WO2024014291A1 - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
WO2024014291A1
WO2024014291A1 PCT/JP2023/023953 JP2023023953W WO2024014291A1 WO 2024014291 A1 WO2024014291 A1 WO 2024014291A1 JP 2023023953 W JP2023023953 W JP 2023023953W WO 2024014291 A1 WO2024014291 A1 WO 2024014291A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
supplying
nozzle
liquid
rotating
Prior art date
Application number
PCT/JP2023/023953
Other languages
French (fr)
Japanese (ja)
Inventor
将輝 水口
宏紀 櫻井
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024014291A1 publication Critical patent/WO2024014291A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a substrate processing method and a substrate processing apparatus.
  • the substrate processing method described in Patent Document 1 processes a substrate using a mixed solution of sulfuric acid and hydrogen peroxide.
  • Sulfuric acid and hydrogen peroxide are supplied to the surface of the substrate from separate nozzles and mixed on the surface of the substrate.
  • the mixed liquid is used for stripping the resist film.
  • SC1 a mixed solution of aqueous ammonia and aqueous hydrogen peroxide
  • One aspect of the present disclosure provides a technique for suppressing the generation of particles on the substrate surface by coating the entire substrate surface with a mixed solution of sulfuric acid and hydrogen peroxide when the substrate surface is hydrophobic.
  • a substrate processing method includes rotating a substrate while holding it horizontally, and supplying a hydrophilic solution containing hydrogen peroxide or ozone water to the hydrophobic surface of the rotating substrate. and, after supplying the hydrophilizing liquid, supplying a mixed solution of sulfuric acid and hydrogen peroxide to the surface of the rotating substrate.
  • the entire substrate surface can be coated with a mixed solution of sulfuric acid and hydrogen peroxide, thereby suppressing the generation of particles on the substrate surface.
  • FIG. 1 is a sectional view showing a substrate processing apparatus according to one embodiment.
  • FIG. 2 is a plan view showing an example of the first moving section, the second moving section, and the third moving section.
  • FIG. 3 is a flowchart illustrating a substrate processing method according to one embodiment.
  • 4(A) is a diagram showing an example of step S102
  • FIG. 4(B) is a diagram showing an example of the first stage of step S103
  • FIG. 4(C) is a diagram showing an example of the second stage of step S103.
  • FIG. 4D is a diagram showing an example of the first stage of step S104.
  • FIG. 5(A) is a diagram showing an example of the second stage of step S104, FIG.
  • FIG. 5(B) is a diagram showing an example of the third stage of step S104
  • FIG. 5(C) is a diagram showing an example of step S105
  • FIG. 5D is a diagram showing an example of step S106.
  • 6(A) is a diagram showing an example of step S107
  • FIG. 6(B) is a diagram showing an example of step S108
  • FIG. 6(C) is a diagram showing an example of step S109
  • FIG. (D) is a diagram showing an example of step S110.
  • FIG. 7 is a flowchart showing a conventional substrate processing method.
  • FIG. 8 is a perspective view showing an example of step S204.
  • the same or corresponding configurations are denoted by the same reference numerals, and the description thereof may be omitted.
  • the X-axis direction, Y-axis direction, and Z-axis direction are directions perpendicular to each other.
  • the X-axis direction and the Y-axis direction are horizontal, and the Z-axis direction is vertical.
  • Step S201 includes holding the substrate horizontally and rotating it. While the substrate is being rotated, DHF (dilute hydrofluoric acid) is supplied (step S202), DIW (deionized water) is supplied (step S203), and SPM (sulfuric acid and hydrogen peroxide) is supplied to the substrate surface. Water mixture) is supplied (step S204). Thereafter, the substrate is dried (step S205).
  • DHF dilute hydrofluoric acid
  • DIW deionized water
  • SPM sulfuric acid and hydrogen peroxide
  • step S202 By supplying DHF (step S202) before supplying SPM (step S204), the processing efficiency of the substrate surface by SPM can be improved.
  • DHF makes the substrate surface hydrophobic. The longer the DHF supply time, the more hydrophobic the substrate surface becomes.
  • the hydrophobic substrate surface repels SPM.
  • SPM could not be uniformly wetted and spread, and SPM sometimes scattered finely. Further, the SPM sometimes formed a plurality of spiral arms as shown in FIG. Particles were sometimes generated on the substrate surface because the SPM could not cover the entire substrate surface. Particle generation was noticeable at the outer periphery of the substrate surface.
  • the technology of the present disclosure supplies HPS (hydrogen peroxide solution) after supplying DHF and before supplying SPM.
  • HPS hydrogen peroxide solution
  • SPM is supplied. Thereby, the SPM can be uniformly spread over the entire surface of the substrate, and generation of particles on the surface of the substrate can be suppressed.
  • the technology of the present disclosure starts the supply of HPS after the start of the supply of DIW and before the end of the supply of DIW.
  • the technology of the present disclosure simultaneously supplies DIW and HPS.
  • the technology of the present disclosure replaces the nozzle located at the center position from the nozzle that discharges DIW to the nozzle that discharges HPS between the start of supply of DIW and the end of simultaneous supply of DIW and HPS. While replacing the nozzle, at least one of DIW and HPS is always supplied to the substrate surface. Therefore, drying of the substrate surface can be suppressed, and generation of particles can be suppressed.
  • the supply of the processing liquid may be temporarily interrupted when replacing the nozzle. If the interruption time is short, the substrate surface will not dry out. This is because a hydrophilic substrate surface requires more time for the processing liquid to flow out than a hydrophobic substrate surface.
  • a substrate processing apparatus 1 processes the surface Wa of the substrate W by supplying a processing liquid to the surface Wa of the substrate W.
  • the substrate processing apparatus 1 uses, for example, DHF, DIW, HPS, SPM, HPS, SC1 (mixture of aqueous ammonia and hydrogen peroxide), and two-fluid (mixture of DIW and gas) as processing liquids. fluid) are supplied to the surface Wa of the substrate W in this order (see FIG. 3).
  • the substrate processing apparatus 1 includes, for example, a processing container 10, a substrate holding section 20, a substrate rotation section 25, a first supply section 31, a second supply section 32, a third supply section 33, and a fourth supply section. 34, the first nozzle 41, the second nozzle 42, the third nozzle 43, the fourth nozzle 44, the first moving section 51, the second moving section 52, the third moving section 53, and the collecting section 60 and a control section 90.
  • the processing container 10 accommodates the substrate holding section 20 and the like.
  • a gate 12 and a gate valve 13 for opening and closing the gate 12 are provided on the side wall of the processing container 10 .
  • the substrate W is carried into the processing chamber 10 via the gate 12 by a transport device (not shown).
  • the substrate W is processed with a processing liquid inside the processing container 10.
  • the substrate W is transported to the outside of the processing container 10 via the gate 12 by the transport device.
  • the substrate holding unit 20 is provided inside the processing container 10 and holds the substrate W horizontally.
  • the substrate holding section 20 has, for example, a claw section 21 that holds the outer peripheral portion of the substrate W.
  • a plurality of claw portions 21 are provided at equal intervals in the circumferential direction of the substrate W.
  • the substrate holder 20 may vacuum suck the lower surface of the substrate W.
  • the substrate rotating unit 25 rotates the substrate W together with the substrate holding unit 20 by rotating the substrate holding unit 20.
  • the substrate holder 20 holds the substrate W so that the rotation center line of the substrate W and the center of the front surface Wa of the substrate W coincide with each other.
  • the first supply unit 31 supplies DHF or DIW to the surface Wa of the substrate W via the first nozzle 41.
  • the first supply unit 31 includes, for example, a common line 31a connected to the first nozzle 41, a plurality of individual lines 31b branching from the common line 31a, and a device 31c provided for each individual line 31b.
  • the device 31c includes, for example, an on-off valve, a flow meter, and a flow controller.
  • the second supply unit 32 supplies DIW or SC1 to the front surface Wa of the substrate W via the second nozzle 42.
  • the second supply unit 32 includes, for example, a common line 32a connected to the second nozzle 42, a plurality of individual lines 32b branching from the common line 32a, and a device 32c provided for each individual line 32b.
  • the device 32c includes, for example, an on-off valve, a flow meter, and a flow controller.
  • the third supply unit 33 supplies HPS or SPM to the surface Wa of the substrate W via the third nozzle 43.
  • SPM is a mixture of HPS and sulfuric acid.
  • the third supply unit 33 includes, for example, a common line 33a connected to the third nozzle 43, a plurality of individual lines 33b branching from the common line 33a, and a device 33c provided for each individual line 33b.
  • the device 33c includes, for example, an on-off valve, a flow meter, and a flow controller.
  • the fourth supply unit 34 supplies a mixed fluid of DIW and gas to the surface Wa of the substrate W via the fourth nozzle 44 .
  • the fourth nozzle 44 is a two-fluid nozzle.
  • the fourth supply unit 34 includes, for example, a plurality of individual lines 34b connected to the fourth nozzle 44, and a device 34c provided for each individual line 34b.
  • the device 34c includes, for example, an on-off valve, a flow meter, and a flow controller.
  • the first moving unit 51 moves the first nozzle 41 in the horizontal and vertical directions.
  • the first moving section 51 includes a first arm 51a and a first turning mechanism 51b.
  • the first turning mechanism 51b moves the first nozzle 41 in the horizontal direction by turning the first arm 51a.
  • the first turning mechanism 51b moves the first nozzle 41 in the vertical direction by raising and lowering the first arm 51a.
  • the first moving section 51 may include a guide rail and a linear motion mechanism instead of the first arm 51a and the first turning mechanism 51b.
  • the linear motion mechanism moves the first nozzle 41 horizontally and vertically along the guide rail.
  • the second moving unit 52 moves the second nozzle 42 in the horizontal and vertical directions independently of the first nozzle 41.
  • the second moving section 52 includes a second arm 52a and a second turning mechanism 52b.
  • the second turning mechanism 52b moves the second nozzle 42 in the horizontal direction by turning the second arm 52a.
  • the second turning mechanism 52b moves the second nozzle 42 in the vertical direction by raising and lowering the second arm 52a.
  • the 2nd moving part 52 may have a guide rail and a linear motion mechanism instead of the 2nd arm 52a and the 2nd rotation mechanism 52b.
