバインダを含む。 First, an oxygen electrode paste is placed on the second surface of the solid electrolyte layer 130. The oxygen electrode paste includes, for example, a solvent, mixed particles, and a binder.
 溶媒およびバインダとしては、例えば、前述の燃料極用ペーストに使用されるような溶媒およびバインダが使用できる。 As the solvent and binder, for example, the solvent and binder used in the above-mentioned fuel electrode paste can be used.
 混合粒子は、従来の酸素極を構成する材料で構成されてもよい。混合粒子は、例えば、ランタン・ストロンチウム・コバルト系酸化物(La1-zSrCoO)(ここで、0≦z≦1)であってもよい。 The mixed particles may be composed of materials that constitute conventional oxygen electrodes. The mixed particles may be, for example, lanthanum-strontium-cobalt-based oxide (La 1-z Sr z CoO 3 ) (where 0≦z≦1).
 酸素極用ペーストの設置方法は、特に限られない。酸素極用ペーストは、例えば、刷毛塗り、またはスクリーン印刷法等により、固体電解質層130の第2の表面上に塗布されてもよい。 The method of installing the oxygen electrode paste is not particularly limited. The oxygen electrode paste may be applied onto the second surface of the solid electrolyte layer 130, for example, by brush coating, screen printing, or the like.
 その後、酸素極用ペーストは乾燥され、さらに焼成処理される。焼成温度は、酸素極用ペーストに含まれる混合粒子によっても変化するが、例えば、900℃~1100℃の範囲である。 Thereafter, the oxygen electrode paste is dried and further subjected to a firing process. The firing temperature varies depending on the mixed particles contained in the oxygen electrode paste, but is, for example, in the range of 900°C to 1100°C.
 これにより、酸素極120が形成される。 As a result, the oxygen electrode 120 is formed.
 以上の工程を経て、本発明の一実施形態によるSOECを製造することができる。 Through the above steps, a SOEC according to an embodiment of the present invention can be manufactured.
 ただし、上記方法は、単なる一例であって、本発明の一実施形態によるSOECは、別の方法で製造されてもよいことは、当業者には明らかである。すなわち、本発明の一実施形態によるSOECは、前述のような特徴を有する燃料極が得られる限り、いかなる方法で製造されてもよい。 However, the above method is merely an example, and it is clear to those skilled in the art that the SOEC according to one embodiment of the present invention may be manufactured by another method. That is, the SOEC according to an embodiment of the present invention may be manufactured by any method as long as a fuel electrode having the above-described characteristics can be obtained.
 以下、本発明の実施例について説明する。以下の記載において、例1~例20、および例31~例35は実施例であり、例21および例22は比較例である。 Examples of the present invention will be described below. In the following description, Examples 1 to 20 and Examples 31 to 35 are examples, and Examples 21 and 22 are comparative examples.
 (例1)
 以下の方法により、SOECを作製した。
(Example 1)
SOEC was produced by the following method.
 (第1および第2の中間層の形成)
 まず、以下の手順で、固体電解質層のそれぞれの表面上に、中間層を形成した。固体電解質層には、YSZ基板(東ソー製、厚さ500μm)を使用した。
(Formation of first and second intermediate layers)
First, an intermediate layer was formed on each surface of the solid electrolyte layer by the following procedure. A YSZ substrate (manufactured by Tosoh, thickness 500 μm) was used for the solid electrolyte layer.
 10mol%のガドリニウムドープセリア(Ce0.9Gd0.1)粉末(試験研究用GDC標準品、AGCセイミケミカル製)と、α-テルピネオール溶媒(富士フイルム和光純薬製)とを、50:50の質量比で混練することにより、ペースト状の組成物(「第1のペースト」と称する)を調製した。 10 mol% gadolinium-doped ceria (Ce 0.9 Gd 0.1 O 2 ) powder (GDC standard product for test and research, manufactured by AGC Seimi Chemical) and α-terpineol solvent (manufactured by Fuji Film Wako Pure Chemical Industries) were mixed at 50% A paste-like composition (referred to as "first paste") was prepared by kneading at a mass ratio of: :50.
 YSZ基板の第1の表面の略中心の12mmφの領域を除く部分にマスキングテープを貼り付けた後、YSZ基板の第1の表面に、第1のペーストを塗工した。 After applying masking tape to the first surface of the YSZ substrate except for a 12 mm diameter area approximately at the center, the first paste was applied to the first surface of the YSZ substrate.
 次に、YSZ基板を裏返し、同様な手順で、第2の表面にも第1のペーストを塗工した。 Next, the YSZ substrate was turned over, and the first paste was also applied to the second surface using the same procedure.
 次に、YSZ基板を140℃で乾燥させた後、YSZ基板を1400℃に加熱した。これにより、YSZ基板の第1の表面に、直径12mmφの第1の中間層が形成され、第2の表面に、直径12mmφの第2の中間層が形成された。 Next, after drying the YSZ substrate at 140°C, the YSZ substrate was heated to 1400°C. As a result, a first intermediate layer with a diameter of 12 mmφ was formed on the first surface of the YSZ substrate, and a second intermediate layer with a diameter of 12 mmφ was formed on the second surface.
 (化合物Aの作製)
 炭酸カルシウム(4.33g、高純度化学研究所製)とαアルミナ(2.57g、高純度化学研究所製)をそれぞれ秤量した。これらを、φ5mmのジルコニアボールおよび10ccのイソプロパノール(三協化学製)が入ったポットに投入し、遊星ボールミル法により3時間粉砕混合した。次に、混合粉末を100℃で乾燥し、イソプロパノールを除去した。さらに、ふるいにより、混合粉末をジルコニアボールと分離した。得られた混合粉末をアルミナ坩堝に入れ、大気中、1200℃で5時間仮焼した。得られた試料をメノー乳鉢で粉砕し、化合物Aとしての12CaO・7Alマイエナイト粉末を作製した。
(Preparation of compound A)
Calcium carbonate (4.33 g, manufactured by Kojundo Kagaku Kenkyusho) and alpha alumina (2.57 g, manufactured by Kojundo Kagaku Kenkyusho) were each weighed. These were placed in a pot containing 5 mm zirconia balls and 10 cc of isopropanol (manufactured by Sankyo Chemical), and pulverized and mixed for 3 hours using a planetary ball mill method. Next, the mixed powder was dried at 100°C to remove isopropanol. Furthermore, the mixed powder was separated from the zirconia balls using a sieve. The obtained mixed powder was placed in an alumina crucible and calcined at 1200° C. for 5 hours in the air. The obtained sample was ground in an agate mortar to produce 12CaO.7Al 2 O 3 mayenite powder as compound A.
 (燃料極の形成)
 酸化ニッケル(NiO、高純度化学研究所製)粉末と、上記化合物Aとしての12CaO・7Alマイエナイト粉末とを、Ni金属換算で50:50の体積比で混合して、混合粉末を準備した。
(Formation of fuel electrode)
Prepare a mixed powder by mixing nickel oxide (NiO, manufactured by Kojundo Kagaku Kenkyujo) powder and 12CaO.7Al2O3 mayenite powder as the above compound A at a volume ratio of 50:50 in terms of Ni metal. did.
