WO2024014078A1 - Water content measurement jig, water content measurement device, and operation assistance navigation system - Google Patents

Water content measurement jig, water content measurement device, and operation assistance navigation system Download PDF

Info

Publication number
WO2024014078A1
WO2024014078A1 PCT/JP2023/014957 JP2023014957W WO2024014078A1 WO 2024014078 A1 WO2024014078 A1 WO 2024014078A1 JP 2023014957 W JP2023014957 W JP 2023014957W WO 2024014078 A1 WO2024014078 A1 WO 2024014078A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
moisture content
measurement
jig
measuring
Prior art date
Application number
PCT/JP2023/014957
Other languages
French (fr)
Japanese (ja)
Inventor
未映子 菓子
正之 京井
新平 尼崎
祐介 加賀
琢也 神林
欣秀 山口
順 田中
光太郎 北村
浩樹 宮川
万規子 宇田川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024014078A1 publication Critical patent/WO2024014078A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N1/08Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit

Definitions

  • the present invention relates to a moisture content measuring jig, a moisture content measuring device, and a driving support navigation system.
  • dewatered sludge treatment of sewage sludge (hereinafter referred to as dewatered sludge) after being treated with a dehydrator is carried out based on the experience and sensual judgment of skilled workers on site.
  • skilled workers at the site check the operating conditions (sludge supply pump rotation speed, polymer flocculant
  • the injection amount, screw rotation speed, and presser pressure are successively adjusted to optimize the process so that the water content of dehydrated sludge reaches a predetermined value.
  • dehydrated sludge that is, its water content
  • dehydrated sludge is collected by hand by a person wearing gloves, etc.
  • the water content is instantly determined based on the feeling when holding the dehydrated sludge. Feedback is provided to the process to optimize it.
  • Patent Document 1 describes an automatic sampling means for collecting a liquid-containing solid on a conveying means, a maintenance means for preparing the surface of the sampled liquid-containing solid to a uniform state, and a liquid-containing solid having a prepared surface.
  • a moisture content measuring device is disclosed, which is characterized by comprising a moisture meter that non-contactly measures the moisture content of .
  • Patent Document 1 discloses that the automatic sampling means is constituted by a sliding tray that moves in and out between a sampling position, a maintenance position, and a measurement position, the maintenance means is constituted by a robot arm, and the moisture meter is A moisture content measuring device that is a near-infrared moisture meter is disclosed (see FIG. 1, claims 2, and 3 of Patent Document 1).
  • Patent Document 1 In order to measure the water content of dehydrated sludge using the water content measuring device disclosed in Patent Document 1 (hereinafter referred to as "prior art"), the water content must be uniform from the surface to the inside of the dehydrated sludge. This is the premise. However, the surface of dehydrated sludge easily fluctuates depending on the humidity in the environment (in the air), and the interior of dehydrated sludge is less affected by humidity and therefore does not fluctuate easily, so the moisture content on the surface and inside of dehydrated sludge is different. Therefore, the moisture content inside the dehydrated sludge is close to the true value.
  • the surface of the dehydrated sludge that is to be measured for the water content of the dehydrated sludge is not exposed to air until the surface of the collected dehydrated sludge on the conveying means is prepared in a uniform state and its water content is measured. ing.
  • the moisture content of the dehydrated sludge differs between the surface and the inside, the moisture content of the surface of the dehydrated sludge tends to fluctuate depending on the humidity in the air while the dehydrated sludge is in contact with the air.
  • the accuracy of measuring the water content of dehydrated sludge was low because it was not possible to measure the water content inside the dehydrated sludge that was close to the true value.
  • the present invention has been made to solve the above problems. That is, one of the objects of the present invention is to provide a water content measuring jig, a water content measuring device, and a driving support navigation system that can improve the accuracy of measuring the water content of dehydrated sludge.
  • the moisture content measuring jig of the present invention includes a collection section including a collection member having a storage space for storing sludge treated with a dehydrator, and a drive section for operating the collection section. and a measurement unit that includes a measurement probe and acquires measurement information by measuring the sludge collected by being accommodated in the storage space of the collection member with the measurement probe, and the drive unit
  • the sludge is moved into the storage space by operating the collection unit to enter the sludge to be collected, and then operating the collection unit to extract the sludge from the inside of the sludge to the outside.
  • the collection section collects the sludge
  • the measurement section acquires the measurement information of the sludge collected by the collection section.
  • the water content measuring device of the present invention includes a sampling section including a sampling member having a storage space for accommodating sludge treated with a dehydrator, a drive section for operating the sampling section, and a measurement probe, a measurement unit that acquires measurement information by measuring the sludge collected by being accommodated in the storage space with the measurement probe; After the sludge is operated to enter the inside of the sludge, the collection section is operated to extract the sludge from the inside of the sludge to the outside, thereby taking the sludge into the storage space.
  • a moisture content measurement jig that collects the sludge and uses the measurement unit to obtain the measurement information of the sludge collected by the collection unit; and an information processing device that calculates the moisture content based on the measurement information. Be prepared.
  • the driving support navigation system of the present invention includes a collection section including a collection member having a storage space for storing sludge treated with a dehydrator, a drive section for operating the collection section, and a measurement probe, and the collection member a measurement unit that acquires measurement information by measuring the sludge collected by being accommodated in the storage space with the measurement probe; After the sludge is operated to enter the inside of the sludge, the collection section is operated to extract the sludge from the inside of the sludge to the outside, thereby taking the sludge into the storage space.
  • a water content measuring jig that collects the sludge and uses the measurement section to obtain the measurement information of the sludge collected by the collection section; a display device that displays an image; and an information processing device that performs predetermined control on the moisture content measuring jig and the display device based on the calculated moisture content.
  • the accuracy of measuring the water content of dehydrated sludge can be improved.
  • FIG. 1A is a top view of a jig for measuring moisture content according to an embodiment of the present invention.
  • FIG. 1B is a side view of a jig for measuring moisture content according to an embodiment of the present invention.
  • FIG. 2A is a diagram for explaining the collection and measurement of dehydrated sludge using a water content measurement jig.
  • FIG. 2B is a diagram for explaining sampling and measurement of dehydrated sludge using a water content measuring jig.
  • FIG. 2C is a diagram for explaining the collection and measurement of dehydrated sludge using a water content measurement jig.
  • FIG. 3 is a diagram for explaining the operation of the water content measuring jig.
  • FIG. 1A is a top view of a jig for measuring moisture content according to an embodiment of the present invention.
  • FIG. 1B is a side view of a jig for measuring moisture content according to an embodiment of the present invention.
  • FIG. 2A is
  • FIG. 4 is a diagram for explaining the operation of the water content measuring jig.
  • FIG. 5 is a diagram for explaining a modification of the moisture content measuring jig.
  • FIG. 6 is a diagram for explaining a modification of the moisture content measuring jig.
  • FIG. 7A is a diagram for explaining measurement information and calculation processing obtained by the moisture content measurement jig.
  • FIG. 7B is a block diagram for explaining an example of the hardware configuration of the driving support navigation system.
  • FIG. 8A is a diagram for explaining the driving support navigation system.
  • FIG. 8B is a flowchart showing a processing flow executed by the information processing device of the driving support navigation system.
  • FIG. 9 is a diagram for explaining the driving support navigation system.
  • FIG. 10 is a diagram for explaining a semi-automatic driving support navigation system based on instrument information and flock status.
  • FIG. 11 is a diagram for explaining the driving support navigation system.
  • a commonly known method for measuring the moisture content of dehydrated sludge is the bone-dry method, which allows the moisture content to be determined without any experience or intuition.
  • This method is specified in sewage test methods and general sludge tests, and the water content is specified as the ratio of weight loss to the sample weight when dehydrated sludge is dried at 105° C. until a constant weight is obtained.
  • this method requires a long drying time and does not provide quick feedback to the dehydration process based on moisture content.
  • the electrical resistance method which is used to measure the moisture content of soil, wood chips, etc., is a method to quickly obtain the moisture content without any experience or intuition, but the measurable moisture content range is limited. Since the water content is limited to about 60% or less, it is not suitable for dehydrated sludge whose water content may exceed 80%.
  • a similar method is the time-measuring microwave method, but this method requires upsizing in order to expand the moisture content range to 100%, and is not suitable for developing a compact device.
  • the moisture content can be determined instantly and with high precision by converting the infrared absorption of water into the moisture content using near-infrared spectroscopy.
  • an auxiliary moisture content sensor is provided, and the spectroscopic measurement is always carried out.
  • the configuration is such that they operate at the same time.
  • an umbrella weight sensor, a viscosity sensor, etc. can be provided as an auxiliary sensor.
  • an auxiliary sensor By providing an auxiliary sensor and always operating it together with the spectrometer, even if an appropriate water content cannot be obtained from the spectrometer for some reason, complementary data can be obtained.
  • the present invention has a configuration in which dehydrated sludge is collected using a moisture content measurement jig and measured by spectroscopy, and calculation processing based on measurement information (measurement data) is automatically and continuously executed. and a configuration for obtaining the moisture content. Further, based on the obtained moisture content, the dewatered sludge process is optimized using a driving support navigation system that automatically or semi-automatically provides feedback to the dehydrated sludge collection process (sampling depth) and sludge dewatering process conditions.
  • the moisture content of dehydrated sludge can be easily obtained by automatically performing appropriate collection, measurement, and calculation of dehydrated sludge without depending on the experience and skills of field workers. Become. Furthermore, by providing an auxiliary moisture content measuring means, even if the spectroscopic measurement takes a value that deviates from the expected value, it can be compensated to some extent, thereby preventing data loss. Furthermore, the dewatered sludge process can be optimized using an operation support navigation system that provides almost fully or semi-automatically feedback to the dewatered sludge collection process (sampling depth) and sludge dewatering process conditions based on the water content. Workers no longer need to be tied up at the site for long periods of time. Furthermore, by making the device configuration of the moisture content measuring jig compact, it can be easily installed later on in existing sludge treatment equipment.
  • FIGS. 1A and 1B are diagrams for explaining a configuration example (shape, etc.) of a moisture content measurement jig 2 according to an embodiment of the present invention. Note that, hereinafter, the moisture content measurement jig 2 may also be referred to as the "jig 2.”
  • FIG. 1A is a top view of the jig 2
  • FIG. 1B is a side view of the jig 2.
  • the jig 2 includes a sampling unit 2a, a pedestal 2f, a rail 2i, and a moisture content display section 3c.
  • the sampling unit 2a includes a sampling section 11, a measuring section 12, and a drive mechanism arrangement section 21.
  • the sampling section 11 includes a top cover 2b, a bottom cover 2c, and a sampling member 2d.
  • the measurement unit 12 includes a near-infrared spectroscopic probe 3a, an auxiliary measurement probe 3b, and a protective cover 2e.
  • the drive mechanism arrangement section 21 includes a drive mechanism (not shown, for example, an air cylinder, etc.) that drives the entire sampling unit 2a, and a first drive mechanism (a part of the air cylinder is shown as an example) that operates the sampling member 2d. 3) that operates the top lid 2b (a part of the air cylinder, which is an example, is shown in FIG.
  • the drive mechanism, the first drive mechanism, the second drive mechanism, and the third drive mechanism may also be referred to as a "drive unit" for convenience.
  • the side where the sampling part 11 is arranged is the front side, and the opposite side is the rear side.
  • the jig 2 can be easily fixed, for example, to a plate-shaped member Pt1 inside the dehydrator 7 (see FIGS. 10 and 11 described later) using a clamp or the like.
  • Sampling is a member (unit) that integrates a collection part 11 that has a function of collecting dehydrated sludge from a jig 2 and a measurement part 12 that has a measurement function of measuring dehydrated sludge starting from a fixed location.
  • Unit 2a is now operational.
  • a near-infrared spectroscopy probe 3a and an auxiliary measurement probe 3b for measuring dehydrated sludge are fixed to the sampling unit 2a.
  • the near-infrared spectroscopic probe 3a is connected to the near-infrared spectrometer 3, and the auxiliary measurement probe 3b is connected to an auxiliary measuring instrument 3' (see FIG. 7A, which will be described later).
  • the near-infrared spectroscopic probe 3a and the auxiliary measurement probe 3b may also be referred to as "measurement probes" if these are not distinguished.
  • the protective cover 2e is provided to prevent contact between the sampling unit 2a and the dehydrated sludge. Note that the protective cover 2e may be omitted.
  • the sampling unit 2a is mounted on the rail 2i on the pedestal 2f, and the sampling unit 2a is stretched and stretched in the longitudinal direction on the rail 2i on the pedestal 2f via a drive mechanism (not shown) such as an air cylinder. It is designed to be shortened.
  • the collection member 2d of the collection unit 11 has a rectangular first surface and two opposite sides of the first surface in the normal direction of the first surface.
  • the member has a U-shaped cross section, including a rectangular second surface and a rectangular third surface that are opposed to each other.
  • the sampling member 2d forms a housing space SP1 surrounded by a first surface, a second surface, and a third surface.
  • the sampling member 2d can be moved independently in the longitudinal direction by the first drive mechanism.
  • the upper lid 2b of the sampling section can be moved independently in the longitudinal direction by a second drive mechanism.
  • the bottom cover 2c of the sampling section can be moved independently in the longitudinal direction by a third drive mechanism.
  • the moisture content display section 3c is provided on the pedestal 2f.
  • the moisture content display section 3c is composed of, for example, a display device. Note that the moisture content display section 3c may be provided separately from the jig 2. For example, the moisture content display section 3c may be provided at a location where the jig 2 is fixed.
  • FIGS. 2A, 2B, 2C, and 3 are diagrams for explaining collection and measurement of dehydrated sludge 1 using jig 2.
  • FIGS. 2A to 3 the collection process of the dehydrated sludge 1 will be explained in (1) to (3) below, and the measurement process will be explained in (4) to (6) below.
  • the tip of the extended sampling unit 2a is inserted into the dewatered sludge 1 to be collected.
  • the top cover 2b, bottom cover 2c, and sampling member 2d having a U-shaped cross section, which were stored inside the tip of the sampling unit 2a, are moved by independent first drive mechanisms or first drive mechanisms. 3. It is moved by a drive mechanism, inserted into the dehydrated sludge 1, and grasps the inside of the dehydrated sludge 1.
  • the collection member 2d is attached to the tip of the first piston rod 31 that is part of the first drive mechanism (a well-known air cylinder as an example) that extends and shortens.
  • the upper cover 2b is attached to the tip of the second piston rod 32, which is a part of the second drive mechanism (a well-known air cylinder as an example), and the upper cover 2b is attached to the tip of the second piston rod 32, which is a part of the second drive mechanism (a well-known air cylinder as an example).
  • a bottom cover 2c is attached to the tip of a portion of the third piston rod 33.
  • the collection member 2d collects the dehydrated sludge 1 sandwiched between the top lid 2b and the bottom lid 2c on the first surface, second surface, and third surface of the collection member 2d.
  • the dehydrated sludge is removed from the dehydrated sludge 1 while being taken into the storage space SP1 surrounded by.
  • the collecting member 2d collects the dehydrated sludge 1 inside the dehydrated sludge 1.
  • the dehydrated sludge 1 is taken into the storage space SP1 surrounded by the first surface, second surface, and third surface of the collection member 2d, and the upper side of the storage space SP1 is covered with the upper lid 2b. , and the lower side of the housing space SP1 is covered with the bottom lid 2c.
  • the dehydrated sludge 1 is kept in a state where it does not come into contact with air as much as possible.
  • the bottom cover 2c is sloped so that the tip approaches the top cover 2b (that is, it slopes upward toward the front). This is so that the collecting member 2d, the top lid 2b, and the bottom lid 2c can easily grip and collect the dehydrated sludge 1.
  • the dehydrated sludge 1 may be flattened by being sandwiched between the top lid 2b and the bottom lid 2c.
  • the first piston rod 31 may be contracted in the rearward direction, thereby moving the collecting member 2d backward with respect to the collected dehydrated sludge 1.
  • near-infrared light reflective paint may be applied to the surface of the upper lid 2b facing the measurement probe side. By applying it, near-infrared baseline measurements can be easily performed on the spot and at any time. Further, it is not necessary to slide the entire upper lid 2b, and a structure may be adopted in which only the area irradiated by the near-infrared spectroscopic probe 3a, which will be described later, is opened like the aperture of a camera just before measurement. Alternatively, a structure may be adopted in which only the region irradiated by a near-infrared spectroscopic probe 3a, which will be described later, is housed in the upper lid 2b immediately before measurement.
  • the upper lid 2b is made of a material that transmits near infrared rays (for example, quartz, etc.), there is no need to slide the upper lid 2b backwards, so there is no need to move the upper lid 2b in and out, and the process becomes easier.
  • a material that transmits near infrared rays for example, quartz, etc.
  • the near-infrared spectroscopic probe 3a used may be an integrated irradiation/light-receiving probe in which an irradiation probe and a light-receiving probe are mounted on a single bundle fiber, or an independent probe with different irradiation and light-receiving functions. Good too.
  • the near-infrared spectroscopic probe 3a is fixed to the upper part of the sampling unit 2a, a constant distance can always be maintained between the irradiating part and the light receiving part and the flattened upper surface of the dehydrated sludge 1. .
  • a material that transmits near-infrared light such as quartz having the same thickness may be placed in this gap (in other words, a material that transmits near-infrared light such as quartz having the same thickness may be used instead of the air layer). good.).
  • the dehydrated sludge 1 inside the dehydrated sludge 1 to be collected is collected and measured, the measurement accuracy of the water content of the dehydrated sludge 1 can be improved. Furthermore, in the above, since the sampling mechanism (sampling section 11) and measuring mechanism (measuring section 12) of the jig 2 are integrated, it takes only a short time from sampling to measurement, and the dehydrated sludge 1 is kept as air-free as possible. The structure is such that it cannot be touched. Thereby, fluctuations in the water content can be suppressed and the water content can be obtained with high accuracy.
  • a light shielding enclosure (that is, a light shielding section that shields the sampling section 11 and the measuring section 12 from light) may be provided in the sampling unit 2a. This allows spectroscopic measurement even if the sludge dewatering sampling location is a location where light cannot be blocked.
  • (6) Obtain measurement information F1 from the auxiliary measurement probe 3b at the same time as the near-infrared spectroscopy probe 3a (obtain measurement information F1 from the auxiliary measurement probe 3b via the auxiliary measuring instrument 3').
  • the auxiliary measuring device 3' include a measuring device for measuring bulk weight and viscosity.
  • Equipped with an auxiliary measurement probe 3b which is always operated together with the near-infrared spectroscopy probe 3a for comparison, it is possible to supplement data even if the near-infrared spectroscopy probe 3a cannot obtain an appropriate water content for some reason. It can be obtained from the measurement probe 3b. This can prevent data loss.
  • the first piston rod 31 contracts in the backward direction, so that the collection member 2d slides (displaces) backward with respect to the collected dehydrated sludge 1, and the third piston rod 33 contracts in the backward direction, the bottom cover 2c slides (shifts) backward with respect to the collected dehydrated sludge 1.
  • the bottom cover 2c slides (shifts) backward with respect to the collected dehydrated sludge 1.
  • a small brush 2j or the like may be provided at a portion where the top cover 2b, bottom cover 2c, and collection member 2d having a U-shaped cross section are taken in and out from the storage location.
  • the brush 2j can scrape off the dehydrated sludge 1 adhering to the top lid 2b, bottom lid 2c, and collection member 2d having a U-shaped cross section.
  • a mounting plate 2k for the brush 2j may be provided.
  • Non-Patent Document 1 A. B. Norberg and S. Enfors, “Production of Extracellular Polysaccharide by Zoogloea ramigera,” ”Applied and Environmental Microbiology, vol. 44, no. 5, pp. 1231-1237, 1982.) In this case, it can be removed by washing with quick-drying ethanol, fluorine solvent, etc. from the rear.
  • the cleaning agent may be added and ultrasonic waves may be applied to the top lid 2b, bottom lid 2c, and collection member 2d having a U-shaped cross section.
  • An ultrasonic mechanism may be mounted on the jig 2 itself, and in this case, it is preferable because there is no need to remove the jig 2 for removal.
  • the materials of the top cover 2b, bottom cover 2c, and collection member 2d with a U-shaped cross section that come into contact with the dehydrated sludge 1 are considered.
  • the material is a material to which the dehydrated sludge 1 is difficult to adhere and which does not allow moisture to pass through. Furthermore, it is preferable that there is little deterioration or elution when in contact with the dehydrated sludge 1 and moisture for a long time.
  • materials include Teflon (registered trademark) resin and PFA resin.
  • the material may be, for example, a material such as glass or quartz coated with a fluorine solvent or the like in advance.
  • the water content at this time refers to two types of water content that are calculated values based on measurement information obtained from the near-infrared spectroscopy probe 3a and the auxiliary measurement probe 3b, respectively. Further, the measurement information F1 and the moisture content are displayed on the calculation result display section H1 in the driving support navigation system G1, and are stored and accumulated in the data storage section J1. Further, the water content (F1') may be transmitted from the driving support navigation system G1 to the jig 2 and displayed on the water content display section 3c of the jig 2.
  • FIG. 7B is a block diagram for explaining an example of the hardware configuration of the driving support navigation system G1.
  • the driving support navigation system G1 can be configured by, for example, a computer (information processing device). Note that the driving support navigation system G1 does not necessarily need to be composed of one piece of hardware, and may be composed of a plurality of pieces of hardware.
  • the driving support navigation system G1 includes an information processing device 210 and a display device (display) 220.
  • the information processing device 210 includes a CPU 211, a ROM 212, a RAM 213, a nonvolatile storage device (HDD) 214 from which data can be read and written, a network interface 215, an input/output interface 216, and the like. These are communicably connected to each other via a bus 217.
  • the storage device (HDD) 214 is not limited to an HDD (Hard Disk Drive), and may be, for example, a flash memory such as an SSD (Solid State Drive).
  • the CPU 211 loads various programs (not shown) stored in the ROM 212 and/or HDD 214 into the RAM 213, and executes the programs loaded into the RAM 213, thereby realizing various functions. As described above, various programs executed by the CPU 211 are loaded into the RAM 213, and data used when the CPU 211 executes the various programs is temporarily stored.
  • the ROM 212 and/or the HDD 214 are nonvolatile storage media, and various programs are stored in the ROM 212 and/or the HDD 214.
  • the network interface 215 is an interface for connecting the driving support navigation system G1 to the network NW1.
  • the input/output interface 216 is an interface for connecting to a keyboard, display device 220, and the like.
  • the display device 220 is a display that can display images.
  • FIG. 8A is a diagram illustrating a semi-automatic driving support navigation system G1 based on moisture content. Based on the moisture content measured by the jig 2 and calculated by the driving support navigation system G1, the driving support navigation system G1 determines the sampling position (depth) of the dehydrated sludge 1 of the jig 2 and the dewatering process control of the sludge 5. Has a feedback function.
  • the driving support navigation system G1 determines the water content based on the measurement information of the near-infrared spectroscopic probe 3a of the jig 2 (hereinafter referred to as "moisture content A”) and the water content based on the measurement information of the auxiliary measurement probe 3b.
  • the feedback (control) described below is performed based on the moisture content (hereinafter referred to as “moisture content B").
  • the driving support navigation system G1 compares the moisture content A with the first predicted value, compares the moisture content B with the second predicted value, and compares the moisture content A with the first predicted value and the moisture content B. Control is performed according to the comparison result with the second predicted value.
  • the driving support navigation system G1 determines whether the moisture content A is within the first predicted value range based on the first predicted value, and determines whether the moisture content B is within the second predicted value range based on the second predicted value. , and performs control according to the comparison result between the moisture content A and the first predicted value and the comparison result between the moisture content B and the second predicted value.
  • the first predicted value and the first predicted value range are values and ranges set based on past data
  • the first predicted value range is a range that includes a measurement error from the first predicted value.
  • the first predicted value range may also be referred to as a "first predicted range.”
  • the second predicted value and the second predicted value range are values and ranges set based on past data, and the second predicted value range is a range that includes a measurement error from the second predicted value.
  • the second predicted value range may also be referred to as a "second predicted range.”
  • the moisture content A deviates from the predicted value means that the moisture content A is not within the first predicted value range.
  • the moisture content B deviates from the predicted value means that the moisture content B is not within the second predicted value range.
  • control A automatic control of the sampling depth is not executed, and an operation plan presentation K1 requesting to change the sampling position (depth) of the dehydrated sludge 1 of the jig 2 is displayed on the calculation result display section H1. may only be executed. In this case, it is also possible for the field worker L1 who sees the calculation result display section H1 to manually perform the operation M1 to adjust the sampling depth.
  • a driving suggestion presentation K1 prompting to replace the near-infrared spectrometer 3 and/or near-infrared spectroscopic probe 3a is displayed in the driving support navigation system G1. It is displayed on the calculation result display section H1.
  • the field worker L1 who has viewed the driving plan presentation K1 performs the operation M1, which is the replacement work of the near-infrared spectrometer 3 and/or the near-infrared spectroscopic probe 3a, in accordance with the driving plan presentation K1.
  • a signal (image) that is fed back from the driving support navigation system G1 to the jig 2 to prompt replacement may be displayed on the moisture content display section 3c.
  • the field worker L1 who looks at the calculation result display section H1 can be prompted to replace the auxiliary measuring device 3' and/or the auxiliary measuring probe 3b.
  • the field worker L1 who sees the calculation result display section H1 performs the replacement work that is operation M1.
  • a signal (image) that is fed back from the driving support navigation system G1 to the jig 2 to prompt replacement may be displayed on the moisture content display section 3c. Thereby, it is possible to notify the field worker L1 that the auxiliary measuring device 3' and/or the auxiliary measuring probe 3b should be replaced.
  • control C this control is also referred to as “control C” or “third control.”
  • control C automatic control of the sampling depth is not executed, and an operation plan presentation K1 requesting to change the sampling position (depth) of the dehydrated sludge 1 of the jig 2 is displayed on the calculation result display section H1. It may also be possible to only execute the following. In this case, it is also possible for the field worker L1 who sees the calculation result display section H1 to manually perform the operation M1 to adjust the sampling depth.
  • the driving support navigation system G1 executes a driving plan presentation K1 requesting a change in the sludge dehydration conditions, and the field worker L1 performs operation M1 based on the driving plan presentation K1. and adjust and optimize the sludge dewatering conditions.
  • FIG. 8B is a flowchart showing a processing flow executed by the driving support navigation system G1 (information processing device 210).
  • the process starts from step 800 and proceeds to step 820 after sequentially executing the processes from step 805 to step 815 described below.
  • Step 805 The information processing device 210 acquires measurement information by the near-infrared spectroscopy probe 3a and the auxiliary measurement probe 3b.
  • Step 810 The information processing device 210 calculates the water content (water content A) based on the measurement information by the near-infrared spectroscopic probe 3a.
  • Step 815 The information processing device 210 calculates the moisture content (water content B) based on the measurement information obtained by the auxiliary measurement probe 3b.
  • the information processing device 210 determines whether both the moisture content A and the moisture content B are outside the predicted range. That is, the information processing device 210 determines whether the moisture content A is outside the first prediction range (outside the prediction range), and determines whether the moisture content B is outside the second prediction range (outside the prediction range). Determine.
  • the information processing device 210 determines "YES" in step 820, proceeds to step 825, executes the above-mentioned control C, and proceeds to step 895. Proceed and temporarily end this processing flow.
  • the information processing device 210 determines "NO" in step 820 and proceeds to step 830, and determines whether only moisture content A is outside the predicted range. Determine whether or not. That is, the information processing device 210 determines whether the moisture content A is outside the first prediction range and the moisture content B is within the second prediction range.
  • the information processing device 210 determines "YES" in step 830, proceeds to step 835, executes the above-mentioned control A, proceeds to step 895, and completes the main processing. End the flow once.
  • the information processing device 210 determines "NO" in step 830, proceeds to step 840, and determines whether only the moisture content B is outside the predicted range. . That is, the information processing device 210 determines whether the moisture content A is within the first prediction range and the moisture content B is outside the second prediction range.
  • the information processing device 210 determines "YES" in step 840, proceeds to step 845, executes the above-mentioned control B, proceeds to step 895, and completes the main processing. End the flow once.
  • the information processing device 210 determines "NO" in step 840, proceeds to step 895, and temporarily ends this processing flow.
  • FIG. 9 is a diagram for explaining the almost fully automatic driving support navigation system G1 based on the moisture content.
  • the sampling depth of the dehydrated sludge 1 is controlled by automatically implementing the operation M1, and the sludge dewatering conditions are adjusted by the field worker L1. and optimize it.
  • the field worker L1 performs the operation M1 in accordance with the operation plan presentation K1.
  • FIG. 10 shows a semi-automatic driving support navigation system G1 based not only on water content but also on instrument information and flock status. Note that reference numeral 9 in FIG. 10 indicates a desorbed liquid, and reference numeral 8 indicates a storage tank. Similar to the measurement information F1 sent from the measurement C1 of the dehydrated sludge 1 in the jig 2 to the driving support navigation system G1, image information sent from the camera (not shown) of the instrument information A1 to the driving support navigation system G1.
  • the image information E1 transmitted from the camera (not shown) to the driving support navigation system G1 of the floc state B1 of the sludge flocs 4 in the coagulation mixing tank 6 into which the sludge D1 and the sludge 5 have been transported is also transmitted to the driving support navigation system G1. It is analyzed in The driving support navigation system G1 presents a driving plan K1 to the field worker L1, and the field worker L1 performs an operation M1 based on the driving plan presentation K1 to adjust and optimize the dewatering conditions for the sludge 5.
  • the driving plan presentation K1 that requests deeper sampling position (depth) of the dehydrated sludge 1 of the jig 2 is displayed on the calculation result display section H1 in the driving support navigation system G1. After doing so, the depth is automatically controlled (F1'), but the field worker L1 may perform the operation M1 based on the driving plan presentation K1 and manually adjust the depth.
  • the driving suggestion presentation K1 is provided by the calculation result display section in the driving support navigation system G1.
  • operation M1 can also be performed automatically.
  • the field worker L1 Perform operation M1 based on this.
  • the jig 2 has a structure that prevents the dehydrated sludge 1 from clogging, and is composed only of members that can be used repeatedly. Therefore, the jig 2 has no consumable parts, so the environmental load is reduced. Furthermore, since there are no consumable parts, running costs are reduced.
  • the jig 2 has a spectroscopic measurement unit that does not come into contact with the dehydrated sludge 1, a structure that prevents the dehydrated sludge 1 from clogging, and a collection mechanism including a top lid 2b, a bottom lid 2c, and a U-shaped collection member. 2d can be easily removed, reducing the burden of maintenance work.
  • a jig 2 according to an embodiment of the present invention and a driving support navigation system G1 using the jig 2 will be described using an example. Note that each example is only one embodiment of the present invention, and the present invention is not limited thereto.
  • Example 1 (Semi-automatic feedback system based on moisture content)
  • Example 1 will be described using FIG. 8A described above.
  • measurement information F1 from the near-infrared spectroscopy probe 3a and the auxiliary measurement probe 3b of the measurement C1 of the dehydrated sludge 1 using the jig 2 is transmitted from the sewage treatment equipment 10 to the driving support navigation system. Send to G1.
  • the sampling depth of the dehydrated sludge 1 in the jig 2 can be changed, or the near-infrared spectrometer 3, the near-infrared spectroscopy probe 3a, or the auxiliary measuring device 3' or the auxiliary measuring device can be changed.
  • a driving plan presentation K1 requesting replacement of the probe 3b or change of the sludge dehydration conditions of the dehydrator 7 is displayed on the calculation result display section H1 in the driving support navigation system G1.
  • the field worker L1 performs the operation M1 based on the driving plan presentation K1 to optimize the water content.
  • Example 2 (Almost fully automatic feedback system based on moisture content)
  • the driving support navigation system G1 controls the sampling depth of the dehydrated sludge 1 in the jig 2 or the near-infrared rays based on the measurement information F1.
  • Operation plan presentation K1 requesting replacement of the spectrometer 3, near-infrared spectroscopy probe 3a, auxiliary measuring instrument 3', or auxiliary measuring probe 3b, or change of sludge dewatering conditions of the dehydrator 7 is calculated in the driving support navigation system G1.
  • the result is displayed on the display section H1, and the operation M1 is automatically performed based on the driving plan presentation K1 to optimize the water content.
  • the field worker L1 Perform operation M1 based on this.
  • the on-site worker L1 can appropriately carry out the operation for optimizing the moisture content even if he is an unskilled person, and the burden on him is reduced.
  • the above is the optimization of the dewatered sludge process using the jig 2 and the driving support navigation system G1 of the second embodiment.
  • Example 3 (Semi-automatic feedback system based on moisture content, meter information, and floc state) Example 3 will be described using FIG. 10 described above.
  • measurement information F1 from the near-infrared spectroscopy probe 3a and auxiliary measurement probe 3b of the measurement C1 of the dehydrated sludge 1 using the jig 2 and the coagulation mixing tank 6 are obtained from the sewage treatment equipment 10.
  • Three pieces of information are transmitted to the driving support navigation system G1: image information E1 captured by the camera showing the floc state B1 of the sludge 5 transported to , and image information D1 captured by the camera showing the instrument information A1.
  • the driving support navigation system G1 controls the sampling depth of the dehydrated sludge 1 in the jig 2 (automatic control is also possible), or controls the near-infrared spectrometer 3 and the nearby
  • a driving plan presentation K1 requesting replacement of the infrared spectroscopic probe 3a, auxiliary measuring instrument 3', or auxiliary measuring probe 3b, or a change in the sludge dewatering conditions of the dehydrator 7 is displayed on the calculation result display section H1 in the driving support navigation system G1.
  • the field worker L1 performs the operation M1 based on the driving plan presentation K1 to optimize the moisture content.
  • the amount of information handled by the driving support navigation system G1 was increased compared to the first and second embodiments, and the sludge dewatering conditions of the dehydrator 7 could be adjusted more accurately.
  • the above is the optimization of the dewatered sludge process using the jig 2 and the driving support navigation system G1 of the third embodiment.
  • Example 4 (Almost fully automatic feedback system based on moisture content, instrumentation information, and floc state) Example 4 will be described using FIG. 11 described above.
  • the measurement information F1 of the measurement C1 of the dehydrated sludge 1 using the jig 2 using the near-infrared spectroscopy probe 3a and the auxiliary measurement probe 3b, and the coagulation and mixing Three pieces of information are transmitted to the driving support navigation system G1: image information E1 captured by the camera showing the floc state B1 of the sludge 5 transported to the tank 6, and image information D1 captured by the camera showing the instrument information A1.
  • the driving support navigation system G1 controls the sampling depth of the dehydrated sludge 1 in the jig 2 based on the measurement information F1, or controls the near-infrared spectrometer 3, the near-infrared spectroscopy probe 3a, the auxiliary measuring instrument 3', and the auxiliary measuring device.
  • a driving suggestion K1 requesting replacement of the probe 3b or change of the sludge dehydration conditions of the dehydrator 7 is displayed on the calculation result display section H1 in the driving support navigation system G1, and operation M1 is automatically performed based on the driving suggestion presentation K1. to optimize the moisture content.
  • the field worker L1 Perform operation M1 based on this.
  • the number of operations M1 performed by the site worker L1 is significantly reduced, and the burden on the site worker L1 is significantly reduced.
  • the above is the optimization of the dewatered sludge process using the jig 2 and the driving support navigation system G1 of the fourth embodiment.
  • the jig 2 and/or the driving support navigation system G1 may include a control device that controls the drive unit (drive mechanism, first drive mechanism to third drive mechanism), The control device may automatically control the drive units (the drive mechanism, the first drive mechanism to the third drive mechanism).
  • the jig 2 and/or the driving support navigation system G1 includes a control device that controls the drive unit (drive mechanism, first drive mechanism to third drive mechanism), and an operation device that operates the jig 2.
  • the control device may automatically control the drive unit (drive mechanism, first drive mechanism to third drive mechanism), and the control device may control the drive unit (drive mechanism) based on the user's operation on the operating device. , the first drive mechanism to the third drive mechanism).
  • the control device included in the driving support navigation system G1 may be the information processing device 210 described above.
  • the jig 2 may include an information processing device that calculates the water content based on measurement information.
  • the present invention can also have the following configuration.
  • a collection section including a collection member having a storage space for storing sludge treated with the dehydrator; a drive unit that operates the collection unit; a measurement unit that includes a measurement probe and acquires measurement information by measuring the sludge collected by being accommodated in the storage space of the collection member with the measurement probe; has The drive unit operates the collection unit to enter the sludge to be collected, and then operates the collection unit to extract the sludge from the inside of the sludge, thereby removing the sludge from the sludge.
  • the collection section collects the sludge by taking it into the storage space, and the measurement section acquires the measurement information of the sludge collected by the collection section.
  • Jig for measuring moisture content.
  • the drive unit is configured to operate the collection unit by stretching and shortening; By extending the driving part, the collecting part is operated to enter into the sludge to be collected, By shortening the driving part, the collecting part is operated to extract the sludge from the inside to the outside.
  • Jig for measuring moisture content By extending the driving part, the collecting part is operated to enter into the sludge to be collected, By shortening the driving part, the collecting part is operated to extract the sludge from the inside to the outside.
  • the measurement unit acquires the measurement information of the sludge collected by the collection unit by spectroscopic measurement. Jig for measuring moisture content.
  • the measurement unit acquires the first measurement information of the sludge collected by the collection unit by spectroscopic measurement, and acquires the second measurement information of the sludge collected by the collection unit by auxiliary measurement. obtain information, Jig for measuring moisture content.
  • the auxiliary measurement measures at least one of bulk weight and viscosity. Jig for measuring moisture content.
  • the collection member is a member having a U-shaped cross section and having the accommodation space surrounded by three sides
  • the collection section includes: an upper lid that is movable between a position covering the upper side of the housing space and a position not covering the upper side of the housing space; a bottom cover that is movable between a position that covers the lower side of the storage space and a position that does not cover the lower side of the storage space; including;
  • the drive unit includes: a first drive mechanism that independently operates the collection member; a second drive mechanism that independently operates the top lid; a third drive mechanism that independently operates the bottom cover; including, Jig for measuring moisture content.
  • the first drive mechanism causes the collection member to enter the inside of the sludge to be collected in a state where the top lid does not cover the upper side of the storage space and the bottom lid does not cover the storage space
  • the second drive mechanism moves the top cover to a position covering the upper side of the storage space with the collection member entering the sludge to be collected
  • the third drive mechanism moves the top cover to a position that covers the upper side of the storage space. moved to a position covering the lower side of the storage space
  • the first drive mechanism, the second drive mechanism, and the third drive mechanism maintain the state in which the top cover covers the upper side of the storage space and the bottom cover covers the bottom side of the storage space.
  • the bottom lid is sloped upwardly toward the front end; Jig for measuring moisture content.
  • a collection section including a collection member having a storage space for storing sludge treated with a dehydrator, a drive section for operating the collection section, and a measurement probe, the collection section being accommodated in the storage space of the collection member.
  • a measurement unit that acquires measurement information by measuring the sludge collected by the measurement probe, and the drive unit causes the collection unit to enter the inside of the sludge to be collected.
  • the sampling section is operated to extract the sludge from inside to the outside, and the sludge is taken into the storage space, so that the sampling section collects the sludge, and the measurement section collects the sludge.
  • a water content measuring jig that acquires the measurement information of the sludge collected by the collection section; an information processing device that calculates a moisture content based on the measurement information; Equipped with Moisture content measuring device.
  • a collection section including a collection member having a storage space for storing sludge treated with a dehydrator, a drive section for operating the collection section, and a measurement probe, the collection section being accommodated in the storage space of the collection member.
  • a measurement unit that acquires measurement information by measuring the sludge collected by the measurement probe, and the drive unit causes the collection unit to enter the inside of the sludge to be collected.
  • the sampling section is operated to extract the sludge from the inside to the outside, and the sludge is taken into the storage space, so that the sampling section collects the sludge, and the measurement section collects the sludge.
  • a moisture content measuring jig that acquires the measurement information of the sludge collected by the collection section; a display device that displays an image; an information processing device that calculates a moisture content based on the measurement information and performs predetermined control on the moisture content measurement jig and the display device based on the calculated moisture content; Equipped with Driving support navigation system.
  • the information processing device includes: As the predetermined control, an operation plan including at least one of proposing a sampling depth when the moisture content measuring jig samples the sludge and prompting replacement of the measuring section is displayed on the display device. configured to control display, Driving support navigation system.
  • the information processing device includes: The predetermined control is configured to perform control to change the sampling depth of the sludge of the moisture content measuring jig to a sampling depth different from the sampling depth when sludge was sampled last time.
  • Driving support navigation system is configured to perform control to change the sampling depth of the sludge of the moisture content measuring jig to a sampling depth different from the sampling depth when sludge was sampled last time.
  • the information processing device includes: obtaining first image information of a floc state of sludge in a coagulation mixing tank of a sewage treatment plant and second image information of instruments of the dehydrator; It is configured to perform control to display an operation plan for the dehydrator on the display device based on the calculated moisture content, the first image information, and the second image information.
  • Driving support navigation system includes: obtaining first image information of a floc state of sludge in a coagulation mixing tank of a sewage treatment plant and second image information of instruments of the dehydrator; It is configured to perform control to display an operation plan for the dehydrator on the display device based on the calculated moisture content, the first image information, and the second image information.
  • the measurement unit includes a first measurement unit that acquires the first measurement information of the sludge collected by the collection unit by spectroscopic measurement, and a first measurement unit that acquires the first measurement information of the sludge collected by the collection unit by auxiliary measurement. a second measurement unit that acquires the second measurement information;
  • the information processing device calculates, as the moisture content, a first moisture content based on the first measurement information and a second moisture content based on the second measurement information, When the first moisture content is outside the first predicted range and the second moisture content is within the second predicted range, the predetermined control is such that at least the sampling depth of the sludge is adjusted to the previous depth.
  • Performing a first control including controlling the water content measuring jig so as to change the sampling depth to a sampling depth different from the sampling depth when the sludge was sampled;
  • the predetermined control prompts replacement of the second measurement unit.
  • performing a second control including controlling the display device to display a message;
  • the predetermined control includes at least adjusting the sampling depth of the sludge.
  • performing a third control including controlling the moisture content measuring jig to change the sampling depth to a sampling depth different from the sampling depth when the sludge was sampled last time; configured as, Driving support navigation system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Sludge (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

This water content measurement jig comprises: a collection section including a collection member having a storage space for storing dewatered sludge therein; a driving mechanism for driving the collection section; and a measurement section for acquiring measurement information from the dewatered sludge stored in the storage space in the collection member. The water content measurement jig is configured such that the collection section is put into operation so as to enter into the inside of the dewatered sludge that is a subject to be collected and is then put into operation so as to be removed from the inside of the dewatered sludge to the outside by the driving mechanism. As a result, the dewatered sludge is collected by the collection section by introducing the dewatered sludge into the storage space, and measurement information about the dewatered sludge collected by the collection section is acquired by the measurement section.