  • the linear motion mechanism moves the second nozzle 42 in the horizontal and vertical directions along the guide rail.
  • the second moving unit 52 moves the fourth nozzle 44 together with the second nozzle 42 in the horizontal direction and the vertical direction.
  • the third moving unit 53 moves the third nozzle 43 in the horizontal and vertical directions independently of the first nozzle 41 and the second nozzle 42.
  • the third moving section 53 includes a third arm 53a and a third turning mechanism 53b.
  • the third turning mechanism 53b moves the third nozzle 43 in the horizontal direction by turning the third arm 53a.
  • the third swing mechanism 53b moves the third nozzle 43 in the vertical direction by raising and lowering the third arm 53a.
  • the third moving section 53 may include a guide rail and a linear motion mechanism instead of the third arm 53a and the third turning mechanism 53b.
  • the linear motion mechanism moves the third nozzle 43 in the horizontal and vertical directions along the guide rail.
  • the recovery unit 60 recovers the processing liquid supplied to the substrate W.
  • the collection unit 60 includes, for example, a cup 61.
  • the cup 61 surrounds the outer periphery of the substrate W held by the substrate holder 20 and receives the processing liquid splashed from the outer periphery of the substrate W. Although the cup 61 does not rotate together with the substrate holder 20 in this embodiment, it may rotate together with the substrate holder 20.
  • a drain pipe 62 and an exhaust pipe 63 are provided at the bottom of the cup 61.
  • the drain pipe 62 drains the liquid accumulated inside the cup 61.
  • the exhaust pipe 63 exhausts the gas accumulated inside the cup 61.
  • the control unit 90 is, for example, a computer, and includes a calculation unit 91 such as a CPU (Central Processing Unit), and a storage unit 92 such as a memory.
  • the storage unit 92 stores programs that control various processes executed in the substrate processing apparatus 1.
  • the control unit 90 controls the operation of the substrate processing apparatus 1 by causing the calculation unit 91 to execute a program stored in the storage unit 92.
  • the substrate processing method includes steps S101 to S110, for example, as shown in FIG. Steps S101 to S110 are performed under the control of the control section 90.
  • the processing after step S101 is started when a transport device (not shown) carries the substrate W into the processing container 10. Note that the substrate processing method does not need to include all of steps S101 to S110, and may include at least steps S101, S105, and S106 in this order.
  • the substrate holding section 20 holds the substrate W horizontally, and then the substrate rotating section 25 rotates the substrate W together with the substrate holding section 20 (step S101).
  • the substrate holder 20 holds the substrate W such that the rotation center line of the substrate W passes through the center of the front surface Wa of the substrate.
  • the rotation center line of the substrate W is shown by a dashed line.
  • steps S101 to S110 are performed on the front surface Wa of the substrate W.
  • the surface Wa of the substrate W is the upper surface of the substrate W.
  • the surface Wa of the substrate W will also be referred to as the substrate surface Wa.
  • the position directly above the center of the substrate surface Wa is also referred to as a center position.
  • the first nozzle 41 supplies DHF to the substrate surface Wa (step S102).
  • DHF is an example of a cleaning liquid.
  • the cleaning liquid may be one containing hydrofluoric acid.
  • the first nozzle 41 supplies DHF to the center of the substrate surface Wa at the center position. DHF flows radially outward of the substrate surface Wa due to centrifugal force, and forms a liquid film over the entire substrate surface Wa. By supplying DHF, the substrate surface Wa becomes hydrophobic.
  • the first nozzle 41 stops supplying DHF and supplies DIW to the substrate surface Wa (step S103).
  • DIW is an example of pure water.
  • the first nozzle 41 supplies DHF and DIW in this order while remaining stopped at the center position. There is no need to replace the nozzle located at the center position. DIW flows radially outward of the substrate surface Wa due to centrifugal force while displacing DHF, and forms a liquid film over the entire substrate surface Wa.
  • the first nozzle 41 moves from the center position to the first eccentric position (the position shown in FIG. 4C) while supplying DIW to the substrate surface Wa.
  • the first eccentric position is a position shifted outward in the radial direction of the substrate surface Wa with respect to the center position.
  • the first eccentric position is set so that there is no hole in the center of the DIW liquid film, that is, so that the DIW liquid film covers the entire substrate surface Wa.
  • the second nozzle 42 moves from the second home position to the second eccentric position (the position shown in FIG. 4(C)).
  • the second home position is set outside the cup 61.
  • the second eccentric position is set similarly to the first eccentric position.
  • the second nozzle 42 does not eject DIW while moving from the second home position to the second eccentric position.
  • the first nozzle 41 discharges DIW at the first eccentric position, and the second nozzle 42 discharges DIW at the second eccentric position.
  • the first nozzle 41 and the second nozzle 42 simultaneously supply DIW to the substrate surface Wa.
  • the first nozzle 41 stops discharging DIW and moves to the first home position.
  • the first home position is set outside the cup 61.
  • the third nozzle 43 moves from the third home position to the third eccentric position (the position shown in FIG. 4(D)).
  • the third home position is set outside the cup 61.
  • the third eccentric position is set similarly to the first eccentric position.
  • the third nozzle 43 does not discharge HPS while moving from the third home position to the third eccentric position.
  • the third nozzle 43 supplies HPS to the substrate surface Wa, and at the same time, the second nozzle 42 supplies DIW to the substrate surface Wa (step S104).
  • HPS is an example of a hydrophilic liquid.
  • the hydrophilic liquid may include HPS or ozone water.
  • SC1 may be used as the hydrophilic liquid.
  • SC1 includes HPS.
  • HPS supply is started. That is, according to this embodiment, DIW and HPS are supplied simultaneously.
  • DIW and HPS are supplied simultaneously.
  • the third nozzle 43 moves from the third eccentric position to the center position while supplying HPS to the substrate surface Wa. Meanwhile, the second nozzle 42 moves away from the center position while supplying DIW to the substrate surface Wa so as not to hinder the movement of the third nozzle 43.
  • the nozzles located at the center position are changed from the first nozzle 41 for discharging DIW to the third nozzle for discharging HPS. Replace it with 43. While replacing the nozzle, at least one of DIW and HPS is always supplied to the substrate surface Wa. Therefore, drying of the substrate surface Wa can be suppressed, and generation of particles can be suppressed.
  • the second nozzle 42 supplies DIW to the substrate surface Wa while the nozzles are replaced, but the second nozzle 42 does not need to be used.
  • the nozzle located at the center position is changed from the first nozzle 41 discharging DIW to the third nozzle 43 discharging HPS. You can also replace it with
  • the third nozzle 43 supplies HPS to the substrate surface Wa while remaining stopped at the center position. Meanwhile, the second nozzle 42 moves radially outward of the substrate surface Wa while supplying DIW to the substrate surface Wa.
  • DIW can be supplied to the outside of the HPS liquid film, and drying of the substrate surface Wa can be suppressed. Note that if the substrate surface Wa is not dried, the step shown in FIG. 5(B) may be omitted.
  • the third nozzle 43 supplies HPS to the substrate surface Wa (step S105).
  • the third nozzle 43 is at the center position and supplies HPS to the center of the substrate surface Wa.
  • the HPS flows radially outward of the substrate surface Wa due to centrifugal force, and forms a liquid film over the entire substrate surface Wa.
  • the entire substrate surface Wa can be made hydrophilic.
  • the third nozzle 43 stops supplying HPS and supplies SPM to the substrate surface Wa (step S106).
  • the third nozzle 43 supplies HPS and SPM in this order while remaining stopped at the center position. There is no need to replace the nozzle located at the center position.
  • the SPM flows radially outward of the substrate surface Wa due to centrifugal force while displacing the HPS, and forms a liquid film over the entire substrate surface Wa. SPM removes organic matter, such as resist residue, or abrasives.
  • the polishing agent remains on the substrate surface Wa after CMP (Chemical Mechanical Polishing).
  • SPM is supplied after supplying a hydrophilizing liquid such as HPS. Since SPM is supplied after the entire hydrophobic substrate surface Wa is made hydrophilic, the entire substrate surface Wa can be covered with SPM. As a result, generation of particles on the substrate surface Wa can be suppressed.
  • the third nozzle 43 stops supplying SPM and supplies HPS to the substrate surface Wa again (step S107).
  • the third nozzle 43 supplies HPS, SPM, and HPS in this order while remaining stopped at the center position. There is no need to replace the nozzle located at the center position.
  • the HPS flows radially outward of the substrate surface Wa by centrifugal force while displacing the SPM, and forms a liquid film over the entire substrate surface Wa.
  • residual sulfur components SO 4 2 ⁇
  • the supply of HPS is carried out for a set time and then stopped.
  • the nozzle located at the center position is switched from the third nozzle 43 to the second nozzle 42, and the second nozzle 42 supplies SC1 to the substrate surface Wa (step S108).
  • SC1 flows radially outward of the substrate surface Wa due to centrifugal force while displacing the HPS, and forms a liquid film over the entire substrate surface Wa.
  • SC1 is an example of an alkaline cleaning liquid.
  • an alkaline cleaning liquid By supplying an alkaline cleaning liquid after supplying SPM, sulfur component residues and particles can be removed.
  • the alkaline cleaning liquid suppresses the adhesion of particles by making the zeta potential of both the substrate surface Wa and the particles negative.
  • the supply of SC1 is carried out for a set time and then stopped.
  • Step S109 Fine droplets of DIW collide with the substrate surface Wa, and the impact removes particles.
  • the fourth nozzle 44 may move in the radial direction of the substrate surface Wa while supplying the mixed fluid of DIW and gas to the substrate surface Wa.
  • the substrate rotating section 25 rotates the substrate W together with the substrate holding section 20, thereby spin drying the substrate W (step S110).
  • the method of drying the substrate W is not limited to spin drying, and may be, for example, supercritical drying. Supercritical drying is performed inside a pressure vessel separate from the processing vessel 10.
  • Substrate processing apparatus 20 Substrate holding section 25 Substrate rotation section 31 First supply section 32 Second supply section 33 Third supply section 90 Control section W Substrate Wa Substrate surface