 この混合粉末に溶媒(ポリエチレングリコールPEG400、国産化学製)を添加し、混錬することにより、ペースト状の組成物(以下、「第2のペースト」と称する)を調製した。 A paste-like composition (hereinafter referred to as "second paste") was prepared by adding a solvent (polyethylene glycol PEG400, manufactured by Kokusan Kagaku) to this mixed powder and kneading it.
 次に、第1の中間層の略中心の10mmφの領域を除いた部分にマスキングテープを貼り付けた後、第1の中間層上に第2のペーストを塗工した。その後、第2のペーストを230℃で乾燥させた。 Next, a masking tape was applied to the first intermediate layer except for a 10 mm diameter area approximately at the center, and then a second paste was applied onto the first intermediate layer. The second paste was then dried at 230°C.
 さらに、その上に、集電部材として、NiOペースト(NiO-AFL;Kceracell製)を塗工した。NiOペーストを140℃で乾燥させた後、組立体を1300℃で焼成して、燃料極およびその上の集電部材を形成した。 Furthermore, NiO paste (NiO-AFL; manufactured by Kceracell) was applied thereon as a current collecting member. After drying the NiO paste at 140°C, the assembly was fired at 1300°C to form the fuel electrode and current collector member thereon.
 (酸素極の形成)
 ペースト状の組成物(以下、「第3のペースト」と称する)を準備した。
(Formation of oxygen electrode)
A paste-like composition (hereinafter referred to as "third paste") was prepared.
 第3のペーストは、組成が(La0.60Sr0.400.95(Co0.20Fe0.80)Oの粉末を含むペーストである(LSCF-1;Fuel Cell Materials製)。 The third paste is a paste containing powder with a composition of (La 0.60 Sr 0.40 ) 0.95 (Co 0.20 Fe 0.80 )O 3 (LSCF-1; manufactured by Fuel Cell Materials). .
 第2の中間層の略中心の6mmφの領域を除く部分にマスキングテープを貼り付けた後、第2の中間層上に第3のペーストを塗工した。 After applying masking tape to the second intermediate layer except for a 6 mm diameter area approximately at the center, a third paste was applied onto the second intermediate layer.
 次に、第3のペーストを140℃で乾燥させた後、さらに1060℃で焼成した。これにより、酸素極が形成された。 Next, after drying the third paste at 140°C, it was further fired at 1060°C. This formed an oxygen electrode.
 以上の工程により、SOECが作製された。 Through the above steps, SOEC was manufactured.
 得られたSOECを「セル1」と称する。 The obtained SOEC is referred to as "Cell 1".
 (例2~例4)
 例1と同様の方法により、SOECを作製した。
(Example 2 to Example 4)
A SOEC was produced in the same manner as in Example 1.
 ただし、これらの例2~例4では、燃料極の組成を例1の場合とは変化させた。例2および3では、12CaO・7Alマイエナイト粉末とセリア系粉末(試験研究用GDC標準品、AGCセイミケミカル製)を混合して用いた。例4では、マイエナイト粉末を作製する際に所定量のTiO(酸化チタン(IV)、アナターゼ型、富士フイルム和光純薬製)を加え、モル比がCa:(Al+Ti)=12:14となるようにAlの量を調整した。その他のセル構成は、例1の場合と同様である。 However, in these Examples 2 to 4, the composition of the fuel electrode was changed from that in Example 1. In Examples 2 and 3, a mixture of 12CaO.7Al 2 O 3 mayenite powder and ceria powder (GDC standard product for test and research, manufactured by AGC Seimi Chemical) was used. In Example 4, when producing mayenite powder, a predetermined amount of TiO 2 (titanium (IV) oxide, anatase type, manufactured by Fujifilm Wako Pure Chemical Industries) is added, and the molar ratio becomes Ca: (Al + Ti) = 12:14. The amount of Al 2 O 3 was adjusted as follows. The other cell configurations are the same as in Example 1.
 得られたSOECをそれぞれ、「セル2」~「セル4」と称する。 The obtained SOECs are referred to as "Cell 2" to "Cell 4", respectively.
 (例21)
 例1と同様の方法により、SOECを作製した。
(Example 21)
A SOEC was produced in the same manner as in Example 1.
 ただし、この例21では、燃料極を、NiOとYSZの混合物で構成した。NiOとYSZの混合比は、Ni金属換算で50:50(体積比)とした。その他のセル構成は、例1の場合と同様である。 However, in this Example 21, the fuel electrode was composed of a mixture of NiO and YSZ. The mixing ratio of NiO and YSZ was 50:50 (volume ratio) in terms of Ni metal. The other cell configurations are the same as in Example 1.
 得られたSOECを「セル21」と称する。 The obtained SOEC is referred to as "cell 21".
 以下の表1には、各セルにおける燃料極の組成をまとめて示した。 Table 1 below summarizes the composition of the fuel electrode in each cell.
Figure JPOXMLDOC01-appb-T000001
 (評価)
 前述のように作製された各セルを900℃で作動させ、電解中の作動電圧の変化を測定した。
Figure JPOXMLDOC01-appb-T000001
(evaluation)
Each cell prepared as described above was operated at 900° C., and changes in operating voltage during electrolysis were measured.
 測定装置には、固体酸化物形燃料電池用単セル評価装置BEL-SOFC(マイクロトラックベル社製)の評価装置を使用した。 As the measurement device, a single cell evaluation device for solid oxide fuel cells, BEL-SOFC (manufactured by Microtrack Bell Co., Ltd.), was used.
 燃料極側には、水素とアルゴンと水蒸気と二酸化炭素の混合ガス(水素:アルゴン:水蒸気:二酸化炭素=10:70:10:10(体積比))を供給した。水素の供給速度は、10ml/分とし、アルゴンの供給速度は、70ml/分とし、水蒸気の供給速度は、10ml/分とし、二酸化炭素の供給速度は、10ml/分とした。一方、酸素極側には、100ml/分の供給速度で、純酸素を供給した。 A mixed gas of hydrogen, argon, water vapor, and carbon dioxide (hydrogen: argon: water vapor: carbon dioxide = 10:70:10:10 (volume ratio)) was supplied to the fuel electrode side. The hydrogen feed rate was 10 ml/min, the argon feed rate was 70 ml/min, the water vapor feed rate was 10 ml/min, and the carbon dioxide feed rate was 10 ml/min. On the other hand, pure oxygen was supplied to the oxygen electrode side at a supply rate of 100 ml/min.
 電解電流密度は、0.1A/cmとした。 The electrolytic current density was 0.1 A/cm 2 .
 図4には、セル1およびセル21において測定された電解電圧の経時変化を合わせて示す。 FIG. 4 also shows changes over time in the electrolytic voltage measured in cell 1 and cell 21.
 縦軸の電解電圧は、それぞれのセルの初期電圧Vに対して規格化した値とした。 The electrolysis voltage on the vertical axis was a value normalized to the initial voltage V 0 of each cell.
