WO2024014061A1 - Isolator model generating system, isolator model generating device, and isolator model generating method - Google Patents

Isolator model generating system, isolator model generating device, and isolator model generating method Download PDF

Info

Publication number
WO2024014061A1
WO2024014061A1 PCT/JP2023/010966 JP2023010966W WO2024014061A1 WO 2024014061 A1 WO2024014061 A1 WO 2024014061A1 JP 2023010966 W JP2023010966 W JP 2023010966W WO 2024014061 A1 WO2024014061 A1 WO 2024014061A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
circuit breaker
model
data
acoustic
Prior art date
Application number
PCT/JP2023/010966
Other languages
French (fr)
Japanese (ja)
Inventor
隆 遠藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024014061A1 publication Critical patent/WO2024014061A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a circuit breaker model generation system, a circuit breaker model generation device, and a circuit breaker model generation method.
  • Patent Document 1 There is a technique described in Patent Document 1 as a technique for attaching a sensor and making a judgment based on the acquired data.
  • Patent Document 1 describes, "a power conversion circuit that converts input DC power into AC power, an output wiring that transmits the power converted by the power conversion circuit, and a voltage converter provided in the middle of the output wiring that converts the input DC power into AC power.
  • an AC breaker constructed to be switched on and off based on a value;
  • a detector, and a diagnostic device that diagnoses whether or not the AC circuit breaker that has emitted the sound is abnormal based on the sound detected by the sound detector and predetermined criterion information.
  • a power conversion system and circuit breaker diagnostic device are disclosed.
  • the present invention was made in view of this background, and an object of the present invention is to efficiently generate an operational model of a circuit breaker.
  • the present invention includes a sound collection device that collects the operating sound of a circuit breaker that cuts off power and outputs it as acoustic data, and a first sound collection device that is one of the plurality of circuit breakers installed.
  • the acoustic model is an acoustic model that uses as input data a first feature amount that is a feature amount generated from first acoustic data that is the acoustic data obtained from the circuit breaker, and is associated with the first feature amount.
  • a first learning unit that outputs a first learning model through first learning that is learning using a first acoustic model as teacher data, and a second learning unit that is the circuit breaker different from the first circuit breaker.
  • a second feature quantity which is a feature quantity, generated based on the second acoustic data, which is the acoustic data acquired from the circuit breaker, is used as input data, and the a second learning unit that outputs a second learning model through second learning that is learning using a second acoustic model that is an acoustic model as teacher data;
  • the first learning model output as a result of the first learning is used as the initial learning model of the second learning model in the second learning. It is characterized by being used as a value.
  • Other solutions will be described as appropriate in the embodiments.
  • an operational model of a circuit breaker can be efficiently generated.
  • FIG. 2 is a diagram showing an outline of circuit breaker diagnosis by the circuit breaker diagnosis system.
  • FIG. 3 is a diagram showing details of collection of acoustic data and stroke position data used in this embodiment.
  • 1 is a diagram showing a configuration example of a diagnostic device according to the present embodiment. It is a figure which shows each timing at the time of the closing operation of a circuit breaker. It is a figure which shows each timing at the time of the closing operation of a circuit breaker.
  • FIG. 3 is a diagram illustrating an example of a feature tensor generation procedure in common model learning and individual model learning.
  • FIG. 3 is a diagram showing a correspondence relationship between a feature amount tensor and an activation degree.
  • FIG. 3 is a diagram illustrating processing in a common model learning unit performed in this embodiment.
  • FIG. 2 is a diagram showing processing in an individual model learning unit performed in this embodiment. It is a figure showing the processing procedure of an acoustic diagnosis section performed in this embodiment.
  • FIG. 2 is a diagram showing the configuration of common learning data and individual learning data.
  • FIG. 3 is a diagram showing a data structure of teacher data in a common model.
  • FIG. 3 is a diagram showing a specific example of the data structure of teacher data. It is a figure showing an example of a diagnosis result display screen outputted to an output device in this embodiment.
  • FIG. 7 is a diagram showing another example of the degree of activity.
  • FIG. 1 is a diagram showing an outline of circuit breaker diagnosis by a circuit breaker diagnosis system (circuit breaker model generation system) Z.
  • the circuit breaker diagnostic system Z includes a microphone (sound collection device) 202, a stroke position measuring device (contact position measuring device) 203, a common model learning section 114, an individual model learning section 115, and an acoustic diagnosis section 118. Further, the diagnostic processing performed in the circuit breaker diagnostic system Z is performed in three stages: common model learning (S1), individual model learning (S2), and diagnosis (S3).
  • the circuit breaker 201 cuts off power.
  • the microphone 202 is installed near the circuit breaker 201a.
  • the microphone 202 converts the sound pressure during opening and closing of the circuit breaker 201a (201: first circuit breaker) into an electrical signal.
  • the converted signal is output as acoustic data 301 (see FIGS. 4 and 5).
  • the microphone 202 collects the operating sound of the circuit breaker 201 and outputs it as acoustic data 301.
  • the acoustic data 301 is data on the operating sound of the circuit breaker 201.
  • the stroke position measuring device 203 measures the position of the contact point during the opening/closing operation using a laser or the like. Specifically, the stroke position measuring device 203 measures the distance of an opening/closing rod (not shown) of the circuit breaker 201a. In this way, the stroke position measuring device 203 measures the position of the contact of the circuit breaker and outputs it as stroke position data 302 (contact position data, see FIGS. 4 and 5).
  • the microphone 202 collects the sound when the circuit breaker 201a opens and closes, and the stroke position measuring device 203 measures the stroke position in synchronization.
  • the acoustic data (first acoustic data) 301 that is the acoustic data collected by the microphone 202 and the stroke position data 302 that is the stroke position data are sent to the common model learning unit 114 as common learning data 133. Sent.
  • any acquisition method may be used as long as the acoustic data 301 and the stroke position data 302 are acquired synchronously.
  • sound collection by the microphone 202 and measurement by the stroke position measuring device 203 may be constantly performed.
  • sound collection by the microphone 202 and measurement by the stroke position measuring device 203 may be started.
  • the microphone 202 and the stroke position measuring device 203 may be turned on manually.
  • the sound of the opening/closing operation of the circuit breaker 201b by the microphone 202 and the stroke position by the stroke position measuring device 203 are synchronized. It is measured by
  • the measured acoustic data (first acoustic data) 301 and stroke position data 302 of the circuit breaker 201b are sent to the common model learning unit 114 as common learning data 133.
  • the acoustic data 301 and stroke position data 302 of circuit breakers 201a of the same model having different operating conditions may be measured.
  • the different operating conditions include, for example, different oils used.
  • circuit breakers 201a and 201b from which the common learning data 133 is collected during common model learning (S1) are circuit breakers 201 that are known to have no abnormality.
  • the microphone 202 and stroke position measuring device 203 installed near the circuit breaker 201b may be different from or the same as the microphone 202 and stroke position measuring device 203 installed near the circuit breaker 201a.
  • acoustic data 301 and the stroke position data 302 may be measured for three or more sets of circuit breakers 201, microphones 202, and stroke position measuring devices 203. In this way, in common model learning (S1), acoustic data 301 and stroke position data 302 are acquired from a plurality of circuit breakers 201 installed.
  • the common model learning unit (first learning unit) 114 uses the common learning data 133 acquired from each of the circuit breaker 201a and the circuit breaker 201b to generate a common model (first learning model) 134.
  • the common model 134 is the connection strength between neurons of the deep neural network (neural network, first neural network) N1 (see FIG. 8). Learning of the common model 134 will be described later.
  • the common model 134 is a learning result by the common model learning unit 114.
  • the sound collection in the circuit breaker 201c and the measurement of the stroke position are performed synchronously.
  • Acoustic data (second acoustic data) 301 of the sound collected by the microphone 202 and stroke position data 302 measured by the stroke position measuring device 203 are passed to the individual model learning unit 115 as individual learning data 135. Note that the acoustic data 301 and the stroke position data 302 collected as the individual learning data 135 may be smaller in number than the common learning data 133.
  • circuit breaker 201c from which the individual learning data 135 is collected during the individual model learning (S2) is a circuit breaker 201 that is known to have no abnormality at the time the individual model learning (S2) is performed. It is.
  • the individual model learning unit 115 uses a deep neural network (neural network, second neural network) N2 (see FIG. 9) using the already learned model (common model 134) as an initial value by the common model learning unit 114. , the individual model 136 is learned by inputting the individual learning data 135. The learning of the individual model 136 will be described later.
  • the individual model 136 is a learning result by the individual model learning unit 115, and specifically, is the connection strength of neurons in the deep neural network N2.
  • the acoustic diagnosis section (diagnosis section) 118 diagnoses the circuit breaker 201c (S3).
  • the acoustic diagnosis section 118 corresponds to the activity estimation processing section 116 and the state diagnosis processing section 117 in FIG.
  • the acoustic diagnosis unit 118 collects acoustic data (third acoustic data that is different from the second acoustic data) that is the data of the sound collected by the installed microphone 202. ) 301 and the individual model 136 to diagnose the circuit breaker 201c.
  • the acoustic diagnosis unit 118 inputs the acquired acoustic data 301 to the individual model 136.
  • the acoustic diagnosis unit 118 diagnoses the operation of the circuit breaker 201c based on the diagnosis result 211 that is the output result from the individual model 136.
  • FIG. 2 is a diagram showing details of collection of acoustic data 301 and stroke position data 302 used in this embodiment. Reference is made to FIG. 1 as appropriate.
  • the collection of acoustic data 301 and stroke position data 302 in FIG. 2 is the same as the collection of common learning data 133 in common model learning (S1) in FIG. 1 and the collection of individual learning data 135 in individual model learning (S2). This is a common process.
  • the microphone 202 that collects the sound of the circuit breaker 201 and the stroke position measuring device 203 are installed near the circuit breaker 201 (distance L1).
  • the logger 221 also synchronizes the acoustic data 301 (see FIGS. 4 and 5) output from the microphone 202 and the stroke position data 302 (see FIGS. 4 and 5) output from the stroke position measuring device 203. and obtain it.
  • the logger 221 converts the acquired acoustic data 301 and stroke position data 302 into digital signals and outputs them to the diagnostic device 1.
  • the diagnostic device 1 includes a common model learning section 114, an individual model learning section 115, and an acoustic diagnosis section 118 shown in FIG. Further, the diagnostic device 1 can store common learning data 133, common model 134, individual learning data 135, and individual model 136 in the auxiliary storage device 130 (see FIG. 3).
  • the diagnostic device 1 stores the digital signals of the acoustic data 301 and stroke position data 302 received from the logger 221 in the auxiliary storage device 130 as the common learning data 133 and the individual learning data 135 shown in FIG.
  • the system shown in FIG. 2 can be used when collecting the common learning data 133 when generating the common model 134. Furthermore, the system shown in FIG. 2 can also be used when collecting a small amount of individual learning data 135 when generating the individual model 136 of the new circuit breaker 201c. Further, for the diagnosis (S3 in FIG. 1), the system shown in FIG. 2 can be used, except that the stroke position measuring device 203 is not used.
  • FIG. 3 is a diagram showing a configuration example of the diagnostic device (breaker model generation device) 1 according to the present embodiment.
  • the diagnostic device 1 includes a main storage device 100 configured with a RAM (Random Access Memory) or the like, and an auxiliary storage device 130 configured with an HDD (Hard Disk Drive), an SDD (Solid State Drive), or the like. Furthermore, the diagnostic device 1 includes a central processing unit 101 including a CPU (Central Processing Unit) and a GPU (Graphic Processing Unit).
  • the diagnostic device 1 also includes an input device 102 including a keyboard and a mouse, an output device (display device) 103 including a display, and a communication device 104 that communicates with a logger 221 and the like. Note that in FIG. 3, the logger 221 is indicated by a broken line to indicate that the logger 221 is not a component of the diagnostic device 1 in this embodiment.
  • the auxiliary storage device 130 stores a diagnostic software program 131, microphone position information 132, common learning data 133, common model 134, individual learning data 135, individual model 136, diagnostic parameters 137, and diagnostic history information 138.
  • the diagnostic software program 131 is a program for executing the diagnostic software 110.
  • the microphone position information 132 is information regarding the positional relationship (distance L1 in FIG. 2) between the microphone 202 and the circuit breaker 201.
  • the common learning data 133 is data used for common model learning (S1 in FIG. 1) by the common model learning unit 114.
  • the common model 134 is a model output by common model learning (S1 in FIG. 1) by the common model learning unit 114.
  • the common model 134 is specifically the connection strength of each neuron in the neural network that constitutes the common model 134.
  • the individual learning data 135 is data used in individual model learning (S2 in FIG. 1) by the individual model learning unit 115.
  • the individual model 136 is a model output by individual model learning by the individual model learning unit 115 (S2 in FIG. 1). As described above, the individual model 136 is specifically the connection strength of each neuron in the neural network that constitutes the individual model 136.
  • Diagnostic parameters 137 are parameters used for diagnosis.
  • the diagnostic parameter 137 may be a threshold value indicating by what percentage deviation from the rated average of the estimated opening operation start timing and opening operation end timing is determined to be abnormal.
  • the diagnosis history information 138 is the diagnosis results 211 (see FIG. 1) performed by the state diagnosis processing unit 117 up to now.
  • the main storage device 100 is provided with diagnostic software 110 and a work area 120.
  • the diagnostic software 110 is realized by loading the diagnostic software program 131 stored in the auxiliary storage device 130 into the main storage device 100 and executing it by the central processing unit 101.
  • the diagnostic software 110 includes an overall control processing section 111, a spectrogram generation section (feature generation section) 112, a feature extraction processing section (feature setting section, feature generation section) 113, a common model learning section 114, and an individual model learning section. 115, an activity estimation processing section (diagnosis section) 116, and a state diagnosis processing section (diagnosis section) 117.
  • the overall control processing unit 111 manages control of the spectrogram generation unit 112, feature extraction processing unit 113, common model learning unit 114, individual model learning unit 115, activity estimation processing unit 116, and state diagnosis processing unit 117.
  • the spectrogram generation unit 112 generates a spectrogram 401 (see FIG. 6) from the acoustic data 301 acquired from the microphone 202.
  • the spectrogram 401 has time on the horizontal axis and frequency on the vertical axis. Details of the spectrogram 401 will be described later.
  • the feature quantity extraction processing unit 113 extracts a feature quantity tensor (feature quantity) 411 (FIGS. 6 and 7) from the spectrogram 401 generated by the spectrogram generation unit 112.
  • the feature amount tensor 411 is obtained by cutting out the spectrogram 401 at a predetermined time width. Note that details of the feature amount tensor 411 will be described later.
  • a tensor is a multidimensional array that includes vectors and matrices.
  • the common model learning unit 114 inputs a feature tensor 411 obtained from the acoustic data 301 obtained from multiple models and circuit breakers 201 having different operating conditions into a neural network, and learns the common model 134. generate.
  • the individual model learning unit 115 inputs the feature quantity tensor 411 obtained from the acoustic data 301 when the circuit breaker 201 to be diagnosed is normal to the common model 134, and generates the individual model 136 by learning.
  • the activity estimation processing unit 116 obtains an estimated activity 681 (see FIG. 10) that is the result of inputting the feature amount tensor 411 obtained from the acoustic data 301 to be diagnosed into the individual model 136.
  • Estimated activity level 681 is output as a result of inputting acoustic data 301 to individual model 136.
  • the state diagnosis processing unit 117 performs a state diagnosis of the circuit breaker 201 to be diagnosed based on the estimated activity level 681 acquired by the activity level estimation processing unit 116.
  • the activity estimation processing section 116 and the state diagnosis processing section 117 constitute the acoustic diagnosis section 118 in FIG.
  • the work area 120 is an area used as a temporary storage unit when the diagnostic software 110 is being executed.
  • the work area 120 is provided with an acoustic data storage area 121, a spectrogram storage area 122, a feature storage area 123, a model storage area 124, an estimated activity storage area 125, a diagnostic parameter storage area 126, and a diagnostic result storage area 127.
  • the acoustic data storage area 121 is an area where acoustic data 301 acquired from the microphone 202 is temporarily stored.
  • the spectrogram 401 is temporarily stored in the spectrogram storage area 122.
  • the feature amount tensor 411 is temporarily stored in the feature amount storage area 123.
  • a common model 134 and individual models 136 are temporarily stored in the model storage area 124.
  • the estimated activity level 681 estimated by the individual model 136 is temporarily stored in the estimated activity level storage area 125 .
  • diagnostic parameters 137 used when diagnosing the circuit breaker 201 are temporarily stored.
  • the diagnosis result storage area 127 temporarily stores the diagnosis result 211 obtained by the state diagnosis processing section 117.
  • FIG. 4 is a diagram showing each timing during the closing operation of the circuit breaker 201 (see FIGS. 1 and 2).
  • acoustic data 301a (301) and stroke position data 302b (302) are shown in order from the top.
  • the activity level 310 at the start of the closing operation (activity level 311 at the start of the closing operation), the activity level 310 at the end of the closing operation (activity level 312 at the end of the closing operation), and the activity level 310 at the start of the opening operation.
  • Activity level 313 at the start of the opening operation activity level 310 at the end of the opening operation
  • the respective graphs are arranged along the time axis.
  • the activity level 310 is an acoustic model that models the sound generated when the circuit breaker 201 operates.
  • the activation degree 311 at the start of the closing operation is the activation degree 310 generated for the operation sound emitted when the closing operation of the circuit breaker 201 starts.
  • the activation degree 312 at the end of the closing operation is the activation degree 310 generated for the operation sound emitted when the closing operation of the circuit breaker ends.
  • the opening operation start activation degree 313 is the activation degree 310 generated regarding the operation sound emitted when the opening operation of the circuit breaker 201 starts.
  • the activation degree 314 at the end of the opening operation is the activation degree 310 generated regarding the operation sound emitted when the opening operation of the circuit breaker ends.
  • the activity level 310 is an acoustic model that models the sound generated when the circuit breaker 201 operates, such as when the circuit breaker 201 closes or opens.