Abstract

This substrate processing method comprises: holding a substrate horizontally and rotating the substrate; supplying, onto a hydrophobic surface of the rotating substrate, a hydrophilizing solution containing a hydrogen peroxide solution or ozone water; and supplying, after the hydrophilizing solution is supplied, a mixed solution of sulfuric acid and hydrogen peroxide solution onto the surface of the rotating substrate.

Description

基板処理方法、および基板処理装置Substrate processing method and substrate processing apparatus
 本開示は、基板処理方法、および基板処理装置に関する。 The present disclosure relates to a substrate processing method and a substrate processing apparatus.
 特許文献1に記載の基板処理方法は、硫酸と過酸化水素水の混合液を用いて基板を処理する。硫酸と過酸化水素水は、別々のノズルから基板の表面に供給され、基板の表面上で混合される。混合液は、レジスト膜の剥離に用いられる。レジスト膜の剥離後、硫黄成分の残留物およびパーティクルを除去すべく、SC1(アンモニア水と過酸化水素水の混合液)が基板の表面に供給される。 The substrate processing method described in Patent Document 1 processes a substrate using a mixed solution of sulfuric acid and hydrogen peroxide. Sulfuric acid and hydrogen peroxide are supplied to the surface of the substrate from separate nozzles and mixed on the surface of the substrate. The mixed liquid is used for stripping the resist film. After peeling off the resist film, SC1 (a mixed solution of aqueous ammonia and aqueous hydrogen peroxide) is supplied to the surface of the substrate in order to remove sulfur component residue and particles.
日本国特開2004-288858号公報Japanese Patent Application Publication No. 2004-288858
 本開示の一態様は、基板表面が疎水性を有する場合に、基板表面全体を硫酸と過酸化水素水の混合液で被覆し、基板表面におけるパーティクルの発生を抑制する、技術を提供する。 One aspect of the present disclosure provides a technique for suppressing the generation of particles on the substrate surface by coating the entire substrate surface with a mixed solution of sulfuric acid and hydrogen peroxide when the substrate surface is hydrophobic.
 本開示の一態様の基板処理方法は、基板を水平に保持して回転することと、回転している前記基板の疎水性の表面に、過酸化水素水またはオゾン水を含む親水化液を供給することと、前記親水化液の供給後に、硫酸と過酸化水素水の混合液を、回転している前記基板の前記表面に供給することと、を有する。 A substrate processing method according to one embodiment of the present disclosure includes rotating a substrate while holding it horizontally, and supplying a hydrophilic solution containing hydrogen peroxide or ozone water to the hydrophobic surface of the rotating substrate. and, after supplying the hydrophilizing liquid, supplying a mixed solution of sulfuric acid and hydrogen peroxide to the surface of the rotating substrate.
 本開示の一態様によれば、基板表面が疎水性を有する場合に、基板表面全体を硫酸と過酸化水素水の混合液で被覆し、基板表面におけるパーティクルの発生を抑制することができる。 According to one aspect of the present disclosure, when the substrate surface is hydrophobic, the entire substrate surface can be coated with a mixed solution of sulfuric acid and hydrogen peroxide, thereby suppressing the generation of particles on the substrate surface.
図1は、一実施形態に係る基板処理装置を示す断面図である。FIG. 1 is a sectional view showing a substrate processing apparatus according to one embodiment. 図2は、第1移動部と第2移動部と第3移動部の一例を示す平面図である。FIG. 2 is a plan view showing an example of the first moving section, the second moving section, and the third moving section. 図3は、一実施形態に係る基板処理方法を示すフローチャートである。FIG. 3 is a flowchart illustrating a substrate processing method according to one embodiment. 図4(A)はステップS102の一例を示す図であり、図4(B)はステップS103の第1段階の一例を示す図であり、図4(C)はステップS103の第2段階の一例を示す図であり、図4(D)はステップS104の第1段階の一例を示す図である。4(A) is a diagram showing an example of step S102, FIG. 4(B) is a diagram showing an example of the first stage of step S103, and FIG. 4(C) is a diagram showing an example of the second stage of step S103. FIG. 4D is a diagram showing an example of the first stage of step S104. 図5(A)はステップS104の第2段階の一例を示す図であり、図5(B)はステップS104の第3段階の一例を示す図であり、図5(C)はステップS105の一例を示す図であり、図5(D)はステップS106の一例を示す図である。FIG. 5(A) is a diagram showing an example of the second stage of step S104, FIG. 5(B) is a diagram showing an example of the third stage of step S104, and FIG. 5(C) is a diagram showing an example of step S105. FIG. 5D is a diagram showing an example of step S106. 図6(A)はステップS107の一例を示す図であり、図6(B)はステップS108の一例を示す図であり、図6(C)はステップS109の一例を示す図であり、図6(D)はステップS110の一例を示す図である。6(A) is a diagram showing an example of step S107, FIG. 6(B) is a diagram showing an example of step S108, FIG. 6(C) is a diagram showing an example of step S109, and FIG. (D) is a diagram showing an example of step S110. 図7は、従来例に係る基板処理方法を示すフローチャートである。FIG. 7 is a flowchart showing a conventional substrate processing method. 図8は、ステップS204の一例を示す斜視図である。FIG. 8 is a perspective view showing an example of step S204.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。本明細書において、X軸方向、Y軸方向、Z軸方向は互いに垂直な方向である。X軸方向およびY軸方向は水平方向、Z軸方向は鉛直方向である。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that in each drawing, the same or corresponding configurations are denoted by the same reference numerals, and the description thereof may be omitted. In this specification, the X-axis direction, Y-axis direction, and Z-axis direction are directions perpendicular to each other. The X-axis direction and the Y-axis direction are horizontal, and the Z-axis direction is vertical.
 先ず、図7および図8を参照して、従来例に係る基板処理方法について説明する。図7に示すように、基板処理方法は、ステップS201~S205を有する。ステップS201は、基板を水平に保持すると共に回転することを含む。基板を回転している間に、基板表面に対して、DHF(希フッ酸)の供給(ステップS202)と、DIW(脱イオン水)の供給(ステップS203)と、SPM(硫酸と過酸化水素水の混合液)の供給(ステップS204)とが行われる。その後、基板の乾燥(ステップS205)が行われる。 First, a conventional substrate processing method will be described with reference to FIGS. 7 and 8. As shown in FIG. 7, the substrate processing method includes steps S201 to S205. Step S201 includes holding the substrate horizontally and rotating it. While the substrate is being rotated, DHF (dilute hydrofluoric acid) is supplied (step S202), DIW (deionized water) is supplied (step S203), and SPM (sulfuric acid and hydrogen peroxide) is supplied to the substrate surface. Water mixture) is supplied (step S204). Thereafter, the substrate is dried (step S205).
 SPMの供給(ステップS204)の前に、DHFの供給(ステップS202)を行うことで、SPMによる基板表面の処理効率を向上できる。但し、DHFは、基板表面を疎水化する。DHFの供給時間が長いほど、基板表面の疎水化が進む。 By supplying DHF (step S202) before supplying SPM (step S204), the processing efficiency of the substrate surface by SPM can be improved. However, DHF makes the substrate surface hydrophobic. The longer the DHF supply time, the more hydrophobic the substrate surface becomes.
 疎水化した基板表面はSPMをはじく。SPMが均一に濡れ広がることができず、SPMが細かく飛び散ることがあった。また、SPMが図8に示すように渦巻き状の腕を複数形成することがあった。SPMが基板表面の全体を被覆できないため、基板表面にパーティクルが生じることがあった。パーティクルの発生は、基板表面の外周部で顕著であった。 The hydrophobic substrate surface repels SPM. SPM could not be uniformly wetted and spread, and SPM sometimes scattered finely. Further, the SPM sometimes formed a plurality of spiral arms as shown in FIG. Particles were sometimes generated on the substrate surface because the SPM could not cover the entire substrate surface. Particle generation was noticeable at the outer periphery of the substrate surface.
 詳しくは後述するが、本開示の技術は、DHFの供給後、SPMの供給前に、HPS(過酸化水素水)の供給を行う。HPSの供給によって基板表面を親水化した後に、SPMを供給する。これにより、基板表面の全体にSPMを均一に濡れ広げることができ、基板表面におけるパーティクルの発生を抑制できる。 Although details will be described later, the technology of the present disclosure supplies HPS (hydrogen peroxide solution) after supplying DHF and before supplying SPM. After making the substrate surface hydrophilic by supplying HPS, SPM is supplied. Thereby, the SPM can be uniformly spread over the entire surface of the substrate, and generation of particles on the surface of the substrate can be suppressed.
 また、本開示の技術は、DIWの供給開始の後、DIWの供給終了の前に、HPSの供給を開始する。つまり、本開示の技術は、DIWとHPSとを同時に供給する。DIWとHPSの同時供給によって、基板表面の親水化が十分に進む前に、基板表面が乾燥するのを抑制でき、パーティクルの発生を抑制できる。 Furthermore, the technology of the present disclosure starts the supply of HPS after the start of the supply of DIW and before the end of the supply of DIW. In other words, the technology of the present disclosure simultaneously supplies DIW and HPS. By simultaneously supplying DIW and HPS, it is possible to prevent the substrate surface from drying out before the substrate surface becomes sufficiently hydrophilic, and it is possible to suppress the generation of particles.
 さらに、本開示の技術は、DIWの供給開始から、DIWとHPSの同時供給終了までの間に、センター位置に位置するノズルを、DIWを吐出するノズルから、HPSを吐出するノズルに入れ替える。ノズルを入れ替える間、常にDIWとHPSの少なくとも一方を基板表面に供給する。よって、基板表面が乾燥するのを抑制でき、パーティクルの発生を抑制できる。 Further, the technology of the present disclosure replaces the nozzle located at the center position from the nozzle that discharges DIW to the nozzle that discharges HPS between the start of supply of DIW and the end of simultaneous supply of DIW and HPS. While replacing the nozzle, at least one of DIW and HPS is always supplied to the substrate surface. Therefore, drying of the substrate surface can be suppressed, and generation of particles can be suppressed.