Description

含水率測定用治具、含水率測定装置及び運転支援ナビシステムMoisture content measurement jig, moisture content measurement device, and driving support navigation system
 本発明は、含水率測定用治具、含水率測定装置及び運転支援ナビシステムに関する。 The present invention relates to a moisture content measuring jig, a moisture content measuring device, and a driving support navigation system.
 現状では、脱水機で処理後の下水汚泥(以下、脱水汚泥と記載する)の処理は、現場の熟練作業者の経験と官能的な判断に基づいて実施されている。例えば、現場の熟練作業者は、凝集混和槽内のフロックの状態、脱水された汚泥の性状、制御基盤上の計器の値などを見ながら、運転条件(汚泥供給ポンプ回転数、高分子凝集剤注入量、スクリュー回転数、プレッサ圧力)を逐次修正し、脱水汚泥の含水率が所定の値になるようにプロセスを好適化している。特に、脱水汚泥の性状、すなわち含水率に関しては、脱水汚泥を、人が手袋などをして手で採取し、脱水汚泥を持った時の感触などから含水率を瞬時に判断して汚泥の脱水プロセスにフィードバックし、プロセスを好適化している。 Currently, treatment of sewage sludge (hereinafter referred to as dewatered sludge) after being treated with a dehydrator is carried out based on the experience and sensual judgment of skilled workers on site. For example, skilled workers at the site check the operating conditions (sludge supply pump rotation speed, polymer flocculant The injection amount, screw rotation speed, and presser pressure are successively adjusted to optimize the process so that the water content of dehydrated sludge reaches a predetermined value. In particular, regarding the properties of dehydrated sludge, that is, its water content, dehydrated sludge is collected by hand by a person wearing gloves, etc., and the water content is instantly determined based on the feeling when holding the dehydrated sludge. Feedback is provided to the process to optimize it.
 最近では、近赤外線などの分光的手段を用いて脱水汚泥に非接触で含水率を計測する事例が見られるようになった。例えば、特許文献1には、搬送手段上の含液固形物を採取する自動サンプリング手段と、採取した含液固形物の表面を均一状態に整備する整備手段と、表面を整備した含液固形物の含水率を非接触的に測定する水分計とを備えたことを特徴とする含水率測定装置が開示されている(特許文献1の請求項1を参照。)。 Recently, there have been cases where the moisture content of dehydrated sludge is measured without contact using spectroscopic means such as near-infrared rays. For example, Patent Document 1 describes an automatic sampling means for collecting a liquid-containing solid on a conveying means, a maintenance means for preparing the surface of the sampled liquid-containing solid to a uniform state, and a liquid-containing solid having a prepared surface. A moisture content measuring device is disclosed, which is characterized by comprising a moisture meter that non-contactly measures the moisture content of .
 具体的には、特許文献1には、自動サンプリング手段を、採取位置と整備位置と測定位置とにわたって出退するスライド式の受皿により構成し、整備手段をロボット・アームにより構成し、水分計が近赤外線式水分計である含水率測定装置が開示されている(特許文献1の図1、請求項2及び請求項3を参照。)。 Specifically, Patent Document 1 discloses that the automatic sampling means is constituted by a sliding tray that moves in and out between a sampling position, a maintenance position, and a measurement position, the maintenance means is constituted by a robot arm, and the moisture meter is A moisture content measuring device that is a near-infrared moisture meter is disclosed (see FIG. 1, claims 2, and 3 of Patent Document 1).
特開平8-219988号公報Japanese Patent Application Publication No. 8-219988
 特許文献1に開示された含水率測定装置(以下、「従来技術」と称呼される。)により脱水汚泥の含水率を測定するためには、脱水汚泥の表面から内部まで水分量が均一であることが前提である。ところが、脱水汚泥の表面は環境中(空気中)の湿度により変動しやすく、脱水汚泥の内部は湿度による影響を受けにくいため変動しにくいので、脱水汚泥の表面と内部では含水率が異なる。従って、脱水汚泥の内部の含水率が真値に近い値である。 In order to measure the water content of dehydrated sludge using the water content measuring device disclosed in Patent Document 1 (hereinafter referred to as "prior art"), the water content must be uniform from the surface to the inside of the dehydrated sludge. This is the premise. However, the surface of dehydrated sludge easily fluctuates depending on the humidity in the environment (in the air), and the interior of dehydrated sludge is less affected by humidity and therefore does not fluctuate easily, so the moisture content on the surface and inside of dehydrated sludge is different. Therefore, the moisture content inside the dehydrated sludge is close to the true value.
 また、従来技術によると、搬送手段上の採取された脱水汚泥の表面が均一状態に整備されて、その含水率が測定されるまで、脱水汚泥の含水率の測定対象となる表面が空気に触れている。脱水汚泥の含水率が表面と内部とで異なることからわかるように、脱水汚泥が空気に触れている間、脱水汚泥表面の含水率は空気中の湿度により変動しやすい。 Furthermore, according to the conventional technology, the surface of the dehydrated sludge that is to be measured for the water content of the dehydrated sludge is not exposed to air until the surface of the collected dehydrated sludge on the conveying means is prepared in a uniform state and its water content is measured. ing. As can be seen from the fact that the moisture content of the dehydrated sludge differs between the surface and the inside, the moisture content of the surface of the dehydrated sludge tends to fluctuate depending on the humidity in the air while the dehydrated sludge is in contact with the air.
 このように従来技術では、真値に近い脱水汚泥の内部の含水率を測定できないため、脱水汚泥の含水率の測定精度が低かった。 As described above, in the conventional technology, the accuracy of measuring the water content of dehydrated sludge was low because it was not possible to measure the water content inside the dehydrated sludge that was close to the true value.
 本発明は上記課題を解決するためになされた。即ち、本発明の目的の一つは、脱水汚泥の含水率の測定精度を向上できる含水率測定用治具、含水率測定装置及び運転支援ナビシステムを提供することにある。 The present invention has been made to solve the above problems. That is, one of the objects of the present invention is to provide a water content measuring jig, a water content measuring device, and a driving support navigation system that can improve the accuracy of measuring the water content of dehydrated sludge.
 上記課題を解決するために、本発明の含水率測定用治具は、脱水機で処理した汚泥を収容するための収容空間を有する採取部材を含む採取部と、前記採取部を動作させる駆動部と、計測プローブを含み、前記採取部材の前記収容空間に収容されることにより採取された前記汚泥を前記計測プローブによって計測することにより計測情報を取得する計測部と、を有し、前記駆動部によって、前記採取部を、採取対象の前記汚泥の内部に侵入させるように動作させた後、前記採取部を前記汚泥の内部から外部に抜き出すように動作させることで、前記汚泥を前記収容空間に取り入れることにより、前記採取部が前記汚泥を採取し、前記計測部によって、前記採取部によって採取された前記汚泥の前記計測情報を取得する。 In order to solve the above problems, the moisture content measuring jig of the present invention includes a collection section including a collection member having a storage space for storing sludge treated with a dehydrator, and a drive section for operating the collection section. and a measurement unit that includes a measurement probe and acquires measurement information by measuring the sludge collected by being accommodated in the storage space of the collection member with the measurement probe, and the drive unit The sludge is moved into the storage space by operating the collection unit to enter the sludge to be collected, and then operating the collection unit to extract the sludge from the inside of the sludge to the outside. By taking in the sludge, the collection section collects the sludge, and the measurement section acquires the measurement information of the sludge collected by the collection section.
 本発明の含水率測定装置は、脱水機で処理した汚泥を収容するための収容空間を有する採取部材を含む採取部と、前記採取部を動作させる駆動部と、計測プローブを含み、前記採取部材の前記収容空間に収容されることにより採取された前記汚泥を前記計測プローブによって計測することにより計測情報を取得する計測部と、を有し、前記駆動部によって、前記採取部を、採取対象の前記汚泥の内部に侵入させるように動作させた後、前記採取部を前記汚泥の内部から外部に抜き出すように動作させることで、前記汚泥を前記収容空間に取り入れることにより、前記採取部が前記汚泥を採取し、前記計測部によって、前記採取部によって採取された前記汚泥の前記計測情報を取得する含水率測定用治具と、前記計測情報に基づいて含水率を算出する情報処理装置と、を備える。 The water content measuring device of the present invention includes a sampling section including a sampling member having a storage space for accommodating sludge treated with a dehydrator, a drive section for operating the sampling section, and a measurement probe, a measurement unit that acquires measurement information by measuring the sludge collected by being accommodated in the storage space with the measurement probe; After the sludge is operated to enter the inside of the sludge, the collection section is operated to extract the sludge from the inside of the sludge to the outside, thereby taking the sludge into the storage space. a moisture content measurement jig that collects the sludge and uses the measurement unit to obtain the measurement information of the sludge collected by the collection unit; and an information processing device that calculates the moisture content based on the measurement information. Be prepared.
 本発明の運転支援ナビシステムは、脱水機で処理した汚泥を収容するための収容空間を有する採取部材を含む採取部と、前記採取部を動作させる駆動部と、計測プローブを含み、前記採取部材の前記収容空間に収容されることにより採取された前記汚泥を前記計測プローブによって計測することにより計測情報を取得する計測部と、を有し、前記駆動部によって、前記採取部を、採取対象の前記汚泥の内部に侵入させるように動作させた後、前記採取部を前記汚泥の内部から外部に抜き出すように動作させることで、前記汚泥を前記収容空間に取り入れることにより、前記採取部が前記汚泥を採取し、前記計測部によって、前記採取部によって採取された前記汚泥の前記計測情報を取得する含水率測定用治具と、画像を表示する表示装置と、前記計測情報に基づいて含水率を算出し、算出した前記含水率に基づいて、前記含水率測定用治具及び前記表示装置に対して所定の制御を行う情報処理装置と、を備える。 The driving support navigation system of the present invention includes a collection section including a collection member having a storage space for storing sludge treated with a dehydrator, a drive section for operating the collection section, and a measurement probe, and the collection member a measurement unit that acquires measurement information by measuring the sludge collected by being accommodated in the storage space with the measurement probe; After the sludge is operated to enter the inside of the sludge, the collection section is operated to extract the sludge from the inside of the sludge to the outside, thereby taking the sludge into the storage space. a water content measuring jig that collects the sludge and uses the measurement section to obtain the measurement information of the sludge collected by the collection section; a display device that displays an image; and an information processing device that performs predetermined control on the moisture content measuring jig and the display device based on the calculated moisture content.
 本発明によれば、脱水汚泥の含水率の測定精度を向上できる。 According to the present invention, the accuracy of measuring the water content of dehydrated sludge can be improved.
図1Aは本発明の実施形態に係る含水率測定用治具の上面図である。FIG. 1A is a top view of a jig for measuring moisture content according to an embodiment of the present invention. 図1Bは本発明の実施形態に係る含水率測定用治具の側面図である。FIG. 1B is a side view of a jig for measuring moisture content according to an embodiment of the present invention. 図2Aは含水率測定用治具による脱水汚泥の採取及び計測を説明するための図である。FIG. 2A is a diagram for explaining the collection and measurement of dehydrated sludge using a water content measurement jig. 図2Bは含水率測定用治具による脱水汚泥の採取及び計測を説明するための図である。FIG. 2B is a diagram for explaining sampling and measurement of dehydrated sludge using a water content measuring jig. 図2Cは含水率測定用治具による脱水汚泥の採取及び計測を説明するための図である。FIG. 2C is a diagram for explaining the collection and measurement of dehydrated sludge using a water content measurement jig. 図3は含水率測定用治具の動作を説明するための図である。FIG. 3 is a diagram for explaining the operation of the water content measuring jig. 図4は含水率測定用治具の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of the water content measuring jig. 図5は含水率測定用治具の変形例を説明するための図である。FIG. 5 is a diagram for explaining a modification of the moisture content measuring jig. 図6は含水率測定用治具の変形例を説明するための図である。FIG. 6 is a diagram for explaining a modification of the moisture content measuring jig. 図7Aは含水率測定用治具により得られた計測情報及び演算処理を説明するための図である。FIG. 7A is a diagram for explaining measurement information and calculation processing obtained by the moisture content measurement jig. 図7Bは運転支援ナビシステムのハードウェア構成の一例を説明するためのブロック図である。FIG. 7B is a block diagram for explaining an example of the hardware configuration of the driving support navigation system. 図8Aは運転支援ナビシステムを説明するための図である。FIG. 8A is a diagram for explaining the driving support navigation system. 図8Bは運転支援ナビシステムの情報処理装置が実行する処理フローを示すフローチャートである。FIG. 8B is a flowchart showing a processing flow executed by the information processing device of the driving support navigation system. 図9は運転支援ナビシステムを説明するための図である。FIG. 9 is a diagram for explaining the driving support navigation system. 図10は計器類の情報やフロック状態に基づく半自動の運転支援ナビシステムを説明するための図である。FIG. 10 is a diagram for explaining a semi-automatic driving support navigation system based on instrument information and flock status. 図11は運転支援ナビシステムを説明するための図である。FIG. 11 is a diagram for explaining the driving support navigation system.
 <本発明の概要>
 まず本発明の理解を容易にするため、本発明の概要について説明する。一般的に知られている脱水汚泥の含水率計測方法として、経験や勘がなくても含水率を得ることができる絶乾法がある。本方法は、下水試験方法や一般汚泥試験に定められており、105℃で恒量を得るまで脱水汚泥を乾燥した際の試料重量に対する減量の割合として水分量が規定されている。しかし、本方法は乾燥に長時間を要するため、含水率に基づく脱水プロセスに対する迅速なフィードバックができない。一方、経験や勘が無くても短時間で含水率を得る方法として、土壌や木材チップなどの水分量を計測する手段に用いられている電気抵抗式があるが、測定可能な含水率範囲が60%程度以下と限られるため、含水率が80%を超えることがある脱水汚泥には不適切である。また同様な手法に時間測定型マイクロ波法があるが、本方法は含水率範囲を100%まで広げるには大型化する必要があり、コンパクトな装置開発に不向きである。
<Summary of the present invention>
First, in order to facilitate understanding of the present invention, an outline of the present invention will be explained. A commonly known method for measuring the moisture content of dehydrated sludge is the bone-dry method, which allows the moisture content to be determined without any experience or intuition. This method is specified in sewage test methods and general sludge tests, and the water content is specified as the ratio of weight loss to the sample weight when dehydrated sludge is dried at 105° C. until a constant weight is obtained. However, this method requires a long drying time and does not provide quick feedback to the dehydration process based on moisture content. On the other hand, the electrical resistance method, which is used to measure the moisture content of soil, wood chips, etc., is a method to quickly obtain the moisture content without any experience or intuition, but the measurable moisture content range is limited. Since the water content is limited to about 60% or less, it is not suitable for dehydrated sludge whose water content may exceed 80%. A similar method is the time-measuring microwave method, but this method requires upsizing in order to expand the moisture content range to 100%, and is not suitable for developing a compact device.
 そこで、本発明の含水率計測では、近赤外分光法を用いて、水の赤外線吸収を水分量に換算することで含水率を即時的に高精度に求めることができる。 Therefore, in the moisture content measurement of the present invention, the moisture content can be determined instantly and with high precision by converting the infrared absorption of water into the moisture content using near-infrared spectroscopy.
 更に、本発明では、万が一、前記分光計測により得られた含水率が、それまでに得られた値からの傾向を大きく逸脱していた場合に備え、補助の含水率センサを具備し、常に分光と同時に稼働する構成とする。 Furthermore, in the present invention, in case the moisture content obtained by the spectroscopic measurement greatly deviates from the tendency of the previously obtained values, an auxiliary moisture content sensor is provided, and the spectroscopic measurement is always carried out. The configuration is such that they operate at the same time.
 例えば、補助センサとしてカサ重量センサや、粘度センサなどを具備することができる。補助センサを具備し、常に分光と共に稼働させることで、分光から何らかの理由で適正な含水率が得られなくても、補完するデータを得ることができる。 For example, an umbrella weight sensor, a viscosity sensor, etc. can be provided as an auxiliary sensor. By providing an auxiliary sensor and always operating it together with the spectrometer, even if an appropriate water content cannot be obtained from the spectrometer for some reason, complementary data can be obtained.
 また、補助センサの値から、適正な含水率が得られなかった理由が、分光計や補助の計測手段の不具合、脱水汚泥の採取深さが不十分であったこと、及び、脱水汚泥の含水率が何らかの原因で大きく変わったことの何れであるかを判断することができる。 In addition, the reasons why the appropriate moisture content could not be obtained from the value of the auxiliary sensor were that the spectrometer and auxiliary measuring means were defective, the sampling depth of the dehydrated sludge was insufficient, and the moisture content of the dehydrated sludge It is possible to determine whether the rate has changed significantly for some reason.
 脱水汚泥の含水率は、1日の中でも時々刻々と変動するため、ある程度の時間間隔を守って、逐次採取し、計測することが望ましい。そのため現状は、現場熟練者が手作業で含水率を計測するため、現場に長時間拘束されることがある。しかし、今後、生産年齢人口の減少が見込まれるため、人手不足により現場に配属される作業者が非熟練者である可能性がある。従って、現場者業者の経験やスキルに依存しないプロセスの構築と運転効率の最大化が課題となる。 Since the water content of dehydrated sludge fluctuates from moment to moment throughout the day, it is desirable to collect and measure it at certain time intervals. For this reason, currently experienced field workers manually measure the moisture content, which may require them to be on site for long periods of time. However, as the working-age population is expected to decline in the future, there is a possibility that the workers assigned to the site will be unskilled due to a labor shortage. Therefore, the challenge is to create a process that does not depend on the experience and skills of on-site contractors and to maximize operational efficiency.
 上記した課題を解決するために、本発明では、含水率測定用治具によって脱水汚泥の採取及び分光による計測を行う構成と、計測情報(計測データ)に基づく演算処理を自動で連続して実行して含水率を得る構成と、を含む装置構成とする。さらに、前記取得した含水率に基づき、脱水汚泥の採取プロセス(採取深さ)や汚泥の脱水プロセス条件に自動又は半自動でフィードバックする運転支援ナビシステムを用いて、脱水汚泥のプロセスを好適化する。 In order to solve the above-mentioned problems, the present invention has a configuration in which dehydrated sludge is collected using a moisture content measurement jig and measured by spectroscopy, and calculation processing based on measurement information (measurement data) is automatically and continuously executed. and a configuration for obtaining the moisture content. Further, based on the obtained moisture content, the dewatered sludge process is optimized using a driving support navigation system that automatically or semi-automatically provides feedback to the dehydrated sludge collection process (sampling depth) and sludge dewatering process conditions.
 下水汚泥処理事業の事業収入減少により、現状設備の更新は大きな負担であることも課題となっているため、既存の設備に簡便に取り付けることが可能な装置構成とする。 Due to the decrease in business income from the sewage sludge treatment business, it has become an issue that updating the current equipment is a heavy burden, so the equipment will be configured so that it can be easily installed on existing equipment.
 本発明によれば、現場作業者の経験やスキルに依存すること無く、脱水汚泥の適切な採取、計測、演算まで自動で実施されることにより、簡便に脱水汚泥の含水率を取得できるようになる。また、補助の含水率計測手段を具備することで、万が一分光計測が予想から逸脱した値をとった場合にも、ある程度補完できるため、データの欠損を防ぐことができる。さらに、含水率に基づき、脱水汚泥の採取プロセス(採取深さ)や汚泥の脱水プロセス条件にほぼ全自動又は半自動でフィードバックする運転支援ナビシステムを用いて、脱水汚泥のプロセスを好適化でき、現場作業者が現場に長時間拘束されずに済むようになる。さらに、含水率測定用治具の装置構成をコンパクトにすることで、既設の汚泥処理設備に後から容易に取り付けることができる。 According to the present invention, the moisture content of dehydrated sludge can be easily obtained by automatically performing appropriate collection, measurement, and calculation of dehydrated sludge without depending on the experience and skills of field workers. Become. Furthermore, by providing an auxiliary moisture content measuring means, even if the spectroscopic measurement takes a value that deviates from the expected value, it can be compensated to some extent, thereby preventing data loss. Furthermore, the dewatered sludge process can be optimized using an operation support navigation system that provides almost fully or semi-automatically feedback to the dewatered sludge collection process (sampling depth) and sludge dewatering process conditions based on the water content. Workers no longer need to be tied up at the site for long periods of time. Furthermore, by making the device configuration of the moisture content measuring jig compact, it can be easily installed later on in existing sludge treatment equipment.
 <<実施形態>>
 本発明の実施形態に係る含水率測定用治具及び含水率測定用治具を用いた運転支援ナビシステムについて説明する。説明は、以下の順で説明する。なお、実施形態の全図において、同一又は対応する部分には同一の符号を付す場合がある。
(i)治具の構成例(形状等)
(ii)治具による脱水汚泥の採取及び計測
(iii)治具による採取した脱水汚泥の廃棄
(iv)治具の主要構成部品の素材
(v)治具による計測情報と演算処理
(vi)含水率に基づくフィードバックシステム
(vii)治具のランニングコスト及びメンテナンス
<<Embodiment>>