  • the activity level 310 related to the closing operation of the circuit breaker 201 two types of activity level 310 are set: an activity level 311 at the start of the closing operation, and an activity level 312 at the end of the closing operation. The reason for this is that two sounds are generated when the circuit breaker 201 is closed in the example of this embodiment.
  • activation degrees 310 are set as the activation degrees 310 regarding the opening operation of the circuit breaker 201: an activation degree 313 at the start of the opening operation and an activation degree 314 at the end of the opening operation. The reason for this is also that two sounds are generated when the circuit breaker 201 is opened.
  • the activity level 310 may be set according to the sound generated by the circuit breaker 201 during the closing and opening operations. For example, if one sound is generated in each of the closing operation and the opening operation, one type of activation level 310 may be prepared for each type, and if three or more sounds are generated, Three types of activation levels 310 may be set for each of the closing operation and the opening operation. Further, if the number of sounds generated is different for each of the closing operation and the opening operation, different numbers of activation degrees 310 may be set. For example, if three sounds are generated during the closing operation and two sounds are generated during the opening operation, three types of activation levels 310 are set during the closing operation, and two types of activation levels 310 are set during the opening operation. It only needs to be set.
  • FIG. 4 shows the closing operation
  • the activation level 313 at the start of the opening operation and the activation level 314 at the end of the opening operation are inactive.
  • the broken lines in the graphs of the activity at the start of closing operation 311, the activity at the end of closing operation 312, the activity at the start of opening operation 313, and the activity at the end of opening operation 314 indicate the peak values of the respective activities 310. ing.
  • the acoustic data 301a is stored in synchronization with the stroke position data 302a.
  • the true values of the start time and end time of the closing operation can be determined from the change start time 321 and change end time 322 of the stroke position data 302a.
  • the closing operation start activation level 311 is set so that it rises at the start time of the closing operation (change start time 321 of the stroke position data 302a) and decreases at a constant rate.
  • the activation degree 311 at the start of the closing operation set in this way becomes a model of the acoustic intensity at the starting point of the closing operation.
  • the activation level 312 at the end of the closing operation is set so that it rises at the end time (change end time 322 of the stroke position data 302a) and decreases at a constant rate.
  • the activation degree 312 at the end of the closing operation set in this way becomes a model of the sound intensity at the end point of the closing operation.
  • each of the degrees of activity 310 rises perpendicularly to the time axis with the start time and end time of the closing or opening action as the starting point (action start time), and then rises at a predetermined slope. It is expressed in the form of a triangular wave that is attenuated by .
  • FIG. 5 is a diagram showing each timing during the opening operation of the circuit breaker 201 (see FIGS. 1 and 2). Similarly to FIG. 4, in FIG. 5, acoustic data 301b and stroke position data 302b are shown in order from the top. Furthermore, in FIG. 5, the activity level 310 at the start of the closing operation (activity level 311 at the start of the closing operation), the activity level 310 at the end of the closing operation (activity level 312 at the end of the closing operation), and the activity level 310 at the start of the opening operation. (Activity level 313 at the start of the opening operation) and activity level 310 at the end of the opening operation (Activity level 314 at the end of the opening operation) are shown. Note that in FIG. 5, the respective graphs are aligned on the time axis.
  • the acoustic data 301b and the stroke position data 302b are the same as the acoustic data 301a and the stroke position data 302a in FIG. 4, except that they are data for the opening operation, so their explanation in FIG. 5 will be omitted.
  • FIG. 5 shows data during the opening operation of the circuit breaker 201, the activation level 311 at the start of the closing operation and the activation level 312 at the end of the closing operation are inactive, and the activation level 313 at the start of the opening operation and the activation level 312 at the end of the closing operation are inactive.
  • the activity level 314 at the end is active.
  • the opening operation and the closing operation of the circuit breaker 201 are used as the operation of the circuit breaker 201.
  • the activity level 310 is composed of an activity level at the start of the closing operation 311, an activity level at the end of the closing operation 312, an activity level at the start of the opening operation 313, and an activity level at the end of the opening operation 314. .
  • the activity level 310 can be applied to the circuit breaker 201 that makes two sounds during each of the opening operation and the closing operation.
  • FIG. 6 is a diagram illustrating an example of a procedure for generating the feature quantity tensor 411 in common model learning (S1 in FIG. 1) and individual model learning (S2 in FIG. 1). Refer to FIG. 3 as appropriate. Note that FIG. 6 explains in detail the generation process of the common learning data 133 in the common model learning (S1) of FIG. 1 and the individual learning data 135 in the individual model learning (S2).
  • the acoustic data 301 is subjected to frequency analysis (S101) by the spectrogram generation unit 112 and converted into a spectrogram 401.
  • the acoustic data 301 collected for use in learning will be appropriately referred to as learning acoustic data 301A (first acoustic data, second acoustic data).
  • learning acoustic data 301A first acoustic data, second acoustic data.
  • the vertical axis represents frequency and the horizontal axis represents time.
  • the spectrogram 401 is obtained by connecting the frequency analysis results of each waveform cut out in a fixed time window W1 with respect to the learning acoustic data 301A.
  • the spectrogram 401 is obtained by converting an acoustic waveform into a spectral sequence at regular time intervals.
  • the feature extraction processing unit 113 performs frame stacking (S102) on the generated spectrogram 401. That is, the feature amount extraction processing unit 113 extracts (stack) the spectrograms 401 in a constant time window W2 while shifting the time of the spectrograms 401 by a predetermined time. Each of the extracted spectrograms 401 is referred to as a feature amount tensor 411. In this way, the feature amount extraction processing unit 113 generates a plurality of feature amount tensors 411 by cutting out the spectrogram 401 at the predetermined time window W2.
  • the feature quantity extraction processing unit 113 acquires the feature quantity tensor 411 while shifting its start time by a predetermined time width (obtains by shifting a predetermined time window by a predetermined time width). Thereby, the feature quantity extraction processing unit 113 generates a plurality of feature quantity tensors 411. In this way, the feature quantity tensor 411 is generated from the acoustic data 301 (in the example shown in FIG. 6, the learning acoustic data 301A). At this time, it is desirable that the time width for shifting is set smaller than the time width that the feature amount tensor 411 has. By doing so, the time resolution of the feature amount tensor 411 can be improved.
  • the feature tensor 411 shown in FIG. 6 has a time width of 17 msec and a frequency width of 77 frames. Note that the frequency width is divided into predetermined frequency units (for example, 10 Hz), and the frequency width of 77 frames means 77 frequency units (770 Hz). Further, the number given below the feature amount tensor 411 in FIG. 6 is the number of the feature amount tensor 411. In the example shown in FIG. 6, nfrm feature quantity tensors 411 are generated.
  • FIG. 7 is a diagram showing the correspondence between the feature amount tensor 411 and the activity level 310.
  • the time at the corresponding activation 310 (activation at the start of closing operation 311, activation at the end of closing operation 312, activation at the start of opening operation 313, activation at the end of opening operation 314) Intervals are always mapped.
  • the feature amount tensor 411z shown in FIG. 7 is associated with the time interval T1 in each activity level 310.
  • the feature quantity tensor 411z corresponds to a decay period from before the rise in the activation degree 313 at the start of the opening operation.
  • the feature quantity tensor 411z indicates the sound at the start of the opening operation of the circuit breaker 201.
  • the acoustic data 301 and the respective activation degrees 310 are associated with each other based on the acoustic data 301 and the stroke position data 302. Therefore, the feature quantity tensor 411 generated based on the acoustic data 301 and each activation level 310 are associated with each other.
  • other feature quantity tensors 411 are associated with time intervals in their respective activation levels 310.
  • This kind of association between the feature quantity tensor 411 and the activation level 310 is performed by the feature quantity extraction processing unit 113 shown in FIG.
  • the feature amount extraction processing unit 113 calculates the activity level 310, which is a model of the sound generated when the circuit breaker 201 operates, based on the acoustic data 301 and the stroke position data 302, and the acoustic data 301.
  • the generated feature amount tensor 411 is associated with the generated feature amount tensor 411.
  • the feature quantity tensor (first feature quantity) 411 used for learning the common model (see FIG. 1) 134 is also the feature quantity tensor (second feature quantity) used for learning the individual model (see FIG. 1) 136. ) 411 is also generated using the same procedure.
  • FIG. 8 is a diagram showing the processing performed by the common model learning unit 114 in this embodiment.
  • FIG. 8 explains in detail the processing in the common model learning unit 114 of common model learning (S1) in FIG. 1.
  • the common model learning unit 114 includes a convolutional neural network layer 511, a first pooling layer 512, and a second pooling layer 513. Further, the common model learning unit 114 includes a first full-connection neural network layer 521 and a second full-connection neural network layer 522.
  • the deep neural network (first neural network) N1 used in common model learning (S1: see FIG. 1) is composed of a plurality of stages of neural networks.
  • the common learning data 133 is generated based on learning acoustic data (first acoustic data) 301A (see FIG. 6) acquired from (multiple) circuit breakers 201 of various models and operating conditions.
  • a feature quantity tensor (first feature quantity) 411 (411a, 411b: first feature quantity) is stored.
  • the following information is written near the feature amount tensor 411, the first converted data 502, the second converted data 503, the third converted data 504, the fourth converted data 505, and the fifth converted data 506. The number shown indicates the data size.
  • one of the feature quantity tensors 411 is input to the convolutional neural network layer 511 as input data. As shown in FIG. 8, the feature amount tensor 411 is 17 ⁇ 77 ⁇ 1 data.
  • the feature quantity tensor 411 is converted by the convolutional neural network layer 511 into first conversion data 502 having a data size of 15 ⁇ 75 ⁇ 16. Note that among the numbers indicating the data size of the first converted data 502, “16” is the number of channels and indicates the number of features (filters) of the spectrogram 401. The number of channels is a value preset by the user.
  • this first converted data 502 is compressed by the first pooling layer 512 into second converted data 503 having a data size of 6 ⁇ 36 ⁇ 16.
  • “16” indicates the number of features (filters) of the spectrogram 401, similarly to the first converted data 502.
  • the second transformed data 503 is further compressed by the second pooling layer 513 into third transformed data 504 having a data size of 2 ⁇ 17 ⁇ 16.
  • “16” indicates the number of features (filters) of the spectrogram 401, similarly to the first converted data 502 and the second converted data 503.
  • the common model learning unit 114 converts the third converted data 504 into fourth converted data 505 having a data size of 1 ⁇ 544.
  • the fourth converted data 505 is simply the third converted data 504 rearranged into 1 ⁇ 544 data based on a predetermined arrangement rule.
  • the first full-connection neural network layer 521 converts the fourth transformed data 505 into fifth transformed data 506 having a data size of 1 ⁇ 128.
  • the fifth transformed data 506 is then transformed into common model output data 507 by the second full-connection neural network layer 522.
  • the data size of the common model output data 507 is 4c.
  • c is the model of the circuit breaker 201 and the number of operating conditions.
  • "4" is the above-described four activation levels 311 at the start of the closing operation, 312 at the end of the closing operation, 313 at the start of the opening operation, and 314 at the end of the opening operation.
  • the feature tensor 411 input to the convolutional neural network layer 511 includes an activation level at the start of closing operation 311, an activation level at the end of closing operation 312, and an activation level at the start of opening operation, which are prepared for each model and operating condition. 313 and the activation level 314 at the end of the opening operation, the data is output as data corresponding to the state of any one of the activation levels 310 .
  • the common learning data 133 holds the state of the activation degree 310 (310a, 310b: first acoustic model) that is associated with each feature amount data. Therefore, the common model learning unit 114 calculates the difference between the common model output data 507 and the teacher data associated with the feature quantity tensor 411 input to the convolutional neural network layer 511 as an error (S111). The common model learning unit 114 then performs backpropagation processing (S112) to update the connection strength of neurons in each layer based on the error. Note that the initial value of the connection strength of neurons in each layer is set by a random number.
  • the common model learning unit 114 After performing the backpropagation process, the common model learning unit 114 inputs the next feature quantity tensor 411 to the convolutional neural network layer 511. Then, when all the feature quantity tensors 411 are input to the convolutional neural network layer 511, the feature quantity tensor 411 that was first input to the convolutional neural network layer 511 is input to the convolutional neural network layer 511 again.
  • the common model learning unit 114 continues the above process a predetermined number of times or until the error reaches a predetermined condition (for example, a predetermined value or less).
  • the common model learning unit 114 outputs the connection strength of neurons in each layer calculated through the above processing as a common model 134.
  • the common model learning unit 114 generates a common model 134 based on the feature quantity tensor 411 related to a large number of models and operating conditions, and the activity level 310 related to the opening/closing operation sound of the circuit breaker 201 in a plurality of models and operating conditions. generate.
  • FIG. 9 is a diagram showing the processing performed by the individual model learning unit 115 in this embodiment. Note that FIG. 9 explains in detail the processing of the individual model learning unit 115 of the individual model learning (S2) in FIG. 1. Like the common model learning unit 114, the individual model learning unit 115 includes a convolutional neural network layer 511, a first pooling layer 512, a second pooling layer 513, a first full-connection neural network layer 521, and a second full-connection neural network layer. A neural network layer 522 is included. In this way, the configuration of the deep neural network (second neural network) N2 used in individual model learning (S2: see FIG. 1) is composed of a plurality of stages of neural networks. Further, the deep neural network N2 used in the individual model learning (S2) has the same structure as the deep neural network N1 (see FIG. 8) used in the common model learning (S2).
  • the connection strength of neurons in each layer is set to the value of the common model 134 stored in the common model 134.
  • the neuron connection strength regarding the data indicated by diagonal lines in FIG. 9 is set to the value of the common model 134 stored in the common model 134 as an initial value.
  • the initial value of the connection strength of neurons in the second full-connection neural network layer (neural network one stage before the output) 522 is set as a random number.
  • the common model 134 output as a result of the common model learning (S1) is used as the initial value of the individual model 136 (deep neural network N2) in the individual model learning (S2).
  • the final output of the individual model output data 531 is four activation degrees 310 for the circuit breaker 201c (see FIG. 1) to be diagnosed.
  • the four activation levels 310 are the activation level 311 at the start of the closing operation, the activation level 312 at the end of the closing operation, the activation level 313 at the start of the opening operation, and the activation level 314 at the end of the opening operation shown in FIG. 4 and FIG. Therefore, the individual model output data 531 becomes 4 ⁇ 1 data.
  • the individual model learning unit 115 targets only one circuit breaker 201, so the individual model output data 531 is 1 ⁇ 4 data.
  • Feature tensor (second feature) 411c extracted from learning acoustic data (second acoustic data) 301A (see FIG. 6) acquired by the newly installed circuit breaker 201c (to be diagnosed) (411) is stored in the individual learning data 135. Further, the state of the activation level (second acoustic model) 310c (310) corresponding to the feature amount tensor 411c is stored in the individual learning data 135 as teacher data.
  • the individual model learning unit 115 inputs the first feature quantity tensor 411c to the convolutional neural network layer 511. Thereafter, processing is performed by the convolutional neural network layer 511, the first pooling layer 512, the second pooling layer 513, and the first full-connection neural network layer 521, thereby outputting the fifth converted data 506.
  • the fifth converted data 506 is then converted into individual model output data 531 by the second full-connection neural network layer 522.
  • the input feature quantity tensor 411 is output as a state of one of the four activation degrees 310.
  • the four activation levels 310 are an activation level 311 at the start of the closing operation, an activation level 312 at the end of the closing operation, an activation level 313 at the start of the opening operation, and an activity level 314 at the end of the opening operation.
  • the individual model learning unit 115 calculates the difference between the individual model output data 531 and the teacher data (activity level 310) associated with the feature amount tensor 411 in the input convolutional neural network layer 511 as an error. (S211).
  • the common model learning unit 114 then performs backpropagation processing (S212) to update the connection strength of neurons in each layer based on the error.
  • the individual model learning unit 115 After performing the backpropagation process, the individual model learning unit 115 inputs the next feature quantity tensor 411 to the convolutional neural network layer 511. Then, when all the feature quantity tensors 411 are input to the convolutional neural network layer 511, the feature quantity tensor 411 that was first input to the convolutional neural network layer 511 is input to the convolutional neural network layer 511 again.
  • the individual model learning unit 115 continues the above process a predetermined number of times or until the error reaches a predetermined condition (for example, a predetermined value or less).
  • the individual model learning unit 115 stores the connection strength of neurons in each layer calculated through the above processing as an individual model 136 in the auxiliary storage device 130 (see FIG. 3).
  • the common model 134 is first set as the initial value of the first full-connection neural network layer 521 from the convolutional neural network layer 511. Then, the individual model learning unit 115 calculates the individual model 136 using the feature amount tensor 411 of the newly installed circuit breaker 201c and the activation degree 310 of the circuit breaker 201c. At this time, the individual model learning unit 115 inputs the activation degree 310 (teacher data) of the circuit breaker 201c and the feature quantity tensor 411 of the circuit breaker 201c to the convolutional neural network layer 511, thereby creating a second full-connection neural network layer. Learning is performed so that the difference between the output of 522 (individual model output data 531) and the activity level 310 as teacher data becomes small. In this way, learning of the individual model 136 is performed.
  • the initial value of the connection strength in the neurons from the convolutional neural network layer 511 to the first full-connection neural network layer 521 configuring the individual model 136 is the same as the value of the common model 134 generated by the common model learning unit 114. is set.
  • FIG. 10 is a diagram showing the processing procedure of the acoustic diagnosis section 118 performed in this embodiment. Note that FIG. 10 explains in detail the processing of the acoustic diagnosis unit 118 of the diagnosis (S3) in FIG. 1.
  • acoustic data (third acoustic data) 301 is acquired from the circuit breaker 201c to be diagnosed. Like the acoustic data 301 acquired in FIG. 10, the acoustic data 301 acquired when diagnosing the circuit breaker 201 is appropriately referred to as diagnostic acoustic data (third acoustic data) 301B.