 なお、基板表面の親水化を実施した後は、ノズルを入れ替える際に、処理液の供給が一時的に途切れてもよい。途切れる時間が短時間であれば、基板表面が乾燥することはない。親水化した基板表面は、疎水化した基板表面に比べて、処理液の流出に時間を要するからである。 Note that after the substrate surface has been made hydrophilic, the supply of the processing liquid may be temporarily interrupted when replacing the nozzle. If the interruption time is short, the substrate surface will not dry out. This is because a hydrophilic substrate surface requires more time for the processing liquid to flow out than a hydrophobic substrate surface.
 図1および図2を参照して、一実施形態に係る基板処理装置1について説明する。基板処理装置1は、基板Wの表面Waに対して処理液を供給することで、基板Wの表面Waを処理する。基板処理装置1は、例えば、処理液として、DHFと、DIWと、HPSと、SPMと、HPSと、SC1(アンモニア水と過酸化水素水の混合液)と、二流体(DIWとガスの混合流体)とをこの順番で基板Wの表面Waに対して供給する(図3参照)。 A substrate processing apparatus 1 according to an embodiment will be described with reference to FIGS. 1 and 2. The substrate processing apparatus 1 processes the surface Wa of the substrate W by supplying a processing liquid to the surface Wa of the substrate W. The substrate processing apparatus 1 uses, for example, DHF, DIW, HPS, SPM, HPS, SC1 (mixture of aqueous ammonia and hydrogen peroxide), and two-fluid (mixture of DIW and gas) as processing liquids. fluid) are supplied to the surface Wa of the substrate W in this order (see FIG. 3).
 基板処理装置1は、例えば、処理容器10と、基板保持部20と、基板回転部25と、第1供給部31と、第2供給部32と、第3供給部33と、第4供給部34と、第1ノズル41と、第2ノズル42と、第3ノズル43と、第4ノズル44と、第1移動部51と、第2移動部52と、第3移動部53と、回収部60と、制御部90と、を備える。 The substrate processing apparatus 1 includes, for example, a processing container 10, a substrate holding section 20, a substrate rotation section 25, a first supply section 31, a second supply section 32, a third supply section 33, and a fourth supply section. 34, the first nozzle 41, the second nozzle 42, the third nozzle 43, the fourth nozzle 44, the first moving section 51, the second moving section 52, the third moving section 53, and the collecting section 60 and a control section 90.
 処理容器10は、基板保持部20などを収容する。処理容器10の側壁部には、ゲート12と、ゲート12を開閉するゲートバルブ13と、が設けられる。基板Wは、図示しない搬送装置によってゲート12を介して処理容器10の内部に搬入される。次に、基板Wは、処理容器10の内部において処理液で処理される。その後、基板Wは、搬送装置によってゲート12を介して処理容器10の外部に搬出される。 The processing container 10 accommodates the substrate holding section 20 and the like. A gate 12 and a gate valve 13 for opening and closing the gate 12 are provided on the side wall of the processing container 10 . The substrate W is carried into the processing chamber 10 via the gate 12 by a transport device (not shown). Next, the substrate W is processed with a processing liquid inside the processing container 10. Thereafter, the substrate W is transported to the outside of the processing container 10 via the gate 12 by the transport device.
 基板保持部20は、処理容器10の内部に設けられ、基板Wを水平に保持する。基板保持部20は、例えば基板Wの外周部を保持する爪部21を有する。爪部21は、基板Wの周方向に等間隔で複数設けられる。なお、図示しないが、基板保持部20は、基板Wの下面を真空吸着してもよい。 The substrate holding unit 20 is provided inside the processing container 10 and holds the substrate W horizontally. The substrate holding section 20 has, for example, a claw section 21 that holds the outer peripheral portion of the substrate W. A plurality of claw portions 21 are provided at equal intervals in the circumferential direction of the substrate W. Although not shown, the substrate holder 20 may vacuum suck the lower surface of the substrate W.
 基板回転部25は、基板保持部20を回転させることで、基板保持部20と共に基板Wを回転させる。基板Wの回転中心線と基板Wの表面Waの中心とが一致するように、基板保持部20が基板Wを保持する。 The substrate rotating unit 25 rotates the substrate W together with the substrate holding unit 20 by rotating the substrate holding unit 20. The substrate holder 20 holds the substrate W so that the rotation center line of the substrate W and the center of the front surface Wa of the substrate W coincide with each other.
 第1供給部31は、第1ノズル41を介して基板Wの表面Waに対してDHFまたはDIWを供給する。第1供給部31は、例えば、第1ノズル41に接続される共通ライン31aと、共通ライン31aから分岐する複数の個別ライン31bと、個別ライン31bごとに設けられる機器31cと、を有する。機器31cは、例えば開閉バルブと流量計と流量制御器とを有する。 The first supply unit 31 supplies DHF or DIW to the surface Wa of the substrate W via the first nozzle 41. The first supply unit 31 includes, for example, a common line 31a connected to the first nozzle 41, a plurality of individual lines 31b branching from the common line 31a, and a device 31c provided for each individual line 31b. The device 31c includes, for example, an on-off valve, a flow meter, and a flow controller.
 第2供給部32は、第2ノズル42を介して基板Wの表面Waに対してDIWまたはSC1を供給する。第2供給部32は、例えば、第2ノズル42に接続される共通ライン32aと、共通ライン32aから分岐する複数の個別ライン32bと、個別ライン32bごとに設けられる機器32cと、を有する。機器32cは、例えば開閉バルブと流量計と流量制御器とを有する。 The second supply unit 32 supplies DIW or SC1 to the front surface Wa of the substrate W via the second nozzle 42. The second supply unit 32 includes, for example, a common line 32a connected to the second nozzle 42, a plurality of individual lines 32b branching from the common line 32a, and a device 32c provided for each individual line 32b. The device 32c includes, for example, an on-off valve, a flow meter, and a flow controller.
 第3供給部33は、第3ノズル43を介して基板Wの表面Waに対してHPSまたはSPMを供給する。SPMは、HPSと硫酸の混合液である。第3供給部33は、例えば、第3ノズル43に接続される共通ライン33aと、共通ライン33aから分岐する複数の個別ライン33bと、個別ライン33bごとに設けられる機器33cと、を有する。機器33cは、例えば開閉バルブと流量計と流量制御器とを有する。 The third supply unit 33 supplies HPS or SPM to the surface Wa of the substrate W via the third nozzle 43. SPM is a mixture of HPS and sulfuric acid. The third supply unit 33 includes, for example, a common line 33a connected to the third nozzle 43, a plurality of individual lines 33b branching from the common line 33a, and a device 33c provided for each individual line 33b. The device 33c includes, for example, an on-off valve, a flow meter, and a flow controller.
 第4供給部34は、第4ノズル44を介して基板Wの表面Waに対してDIWとガスの混合流体を供給する。第4ノズル44は、二流体ノズルである。第4供給部34は、例えば、第4ノズル44に接続される複数の個別ライン34bと、個別ライン34bごとに設けられる機器34cと、を有する。機器34cは、例えば開閉バルブと流量計と流量制御器とを有する。 The fourth supply unit 34 supplies a mixed fluid of DIW and gas to the surface Wa of the substrate W via the fourth nozzle 44 . The fourth nozzle 44 is a two-fluid nozzle. The fourth supply unit 34 includes, for example, a plurality of individual lines 34b connected to the fourth nozzle 44, and a device 34c provided for each individual line 34b. The device 34c includes, for example, an on-off valve, a flow meter, and a flow controller.
 第1移動部51は、第1ノズル41を水平方向と鉛直方向に移動させる。第1移動部51は、例えば、図2に示すように、第1アーム51aと、第1旋回機構51bと、を有する。第1旋回機構51bは、第1アーム51aを旋回させることで、第1ノズル41を水平方向に移動させる。また、第1旋回機構51bは、第1アーム51aを昇降させることで、第1ノズル41を鉛直方向に移動させる。なお、第1移動部51は、第1アーム51aと第1旋回機構51bの代わりに、ガイドレールと直動機構とを有してもよい。直動機構は、ガイドレールに沿って第1ノズル41を水平方向と鉛直方向に移動させる。 The first moving unit 51 moves the first nozzle 41 in the horizontal and vertical directions. For example, as shown in FIG. 2, the first moving section 51 includes a first arm 51a and a first turning mechanism 51b. The first turning mechanism 51b moves the first nozzle 41 in the horizontal direction by turning the first arm 51a. Further, the first turning mechanism 51b moves the first nozzle 41 in the vertical direction by raising and lowering the first arm 51a. Note that the first moving section 51 may include a guide rail and a linear motion mechanism instead of the first arm 51a and the first turning mechanism 51b. The linear motion mechanism moves the first nozzle 41 horizontally and vertically along the guide rail.
 第2移動部52は、第2ノズル42を、第1ノズル41とは独立して水平方向と鉛直方向に移動させる。第2移動部52は、例えば、図2に示すように、第2アーム52aと、第2旋回機構52bと、を有する。第2旋回機構52bは、第2アーム52aを旋回させることで、第2ノズル42を水平方向に移動させる。また、第2旋回機構52bは、第2アーム52aを昇降させることで、第2ノズル42を鉛直方向に移動させる。なお、第2移動部52は、第2アーム52aと第2旋回機構52bの代わりに、ガイドレールと直動機構とを有してもよい。直動機構は、ガイドレールに沿って第2ノズル42を水平方向と鉛直方向に移動させる。第2移動部52は、第2ノズル42と共に第4ノズル44を水平方向と鉛直方向に移動させる。 The second moving unit 52 moves the second nozzle 42 in the horizontal and vertical directions independently of the first nozzle 41. For example, as shown in FIG. 2, the second moving section 52 includes a second arm 52a and a second turning mechanism 52b. The second turning mechanism 52b moves the second nozzle 42 in the horizontal direction by turning the second arm 52a. Further, the second turning mechanism 52b moves the second nozzle 42 in the vertical direction by raising and lowering the second arm 52a. In addition, the 2nd moving part 52 may have a guide rail and a linear motion mechanism instead of the 2nd arm 52a and the 2nd rotation mechanism 52b. The linear motion mechanism moves the second nozzle 42 in the horizontal and vertical directions along the guide rail. The second moving unit 52 moves the fourth nozzle 44 together with the second nozzle 42 in the horizontal direction and the vertical direction.
 第3移動部53は、第3ノズル43を、第1ノズル41および第2ノズル42とは独立して水平方向と鉛直方向に移動させる。第3移動部53は、例えば、図2に示すように、第3アーム53aと、第3旋回機構53bと、を有する。第3旋回機構53bは、第3アーム53aを旋回させることで、第3ノズル43を水平方向に移動させる。また、第3旋回機構53bは、第3アーム53aを昇降させることで、第3ノズル43を鉛直方向に移動させる。なお、第3移動部53は、第3アーム53aと第3旋回機構53bの代わりに、ガイドレールと直動機構とを有してもよい。直動機構は、ガイドレールに沿って第3ノズル43を水平方向と鉛直方向に移動させる。 The third moving unit 53 moves the third nozzle 43 in the horizontal and vertical directions independently of the first nozzle 41 and the second nozzle 42. For example, as shown in FIG. 2, the third moving section 53 includes a third arm 53a and a third turning mechanism 53b. The third turning mechanism 53b moves the third nozzle 43 in the horizontal direction by turning the third arm 53a. Further, the third swing mechanism 53b moves the third nozzle 43 in the vertical direction by raising and lowering the third arm 53a. Note that the third moving section 53 may include a guide rail and a linear motion mechanism instead of the third arm 53a and the third turning mechanism 53b. The linear motion mechanism moves the third nozzle 43 in the horizontal and vertical directions along the guide rail.