A moisture content measuring jig and a driving support navigation system using the moisture content measuring jig according to an embodiment of the present invention will be described. The explanation will be given in the following order. In addition, in all the figures of the embodiment, the same or corresponding parts may be given the same reference numerals.
(i) Example of jig configuration (shape, etc.)
(ii) Collection and measurement of dehydrated sludge using the jig (iii) Disposal of the dehydrated sludge collected using the jig (iv) Materials of the main components of the jig (v) Measurement information and calculation processing using the jig (vi) Water content Rate-based feedback system (vii) Jig running costs and maintenance
 (i)治具の構成例
 図1A及び図1Bは、本発明の実施形態に係る含水率測定用治具2の構成例(形状等)を説明するための図である。なお、以下において、含水率測定用治具2は、「治具2」とも称呼される場合がある。
(i) Configuration example of jig FIGS. 1A and 1B are diagrams for explaining a configuration example (shape, etc.) of a moisture content measurement jig 2 according to an embodiment of the present invention. Note that, hereinafter, the moisture content measurement jig 2 may also be referred to as the "jig 2."
 図1Aは治具2の上面図であり、図1Bは治具2の側面図である。図1A及び図1Bに示すように、治具2は、サンプリングユニット2aと、台座2fと、レール2iと、含水率表示部3cと、を含む。 1A is a top view of the jig 2, and FIG. 1B is a side view of the jig 2. As shown in FIGS. 1A and 1B, the jig 2 includes a sampling unit 2a, a pedestal 2f, a rail 2i, and a moisture content display section 3c.
 サンプリングユニット2aは、採取部11と、計測部12と、駆動機構配設部21と、を含む。採取部11は、上蓋2bと底蓋2cと採取部材2dとを含む。計測部12は、近赤外分光プローブ3aと、補助計測用プローブ3bと、保護カバー2eとを含む。駆動機構配設部21は、サンプリングユニット2a全体を駆動する駆動機構(不図示、例えば、エアシリンダなど)と、採取部材2dを動作させる第1駆動機構(一例であるエアシリンダの一部を図3で図示)と、上蓋2bを動作させる第2駆動機構(一例であるエアシリンダの一部を図3で図示)と、底蓋2cを動作させる第3駆動機構(一例であるエアシリンダの一部を図3で図示)と、を含む。駆動機構、第1駆動機構、第2駆動機構及び第3駆動機構は、便宜上、「駆動部」とも称呼される場合がある。なお、治具2の長手方向において、採取部11が配置されている側が前側であり、その反対側が後側である。 The sampling unit 2a includes a sampling section 11, a measuring section 12, and a drive mechanism arrangement section 21. The sampling section 11 includes a top cover 2b, a bottom cover 2c, and a sampling member 2d. The measurement unit 12 includes a near-infrared spectroscopic probe 3a, an auxiliary measurement probe 3b, and a protective cover 2e. The drive mechanism arrangement section 21 includes a drive mechanism (not shown, for example, an air cylinder, etc.) that drives the entire sampling unit 2a, and a first drive mechanism (a part of the air cylinder is shown as an example) that operates the sampling member 2d. 3) that operates the top lid 2b (a part of the air cylinder, which is an example, is shown in FIG. 3), and a third drive mechanism (a part of the air cylinder, which is an example), which operates the bottom lid 2c. (part shown in FIG. 3). The drive mechanism, the first drive mechanism, the second drive mechanism, and the third drive mechanism may also be referred to as a "drive unit" for convenience. In addition, in the longitudinal direction of the jig 2, the side where the sampling part 11 is arranged is the front side, and the opposite side is the rear side.
 治具2は、例えば脱水機7(後述の図10及び図11を参照。)の内部の板状の部材Pt1にクランプ等で簡便に固定することができる。固定された場所を起点に、治具2の脱水汚泥を採取する機能を有する採取部11と、脱水汚泥を計測する計測機能を有する計測部12とが一体となった部材(ユニット)であるサンプリングユニット2aが、動作するようになっている。 The jig 2 can be easily fixed, for example, to a plate-shaped member Pt1 inside the dehydrator 7 (see FIGS. 10 and 11 described later) using a clamp or the like. Sampling is a member (unit) that integrates a collection part 11 that has a function of collecting dehydrated sludge from a jig 2 and a measurement part 12 that has a measurement function of measuring dehydrated sludge starting from a fixed location. Unit 2a is now operational.
 サンプリングユニット2aには脱水汚泥を計測するための近赤外分光プローブ3a及び補助計測用プローブ3bが固定されている。近赤外分光プローブ3aは近赤外分光器3に接続され、補助計測用プローブ3bは補助計測器3’(後述の図7Aを参照。)に接続されている。近赤外分光プローブ3a及び補助計測用プローブ3bは、これらを区別しない場合、「計測プローブ」とも称呼される場合がある。保護カバー2eは、サンプリングユニット2aと脱水汚泥との接触を防止するために設けられている。なお、保護カバー2eは、省略されてもよい。 A near-infrared spectroscopy probe 3a and an auxiliary measurement probe 3b for measuring dehydrated sludge are fixed to the sampling unit 2a. The near-infrared spectroscopic probe 3a is connected to the near-infrared spectrometer 3, and the auxiliary measurement probe 3b is connected to an auxiliary measuring instrument 3' (see FIG. 7A, which will be described later). The near-infrared spectroscopic probe 3a and the auxiliary measurement probe 3b may also be referred to as "measurement probes" if these are not distinguished. The protective cover 2e is provided to prevent contact between the sampling unit 2a and the dehydrated sludge. Note that the protective cover 2e may be omitted.
 サンプリングユニット2aは台座2fの上のレール2i上に搭載され、さらにサンプリングユニット2aは、エアシリンダなどの駆動機構(図示せず)を介して台座2fのレール2i上を、長手方向において、延伸及び短縮できるように構成されている。 The sampling unit 2a is mounted on the rail 2i on the pedestal 2f, and the sampling unit 2a is stretched and stretched in the longitudinal direction on the rail 2i on the pedestal 2f via a drive mechanism (not shown) such as an air cylinder. It is designed to be shortened.
 採取部11の採取部材2dは、ブロックBR1の拡大図にて示すように、矩形の第1の面と、第1の面の対向する2辺のそれぞれから、第1の面の法線方向に沿って延びる、互いに対向する矩形の第2の面及び矩形の第3の面と、を含む断面がコ字状の部材である。採取部材2dは、第1の面、第2の面及び第3の面に囲まれた収容空間SP1を形成している。 As shown in the enlarged view of the block BR1, the collection member 2d of the collection unit 11 has a rectangular first surface and two opposite sides of the first surface in the normal direction of the first surface. The member has a U-shaped cross section, including a rectangular second surface and a rectangular third surface that are opposed to each other. The sampling member 2d forms a housing space SP1 surrounded by a first surface, a second surface, and a third surface.
 採取部材2dは、第1駆動機構によって、長手方向に独立に移動できるようになっている。 The sampling member 2d can be moved independently in the longitudinal direction by the first drive mechanism.
 採取部の上蓋2bは、第2駆動機構によって、長手方向に独立に移動できるようになっている。 The upper lid 2b of the sampling section can be moved independently in the longitudinal direction by a second drive mechanism.
 採取部の底蓋2cは、第3駆動機構によって、長手方向に独立に移動できるようになっている。 The bottom cover 2c of the sampling section can be moved independently in the longitudinal direction by a third drive mechanism.
 含水率表示部3cは、台座2fに設けられている。含水率表示部3cは、例えば、表示装置(ディスプレイ)で構成される。なお、含水率表示部3cは、治具2とは別体で設けられていてもよい。例えば、含水率表示部3cは、治具2が固定される場所に、設けられていてもよい。 The moisture content display section 3c is provided on the pedestal 2f. The moisture content display section 3c is composed of, for example, a display device. Note that the moisture content display section 3c may be provided separately from the jig 2. For example, the moisture content display section 3c may be provided at a location where the jig 2 is fixed.
 (ii)治具による脱水汚泥の採取及び計測
 図2A、図2B、図2C及び図3は、治具2による脱水汚泥1の採取及び計測を説明するための図である。図2A乃至図3を用いて、脱水汚泥1の採取プロセスを以下(1)から(3)で説明し、計測プロセスを以下(4)から(6)で説明する。
(1)図2Aに示すように、延伸されたサンプリングユニット2aの先端を、採取対象の脱水汚泥1の内部に挿入する。
(2)図2B及び図2Cに示すように、サンプリングユニット2aの先端内部に格納されていた上蓋2b、底蓋2c及び断面がコ字状の採取部材2dをそれぞれ独立した第1駆動機構乃至第3駆動機構によって動かして脱水汚泥1に挿入し、脱水汚泥1の内部を掴む。
(ii) Collection and measurement of dehydrated sludge using jig FIGS. 2A, 2B, 2C, and 3 are diagrams for explaining collection and measurement of dehydrated sludge 1 using jig 2. Using FIGS. 2A to 3, the collection process of the dehydrated sludge 1 will be explained in (1) to (3) below, and the measurement process will be explained in (4) to (6) below.
(1) As shown in FIG. 2A, the tip of the extended sampling unit 2a is inserted into the dewatered sludge 1 to be collected.
(2) As shown in FIGS. 2B and 2C, the top cover 2b, bottom cover 2c, and sampling member 2d having a U-shaped cross section, which were stored inside the tip of the sampling unit 2a, are moved by independent first drive mechanisms or first drive mechanisms. 3. It is moved by a drive mechanism, inserted into the dehydrated sludge 1, and grasps the inside of the dehydrated sludge 1.
 具体的に述べると、図3の状態OP1において、延伸及び短縮する第1駆動機構(一例としての周知のエアシリンダ)の一部である第1ピストンロッド31の先端に採取部材2dが取り付けられており、第2駆動機構(一例としての周知のエアシリンダ)の一部である第2ピストンロッド32の先端に上蓋2bが取り付けられており、第3駆動機構(一例としての周知のエアシリンダ)の一部である第3ピストンロッド33の先端に底蓋2cが取り付けられている。 Specifically, in state OP1 of FIG. 3, the collection member 2d is attached to the tip of the first piston rod 31 that is part of the first drive mechanism (a well-known air cylinder as an example) that extends and shortens. The upper cover 2b is attached to the tip of the second piston rod 32, which is a part of the second drive mechanism (a well-known air cylinder as an example), and the upper cover 2b is attached to the tip of the second piston rod 32, which is a part of the second drive mechanism (a well-known air cylinder as an example). A bottom cover 2c is attached to the tip of a portion of the third piston rod 33.
 状態OP1において、第1ピストンロッド31が前方向に延びることにより、採取部材2dは、治具2の前方にある脱水汚泥1に向かって移動し、状態OP2に示すように、脱水汚泥1の内部に挿入される。 In state OP1, as the first piston rod 31 extends forward, the collection member 2d moves toward the dehydrated sludge 1 located in front of the jig 2, and as shown in state OP2, the inside of the dehydrated sludge 1 is removed. inserted into.
 状態OP2において、第2ピストンロッド32が前方向に伸びることにより、上蓋2bは、上蓋2bが採取部材2dの上側の開口を覆う状態になるまで、前方向に移動し、第3ピストンロッド33が前方向に伸びることにより、底蓋2cは、底蓋2cが採取部材2dの下側の開口を覆う状態(状態OP3)になるまで、前方向に移動する。
(3)脱水汚泥1からサンプリングユニット2aを引き抜く。
In state OP2, as the second piston rod 32 extends forward, the upper lid 2b moves forward until the upper lid 2b covers the upper opening of the collection member 2d, and the third piston rod 33 moves forward. By extending forward, the bottom cover 2c moves forward until the bottom cover 2c covers the lower opening of the collection member 2d (state OP3).
(3) Pull out the sampling unit 2a from the dehydrated sludge 1.
 具体的に述べると、状態OP3において、第1ピストンロッド31、第2ピストンロッド32及び第3ピストンロッド33が同時に後方向に縮むことにより、採取部材2d、上蓋2b及び底蓋2cは、後方向に移動する。これにより、状態OP4に示すように、採取部材2dは、上蓋2b及び底蓋2cによって挟まれた状態の脱水汚泥1を、採取部材2dの第1の面、第2の面及び第3の面に囲まれる収容空間SP1に取り入れた状態で、脱水汚泥1から抜去される。これにより、採取部材2d(採取部11)が、脱水汚泥1の内部の脱水汚泥1を採取する。 Specifically, in state OP3, the first piston rod 31, the second piston rod 32, and the third piston rod 33 simultaneously contract in the rear direction, so that the collection member 2d, the top lid 2b, and the bottom lid 2c are moved in the rear direction. Move to. As a result, as shown in state OP4, the collection member 2d collects the dehydrated sludge 1 sandwiched between the top lid 2b and the bottom lid 2c on the first surface, second surface, and third surface of the collection member 2d. The dehydrated sludge is removed from the dehydrated sludge 1 while being taken into the storage space SP1 surrounded by. Thereby, the collecting member 2d (collecting section 11) collects the dehydrated sludge 1 inside the dehydrated sludge 1.
 この状態OP4は、採取部材2dの第1の面、第2の面及び第3の面に囲まれる収容空間SP1に脱水汚泥1が取り入れられ、且つ、収容空間SP1の上側が上蓋2bに覆われ、且つ、収容空間SP1の下側が底蓋2cに覆われた状態になっている。これにより、脱水汚泥1がなるべく空気に触れない状態になっている。なお、底蓋2cは、先端になるほど上蓋2bに近づくように傾斜がついている(即ち、前方に向かって上方に傾斜している。)。これは、採取部材2d、上蓋2b及び底蓋2cが、脱水汚泥1を掴んで採取しやすいようにするためである。
(4)状態OP4にて、第2ピストンロッド32が後方向に縮むことにより、上蓋2bを採取した脱水汚泥1に対して後方にスライドして(ずらして)採取した脱水汚泥1の上面を外部に露出させ、次の計測にそのまま移行する。露出直前まで上蓋2bに押し付けられていた脱水汚泥1の上面は、平坦化され、分光計測に適した表面となっている。平坦化の方法としては、他に採取部11の上蓋2bと底蓋2cとの間の高さをやや大きくしておき、脱水汚泥1を採取後、底蓋2cを第3駆動機構により押し上げて脱水汚泥1を上蓋2bと底蓋2cで挟み込んで平坦化しても良い。なお、状態OP4にて、第1ピストンロッド31が後方向に縮むことにより、採取部材2dを採取した脱水汚泥1に対して後方に移動させてもよい。
In this state OP4, the dehydrated sludge 1 is taken into the storage space SP1 surrounded by the first surface, second surface, and third surface of the collection member 2d, and the upper side of the storage space SP1 is covered with the upper lid 2b. , and the lower side of the housing space SP1 is covered with the bottom lid 2c. Thereby, the dehydrated sludge 1 is kept in a state where it does not come into contact with air as much as possible. Note that the bottom cover 2c is sloped so that the tip approaches the top cover 2b (that is, it slopes upward toward the front). This is so that the collecting member 2d, the top lid 2b, and the bottom lid 2c can easily grip and collect the dehydrated sludge 1.
(4) In state OP4, the second piston rod 32 contracts in the rearward direction, so that the upper lid 2b is slid (shifted) backward relative to the collected dehydrated sludge 1, and the upper surface of the collected dehydrated sludge 1 is exposed to the outside. and then move on to the next measurement. The upper surface of the dehydrated sludge 1, which had been pressed against the upper lid 2b until just before exposure, is flattened and has a surface suitable for spectroscopic measurement. Another method for flattening is to slightly increase the height between the top lid 2b and bottom lid 2c of the collection section 11, and after collecting the dehydrated sludge 1, push up the bottom lid 2c using a third drive mechanism. The dehydrated sludge 1 may be flattened by being sandwiched between the top lid 2b and the bottom lid 2c. In addition, in state OP4, the first piston rod 31 may be contracted in the rearward direction, thereby moving the collecting member 2d backward with respect to the collected dehydrated sludge 1.
 ここで、上蓋2bの計測プローブ側に面した側の面に近赤外光の反射塗料を塗布しても良い。塗布することで、近赤外のベースライン測定がその場で簡便にしかも随時実施することができる。また、上蓋2b全体をスライドさせなくても良く、後述の近赤外分光プローブ3aからの照射部位のみ計測直前にカメラの絞りのようにして開放する構造にしても良い。または、後述の近赤外分光プローブ3aからの照射部位のみ計測直前に上蓋2bの中に収納される構造でも良い。この他、上蓋2bを、近赤外を透過する材料(例えば石英など)で作成すれば、後方にスライドする必要がなくなるため、上蓋2bの出し入れの動作が無くなり、プロセスが容易となる。 Here, near-infrared light reflective paint may be applied to the surface of the upper lid 2b facing the measurement probe side. By applying it, near-infrared baseline measurements can be easily performed on the spot and at any time. Further, it is not necessary to slide the entire upper lid 2b, and a structure may be adopted in which only the area irradiated by the near-infrared spectroscopic probe 3a, which will be described later, is opened like the aperture of a camera just before measurement. Alternatively, a structure may be adopted in which only the region irradiated by a near-infrared spectroscopic probe 3a, which will be described later, is housed in the upper lid 2b immediately before measurement. In addition, if the upper lid 2b is made of a material that transmits near infrared rays (for example, quartz, etc.), there is no need to slide the upper lid 2b backwards, so there is no need to move the upper lid 2b in and out, and the process becomes easier.
(5)上記(4)で露出された、平坦化された脱水汚泥1の上面に、サンプリングユニット2aの上部に挿入している近赤外分光プローブ3aから光を照射し、反射光を近赤外分光プローブ3aで受光し、計測情報F1を得る(近赤外分光プローブ3aから計測情報F1を、近赤外分光器3を介して得る。)。このとき、用いる近赤外分光プローブ3aは、照射プローブと受光プローブを一本のバンドルファイバに実装した照射・受光一体型プローブであってもよいし、照射と受光が異なる独立したプローブであってもよい。 (5) The top surface of the flattened dehydrated sludge 1 exposed in (4) above is irradiated with light from the near-infrared spectroscopic probe 3a inserted in the upper part of the sampling unit 2a, and the reflected light is The light is received by the external spectroscopy probe 3a to obtain measurement information F1 (measurement information F1 is obtained from the near-infrared spectroscopy probe 3a via the near-infrared spectrometer 3). At this time, the near-infrared spectroscopic probe 3a used may be an integrated irradiation/light-receiving probe in which an irradiation probe and a light-receiving probe are mounted on a single bundle fiber, or an independent probe with different irradiation and light-receiving functions. Good too.
 また、近赤外分光プローブ3aがサンプリングユニット2aの上部に固定されているので、照射部及び受光部と、脱水汚泥1の平坦化された上面との間が常に一定の距離を保つことができる。これにより、高精度の分光計測が実現できる。このとき、サンプリングユニット2aの上部に固定されている近赤外分光プローブ3aの照射部及び受光部と脱水汚泥1の平坦化された上面との間には、隙間がある(即ち、常に一定の厚みの空気の層がある)。なお、この隙間に同じ厚みの石英など近赤外を透過する材料が配設されてもよい(即ち、空気の層の代わりに、同じ厚みの石英など近赤外を透過する材料を用いても良い。)。 Furthermore, since the near-infrared spectroscopic probe 3a is fixed to the upper part of the sampling unit 2a, a constant distance can always be maintained between the irradiating part and the light receiving part and the flattened upper surface of the dehydrated sludge 1. . This makes it possible to achieve highly accurate spectroscopic measurements. At this time, there is a gap between the irradiating part and the light receiving part of the near-infrared spectroscopic probe 3a fixed on the top of the sampling unit 2a and the flattened top surface of the dehydrated sludge 1 (that is, there is always a constant gap (There is a thick layer of air). Note that a material that transmits near-infrared light such as quartz having the same thickness may be placed in this gap (in other words, a material that transmits near-infrared light such as quartz having the same thickness may be used instead of the air layer). good.).
 上記では、採取対象の脱水汚泥1の内部の脱水汚泥1が採取され、測定されるので、脱水汚泥1の含水率の測定精度を向上できる。更に、上記では、治具2の採取機構(採取部11)と計測機構(計測部12)とが一体型となっているので、採取から計測まで短時間で済む上、脱水汚泥1がなるべく空気に触れない構造となっている。これにより、含水率の変動を抑制でき、高精度に含水率を得ることができる。また、サンプリングユニット2aに光遮断する囲い(即ち、採取部11及び計測部12を遮光する遮光部)が設けられても良い。これにより、汚泥脱水の採取位置が光を遮断でき無い場所であっても、分光計測が可能となる。
(6)近赤外分光プローブ3aと同時に補助計測用プローブ3bからも計測情報F1を得る(補助計測用プローブ3bから計測情報F1を、補助計測器3’を介して得る。)。補助計測器3’の例として、カサ重量や粘度を測定する計測器などが挙げられる。補助計測用プローブ3bを具備し、常に近赤外分光プローブ3aと共に稼働させ比較することで、近赤外分光プローブ3aから何らかの理由で適正な含水率が得られなくても、補完するデータを補助計測用プローブ3bから得ることができる。これにより、データ欠損を防ぐことができる。同様に、近赤外分光プローブ3aを用いて測定された含水率と補助計測用プローブ3bを用いて測定された含水率との比較から、脱水汚泥1の深さの変更あるいは、近赤外分光器3または補助計測器3’の交換、あるいは脱水プロセス条件の変更が必要であることが判断でき、メンテナンス方針策定に役立てることができる((vi)で詳述。)。
In the above, since the dehydrated sludge 1 inside the dehydrated sludge 1 to be collected is collected and measured, the measurement accuracy of the water content of the dehydrated sludge 1 can be improved. Furthermore, in the above, since the sampling mechanism (sampling section 11) and measuring mechanism (measuring section 12) of the jig 2 are integrated, it takes only a short time from sampling to measurement, and the dehydrated sludge 1 is kept as air-free as possible. The structure is such that it cannot be touched. Thereby, fluctuations in the water content can be suppressed and the water content can be obtained with high accuracy. Further, a light shielding enclosure (that is, a light shielding section that shields the sampling section 11 and the measuring section 12 from light) may be provided in the sampling unit 2a. This allows spectroscopic measurement even if the sludge dewatering sampling location is a location where light cannot be blocked.
(6) Obtain measurement information F1 from the auxiliary measurement probe 3b at the same time as the near-infrared spectroscopy probe 3a (obtain measurement information F1 from the auxiliary measurement probe 3b via the auxiliary measuring instrument 3'). Examples of the auxiliary measuring device 3' include a measuring device for measuring bulk weight and viscosity. Equipped with an auxiliary measurement probe 3b, which is always operated together with the near-infrared spectroscopy probe 3a for comparison, it is possible to supplement data even if the near-infrared spectroscopy probe 3a cannot obtain an appropriate water content for some reason. It can be obtained from the measurement probe 3b. This can prevent data loss. Similarly, from a comparison of the water content measured using the near-infrared spectroscopy probe 3a and the water content measured using the auxiliary measurement probe 3b, it is possible to change the depth of the dehydrated sludge 1 or It can be determined that the instrument 3 or the auxiliary measuring instrument 3' needs to be replaced, or that the dehydration process conditions need to be changed, which can be useful in formulating a maintenance policy (described in detail in (vi)).