  • the circuit breaker 201c is a circuit breaker 201c that has been trained by the individual model learning section 115.
  • the activity estimation processing unit 116 performs frequency analysis (S301) to convert the diagnostic acoustic data 301B into a spectrogram 401 composed of spectra for each time. Further, the activity estimation processing unit 116 performs frame stacking (S302) to acquire a plurality of spectrograms 401 by extracting spectrograms 401 of a predetermined time width while shifting time. As a result, a plurality of feature quantity tensors (third feature quantities) 411, which are spectrograms 401 having a predetermined time width, are generated. The data size of the feature quantity tensor 411 is the same as the feature quantity tensor 411 generated in FIG. The processing up to this point is similar to the processing shown in FIG.
  • the activity estimation processing unit 116 sequentially inputs the feature quantity tensor 411 to the individual model 136 trained by the individual model learning unit 115.
  • Each feature tensor 411 input to the individual model 136 is output as estimated activity levels (estimated acoustic model) 681 of the four opening/closing operation sounds (S303).
  • the estimated activity level 681 is the activity level 310 estimated by the individual model 136.
  • the estimated activity 681 is similar to the activity 310: estimated activity 681A at the start of closing operation, estimated activity 681B at the end of closing operation, estimated activity 681C at the start of opening operation, and estimated activity 681C at the end of opening operation. It has an estimated activity of 681D.
  • the activity estimation processing unit 116 can estimate the start time and end time of the opening or closing operation of the circuit breaker 201c (estimates the operation timing). In this way, the activity estimation processing unit 116 estimates the operation timing of the circuit breaker 201c based on the estimated activity 681 estimated from the diagnostic acoustic data 301B.
  • the state diagnosis processing unit 117 compares the time required for the opening/closing operation with the rated timing (reference operation timing) based on the estimated start time and end time (estimated operation timing), and performs the shutoff. The health of the device 201 is determined. The state diagnosis processing unit 117 determines whether or not an abnormality has occurred in the circuit breaker 201c based on the operation timing estimated from the result outputted by inputting the feature quantity tensor 411 to the individual model 136.
  • the state diagnosis processing unit 117 calculates the degree of deviation between the estimated start time and end time and the rated timing, and if the degree of deviation is a predetermined value or more, It is determined that an abnormality has occurred.
  • FIG. 11 is a diagram showing the configuration of the common learning data 133 and the individual learning data 135.
  • FIG. 11 shows an example of a method of storing the feature quantity tensor 411 and the activity degree 310 (see FIG. 6) in the common learning data 133 and the individual learning data 135.
  • the method of storing the feature amount tensor 411 and the activity degree 310 in the common learning data 133 and the individual learning data 135 is not limited to the example shown in FIG. 11. In FIG. 11, reference is made to FIG. 1 as appropriate. As shown in FIG.
  • ID (item 701), feature value tensor 411 (item 702), and activation degree 310 (item 703) are stored in correspondence with each other. has been done.
  • the ID is an ID assigned to a pair of the feature amount tensor 411 and the activity level 310.
  • the feature quantity tensor 411 is stored in the format of "float x i,j [nfrm i,j , freq, nstack]".
  • float indicates that the value to be saved is a floating point tensor.
  • i of x i,j indicates the model or operating condition of the circuit breaker 201
  • j indicates the number of the feature amount tensor 411.
  • the numbers of the feature quantity tensor 411 indicated by j are assigned in order from oldest to newest.
  • i indicates the model of the circuit breaker 201.
  • FIG. 11 shows that such a feature quantity tensor 411 has a size of nfrm i,j x freq x nstack.
  • nfrm i,j is the number of frames (number of data) in the time direction for model i and number j.
  • nfrm i,j is "17".
  • freq is the number of frames in the frequency direction.
  • freq is "77".
  • nstack is the number of feature quantity tensors 411 having a size of nfrmi,j ⁇ freq that are simultaneously input to the common model 134 or the individual models 136 (input in a bundle).
  • n feature quantity tensors 411 having a size of nfrm i,j ⁇ freq may be input at once.
  • the feature amount tensor 411 is input one by one, so ntack is "1".
  • the activity level 310 is stored in the format of "float y i,j [nfrm i,j , 4]".
  • "float" indicates that the value to be saved is a floating point tensor.
  • i in y i,j indicates the model or operating condition, and j indicates a number like j in the feature amount tensor 411.
  • the activity level 310 is a tensor (matrix) having a size of nfrm i,j ⁇ 4.
  • nfrm i,j indicates the number of frames in the time direction of the activity level 310, and contains the same number as the feature amount tensor 411 (“17” in the example shown in FIG. 6).
  • the last "4" means that there are four types of activation levels 310 (activation level 311 at the start of closing operation, activation level 312 at the end of closing operation, activity level 313 at the start of opening operation, and activity level 314 at the end of opening operation). It shows.
  • the first column of the tensor indicating the activation degree 310 stores the activation degree 311 at the start of the closing operation, and the second column stores the activation degree 312 at the end of the closing operation.
  • the third column stores the activation degree 313 at the start of the opening operation
  • the fourth column stores the activation degree 314 at the end of the opening operation.
  • Both the feature quantity tensor 411 and the activity level 310 have data whose number of frames (number of frames at time: nfrm i,j ) depends on the length of the acoustic waveform of the acoustic data 301 as the source.
  • the feature quantity tensor 411 stores data obtained by bundling data for the number of freqs in the frequency direction into adjacent nstacks.
  • the feature amount tensor 411 is a three-dimensional array (tensor) in which the number of elements (sizes) in each dimension are nfrm, freq, and nstack.
  • the activity level 310 consists of four types of activity level 310, which are a combination of two types of operation start and operation end for two types of operations, the closing operation and the opening operation.
  • the activity level 310 is stored for each frame in correspondence with the feature amount tensor 411.
  • the activation level 310 becomes a two-dimensional array (tensor), and the number of elements in the first dimension (row) is nfrm, and the second dimension (column) is stored in an array of elements corresponding to each of the four types of activation level 310. be done.
  • FIG. 12 is a diagram showing the data structure of the teacher data in the common model 134.
  • the teacher data in the common model 134 is simply described as teacher data.
  • the teacher data ID (symbol 711) is an ID uniquely given to the teacher data.
  • the teacher data includes data of "Y i,j [nfrm i,j , 4c]".
  • the teacher data may be expressed as floating point type data, or may be expressed as a [1,0] type integer.
  • nfrm i in Y i,j indicates the model or operating condition.
  • j indicates the number of teacher data. The numbers indicated by j are assigned in ascending order of time.
  • the teacher data is a tensor (matrix) having a size of nfrm i,j ⁇ 4c.
  • nfrm i,j is the number of frames (number of data) in the time direction for model i and number j, as in FIG. Specifically, nfrm i,j is "17" as in FIG. 11.
  • c is the number of models and operating conditions. In FIG. 12, only the model is considered.
  • the teacher data has nfrm i,j elements (data) in the row direction and 4c data in the column direction.
  • data data
  • 4c data data in the column direction.
  • four types of activity levels 310 are stored in line for each model.
  • Reference numeral 720 in FIG. 12 indicates a specific configuration of each teacher data.
  • i, j and nfrm i,j are the same as “Y i,j ".
  • "4" means that the activation 310 having the size nfrm i,j in the row direction is the activation 311 at the start of the closing operation, the activation 312 at the end of the closing operation, the activation 313 at the start of the opening operation, and the activation 313 at the end of the opening operation. It shows that they are arranged in the column direction in order of activity level 314. Note that "zeros[nfrm i, j , 4]" indicates that all components are "0".
  • one piece of teacher data (at a certain time) is "activity level at the start of closing operation of model A", "activity level at the end of closing operation of model A", etc. in the row direction. It has a configuration arranged in . In FIG. 13, the number of columns is 4c. Note that each of "activity level at the start of closing operation of model A", "activity level at the end of closing operation of model A", . . . has the number of elements of 1 ⁇ nfrm i,j .
  • the common model 134 is learned as a model that predicts the value of the activity level 310 of multiple models. Therefore, as shown in FIG. 12, activation levels 310 for common model learning are prepared as teacher data, in which activation levels 310 corresponding to different models are padded with zero (zero[nfrm i, j , 4]). Then, the common model 134 performs learning so that the error between the common model output data 507 and the teacher data becomes small. If c types of models are used when creating the common model 134, the teacher data will be nfrm i,j ⁇ 4c-dimensional data.
  • FIG. 14 is a diagram showing an example of a diagnosis result display screen 800 output to the output device 103 in this embodiment.
  • the diagnosis result display screen 800 has an acoustic data display area 801, a spectrogram display area 802, an estimated activity display area 810, an estimated operation display area 821, a rated deviation display area 822, and a diagnosis result display area 823.
  • an acoustic waveform indicated by the diagnostic acoustic data 301B (see FIG. 10) acquired through the microphone 202 is displayed.
  • a spectrogram 401 (see FIG. 10), which is the result of frequency analysis of the acoustic waveform (diagnostic acoustic data 301B) displayed in the acoustic data display area 801, is displayed.
  • the estimated activity display area 810 displays the estimated activity (acoustic estimated from the third acoustic data) that is output as a result of inputting the diagnostic acoustic data 301B collected at the time of diagnosis into the individual model 136 by the activity estimation processing unit 116. model) 681 is displayed.
  • the estimated activity display area 810 includes an estimated activity display area 811 at the start of the closing operation, an estimated activity display area 812 at the end of the closing operation, an estimated activity display area 813 at the start of the opening operation, and an area 812 for displaying the estimated activity at the end of the closing operation.
  • An estimated activity level 814 at the end of the operation is displayed.
  • the estimated activity level at the start of the closing operation 681B shown in FIG. 10 is displayed in the estimated activity level at the end of the closing operation display area 812.
  • the estimated activity level at the start of the opening operation 681C shown in FIG. 10 is displayed in the estimated activity level at the start of the opening operation display area 813.
  • the estimated activity level 681D at the end of the opening operation shown in FIG. 10 is displayed.
  • the state diagnosis processing unit 117 determines whether the acoustic waveform (diagnostic acoustic data 301B) displayed in the acoustic data display area 801 is the one at the time of the closing operation of the circuit breaker 201 or the one at the time of the opening operation. The results are shown. In the example shown in FIG. 14, as shown in the estimated activity display area 810, the estimated activity 681 at the start of the opening operation and at the end of the opening operation is in the active state.
  • the state diagnosis processing unit 117 determines that the acoustic waveform displayed in the acoustic data display area 801 is the one at the time of the opening operation (“Open”).
  • the rated deviation display area 822 displays a numerical value indicating how much the timing of the closing or opening operation estimated by the estimated activity level 681 deviates from the rated timing.
  • the example shown in FIG. 14 shows that the average of the opening operation start timing and the opening operation end timing estimated from the estimated activity level 681 deviates from the rating by +0.1%. Note that "+” in the rated deviation display area 822 indicates that the timing is late, and "-" indicates that the timing is early.
  • diagnosis result display area 823 the diagnosis result by the condition diagnosis processing unit 117 is displayed.
  • the result of the state diagnosis processing unit 117 determining whether the operation of the circuit breaker 201 is normal or abnormal is displayed based on the deviation from the rating displayed in the rating deviation display area 822.
  • the example shown in FIG. 14 shows that it is normal.
  • a diagnostic device 1 that diagnoses the opening/closing timing state of the circuit breaker 201 during operation based on the acoustic data 301.
  • the diagnostic device 1 acquires the true value of the stroke position (stroke position data 302) obtained by measuring the position of the contact point on the opening/closing rod in advance with the stroke position measuring device 203, and the acoustic data 301 measured in synchronization with the true value. do.
  • the diagnostic device 1 estimates the start/end timing of the opening/closing operation of the circuit breaker 201 based on the stroke position data 302.
  • the diagnostic device 1 generates an activity level 310 expressed by a triangular wave that rises vertically for each opening/closing and start/end, based on the acquired start/end timings of the opening/closing operation of the circuit breaker 201. Furthermore, the diagnostic device 1 performs learning using the common model 134 as an estimation model that performs regression estimation from the feature quantity tensor 411 generated based on the acoustic data 301 to the activity degree 310. Furthermore, when the circuit breaker 201 to be diagnosed is newly installed, the diagnostic device 1 learns the individual model 136 of the newly installed circuit breaker 201 using the common model 134 as an initial value.
  • the diagnostic device 1 When diagnosing the circuit breaker 201, the diagnostic device 1 estimates the activation level 310 of the circuit breaker 201 to be diagnosed, based on the acoustic data 301 and using the already learned individual model 136 (estimated activation level). degree 681). Then, the diagnostic device 1 estimates the opening/closing operation timing of the circuit breaker 201 to be diagnosed from the peak value of the estimated activation level 310 (estimated activation level 681). Furthermore, the diagnostic device 1 calculates the deviation from the rating regarding the estimated opening/closing operation timing. Then, the diagnostic device 1 diagnoses the operating state of the circuit breaker 201 based on the deviation.
  • a common model 134 is created in advance from a large number of circuit breakers 201.
  • the individual model 136 for the new circuit breaker 201 is learned using the learned common model 134 as an initial value. This makes it possible to significantly reduce the amount of learning data required for learning the individual model 136 regarding the new circuit breaker 201. Thereby, the number of times the circuit breaker 201 is opened and closed for collecting learning data can be reduced, and deterioration of the circuit breaker 201 can be prevented.
  • a pair of the feature quantity tensor 411 extracted from the acoustic data 301 of the plurality of types of circuit breakers 201 and the true value of the activity degree 310 regarding the opening/closing operation sound is prepared. Then, the diagnostic device 1 converts the feature quantity tensor 411 into a latent space with a predetermined number of dimensions.
  • a latent space with a certain number of dimensions has four types of activation degrees 310.
  • the diagnostic device 1 classifies the timing of the opening/closing operations of the plurality of types of circuit breakers 201 based on the converted expressions (four types of activity levels 310). Furthermore, the diagnostic device 1 learns a model (common model 134) that regression predicts the activity level 310 of the opening/closing operation sound of the circuit breaker 201. Thereby, the diagnostic device 1 performs learning such that four types of activity levels 310 suitable for predicting the timing of opening/closing operation sounds can be determined.
  • the diagnostic device 1 In order to construct a model (individual model 136) for the new circuit breaker 201, the diagnostic device 1 generates the feature quantity tensor 411 using the same procedure as when generating the common model 134. Then, by reusing the model and weights (neuron connection strength) of the deep neural network N1 of the common model 134, the diagnostic device 1 can regressively estimate the activation degree 310 of the opening/closing operation sound from the fifth converted data 506. (second full-connection neural network layer 522) to train the individual model 136. The individual model 136 only needs to be able to regression estimate the activity level 310 at the start and end timings of the opening/closing operation for the new circuit breaker 201 to be diagnosed.
  • the output of the individual model 136 corresponds to four nodes (outputs corresponding to the activation level at the start of closing operation 311, the activation level at the end of closing operation 312, the activation level at the start of opening operation 313, and the activation level at the end of opening operation 314).
  • the diagnostic device 1 can determine the opening/closing operation timing of the circuit breaker 201 from the peak position of the estimated activity level 681. Thereafter, the diagnostic device 1 tests the health of the circuit breaker 201 by comparing the estimated opening/closing operation timing with the rated timing. By doing so, it becomes possible to quickly diagnose the circuit breaker 201 using the individual model 136 with improved learning convergence.
  • the diagnostic device 1 of this embodiment diagnoses the state of the circuit breaker 201 based on changes in the timing of important events of opening/closing operations (opening/closing operations in this embodiment) estimated using the individual model 136. becomes possible.
  • the operation timing is estimated based on the estimated activation level 310 (estimated activation level 681) as a result of inputting the diagnostic feature tensor 411 to the individual model 136.
  • the circuit breaker 201 is diagnosed based on the estimated operation timing, specifically, based on the degree of deviation between the estimated operation timing and the rated operation timing. Thereby, the diagnosis of the circuit breaker 201 can be performed quantitatively.
  • the common model 134 that has been trained on a large number of circuit breakers 201 is prepared in advance, and when diagnosing a new circuit breaker 201, the common model 134 is prepared in advance, and the model is not created from scratch. Additional learning is performed based on the model 134.
  • the individual model 136 can be effectively created from a small number of learning samples.
  • the individual model learning (S2) only the second full-connection neural network 522 differs from the common model 134 in its configuration. Thereby, a model for diagnosing the new circuit breaker 201 can be constructed at low cost.
  • the initial value of the connection strength of neurons is a random number only in the second full-connection neural network 522. This allows the individual model 136 to converge reliably and quickly.
  • the operation start time and operation end time are estimated based on the stroke position data 302 of the stroke position measuring device 203. Then, the activity level 310 is associated with the estimated operation start time and operation end time. Thereby, the teacher data (activity level 310) and the input data (feature amount tensor 411) can be associated without any manual work by the user.
  • the feature amount tensor 411 is generated by cutting out the spectrogram 401 at the time window W2.
  • learning is performed based on the operating sound generated by the circuit breaker 201, and diagnosis is performed using the learning results. This enables diagnosis based on the frequency distribution unique to the circuit breaker 201, thereby improving diagnostic accuracy.
  • the common model 134 when generating the common model 134, the distinction between circuit breakers 201 is not taken into consideration.
  • the common model 134 may be learned based on the acoustic data 301 and stroke position data 302 collected from the same type of circuit breaker 201 as the circuit breaker 201 to be diagnosed.
  • the types of circuit breakers 201 include a circuit breaker 201 in a substation, a circuit breaker 201 in a power receiving facility, a circuit breaker 201 in a bullet train, a circuit breaker in a general household, and the like.
  • the types of circuit breakers 201 may be distinguished by the time between opening and closing operations.
  • the deep neural network N1 shown in FIG. 8 is often used in the image field.
  • images are used as training data.
  • the activity level 310 is used, which is a triangular wave representing a model of the sound produced during the opening and closing operations of the circuit breaker 201.
  • the deep neural network N1 used in this embodiment is used in a completely different manner from the deep neural network N1 used in the image field.