 回収部60は、基板Wに対して供給された処理液を回収する。回収部60は、例えばカップ61を有する。カップ61は、基板保持部20に保持されている基板Wの外周部を囲み、基板Wの外周部から飛散する処理液を受ける。カップ61は、本実施形態では基板保持部20と共に回転しないが、基板保持部20と共に回転してもよい。カップ61の底部には、排液管62と、排気管63とが設けられる。排液管62は、カップ61の内部に溜まった液体を排出する。排気管63は、カップ61の内部に溜まった気体を排出する。 The recovery unit 60 recovers the processing liquid supplied to the substrate W. The collection unit 60 includes, for example, a cup 61. The cup 61 surrounds the outer periphery of the substrate W held by the substrate holder 20 and receives the processing liquid splashed from the outer periphery of the substrate W. Although the cup 61 does not rotate together with the substrate holder 20 in this embodiment, it may rotate together with the substrate holder 20. A drain pipe 62 and an exhaust pipe 63 are provided at the bottom of the cup 61. The drain pipe 62 drains the liquid accumulated inside the cup 61. The exhaust pipe 63 exhausts the gas accumulated inside the cup 61.
 制御部90は、例えばコンピュータであり、CPU(Central Processing Unit)等の演算部91と、メモリ等の記憶部92と、を備える。記憶部92には、基板処理装置1において実行される各種の処理を制御するプログラムが格納される。制御部90は、記憶部92に記憶されたプログラムを演算部91に実行させることにより、基板処理装置1の動作を制御する。 The control unit 90 is, for example, a computer, and includes a calculation unit 91 such as a CPU (Central Processing Unit), and a storage unit 92 such as a memory. The storage unit 92 stores programs that control various processes executed in the substrate processing apparatus 1. The control unit 90 controls the operation of the substrate processing apparatus 1 by causing the calculation unit 91 to execute a program stored in the storage unit 92.
 図3~図6を参照して、一実施形態に係る基板処理方法について説明する。基板処理方法は、例えば、図3に示すように、ステップS101~S110を有する。ステップS101~S110は、制御部90による制御下で行われる。ステップS101以降の処理は、図示しない搬送装置が処理容器10の内部に基板Wを搬入すると開始される。なお、基板処理方法は、ステップS101~S110の全てを有しなくてもよく、少なくともステップS101、S105およびS106をこの順番で有すればよい。 A substrate processing method according to one embodiment will be described with reference to FIGS. 3 to 6. The substrate processing method includes steps S101 to S110, for example, as shown in FIG. Steps S101 to S110 are performed under the control of the control section 90. The processing after step S101 is started when a transport device (not shown) carries the substrate W into the processing container 10. Note that the substrate processing method does not need to include all of steps S101 to S110, and may include at least steps S101, S105, and S106 in this order.
 先ず、基板保持部20が基板Wを水平に保持し、その後、基板回転部25が基板保持部20と共に基板Wを回転する(ステップS101)。基板Wの回転中心線が基板の表面Waの中心を通るように、基板保持部20が基板Wを保持する。図4~図6において、基板Wの回転中心線を一点鎖線で示す。 First, the substrate holding section 20 holds the substrate W horizontally, and then the substrate rotating section 25 rotates the substrate W together with the substrate holding section 20 (step S101). The substrate holder 20 holds the substrate W such that the rotation center line of the substrate W passes through the center of the front surface Wa of the substrate. In FIGS. 4 to 6, the rotation center line of the substrate W is shown by a dashed line.
 基板Wを回転している間に、基板Wの表面Waに対して、ステップS101~S110が行われる。基板Wの表面Waは、基板Wの上面である。以下、基板Wの表面Waを、基板表面Waとも記載する。また、基板表面Waの中心の真上の位置を、センター位置とも記載する。 While the substrate W is being rotated, steps S101 to S110 are performed on the front surface Wa of the substrate W. The surface Wa of the substrate W is the upper surface of the substrate W. Hereinafter, the surface Wa of the substrate W will also be referred to as the substrate surface Wa. Further, the position directly above the center of the substrate surface Wa is also referred to as a center position.
 次に、図4(A)に示すように、第1ノズル41がDHFを基板表面Waに供給する(ステップS102)。DHFは、洗浄液の一例である。洗浄液は、フッ酸を含むものであればよい。第1ノズル41は、センター位置で、基板表面Waの中心にDHFを供給する。DHFは、遠心力によって基板表面Waの径方向外方に流れ、基板表面Wa全体に液膜を形成する。DHFの供給によって、基板表面Waは疎水性を有することになる。 Next, as shown in FIG. 4(A), the first nozzle 41 supplies DHF to the substrate surface Wa (step S102). DHF is an example of a cleaning liquid. The cleaning liquid may be one containing hydrofluoric acid. The first nozzle 41 supplies DHF to the center of the substrate surface Wa at the center position. DHF flows radially outward of the substrate surface Wa due to centrifugal force, and forms a liquid film over the entire substrate surface Wa. By supplying DHF, the substrate surface Wa becomes hydrophobic.
 次に、図4(B)に示すように、第1ノズル41が、DHFの供給を停止し、DIWを基板表面Waに供給する(ステップS103)。DIWは、純水の一例である。第1ノズル41は、センター位置に停止したまま、DHFとDIWをこの順番で供給する。センター位置に位置するノズルを入れ替える手間が無い。DIWは、DHFを置換しながら、遠心力によって基板表面Waの径方向外方に流れ、基板表面Wa全体に液膜を形成する。 Next, as shown in FIG. 4(B), the first nozzle 41 stops supplying DHF and supplies DIW to the substrate surface Wa (step S103). DIW is an example of pure water. The first nozzle 41 supplies DHF and DIW in this order while remaining stopped at the center position. There is no need to replace the nozzle located at the center position. DIW flows radially outward of the substrate surface Wa due to centrifugal force while displacing DHF, and forms a liquid film over the entire substrate surface Wa.
 次に、第1ノズル41が、DIWを基板表面Waに供給しながら、センター位置から第1偏心位置(図4(C)に示す位置)まで移動する。第1偏心位置は、センター位置を基準として、基板表面Waの径方向外方にずれた位置である。第1偏心位置は、DIWの液膜の中心に穴が空かないように、つまりDIWの液膜が基板表面Wa全体を被覆するように設定される。 Next, the first nozzle 41 moves from the center position to the first eccentric position (the position shown in FIG. 4C) while supplying DIW to the substrate surface Wa. The first eccentric position is a position shifted outward in the radial direction of the substrate surface Wa with respect to the center position. The first eccentric position is set so that there is no hole in the center of the DIW liquid film, that is, so that the DIW liquid film covers the entire substrate surface Wa.
 第1ノズル41がセンター位置から第1偏心位置まで移動する間に、第2ノズル42が第2ホーム位置から第2偏心位置(図4(C)に示す位置)まで移動する。第2ホーム位置は、カップ61の外側に設定される。第2偏心位置は、第1偏心位置と同様に設定される。第2ノズル42は、第2ホーム位置から第2偏心位置まで移動する間、DIWを吐出しない。 While the first nozzle 41 moves from the center position to the first eccentric position, the second nozzle 42 moves from the second home position to the second eccentric position (the position shown in FIG. 4(C)). The second home position is set outside the cup 61. The second eccentric position is set similarly to the first eccentric position. The second nozzle 42 does not eject DIW while moving from the second home position to the second eccentric position.
 次に、図4(C)に示すように、第1ノズル41が第1偏心位置でDIWを吐出すると共に、第2ノズル42が第2偏心位置でDIWを吐出する。第1ノズル41と第2ノズル42が同時にDIWを基板表面Waに供給する。その後、第1ノズル41は、DIWの吐出を停止し、第1ホーム位置まで移動する。第1ホーム位置は、カップ61の外側に設定される。 Next, as shown in FIG. 4(C), the first nozzle 41 discharges DIW at the first eccentric position, and the second nozzle 42 discharges DIW at the second eccentric position. The first nozzle 41 and the second nozzle 42 simultaneously supply DIW to the substrate surface Wa. Thereafter, the first nozzle 41 stops discharging DIW and moves to the first home position. The first home position is set outside the cup 61.
 次に、第3ノズル43が、第3ホーム位置から第3偏心位置(図4(D)に示す位置)まで移動する。第3ホーム位置は、カップ61の外側に設定される。第3偏心位置は、第1偏心位置と同様に設定される。第3ノズル43は、第3ホーム位置から第3偏心位置まで移動する間、HPSを吐出しない。 Next, the third nozzle 43 moves from the third home position to the third eccentric position (the position shown in FIG. 4(D)). The third home position is set outside the cup 61. The third eccentric position is set similarly to the first eccentric position. The third nozzle 43 does not discharge HPS while moving from the third home position to the third eccentric position.
 次に、図4(D)に示すように、第3ノズル43がHPSを基板表面Waに供給すると同時に、第2ノズル42がDIWを基板表面Waに供給する(ステップS104)。HPSは、親水化液の一例である。親水化液は、HPSまたはオゾン水を含めばよい。親水化液として、SC1を用いてもよい。SC1は、HPSを含む。 Next, as shown in FIG. 4(D), the third nozzle 43 supplies HPS to the substrate surface Wa, and at the same time, the second nozzle 42 supplies DIW to the substrate surface Wa (step S104). HPS is an example of a hydrophilic liquid. The hydrophilic liquid may include HPS or ozone water. SC1 may be used as the hydrophilic liquid. SC1 includes HPS.
 本実施形態によれば、DIWの供給開始の後、DIWの供給終了の前に、HPSの供給を開始する。つまり、本実施形態によれば、DIWとHPSとを同時に供給する。DIWとHPSの同時に供給によって、基板表面Waの親水化が十分に進む前に、基板表面Waが乾燥するのを抑制でき、パーティクルの発生を抑制できる。 According to this embodiment, after the start of DIW supply and before the end of DIW supply, HPS supply is started. That is, according to this embodiment, DIW and HPS are supplied simultaneously. By simultaneously supplying DIW and HPS, it is possible to prevent the substrate surface Wa from drying out before the substrate surface Wa becomes sufficiently hydrophilic, and the generation of particles can be suppressed.