 (iii)治具による採取した脱水汚泥の廃棄
 治具2で採取した脱水汚泥1の廃棄方法について図3及び図4を用いて説明する。図3の状態OP5に示すように、治具2で採取した脱水汚泥1の計測が終了後(上蓋2bはすでに計測時に後方にスライドされている)、サンプリングユニット2aの底蓋2c及び採取部材2dをそれぞれ独立した第3駆動機構及び第1駆動機構によって、採取した脱水汚泥1に対して後方にスライドさせる。
(iii) Disposal of dehydrated sludge collected using the jig A method for disposing of the dehydrated sludge 1 collected using the jig 2 will be explained using FIGS. 3 and 4. As shown in state OP5 of FIG. 3, after the measurement of the dehydrated sludge 1 collected with the jig 2 is completed (the top cover 2b has already been slid backward during measurement), the bottom cover 2c of the sampling unit 2a and the sampling member 2d is slid rearward with respect to the collected dewatered sludge 1 by a third drive mechanism and a first drive mechanism, which are independent from each other.
 具体的に述べると、状態OP5にて、第1ピストンロッド31が後方向に縮むことにより、採取部材2dを採取した脱水汚泥1に対して後方にスライドして(ずらして)、第3ピストンロッド33が後方向に縮むことにより、底蓋2cを採取した脱水汚泥1に対して後方にスライドする(ずらす。)。そうすることで、図3の状態OP6及び図4に示すように、採取した脱水汚泥1を囲む面(壁や底)が無くなるため、脱水汚泥1は下に自重で落下する。 Specifically, in state OP5, the first piston rod 31 contracts in the backward direction, so that the collection member 2d slides (displaces) backward with respect to the collected dehydrated sludge 1, and the third piston rod 33 contracts in the backward direction, the bottom cover 2c slides (shifts) backward with respect to the collected dehydrated sludge 1. By doing so, as shown in state OP6 of FIG. 3 and FIG. 4, there is no surface (wall or bottom) surrounding the collected dehydrated sludge 1, so the dehydrated sludge 1 falls downward under its own weight.
 なお、状態OP4にて、第1ピストンロッド31が後方向に縮むことにより、採取部材2dを採取した脱水汚泥1に対して後方に移動させた場合、状態OP5にて採取部材2dは既に脱水汚泥1に対して後方にスライドされている。よって、この場合、第3ピストンロッド33のみが後方向に縮むことにより、底蓋2cを採取した脱水汚泥1に対して後方にスライドする(ずらす。)。これにより、脱水汚泥1を下に自重で落下させる。 Note that in state OP4, when the first piston rod 31 contracts backward and the collecting member 2d is moved backward with respect to the collected dehydrated sludge 1, in state OP5, the collecting member 2d has already collected the dehydrated sludge. It has been slid backwards relative to 1. Therefore, in this case, only the third piston rod 33 contracts in the rearward direction, thereby sliding (shifting) the bottom cover 2c rearward with respect to the collected dehydrated sludge 1. This causes the dehydrated sludge 1 to fall downward under its own weight.
 また、上蓋2b、底蓋2c及び断面がコ字状の採取部材2dに少量でも脱水汚泥1が付着していると次の測定に影響するため、図5に示すように、治具2の内部の格納場所から上蓋2b、底蓋2c及び断面がコ字状の採取部材2dを出し入れする部分に小さなブラシ2j等が設けられていてもよい。ブラシ2jにより、上蓋2b、底蓋2c及び断面がコ字状の採取部材2dに付着した脱水汚泥1を掻き落とすことができる。なお、ブラシ2jを設けた場合において、図6に示すように、ブラシ2jの取り付け板2kが設けられてもよい。 Furthermore, if even a small amount of dehydrated sludge 1 adheres to the top cover 2b, bottom cover 2c, and collection member 2d having a U-shaped cross section, it will affect the next measurement. A small brush 2j or the like may be provided at a portion where the top cover 2b, bottom cover 2c, and collection member 2d having a U-shaped cross section are taken in and out from the storage location. The brush 2j can scrape off the dehydrated sludge 1 adhering to the top lid 2b, bottom lid 2c, and collection member 2d having a U-shaped cross section. In addition, when the brush 2j is provided, as shown in FIG. 6, a mounting plate 2k for the brush 2j may be provided.
 脱水汚泥1が圧縮され、平坦化された後、サンプリングユニット2aの底蓋2c及び先端正面を除くコ字状の採取部材2dに強く付着することがある。これは、脱水汚泥1に多く含まれるZoogloeaという微生物が多糖類状の物質を産生するからである(非特許文献1:A. B. Norberg and S. Enfors,“Production of Extracellular Polysaccharide by Zoogloea ramigera,”Applied and Environmental Microbiology, vol. 44, no. 5, pp.1231-1237, 1982.を参照。)。この場合、後方から、速乾性のエタノールやフッ素溶剤などをかけて洗浄して除去することができる。それでも脱水汚泥1が除去困難な場合、上記洗浄剤を添加するとともに、上蓋2b、底蓋2c及び断面がコ字状の採取部材2dに超音波を印加するなどしても良い。治具2自体に超音波機構が搭載されてもよく、この場合、除去のために治具2を取り外す作業が不要となるため好ましい。 After the dehydrated sludge 1 is compressed and flattened, it may strongly adhere to the bottom cover 2c of the sampling unit 2a and the U-shaped sampling member 2d excluding the front end. This is because the microorganism called Zoogloea, which is abundant in dehydrated sludge 1, produces polysaccharide-like substances (Non-Patent Document 1: A. B. Norberg and S. Enfors, “Production of Extracellular Polysaccharide by Zoogloea ramigera,” ”Applied and Environmental Microbiology, vol. 44, no. 5, pp. 1231-1237, 1982.) In this case, it can be removed by washing with quick-drying ethanol, fluorine solvent, etc. from the rear. If the dehydrated sludge 1 is still difficult to remove, the cleaning agent may be added and ultrasonic waves may be applied to the top lid 2b, bottom lid 2c, and collection member 2d having a U-shaped cross section. An ultrasonic mechanism may be mounted on the jig 2 itself, and in this case, it is preferable because there is no need to remove the jig 2 for removal.
 (iv)治具の主要構成部品の素材
 脱水汚泥1の採取及び計測、並びに廃棄のプロセスを踏まえ、脱水汚泥1と接触する上蓋2b、底蓋2c及び断面がコ字状の採取部材2dの素材は、脱水汚泥1が付着しにくく、かつ水分を透過させない素材であることが好ましい。さらに、脱水汚泥1及び水分に長時間接した場合に劣化や溶出が少ないことが好ましい。素材の例として、テフロン(登録商標)樹脂、PFA樹脂がある。また、素材は、例えば、ガラスや石英などの素材にあらかじめフッ素溶剤等をコーティングしたものであってもよい。
(iv) Materials for the main components of the jig Based on the process of collecting, measuring, and disposing of the dehydrated sludge 1, the materials of the top cover 2b, bottom cover 2c, and collection member 2d with a U-shaped cross section that come into contact with the dehydrated sludge 1 are considered. It is preferable that the material is a material to which the dehydrated sludge 1 is difficult to adhere and which does not allow moisture to pass through. Furthermore, it is preferable that there is little deterioration or elution when in contact with the dehydrated sludge 1 and moisture for a long time. Examples of materials include Teflon (registered trademark) resin and PFA resin. Further, the material may be, for example, a material such as glass or quartz coated with a fluorine solvent or the like in advance.
 (v)治具による計測情報と演算処理
 治具2で得られた計測情報と演算処理について図7Aを用いて説明する。治具2による脱水汚泥計測C1において上記(ii)(5)で得られた近赤外分光プローブ3a及び補助計測用プローブ3bから得られた計測情報F1を運転支援ナビシステムG1に自動で送信する。送信された計測情報F1に基づき運転支援ナビシステムG1において自動で演算処理して脱水汚泥1の含水率を得る。この時の含水率は、近赤外分光プローブ3a及び補助計測用プローブ3bからそれぞれ得た計測情報に基づく演算値である2種類の含水率を指す。また、計測情報F1及び前記含水率は運転支援ナビシステムG1内の演算結果表示部H1に表示され、データ格納部J1に格納され、蓄積されていく。また、運転支援ナビシステムG1から含水率(F1’)を治具2に送信し、治具2の含水率表示部3cに表示しても良い。
(v) Measurement information and arithmetic processing by the jig The measurement information and arithmetic processing obtained by the jig 2 will be explained using FIG. 7A. In the dehydrated sludge measurement C1 using the jig 2, the measurement information F1 obtained from the near-infrared spectroscopy probe 3a and the auxiliary measurement probe 3b obtained in (ii) and (5) above is automatically transmitted to the driving support navigation system G1. . Based on the transmitted measurement information F1, the driving support navigation system G1 automatically performs arithmetic processing to obtain the water content of the dehydrated sludge 1. The water content at this time refers to two types of water content that are calculated values based on measurement information obtained from the near-infrared spectroscopy probe 3a and the auxiliary measurement probe 3b, respectively. Further, the measurement information F1 and the moisture content are displayed on the calculation result display section H1 in the driving support navigation system G1, and are stored and accumulated in the data storage section J1. Further, the water content (F1') may be transmitted from the driving support navigation system G1 to the jig 2 and displayed on the water content display section 3c of the jig 2.
 図7Bは運転支援ナビシステムG1のハードウェア構成の一例を説明するためのブロック図である。運転支援ナビシステムG1は、例えばコンピュータ(情報処理装置)等で構成可能である。なお、運転支援ナビシステムG1は、必ずしも一つのハードウェアで構成される必要はなく、複数のハードウェアで構成されてもよい。 FIG. 7B is a block diagram for explaining an example of the hardware configuration of the driving support navigation system G1. The driving support navigation system G1 can be configured by, for example, a computer (information processing device). Note that the driving support navigation system G1 does not necessarily need to be composed of one piece of hardware, and may be composed of a plurality of pieces of hardware.
 運転支援ナビシステムG1は、情報処理装置210と、表示装置(ディスプレイ)220とを含む。 The driving support navigation system G1 includes an information processing device 210 and a display device (display) 220.
 情報処理装置210は、CPU211、ROM212、RAM213、データの読み出し及び書き込み可能な不揮発性の記憶装置(HDD)214、ネットワークインタフェース215及び入出力インタフェース216等を含む。これらは、バス217を介して互いに通信可能に接続されている。なお、記憶装置(HDD)214は、HDD(Hard Disk Drive)に限定されるものではなく、例えば、SSD(Solid State Drive)などのフラッシュメモリなどであってもよい。 The information processing device 210 includes a CPU 211, a ROM 212, a RAM 213, a nonvolatile storage device (HDD) 214 from which data can be read and written, a network interface 215, an input/output interface 216, and the like. These are communicably connected to each other via a bus 217. Note that the storage device (HDD) 214 is not limited to an HDD (Hard Disk Drive), and may be, for example, a flash memory such as an SSD (Solid State Drive).
 CPU211は、ROM212及び/又はHDD214に格納された図示しない各種プログラムをRAM213にロードし、RAM213にロードされたプログラムを実行することによって、各種機能を実現する。RAM213には、上述したようにCPU211が実行する各種プログラムがロードされ、CPU211が各種プログラムを実行する際に使用するデータが一時的に記憶される。ROM212及び/又はHDD214は不揮発性の記憶媒体であり、ROM212及び/又はHDD214には各種プログラムが記憶されている。ネットワークインタフェース215は、運転支援ナビシステムG1がネットワークNW1に接続されるためのインタフェースである。入出力インタフェース216は、キーボード及び表示装置220等に接続されるためのインタフェースである。 The CPU 211 loads various programs (not shown) stored in the ROM 212 and/or HDD 214 into the RAM 213, and executes the programs loaded into the RAM 213, thereby realizing various functions. As described above, various programs executed by the CPU 211 are loaded into the RAM 213, and data used when the CPU 211 executes the various programs is temporarily stored. The ROM 212 and/or the HDD 214 are nonvolatile storage media, and various programs are stored in the ROM 212 and/or the HDD 214. The network interface 215 is an interface for connecting the driving support navigation system G1 to the network NW1. The input/output interface 216 is an interface for connecting to a keyboard, display device 220, and the like.
 表示装置220は、画像を表示可能なディスプレイである。 The display device 220 is a display that can display images.
 (vi)含水率に基づくフィードバックシステム
 含水率に基づくフィードバックシステムについて図8A乃至図11で以下説明する。図8Aは、含水率に基づく半自動の運転支援ナビシステムG1について示す図である。治具2で計測され、運転支援ナビシステムG1で演算された含水率に基づき、運転支援ナビシステムG1は、治具2の脱水汚泥1の採取位置(深さ)や汚泥5の脱水プロセス制御にフィードバックする機能を有する。
(vi) Feedback system based on moisture content A feedback system based on moisture content will be described below with reference to FIGS. 8A to 11. FIG. 8A is a diagram illustrating a semi-automatic driving support navigation system G1 based on moisture content. Based on the moisture content measured by the jig 2 and calculated by the driving support navigation system G1, the driving support navigation system G1 determines the sampling position (depth) of the dehydrated sludge 1 of the jig 2 and the dewatering process control of the sludge 5. Has a feedback function.
 運転支援ナビシステムG1は、治具2の近赤外分光プローブ3aの計測情報に基づく含水率(以下、「含水率A」と称呼される。)及び補助計測用プローブ3bの計測情報に基づく含水率(以下、「含水率B」と称呼される。)に基づいて、以下に述べるフィードバック(制御)を行う。 The driving support navigation system G1 determines the water content based on the measurement information of the near-infrared spectroscopic probe 3a of the jig 2 (hereinafter referred to as "moisture content A") and the water content based on the measurement information of the auxiliary measurement probe 3b. The feedback (control) described below is performed based on the moisture content (hereinafter referred to as "moisture content B").
 運転支援ナビシステムG1は、含水率Aと第1予測値とを比較し、含水率Bと第2予測値とを比較し、含水率Aと第1予測値との比較結果及び含水率Bと第2予測値との比較結果に応じた制御を行う。 The driving support navigation system G1 compares the moisture content A with the first predicted value, compares the moisture content B with the second predicted value, and compares the moisture content A with the first predicted value and the moisture content B. Control is performed according to the comparison result with the second predicted value.
 即ち、運転支援ナビシステムG1は、含水率Aが第1予測値に基づく第1予測値範囲内にあるか否かを判定し、含水率Bが第2予測値に基づく第2予測値範囲内にあるか否かを判定し、含水率Aと第1予測値との比較結果及び含水率Bと第2予測値との比較結果に応じた制御を行う。なお、第1予測値及び第1予測値範囲は、過去のデータに基づいて設定される値及び範囲であり、第1予測値範囲は、第1予測値からの測定誤差を含む範囲である。第1予測値範囲は、「第1予測範囲」とも称呼される場合がある。第2予測値及び第2予測値範囲は、過去のデータに基づいて設定される値及び範囲であり、第2予測値範囲は、第2予測値からの測定誤差を含む範囲である。第2予測値範囲は、「第2予測範囲」とも称呼される場合がある。 That is, the driving support navigation system G1 determines whether the moisture content A is within the first predicted value range based on the first predicted value, and determines whether the moisture content B is within the second predicted value range based on the second predicted value. , and performs control according to the comparison result between the moisture content A and the first predicted value and the comparison result between the moisture content B and the second predicted value. Note that the first predicted value and the first predicted value range are values and ranges set based on past data, and the first predicted value range is a range that includes a measurement error from the first predicted value. The first predicted value range may also be referred to as a "first predicted range." The second predicted value and the second predicted value range are values and ranges set based on past data, and the second predicted value range is a range that includes a measurement error from the second predicted value. The second predicted value range may also be referred to as a "second predicted range."
 なお、以下の説明において、「含水率Aが予測値から逸脱している」とは、含水率Aが第1予測値範囲内ではないことを意味する。「含水率Bが予測値から逸脱している」とは、含水率Bが第2予測値範囲内ではないことを意味する。
(1)近赤外分光プローブ3aから得られた含水率のみが予測値から逸脱していた場合
 近赤外分光プローブ3aから得られた含水率Aのみが予測値から逸脱していた場合、運転支援ナビシステムG1が、治具2の脱水汚泥1の採取位置(深さ)を変えるよう求める運転案提示K1を運転支援ナビシステムG1内の演算結果表示部H1に表示したうえで、採取深さを自動で制御する(F1’)。なお、この制御は、「制御A」又は「第1制御」とも称呼される。なお、制御Aでは、採取深さの自動制御が実行されずに、治具2の脱水汚泥1の採取位置(深さ)を変えるよう求める運転案提示K1を演算結果表示部H1に表示することのみが実行されてもよい。この場合、演算結果表示部H1を見た現場作業者L1が手動で操作M1を実施し採取深さを調整することも可能である。
In the following description, "the moisture content A deviates from the predicted value" means that the moisture content A is not within the first predicted value range. "The moisture content B deviates from the predicted value" means that the moisture content B is not within the second predicted value range.
(1) When only the water content obtained from the near-infrared spectroscopy probe 3a deviates from the predicted value If only the water content A obtained from the near-infrared spectroscopy probe 3a deviates from the predicted value, the operation The support navigation system G1 displays a driving plan presentation K1 requesting to change the sampling position (depth) of the dehydrated sludge 1 of the jig 2 on the calculation result display section H1 in the driving support navigation system G1, and then displays the driving plan presentation K1 requesting to change the sampling position (depth) of the dehydrated sludge 1 of the jig 2. is automatically controlled (F1'). Note that this control is also referred to as "control A" or "first control." In addition, in control A, automatic control of the sampling depth is not executed, and an operation plan presentation K1 requesting to change the sampling position (depth) of the dehydrated sludge 1 of the jig 2 is displayed on the calculation result display section H1. may only be executed. In this case, it is also possible for the field worker L1 who sees the calculation result display section H1 to manually perform the operation M1 to adjust the sampling depth.
 再測定後も含水率の状態に変化が無い場合は、近赤外分光器3及び/又は近赤外分光プローブ3aの交換を促すように求める運転案提示K1が、運転支援ナビシステムG1内の演算結果表示部H1に表示される。この場合、運転案提示K1を見た現場作業者L1が、運転案提示K1に従って操作M1である近赤外分光器3及び/又は近赤外分光プローブ3aの交換作業を実施する。なお、制御Aでは、運転支援ナビシステムG1から治具2にフィードバックして交換を促す信号(画像)が、含水率表示部3cに表示されるようにしてもよい。これにより、近赤外分光器3及び/又は近赤外分光プローブ3aの交換を促す旨を、現場作業者L1に通知することができる。
(2)補助計測用プローブ3bから得られた含水率Bのみが予測値から逸脱していた場合
 補助計測用プローブ3bから得られた含水率Bのみが予測値から逸脱していた場合、運転支援ナビシステムG1から、補助計測器3’及び/又は補助計測用プローブ3bの交換を促す運転案提示K1を運転支援ナビシステムG1内の演算結果表示部H1に表示する。なお、この制御は、「制御B」又は「第2制御」とも称呼される。
If there is no change in the water content state even after re-measurement, a driving suggestion presentation K1 prompting to replace the near-infrared spectrometer 3 and/or near-infrared spectroscopic probe 3a is displayed in the driving support navigation system G1. It is displayed on the calculation result display section H1. In this case, the field worker L1 who has viewed the driving plan presentation K1 performs the operation M1, which is the replacement work of the near-infrared spectrometer 3 and/or the near-infrared spectroscopic probe 3a, in accordance with the driving plan presentation K1. In addition, in control A, a signal (image) that is fed back from the driving support navigation system G1 to the jig 2 to prompt replacement may be displayed on the moisture content display section 3c. Thereby, it is possible to notify the field worker L1 that the near-infrared spectrometer 3 and/or the near-infrared spectroscopic probe 3a should be replaced.
(2) When only the moisture content B obtained from the auxiliary measurement probe 3b deviates from the predicted value If only the moisture content B obtained from the auxiliary measurement probe 3b deviates from the predicted value, driving support From the navigation system G1, a driving suggestion presentation K1 urging replacement of the auxiliary measuring device 3' and/or the auxiliary measuring probe 3b is displayed on the calculation result display section H1 in the driving support navigation system G1. Note that this control is also referred to as "control B" or "second control."
 これにより、演算結果表示部H1を見る現場作業者L1に、補助計測器3’及び/又は補助計測用プローブ3bの交換を促すことができる。演算結果表示部H1を見た現場作業者L1は操作M1である交換作業を実施する。なお、制御Bでは、運転支援ナビシステムG1から治具2にフィードバックして交換を促す信号(画像)が、含水率表示部3cに表示されるようにしてもよい。これにより、補助計測器3’及び/又は補助計測用プローブ3bの交換を促す旨を現場作業者L1に通知することができる。
(3)近赤外分光プローブ3a及び補助計測用プローブ3bから得られた含水率が共に予測値から逸脱していた場合
 近赤外分光プローブ3a及び補助計測用プローブ3bから得られた含水率が共に予測値から逸脱していた場合、例えば運転支援ナビシステムG1内から、治具2の脱水汚泥1の採取位置(深さ)を変えるように求める運転案提示K1を運転支援ナビシステムG1内の演算結果表示部H1に表示したうえで、自動で採取深さを自動で制御する(F1’)。なお、この制御は、「制御C」又は「第3制御」とも称呼される。なお、制御Cでは、採取深さの自動制御が実行されずに、治具2の脱水汚泥1の採取位置(深さ)を変えるように求める運転案提示K1を演算結果表示部H1に表示することのみが実行されるようにしてもよい。この場合、演算結果表示部H1を見た現場作業者L1が手動で操作M1を実施し採取深さを調整することも可能である。
Thereby, the field worker L1 who looks at the calculation result display section H1 can be prompted to replace the auxiliary measuring device 3' and/or the auxiliary measuring probe 3b. The field worker L1 who sees the calculation result display section H1 performs the replacement work that is operation M1. In addition, in control B, a signal (image) that is fed back from the driving support navigation system G1 to the jig 2 to prompt replacement may be displayed on the moisture content display section 3c. Thereby, it is possible to notify the field worker L1 that the auxiliary measuring device 3' and/or the auxiliary measuring probe 3b should be replaced.