 図4から、セル21では、作動時間とともに、電解電圧が上昇していることがわかる。これは、セルの電解効率が低下していることを意味する。 From FIG. 4, it can be seen that in the cell 21, the electrolytic voltage increases with the operating time. This means that the electrolysis efficiency of the cell is decreasing.
 これに対して、セル1では、電解電圧は、作動時間に対してほとんど変化していない。このことから、セル1では、セル21に比べて、安定した電解が可能であることがわかった。 On the other hand, in cell 1, the electrolytic voltage hardly changes with respect to the operating time. From this, it was found that cell 1 allows more stable electrolysis than cell 21.
 以下の表2には、各セルにおいて得られた10時間電解後の電圧変化率をまとめて示した。 Table 2 below summarizes the voltage change rates after 10 hours of electrolysis obtained in each cell.
Figure JPOXMLDOC01-appb-T000002
 なお、表2において、「-」の値は、10時間の電解後の電圧が、初期の電解電圧Vよりも低下したことを示す。
Figure JPOXMLDOC01-appb-T000002
In Table 2, a value of "-" indicates that the voltage after 10 hours of electrolysis was lower than the initial electrolysis voltage V 0 .
 この表2から、セル1~セル4では、セル21に比べて、使用中の電解電圧の上昇が有意に抑制されていることがわかった。 From Table 2, it was found that in Cells 1 to 4, the increase in electrolytic voltage during use was significantly suppressed compared to Cell 21.
 (例5)
 以下、所定の組成の化合物Aを含む燃料極を有するセルの電圧変化率を推算した。
(Example 5)
Below, the voltage change rate of a cell having a fuel electrode containing Compound A with a predetermined composition was estimated.
 例1と同様に化合物Aの粉末を作製した。マイエナイト粉末を作製する際に所定量のLiCO(富士フイルム和光純薬製)を、LiO換算で5モル%となるようを加え、モル比が(Li+Ca):Al=12:14となるようCaCOの量を調整した。その他の作製条件は、例1の場合と同様である。 Powder of compound A was prepared in the same manner as in Example 1. When producing mayenite powder, a predetermined amount of LiCO 3 (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to give a 5 mol% Li 2 O equivalent, so that the molar ratio was (Li + Ca): Al = 12:14. The amount of CaCO3 was adjusted accordingly. Other manufacturing conditions are the same as in Example 1.
 (例6~例16)
 例5と同様の方法により、各種化合物Aの粉末を作製した。ただし、例6~例16では、LiCOに替えて、NaCO(関東化学製)、KCO(富士フイルム和光純薬製)、MgO(富士フイルム和光純薬製)、SrCO(富士フイルム和光純薬製)、BaCO(富士フイルム和光純薬製)、Y(信越化学工業製)、La(純正化学製)、CeO(関東化学製)、Nd(信越化学工業製)、およびTiO(高純度化学製)を添加した。NaCO、KCO、MgO、SrCO、およびBaCOは、NaO、KO、MgO、SrO、およびBaO換算で5モル%となるようを加えた。Y、La、およびNdは、Y、La、およびNd換算で3モル%となるよう加えた。CeOおよびTiOは、それぞれ、CeOおよびTiO換算で、11モル%および14モル%となるように加えた。
(Example 6 to Example 16)
Powders of various compounds A were prepared in the same manner as in Example 5. However, in Examples 6 to 16, instead of Li 2 CO 3 , Na 2 CO 3 (manufactured by Kanto Kagaku), K 2 CO 3 (manufactured by Fuji Film Wako Pure Chemical), MgO (manufactured by Fuji Film Wako Pure Chemical), SrCO 3 (manufactured by Fuji Film Wako Pure Chemical), BaCO 3 (manufactured by Fuji Film Wako Pure Chemical), Y 2 O 3 (manufactured by Shin-Etsu Chemical), La 2 O 3 (manufactured by Junsei Chemical), CeO 2 (manufactured by Kanto Chemical) , Nd 2 O 3 (manufactured by Shin-Etsu Chemical), and TiO 2 (manufactured by Kojundo Kagaku) were added. Na 2 CO 3 , K 2 CO 3 , MgO, SrCO 3 , and BaCO 3 were added in an amount of 5 mol % in terms of Na 2 O, K 2 O, MgO, SrO, and BaO. Y 2 O 3 , La 2 O 3 , and Nd 2 O 3 were added in an amount of 3 mol % in terms of Y 2 O 3 , La 2 O 3 , and Nd 2 O 3 . CeO 2 and TiO 2 were added in amounts of 11 mol % and 14 mol %, respectively, in terms of CeO 2 and TiO 2 .
 また、例6~例14および例16では、(金属+Ca):Al=12:14となるようCaCOの量を、例15ではCa:(Ti+Al)=12:14となるようAlの量を、それぞれ調整した。その他の作製条件は、例1の場合と同様である。 Further, in Examples 6 to 14 and Example 16, the amount of CaCO 3 was adjusted so that (metal + Ca):Al = 12:14, and in Example 15, the amount of Al 2 O 3 was adjusted so that Ca: (Ti + Al) = 12:14. The amount of each was adjusted. Other manufacturing conditions are the same as in Example 1.
 (例17)
 以下の方法により、SOECを作製した。
(Example 17)
SOEC was produced by the following method.
 (第1および第2の中間層の形成)
 まず、例1と同様の方法により、固体電解質層のそれぞれの表面上に、中間層を形成した。
(Formation of first and second intermediate layers)
First, by the same method as in Example 1, an intermediate layer was formed on each surface of the solid electrolyte layer.
 (化合物Aの作製)
 まず、Ca源としてのCaCO粉末(高純度化学社製)3.6807gと、Ti源としてのTiO粉末(富士フィルム和光純薬社製)1.4804gと、Al源としてのAl(NO・9HO粉末(富士フィルム和光純薬社製)6.9594gとを準備した。
(Preparation of compound A)
First, 3.6807 g of CaCO 3 powder (manufactured by Kojundo Kagaku Co., Ltd.) as a Ca source, 1.4804 g of TiO 2 powder (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) as a Ti source, and Al (NO 3 powder) as an Al source. ) 6.9594 g of 3.9H 2 O powder (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was prepared.
 次に、遊星ボールミル器およびジルコニアボールを用いて、溶媒の存在下で、これらの粉末を混合した。溶媒には、10gの2-プロパノールを使用した。遊星ボールミルの回転数は300rpmとし、処理時間は60分とした。 These powders were then mixed in the presence of a solvent using a planetary ball mill and zirconia balls. 10 g of 2-propanol was used as the solvent. The rotation speed of the planetary ball mill was 300 rpm, and the processing time was 60 minutes.
 次に、得られた混合粉末を大気中、高温で2時間保持し、乾燥させた。処理温度は、140℃とした。これにより、溶媒が除去された乾燥混合粉末が得られた。 Next, the obtained mixed powder was kept in the atmosphere at high temperature for 2 hours to dry it. The treatment temperature was 140°C. This yielded a dry mixed powder from which the solvent had been removed.