 次に、図5(A)に示すように、第3ノズル43がHPSを基板表面Waに供給しながら第3偏心位置からセンター位置まで移動する。その間、第2ノズル42は、第3ノズル43の移動を妨げないように、DIWを基板表面Waに供給しながら、センター位置から遠ざかる。 Next, as shown in FIG. 5(A), the third nozzle 43 moves from the third eccentric position to the center position while supplying HPS to the substrate surface Wa. Meanwhile, the second nozzle 42 moves away from the center position while supplying DIW to the substrate surface Wa so as not to hinder the movement of the third nozzle 43.
 本実施形態によれば、DIWの供給開始から、DIWとHPSの同時供給終了までの間に、センター位置に位置するノズルを、DIWを吐出する第1ノズル41から、HPSを吐出する第3ノズル43に入れ替える。ノズルを入れ替える間、常にDIWとHPSの少なくとも一方を基板表面Waに供給する。よって、基板表面Waが乾燥するのを抑制でき、パーティクルの発生を抑制できる。 According to this embodiment, between the start of supply of DIW and the end of simultaneous supply of DIW and HPS, the nozzles located at the center position are changed from the first nozzle 41 for discharging DIW to the third nozzle for discharging HPS. Replace it with 43. While replacing the nozzle, at least one of DIW and HPS is always supplied to the substrate surface Wa. Therefore, drying of the substrate surface Wa can be suppressed, and generation of particles can be suppressed.
 なお、本実施形態ではノズルを入れ替える間に、第2ノズル42がDIWを基板表面Waに供給するが、第2ノズル42は使用しなくてもよい。第1ノズル41と第3ノズル43がDIWとHPSを同時に基板表面Waに供給した状態で、センター位置に位置するノズルを、DIWを吐出する第1ノズル41から、HPSを吐出する第3ノズル43に入れ替えてもよい。 Note that in this embodiment, the second nozzle 42 supplies DIW to the substrate surface Wa while the nozzles are replaced, but the second nozzle 42 does not need to be used. With the first nozzle 41 and the third nozzle 43 simultaneously supplying DIW and HPS to the substrate surface Wa, the nozzle located at the center position is changed from the first nozzle 41 discharging DIW to the third nozzle 43 discharging HPS. You can also replace it with
 次に、図5(B)に示すように、第3ノズル43は、センター位置に停止したまま、HPSを基板表面Waに供給する。その間、第2ノズル42は、DIWを基板表面Waに供給しながら基板表面Waの径方向外方に移動する。HPSの液膜を同心円状に広げる過程で、HPSの液膜の外側にDIWを補給でき、基板表面Waの乾燥を抑制できる。なお、基板表面Waが乾燥しなければ、図5(B)に示す工程を省いてもよい。 Next, as shown in FIG. 5(B), the third nozzle 43 supplies HPS to the substrate surface Wa while remaining stopped at the center position. Meanwhile, the second nozzle 42 moves radially outward of the substrate surface Wa while supplying DIW to the substrate surface Wa. In the process of spreading the HPS liquid film concentrically, DIW can be supplied to the outside of the HPS liquid film, and drying of the substrate surface Wa can be suppressed. Note that if the substrate surface Wa is not dried, the step shown in FIG. 5(B) may be omitted.
 次に、図5(C)に示すように、第3ノズル43がHPSを基板表面Waに供給する(ステップS105)。第3ノズル43は、センター位置で、基板表面Waの中心にHPSを供給する。HPSは、遠心力によって基板表面Waの径方向外方に流れ、基板表面Wa全体に液膜を形成する。HPSの供給によって、基板表面Wa全体を親水化できる。 Next, as shown in FIG. 5(C), the third nozzle 43 supplies HPS to the substrate surface Wa (step S105). The third nozzle 43 is at the center position and supplies HPS to the center of the substrate surface Wa. The HPS flows radially outward of the substrate surface Wa due to centrifugal force, and forms a liquid film over the entire substrate surface Wa. By supplying HPS, the entire substrate surface Wa can be made hydrophilic.
 次に、図5(D)に示すように、第3ノズル43が、HPSの供給を停止し、SPMを基板表面Waに供給する(ステップS106)。第3ノズル43は、センター位置に停止したまま、HPSとSPMをこの順番で供給する。センター位置に位置するノズルを入れ替える手間が無い。 Next, as shown in FIG. 5(D), the third nozzle 43 stops supplying HPS and supplies SPM to the substrate surface Wa (step S106). The third nozzle 43 supplies HPS and SPM in this order while remaining stopped at the center position. There is no need to replace the nozzle located at the center position.
 SPMは、HPSを置換しながら、遠心力によって基板表面Waの径方向外方に流れ、基板表面Wa全体に液膜を形成する。SPMは、例えばレジスト残渣などの有機物、または研磨剤を除去する。研磨剤は、CMP(Chemical Mechanical Polishing)の後に、基板表面Waに残るものである。 The SPM flows radially outward of the substrate surface Wa due to centrifugal force while displacing the HPS, and forms a liquid film over the entire substrate surface Wa. SPM removes organic matter, such as resist residue, or abrasives. The polishing agent remains on the substrate surface Wa after CMP (Chemical Mechanical Polishing).
 本実施形態によれば、HPS等の親水化液の供給後に、SPMの供給を行う。疎水性を有する基板表面Waの全体を親水化した後にSPMを供給するので、基板表面Waの全体をSPMで被覆できる。その結果、基板表面Waにおけるパーティクルの発生を抑制できる。 According to this embodiment, SPM is supplied after supplying a hydrophilizing liquid such as HPS. Since SPM is supplied after the entire hydrophobic substrate surface Wa is made hydrophilic, the entire substrate surface Wa can be covered with SPM. As a result, generation of particles on the substrate surface Wa can be suppressed.
 次に、図6(A)に示すように、第3ノズル43が、SPMの供給を停止し、再びHPSを基板表面Waに供給する(ステップS107)。第3ノズル43は、センター位置に停止したまま、HPSとSPMとHPSをこの順番で供給する。センター位置に位置するノズルを入れ替える手間が無い。 Next, as shown in FIG. 6(A), the third nozzle 43 stops supplying SPM and supplies HPS to the substrate surface Wa again (step S107). The third nozzle 43 supplies HPS, SPM, and HPS in this order while remaining stopped at the center position. There is no need to replace the nozzle located at the center position.
 HPSは、SPMを置換しながら、遠心力によって基板表面Waの径方向外方に流れ、基板表面Wa全体に液膜を形成する。SPMの供給後に、HPSの供給を行うことで、硫黄成分(SO 2-)の残留物を除去できる。HPSの供給は、設定時間実施され、その後停止される。 The HPS flows radially outward of the substrate surface Wa by centrifugal force while displacing the SPM, and forms a liquid film over the entire substrate surface Wa. By supplying HPS after supplying SPM, residual sulfur components (SO 4 2− ) can be removed. The supply of HPS is carried out for a set time and then stopped.
 次に、図6(B)に示すように、センター位置に位置するノズルが第3ノズル43から第2ノズル42に入れ替わり、第2ノズル42がSC1を基板表面Waに供給する(ステップS108)。SC1は、HPSを置換しながら、遠心力によって基板表面Waの径方向外方に流れ、基板表面Wa全体に液膜を形成する。 Next, as shown in FIG. 6(B), the nozzle located at the center position is switched from the third nozzle 43 to the second nozzle 42, and the second nozzle 42 supplies SC1 to the substrate surface Wa (step S108). SC1 flows radially outward of the substrate surface Wa due to centrifugal force while displacing the HPS, and forms a liquid film over the entire substrate surface Wa.
 SC1は、アルカリ洗浄液の一例である。SPMの供給後に、アルカリ洗浄液の供給を行うことで、硫黄成分の残留物とパーティクルを除去できる。アルカリ洗浄液は、基板表面Waとパーティクルの両方のゼータ電位を負にすることで、パーティクルの付着を抑制する。SC1の供給は、設定時間実施され、その後停止される。 SC1 is an example of an alkaline cleaning liquid. By supplying an alkaline cleaning liquid after supplying SPM, sulfur component residues and particles can be removed. The alkaline cleaning liquid suppresses the adhesion of particles by making the zeta potential of both the substrate surface Wa and the particles negative. The supply of SC1 is carried out for a set time and then stopped.
 次に、図6(C)に示すように、センター位置に位置するノズルが第2ノズル42から第4ノズル44に入れ替わり、第4ノズル44がDIWとガスの混合流体を基板表面Waに供給する(ステップS109)。DIWの細かい液滴が、基板表面Waに衝突し、その衝撃でパーティクルを除去する。第4ノズル44は、DIWとガスの混合流体を基板表面Waに供給しながら、基板表面Waの径方向に移動してもよい。 Next, as shown in FIG. 6(C), the nozzle located at the center position is switched from the second nozzle 42 to the fourth nozzle 44, and the fourth nozzle 44 supplies a mixed fluid of DIW and gas to the substrate surface Wa. (Step S109). Fine droplets of DIW collide with the substrate surface Wa, and the impact removes particles. The fourth nozzle 44 may move in the radial direction of the substrate surface Wa while supplying the mixed fluid of DIW and gas to the substrate surface Wa.
 次に、図6(D)に示すように、全ての処理液の供給が終了した後、基板回転部25が基板保持部20と共に基板Wを回転させることで、基板Wをスピン乾燥させる(ステップS110)。基板Wの乾燥方法は、スピン乾燥には限定されず、例えば超臨界乾燥であってもよい。超臨界乾燥は、処理容器10とは別の圧力容器の内部で行われる。 Next, as shown in FIG. 6(D), after all the processing liquids have been supplied, the substrate rotating section 25 rotates the substrate W together with the substrate holding section 20, thereby spin drying the substrate W (step S110). The method of drying the substrate W is not limited to spin drying, and may be, for example, supercritical drying. Supercritical drying is performed inside a pressure vessel separate from the processing vessel 10.
 以上、本開示に係る基板処理方法および基板処理装置の実施形態について説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、および組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the embodiments of the substrate processing method and substrate processing apparatus according to the present disclosure have been described above, the present disclosure is not limited to the above embodiments. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. These naturally fall within the technical scope of the present disclosure.
 本出願は、2022年7月12日に日本国特許庁に出願した特願2022-111930号に基づく優先権を主張するものであり、特願2022-111930号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2022-111930 filed with the Japan Patent Office on July 12, 2022, and the entire content of Japanese Patent Application No. 2022-111930 is incorporated into this application. .
1  基板処理装置
20 基板保持部
25 基板回転部
31 第1供給部
32 第2供給部
33 第3供給部
90 制御部
W  基板
Wa 基板表面
1 Substrate processing apparatus 20 Substrate holding section 25 Substrate rotation section 31 First supply section 32 Second supply section 33 Third supply section 90 Control section W Substrate Wa Substrate surface