(3) When the water content obtained from the near-infrared spectroscopic probe 3a and the auxiliary measurement probe 3b both deviate from the predicted value The water content obtained from the near-infrared spectroscopic probe 3a and the auxiliary measurement probe 3b If both of them deviate from the predicted values, for example, from within the driving support navigation system G1, a driving suggestion presentation K1 requesting to change the sampling position (depth) of the dehydrated sludge 1 of the jig 2 is sent to the driving support navigation system G1. After displaying the calculation result on the calculation result display section H1, the sampling depth is automatically controlled (F1'). Note that this control is also referred to as "control C" or "third control." In addition, in control C, automatic control of the sampling depth is not executed, and an operation plan presentation K1 requesting to change the sampling position (depth) of the dehydrated sludge 1 of the jig 2 is displayed on the calculation result display section H1. It may also be possible to only execute the following. In this case, it is also possible for the field worker L1 who sees the calculation result display section H1 to manually perform the operation M1 to adjust the sampling depth.
 調整後も含水率の状態に変化が無い場合は運転支援ナビシステムG1内から汚泥の脱水条件を、変更を求める運転案提示K1を実施し、現場作業者L1は運転案提示K1に基づき操作M1を実施し、汚泥の脱水条件を調整して好適化する。 If there is no change in the water content state after adjustment, the driving support navigation system G1 executes a driving plan presentation K1 requesting a change in the sludge dehydration conditions, and the field worker L1 performs operation M1 based on the driving plan presentation K1. and adjust and optimize the sludge dewatering conditions.
 (処理フロー)
 図8Bは、運転支援ナビシステムG1(情報処理装置210)が実行する処理フローを示すフローチャートである。図8Bはステップ800から処理を開始して以下に述べるステップ805乃至ステップ815の処理を順に実行した後、ステップ820に進む。
(Processing flow)
FIG. 8B is a flowchart showing a processing flow executed by the driving support navigation system G1 (information processing device 210). In FIG. 8B, the process starts from step 800 and proceeds to step 820 after sequentially executing the processes from step 805 to step 815 described below.
 ステップ805:情報処理装置210は、近赤外分光プローブ3a及び補助計測用プローブ3bによる計測情報を取得する。 Step 805: The information processing device 210 acquires measurement information by the near-infrared spectroscopy probe 3a and the auxiliary measurement probe 3b.
 ステップ810:情報処理装置210は、近赤外分光プローブ3aによる計測情報に基づいて含水率を計算(含水率A)する。 Step 810: The information processing device 210 calculates the water content (water content A) based on the measurement information by the near-infrared spectroscopic probe 3a.
 ステップ815:情報処理装置210は、補助計測用プローブ3bによる計測情報に基づいて含水率を計算(含水率B)する。 Step 815: The information processing device 210 calculates the moisture content (water content B) based on the measurement information obtained by the auxiliary measurement probe 3b.
 情報処理装置210は、ステップ820に進むと、含水率A及び含水率Bの両方が予測範囲外であるか否かを判定する。即ち、情報処理装置210は、含水率Aが第1予測範囲外(予測範囲外)であるか否かを判定し、含水率Bが第2予測範囲外(予測範囲外)であるか否かを判定する。 When proceeding to step 820, the information processing device 210 determines whether both the moisture content A and the moisture content B are outside the predicted range. That is, the information processing device 210 determines whether the moisture content A is outside the first prediction range (outside the prediction range), and determines whether the moisture content B is outside the second prediction range (outside the prediction range). Determine.
 含水率A及び含水率Bの両方が予測範囲外である場合、情報処理装置210は、ステップ820にて「YES」と判定してステップ825に進み、上述した制御Cを実行してステップ895に進んで、本処理フローを一旦終了する。 If both the moisture content A and the moisture content B are outside the predicted range, the information processing device 210 determines "YES" in step 820, proceeds to step 825, executes the above-mentioned control C, and proceeds to step 895. Proceed and temporarily end this processing flow.
 含水率A及び含水率Bの両方が予測範囲外ではない場合、情報処理装置210は、ステップ820にて「NO」と判定してステップ830に進み、含水率Aのみが予測範囲外であるか否かを判定する。即ち、情報処理装置210は、含水率Aが第1予測範囲外であり、且つ、含水率Bが第2予測範囲内であるか否かを判定する。 If both moisture content A and moisture content B are not outside the predicted range, the information processing device 210 determines "NO" in step 820 and proceeds to step 830, and determines whether only moisture content A is outside the predicted range. Determine whether or not. That is, the information processing device 210 determines whether the moisture content A is outside the first prediction range and the moisture content B is within the second prediction range.
 含水率Aのみが予測範囲外である場合、情報処理装置210は、ステップ830にて「YES」と判定してステップ835に進み、上述した制御Aを実行してステップ895に進んで、本処理フローを一旦終了する。 If only the moisture content A is outside the predicted range, the information processing device 210 determines "YES" in step 830, proceeds to step 835, executes the above-mentioned control A, proceeds to step 895, and completes the main processing. End the flow once.
 含水率Aのみが予測範囲外ではない場合、情報処理装置210は、ステップ830にて「NO」と判定してステップ840に進み、含水率Bのみが予測範囲外であるか否かを判定する。即ち、情報処理装置210は、含水率Aが第1予測範囲内であり、且つ、含水率Bが第2予測範範囲外であるか否かを判定する。 If only the moisture content A is not outside the predicted range, the information processing device 210 determines "NO" in step 830, proceeds to step 840, and determines whether only the moisture content B is outside the predicted range. . That is, the information processing device 210 determines whether the moisture content A is within the first prediction range and the moisture content B is outside the second prediction range.
 含水率Bのみが予測範囲外である場合、情報処理装置210は、ステップ840にて「YES」と判定してステップ845に進み、上述した制御Bを実行してステップ895に進んで、本処理フローを一旦終了する。 If only the moisture content B is outside the predicted range, the information processing device 210 determines "YES" in step 840, proceeds to step 845, executes the above-mentioned control B, proceeds to step 895, and completes the main processing. End the flow once.
 含水率Bのみが予測範囲外ではない場合、情報処理装置210は、ステップ840にて「NO」と判定してステップ895に進んで、本処理フローを一旦終了する。 If only the water content B is not outside the predicted range, the information processing device 210 determines "NO" in step 840, proceeds to step 895, and temporarily ends this processing flow.
 図9は、含水率に基づくほぼ全自動の運転支援ナビシステムG1を説明するための図である。運転支援ナビシステムG1内からの運転案提示K1に対し、自動で操作M1を実施することにより脱水汚泥1の採取深さの制御を行ったり、現場作業者L1によって汚泥の脱水条件が調整されたりして、好適化する。ただし、近赤外分光器3や近赤外分光プローブ3aまたは補助計測器3’や補助計測用プローブ3bの交換に関しては、運転案提示K1に従い、現場作業者L1が操作M1を実施する。 FIG. 9 is a diagram for explaining the almost fully automatic driving support navigation system G1 based on the moisture content. In response to the driving plan presentation K1 from within the driving support navigation system G1, the sampling depth of the dehydrated sludge 1 is controlled by automatically implementing the operation M1, and the sludge dewatering conditions are adjusted by the field worker L1. and optimize it. However, regarding the replacement of the near-infrared spectrometer 3, the near-infrared spectroscopic probe 3a, the auxiliary measuring instrument 3', and the auxiliary measurement probe 3b, the field worker L1 performs the operation M1 in accordance with the operation plan presentation K1.
 含水率のみでなく、計器類の情報やフロック状態に基づく半自動の運転支援ナビシステムG1について図10に示す。なお、図10における参照符号9は脱離液を示し、参照符号8は貯留槽を示す。上記治具2における脱水汚泥1の計測C1から運転支援ナビシステムG1に送信される計測情報F1と同様に、計器情報A1のカメラ(図示せず)から運転支援ナビシステムG1に送信される画像情報D1及び汚泥5が搬送された凝集混和槽6内での汚泥フロック4のフロック状態B1のカメラ(図示せず)から運転支援ナビシステムG1に送信される画像情報E1もまた、運転支援ナビシステムG1において解析される。運転支援ナビシステムG1は現場作業者L1に運転案提示K1をし、現場作業者L1は運転案提示K1に基づく操作M1を実施し、汚泥5の脱水条件を調整して好適化する。前記運転案提示K1のうち、治具2の脱水汚泥1の採取位置(深さ)をより深くするよう求める運転案提示K1に関しては、運転支援ナビシステムG1内の演算結果表示部H1に表示するなどしたうえで、自動で制御する(F1’)が、現場作業者L1が運転案提示K1に基づく操作M1を実施し、手動で深さを調整しても良い。 FIG. 10 shows a semi-automatic driving support navigation system G1 based not only on water content but also on instrument information and flock status. Note that reference numeral 9 in FIG. 10 indicates a desorbed liquid, and reference numeral 8 indicates a storage tank. Similar to the measurement information F1 sent from the measurement C1 of the dehydrated sludge 1 in the jig 2 to the driving support navigation system G1, image information sent from the camera (not shown) of the instrument information A1 to the driving support navigation system G1. The image information E1 transmitted from the camera (not shown) to the driving support navigation system G1 of the floc state B1 of the sludge flocs 4 in the coagulation mixing tank 6 into which the sludge D1 and the sludge 5 have been transported is also transmitted to the driving support navigation system G1. It is analyzed in The driving support navigation system G1 presents a driving plan K1 to the field worker L1, and the field worker L1 performs an operation M1 based on the driving plan presentation K1 to adjust and optimize the dewatering conditions for the sludge 5. Of the driving plan presentations K1, the driving plan presentation K1 that requests deeper sampling position (depth) of the dehydrated sludge 1 of the jig 2 is displayed on the calculation result display section H1 in the driving support navigation system G1. After doing so, the depth is automatically controlled (F1'), but the field worker L1 may perform the operation M1 based on the driving plan presentation K1 and manually adjust the depth.
 図11に示すように、含水率のみでなく、計器類の情報やフロック状態に基づくほぼ全自動の運転支援ナビシステムG1について、前記運転案提示K1は運転支援ナビシステムG1内の演算結果表示部H1に表示されるとともに、自動で操作M1を実施することもできる。ただし、前記運転案提示K1のうち、近赤外分光器3や近赤外分光プローブ3aまたは補助計測器3' や補助計測用プローブ3bの交換に関しては、現場作業者L1が運転案提示K1に基づく操作M1を実施する。 As shown in FIG. 11, regarding the almost fully automatic driving support navigation system G1 based not only on the moisture content but also on instrument information and flock status, the driving suggestion presentation K1 is provided by the calculation result display section in the driving support navigation system G1. In addition to being displayed in H1, operation M1 can also be performed automatically. However, regarding the replacement of the near-infrared spectrometer 3, near-infrared spectroscopic probe 3a, auxiliary measuring instrument 3', and auxiliary measurement probe 3b among the operation plan presentation K1, the field worker L1 Perform operation M1 based on this.
 (vii)治具のランニングコスト及びメンテナンス
 治具2は、脱水汚泥1が詰まりにくい構造であり、且つ、繰り返し使用できる部材のみから構成されている。このため、治具2には消耗部材がないので、環境負荷が低減される。また、消耗部材が無いことでランニングコストが低減される。また、治具2は、分光計測部が脱水汚泥1と非接触であること、脱水汚泥1が詰まりにくい構造であること、及び、採取機構の上蓋2b、底蓋2c及びコ字状の採取部材2dの取り外しが容易であることから、メンテナンス作業の負担が軽減される。
(vii) Running cost and maintenance of the jig The jig 2 has a structure that prevents the dehydrated sludge 1 from clogging, and is composed only of members that can be used repeatedly. Therefore, the jig 2 has no consumable parts, so the environmental load is reduced. Furthermore, since there are no consumable parts, running costs are reduced. In addition, the jig 2 has a spectroscopic measurement unit that does not come into contact with the dehydrated sludge 1, a structure that prevents the dehydrated sludge 1 from clogging, and a collection mechanism including a top lid 2b, a bottom lid 2c, and a U-shaped collection member. 2d can be easily removed, reducing the burden of maintenance work.
 以下、実施例により本発明の実施形態に係る治具2及び治具2を用いた運転支援ナビシステムG1について説明する。なお、それぞれの実施例は本発明の一態様に過ぎず、これらに限定されるものではない。 Hereinafter, a jig 2 according to an embodiment of the present invention and a driving support navigation system G1 using the jig 2 will be described using an example. Note that each example is only one embodiment of the present invention, and the present invention is not limited thereto.
 [実施例1]
(含水率に基づく半自動フィードバックシステム)
 上述した図8Aを用いて実施例1について説明する。図8Aに示すように、実施例1では、下水処理設備10から、治具2による脱水汚泥1の計測C1の近赤外分光プローブ3a及び補助計測用プローブ3bによる計測情報F1を運転支援ナビシステムG1に送信する。運転支援ナビシステムG1では、計測情報F1に基づき、治具2の脱水汚泥1の採取深さの変更、あるいは近赤外分光器3や近赤外分光プローブ3aまたは補助計測器3’や補助計測用プローブ3bの交換、あるいは脱水機7の汚泥脱水条件の変更を求める運転案提示K1を運転支援ナビシステムG1内の演算結果表示部H1に表示する。現場作業者L1は運転案提示K1に基づき操作M1を実施し含水率を好適化する。これにより、現場作業者L1は非熟練者であっても含水率を好適化するための操作を適切に実施できる。以上が実施例1の治具2と運転支援ナビシステムG1による脱水汚泥プロセスの好適化である。
[Example 1]
(Semi-automatic feedback system based on moisture content)
Example 1 will be described using FIG. 8A described above. As shown in FIG. 8A, in the first embodiment, measurement information F1 from the near-infrared spectroscopy probe 3a and the auxiliary measurement probe 3b of the measurement C1 of the dehydrated sludge 1 using the jig 2 is transmitted from the sewage treatment equipment 10 to the driving support navigation system. Send to G1. In the driving support navigation system G1, based on the measurement information F1, the sampling depth of the dehydrated sludge 1 in the jig 2 can be changed, or the near-infrared spectrometer 3, the near-infrared spectroscopy probe 3a, or the auxiliary measuring device 3' or the auxiliary measuring device can be changed. A driving plan presentation K1 requesting replacement of the probe 3b or change of the sludge dehydration conditions of the dehydrator 7 is displayed on the calculation result display section H1 in the driving support navigation system G1. The field worker L1 performs the operation M1 based on the driving plan presentation K1 to optimize the water content. Thereby, even if the field worker L1 is an unskilled person, he or she can appropriately perform the operation for optimizing the moisture content. The above is the optimization of the dewatered sludge process using the jig 2 and the driving support navigation system G1 of the first embodiment.
 [実施例2]
(含水率に基づくほぼ全自動フィードバックシステム)
 上述した図9を用いて実施例2について説明する。図9に示すように、実施例2では、実施例1と同様に、運転支援ナビシステムG1では、計測情報F1に基づき、治具2の脱水汚泥1の採取深さの制御、あるいは近赤外分光器3や近赤外分光プローブ3aまたは補助計測器3’や補助計測用プローブ3bの交換、あるいは脱水機7の汚泥脱水条件の変更を求める運転案提示K1を運転支援ナビシステムG1内の演算結果表示部H1に表示し、運転案提示K1に基づき自動的に操作M1を実施し含水率を好適化する。ただし、前記運転案提示K1のうち、近赤外分光器3や近赤外分光プローブ3aまたは補助計測器3’や補助計測用プローブ3bの交換に関しては、現場作業者L1が運転案提示K1に基づく操作M1を実施する。これにより、現場作業者L1は非熟練者であっても含水率を好適化するための操作を適切に実施でき、負担が軽減される。以上が実施例2の治具2と運転支援ナビシステムG1による脱水汚泥プロセスの好適化である。
[Example 2]
(Almost fully automatic feedback system based on moisture content)
Example 2 will be described using FIG. 9 described above. As shown in FIG. 9, in the second embodiment, as in the first embodiment, the driving support navigation system G1 controls the sampling depth of the dehydrated sludge 1 in the jig 2 or the near-infrared rays based on the measurement information F1. Operation plan presentation K1 requesting replacement of the spectrometer 3, near-infrared spectroscopy probe 3a, auxiliary measuring instrument 3', or auxiliary measuring probe 3b, or change of sludge dewatering conditions of the dehydrator 7 is calculated in the driving support navigation system G1. The result is displayed on the display section H1, and the operation M1 is automatically performed based on the driving plan presentation K1 to optimize the water content. However, regarding the replacement of the near-infrared spectrometer 3, near-infrared spectroscopic probe 3a, auxiliary measuring instrument 3', and auxiliary measurement probe 3b among the operation plan presentation K1, the field worker L1 Perform operation M1 based on this. Thereby, the on-site worker L1 can appropriately carry out the operation for optimizing the moisture content even if he is an unskilled person, and the burden on him is reduced. The above is the optimization of the dewatered sludge process using the jig 2 and the driving support navigation system G1 of the second embodiment.
 [実施例3]
(含水率、計器情報、フロック状態に基づく半自動フィードバックシステム)
 上述した図10を用いて実施例3について説明する。図10に示すように、実施例3では、下水処理設備10から、治具2による脱水汚泥1の計測C1の近赤外分光プローブ3a及び補助計測用プローブ3bによる計測情報F1及び凝集混和槽6に搬送された汚泥5のフロック状態B1のカメラによる画像情報E1並びに計器情報A1のカメラによる画像情報D1の3つの情報を運転支援ナビシステムG1に送信する。運転支援ナビシステムG1では、計測情報F1、画像情報E1並びに画像情報D1に基づき、治具2の脱水汚泥1の採取深さの制御(自動制御も可能)、あるいは近赤外分光器3や近赤外分光プローブ3aまたは補助計測器3’や補助計測用プローブ3bの交換、あるいは脱水機7の汚泥脱水条件の変更を求める運転案提示K1を運転支援ナビシステムG1内の演算結果表示部H1に表示する。現場作業者L1は運転案提示K1に基づき操作M1を実施し、含水率を好適化する。これにより、実施例1及び実施例2のときより運転支援ナビシステムG1で扱う情報量が増え、脱水機7の汚泥脱水条件の調整がより的確になった。以上が実施例3の治具2と運転支援ナビシステムG1による脱水汚泥プロセスの好適化である。
[Example 3]
(Semi-automatic feedback system based on moisture content, meter information, and floc state)
Example 3 will be described using FIG. 10 described above. As shown in FIG. 10, in the third embodiment, measurement information F1 from the near-infrared spectroscopy probe 3a and auxiliary measurement probe 3b of the measurement C1 of the dehydrated sludge 1 using the jig 2 and the coagulation mixing tank 6 are obtained from the sewage treatment equipment 10. Three pieces of information are transmitted to the driving support navigation system G1: image information E1 captured by the camera showing the floc state B1 of the sludge 5 transported to , and image information D1 captured by the camera showing the instrument information A1. The driving support navigation system G1 controls the sampling depth of the dehydrated sludge 1 in the jig 2 (automatic control is also possible), or controls the near-infrared spectrometer 3 and the nearby A driving plan presentation K1 requesting replacement of the infrared spectroscopic probe 3a, auxiliary measuring instrument 3', or auxiliary measuring probe 3b, or a change in the sludge dewatering conditions of the dehydrator 7 is displayed on the calculation result display section H1 in the driving support navigation system G1. indicate. The field worker L1 performs the operation M1 based on the driving plan presentation K1 to optimize the moisture content. As a result, the amount of information handled by the driving support navigation system G1 was increased compared to the first and second embodiments, and the sludge dewatering conditions of the dehydrator 7 could be adjusted more accurately. The above is the optimization of the dewatered sludge process using the jig 2 and the driving support navigation system G1 of the third embodiment.
 [実施例4]
(含水率、計器類情報、フロック状態に基づくほぼ全自動フィードバックシステム)
 上述した図11を用いて実施例4について説明する。図11に示すように、実施例3と同様に、下水処理設備10から、治具2による脱水汚泥1の計測C1の近赤外分光プローブ3a及び補助計測用プローブ3bによる計測情報F1及び凝集混和槽6に搬送された汚泥5のフロック状態B1のカメラによる画像情報E1並びに計器情報A1のカメラによる画像情報D1の3つの情報を運転支援ナビシステムG1に送信する。
[Example 4]
(Almost fully automatic feedback system based on moisture content, instrumentation information, and floc state)
Example 4 will be described using FIG. 11 described above. As shown in FIG. 11, similarly to Example 3, from the sewage treatment equipment 10, the measurement information F1 of the measurement C1 of the dehydrated sludge 1 using the jig 2 using the near-infrared spectroscopy probe 3a and the auxiliary measurement probe 3b, and the coagulation and mixing Three pieces of information are transmitted to the driving support navigation system G1: image information E1 captured by the camera showing the floc state B1 of the sludge 5 transported to the tank 6, and image information D1 captured by the camera showing the instrument information A1.