  • a triangular wave is used as the activity level 310, which rises vertically at the time when the sound is generated when the circuit breaker 201 is operated, and then decays at a predetermined slope, but the present invention is not limited to this.
  • activation levels 310A and 310B based on rectangular waves may be used as the activation level 310.
  • Activities 310A and 310B shown in FIG. 15 are expressed by rectangular waves that rise perpendicularly to the time axis at the time when the circuit breaker 201 starts operating.
  • the activity level 310A is a model of the start sound of the opening or closing operation
  • the activity level 310B is a model of the end sound of the opening or closing operation.
  • the common model 134, the individual model 136, and the circuit breaker 201 are diagnosed based on the sounds generated during the opening and closing operations of the circuit breaker 201, but the diagnosis is not limited to this. do not have.
  • the common model 134, individual model 136, and circuit breaker 201 may be diagnosed based on the sound of a fuse blowing.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • each of the above-described configurations, functions, etc. may be realized by software by having the central processing unit 101 such as a CPU interpret and execute programs for realizing the respective functions.
  • Information such as programs, tables, files, etc. that realize each function can be stored in memory, recording devices such as SSD, IC (Integrated Circuit) cards, SD (Secure Digital) cards, DVDs, etc., in addition to being stored on the HD. (Digital Versatile Disc) and other recording media.
  • control lines and information lines are shown that are considered necessary for explanation, and not all control lines and information lines are necessarily shown in terms of the product. In reality, almost all configurations can be considered interconnected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

In order to efficiently generate an isolator operation model, this isolator model generating system is characterized by comprising a common model learning unit (114) for outputting a common model (134) by means of common model learning (S1), which is learning that takes feature quantity tensors generated from acoustic data acquired from first isolators, being a plurality of installed isolators (201a, 201b), as input data, and takes degrees of activity associated with the feature quantity tensors (411) as teacher data, and an individual model learning unit (115) for outputting an individual model (136) by means of individual model learning (S2), which is learning that takes a feature quantity tensor generated on the basis of acoustic data acquired from an isolator (201c) different from the isolators (201a, 201b) as input data, and takes a degree of activity associated with the feature quantity tensor as teacher data, wherein, in the individual model learning (S2), the common model (134) output as a result of the common model learning (S1) is utilized as an initial value.

Description

遮断器モデル生成システム、遮断器モデル生成装置及び遮断器モデル生成方法Circuit breaker model generation system, circuit breaker model generation device, and circuit breaker model generation method
 本発明は、遮断器モデル生成システム、遮断器モデル生成装置及び遮断器モデル生成方法の技術に関する。 The present invention relates to a circuit breaker model generation system, a circuit breaker model generation device, and a circuit breaker model generation method.
 遮断器の状態をリモートからモニタリングすることで、作業員を派遣せずにメンテナンスを行うニーズが高まっている。このようなニーズに対し、遮断機の動作状況を把握するための各種のセンサを遮断器に取り付け、正常状態との差異から状態判断する方法が提案されている。こうした診断では、遮断器の内部に電流センサを設置したり、遮断器の筐体に加速度センサを取り付けたりすることで、状態のモニタリングを行うことが試みられている。 There is a growing need to remotely monitor the status of circuit breakers and perform maintenance without dispatching workers. In response to such needs, a method has been proposed in which various sensors are attached to the circuit breaker to grasp the operating status of the circuit breaker, and the state is determined based on the difference from the normal state. In such diagnosis, attempts have been made to monitor the state of the circuit breaker by installing a current sensor inside the circuit breaker or attaching an acceleration sensor to the casing of the circuit breaker.
 センサを取り付けて、取得したデータから判断する技術として、特許文献1に記載の技術がある。特許文献1には、「入力直流電力を交流電力に変換する電力変換回路と、前記電力変換回路で変換した電力を伝達する出力配線と、前記出力配線の途中に設けられ前記入力直流電力の電圧値に基づいてオンオフが切り替わるように構築された交流遮断器と、を有する電力変換装置と、前記交流遮断器のオンオフ切替のときに前記交流遮断器が発する音を検知するように構築された音検知器と、前記音検知器で検知された音と予め定めた判定基準情報とに基づいて、前記音を発した前記交流遮断器が異常であるか否かを診断する診断装置と、を備える」電力変換システムおよび遮断器診断装置が開示されている。 There is a technique described in Patent Document 1 as a technique for attaching a sensor and making a judgment based on the acquired data. Patent Document 1 describes, "a power conversion circuit that converts input DC power into AC power, an output wiring that transmits the power converted by the power conversion circuit, and a voltage converter provided in the middle of the output wiring that converts the input DC power into AC power. an AC breaker constructed to be switched on and off based on a value; A detector, and a diagnostic device that diagnoses whether or not the AC circuit breaker that has emitted the sound is abnormal based on the sound detected by the sound detector and predetermined criterion information. ” A power conversion system and circuit breaker diagnostic device are disclosed.
特開2019-184341号公報JP2019-184341A
 しかし、特許文献1に記載の技術では、新設の遮断器に適用する場合、遮断器を実際に動作させて正常状態のデータを多数収集する必要がある。しかし、遮断器は動作回数が増えるに従い、遮断器の劣化が進むことや、収集のための工数が大きいことが課題となる。 However, when applying the technique described in Patent Document 1 to a newly installed circuit breaker, it is necessary to actually operate the circuit breaker and collect a large amount of data on its normal state. However, as the number of operations of the circuit breaker increases, problems arise such as the deterioration of the circuit breaker progressing and the number of man-hours required for collection increasing.
 このような背景に鑑みて本発明がなされたのであり、本発明は、遮断器の動作モデルを効率的に生成することを課題とする。 The present invention was made in view of this background, and an object of the present invention is to efficiently generate an operational model of a circuit breaker.
 前記した課題を解決するため、本発明は、電力の遮断を行う遮断器の動作音を集音し、音響データとして出力する集音装置と、複数設置されている前記遮断器である第1の遮断器から取得された前記音響データである第1の音響データから生成される特徴量である第1の特徴量を入力データとし、前記第1の特徴量に対応付けられている音響モデルである第1の音響モデルを教師データとする学習である第1の学習によって、第1の学習モデルを出力する第1の学習部と、前記第1の遮断器とは異なる前記遮断器である第2の遮断器から取得された前記音響データである第2の音響データを基に生成された特徴量である第2の特徴量を入力データとし、前記第2の特徴量に対応付けられている前記音響モデルである第2の音響モデルを教師データとする学習である第2の学習によって、第2の学習モデルを出力する第2の学習部と、を有し、前記音響モデルは、前記遮断器の前記動作音をモデル化したものであり、前記第2の学習では、前記第1の学習の結果出力される前記第1の学習モデルを前記第2の学習における前記第2の学習モデルの初期値として利用することを特徴とする。
 その他の解決手段は実施形態中において適宜記載する。
In order to solve the above-mentioned problems, the present invention includes a sound collection device that collects the operating sound of a circuit breaker that cuts off power and outputs it as acoustic data, and a first sound collection device that is one of the plurality of circuit breakers installed. The acoustic model is an acoustic model that uses as input data a first feature amount that is a feature amount generated from first acoustic data that is the acoustic data obtained from the circuit breaker, and is associated with the first feature amount. A first learning unit that outputs a first learning model through first learning that is learning using a first acoustic model as teacher data, and a second learning unit that is the circuit breaker different from the first circuit breaker. As input data, a second feature quantity, which is a feature quantity, generated based on the second acoustic data, which is the acoustic data acquired from the circuit breaker, is used as input data, and the a second learning unit that outputs a second learning model through second learning that is learning using a second acoustic model that is an acoustic model as teacher data; In the second learning, the first learning model output as a result of the first learning is used as the initial learning model of the second learning model in the second learning. It is characterized by being used as a value.
Other solutions will be described as appropriate in the embodiments.
 本発明によれば、遮断器の動作モデルを効率的に生成することができる。 According to the present invention, an operational model of a circuit breaker can be efficiently generated.
遮断器診断システムによる遮断器診断の概略を示す図である。FIG. 2 is a diagram showing an outline of circuit breaker diagnosis by the circuit breaker diagnosis system. 本実施形態で用いられる音響データ及びストローク位置データの収集の詳細を示す図である。FIG. 3 is a diagram showing details of collection of acoustic data and stroke position data used in this embodiment. 本実施形態に係る診断装置の構成例を示す図である。1 is a diagram showing a configuration example of a diagnostic device according to the present embodiment. 遮断器の閉動作時の各タイミングを示す図である。It is a figure which shows each timing at the time of the closing operation of a circuit breaker. 遮断器の閉動作時の各タイミングを示す図である。It is a figure which shows each timing at the time of the closing operation of a circuit breaker. 共通モデル学習及び個別モデル学習における特徴量テンソルの生成手順の一例を示す図である。FIG. 3 is a diagram illustrating an example of a feature tensor generation procedure in common model learning and individual model learning. 特徴量テンソルと、活性度との対応関係を示す図である。FIG. 3 is a diagram showing a correspondence relationship between a feature amount tensor and an activation degree. 本実施形態で行われる共通モデル学習部における処理を示す図である。FIG. 3 is a diagram illustrating processing in a common model learning unit performed in this embodiment. は、本実施形態で行われる個別モデル学習部における処理を示す図である。FIG. 2 is a diagram showing processing in an individual model learning unit performed in this embodiment. 本実施形態で行われる音響診断部の処理手順を示す図である。It is a figure showing the processing procedure of an acoustic diagnosis section performed in this embodiment. 共通学習用データ、個別学習用データの構成を示す図である。FIG. 2 is a diagram showing the configuration of common learning data and individual learning data. 共通モデルにおける教師データのデータ構成を示す図である。FIG. 3 is a diagram showing a data structure of teacher data in a common model. 教師データのデータ構成の具体例を示す図である。FIG. 3 is a diagram showing a specific example of the data structure of teacher data. 本実施形態で出力装置に出力される診断結果表示画面の一例を示す図である。It is a figure showing an example of a diagnosis result display screen outputted to an output device in this embodiment. 活性度の別の例を示す図である。FIG. 7 is a diagram showing another example of the degree of activity.
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。 Next, modes for carrying out the present invention (referred to as "embodiments") will be described in detail with reference to the drawings as appropriate.
 <概略>
 図1は、遮断器診断システム(遮断器モデル生成システム)Zによる遮断器診断の概略を示す図である。
 遮断器診断システムZは、マイク(集音装置)202、ストローク位置計測装置(接点位置計測装置)203、共通モデル学習部114、個別モデル学習部115、音響診断部118を有する。
 また、遮断器診断システムZで行われる診断処理は、共通モデル学習(S1)、個別モデル学習(S2)、診断(S3)の3段階で行われる。
<Summary>
FIG. 1 is a diagram showing an outline of circuit breaker diagnosis by a circuit breaker diagnosis system (circuit breaker model generation system) Z.
The circuit breaker diagnostic system Z includes a microphone (sound collection device) 202, a stroke position measuring device (contact position measuring device) 203, a common model learning section 114, an individual model learning section 115, and an acoustic diagnosis section 118.
Further, the diagnostic processing performed in the circuit breaker diagnostic system Z is performed in three stages: common model learning (S1), individual model learning (S2), and diagnosis (S3).
 (共通モデル学習(S1:第1の学習、第1の学習ステップ))
 遮断器201は、電力の遮断を行うものである。
(Common model learning (S1: first learning, first learning step))
The circuit breaker 201 cuts off power.
 また、図1に示すように、共通モデル学習(S1)において、マイク202は、遮断器201aの近傍に設置される。そして、マイク202は、遮断器201a(201:第1の遮断器)について、開閉時の音圧を電気的な信号に変換する。変換された信号は、音響データ301(図4、図5参照)として出力される。このように、マイク202は、遮断器201の動作音を集音し、音響データ301として出力する。換言すれば、音響データ301は、遮断器201の動作音のデータである。 Furthermore, as shown in FIG. 1, in common model learning (S1), the microphone 202 is installed near the circuit breaker 201a. The microphone 202 converts the sound pressure during opening and closing of the circuit breaker 201a (201: first circuit breaker) into an electrical signal. The converted signal is output as acoustic data 301 (see FIGS. 4 and 5). In this way, the microphone 202 collects the operating sound of the circuit breaker 201 and outputs it as acoustic data 301. In other words, the acoustic data 301 is data on the operating sound of the circuit breaker 201.
 そして、ストローク位置計測装置203は、レーザ等によって開閉動作時の接点の位置を計測する。具体的には、ストローク位置計測装置203は、遮断器201aの開閉ロッド(不図示)の距離を計測する。このように、ストローク位置計測装置203は、遮断器の接点の位置を計測し、ストローク位置データ302(接点位置データ、図4、図5参照)として出力する。 Then, the stroke position measuring device 203 measures the position of the contact point during the opening/closing operation using a laser or the like. Specifically, the stroke position measuring device 203 measures the distance of an opening/closing rod (not shown) of the circuit breaker 201a. In this way, the stroke position measuring device 203 measures the position of the contact of the circuit breaker and outputs it as stroke position data 302 (contact position data, see FIGS. 4 and 5).
 なお、マイク202による遮断器201aの開閉時の音の集音と、ストローク位置計測装置203によるストローク位置の計測は同期して行われる。そしてマイク202によって集音された音響のデータである音響データ(第1の音響データ)301と、ストローク位置のデータであるストローク位置データ302とは、共通学習用データ133として共通モデル学習部114へ送られる。 Note that the microphone 202 collects the sound when the circuit breaker 201a opens and closes, and the stroke position measuring device 203 measures the stroke position in synchronization. The acoustic data (first acoustic data) 301 that is the acoustic data collected by the microphone 202 and the stroke position data 302 that is the stroke position data are sent to the common model learning unit 114 as common learning data 133. Sent.
 音響データ301、及び、ストローク位置データ302が同期して取得されれば、その取得方法は何でもよい。例えば、マイク202による集音と、ストローク位置計測装置203による計測が、常に行われている状態であってもよい。あるいは、遮断器201の開信号あるいは閉信号を検知すると、マイク202による集音と、ストローク位置計測装置203による計測開始されてもよい。あるいは、人によって遮断器201の開動作もしくは閉動作が合図されると、人手によってマイク202及びストローク位置計測装置203のスイッチがONにされてもよい。 Any acquisition method may be used as long as the acoustic data 301 and the stroke position data 302 are acquired synchronously. For example, sound collection by the microphone 202 and measurement by the stroke position measuring device 203 may be constantly performed. Alternatively, when the open signal or the close signal of the circuit breaker 201 is detected, sound collection by the microphone 202 and measurement by the stroke position measuring device 203 may be started. Alternatively, when a person signals the opening or closing operation of the circuit breaker 201, the microphone 202 and the stroke position measuring device 203 may be turned on manually.
 同様に、遮断器201aとは別の機種の遮断器201b(201:第1の遮断器)からも、マイク202による遮断器201bの開閉動作音と、ストローク位置計測装置203によるストローク位置とが同期して計測される。計測された遮断器201bの音響データ(第1の音響データ)301と、ストローク位置データ302とは、共通学習用データ133として共通モデル学習部114へ送られる。なお、互いに動作条件の異なる同一機種の遮断器201aの音響データ301、ストローク位置データ302の計測が行われてもよい。動作条件が異なるとは、例えば、使用するオイルが異なる等である。 Similarly, from a circuit breaker 201b (201: first circuit breaker) different from the circuit breaker 201a, the sound of the opening/closing operation of the circuit breaker 201b by the microphone 202 and the stroke position by the stroke position measuring device 203 are synchronized. It is measured by The measured acoustic data (first acoustic data) 301 and stroke position data 302 of the circuit breaker 201b are sent to the common model learning unit 114 as common learning data 133. Note that the acoustic data 301 and stroke position data 302 of circuit breakers 201a of the same model having different operating conditions may be measured. The different operating conditions include, for example, different oils used.
 なお、共通モデル学習(S1)の際における共通学習用データ133の収集元となる遮断器201a,201bは、異常が発生していないとわかっている遮断器201である。 Note that the circuit breakers 201a and 201b from which the common learning data 133 is collected during common model learning (S1) are circuit breakers 201 that are known to have no abnormality.
 なお、遮断器201bの近傍に設置されるマイク202及びストローク位置計測装置203は、遮断器201aの近傍に設置されるマイク202及びストローク位置計測装置203と異なっていてもよいし、同じでもよい。 Note that the microphone 202 and stroke position measuring device 203 installed near the circuit breaker 201b may be different from or the same as the microphone 202 and stroke position measuring device 203 installed near the circuit breaker 201a.
 なお、図1の共通モデル学習(S1)では、遮断器201、マイク202、ストローク位置計測装置203の組が2組備えられている。しかし、これに限らず、3組以上の遮断器201、マイク202、ストローク位置計測装置203の組について、音響データ301、ストローク位置データ302が計測されてもよい。このように、共通モデル学習(S1)では、複数設置されている遮断器201から音響データ301、ストローク位置データ302が取得される。 Note that in the common model learning (S1) in FIG. 1, two sets of circuit breaker 201, microphone 202, and stroke position measuring device 203 are provided. However, the present invention is not limited to this, and the acoustic data 301 and the stroke position data 302 may be measured for three or more sets of circuit breakers 201, microphones 202, and stroke position measuring devices 203. In this way, in common model learning (S1), acoustic data 301 and stroke position data 302 are acquired from a plurality of circuit breakers 201 installed.
 そして、共通モデル学習部(第1の学習部)114は、遮断器201a、及び、遮断器201bのそれぞれから取得された共通学習用データ133を用いて、共通モデル(第1の学習モデル)134を学習する。共通モデル134は、具体的には、深層ニューラルネットワーク(ニューラルネットワーク、第1のニューラルネットワーク)N1(図8参照)のニューロン間の結合強度である。共通モデル134の学習については後記する。共通モデル134は、共通モデル学習部114による学習結果である。 Then, the common model learning unit (first learning unit) 114 uses the common learning data 133 acquired from each of the circuit breaker 201a and the circuit breaker 201b to generate a common model (first learning model) 134. Learn. Specifically, the common model 134 is the connection strength between neurons of the deep neural network (neural network, first neural network) N1 (see FIG. 8). Learning of the common model 134 will be described later. The common model 134 is a learning result by the common model learning unit 114.