 次に、乾燥混合粉末を大気中で仮焼した。 Next, the dry mixed powder was calcined in the air.
 処理温度は、1400℃とし、処理時間は、10時間とした。 The treatment temperature was 1400°C and the treatment time was 10 hours.
 室温まで冷却した後、得られた処理体を乳鉢で粉砕することにより、化合物AとしてのCaTiOとアルミ酸化物の粉末を作製した。 After cooling to room temperature, the obtained treated body was pulverized in a mortar to produce powder of CaTiO 3 and aluminum oxide as compound A.
 (燃料極の形成)
 酸化ニッケル(NiO、高純度化学研究所製)粉末と、上記化合物Aの粉末とを、Ni金属換算で50:50の体積比で混合して、混合粉末を準備した。
(Formation of fuel electrode)
A mixed powder was prepared by mixing nickel oxide (NiO, manufactured by Kojundo Kagaku Kenkyusho) powder and the powder of the above compound A at a volume ratio of 50:50 in terms of Ni metal.
 その後は、例1と同様の方法により、SOECを作製した。 After that, a SOEC was produced in the same manner as in Example 1.
 得られたSOECを「セル17」と称する。 The obtained SOEC is referred to as "cell 17".
 (例18~例19)
 例17と同様の方法により、SOECを作製した。
(Example 18 to Example 19)
A SOEC was produced in the same manner as in Example 17.
 ただし、これらの例18~例19では、化合物Aの組成を例17の場合とは変化させた。 However, in these Examples 18 to 19, the composition of Compound A was changed from that in Example 17.
 具体的には、例18では、炭酸ストロンチウム粉末と、酸化チタン粉末と、αアルミナ粉末とをそれぞれ混合して、混合粉末を調合した。混合粉末に含まれるAlの量は、Al換算で14モル%とした。 Specifically, in Example 18, a mixed powder was prepared by mixing strontium carbonate powder, titanium oxide powder, and α-alumina powder, respectively. The amount of Al contained in the mixed powder was 14 mol % in terms of Al 2 O 3 .
 一方、例19では、炭酸バリウム粉末と、酸化チタン粉末と、αアルミナ粉末とをそれぞれ混合して、混合粉末を調合した。混合粉末に含まれるAlの量は、Al換算で14モル%とした。 On the other hand, in Example 19, a mixed powder was prepared by mixing barium carbonate powder, titanium oxide powder, and α-alumina powder, respectively. The amount of Al contained in the mixed powder was 14 mol % in terms of Al 2 O 3 .
 その他の作製条件は、例1の場合と同様である。 Other manufacturing conditions are the same as in Example 1.
 得られたSOECを、それぞれ、「セル18~セル19」と称する。 The obtained SOECs are respectively referred to as "cells 18 to 19."
 (例20)
 例1と同様の方法により、SOECを作製した。ただし、この例20では、燃料極の形成の際に、酸化ニッケル粉末と、化合物Aとしての12CaO・7Alマイエナイト粉末とを、Ni金属換算で70:30の体積比で混合して、混合粉末を調合した。
(Example 20)
A SOEC was produced in the same manner as in Example 1. However, in this example 20, when forming the fuel electrode, nickel oxide powder and 12CaO.7Al2O3 mayenite powder as compound A were mixed at a volume ratio of 70:30 in terms of Ni metal, A mixed powder was prepared.
 その他の製造方法は、例1の場合と同様である。得られたSOECを「セル20」と称する。 Other manufacturing methods are the same as in Example 1. The obtained SOEC is referred to as "cell 20."
 以下の表3には、各例において想定された化合物Aを含む燃料極の組成を示す。 Table 3 below shows the composition of the fuel electrode containing Compound A assumed in each example.
Figure JPOXMLDOC01-appb-T000003
 また、以下の表4には、各例において推定された10時間電解後のセルの電圧変化率をまとめて示す。
Figure JPOXMLDOC01-appb-T000003
Further, Table 4 below summarizes the estimated cell voltage change rates after 10 hours of electrolysis in each example.
Figure JPOXMLDOC01-appb-T000004
 なお、表4において、「-」の値は、10時間の電解後の電圧が、初期の電解電圧Vよりも低下したことを示す。
Figure JPOXMLDOC01-appb-T000004
In Table 4, a value of "-" indicates that the voltage after 10 hours of electrolysis was lower than the initial electrolysis voltage V 0 .
 これらの結果から、例5~例20のセルでは、10時間電解後も、電圧上昇が有意に抑制されていることがわかった。 From these results, it was found that in the cells of Examples 5 to 20, the voltage increase was significantly suppressed even after 10 hours of electrolysis.
 (例22)
 例1と同様の方法により、SOECを作製した。ただし、この例22では、化合物AにCSZ(CaO安定化ジルコニア、高純度化学製)を用い、Niの金属換算での体積比を75%とし、燃料極の焼結温度を1100℃とした。
(Example 22)
A SOEC was produced in the same manner as in Example 1. However, in this Example 22, CSZ (CaO stabilized zirconia, manufactured by Kojundo Kagaku Co., Ltd.) was used as the compound A, the volume ratio of Ni in terms of metal was 75%, and the sintering temperature of the fuel electrode was 1100°C.
 (例31)
 例1と同様の方法により、SOECを作製した。ただし、この例31では、Niの金属換算での体積比を75%とし、燃料極の焼結温度を1100℃とした。
(Example 31)
A SOEC was produced in the same manner as in Example 1. However, in this Example 31, the volume ratio of Ni in terms of metal was 75%, and the sintering temperature of the fuel electrode was 1100°C.
 (例32)
 例1と同様の方法により、SOECを作製した。ただし、この例32では、化合物Aの作製の際の秤量値を、最終組成がCaAlとなるように変更した。また、Niの金属換算での体積比を75%とし、燃料極の焼結温度を1200℃とした。
(Example 32)
A SOEC was produced in the same manner as in Example 1. However, in this Example 32, the weighed value during the preparation of Compound A was changed so that the final composition was Ca 3 Al 2 O 6 . Further, the volume ratio of Ni in terms of metal was set to 75%, and the sintering temperature of the fuel electrode was set to 1200°C.
 (例33)
 例1と同様の方法により、SOECを作製した。ただし、この例33では、化合物Aの作製の際の秤量値を、最終組成がCaAlとなるように変更した。また、Niの金属換算での体積比を75%とし、燃料極の焼結温度を1100℃とした。
(Example 33)
A SOEC was produced in the same manner as in Example 1. However, in this Example 33, the weighing value during the preparation of Compound A was changed so that the final composition was CaAl 2 O 4 . Further, the volume ratio of Ni in terms of metal was set to 75%, and the sintering temperature of the fuel electrode was set to 1100°C.