Claims (11)

  1.  基板を水平に保持して回転することと、
     回転している前記基板の疎水性の表面に、過酸化水素水またはオゾン水を含む親水化液を供給することと、
     前記親水化液の供給後に、硫酸と過酸化水素水の混合液を、回転している前記基板の前記表面に供給することと、
    を有する、基板処理方法。
    Holding the board horizontally and rotating it;
    Supplying a hydrophilic solution containing hydrogen peroxide or ozone water to the hydrophobic surface of the rotating substrate;
    After supplying the hydrophilizing liquid, supplying a mixed solution of sulfuric acid and hydrogen peroxide to the surface of the rotating substrate;
    A substrate processing method comprising:
  2.  前記親水化液の供給前に、フッ酸を含む洗浄液を、回転している前記基板の前記表面に供給することを有する、請求項1に記載の基板処理方法。 2. The substrate processing method according to claim 1, further comprising supplying a cleaning solution containing hydrofluoric acid to the surface of the rotating substrate before supplying the hydrophilizing solution.
  3.  前記洗浄液の供給後、前記洗浄液を置換する純水を、回転している前記基板の前記表面に供給することを有する、請求項2に記載の基板処理方法。 3. The substrate processing method according to claim 2, further comprising supplying, after supplying the cleaning liquid, pure water to replace the cleaning liquid to the surface of the rotating substrate.
  4.  前記純水の供給開始の後、前記純水の供給終了の前に、前記親水化液の供給を開始することを有し、
     回転している前記基板の前記表面に前記純水と前記親水化液を同時に供給することを有する、請求項3に記載の基板処理方法。
    After the start of the supply of the pure water and before the end of the supply of the pure water, the supply of the hydrophilic liquid is started,
    4. The substrate processing method according to claim 3, further comprising simultaneously supplying the pure water and the hydrophilizing liquid to the surface of the rotating substrate.
  5.  前記純水の供給開始から、前記純水と前記親水化液の同時供給終了までの間に、前記基板の前記表面の中心の真上に位置するノズルを、前記純水を吐出するノズルから、前記親水化液を吐出するノズルに入れ替えることを有する、請求項4に記載の基板処理方法。 Between the start of the supply of the pure water and the end of the simultaneous supply of the pure water and the hydrophilizing liquid, a nozzle located directly above the center of the surface of the substrate is moved from a nozzle that discharges the pure water, 5. The substrate processing method according to claim 4, further comprising replacing the nozzle with a nozzle that discharges the hydrophilic liquid.
  6.  回転している前記基板の前記表面に前記純水と前記親水化液を同時に供給する間に、前記親水化液を吐出するノズルを前記基板の前記表面の中心の真上で停止すると共に、前記純水を吐出するノズルを前記基板の径方向外方に移動することを有する、請求項4又は5に記載の基板処理方法。 While simultaneously supplying the pure water and the hydrophilizing liquid to the surface of the rotating substrate, the nozzle for discharging the hydrophilic liquid is stopped right above the center of the surface of the substrate, and the 6. The substrate processing method according to claim 4, further comprising moving a nozzle that discharges pure water radially outward of the substrate.
  7.  回転している前記基板の前記表面に、前記親水化液と前記混合液とを、この順番で同一のノズルから供給することを有する、請求項1~5のいずれか1項に記載の基板処理方法。 The substrate processing according to any one of claims 1 to 5, comprising supplying the hydrophilizing liquid and the mixed liquid in this order from the same nozzle to the surface of the rotating substrate. Method.
  8.  前記混合液の供給後に、硫酸の供給を停止した状態で、過酸化水素水を、回転している前記基板の前記表面に供給することを有する、請求項1~5のいずれか1項に記載の基板処理方法。 6. The method according to claim 1, further comprising supplying a hydrogen peroxide solution to the surface of the rotating substrate while stopping the supply of sulfuric acid after supplying the mixed liquid. substrate processing method.
  9.  硫酸の供給を停止した状態で過酸化水素水の供給を行った後に、アルカリ洗浄液を、回転している前記基板の前記表面に供給することを有する、請求項8に記載の基板処理方法。 9. The substrate processing method according to claim 8, comprising supplying an alkaline cleaning liquid to the surface of the rotating substrate after supplying hydrogen peroxide solution with the supply of sulfuric acid being stopped.
  10.  前記アルカリ洗浄液の供給後に、純水と気体の混合流体を、回転している前記基板の前記表面に供給することと、
     前記純水と前記気体の前記混合流体の供給後に、前記基板を回転させることで前記基板を乾燥させることと、
    を有する、請求項9に記載の基板処理方法。
    After supplying the alkaline cleaning liquid, supplying a mixed fluid of pure water and gas to the surface of the rotating substrate;
    Drying the substrate by rotating the substrate after supplying the mixed fluid of the pure water and the gas;
    The substrate processing method according to claim 9, comprising:
  11.  基板を水平に保持する基板保持部と、
     前記基板保持部を回転する基板回転部と、
     前記基板保持部に保持されている前記基板の表面に対して処理液を供給する供給部と、
     前記基板回転部と前記供給部を制御する制御部と、
    を備え、
     前記制御部は、
     過酸化水素水またはオゾン水を含む親水化液を、回転している前記基板の疎水性の前記表面に供給することと、
     前記親水化液の供給後に、硫酸と過酸化水素水の混合液を、回転している前記基板の前記表面に供給することと、
    を行う、基板処理装置。
    a board holder that holds the board horizontally;
    a substrate rotating section that rotates the substrate holding section;
    a supply unit that supplies a processing liquid to the surface of the substrate held by the substrate holding unit;
    a control unit that controls the substrate rotation unit and the supply unit;
    Equipped with
    The control unit includes:
    Supplying a hydrophilic solution containing hydrogen peroxide or ozone water to the hydrophobic surface of the rotating substrate;
    After supplying the hydrophilizing liquid, supplying a mixed solution of sulfuric acid and hydrogen peroxide to the surface of the rotating substrate;
    Substrate processing equipment that performs
PCT/JP2023/023953 2022-07-12 2023-06-28 Substrate processing method and substrate processing device WO2024014291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-111930 2022-07-12
JP2022111930 2022-07-12