 (個別モデル学習(S2:第2の学習))
 続いて、新規に遮断器201c(201:第1の遮断器とは異なる遮断器201である第2の遮断器)が追加設置されると、個別モデル学習部(第2の学習部)115による個別学習(S2)が行われる。
 まず、新規に設置された遮断器201cの開閉動作の診断を行うための個別モデル(第2の学習モデル)136が作成される。遮断器201cは、この後で行われる診断の対象となる遮断器201である。そのため、遮断器201cに設置されたマイク202が遮断器201cの開閉時における音を集音する。また、遮断器201cに設置されたストローク位置計測装置203がストローク位置を計測する。遮断器201cにおける音の集音と、ストローク位置の計測は同期して行われる。マイク202によって集音された音の音響データ(第2の音響データ)301と、ストローク位置計測装置203によって計測されストローク位置データ302とは個別学習用データ135として個別モデル学習部115へわたされる。なお、個別学習用データ135として収集される音響データ301と、ストローク位置データ302は、共通学習用データ133と比較して、少数のデータでよい。
(Individual model learning (S2: second learning))
Subsequently, when a new circuit breaker 201c (201: a second circuit breaker that is a circuit breaker 201 different from the first circuit breaker) is additionally installed, the individual model learning unit (second learning unit) 115 Individual learning (S2) is performed.
First, an individual model (second learning model) 136 is created for diagnosing the opening/closing operation of the newly installed circuit breaker 201c. The circuit breaker 201c is the circuit breaker 201 to be diagnosed later. Therefore, the microphone 202 installed in the circuit breaker 201c collects the sound when the circuit breaker 201c is opened and closed. Further, a stroke position measuring device 203 installed in the circuit breaker 201c measures the stroke position. The sound collection in the circuit breaker 201c and the measurement of the stroke position are performed synchronously. Acoustic data (second acoustic data) 301 of the sound collected by the microphone 202 and stroke position data 302 measured by the stroke position measuring device 203 are passed to the individual model learning unit 115 as individual learning data 135. Note that the acoustic data 301 and the stroke position data 302 collected as the individual learning data 135 may be smaller in number than the common learning data 133.
 なお、個別モデル学習(S2)の際における個別学習用データ135の収集元となる遮断器201cは、個別モデル学習(S2)が行われる時点で異常が発生していないとわかっている遮断器201である。 Note that the circuit breaker 201c from which the individual learning data 135 is collected during the individual model learning (S2) is a circuit breaker 201 that is known to have no abnormality at the time the individual model learning (S2) is performed. It is.
 個別モデル学習部115は、共通モデル学習部114によって、既に学習されているモデル(共通モデル134)を初期値とする深層ニューラルネットワーク(ニューラルネットワーク、第2のニューラルネットワーク)N2(図9参照)に、個別学習用データ135を入力することで個別モデル136を学習する。個別モデル136の学習については後記する。個別モデル136は、個別モデル学習部115による学習結果であり、具体的には、深層ニューラルネットワークN2におけるニューロンの結合強度である。 The individual model learning unit 115 uses a deep neural network (neural network, second neural network) N2 (see FIG. 9) using the already learned model (common model 134) as an initial value by the common model learning unit 114. , the individual model 136 is learned by inputting the individual learning data 135. The learning of the individual model 136 will be described later. The individual model 136 is a learning result by the individual model learning unit 115, and specifically, is the connection strength of neurons in the deep neural network N2.
 (診断(S3))
 個別モデル136の学習後、音響診断部(診断部)118による遮断器201cの診断(S3)が行われる。なお、音響診断部118は、図3の活性度推定処理部116と、状態診断処理部117とに相当するものである。
 音響診断部118は、遮断器201cの診断時において、設置されているマイク202で集音された音のデータである音響データ(第2の音響データとは異なる音響データである第3の音響データ)301と、個別モデル136を用いて、遮断器201cの診断を行う。まず、音響診断部118は、個別モデル136に、取得した音響データ301を入力する。音響診断部118は、個別モデル136から出力された出力結果である診断結果211を基に、遮断器201cの動作に関する診断を行う。
(Diagnosis (S3))
After learning the individual model 136, the acoustic diagnosis section (diagnosis section) 118 diagnoses the circuit breaker 201c (S3). Note that the acoustic diagnosis section 118 corresponds to the activity estimation processing section 116 and the state diagnosis processing section 117 in FIG.
When diagnosing the circuit breaker 201c, the acoustic diagnosis unit 118 collects acoustic data (third acoustic data that is different from the second acoustic data) that is the data of the sound collected by the installed microphone 202. ) 301 and the individual model 136 to diagnose the circuit breaker 201c. First, the acoustic diagnosis unit 118 inputs the acquired acoustic data 301 to the individual model 136. The acoustic diagnosis unit 118 diagnoses the operation of the circuit breaker 201c based on the diagnosis result 211 that is the output result from the individual model 136.
 <音響データ301及びストローク位置データ302の収集の詳細>
 図2は、本実施形態で用いられる音響データ301及びストローク位置データ302の収集の詳細を示す図である。適宜、図1を参照する。
 図2における音響データ301及びストローク位置データ302の収集は、図1における共通モデル学習(S1)における共通学習用データ133の収集、及び、個別モデル学習(S2)における個別学習用データ135の収集における共通の処理である。
<Details of collecting acoustic data 301 and stroke position data 302>
FIG. 2 is a diagram showing details of collection of acoustic data 301 and stroke position data 302 used in this embodiment. Reference is made to FIG. 1 as appropriate.
The collection of acoustic data 301 and stroke position data 302 in FIG. 2 is the same as the collection of common learning data 133 in common model learning (S1) in FIG. 1 and the collection of individual learning data 135 in individual model learning (S2). This is a common process.
 前記したように、遮断器201の近傍(距離L1)には、遮断器201の音を集音するマイク202と、ストローク位置計測装置203とが設置される。また、ロガー221は、マイク202から出力される音響データ301(図4、図5参照)、及び、ストローク位置計測装置203から出力されるストローク位置データ302(図4、図5参照)を同期して取得する。さらに、ロガー221は、取得した音響データ301及びストローク位置データ302をデジタル信号に変換し、診断装置1へ出力する。診断装置1は、図1に示す共通モデル学習部114、個別モデル学習部115、音響診断部118を備えている。また、診断装置1は、共通学習用データ133、共通モデル134、個別学習用データ135、個別モデル136を補助記憶装置130(図3参照)に格納可能である。 As described above, the microphone 202 that collects the sound of the circuit breaker 201 and the stroke position measuring device 203 are installed near the circuit breaker 201 (distance L1). The logger 221 also synchronizes the acoustic data 301 (see FIGS. 4 and 5) output from the microphone 202 and the stroke position data 302 (see FIGS. 4 and 5) output from the stroke position measuring device 203. and obtain it. Furthermore, the logger 221 converts the acquired acoustic data 301 and stroke position data 302 into digital signals and outputs them to the diagnostic device 1. The diagnostic device 1 includes a common model learning section 114, an individual model learning section 115, and an acoustic diagnosis section 118 shown in FIG. Further, the diagnostic device 1 can store common learning data 133, common model 134, individual learning data 135, and individual model 136 in the auxiliary storage device 130 (see FIG. 3).
 診断装置1は、ロガー221から受け取った音響データ301及びストローク位置データ302のデジタル信号を、図1に示す共通学習用データ133や、個別学習用データ135として補助記憶装置130に格納する。 The diagnostic device 1 stores the digital signals of the acoustic data 301 and stroke position data 302 received from the logger 221 in the auxiliary storage device 130 as the common learning data 133 and the individual learning data 135 shown in FIG.
 このように、図2に示すシステムは、共通モデル134の生成時における共通学習用データ133を収集する際に使用できる。さらに、新規の遮断器201cの個別モデル136の生成時における少数の個別学習用データ135を収集する際にも図2に示すシステムが利用できる。また、診断(図1のS3)は、ストローク位置計測装置203が用いられないこと以外は、図2に示すシステムが利用できる。 In this way, the system shown in FIG. 2 can be used when collecting the common learning data 133 when generating the common model 134. Furthermore, the system shown in FIG. 2 can also be used when collecting a small amount of individual learning data 135 when generating the individual model 136 of the new circuit breaker 201c. Further, for the diagnosis (S3 in FIG. 1), the system shown in FIG. 2 can be used, except that the stroke position measuring device 203 is not used.
 <診断装置1>
 図3は、本実施形態に係る診断装置(遮断器モデル生成装置)1の構成例を示す図である。
 診断装置1は、RAM(Random Access Memory)等で構成される主記憶装置100、HDD(Hard Disk Drive)や、SDD(Solid State Drive)等で構成される補助記憶装置130を備える。さらに、診断装置1は、CPU(Central Processing Unit)や、GPU(Graphic Processing Unit)で構成される中央処理装置101を備える。また、診断装置1は、キーボードや、マウス等で構成される入力装置102、ディスプレイ等で構成される出力装置(表示装置)103、ロガー221等との通信を行う通信装置104を備える。なお、図3において、ロガー221が破線で示されているのは、本実施形態ではロガー221が診断装置1を構成する要素ではないことを示している。
<Diagnostic device 1>
FIG. 3 is a diagram showing a configuration example of the diagnostic device (breaker model generation device) 1 according to the present embodiment.
The diagnostic device 1 includes a main storage device 100 configured with a RAM (Random Access Memory) or the like, and an auxiliary storage device 130 configured with an HDD (Hard Disk Drive), an SDD (Solid State Drive), or the like. Furthermore, the diagnostic device 1 includes a central processing unit 101 including a CPU (Central Processing Unit) and a GPU (Graphic Processing Unit). The diagnostic device 1 also includes an input device 102 including a keyboard and a mouse, an output device (display device) 103 including a display, and a communication device 104 that communicates with a logger 221 and the like. Note that in FIG. 3, the logger 221 is indicated by a broken line to indicate that the logger 221 is not a component of the diagnostic device 1 in this embodiment.
 (補助記憶装置130)
 補助記憶装置130には、診断ソフトプログラム131、マイク位置情報132、共通学習用データ133、共通モデル134、個別学習用データ135、個別モデル136、診断用パラメータ137、診断履歴情報138が格納されている。
 診断ソフトプログラム131は、診断ソフト110を実行するためのプログラムである。
 マイク位置情報132は、マイク202と遮断器201との位置関係(図2の距離L1)に関する情報である。
 共通学習用データ133は、共通モデル学習部114による共通モデル学習(図1のS1)に用いられるデータである。
 共通モデル134は、共通モデル学習部114による共通モデル学習(図1のS1)によって出力されるモデルである。前記したように、共通モデル134は、具体的には共通モデル134を構成するニューラルネットワークにおける各ニューロンの結合強度である。
(Auxiliary storage device 130)
The auxiliary storage device 130 stores a diagnostic software program 131, microphone position information 132, common learning data 133, common model 134, individual learning data 135, individual model 136, diagnostic parameters 137, and diagnostic history information 138. There is.
The diagnostic software program 131 is a program for executing the diagnostic software 110.
The microphone position information 132 is information regarding the positional relationship (distance L1 in FIG. 2) between the microphone 202 and the circuit breaker 201.
The common learning data 133 is data used for common model learning (S1 in FIG. 1) by the common model learning unit 114.
The common model 134 is a model output by common model learning (S1 in FIG. 1) by the common model learning unit 114. As described above, the common model 134 is specifically the connection strength of each neuron in the neural network that constitutes the common model 134.
 個別学習用データ135は、個別モデル学習部115による個別モデル学習(図1のS2)で用いられるデータである。
 個別モデル136は、個別モデル学習部115による個別モデル学習(図1のS2)によって出力されるモデルである。前記したように、個別モデル136は、具体的には個別モデル136を構成するニューラルネットワークにおける各ニューロンの結合強度である。
The individual learning data 135 is data used in individual model learning (S2 in FIG. 1) by the individual model learning unit 115.
The individual model 136 is a model output by individual model learning by the individual model learning unit 115 (S2 in FIG. 1). As described above, the individual model 136 is specifically the connection strength of each neuron in the neural network that constitutes the individual model 136.
 診断用パラメータ137は、診断に用いられるパラメータである。例えば、診断用パラメータ137として、推定される開動作開始のタイミング及び開動作終了のタイミングの平均が、定格から何%ずれていたら異常と判定するかを示す閾値等である。
 診断履歴情報138は、現在までに状態診断処理部117によって行われた診断結果211(図1参照)である。
Diagnostic parameters 137 are parameters used for diagnosis. For example, the diagnostic parameter 137 may be a threshold value indicating by what percentage deviation from the rated average of the estimated opening operation start timing and opening operation end timing is determined to be abnormal.
The diagnosis history information 138 is the diagnosis results 211 (see FIG. 1) performed by the state diagnosis processing unit 117 up to now.
 主記憶装置100は、診断ソフト110と、ワークエリア120とが設けられている。
 (診断ソフト110)
 診断ソフト110は、補助記憶装置130に格納されている診断ソフトプログラム131が主記憶装置100にロードされ、中央処理装置101によって実行されることによって具現化する。診断ソフト110は、全体制御処理部111、スペクトログラム生成部(特徴量生成部)112、特徴量抽出処理部(特徴量設定部、特徴量生成部)113、共通モデル学習部114、個別モデル学習部115、活性度推定処理部(診断部)116、状態診断処理部(診断部)117を有する。
The main storage device 100 is provided with diagnostic software 110 and a work area 120.
(Diagnostic software 110)
The diagnostic software 110 is realized by loading the diagnostic software program 131 stored in the auxiliary storage device 130 into the main storage device 100 and executing it by the central processing unit 101. The diagnostic software 110 includes an overall control processing section 111, a spectrogram generation section (feature generation section) 112, a feature extraction processing section (feature setting section, feature generation section) 113, a common model learning section 114, and an individual model learning section. 115, an activity estimation processing section (diagnosis section) 116, and a state diagnosis processing section (diagnosis section) 117.
 全体制御処理部111は、スペクトログラム生成部112、特徴量抽出処理部113、共通モデル学習部114、個別モデル学習部115、活性度推定処理部116、状態診断処理部117の制御を管理する。 The overall control processing unit 111 manages control of the spectrogram generation unit 112, feature extraction processing unit 113, common model learning unit 114, individual model learning unit 115, activity estimation processing unit 116, and state diagnosis processing unit 117.
 スペクトログラム生成部112は、マイク202から取得された音響データ301からスペクトログラム401(図6参照)を生成する。スペクトログラム401とは、横軸を時間、縦軸を周波数とするものである。スペクトログラム401の詳細については後記する。
 特徴量抽出処理部113は、スペクトログラム生成部112で生成されたスペクトログラム401から特徴量テンソル(特徴量)411(図6、図7)を抽出する。特徴量テンソル411とは、スペクトログラム401を、所定の時間幅で切り出したものである。なお、特徴量テンソル411の詳細については後記する。ちなみにテンソルとは、多次元配列で示されるものであり、ベクトル、行列を含むものである。
The spectrogram generation unit 112 generates a spectrogram 401 (see FIG. 6) from the acoustic data 301 acquired from the microphone 202. The spectrogram 401 has time on the horizontal axis and frequency on the vertical axis. Details of the spectrogram 401 will be described later.
The feature quantity extraction processing unit 113 extracts a feature quantity tensor (feature quantity) 411 (FIGS. 6 and 7) from the spectrogram 401 generated by the spectrogram generation unit 112. The feature amount tensor 411 is obtained by cutting out the spectrogram 401 at a predetermined time width. Note that details of the feature amount tensor 411 will be described later. Incidentally, a tensor is a multidimensional array that includes vectors and matrices.
 共通モデル学習部114は、複数の機種や、動作条件を有する遮断器201のそれぞれから取得した音響データ301から得られる特徴量テンソル411をニューラルネットワークに入力し、学習することで、共通モデル134を生成する。
 個別モデル学習部115は、診断対象となる遮断器201が正常な時における音響データ301から得られる特徴量テンソル411を共通モデル134に入力し、学習することで個別モデル136を生成する。
The common model learning unit 114 inputs a feature tensor 411 obtained from the acoustic data 301 obtained from multiple models and circuit breakers 201 having different operating conditions into a neural network, and learns the common model 134. generate.
The individual model learning unit 115 inputs the feature quantity tensor 411 obtained from the acoustic data 301 when the circuit breaker 201 to be diagnosed is normal to the common model 134, and generates the individual model 136 by learning.
 活性度推定処理部116は、診断対象となる音響データ301から得られる特徴量テンソル411を個別モデル136に入力した結果である推定活性度681(図10参照)を取得する。推定活性度681は、個別モデル136に音響データ301を入力した結果、出力されるものである。
 状態診断処理部117は、活性度推定処理部116によって取得された推定活性度681を基に、診断対象となっている遮断器201の状態診断を行う。
The activity estimation processing unit 116 obtains an estimated activity 681 (see FIG. 10) that is the result of inputting the feature amount tensor 411 obtained from the acoustic data 301 to be diagnosed into the individual model 136. Estimated activity level 681 is output as a result of inputting acoustic data 301 to individual model 136.
The state diagnosis processing unit 117 performs a state diagnosis of the circuit breaker 201 to be diagnosed based on the estimated activity level 681 acquired by the activity level estimation processing unit 116.
 ちなみに、活性度推定処理部116及び状態診断処理部117は、図1における音響診断部118を構成する。 Incidentally, the activity estimation processing section 116 and the state diagnosis processing section 117 constitute the acoustic diagnosis section 118 in FIG.