 運転支援ナビシステムG1では、計測情報F1に基づき、治具2の脱水汚泥1の採取深さの制御、あるいは近赤外分光器3や近赤外分光プローブ3aまたは補助計測器3’や補助計測用プローブ3bの交換、あるいは脱水機7の汚泥脱水条件の変更を求める運転案提示K1を運転支援ナビシステムG1内の演算結果表示部H1に表示し、運転案提示K1に基づき自動で操作M1を実施し、含水率を好適化する。ただし、前記運転案提示K1のうち、近赤外分光器3や近赤外分光プローブ3aまたは補助計測器3’や補助計測用プローブ3bの交換に関しては、現場作業者L1が運転案提示K1に基づく操作M1を実施する。これにより現場作業者L1の操作M1は大幅に減り、現場作業者L1の負担が大幅に軽減される。以上が実施例4の治具2と運転支援ナビシステムG1による脱水汚泥プロセスの好適化である。 The driving support navigation system G1 controls the sampling depth of the dehydrated sludge 1 in the jig 2 based on the measurement information F1, or controls the near-infrared spectrometer 3, the near-infrared spectroscopy probe 3a, the auxiliary measuring instrument 3', and the auxiliary measuring device. A driving suggestion K1 requesting replacement of the probe 3b or change of the sludge dehydration conditions of the dehydrator 7 is displayed on the calculation result display section H1 in the driving support navigation system G1, and operation M1 is automatically performed based on the driving suggestion presentation K1. to optimize the moisture content. However, regarding the replacement of the near-infrared spectrometer 3, the near-infrared spectroscopic probe 3a, the auxiliary measuring instrument 3', and the auxiliary measurement probe 3b in the driving plan presentation K1, the field worker L1 Perform operation M1 based on this. As a result, the number of operations M1 performed by the site worker L1 is significantly reduced, and the burden on the site worker L1 is significantly reduced. The above is the optimization of the dewatered sludge process using the jig 2 and the driving support navigation system G1 of the fourth embodiment.
 <<変形例>>
 本発明は上記実施形態及び各実施例に限定されることなく、本発明の範囲内において種々の変形例を採用することができる。更に、上記実施形態及び各実施例は、本発明の範囲を逸脱しない限り、互いに組み合わせることが可能である。
<<Variation example>>
The present invention is not limited to the embodiments and examples described above, and various modifications can be adopted within the scope of the present invention. Furthermore, the embodiments and examples described above can be combined with each other without departing from the scope of the present invention.
 上記実施形態及び各実施例において、治具2及び/又は運転支援ナビシステムG1は、駆動部(駆動機構、第1駆動機構乃至第3駆動機構)を制御する制御装置を備えていてもよく、制御装置が駆動部(駆動機構、第1駆動機構乃至第3駆動機構)を自動で制御するようにしてもよい。 In the above embodiment and each example, the jig 2 and/or the driving support navigation system G1 may include a control device that controls the drive unit (drive mechanism, first drive mechanism to third drive mechanism), The control device may automatically control the drive units (the drive mechanism, the first drive mechanism to the third drive mechanism).
 治具2及び/又は運転支援ナビシステムG1は、駆動部(駆動機構、第1駆動機構乃至第3駆動機構)を制御する制御装置と、治具2を操作するための操作装置とを備えていてもよく、制御装置が駆動部(駆動機構、第1駆動機構乃至第3駆動機構)を自動で制御してもよく、制御装置がユーザによる操作装置に対する操作に基づいて、駆動部(駆動機構、第1駆動機構乃至第3駆動機構)を制御してもよい。運転支援ナビシステムG1が備える制御装置は、上述した情報処理装置210であってもよい。上記実施形態及び各実施例において、治具2が計測情報に基づいて含水率を算出する情報処理装置を備えていてもよい。 The jig 2 and/or the driving support navigation system G1 includes a control device that controls the drive unit (drive mechanism, first drive mechanism to third drive mechanism), and an operation device that operates the jig 2. Alternatively, the control device may automatically control the drive unit (drive mechanism, first drive mechanism to third drive mechanism), and the control device may control the drive unit (drive mechanism) based on the user's operation on the operating device. , the first drive mechanism to the third drive mechanism). The control device included in the driving support navigation system G1 may be the information processing device 210 described above. In the embodiments and examples described above, the jig 2 may include an information processing device that calculates the water content based on measurement information.
 本発明は以下の構成をとることもできる。 The present invention can also have the following configuration.
[1]
 脱水機で処理した汚泥を収容するための収容空間を有する採取部材を含む採取部と、
 前記採取部を動作させる駆動部と、
 計測プローブを含み、前記採取部材の前記収容空間に収容されることにより採取された前記汚泥を前記計測プローブによって計測することにより計測情報を取得する計測部と、
 を有し、
 前記駆動部によって、前記採取部を、採取対象の前記汚泥の内部に侵入させるように動作させた後、前記採取部を前記汚泥の内部から外部に抜き出すように動作させることで、前記汚泥を前記収容空間に取り入れることにより、前記採取部が前記汚泥を採取し、前記計測部によって、前記採取部によって採取された前記汚泥の前記計測情報を取得する、
 含水率測定用治具。
[1]
a collection section including a collection member having a storage space for storing sludge treated with the dehydrator;
a drive unit that operates the collection unit;
a measurement unit that includes a measurement probe and acquires measurement information by measuring the sludge collected by being accommodated in the storage space of the collection member with the measurement probe;
has
The drive unit operates the collection unit to enter the sludge to be collected, and then operates the collection unit to extract the sludge from the inside of the sludge, thereby removing the sludge from the sludge. The collection section collects the sludge by taking it into the storage space, and the measurement section acquires the measurement information of the sludge collected by the collection section.
Jig for measuring moisture content.
[2]
 [1]に記載の含水率測定用治具において、
 前記駆動部は、延伸及び短縮することによって前記採取部を動作させるように構成され、
 前記駆動部が延伸することによって、前記採取部を採取対象の前記汚泥の内部に侵入させるように動作させ、
 前記駆動部が短縮することによって、前記採取部を前記汚泥の内部から外部に抜き出すように動作させる、
 含水率測定用治具。
[2]
In the jig for measuring moisture content according to [1],
The drive unit is configured to operate the collection unit by stretching and shortening;
By extending the driving part, the collecting part is operated to enter into the sludge to be collected,
By shortening the driving part, the collecting part is operated to extract the sludge from the inside to the outside.
Jig for measuring moisture content.
[3]
 [1]乃至[2]の何れかに記載の含水率測定用治具において、
 前記計測部は、分光計測により、前記採取部によって採取された前記汚泥の前記計測情報を取得する、
 含水率測定用治具。
[3]
In the moisture content measuring jig according to any one of [1] and [2],
The measurement unit acquires the measurement information of the sludge collected by the collection unit by spectroscopic measurement.
Jig for measuring moisture content.
[4]
 [1]乃至[2]の何れかに記載の含水率測定用治具において、
 前記計測部は、分光計測により、前記採取部によって採取された前記汚泥の第1の前記計測情報を取得し、補助的な計測により、前記採取部によって採取された前記汚泥の第2の前記計測情報を取得する、
 含水率測定用治具。
[4]
[1] In the jig for measuring moisture content according to any one of [2],
The measurement unit acquires the first measurement information of the sludge collected by the collection unit by spectroscopic measurement, and acquires the second measurement information of the sludge collected by the collection unit by auxiliary measurement. obtain information,
Jig for measuring moisture content.
[5]
 [4]に記載の含水率測定用治具において、
 前記補助的な計測は、カサ重量及び粘度の少なくとも一つを測定する、
 含水率測定用治具。
[5]
In the moisture content measuring jig described in [4],
The auxiliary measurement measures at least one of bulk weight and viscosity.
Jig for measuring moisture content.
[6]
 [1]乃至[5]の何れかに記載の含水率測定用治具において、
 前記採取部材は、3つの面に囲まれた前記収容空間を有する断面がコ字状の部材であり、
 前記採取部は、前記採取部材の他に、
 前記収容空間の上側を覆う位置と前記収容空間の上側を覆わない位置との間を移動可能な上蓋と、
 前記収容空間の下側を覆う位置と前記収容空間の下側を覆わない位置との間を移動可能な底蓋と、
 を含み、
 前記駆動部は、
 前記採取部材を独立して動作させる第1駆動機構と、
 前記上蓋を独立して動作させる第2駆動機構と、
 前記底蓋を独立して動作させる第3駆動機構と、
 を含む、
 含水率測定用治具。
[6]
In the jig for measuring moisture content according to any one of [1] to [5],
The collection member is a member having a U-shaped cross section and having the accommodation space surrounded by three sides,
In addition to the collection member, the collection section includes:
an upper lid that is movable between a position covering the upper side of the housing space and a position not covering the upper side of the housing space;
a bottom cover that is movable between a position that covers the lower side of the storage space and a position that does not cover the lower side of the storage space;
including;
The drive unit includes:
a first drive mechanism that independently operates the collection member;
a second drive mechanism that independently operates the top lid;
a third drive mechanism that independently operates the bottom cover;
including,
Jig for measuring moisture content.
[7]
 [6]に記載の含水率測定用治具において、
 前記第1駆動機構によって、前記上蓋が前記収容空間の上側を覆わず、且つ、前記底蓋が前記収容空間を覆わない状態で、前記採取部材を採取対象の前記汚泥の内部に侵入させ、
 前記第2駆動機構によって、前記採取部材を採取対象の前記汚泥の内部に侵入させた状態で、前記上蓋を前記収容空間の上側を覆う位置に移動し、前記第3駆動機構によって、前記底蓋を前記収容空間の下側を覆う位置に移動し、
 前記上蓋が前記収容空間の上側を覆い、且つ、前記底蓋が前記収容空間の下側を覆った状態を維持したまま、前記第1駆動機構、前記第2駆動機構及び前記第3駆動機構によって、前記採取部材、前記上蓋及び前記底蓋を前記汚泥から抜き出し、
 前記第2駆動機構によって、前記上蓋を前記収容空間の上側を覆わない位置まで移動させることにより、採取した前記汚泥を外部に露出させ、前記汚泥の露出面を前記計測プローブによって計測することによって、前記汚泥の前記計測情報を取得する、
 含水率測定用治具。
[7]
In the jig for measuring moisture content according to [6],
The first drive mechanism causes the collection member to enter the inside of the sludge to be collected in a state where the top lid does not cover the upper side of the storage space and the bottom lid does not cover the storage space,
The second drive mechanism moves the top cover to a position covering the upper side of the storage space with the collection member entering the sludge to be collected, and the third drive mechanism moves the top cover to a position that covers the upper side of the storage space. moved to a position covering the lower side of the storage space,
The first drive mechanism, the second drive mechanism, and the third drive mechanism maintain the state in which the top cover covers the upper side of the storage space and the bottom cover covers the bottom side of the storage space. , extracting the collection member, the top lid, and the bottom lid from the sludge;
By moving the upper lid to a position where it does not cover the upper side of the storage space by the second drive mechanism, the collected sludge is exposed to the outside, and the exposed surface of the sludge is measured by the measurement probe, acquiring the measurement information of the sludge;
Jig for measuring moisture content.
[8]
 [7]に記載の含水率測定用治具において、
 前記第1駆動機構によって、前記採取部材を、採取した前記汚泥と垂直方向において重ならない位置まで移動し、
 前記第3駆動機構によって、前記底蓋を、採取した前記汚泥と垂直方向において重ならない位置まで移動することで、採取した前記汚泥を下方に自重で落下させる、
 含水率測定用治具。
[8]
In the jig for measuring moisture content according to [7],
The first drive mechanism moves the collection member to a position where it does not overlap the collected sludge in the vertical direction,
The third drive mechanism moves the bottom cover to a position where it does not overlap the collected sludge in the vertical direction, thereby causing the collected sludge to fall downward under its own weight.
Jig for measuring moisture content.
[9]
 [8]に記載の含水率測定用治具において、
 前記底蓋は、前方の端部に向かって上方に傾斜している、
 含水率測定用治具。
[9]
In the moisture content measuring jig described in [8],
the bottom lid is sloped upwardly toward the front end;
Jig for measuring moisture content.
[10]
 [6]に記載の含水率測定用治具において、
 前記上蓋の一主面及び他主面のうちの前記計測プローブ側の面には、前記計測プローブの測定光の反射率を高めるための塗料が塗られている、
 含水率測定用治具。
[10]
In the jig for measuring moisture content according to [6],
Of the one main surface and the other main surface of the upper lid, a surface on the measurement probe side is coated with paint for increasing the reflectance of the measurement light of the measurement probe.
Jig for measuring moisture content.
[11]
 [1]乃至[10]の何れかに記載の含水率測定用治具において、
 前記採取部の動作範囲に、動作中の前記採取部材が接触することにより、前記採取部材に付着した前記汚泥を除去するブラシを備える、
 含水率測定用治具。
[11]
In the jig for measuring moisture content according to any one of [1] to [10],
a brush that removes the sludge adhering to the collection member when the collection member in operation comes into contact with the operating range of the collection unit;
Jig for measuring moisture content.
[12]
 [1]乃至[11]の何れかに記載の含水率測定用治具において、
 前記採取部及び前記計測部を遮光するための遮光部を備える、
 含水率測定用治具。
[12]
[1] In the jig for measuring moisture content according to any one of [11],
comprising a light shielding section for shielding the sampling section and the measurement section from light;
Jig for measuring moisture content.
[13]
 [1]乃至[12]の何れかに記載の含水率測定用治具において、
 画像を表示が可能な表示部を備える、
 含水率測定用治具。
[13]
[1] In the jig for measuring moisture content according to any one of [12],
Equipped with a display unit capable of displaying images,
Jig for measuring moisture content.
[14]
 脱水機で処理した汚泥を収容するための収容空間を有する採取部材を含む採取部と、前記採取部を動作させる駆動部と、計測プローブを含み、前記採取部材の前記収容空間に収容されることにより採取された前記汚泥を前記計測プローブによって計測することにより計測情報を取得する計測部と、を有し、前記駆動部によって、前記採取部を、採取対象の前記汚泥の内部に侵入させるように動作させた後、前記採取部を前記汚泥の内部から外部に抜き出すように動作させることで、前記汚泥を前記収容空間に取り入れることにより、前記採取部が前記汚泥を採取し、前記計測部によって、前記採取部によって採取された前記汚泥の前記計測情報を取得する含水率測定用治具と、
 前記計測情報に基づいて含水率を算出する情報処理装置と、
 を備える、
 含水率測定装置。
[14]
a collection section including a collection member having a storage space for storing sludge treated with a dehydrator, a drive section for operating the collection section, and a measurement probe, the collection section being accommodated in the storage space of the collection member. a measurement unit that acquires measurement information by measuring the sludge collected by the measurement probe, and the drive unit causes the collection unit to enter the inside of the sludge to be collected. After the operation, the sampling section is operated to extract the sludge from inside to the outside, and the sludge is taken into the storage space, so that the sampling section collects the sludge, and the measurement section collects the sludge. a water content measuring jig that acquires the measurement information of the sludge collected by the collection section;
an information processing device that calculates a moisture content based on the measurement information;
Equipped with
Moisture content measuring device.
[15]
 脱水機で処理した汚泥を収容するための収容空間を有する採取部材を含む採取部と、前記採取部を動作させる駆動部と、計測プローブを含み、前記採取部材の前記収容空間に収容されることにより採取された前記汚泥を前記計測プローブによって計測することにより計測情報を取得する計測部と、を有し、前記駆動部によって、前記採取部を、採取対象の前記汚泥の内部に侵入させるように動作させた後、前記採取部を前記汚泥の内部から外部に抜き出すように動作させることで、前記汚泥を前記収容空間に取り入れることにより、前記採取部が前記汚泥を採取し、前記計測部によって、前記採取部によって採取された前記汚泥の前記計測情報を取得する含水率測定用治具と、
 画像を表示する表示装置と、
 前記計測情報に基づいて含水率を算出し、算出した前記含水率に基づいて、前記含水率測定用治具及び前記表示装置に対して所定の制御を行う情報処理装置と、
 を備える、
 運転支援ナビシステム。
[15]
A collection section including a collection member having a storage space for storing sludge treated with a dehydrator, a drive section for operating the collection section, and a measurement probe, the collection section being accommodated in the storage space of the collection member. a measurement unit that acquires measurement information by measuring the sludge collected by the measurement probe, and the drive unit causes the collection unit to enter the inside of the sludge to be collected. After the operation, the sampling section is operated to extract the sludge from the inside to the outside, and the sludge is taken into the storage space, so that the sampling section collects the sludge, and the measurement section collects the sludge. a moisture content measuring jig that acquires the measurement information of the sludge collected by the collection section;
a display device that displays an image;
an information processing device that calculates a moisture content based on the measurement information and performs predetermined control on the moisture content measurement jig and the display device based on the calculated moisture content;
Equipped with
Driving support navigation system.
[16]
 [15]に記載の運転支援ナビシステムにおいて、
 前記情報処理装置は、
 前記所定の制御として、前記含水率測定用治具が前記汚泥を採取するときの採取深さを提案する旨及び前記計測部の交換を促す旨の少なくとも一つを含む運転案を前記表示装置に表示する制御を行うように構成された、
 運転支援ナビシステム。
[16]
In the driving support navigation system described in [15],
The information processing device includes:
As the predetermined control, an operation plan including at least one of proposing a sampling depth when the moisture content measuring jig samples the sludge and prompting replacement of the measuring section is displayed on the display device. configured to control display,
Driving support navigation system.
[17]
 [15]乃至[16]の何れかに記載の運転支援ナビシステムにおいて、
 前記情報処理装置は、
 前記所定の制御として、前記含水率測定用治具の前記汚泥の採取深さを、前回汚泥を採取したときの採取深さとは異なる採取深さに変える制御を行うように構成された、
 運転支援ナビシステム。
[17]
In the driving support navigation system according to any one of [15] to [16],
The information processing device includes:
The predetermined control is configured to perform control to change the sampling depth of the sludge of the moisture content measuring jig to a sampling depth different from the sampling depth when sludge was sampled last time.
Driving support navigation system.
[18]
 [15]乃至[17]の何れかに記載の運転支援ナビシステムにおいて、
 前記情報処理装置は、
 下水処理場の凝集混和槽内の汚泥のフロック状態の第1画像情報及び前記脱水機の計器類の第2画像情報を取得し、
 算出した前記含水率、前記第1画像情報及び前記第2画像情報に基づいて、前記脱水機の運転案を前記表示装置に表示する制御を行うように構成された、
 運転支援ナビシステム。
[18]
In the driving support navigation system according to any one of [15] to [17],
The information processing device includes:
obtaining first image information of a floc state of sludge in a coagulation mixing tank of a sewage treatment plant and second image information of instruments of the dehydrator;
It is configured to perform control to display an operation plan for the dehydrator on the display device based on the calculated moisture content, the first image information, and the second image information.
Driving support navigation system.
[19]
 [15]乃至[18]の何れかに記載の運転支援ナビシステムにおいて、
 前記計測部は、分光計測により、前記採取部によって採取された前記汚泥の第1の前記計測情報を取得する第1計測部と、補助的な計測により、前記採取部によって採取された前記汚泥の第2の前記計測情報を取得する第2計測部と、を含み、
 前記情報処理装置は、前記含水率として、前記第1の前記計測情報に基づく第1の含水率と、前記第2の前記計測情報に基づく第2の含水率を算出し、
 前記第1の含水率が第1予測範囲外であり、且つ、前記第2の含水率が第2予測範囲内である場合、前記所定の制御として、少なくとも前記汚泥の採取深さを、前回前記汚泥を採取したときの採取深さとは異なる採取深さに変えるように前記含水率測定用治具を制御することを含む第1制御を行い、
 前記第1の含水率が前記第1予測範囲内であり、且つ、前記第2の含水率が前記第2予測範囲外である場合、前記所定の制御として、前記第2計測部の交換を促す旨を表示するように前記表示装置を制御することを含む第2制御を行い、
 前記第1の含水率が前記第1予測範囲外であり、且つ、前記第2の含水率が前記第2予測範囲外である場合、前記所定の制御として、少なくとも前記汚泥の採取深さを、前回前記汚泥を採取したときの採取深さとは異なる採取深さに変えるように前記含水率測定用治具を制御することを含む第3制御を行う、
 ように構成された、
 運転支援ナビシステム。
[19]
In the driving support navigation system according to any one of [15] to [18],
The measurement unit includes a first measurement unit that acquires the first measurement information of the sludge collected by the collection unit by spectroscopic measurement, and a first measurement unit that acquires the first measurement information of the sludge collected by the collection unit by auxiliary measurement. a second measurement unit that acquires the second measurement information;
The information processing device calculates, as the moisture content, a first moisture content based on the first measurement information and a second moisture content based on the second measurement information,
When the first moisture content is outside the first predicted range and the second moisture content is within the second predicted range, the predetermined control is such that at least the sampling depth of the sludge is adjusted to the previous depth. Performing a first control including controlling the water content measuring jig so as to change the sampling depth to a sampling depth different from the sampling depth when the sludge was sampled;
When the first moisture content is within the first predicted range and the second moisture content is outside the second predicted range, the predetermined control prompts replacement of the second measurement unit. performing a second control including controlling the display device to display a message;
When the first moisture content is outside the first predicted range and the second moisture content is outside the second predicted range, the predetermined control includes at least adjusting the sampling depth of the sludge. performing a third control including controlling the moisture content measuring jig to change the sampling depth to a sampling depth different from the sampling depth when the sludge was sampled last time;
configured as,
Driving support navigation system.
 1…脱水汚泥、2a…サンプリングユニット、2b…上蓋、2c…底蓋、2d…採取部材、3a…近赤外分光プローブ、3b…補助計測用プローブ、11…採取部、12…計測部、21…駆動機構配設部、G1…運転支援ナビシステム DESCRIPTION OF SYMBOLS 1...Dehydrated sludge, 2a...Sampling unit, 2b...Top lid, 2c...Bottom cover, 2d...Collection member, 3a...Near infrared spectroscopy probe, 3b...Auxiliary measurement probe, 11...Sampling part, 12...Measurement part, 21 ...Drive mechanism arrangement section, G1...Driving support navigation system