Publications (1)

Publication Number Publication Date
WO2024014291A1 true WO2024014291A1 (en) 2024-01-18

Family

ID=89536543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023953 WO2024014291A1 (en) 2022-07-12 2023-06-28 Substrate processing method and substrate processing device

Country Status (1)

Country Link
WO (1) WO2024014291A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270414A (en) * 1996-03-30 1997-10-14 Samsung Electron Co Ltd Semiconductor manufacturing device and wafer treating method by use thereof
JP2001053050A (en) * 1999-06-01 2001-02-23 Komatsu Electronic Metals Co Ltd Cleaning of semiconductor substrate
JP2012156266A (en) * 2011-01-25 2012-08-16 Tokyo Electron Ltd Liquid processing apparatus and liquid processing method
JP2015041727A (en) * 2013-08-23 2015-03-02 東京エレクトロン株式会社 Substrate processing method and substrate processing device
JP2017143291A (en) * 2017-03-27 2017-08-17 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method, and computer readable recording medium with substrate processing program recorded therein
JP2019207982A (en) * 2018-05-30 2019-12-05 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
WO2021205994A1 (en) * 2020-04-10 2021-10-14 東京エレクトロン株式会社 Substrate processing method and substrate processing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270414A (en) * 1996-03-30 1997-10-14 Samsung Electron Co Ltd Semiconductor manufacturing device and wafer treating method by use thereof
JP2001053050A (en) * 1999-06-01 2001-02-23 Komatsu Electronic Metals Co Ltd Cleaning of semiconductor substrate
JP2012156266A (en) * 2011-01-25 2012-08-16 Tokyo Electron Ltd Liquid processing apparatus and liquid processing method
JP2015041727A (en) * 2013-08-23 2015-03-02 東京エレクトロン株式会社 Substrate processing method and substrate processing device
JP2017143291A (en) * 2017-03-27 2017-08-17 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method, and computer readable recording medium with substrate processing program recorded therein
JP2019207982A (en) * 2018-05-30 2019-12-05 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
WO2021205994A1 (en) * 2020-04-10 2021-10-14 東京エレクトロン株式会社 Substrate processing method and substrate processing device

Similar Documents

Publication Publication Date Title
KR102450849B1 (en) Wafer cleaning apparatus and wafer processing apparatus
US8371318B2 (en) Liquid processing apparatus, liquid processing method, and storage medium
JP4769790B2 (en) Substrate processing method, substrate processing apparatus, and control program
JP5188216B2 (en) Substrate processing apparatus and substrate processing method
US8864937B2 (en) Substrate treatment apparatus
JP4582654B2 (en) NOZZLE CLEANING DEVICE, NOZZLE CLEANING METHOD, NOZZLE CLEANING PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING THE PROGRAM
JP2008034779A (en) Method and equipment for processing substrate
JP2006114884A (en) Substrate cleaning processing apparatus and substrate processing unit
KR101371572B1 (en) Liquid treatment apparatus, liquid treatment method and storage medium
JP7149087B2 (en) Substrate processing method and substrate processing apparatus
JP5016525B2 (en) Substrate processing method and substrate processing apparatus
WO2024014291A1 (en) Substrate processing method and substrate processing device
WO2023136200A1 (en) Method for treating substrate and device for treating substrate
JP2004111857A (en) Wafer treating system
JP4940119B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
WO2021205994A1 (en) Substrate processing method and substrate processing device
JP4342343B2 (en) Substrate processing apparatus and substrate processing method
JP5136127B2 (en) Coating apparatus, coating method, and storage medium
JP5961535B2 (en) Substrate liquid processing method, substrate liquid processing system, and storage medium
JP2022025560A (en) Substrate processing apparatus and substrate processing method
TW202410187A (en) Substrate processing method and substrate processing device
KR20100046799A (en) Single type substrate treating apparatus and method
JP4347765B2 (en) Substrate processing equipment
JP7065622B2 (en) Board processing equipment and board processing method
JP2023144107A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839465

Country of ref document: EP

Kind code of ref document: A1