 (例34)
 例1と同様の方法により、SOECを作製した。ただし、この例34では、化合物Aとして、炭酸カルシウム粉末(高純度化学研究所製)を用いた。また、Niの金属換算での体積比を75%とし、燃料極の焼結温度を1100℃とした。
(Example 34)
A SOEC was produced in the same manner as in Example 1. However, in this Example 34, calcium carbonate powder (manufactured by Kojundo Kagaku Kenkyusho) was used as compound A. Further, the volume ratio of Ni in terms of metal was set to 75%, and the sintering temperature of the fuel electrode was set to 1100°C.
 (例35)
 例1と同様の方法により、SOECを作製した。ただし、この例35では、化合物Aとして、La粉末(純正化学製)を用いた。また、Niの金属換算での体積比を75%とし、燃料極の焼結温度を1100℃とした。
(Example 35)
A SOEC was produced in the same manner as in Example 1. However, in this Example 35, La 2 O 3 powder (manufactured by Junsei Kagaku) was used as compound A. Further, the volume ratio of Ni in terms of metal was set to 75%, and the sintering temperature of the fuel electrode was set to 1100°C.
 (例21~例22、例31~例35の評価)
前述のように作製された各セルを、より厳しい以下の条件で評価した。
(Evaluation of Examples 21 to 22 and 31 to 35)
Each cell produced as described above was evaluated under the following more severe conditions.
 各セルを800℃で作動させ、電解中の作動電圧の変化を測定した。測定装置には、固体酸化物形燃料電池用単セル評価装置BEL-SOFC(マイクロトラックベル社製)の評価装置を使用した。 Each cell was operated at 800°C, and changes in operating voltage during electrolysis were measured. As the measurement device, a single cell evaluation device for solid oxide fuel cells, BEL-SOFC (manufactured by Microtrack Bell Co., Ltd.), was used.
 燃料極側には、水素とアルゴンと水蒸気と二酸化炭素の混合ガス(水素:アルゴン:水蒸気:二酸化炭素=10:70:10:10(体積比))を供給した。水素の供給速度は、10ml/分とし、アルゴンの供給速度は、70ml/分とし、水蒸気の供給速度は、10ml/分とし、二酸化炭素の供給速度は、10ml/分とした。一方、酸素極側には、100ml/分の供給速度で、純酸素を供給した。 A mixed gas of hydrogen, argon, water vapor, and carbon dioxide (hydrogen: argon: water vapor: carbon dioxide = 10:70:10:10 (volume ratio)) was supplied to the fuel electrode side. The hydrogen feed rate was 10 ml/min, the argon feed rate was 70 ml/min, the water vapor feed rate was 10 ml/min, and the carbon dioxide feed rate was 10 ml/min. On the other hand, pure oxygen was supplied to the oxygen electrode side at a supply rate of 100 ml/min.
 電解電流密度は0.2A/cm、電解時間は5~50時間とした。電解時間が10時間以上のセルについては10時間ごとに、電解時間が10時間未満のセルについては5時間ごとに、劣化率(単位時間当たりの電圧上昇率、mV h-1)を算出し、最も大きな値を各セルの最大劣化率とした。 The electrolysis current density was 0.2 A/cm 2 and the electrolysis time was 5 to 50 hours. Calculate the deterioration rate (voltage increase rate per unit time, mV h -1 ) every 10 hours for cells whose electrolysis time is 10 hours or more, and every 5 hours for cells whose electrolysis time is less than 10 hours, The largest value was taken as the maximum deterioration rate of each cell.
  以下の表5には、各例において想定された化合物Aを含む燃料極の組成と、評価結果をまとめて示す。 Table 5 below summarizes the composition of the fuel electrode containing Compound A assumed in each example and the evaluation results.
Figure JPOXMLDOC01-appb-T000005
 表5から、例31~例35では、例21~例22に比べて最大劣化率が小さくなっていることがわかる。
Figure JPOXMLDOC01-appb-T000005
From Table 5, it can be seen that the maximum deterioration rates are smaller in Examples 31 to 35 than in Examples 21 to 22.
 このように、化合物Aとして、特定の材料を使用することにより、セルの耐久性が向上することが確認された。 In this way, it was confirmed that by using a specific material as Compound A, the durability of the cell was improved.
 (本発明の一態様)
 以下、本発明の一態様について記載する。
(One aspect of the present invention)
One embodiment of the present invention will be described below.
 (態様1)
 燃料極、酸素極、および前記燃料極と前記酸素極との間の固体電解質層を有する固体酸化物形電解セルであって、
 さらに、前記固体電解質層と前記燃料極との間に中間層を有し、前記中間層は、セリウム酸化物を有し、
 前記燃料極は、金属または金属の酸化物と、化合物Aとを有し、
 前記燃料極全体に対する前記金属または前記金属の酸化物の割合は、金属換算の体積比で、40vol%~80vol%の範囲であり、
 前記金属は、ニッケル(Ni)、銅(Cu)、銀(Ag)、タングステン(W)、白金(Pt)、鉄(Fe)、およびスズ(Sn)からなる群から選定された少なくとも一つを含み、
 前記化合物Aは、アルカリ土類金属元素を含むマイエナイト型化合物および/またはペロブスカイト型化合物を含む、固体酸化物形電解セル。
(Aspect 1)
A solid oxide electrolysis cell having a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode,
further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
The fuel electrode includes a metal or a metal oxide and a compound A,
The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
The metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). including,
The compound A is a solid oxide electrolytic cell containing a mayenite-type compound and/or a perovskite-type compound containing an alkaline earth metal element.
 (態様2)
 前記マイエナイト型化合物は、12CaO・7Al系マイエナイト型化合物、12SrO・7Al系マイエナイト型化合物、または12MgO・7Al系マイエナイト型化合物である、態様1に記載の固体酸化物形電解セル。
(Aspect 2)
The solid oxide according to aspect 1, wherein the mayenite-type compound is a 12CaO.7Al2O3 - based mayenite-type compound, a 12SrO.7Al2O3 - based mayenite-type compound, or a 12MgO.7Al2O3 - based mayenite-type compound. shaped electrolytic cell.
 (態様3)
 化合物Aは、
 前記マイエナイト型化合物と、
 別の化合物Bと、
 を有し、
 前記別の化合物Bは、リチウム(Li)、ナトリウム(Na)、カリウム(K)、バリウム(Ba)、マグネシウム(Mg)、ストロンチウム(Sr)、チタン(Ti)、イットリウム(Y)、セリウム(Ce)、ランタン(La)、およびネオジム(Nd)からなる群から選定された少なくとも一つの元素Xの化合物を含み、
 前記元素Xの一部は、前記マイエナイト型化合物の格子サイトに導入されている、態様2に記載の固体酸化物形電解セル。
(Aspect 3)
Compound A is
The mayenite type compound;
with another compound B,
has
The other compound B is lithium (Li), sodium (Na), potassium (K), barium (Ba), magnesium (Mg), strontium (Sr), titanium (Ti), yttrium (Y), cerium (Ce). ), lanthanum (La), and neodymium (Nd),
The solid oxide electrolytic cell according to aspect 2, wherein a part of the element X is introduced into a lattice site of the mayenite compound.