Claims (19)

  1.  脱水機で処理した汚泥を収容するための収容空間を有する採取部材を含む採取部と、
     前記採取部を動作させる駆動部と、
     計測プローブを含み、前記採取部材の前記収容空間に収容されることにより採取された前記汚泥を前記計測プローブによって計測することにより計測情報を取得する計測部と、
     を有し、
     前記駆動部によって、前記採取部を、採取対象の前記汚泥の内部に侵入させるように動作させた後、前記採取部を前記汚泥の内部から外部に抜き出すように動作させることで、前記汚泥を前記収容空間に取り入れることにより、前記採取部が前記汚泥を採取し、前記計測部によって、前記採取部によって採取された前記汚泥の前記計測情報を取得する、
     含水率測定用治具。
    a collection section including a collection member having a storage space for storing sludge treated with the dehydrator;
    a drive unit that operates the collection unit;
    a measurement unit that includes a measurement probe and acquires measurement information by measuring the sludge collected by being accommodated in the storage space of the collection member with the measurement probe;
    has
    The drive unit operates the collection unit to enter the sludge to be collected, and then operates the collection unit to extract the sludge from the inside of the sludge, thereby removing the sludge from the sludge. The collection section collects the sludge by taking it into the storage space, and the measurement section acquires the measurement information of the sludge collected by the collection section.
    Jig for measuring moisture content.
  2.  請求項1に記載の含水率測定用治具において、
     前記駆動部は、延伸及び短縮することによって前記採取部を動作させるように構成され、
     前記駆動部が延伸することによって、前記採取部を採取対象の前記汚泥の内部に侵入させるように動作させ、
     前記駆動部が短縮することによって、前記採取部を前記汚泥の内部から外部に抜き出すように動作させる、
     含水率測定用治具。
    The moisture content measuring jig according to claim 1,
    The drive unit is configured to operate the collection unit by stretching and shortening;
    By extending the driving part, the collecting part is operated to enter into the sludge to be collected,
    By shortening the driving part, the collecting part is operated to extract the sludge from the inside to the outside.
    Jig for measuring moisture content.
  3.  請求項1に記載の含水率測定用治具において、
     前記計測部は、分光計測により、前記採取部によって採取された前記汚泥の前記計測情報を取得する、
     含水率測定用治具。
    The moisture content measuring jig according to claim 1,
    The measuring unit acquires the measurement information of the sludge collected by the collecting unit by spectroscopic measurement.
    Jig for measuring moisture content.
  4.  請求項1に記載の含水率測定用治具において、
     前記計測部は、分光計測により、前記採取部によって採取された前記汚泥の第1の前記計測情報を取得し、補助的な計測により、前記採取部によって採取された前記汚泥の第2の前記計測情報を取得する、
     含水率測定用治具。
    The moisture content measuring jig according to claim 1,
    The measurement unit acquires the first measurement information of the sludge collected by the collection unit by spectroscopic measurement, and acquires the second measurement information of the sludge collected by the collection unit by auxiliary measurement. obtain information,
    Jig for measuring moisture content.
  5.  請求項4に記載の含水率測定用治具において、
     前記補助的な計測は、カサ重量及び粘度の少なくとも一つを測定する、
     含水率測定用治具。
    The moisture content measuring jig according to claim 4,
    The auxiliary measurement measures at least one of bulk weight and viscosity.
    Jig for measuring moisture content.
  6.  請求項1に記載の含水率測定用治具において、
     前記採取部材は、3つの面に囲まれた前記収容空間を有する断面がコ字状の部材であり、
     前記採取部は、前記採取部材の他に、
     前記収容空間の上側を覆う位置と前記収容空間の上側を覆わない位置との間を移動可能な上蓋と、
     前記収容空間の下側を覆う位置と前記収容空間の下側を覆わない位置との間を移動可能な底蓋と、
     を含み、
     前記駆動部は、
     前記採取部材を独立して動作させる第1駆動機構と、
     前記上蓋を独立して動作させる第2駆動機構と、
     前記底蓋を独立して動作させる第3駆動機構と、
     を含む、
     含水率測定用治具。
    The moisture content measuring jig according to claim 1,
    The collection member is a member having a U-shaped cross section and having the accommodation space surrounded by three sides,
    In addition to the collection member, the collection section includes:
    an upper lid that is movable between a position covering the upper side of the housing space and a position not covering the upper side of the housing space;
    a bottom cover that is movable between a position that covers the lower side of the storage space and a position that does not cover the lower side of the storage space;
    including;
    The drive unit includes:
    a first drive mechanism that independently operates the collection member;
    a second drive mechanism that independently operates the top lid;
    a third drive mechanism that independently operates the bottom cover;
    including,
    Jig for measuring moisture content.
  7.  請求項6に記載の含水率測定用治具において、
     前記第1駆動機構によって、前記上蓋が前記収容空間の上側を覆わず、且つ、前記底蓋が前記収容空間を覆わない状態で、前記採取部材を採取対象の前記汚泥の内部に侵入させ、
     前記第2駆動機構によって、前記採取部材を採取対象の前記汚泥の内部に侵入させた状態で、前記上蓋を前記収容空間の上側を覆う位置に移動し、前記第3駆動機構によって、前記底蓋を前記収容空間の下側を覆う位置に移動し、
     前記上蓋が前記収容空間の上側を覆い、且つ、前記底蓋が前記収容空間の下側を覆った状態を維持したまま、前記第1駆動機構、前記第2駆動機構及び前記第3駆動機構によって、前記採取部材、前記上蓋及び前記底蓋を前記汚泥から抜き出し、
     前記第2駆動機構によって、前記上蓋を前記収容空間の上側を覆わない位置まで移動させることにより、採取した前記汚泥を外部に露出させ、前記汚泥の露出面を前記計測プローブによって計測することによって、前記汚泥の前記計測情報を取得する、
     含水率測定用治具。
    The moisture content measuring jig according to claim 6,
    The first drive mechanism causes the collection member to enter the inside of the sludge to be collected in a state where the top lid does not cover the upper side of the storage space and the bottom lid does not cover the storage space,
    The second drive mechanism moves the top cover to a position covering the upper side of the storage space with the collection member entering the sludge to be collected, and the third drive mechanism moves the top cover to a position that covers the upper side of the storage space. moved to a position covering the lower side of the storage space,
    The first drive mechanism, the second drive mechanism, and the third drive mechanism maintain the state in which the top cover covers the upper side of the storage space and the bottom cover covers the bottom side of the storage space. , extracting the collection member, the top lid, and the bottom lid from the sludge;
    By moving the upper lid to a position where it does not cover the upper side of the storage space by the second drive mechanism, the collected sludge is exposed to the outside, and the exposed surface of the sludge is measured by the measurement probe, acquiring the measurement information of the sludge;
    Jig for measuring moisture content.
  8.  請求項7に記載の含水率測定用治具において、
     前記第1駆動機構によって、前記採取部材を、採取した前記汚泥と垂直方向において重ならない位置まで移動し、
     前記第3駆動機構によって、前記底蓋を、採取した前記汚泥と垂直方向において重ならない位置まで移動することで、採取した前記汚泥を下方に自重で落下させる、
     含水率測定用治具。
    The moisture content measuring jig according to claim 7,
    The first drive mechanism moves the collection member to a position where it does not overlap the collected sludge in the vertical direction,
    The third drive mechanism moves the bottom cover to a position where it does not overlap the collected sludge in the vertical direction, thereby causing the collected sludge to fall downward under its own weight.
    Jig for measuring moisture content.
  9.  請求項8に記載の含水率測定用治具において、
     前記底蓋は、前方の端部に向かって上方に傾斜している、
     含水率測定用治具。
    The moisture content measuring jig according to claim 8,
    the bottom lid is sloped upwardly toward the front end;
    Jig for measuring moisture content.
  10.  請求項6に記載の含水率測定用治具において、
     前記上蓋の一主面及び他主面のうちの前記計測プローブ側の面には、前記計測プローブの測定光の反射率を高めるための塗料が塗られている、
     含水率測定用治具。
    The moisture content measuring jig according to claim 6,
    Of the one main surface and the other main surface of the upper lid, a surface on the measurement probe side is coated with paint for increasing the reflectance of the measurement light of the measurement probe.
    Jig for measuring moisture content.
  11.  請求項1に記載の含水率測定用治具において、
     前記採取部の動作範囲に、動作中の前記採取部材が接触することにより、前記採取部材に付着した前記汚泥を除去するブラシを備える、
     含水率測定用治具。
    The moisture content measuring jig according to claim 1,
    a brush that removes the sludge adhering to the collection member when the collection member in operation comes into contact with the operating range of the collection unit;
    Jig for measuring moisture content.
  12.  請求項1に記載の含水率測定用治具において、
     前記採取部及び前記計測部を遮光するための遮光部を備える、
     含水率測定用治具。
    The moisture content measuring jig according to claim 1,
    comprising a light shielding section for shielding the sampling section and the measurement section from light;
    Jig for measuring moisture content.
  13.  請求項1に記載の含水率測定用治具において、
     画像を表示が可能な表示部を備える、
     含水率測定用治具。
    The moisture content measuring jig according to claim 1,
    Equipped with a display unit capable of displaying images,
    Jig for measuring moisture content.
  14.  脱水機で処理した汚泥を収容するための収容空間を有する採取部材を含む採取部と、前記採取部を動作させる駆動部と、計測プローブを含み、前記採取部材の前記収容空間に収容されることにより採取された前記汚泥を前記計測プローブによって計測することにより計測情報を取得する計測部と、を有し、前記駆動部によって、前記採取部を、採取対象の前記汚泥の内部に侵入させるように動作させた後、前記採取部を前記汚泥の内部から外部に抜き出すように動作させることで、前記汚泥を前記収容空間に取り入れることにより、前記採取部が前記汚泥を採取し、前記計測部によって、前記採取部によって採取された前記汚泥の前記計測情報を取得する含水率測定用治具と、
     前記計測情報に基づいて含水率を算出する情報処理装置と、
     を備える、
     含水率測定装置。
    A collection section including a collection member having a storage space for storing sludge treated with a dehydrator, a drive section for operating the collection section, and a measurement probe, the collection section being accommodated in the storage space of the collection member. a measurement unit that acquires measurement information by measuring the sludge collected by the measurement probe, and the drive unit causes the collection unit to enter the inside of the sludge to be collected. After the operation, the sampling section is operated to extract the sludge from the inside to the outside, and the sludge is taken into the storage space, so that the sampling section collects the sludge, and the measurement section collects the sludge. a moisture content measuring jig that acquires the measurement information of the sludge collected by the collection section;
    an information processing device that calculates a moisture content based on the measurement information;
    Equipped with
    Moisture content measuring device.
  15.  脱水機で処理した汚泥を収容するための収容空間を有する採取部材を含む採取部と、前記採取部を動作させる駆動部と、計測プローブを含み、前記採取部材の前記収容空間に収容されることにより採取された前記汚泥を前記計測プローブによって計測することにより計測情報を取得する計測部と、を有し、前記駆動部によって、前記採取部を、採取対象の前記汚泥の内部に侵入させるように動作させた後、前記採取部を前記汚泥の内部から外部に抜き出すように動作させることで、前記汚泥を前記収容空間に取り入れることにより、前記採取部が前記汚泥を採取し、前記計測部によって、前記採取部によって採取された前記汚泥の前記計測情報を取得する含水率測定用治具と、
     画像を表示する表示装置と、
     前記計測情報に基づいて含水率を算出し、算出した前記含水率に基づいて、前記含水率測定用治具及び前記表示装置に対して所定の制御を行う情報処理装置と、
     を備える、
     運転支援ナビシステム。
    A collection section including a collection member having a storage space for storing sludge treated with a dehydrator, a drive section for operating the collection section, and a measurement probe, the collection section being accommodated in the storage space of the collection member. a measurement unit that acquires measurement information by measuring the sludge collected by the measurement probe, and the drive unit causes the collection unit to enter the inside of the sludge to be collected. After the operation, the sampling section is operated to extract the sludge from the inside to the outside, and the sludge is taken into the storage space, so that the sampling section collects the sludge, and the measurement section collects the sludge. a moisture content measuring jig that acquires the measurement information of the sludge collected by the collection section;
    a display device that displays an image;
    an information processing device that calculates a moisture content based on the measurement information and performs predetermined control on the moisture content measurement jig and the display device based on the calculated moisture content;
    Equipped with
    Driving support navigation system.
  16.  請求項15に記載の運転支援ナビシステムにおいて、
     前記情報処理装置は、
     前記所定の制御として、前記含水率測定用治具が前記汚泥を採取するときの採取深さを提案する旨及び前記計測部の交換を促す旨の少なくとも一つを含む運転案を前記表示装置に表示する制御を行うように構成された、
     運転支援ナビシステム。
    The driving support navigation system according to claim 15,
    The information processing device includes:
    As the predetermined control, an operation plan including at least one of proposing a sampling depth when the moisture content measuring jig samples the sludge and prompting replacement of the measuring section is displayed on the display device. configured to control display,
    Driving support navigation system.
  17.  請求項15に記載の運転支援ナビシステムにおいて、
     前記情報処理装置は、
     前記所定の制御として、前記含水率測定用治具の前記汚泥の採取深さを、前回汚泥を採取したときの採取深さとは異なる採取深さに変える制御を行うように構成された、
     運転支援ナビシステム。
    The driving support navigation system according to claim 15,
    The information processing device includes:
    The predetermined control is configured to perform control to change the sampling depth of the sludge of the moisture content measuring jig to a sampling depth different from the sampling depth when sludge was sampled last time.
    Driving support navigation system.
  18.  請求項15に記載の運転支援ナビシステムにおいて、
     前記情報処理装置は、
     下水処理場の凝集混和槽内の汚泥のフロック状態の第1画像情報及び前記脱水機の計器類の第2画像情報を取得し、
     算出した前記含水率、前記第1画像情報及び前記第2画像情報に基づいて、前記脱水機の運転案を前記表示装置に表示する制御を行うように構成された、
     運転支援ナビシステム。
    The driving support navigation system according to claim 15,
    The information processing device includes:
    obtaining first image information of a floc state of sludge in a coagulation mixing tank of a sewage treatment plant and second image information of instruments of the dehydrator;
    It is configured to perform control to display an operation plan for the dehydrator on the display device based on the calculated moisture content, the first image information, and the second image information.
    Driving support navigation system.
  19.  請求項15に記載の運転支援ナビシステムにおいて、
     前記計測部は、分光計測により、前記採取部によって採取された前記汚泥の第1の前記計測情報を取得する第1計測部と、補助的な計測により、前記採取部によって採取された前記汚泥の第2の前記計測情報を取得する第2計測部と、を含み、
     前記情報処理装置は、前記含水率として、前記第1の前記計測情報に基づく第1の含水率と、前記第2の前記計測情報に基づく第2の含水率を算出し、
     前記第1の含水率が第1予測範囲外であり、且つ、前記第2の含水率が第2予測範囲内である場合、前記所定の制御として、少なくとも前記汚泥の採取深さを、前回前記汚泥を採取したときの採取深さとは異なる採取深さに変えるように前記含水率測定用治具を制御することを含む第1制御を行い、
     前記第1の含水率が前記第1予測範囲内であり、且つ、前記第2の含水率が前記第2予測範囲外である場合、前記所定の制御として、前記第2計測部の交換を促す旨を表示するように前記表示装置を制御することを含む第2制御を行い、
     前記第1の含水率が前記第1予測範囲外であり、且つ、前記第2の含水率が前記第2予測範囲外である場合、前記所定の制御として、少なくとも前記汚泥の採取深さを、前回前記汚泥を採取したときの採取深さとは異なる採取深さに変えるように前記含水率測定用治具を制御することを含む第3制御を行う、
     ように構成された、
     運転支援ナビシステム。
    The driving support navigation system according to claim 15,
    The measurement unit includes a first measurement unit that acquires the first measurement information of the sludge collected by the collection unit by spectroscopic measurement, and a first measurement unit that acquires the first measurement information of the sludge collected by the collection unit by auxiliary measurement. a second measurement unit that acquires the second measurement information;
    The information processing device calculates, as the moisture content, a first moisture content based on the first measurement information and a second moisture content based on the second measurement information,
    When the first moisture content is outside the first predicted range and the second moisture content is within the second predicted range, the predetermined control is such that at least the sampling depth of the sludge is adjusted to the previous depth. Performing a first control including controlling the water content measuring jig so as to change the sampling depth to a sampling depth different from the sampling depth when the sludge was sampled;
    When the first moisture content is within the first predicted range and the second moisture content is outside the second predicted range, the predetermined control prompts replacement of the second measurement unit. performing a second control including controlling the display device to display a message;
    When the first moisture content is outside the first predicted range and the second moisture content is outside the second predicted range, the predetermined control includes at least adjusting the sampling depth of the sludge. performing a third control including controlling the moisture content measuring jig to change the sampling depth to a sampling depth different from the sampling depth when the sludge was sampled last time;
    configured as,
    Driving support navigation system.
PCT/JP2023/014957 2022-07-12 2023-04-13 Water content measurement jig, water content measurement device, and operation assistance navigation system WO2024014078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022112082A JP2024010629A (en) 2022-07-12 2022-07-12 Water content measurement jig, water content measuring apparatus, and operation support navigation system
JP2022-112082 2022-07-12