 (ワークエリア120)
 また、ワークエリア120は、診断ソフト110が実行されている際に一時記憶部として用いられるエリアである。
 ワークエリア120には、音響データ格納領域121、スペクトログラム格納領域122、特徴量格納領域123、モデル格納領域124、推定活性度格納領域125、診断用パラメータ格納領域126、診断結果格納領域127が設けられている。
 音響データ格納領域121には、マイク202から取得された音響データ301が一時記憶される領域である。
 スペクトログラム格納領域122には、スペクトログラム401が一時記憶される。
 特徴量格納領域123には、特徴量テンソル411が一時記憶される。
 モデル格納領域124には、共通モデル134や、個別モデル136が一時記憶される。
(Work area 120)
Further, the work area 120 is an area used as a temporary storage unit when the diagnostic software 110 is being executed.
The work area 120 is provided with an acoustic data storage area 121, a spectrogram storage area 122, a feature storage area 123, a model storage area 124, an estimated activity storage area 125, a diagnostic parameter storage area 126, and a diagnostic result storage area 127. ing.
The acoustic data storage area 121 is an area where acoustic data 301 acquired from the microphone 202 is temporarily stored.
The spectrogram 401 is temporarily stored in the spectrogram storage area 122.
The feature amount tensor 411 is temporarily stored in the feature amount storage area 123.
A common model 134 and individual models 136 are temporarily stored in the model storage area 124.
 推定活性度格納領域125には、個別モデル136によって推定される推定活性度681が一時記憶される。
 診断用パラメータ格納領域126には、遮断器201の診断の際に用いられる診断用パラメータ137が一時記憶される。
 診断結果格納領域127は、状態診断処理部117による診断結果211が一時記憶される。
The estimated activity level 681 estimated by the individual model 136 is temporarily stored in the estimated activity level storage area 125 .
In the diagnostic parameter storage area 126, diagnostic parameters 137 used when diagnosing the circuit breaker 201 are temporarily stored.
The diagnosis result storage area 127 temporarily stores the diagnosis result 211 obtained by the state diagnosis processing section 117.
 <閉動作>
 図4は、遮断器201(図1、図2参照)の閉動作時の各タイミングを示す図である。
 図4では、上から順に音響データ301a(301)、ストローク位置データ302b(302)を示す。さらに、図4では、閉動作開始時の活性度310(閉動作開始時活性度311)、閉動作終了時の活性度310(閉動作終了時活性度312)、開動作開始時の活性度310(開動作開始時活性度313)、開動作終了時の活性度310(開動作終了時活性度314)が示されている。また、図4において、それぞれのグラフは時間軸で揃えられている。なお、活性度310は、遮断器201による動作時に発生する音をモデル化した音響モデルである。
<Closing operation>
FIG. 4 is a diagram showing each timing during the closing operation of the circuit breaker 201 (see FIGS. 1 and 2).
In FIG. 4, acoustic data 301a (301) and stroke position data 302b (302) are shown in order from the top. Furthermore, in FIG. 4, the activity level 310 at the start of the closing operation (activity level 311 at the start of the closing operation), the activity level 310 at the end of the closing operation (activity level 312 at the end of the closing operation), and the activity level 310 at the start of the opening operation. (Activity level 313 at the start of the opening operation) and activity level 310 at the end of the opening operation (Activity level 314 at the end of the opening operation) are shown. Further, in FIG. 4, the respective graphs are arranged along the time axis. Note that the activity level 310 is an acoustic model that models the sound generated when the circuit breaker 201 operates.
 なお、閉動作開始時活性度311は、遮断器201の閉動作時が開始する際に発せられる動作音について生成される活性度310である。閉動作終了時活性度312は、遮断器の閉動作時が終了する際に発せられる動作音について生成される活性度310である。また、開動作開始時活性度313は、遮断器201の開動作時が開始する際に発せられる動作音について生成される活性度310である。そして、開動作終了時活性度314は、前記遮断器の開動作時が終了する際に発せられる動作音について生成される活性度310である。 Note that the activation degree 311 at the start of the closing operation is the activation degree 310 generated for the operation sound emitted when the closing operation of the circuit breaker 201 starts. The activation degree 312 at the end of the closing operation is the activation degree 310 generated for the operation sound emitted when the closing operation of the circuit breaker ends. Furthermore, the opening operation start activation degree 313 is the activation degree 310 generated regarding the operation sound emitted when the opening operation of the circuit breaker 201 starts. The activation degree 314 at the end of the opening operation is the activation degree 310 generated regarding the operation sound emitted when the opening operation of the circuit breaker ends.
 なお、前記したように、活性度310は、遮断器201の閉動作時や、開動作等、遮断器による動作時に発生する音をモデル化した音響モデルである。
 遮断器201の閉動作に関する活性度310として、閉動作開始時活性度311、閉動作終了時活性度312と2種類の活性度310が設定されている。この理由は、本実施形態の例において遮断器201の閉動作が行われる際、2つの音が発生することによる。
Note that, as described above, the activity level 310 is an acoustic model that models the sound generated when the circuit breaker 201 operates, such as when the circuit breaker 201 closes or opens.
As the activity level 310 related to the closing operation of the circuit breaker 201, two types of activity level 310 are set: an activity level 311 at the start of the closing operation, and an activity level 312 at the end of the closing operation. The reason for this is that two sounds are generated when the circuit breaker 201 is closed in the example of this embodiment.
 また、遮断器201の開動作に関する活性度310として、開動作開始時活性度313と、開動作終了時活性度314と2種類の活性度310が設定されている。この理由も、遮断器201の開動作が行われる際、2つの音が発生することによる。 Furthermore, two types of activation degrees 310 are set as the activation degrees 310 regarding the opening operation of the circuit breaker 201: an activation degree 313 at the start of the opening operation and an activation degree 314 at the end of the opening operation. The reason for this is also that two sounds are generated when the circuit breaker 201 is opened.
 従って、活性度310は閉動作及び開動作において遮断器201で発生する音に応じて設定されればよい。例えば、閉動作時、及び、開動作のそれぞれで1つの音が発生するのであれば、活性度310はそれぞれ1種類ずつ用意されればよいし、3つ以上の音が発生するのであれば、閉動作時及び開動作時のそれぞれについて活性度310は3種類ずつ設定されればよい。また、閉動作時と、開動作時のそれぞれについて、発生する音の数が異なる場合は、異なる数の活性度310が設定されてもよい。例えば、閉動作時では3つの音が発生し、開動作時では2つの音が発生する場合、閉動作時では3種類の活性度310が設定され、開動作時では2種類の活性度310が設定されればよい。 Therefore, the activity level 310 may be set according to the sound generated by the circuit breaker 201 during the closing and opening operations. For example, if one sound is generated in each of the closing operation and the opening operation, one type of activation level 310 may be prepared for each type, and if three or more sounds are generated, Three types of activation levels 310 may be set for each of the closing operation and the opening operation. Further, if the number of sounds generated is different for each of the closing operation and the opening operation, different numbers of activation degrees 310 may be set. For example, if three sounds are generated during the closing operation and two sounds are generated during the opening operation, three types of activation levels 310 are set during the closing operation, and two types of activation levels 310 are set during the opening operation. It only needs to be set.
 また、図4は閉動作時を示しているため、開動作開始時活性度313、開動作終了時活性度314は非活性となっている。なお、閉動作開始時活性度311、閉動作終了時活性度312、開動作開始時活性度313、開動作終了時活性度314のグラフ中の破線は、それぞれの活性度310のピーク値を示している。 Furthermore, since FIG. 4 shows the closing operation, the activation level 313 at the start of the opening operation and the activation level 314 at the end of the opening operation are inactive. Note that the broken lines in the graphs of the activity at the start of closing operation 311, the activity at the end of closing operation 312, the activity at the start of opening operation 313, and the activity at the end of opening operation 314 indicate the peak values of the respective activities 310. ing.
 前記したように、音響データ301aは、ストローク位置データ302aと同期して保存されている。ストローク位置データ302aの変化開始時刻321と、変化終了時刻322とから、閉動作の開始時刻と終了時刻の真値を求めることができる。これにより、閉動作開始時活性度311は、閉動作の開始時刻(ストローク位置データ302aの変化開始時刻321)で立ち上がり、一定の割合で値が減少するよう設定される。このように設定される閉動作開始時活性度311は、閉動作開始点の音響強度のモデルとなる。同様に、閉動作終了時活性度312についても、終了時刻(ストローク位置データ302aの変化終了時刻322)で立ち上がり、一定の割合で値が減少するよう設定される。このように設定される閉動作終了時活性度312は、閉動作終了点の音響強度のモデルとなる。 As described above, the acoustic data 301a is stored in synchronization with the stroke position data 302a. The true values of the start time and end time of the closing operation can be determined from the change start time 321 and change end time 322 of the stroke position data 302a. Thereby, the closing operation start activation level 311 is set so that it rises at the start time of the closing operation (change start time 321 of the stroke position data 302a) and decreases at a constant rate. The activation degree 311 at the start of the closing operation set in this way becomes a model of the acoustic intensity at the starting point of the closing operation. Similarly, the activation level 312 at the end of the closing operation is set so that it rises at the end time (change end time 322 of the stroke position data 302a) and decreases at a constant rate. The activation degree 312 at the end of the closing operation set in this way becomes a model of the sound intensity at the end point of the closing operation.
 図4で示すように、活性度310のそれぞれは、閉動作又は開動作の開始時刻と終了時刻とのそれぞれを起点(動作開始時点)として時間軸に対して垂直に立ち上がり、その後、所定の傾きで減衰する三角波の形で表現される。 As shown in FIG. 4, each of the degrees of activity 310 rises perpendicularly to the time axis with the start time and end time of the closing or opening action as the starting point (action start time), and then rises at a predetermined slope. It is expressed in the form of a triangular wave that is attenuated by .
 <開動作>
 図5は、遮断器201(図1、図2参照)の開動作時の各タイミングを示す図である。
 図5でも、図4と同様、上から順に音響データ301b、ストローク位置データ302bが示されている。さらに、図5では、閉動作開始時の活性度310(閉動作開始時活性度311)、閉動作終了時の活性度310(閉動作終了時活性度312)、開動作開始時の活性度310(開動作開始時活性度313)、開動作終了時の活性度310(開動作終了時活性度314)が示されている。なお、図5において、それぞれのグラフは時間軸で揃えられている。
<Opening operation>
FIG. 5 is a diagram showing each timing during the opening operation of the circuit breaker 201 (see FIGS. 1 and 2).
Similarly to FIG. 4, in FIG. 5, acoustic data 301b and stroke position data 302b are shown in order from the top. Furthermore, in FIG. 5, the activity level 310 at the start of the closing operation (activity level 311 at the start of the closing operation), the activity level 310 at the end of the closing operation (activity level 312 at the end of the closing operation), and the activity level 310 at the start of the opening operation. (Activity level 313 at the start of the opening operation) and activity level 310 at the end of the opening operation (Activity level 314 at the end of the opening operation) are shown. Note that in FIG. 5, the respective graphs are aligned on the time axis.
 音響データ301b、ストローク位置データ302bは、開動作時のデータであること以外は、図4の音響データ301a、ストローク位置データ302aと同様であるので、図5での説明を省略する。なお、図5では遮断器201の開動作時におけるデータを示しているため、閉動作開始時活性度311、閉動作終了時活性度312は非活性となり、開動作開始時活性度313、開動作終了時活性度314は活性となっている。 The acoustic data 301b and the stroke position data 302b are the same as the acoustic data 301a and the stroke position data 302a in FIG. 4, except that they are data for the opening operation, so their explanation in FIG. 5 will be omitted. Note that since FIG. 5 shows data during the opening operation of the circuit breaker 201, the activation level 311 at the start of the closing operation and the activation level 312 at the end of the closing operation are inactive, and the activation level 313 at the start of the opening operation and the activation level 312 at the end of the closing operation are inactive. The activity level 314 at the end is active.
 このように本実施形態では、遮断器201の動作として、遮断器201の開動作、及び、閉動作が用いられる。 As described above, in this embodiment, the opening operation and the closing operation of the circuit breaker 201 are used as the operation of the circuit breaker 201.
 また、本実施形態では、活性度310が、閉動作開始時活性度311、閉動作終了時活性度312、開動作開始時活性度313、及び、開動作終了時活性度314で構成されている。このような活性度310の構成とすることで、開動作及び閉動作のそれぞれで2回音がなる遮断器201に適用することができる。 Further, in this embodiment, the activity level 310 is composed of an activity level at the start of the closing operation 311, an activity level at the end of the closing operation 312, an activity level at the start of the opening operation 313, and an activity level at the end of the opening operation 314. . By configuring the activity level 310 as described above, it can be applied to the circuit breaker 201 that makes two sounds during each of the opening operation and the closing operation.
 (特徴量テンソル411の生成)
 図6は、共通モデル学習(図1のS1)及び個別モデル学習(図1のS2)における特徴量テンソル411の生成手順の一例を示す図である。適宜、図3を参照する。なお、図6は、図1の共通モデル学習(S1)における共通学習用データ133や、個別モデル学習(S2)における個別学習用データ135の生成処理を詳細に説明するものである。
 音響データ301は、スペクトログラム生成部112によって周波数分析(S101)され、スペクトログラム401に変換される。以降、学習に使用するために収集される音響データ301を学習用音響データ301A(第1の音響データ、第2の音響データ)と適宜称する。図6に示すように、スペクトログラム401は、縦軸を周波数、横軸を時間とする。つまり、スペクトログラム401は、学習用音響データ301Aに対して、一定の時間窓W1で切り出した波形それぞれの周波数分析結果をつなげたものである。つまり、スペクトログラム401は、音響波形を一定時刻ごとのスペクトル列に変換したものである。
(Generation of feature tensor 411)
FIG. 6 is a diagram illustrating an example of a procedure for generating the feature quantity tensor 411 in common model learning (S1 in FIG. 1) and individual model learning (S2 in FIG. 1). Refer to FIG. 3 as appropriate. Note that FIG. 6 explains in detail the generation process of the common learning data 133 in the common model learning (S1) of FIG. 1 and the individual learning data 135 in the individual model learning (S2).
The acoustic data 301 is subjected to frequency analysis (S101) by the spectrogram generation unit 112 and converted into a spectrogram 401. Hereinafter, the acoustic data 301 collected for use in learning will be appropriately referred to as learning acoustic data 301A (first acoustic data, second acoustic data). As shown in FIG. 6, in the spectrogram 401, the vertical axis represents frequency and the horizontal axis represents time. In other words, the spectrogram 401 is obtained by connecting the frequency analysis results of each waveform cut out in a fixed time window W1 with respect to the learning acoustic data 301A. In other words, the spectrogram 401 is obtained by converting an acoustic waveform into a spectral sequence at regular time intervals.
 続いて、特徴量抽出処理部113は、生成したスペクトログラム401に対して、フレームスタッキング(S102)を行う。つまり、特徴量抽出処理部113は、スペクトログラム401を、時間を所定時間ずらしながら、一定の時間窓W2でスペクトログラム401を抽出する(スタックする)。切り出されたスペクトログラム401それぞれを特徴量テンソル411と称する。このように、特徴量抽出処理部113は、スペクトログラム401を所定の時間窓W2で切り出すことにより、複数の特徴量テンソル411を生成する。このように、特徴量抽出処理部113は、所定の時間幅で特徴量テンソル411の開始時間をずらしつつ取得していく(所定の時間窓を、所定の時間幅でずらしつつ取得する)。これにより、特徴量抽出処理部113は、複数の特徴量テンソル411を生成する。このように、特徴量テンソル411は、音響データ301(図6に示す例では学習用音響データ301A)から生成されるものである。この際、ずらす時間幅は特徴量テンソル411が有する時間幅よりも小さく設定することが望ましい。このようにすることで、特徴量テンソル411の時間分解能を高めることができる。 Next, the feature extraction processing unit 113 performs frame stacking (S102) on the generated spectrogram 401. That is, the feature amount extraction processing unit 113 extracts (stack) the spectrograms 401 in a constant time window W2 while shifting the time of the spectrograms 401 by a predetermined time. Each of the extracted spectrograms 401 is referred to as a feature amount tensor 411. In this way, the feature amount extraction processing unit 113 generates a plurality of feature amount tensors 411 by cutting out the spectrogram 401 at the predetermined time window W2. In this way, the feature quantity extraction processing unit 113 acquires the feature quantity tensor 411 while shifting its start time by a predetermined time width (obtains by shifting a predetermined time window by a predetermined time width). Thereby, the feature quantity extraction processing unit 113 generates a plurality of feature quantity tensors 411. In this way, the feature quantity tensor 411 is generated from the acoustic data 301 (in the example shown in FIG. 6, the learning acoustic data 301A). At this time, it is desirable that the time width for shifting is set smaller than the time width that the feature amount tensor 411 has. By doing so, the time resolution of the feature amount tensor 411 can be improved.
 図6に示す特徴量テンソル411は、時間幅が17msec、周波数幅が77フレームを有している。なお、周波数幅は、所定の周波数単位(例えば10Hz)で区切られており、周波数幅が77フレームということは、周波数単位が77個分(770Hz分)という意味である。また、図6の特徴量テンソル411の下に付与されている数字は、特徴量テンソル411の番号である。図6に示す例では、nfrm個の特徴量テンソル411が生成されている。 The feature tensor 411 shown in FIG. 6 has a time width of 17 msec and a frequency width of 77 frames. Note that the frequency width is divided into predetermined frequency units (for example, 10 Hz), and the frequency width of 77 frames means 77 frequency units (770 Hz). Further, the number given below the feature amount tensor 411 in FIG. 6 is the number of the feature amount tensor 411. In the example shown in FIG. 6, nfrm feature quantity tensors 411 are generated.