 (態様4)
 前記元素Xは、前記化合物A中に、酸化物換算で、0.1mol%~30mol%の範囲で含有される、態様3に記載の固体酸化物形電解セル。
(Aspect 4)
The solid oxide electrolytic cell according to aspect 3, wherein the element X is contained in the compound A in a range of 0.1 mol% to 30 mol% in terms of oxide.
 (態様5)
 化合物Aは、
 前記ペロブスカイト型化合物と、
 別の化合物Cと、
 を有し、
 前記別の化合物Cは、アルミニウム(Al)の化合物を含み、
 前記アルミニウムの一部は、前記ペロブスカイト型化合物の格子サイトに導入されている、態様1乃至4のいずれか一つに記載の固体酸化物形電解セル。
(Aspect 5)
Compound A is
The perovskite compound;
Another compound C,
has
The other compound C includes an aluminum (Al) compound,
5. The solid oxide electrolytic cell according to any one of aspects 1 to 4, wherein a portion of the aluminum is introduced into a lattice site of the perovskite compound.
 (態様6)
 前記Alは、前記化合物A中に、酸化物換算で、0.1mol%~30mol%の範囲で含有される、態様5に記載の固体酸化物形電解セル。
(Aspect 6)
The solid oxide electrolytic cell according to aspect 5, wherein the Al is contained in the compound A in a range of 0.1 mol% to 30 mol% in terms of oxide.
 (態様7)
 前記化合物Aは、さらに、セリウム系酸化物を有する、態様1乃至6のいずれか一つに記載の固体酸化物形電解セル。
(Aspect 7)
The solid oxide electrolytic cell according to any one of aspects 1 to 6, wherein the compound A further contains a cerium-based oxide.
 (態様8)
 前記化合物Aに対する前記セリウム系酸化物の含有量は、体積比で、80vol%以下である、態様7に記載の固体酸化物形電解セル。
(Aspect 8)
The solid oxide electrolytic cell according to aspect 7, wherein the content of the cerium-based oxide with respect to the compound A is 80 vol% or less in volume ratio.
 (態様9)
 複数の固体酸化物形電解セルを含むモジュールであって、
 各固体酸化物形電解セルは、態様1乃至8のいずれか一つに記載の固体酸化物形電解セルである、モジュール。
(Aspect 9)
A module including a plurality of solid oxide electrolytic cells,
A module, wherein each solid oxide electrolytic cell is the solid oxide electrolytic cell according to any one of aspects 1 to 8.
 (態様10)
 固体酸化物形電解セルシステムであって、
 態様9に記載のモジュールと、
 前記モジュールに電力を供給する電力供給装置と、
 水蒸気および/または二酸化炭素を前記モジュールに供給するガス供給装置と、
 前記モジュールから生じる水素および/または一酸化炭素を分離するガス分離装置と、
 前記ガス分離装置により分離された前記水素および/または一酸化炭素を貯蔵する貯蔵装置と、
 を有する、固体酸化物形電解セルシステム。
(Aspect 10)
A solid oxide electrolytic cell system,
The module according to aspect 9,
a power supply device that supplies power to the module;
a gas supply device that supplies water vapor and/or carbon dioxide to the module;
a gas separation device that separates hydrogen and/or carbon monoxide generated from the module;
a storage device that stores the hydrogen and/or carbon monoxide separated by the gas separation device;
A solid oxide electrolytic cell system with
 (態様11)
 燃料極、酸素極、および前記燃料極と前記酸素極との間の固体電解質層を有する固体酸化物形電解セルであって、
 さらに、前記固体電解質層と前記燃料極との間に中間層を有し、前記中間層は、セリウム酸化物を有し、
 前記燃料極は、金属または金属の酸化物と、化合物Aとを有し、
 前記燃料極全体に対する前記金属または前記金属の酸化物の割合は、金属換算の体積比で、40vol%~80vol%の範囲であり、
 前記金属は、ニッケル(Ni)、銅(Cu)、銀(Ag)、タングステン(W)、白金(Pt)、鉄(Fe)、およびスズ(Sn)からなる群から選定された少なくとも一つを含み、
 前記化合物Aは、アルカリ土類金属元素ならびに/またはScおよびYを除く希土類元素を含む酸化物を含み、アルカリ土類金属元素ならびに/またはScおよびYを除く希土類元素の前記金属に対する比率は、モル比換算で1.0%以上である、固体酸化物形電解セル。
(Aspect 11)
A solid oxide electrolysis cell having a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode,
further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
The fuel electrode includes a metal or a metal oxide and a compound A,
The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
The metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). including,
The compound A contains an oxide containing an alkaline earth metal element and/or a rare earth element other than Sc and Y, and the ratio of the alkaline earth metal element and/or rare earth element other than Sc and Y to the metal is molar. Solid oxide type electrolytic cell with a ratio of 1.0% or more.
 (態様12)
 複数の固体酸化物形電解セルを含むモジュールであって、
 各固体酸化物形電解セルは、態様11に記載の固体酸化物形電解セルである、モジュール。
(Aspect 12)
A module including a plurality of solid oxide electrolytic cells,
A module, wherein each solid oxide electrolytic cell is the solid oxide electrolytic cell according to aspect 11.
 (態様13)
 固体酸化物形電解セルシステムであって、
 態様12に記載のモジュールと、
 前記モジュールに電力を供給する電力供給装置と、
 水蒸気および/または二酸化炭素を前記モジュールに供給するガス供給装置と、
 前記モジュールから生じる水素および/または一酸化炭素を分離するガス分離装置と、
 前記ガス分離装置により分離された前記水素および/または一酸化炭素を貯蔵する貯蔵装置と、
 を有する、固体酸化物形電解セルシステム。
(Aspect 13)
A solid oxide electrolytic cell system,
The module according to aspect 12,
a power supply device that supplies power to the module;
a gas supply device that supplies water vapor and/or carbon dioxide to the module;
a gas separation device that separates hydrogen and/or carbon monoxide generated from the module;
a storage device that stores the hydrogen and/or carbon monoxide separated by the gas separation device;
A solid oxide electrolytic cell system with
 本願は、2022年7月14日に出願した日本国特許出願第2022-113531号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2022-113531 filed on July 14, 2022, and the entire contents of the same Japanese application are incorporated by reference into this application.