Publications (1)

Publication Number Publication Date
WO2024014078A1 true WO2024014078A1 (en) 2024-01-18

Family

ID=89536386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014957 WO2024014078A1 (en) 2022-07-12 2023-04-13 Water content measurement jig, water content measurement device, and operation assistance navigation system

Country Status (2)

Country Link
JP (1) JP2024010629A (en)
WO (1) WO2024014078A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113900A (en) * 1980-12-29 1982-07-15 Kurita Water Ind Ltd Method and device for control of sludge dehydration
JPS6040699A (en) * 1983-08-15 1985-03-04 Nippon Kokan Kk <Nkk> Sampling method of belt-press type sludge dehydrator
JPH02157637A (en) * 1988-12-09 1990-06-18 Ngk Insulators Ltd Sampling device for sludge
JPH08219988A (en) * 1995-02-20 1996-08-30 Kubota Corp Apparatus for measuring moisture content
JPH09178654A (en) * 1995-12-25 1997-07-11 Chino Corp Measuring method for sludge moisture
JP2004278950A (en) * 2003-03-17 2004-10-07 Tsukishima Techno Mente Service Kk Incineration method of sewage sludge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113900A (en) * 1980-12-29 1982-07-15 Kurita Water Ind Ltd Method and device for control of sludge dehydration
JPS6040699A (en) * 1983-08-15 1985-03-04 Nippon Kokan Kk <Nkk> Sampling method of belt-press type sludge dehydrator
JPH02157637A (en) * 1988-12-09 1990-06-18 Ngk Insulators Ltd Sampling device for sludge
JPH08219988A (en) * 1995-02-20 1996-08-30 Kubota Corp Apparatus for measuring moisture content
JPH09178654A (en) * 1995-12-25 1997-07-11 Chino Corp Measuring method for sludge moisture
JP2004278950A (en) * 2003-03-17 2004-10-07 Tsukishima Techno Mente Service Kk Incineration method of sewage sludge

Also Published As

Publication number Publication date
JP2024010629A (en) 2024-01-24

Similar Documents

Publication Publication Date Title
JP4919236B2 (en) Test value prediction apparatus, prediction method and prediction program using electrophoretic waveform
Van den Bulcke et al. Advanced X-ray CT scanning can boost tree ring research for earth system sciences
JPH11352057A (en) Spectrum meter device and integrated spectrum meter device
Puchwein Selection of calibration samples for near-infrared spectrometry by factor analysis of spectra
CN104931483A (en) Raman spectrum detection method for pesticide residues in fruits and vegetables
JP5181650B2 (en) Analysis system
CN208766110U (en) Pathology multiple target point intelligent auxiliary diagnosis system
WO2024014078A1 (en) Water content measurement jig, water content measurement device, and operation assistance navigation system
DE60013731T2 (en) transmitted light refractometer
DE102017126612A1 (en) Measuring device for analyzing a measuring medium
Szarka et al. Smartphone cortex controlled real-time image processing and reprocessing for concentration independent LED induced fluorescence detection in capillary electrophoresis
Ramos et al. LabVIEW 2010 computer vision platform based virtual instrument and its application for pitting corrosion study
JPH06331541A (en) Method and apparatus for measurement of component concentration of organic exfoliation liquid
Vestri et al. A versatile and compact surface plasmon resonance spectrometer based on single board computer
US20190072485A1 (en) System and method for monitoring reagent concentrations
JP4922109B2 (en) Cell analysis method, apparatus and program
CN201141835Y (en) On-line automatic correction device for optical spectrum sensor
CN113406038A (en) Optical detection method and device for pH value of water
Song et al. Drop growth monitoring and drop volume measurement based on image drop analysis with CCD
WO2003098199A9 (en) In situ methods for measuring the release of a substance from a dosage form
JP2020169835A (en) Information processing method and analyzer
CN112432940B (en) Switchable sample injection excitation device and method based on oil spectrum analyzer
JP2003270126A (en) Instrument for measuring solubility
Sithambaram et al. Image Quality Assessment of Large Tissue Samples Stained using a Customized Automated Slide Stainer
TWM413120U (en) Water quality measurement equipment for monitoring chemical oxygen demand (COD) and suspended solid (SS)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839256

Country of ref document: EP

Kind code of ref document: A1