 <特徴量テンソル411と、活性度310との対応関係>
 図7は、特徴量テンソル411と、活性度310との対応関係を示す図である。
 1つの特徴量テンソル411に対して、対応する活性度310(閉動作開始時活性度311、閉動作終了時活性度312、開動作開始時活性度313、開動作終了時活性度314)における時間区間が必ず対応付けられる。例えば、図7に示す特徴量テンソル411zと、それぞれの活性度310における時間区間T1とが対応付けられる。換言すれば、特徴量テンソル411zは、開動作開始時活性度313における立ち上がり前から減衰期に相当する。つまり、特徴量テンソル411zは、遮断器201の開動作の開始時の音を示している。図4、図5で示すように、音響データ301と、ストローク位置データ302とを基に音響データ301と、それぞれの活性度310とは互いに関連付けられている。従って、音響データ301を基に、生成された特徴量テンソル411と、それぞれの活性度310とは互いに対応付けられている。
<Correspondence between feature quantity tensor 411 and activation degree 310>
FIG. 7 is a diagram showing the correspondence between the feature amount tensor 411 and the activity level 310.
For one feature quantity tensor 411, the time at the corresponding activation 310 (activation at the start of closing operation 311, activation at the end of closing operation 312, activation at the start of opening operation 313, activation at the end of opening operation 314) Intervals are always mapped. For example, the feature amount tensor 411z shown in FIG. 7 is associated with the time interval T1 in each activity level 310. In other words, the feature quantity tensor 411z corresponds to a decay period from before the rise in the activation degree 313 at the start of the opening operation. In other words, the feature quantity tensor 411z indicates the sound at the start of the opening operation of the circuit breaker 201. As shown in FIGS. 4 and 5, the acoustic data 301 and the respective activation degrees 310 are associated with each other based on the acoustic data 301 and the stroke position data 302. Therefore, the feature quantity tensor 411 generated based on the acoustic data 301 and each activation level 310 are associated with each other.
 他の特徴量テンソル411も同様に、それぞれの活性度310における時間区間と対応付けられる。このような、特徴量テンソル411と、活性度310の対応付けは、図3に示す特徴量抽出処理部113によって行われる。このように、特徴量抽出処理部113は、音響データ301、及び、ストローク位置データ302を基に、遮断器201による動作時に発生する音をモデル化した活性度310と、音響データ301を基に生成された特徴量テンソル411と、を対応付ける。ちなみに、共通モデル(図1参照)134の学習に用いられる特徴量テンソル(第1の特徴量)411も、個別モデル(図1参照)136の学習に用いられる特徴量テンソル(第2の特徴量)411も、同様の手順で生成される。 Similarly, other feature quantity tensors 411 are associated with time intervals in their respective activation levels 310. This kind of association between the feature quantity tensor 411 and the activation level 310 is performed by the feature quantity extraction processing unit 113 shown in FIG. In this way, the feature amount extraction processing unit 113 calculates the activity level 310, which is a model of the sound generated when the circuit breaker 201 operates, based on the acoustic data 301 and the stroke position data 302, and the acoustic data 301. The generated feature amount tensor 411 is associated with the generated feature amount tensor 411. Incidentally, the feature quantity tensor (first feature quantity) 411 used for learning the common model (see FIG. 1) 134 is also the feature quantity tensor (second feature quantity) used for learning the individual model (see FIG. 1) 136. ) 411 is also generated using the same procedure.
 共通モデル134、個別モデル136では、特徴量テンソル411を入力データとし、対応する活性度310を教師データとして学習が行われる。 In the common model 134 and the individual model 136, learning is performed using the feature quantity tensor 411 as input data and the corresponding activation degree 310 as teacher data.
 (共通モデル学習部114)
 図8は、本実施形態で行われる共通モデル学習部114における処理を示す図である。図8は、図1の共通モデル学習(S1)の共通モデル学習部114における処理を詳細に説明するものである。
 共通モデル学習部114は、畳み込みニューラルネットワーク層511、第1のプーリング層512、第2のプーリング層513を含む。さらに、共通モデル学習部114は、第1のフルコネクションニューラルネットワーク層521、第2のフルコネクションニューラルネットワーク層522を含む。このように、共通モデル学習(S1:図1参照)で用いられる深層ニューラルネットワーク(第1のニューラルネットワーク)N1は、複数段階のニューラルネットワークで構成される。
(Common model learning unit 114)
FIG. 8 is a diagram showing the processing performed by the common model learning unit 114 in this embodiment. FIG. 8 explains in detail the processing in the common model learning unit 114 of common model learning (S1) in FIG. 1.
The common model learning unit 114 includes a convolutional neural network layer 511, a first pooling layer 512, and a second pooling layer 513. Further, the common model learning unit 114 includes a first full-connection neural network layer 521 and a second full-connection neural network layer 522. In this way, the deep neural network (first neural network) N1 used in common model learning (S1: see FIG. 1) is composed of a plurality of stages of neural networks.
 まず、共通学習用データ133には、様々な機種や、動作条件の(複数の)遮断器201から取得された学習用音響データ(第1の音響データ)301A(図6参照)を基に生成された特徴量テンソル(第1の特徴量)411(411a,411b:第1の特徴量)が格納されている。なお、図8において、特徴量テンソル411、第1の変換データ502、第2の変換データ503、第3の変換データ504、第4の変換データ505、第5の変換データ506の近傍に記載されている数字は、データサイズを示している。 First, the common learning data 133 is generated based on learning acoustic data (first acoustic data) 301A (see FIG. 6) acquired from (multiple) circuit breakers 201 of various models and operating conditions. A feature quantity tensor (first feature quantity) 411 (411a, 411b: first feature quantity) is stored. In addition, in FIG. 8, the following information is written near the feature amount tensor 411, the first converted data 502, the second converted data 503, the third converted data 504, the fourth converted data 505, and the fifth converted data 506. The number shown indicates the data size.
 まず、畳み込みニューラルネットワーク層511には、特徴量テンソル411の1つが入力データとして入力される。図8に示すように、特徴量テンソル411は、17×77×1のデータである。 First, one of the feature quantity tensors 411 is input to the convolutional neural network layer 511 as input data. As shown in FIG. 8, the feature amount tensor 411 is 17×77×1 data.
 畳み込みニューラルネットワーク層511によって、特徴量テンソル411は15×75×16のデータサイズを有する第1の変換データ502に変換される。なお、第1の変換データ502のデータサイズを示す数のうち、「16」は、チャネル数であり、スペクトログラム401の特徴(フィルタ)の数を示す。チャネル数は、ユーザによって予め設定される値である。 The feature quantity tensor 411 is converted by the convolutional neural network layer 511 into first conversion data 502 having a data size of 15×75×16. Note that among the numbers indicating the data size of the first converted data 502, “16” is the number of channels and indicates the number of features (filters) of the spectrogram 401. The number of channels is a value preset by the user.
 さらに、この第1の変換データ502は、第1のプーリング層512によって6×36×16のデータサイズを有する第2の変換データ503に圧縮される。第2の変換データ503のデータサイズを示す数のうち、「16」は、第1の変換データ502と同様、スペクトログラム401の特徴(フィルタ)の数を示す。さらに、第2の変換データ503は、第2のプーリング層513によって、さらに2×17×16のデータサイズを有する第3の変換データ504に圧縮される。第3の変換データ504のデータサイズを示す数のうち、「16」は、第1の変換データ502や、第2の変換データ503と同様、スペクトログラム401の特徴(フィルタ)の数を示す。 Further, this first converted data 502 is compressed by the first pooling layer 512 into second converted data 503 having a data size of 6×36×16. Among the numbers indicating the data size of the second converted data 503, “16” indicates the number of features (filters) of the spectrogram 401, similarly to the first converted data 502. Further, the second transformed data 503 is further compressed by the second pooling layer 513 into third transformed data 504 having a data size of 2×17×16. Among the numbers indicating the data size of the third converted data 504, “16” indicates the number of features (filters) of the spectrogram 401, similarly to the first converted data 502 and the second converted data 503.
 続いて、共通モデル学習部114は、第3の変換データ504を1×544のデータサイズを有する第4の変換データ505に変換する。第4の変換データ505は、単に第3の変換データ504を所定の配置ルールに基づいて1×544のデータに並べ直したものである。 Subsequently, the common model learning unit 114 converts the third converted data 504 into fourth converted data 505 having a data size of 1×544. The fourth converted data 505 is simply the third converted data 504 rearranged into 1×544 data based on a predetermined arrangement rule.
 そして、第1のフルコネクションニューラルネットワーク層521によって、第4の変換データ505は、1×128のデータサイズを有する第5の変換データ506に変換される。そして、第5の変換データ506は、第2のフルコネクションニューラルネットワーク層522によって共通モデル出力データ507に変換される。共通モデル出力データ507のデータサイズは、4cである。ここで、cは、遮断器201の機種や、動作条件の数である。そして、「4」は、前記した閉動作開始時活性度311、閉動作終了時活性度312、開動作開始時活性度313、開動作終了時活性度314の4つである。つまり、畳み込みニューラルネットワーク層511に入力された特徴量テンソル411は、機種や、動作条件それぞれについて用意されている閉動作開始時活性度311、閉動作終了時活性度312、開動作開始時活性度313、開動作終了時活性度314のうち、いずれかの活性度310の状態に対応するデータとして出力される。 Then, the first full-connection neural network layer 521 converts the fourth transformed data 505 into fifth transformed data 506 having a data size of 1×128. The fifth transformed data 506 is then transformed into common model output data 507 by the second full-connection neural network layer 522. The data size of the common model output data 507 is 4c. Here, c is the model of the circuit breaker 201 and the number of operating conditions. And, "4" is the above-described four activation levels 311 at the start of the closing operation, 312 at the end of the closing operation, 313 at the start of the opening operation, and 314 at the end of the opening operation. In other words, the feature tensor 411 input to the convolutional neural network layer 511 includes an activation level at the start of closing operation 311, an activation level at the end of closing operation 312, and an activation level at the start of opening operation, which are prepared for each model and operating condition. 313 and the activation level 314 at the end of the opening operation, the data is output as data corresponding to the state of any one of the activation levels 310 .
 一方、共通学習用データ133には、それぞれの特徴量データに対応付けられている活性度310(310a,310b:第1の音響モデル)の状態が保持されている。そこで、共通モデル学習部114は、共通モデル出力データ507と、畳み込みニューラルネットワーク層511に入力された特徴量テンソル411に対応付けられている教師データとの差分を誤差として算出する(S111)。そして、共通モデル学習部114は、誤差を基に各層におけるニューロンの結合強度を更新する逆伝播処理(S112)を行う。なお、各層におけるニューロンの結合強度の初期値は乱数で設定される。 On the other hand, the common learning data 133 holds the state of the activation degree 310 (310a, 310b: first acoustic model) that is associated with each feature amount data. Therefore, the common model learning unit 114 calculates the difference between the common model output data 507 and the teacher data associated with the feature quantity tensor 411 input to the convolutional neural network layer 511 as an error (S111). The common model learning unit 114 then performs backpropagation processing (S112) to update the connection strength of neurons in each layer based on the error. Note that the initial value of the connection strength of neurons in each layer is set by a random number.
 逆伝播処理を行うと、共通モデル学習部114は、次の特徴量テンソル411を畳み込みニューラルネットワーク層511に入力する。そして、すべての特徴量テンソル411が畳み込みニューラルネットワーク層511に入力されると、最初に畳み込みニューラルネットワーク層511に入力された特徴量テンソル411が、再度、畳み込みニューラルネットワーク層511に入力される。 After performing the backpropagation process, the common model learning unit 114 inputs the next feature quantity tensor 411 to the convolutional neural network layer 511. Then, when all the feature quantity tensors 411 are input to the convolutional neural network layer 511, the feature quantity tensor 411 that was first input to the convolutional neural network layer 511 is input to the convolutional neural network layer 511 again.
 共通モデル学習部114は、以上の処理を所定回数、もしくは、誤差が所定の条件(例えば、所定の値以下)となるまで続ける。共通モデル学習部114は、以上の処理で算出された各層におけるニューロンの結合強度を共通モデル134として出力する。 The common model learning unit 114 continues the above process a predetermined number of times or until the error reaches a predetermined condition (for example, a predetermined value or less). The common model learning unit 114 outputs the connection strength of neurons in each layer calculated through the above processing as a common model 134.
 このようにして、共通モデル学習部114は、多数の機種や、動作条件に関する特徴量テンソル411と、複数の機種や、動作条件における遮断器201の開閉動作音に関する活性度310から、共通モデル134を生成する。 In this way, the common model learning unit 114 generates a common model 134 based on the feature quantity tensor 411 related to a large number of models and operating conditions, and the activity level 310 related to the opening/closing operation sound of the circuit breaker 201 in a plurality of models and operating conditions. generate.
 (個別モデル学習部115)
 図9は、本実施形態で行われる個別モデル学習部115における処理を示す図である。なお、図9は、図1の個別モデル学習(S2)の個別モデル学習部115の処理を詳細に説明するものである。
 個別モデル学習部115は、共通モデル学習部114と同様、畳み込みニューラルネットワーク層511、第1のプーリング層512、第2のプーリング層513、第1のフルコネクションニューラルネットワーク層521、第2のフルコネクションニューラルネットワーク層522を含む。このように、個別モデル学習(S2:図1参照)で用いられる深層ニューラルネットワーク(第2のニューラルネットワーク)N2の構成は、複数段階のニューラルネットワークで構成される。さらに、個別モデル学習(S2)で用いられる深層ニューラルネットワークN2は、共通モデル学習(S2)で用いられる深層ニューラルネットワークN1(図8参照)と同じ構造を有している。
(Individual model learning unit 115)
FIG. 9 is a diagram showing the processing performed by the individual model learning unit 115 in this embodiment. Note that FIG. 9 explains in detail the processing of the individual model learning unit 115 of the individual model learning (S2) in FIG. 1.
Like the common model learning unit 114, the individual model learning unit 115 includes a convolutional neural network layer 511, a first pooling layer 512, a second pooling layer 513, a first full-connection neural network layer 521, and a second full-connection neural network layer. A neural network layer 522 is included. In this way, the configuration of the deep neural network (second neural network) N2 used in individual model learning (S2: see FIG. 1) is composed of a plurality of stages of neural networks. Further, the deep neural network N2 used in the individual model learning (S2) has the same structure as the deep neural network N1 (see FIG. 8) used in the common model learning (S2).
 また、畳み込みニューラルネットワーク層511から第1のフルコネクションニューラルネットワーク層521(その他のニューラルネットワーク)について、各層におけるニューロンの結合強度は、共通モデル134に格納されている共通モデル134の値が設定される。つまり、図9において斜線で示されているデータに関するニューロンの結合強度は、共通モデル134に格納されている共通モデル134の値が初期値として設定される。ただし、図9において、第2のフルコネクションニューラルネットワーク層(出力の1つ前段のニューラルネットワーク)522におけるニューロンの結合強度の初期値は乱数で設定される。このように、個別モデル学習(S2)では、共通モデル学習(S1)の結果出力される共通モデル134を個別モデル学習(S2)における個別モデル136(深層ニューラルネットワークN2)の初期値として利用する。 Further, for the convolutional neural network layer 511 to the first full-connection neural network layer 521 (other neural networks), the connection strength of neurons in each layer is set to the value of the common model 134 stored in the common model 134. . In other words, the neuron connection strength regarding the data indicated by diagonal lines in FIG. 9 is set to the value of the common model 134 stored in the common model 134 as an initial value. However, in FIG. 9, the initial value of the connection strength of neurons in the second full-connection neural network layer (neural network one stage before the output) 522 is set as a random number. In this way, in the individual model learning (S2), the common model 134 output as a result of the common model learning (S1) is used as the initial value of the individual model 136 (deep neural network N2) in the individual model learning (S2).
 また、個別モデル学習部115において、最終的な出力となる個別モデル出力データ531は、診断対象となる遮断器201c(図1参照)に対する4つの活性度310である。4つの活性度310は、図4や、図5に示す閉動作開始時活性度311、閉動作終了時活性度312、開動作開始時活性度313、開動作終了時活性度314である。このため、個別モデル出力データ531は、4×1のデータとなる。共通モデル学習部114と異なり、個別モデル学習部115では、対象となる遮断器201が1つであるため、個別モデル出力データ531は、1×4のデータとなる。 Furthermore, in the individual model learning unit 115, the final output of the individual model output data 531 is four activation degrees 310 for the circuit breaker 201c (see FIG. 1) to be diagnosed. The four activation levels 310 are the activation level 311 at the start of the closing operation, the activation level 312 at the end of the closing operation, the activation level 313 at the start of the opening operation, and the activation level 314 at the end of the opening operation shown in FIG. 4 and FIG. Therefore, the individual model output data 531 becomes 4×1 data. Unlike the common model learning unit 114, the individual model learning unit 115 targets only one circuit breaker 201, so the individual model output data 531 is 1×4 data.
 新規に設置された(診断対象となる)遮断器201cで取得された学習用音響データ(第2の音響データ)301A(図6参照)から抽出された特徴量テンソル(第2の特徴量)411c(411)が個別学習用データ135に格納されている。また、特徴量テンソル411cと対応する活性度(第2の音響モデル)310c(310)の状態が教師データとして個別学習用データ135に格納されている。 Feature tensor (second feature) 411c extracted from learning acoustic data (second acoustic data) 301A (see FIG. 6) acquired by the newly installed circuit breaker 201c (to be diagnosed) (411) is stored in the individual learning data 135. Further, the state of the activation level (second acoustic model) 310c (310) corresponding to the feature amount tensor 411c is stored in the individual learning data 135 as teacher data.
 そして、個別モデル学習部115は、最初の特徴量テンソル411cを畳み込みニューラルネットワーク層511に入力する。その後、畳み込みニューラルネットワーク層511、第1のプーリング層512、第2のプーリング層513、第1のフルコネクションニューラルネットワーク層521による処理が行われることで、第5の変換データ506が出力される。そして、第5の変換データ506は、第2のフルコネクションニューラルネットワーク層522によって個別モデル出力データ531に変換される。 Then, the individual model learning unit 115 inputs the first feature quantity tensor 411c to the convolutional neural network layer 511. Thereafter, processing is performed by the convolutional neural network layer 511, the first pooling layer 512, the second pooling layer 513, and the first full-connection neural network layer 521, thereby outputting the fifth converted data 506. The fifth converted data 506 is then converted into individual model output data 531 by the second full-connection neural network layer 522.