 100  第1のセル(SOEC)
 110  燃料極
 120  酸素極
 130  固体電解質層
 150  第1の中間層
 160  第2の中間層
 170  外部電源
 201  SOECシステム
 210  SOECモジュール
 220  電力供給装置
 230  ガス供給装置
 240  ガス分離装置
 250  貯蔵装置
100 First cell (SOEC)
110 Fuel electrode 120 Oxygen electrode 130 Solid electrolyte layer 150 First intermediate layer 160 Second intermediate layer 170 External power supply 201 SOEC system 210 SOEC module 220 Power supply device 230 Gas supply device 240 Gas separation device 250 Storage device

Claims (13)

  1.  燃料極、酸素極、および前記燃料極と前記酸素極との間の固体電解質層を有する固体酸化物形電解セルであって、
     さらに、前記固体電解質層と前記燃料極との間に中間層を有し、前記中間層は、セリウム酸化物を有し、
     前記燃料極は、金属または金属の酸化物と、化合物Aとを有し、
     前記燃料極全体に対する前記金属または前記金属の酸化物の割合は、金属換算の体積比で、40vol%~80vol%の範囲であり、
     前記金属は、ニッケル(Ni)、銅(Cu)、銀(Ag)、タングステン(W)、白金(Pt)、鉄(Fe)、およびスズ(Sn)からなる群から選定された少なくとも一つを含み、
     前記化合物Aは、マイエナイト型化合物および/またはアルカリ土類金属元素を含むペロブスカイト型化合物を含む、固体酸化物形電解セル。
    A solid oxide electrolysis cell having a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode,
    further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
    The fuel electrode includes a metal or a metal oxide and a compound A,
    The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
    The metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). including,
    The compound A is a solid oxide electrolytic cell containing a mayenite type compound and/or a perovskite type compound containing an alkaline earth metal element.
  2.  前記マイエナイト型化合物は、12CaO・7Al系マイエナイト型化合物、12SrO・7Al系マイエナイト型化合物、または12MgO・7Al系マイエナイト型化合物である、請求項1に記載の固体酸化物形電解セル。 The solid oxide according to claim 1, wherein the mayenite-type compound is a 12CaO.7Al2O3 - based mayenite-type compound, a 12SrO.7Al2O3 - based mayenite-type compound, or a 12MgO.7Al2O3 - based mayenite-type compound. Physical electrolytic cell.
  3.  化合物Aは、
     前記マイエナイト型化合物と、
     別の化合物Bと、
     を有し、
     前記別の化合物Bは、リチウム(Li)、ナトリウム(Na)、カリウム(K)、バリウム(Ba)、マグネシウム(Mg)、ストロンチウム(Sr)、チタン(Ti)、イットリウム(Y)、セリウム(Ce)、ランタン(La)、およびネオジム(Nd)からなる群から選定された少なくとも一つの元素Xの化合物を含み、
     前記元素Xの一部は、前記マイエナイト型化合物の格子サイトに導入されている、請求項2に記載の固体酸化物形電解セル。
    Compound A is
    The mayenite type compound;
    with another compound B,
    has
    The other compound B is lithium (Li), sodium (Na), potassium (K), barium (Ba), magnesium (Mg), strontium (Sr), titanium (Ti), yttrium (Y), cerium (Ce). ), lanthanum (La), and neodymium (Nd),
    3. The solid oxide electrolytic cell according to claim 2, wherein a portion of the element X is introduced into a lattice site of the mayenite compound.
  4.  前記元素Xは、前記化合物A中に、酸化物換算で、0.1mol%~30mol%の範囲で含有される、請求項3に記載の固体酸化物形電解セル。 The solid oxide electrolytic cell according to claim 3, wherein the element X is contained in the compound A in a range of 0.1 mol% to 30 mol% in terms of oxide.
  5.  化合物Aは、
     前記ペロブスカイト型化合物と、
     別の化合物Cと、
     を有し、
     前記別の化合物Cは、アルミニウム(Al)の化合物を含み、
     前記アルミニウムの一部は、前記ペロブスカイト型化合物の格子サイトに導入されている、請求項1に記載の固体酸化物形電解セル。
    Compound A is
    The perovskite compound;
    Another compound C,
    has
    The other compound C includes an aluminum (Al) compound,
    2. The solid oxide electrolytic cell according to claim 1, wherein a portion of the aluminum is introduced into lattice sites of the perovskite compound.
  6.  前記Alは、前記化合物A中に、酸化物換算で、0.1mol%~30mol%の範囲で含有される、請求項5に記載の固体酸化物形電解セル。 The solid oxide electrolytic cell according to claim 5, wherein the Al is contained in the compound A in a range of 0.1 mol% to 30 mol% in terms of oxide.
  7.  前記化合物Aは、さらに、セリウム系酸化物を有する、請求項1に記載の固体酸化物形電解セル。 The solid oxide electrolytic cell according to claim 1, wherein the compound A further contains a cerium-based oxide.
  8.  前記化合物Aに対する前記セリウム系酸化物の含有量は、体積比で、80vol%以下である、請求項7に記載の固体酸化物形電解セル。 The solid oxide electrolytic cell according to claim 7, wherein the content of the cerium-based oxide with respect to the compound A is 80 vol% or less in volume ratio.
  9.  複数の固体酸化物形電解セルを含むモジュールであって、
     各固体酸化物形電解セルは、請求項1に記載の固体酸化物形電解セルである、モジュール。
    A module including a plurality of solid oxide electrolytic cells,
    A module, wherein each solid oxide electrolytic cell is a solid oxide electrolytic cell according to claim 1.
  10.  固体酸化物形電解セルシステムであって、
     請求項9に記載のモジュールと、
     前記モジュールに電力を供給する電力供給装置と、
     水蒸気および/または二酸化炭素を前記モジュールに供給するガス供給装置と、
     前記モジュールから生じる水素および/または一酸化炭素を分離するガス分離装置と、
     前記ガス分離装置により分離された前記水素および/または一酸化炭素を貯蔵する貯蔵装置と、
     を有する、固体酸化物形電解セルシステム。
    A solid oxide electrolytic cell system,
    A module according to claim 9,
    a power supply device that supplies power to the module;
    a gas supply device that supplies water vapor and/or carbon dioxide to the module;
    a gas separation device that separates hydrogen and/or carbon monoxide generated from the module;
    a storage device that stores the hydrogen and/or carbon monoxide separated by the gas separation device;
    A solid oxide electrolytic cell system with
  11.  燃料極、酸素極、および前記燃料極と前記酸素極との間の固体電解質層を有する固体酸化物形電解セルであって、
     さらに、前記固体電解質層と前記燃料極との間に中間層を有し、前記中間層は、セリウム酸化物を有し、
     前記燃料極は、金属または金属の酸化物と、化合物Aとを有し、
     前記燃料極全体に対する前記金属または前記金属の酸化物の割合は、金属換算の体積比で、40vol%~80vol%の範囲であり、
     前記金属は、ニッケル(Ni)、銅(Cu)、銀(Ag)、タングステン(W)、白金(Pt)、鉄(Fe)、およびスズ(Sn)からなる群から選定された少なくとも一つを含み、
     前記化合物Aは、アルカリ土類金属元素ならびに/またはScおよびYを除く希土類元素を含む酸化物を含み、アルカリ土類金属元素ならびに/またはScおよびYを除く希土類元素の前記金属に対する比率は、モル比換算で1.0%以上である、固体酸化物形電解セル。
    A solid oxide electrolysis cell having a fuel electrode, an oxygen electrode, and a solid electrolyte layer between the fuel electrode and the oxygen electrode,
    further comprising an intermediate layer between the solid electrolyte layer and the fuel electrode, the intermediate layer comprising cerium oxide;
    The fuel electrode includes a metal or a metal oxide and a compound A,
    The ratio of the metal or the oxide of the metal to the entire fuel electrode is in the range of 40 vol% to 80 vol% in terms of metal volume ratio,
    The metal includes at least one selected from the group consisting of nickel (Ni), copper (Cu), silver (Ag), tungsten (W), platinum (Pt), iron (Fe), and tin (Sn). including,
    The compound A contains an oxide containing an alkaline earth metal element and/or a rare earth element other than Sc and Y, and the ratio of the alkaline earth metal element and/or rare earth element other than Sc and Y to the metal is molar. Solid oxide type electrolytic cell with a ratio of 1.0% or more.
  12.  複数の固体酸化物形電解セルを含むモジュールであって、
     各固体酸化物形電解セルは、請求項11に記載の固体酸化物形電解セルである、モジュール。
    A module including a plurality of solid oxide electrolytic cells,
    A module, wherein each solid oxide electrolytic cell is a solid oxide electrolytic cell according to claim 11.
  13.  固体酸化物形電解セルシステムであって、
     請求項12に記載のモジュールと、
     前記モジュールに電力を供給する電力供給装置と、
     水蒸気および/または二酸化炭素を前記モジュールに供給するガス供給装置と、
     前記モジュールから生じる水素および/または一酸化炭素を分離するガス分離装置と、
     前記ガス分離装置により分離された前記水素および/または一酸化炭素を貯蔵する貯蔵装置と、
     を有する、固体酸化物形電解セルシステム。
    A solid oxide electrolytic cell system,
    A module according to claim 12,
    a power supply device that supplies power to the module;
    a gas supply device that supplies water vapor and/or carbon dioxide to the module;
    a gas separation device that separates hydrogen and/or carbon monoxide generated from the module;
    a storage device that stores the hydrogen and/or carbon monoxide separated by the gas separation device;
    A solid oxide electrolytic cell system with
PCT/JP2023/025575 2022-07-14 2023-07-11 Solid oxide electrolysis cell and solid oxide electrolysis cell system WO2024014454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022113531 2022-07-14
JP2022-113531 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024014454A1 true WO2024014454A1 (en) 2024-01-18

Family

ID=89536755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025575 WO2024014454A1 (en) 2022-07-14 2023-07-11 Solid oxide electrolysis cell and solid oxide electrolysis cell system

Country Status (1)

Country Link
WO (1) WO2024014454A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115592A (en) * 2014-12-16 2016-06-23 日本特殊陶業株式会社 Solid oxide electrochemical cell, solid oxide fuel cell, high temperature steam electrolysis apparatus
JP2017071831A (en) * 2015-10-07 2017-04-13 株式会社日本触媒 Steam electrolysis cell
JP2017071830A (en) * 2015-10-07 2017-04-13 株式会社日本触媒 Cell for water vapor electrolysis and manufacturing method therefor
JP2018172763A (en) * 2017-03-31 2018-11-08 株式会社日本触媒 Steam electrolytic cell
JP2021025103A (en) * 2019-08-06 2021-02-22 三井金属鉱業株式会社 Solid electrolyte conjugate
WO2021151692A1 (en) * 2020-01-27 2021-08-05 Ceres Intellectual Property Company Limited Interlayer for solid oxide cell
CN114561656A (en) * 2022-04-06 2022-05-31 北京理工大学 Medium-low temperature metal support solid oxide electrolytic cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115592A (en) * 2014-12-16 2016-06-23 日本特殊陶業株式会社 Solid oxide electrochemical cell, solid oxide fuel cell, high temperature steam electrolysis apparatus
JP2017071831A (en) * 2015-10-07 2017-04-13 株式会社日本触媒 Steam electrolysis cell
JP2017071830A (en) * 2015-10-07 2017-04-13 株式会社日本触媒 Cell for water vapor electrolysis and manufacturing method therefor
JP2018172763A (en) * 2017-03-31 2018-11-08 株式会社日本触媒 Steam electrolytic cell
JP2021025103A (en) * 2019-08-06 2021-02-22 三井金属鉱業株式会社 Solid electrolyte conjugate
WO2021151692A1 (en) * 2020-01-27 2021-08-05 Ceres Intellectual Property Company Limited Interlayer for solid oxide cell
CN114561656A (en) * 2022-04-06 2022-05-31 北京理工大学 Medium-low temperature metal support solid oxide electrolytic cell

Similar Documents

Publication Publication Date Title
JP5430009B2 (en) Removal of impurity phase from electrochemical devices
KR102256575B1 (en) New Ceramic Anode Materials For Solid Oxide Fuel Cells
KR101835956B1 (en) Method of manufacturing electrode, electrode manufactured by the method, electorde structure comprising the electrode, fuel cell or metal-air secondary battery comprising the electrode, battery module having the fuel cell or metal-air secondary battery, and composition for manufacturing the electrode
US9666891B2 (en) Gas phase modification of solid oxide fuel cells
JP2015506081A (en) Interconnection of solid oxide fuel cells containing ceramic interconnect material and partially stabilized zirconia
US9660273B2 (en) Liquid phase modification of solid oxide fuel cells
JP5890908B2 (en) Electrolyte sheet for solid oxide fuel cell, electrolyte supporting cell, single cell for solid oxide fuel cell, and solid oxide fuel cell
US11682771B2 (en) Electrochemical cell and electrochemical cell stack
WO2024014454A1 (en) Solid oxide electrolysis cell and solid oxide electrolysis cell system
JP4828104B2 (en) Fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
JP7301768B2 (en) Electrochemical cells, electrochemical cell stacks and electrolytes for electrochemical cells
JP6209279B2 (en) Electrolyte containing inorganic oxide powder and sintered body thereof
KR102026502B1 (en) Solid oxide fuel cell, battery module comprising the same and method for manufacturing solid oxide fuel cell
JP6275076B2 (en) Solid oxide fuel cell and method for producing the same
JP6199680B2 (en) Solid oxide fuel cell half cell and solid oxide fuel cell
JP7114555B2 (en) Electrodes for water vapor electrolysis
JP7058866B2 (en) Anode for solid oxide fuel cell and solid oxide fuel cell using this anode
JP6532049B2 (en) Fuel electrode for solid oxide fuel cell, method for producing the same, and solid oxide fuel cell including the fuel electrode
KR20160097630A (en) Oxide particle, electrode comprising the same and fuel cell comprising the electrode
JP2022181976A (en) Hydrogen electrode for water vapor electrolysis
KR20200105173A (en) Cathod for soild oxide fuel cell, solid oxide fuel cell comprising same, battery module comprising same and method of manufacturing the solid oxide fuel cell
JP2009295497A (en) Composite substrate and manufacturing method of composite substrate, solid oxide fuel battery cell, solid oxide fuel cell and manufacturing method of solid oxide fuel cell
JP2016157519A (en) Fuel electrode for solid oxide fuel cell and method for producing the same, and solid oxide fuel cell including fuel electrode
JP2009067643A (en) Proton conductor and electrochemical cell prepared by using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839626

Country of ref document: EP

Kind code of ref document: A1