 つまり、個別モデル学習部115では、入力された特徴量テンソル411は、4つの活性度310のうち、いずれかの活性度310の状態として出力される。4つの活性度310は、閉動作開始時活性度311、閉動作終了時活性度312、開動作開始時活性度313、開動作終了時活性度314である。 That is, in the individual model learning unit 115, the input feature quantity tensor 411 is output as a state of one of the four activation degrees 310. The four activation levels 310 are an activation level 311 at the start of the closing operation, an activation level 312 at the end of the closing operation, an activation level 313 at the start of the opening operation, and an activity level 314 at the end of the opening operation.
 一方、前記したように、個別学習用データ135には、遮断器201cの特徴量テンソル411に対応付けられている活性度310の状態が教師データとして保持されている。そこで、個別モデル学習部115は、個別モデル出力データ531と、入力された畳み込みニューラルネットワーク層511に特徴量テンソル411に対応付けられている教師データ(活性度310)との差分を誤差として算出する(S211)。そして、共通モデル学習部114は、誤差を基に各層におけるニューロンの結合強度を更新する逆伝播処理(S212)を行う。 On the other hand, as described above, the state of the activity level 310 associated with the feature quantity tensor 411 of the circuit breaker 201c is held as teacher data in the individual learning data 135. Therefore, the individual model learning unit 115 calculates the difference between the individual model output data 531 and the teacher data (activity level 310) associated with the feature amount tensor 411 in the input convolutional neural network layer 511 as an error. (S211). The common model learning unit 114 then performs backpropagation processing (S212) to update the connection strength of neurons in each layer based on the error.
 逆伝播処理を行うと、個別モデル学習部115は、次の特徴量テンソル411を畳み込みニューラルネットワーク層511に入力する。そして、すべての特徴量テンソル411が畳み込みニューラルネットワーク層511に入力されると、最初に畳み込みニューラルネットワーク層511に入力された特徴量テンソル411が、再度、畳み込みニューラルネットワーク層511に入力される。 After performing the backpropagation process, the individual model learning unit 115 inputs the next feature quantity tensor 411 to the convolutional neural network layer 511. Then, when all the feature quantity tensors 411 are input to the convolutional neural network layer 511, the feature quantity tensor 411 that was first input to the convolutional neural network layer 511 is input to the convolutional neural network layer 511 again.
 個別モデル学習部115は、以上の処理を所定回数、もしくは、誤差が所定の条件(例えば、所定の値以下)となるまで続ける。個別モデル学習部115は、以上の処理で算出された各層におけるニューロンの結合強度を個別モデル136として補助記憶装置130(図3参照)に格納する。 The individual model learning unit 115 continues the above process a predetermined number of times or until the error reaches a predetermined condition (for example, a predetermined value or less). The individual model learning unit 115 stores the connection strength of neurons in each layer calculated through the above processing as an individual model 136 in the auxiliary storage device 130 (see FIG. 3).
 このように、個別モデル136の生成では、まず、共通モデル134が畳み込みニューラルネットワーク層511から第1のフルコネクションニューラルネットワーク層521の初期値として設定される。そして、個別モデル学習部115は、個別モデル136を、新規に設置された遮断器201cの特徴量テンソル411と、遮断器201cの活性度310とにより計算する。この際、個別モデル学習部115は、遮断器201cの活性度310(教師データ)と、遮断器201cの特徴量テンソル411を畳み込みニューラルネットワーク層511に入力することで第2のフルコネクションニューラルネットワーク層522の出力(個別モデル出力データ531)と、教師データとしての活性度310との差分が小さくなるように学習を行う。このようにして、個別モデル136の学習が行われる。 In this manner, in generating the individual model 136, the common model 134 is first set as the initial value of the first full-connection neural network layer 521 from the convolutional neural network layer 511. Then, the individual model learning unit 115 calculates the individual model 136 using the feature amount tensor 411 of the newly installed circuit breaker 201c and the activation degree 310 of the circuit breaker 201c. At this time, the individual model learning unit 115 inputs the activation degree 310 (teacher data) of the circuit breaker 201c and the feature quantity tensor 411 of the circuit breaker 201c to the convolutional neural network layer 511, thereby creating a second full-connection neural network layer. Learning is performed so that the difference between the output of 522 (individual model output data 531) and the activity level 310 as teacher data becomes small. In this way, learning of the individual model 136 is performed.
 このように、個別モデル136を構成する畳み込みニューラルネットワーク層511から第1のフルコネクションニューラルネットワーク層521までのニューロンにおける結合強度の初期値が、共通モデル学習部114で生成された共通モデル134の値で設定される。これにより、個別モデル学習部115では、畳み込みニューラルネットワーク層511から第1のフルコネクションニューラルネットワーク層521まで結合強度を乱数の状態から学習する必要がなくなる。そのため、新規に設置された遮断器201cから学習用に取得された特徴量テンソル411の数が少なくても、個別モデル136の学習を安定的に収束させることができる。 In this way, the initial value of the connection strength in the neurons from the convolutional neural network layer 511 to the first full-connection neural network layer 521 configuring the individual model 136 is the same as the value of the common model 134 generated by the common model learning unit 114. is set. This eliminates the need for the individual model learning unit 115 to learn the connection strengths from the convolutional neural network layer 511 to the first full-connection neural network layer 521 from the state of random numbers. Therefore, even if the number of feature quantity tensors 411 acquired for learning from the newly installed circuit breaker 201c is small, the learning of the individual model 136 can be stably converged.
 (音響診断部118の処理)
 図10は、本実施形態で行われる音響診断部118の処理手順を示す図である。なお、図10は、図1の診断(S3)の音響診断部118の処理を詳細に説明するものである。
 まず、診断の対象となる遮断器201cから音響データ(第3の音響データ)301が取得される。図10で取得される音響データ301のように、遮断器201の診断時に取得される音響データ301を診断用音響データ(第3の音響データ)301Bと適宜称する。遮断器201cは、個別モデル学習部115で学習が行われた遮断器201cである。
(Processing of acoustic diagnosis unit 118)
FIG. 10 is a diagram showing the processing procedure of the acoustic diagnosis section 118 performed in this embodiment. Note that FIG. 10 explains in detail the processing of the acoustic diagnosis unit 118 of the diagnosis (S3) in FIG. 1.
First, acoustic data (third acoustic data) 301 is acquired from the circuit breaker 201c to be diagnosed. Like the acoustic data 301 acquired in FIG. 10, the acoustic data 301 acquired when diagnosing the circuit breaker 201 is appropriately referred to as diagnostic acoustic data (third acoustic data) 301B. The circuit breaker 201c is a circuit breaker 201c that has been trained by the individual model learning section 115.
 続いて、活性度推定処理部116は、周波数分析(S301)を行うことで、診断用音響データ301Bを、時間ごとのスペクトルで構成されるスペクトログラム401に変換する。さらに、活性度推定処理部116は、時間をずらしながら、所定時間幅のスペクトログラム401の抽出を行うことによって複数個取得するフレームスタッキング(S302)を行う。これにより、所定の時間幅を有するスペクトログラム401である特徴量テンソル(第3の特徴量)411が複数個生成される。特徴量テンソル411のデータサイズは、図6で生成される特徴量テンソル411と同様である。ここまでの処理は、図6に示す処理と同様である。 Subsequently, the activity estimation processing unit 116 performs frequency analysis (S301) to convert the diagnostic acoustic data 301B into a spectrogram 401 composed of spectra for each time. Further, the activity estimation processing unit 116 performs frame stacking (S302) to acquire a plurality of spectrograms 401 by extracting spectrograms 401 of a predetermined time width while shifting time. As a result, a plurality of feature quantity tensors (third feature quantities) 411, which are spectrograms 401 having a predetermined time width, are generated. The data size of the feature quantity tensor 411 is the same as the feature quantity tensor 411 generated in FIG. The processing up to this point is similar to the processing shown in FIG.
 続いて、活性度推定処理部116は、個別モデル学習部115によって学習済みの個別モデル136に特徴量テンソル411を順に入力する。個別モデル136に入力された、それぞれの特徴量テンソル411は、4つの開閉動作音の推定活性度(推定される音響モデル)681として出力される(S303)。推定活性度681は、個別モデル136によって推定される活性度310である。図10に示すように、推定活性度681は、活性度310と同様、閉動作開始時推定活性度681A、閉動作終了時推定活性度681B、開動作開始時推定活性度681C、開動作終了時推定活性度681Dを有する。 Subsequently, the activity estimation processing unit 116 sequentially inputs the feature quantity tensor 411 to the individual model 136 trained by the individual model learning unit 115. Each feature tensor 411 input to the individual model 136 is output as estimated activity levels (estimated acoustic model) 681 of the four opening/closing operation sounds (S303). The estimated activity level 681 is the activity level 310 estimated by the individual model 136. As shown in FIG. 10, the estimated activity 681 is similar to the activity 310: estimated activity 681A at the start of closing operation, estimated activity 681B at the end of closing operation, estimated activity 681C at the start of opening operation, and estimated activity 681C at the end of opening operation. It has an estimated activity of 681D.
 すべての特徴量テンソル411を推定活性度681に変換し、変換された推定活性度681を時系列に従って(特徴量テンソル411の入力順に)並べると、診断用音響データ301Bに基づく4種類の推定活性度681の状態時系列が得られる。この推定活性度681の値のピークを基に、活性度推定処理部116は、遮断器201cに関する開動作又は閉動作の開始時刻及び終了時刻を推定することができる(動作タイミングを推定)。このように、活性度推定処理部116は、診断用音響データ301Bから推定される推定活性度681を基に、遮断器201cの動作タイミングを推定する。 When all the feature quantity tensors 411 are converted into estimated activities 681 and the converted estimated activities 681 are arranged in chronological order (in the input order of the feature quantity tensors 411), four types of estimated activities based on the diagnostic acoustic data 301B are obtained. A state time series of 681 degrees is obtained. Based on the peak value of the estimated activity 681, the activity estimation processing unit 116 can estimate the start time and end time of the opening or closing operation of the circuit breaker 201c (estimates the operation timing). In this way, the activity estimation processing unit 116 estimates the operation timing of the circuit breaker 201c based on the estimated activity 681 estimated from the diagnostic acoustic data 301B.
 状態診断処理部117は、推定される開始時刻及び終了時刻(推定される前記動作タイミング)を基に開閉動作にかかった時間を定格のタイミング(基準となる動作タイミング)と比較することで、遮断器201の健全性を判定する。状態診断処理部117は、特徴量テンソル411が個別モデル136に入力されることで出力される結果から推定される動作タイミングを基に、遮断器201cに異常が生じているか否かを判定する。 The state diagnosis processing unit 117 compares the time required for the opening/closing operation with the rated timing (reference operation timing) based on the estimated start time and end time (estimated operation timing), and performs the shutoff. The health of the device 201 is determined. The state diagnosis processing unit 117 determines whether or not an abnormality has occurred in the circuit breaker 201c based on the operation timing estimated from the result outputted by inputting the feature quantity tensor 411 to the individual model 136.
 具体的には、状態診断処理部117は、推定される開始時刻及び終了時刻と、定格のタイミングとのずれの度合いを算出し、このずれの度合いが所定値以上であれば、遮断器201cに異常が生じていると判定する。 Specifically, the state diagnosis processing unit 117 calculates the degree of deviation between the estimated start time and end time and the rated timing, and if the degree of deviation is a predetermined value or more, It is determined that an abnormality has occurred.
 (特徴量テンソル411と活性度310との対応)
 図11は、共通学習用データ133、個別学習用データ135の構成を示す図である。
 図11では、共通学習用データ133、個別学習用データ135における特徴量テンソル411と、活性度310(図6参照)の格納方法の例を示している。ただし、共通学習用データ133、個別学習用データ135における、特徴量テンソル411と、活性度310との格納方法は図11に示す例に限らない。図11において、適宜、図1を参照する。
 図11に示すように、共通学習用データ133、個別学習用データ135は、ID(項目701)、特徴量テンソル411(項目702)、活性度310(項目703)が、互いに対応付けられて格納されている。
 IDは、特徴量テンソル411と、活性度310の対に付与されるIDである。
 図11に示すように特徴量テンソル411は、「float xi,j[nfrmi,j,freq,nstack]」の形式で保存されている。
 ここで、「float」は保存される値が浮動小数点のテンソルであることを示す。そして、xi、jのiは遮断器201の機種、又は、動作条件を示し、jは特徴量テンソル411の番号を示す。jが示す特徴量テンソル411の番号は、時刻が古い方から順に付与される。以降では、説明を簡単にするためiは遮断器201の機種を示しているものとする。
(Correspondence between feature quantity tensor 411 and activity level 310)
FIG. 11 is a diagram showing the configuration of the common learning data 133 and the individual learning data 135.
FIG. 11 shows an example of a method of storing the feature quantity tensor 411 and the activity degree 310 (see FIG. 6) in the common learning data 133 and the individual learning data 135. However, the method of storing the feature amount tensor 411 and the activity degree 310 in the common learning data 133 and the individual learning data 135 is not limited to the example shown in FIG. 11. In FIG. 11, reference is made to FIG. 1 as appropriate.
As shown in FIG. 11, in the common learning data 133 and the individual learning data 135, ID (item 701), feature value tensor 411 (item 702), and activation degree 310 (item 703) are stored in correspondence with each other. has been done.
The ID is an ID assigned to a pair of the feature amount tensor 411 and the activity level 310.
As shown in FIG. 11, the feature quantity tensor 411 is stored in the format of "float x i,j [nfrm i,j , freq, nstack]".
Here, "float" indicates that the value to be saved is a floating point tensor. Further, i of x i,j indicates the model or operating condition of the circuit breaker 201, and j indicates the number of the feature amount tensor 411. The numbers of the feature quantity tensor 411 indicated by j are assigned in order from oldest to newest. Hereinafter, in order to simplify the explanation, it is assumed that i indicates the model of the circuit breaker 201.
 そして、図11では、このような特徴量テンソル411は、nfrmi,j×freq×nstackのサイズを有することを示している。nfrmi,jは、機種i、番号jにおける時間方向のフレーム数(データ数)である。図6に示す例において、nfrmi,jは「17」である。また、freqは、周波数方向のフレーム数である。図6に示す例において、freqは「77」である。そして、nstackは、nfrmi,j×freqのサイズを有する特徴量テンソル411を、同時に共通モデル134もしくは個別モデル136入力する(束ねて入力される)数である。ニューラルネットワークでは、nfrmi,j×freqのサイズを有する特徴量テンソル411を、n個まとめて入力することがある。図6に示す例では、特徴量テンソル411は1つずつ入力されるため、ntackは「1」である。 FIG. 11 shows that such a feature quantity tensor 411 has a size of nfrm i,j x freq x nstack. nfrm i,j is the number of frames (number of data) in the time direction for model i and number j. In the example shown in FIG. 6, nfrm i,j is "17". Furthermore, freq is the number of frames in the frequency direction. In the example shown in FIG. 6, freq is "77". Further, nstack is the number of feature quantity tensors 411 having a size of nfrmi,j×freq that are simultaneously input to the common model 134 or the individual models 136 (input in a bundle). In the neural network, n feature quantity tensors 411 having a size of nfrm i,j ×freq may be input at once. In the example shown in FIG. 6, the feature amount tensor 411 is input one by one, so ntack is "1".
 また、活性度310は、「float yi,j[nfrmi,j,4]」の形式で保存されている。こで、「float」は保存される値が浮動小数点のテンソルであることを示す。そして、yi、jのiは機種、又は、動作条件を示し、jは特徴量テンソル411におけるjと同様、番号を示す。活性度310は、nfrmi,j×4のサイズを有するテンソル(行列)である。 Furthermore, the activity level 310 is stored in the format of "float y i,j [nfrm i,j , 4]". Here, "float" indicates that the value to be saved is a floating point tensor. Further, i in y i,j indicates the model or operating condition, and j indicates a number like j in the feature amount tensor 411. The activity level 310 is a tensor (matrix) having a size of nfrm i,j ×4.
 また、nfrmi,jは、活性度310の時間方向のフレーム数を示し、特徴量テンソル411と同様の数が入る(図6に示す例では「17」)。最後の「4」は、4種類(閉動作開始時活性度311、閉動作終了時活性度312、開動作開始時活性度313、開動作終了時活性度314)の活性度310が存在することを示している。そして、活性度310を示すテンソルの1列目には閉動作開始時活性度311が格納され、2列目には閉動作終了時活性度312が格納される。そして、3列目には開動作開始時活性度313が格納され、4列目には開動作終了時活性度314が格納される。 Further, nfrm i,j indicates the number of frames in the time direction of the activity level 310, and contains the same number as the feature amount tensor 411 (“17” in the example shown in FIG. 6). The last "4" means that there are four types of activation levels 310 (activation level 311 at the start of closing operation, activation level 312 at the end of closing operation, activity level 313 at the start of opening operation, and activity level 314 at the end of opening operation). It shows. The first column of the tensor indicating the activation degree 310 stores the activation degree 311 at the start of the closing operation, and the second column stores the activation degree 312 at the end of the closing operation. The third column stores the activation degree 313 at the start of the opening operation, and the fourth column stores the activation degree 314 at the end of the opening operation.
 特徴量テンソル411、活性度310はともに元となる音響データ301の音響波形の長さに依存したフレーム数(時刻のフレーム数:nfrmi,j)のデータが存在する。特徴量テンソル411は、周波数方向のfreq数分のデータを、隣接するnstackだけ束ねたデータが格納されている。これにより、特徴量テンソル411は、3次元の配列(テンソル)で、各次元の要素数(サイズ)がnfrm、freq、nstackとなる配列となる。 Both the feature quantity tensor 411 and the activity level 310 have data whose number of frames (number of frames at time: nfrm i,j ) depends on the length of the acoustic waveform of the acoustic data 301 as the source. The feature quantity tensor 411 stores data obtained by bundling data for the number of freqs in the frequency direction into adjacent nstacks. As a result, the feature amount tensor 411 is a three-dimensional array (tensor) in which the number of elements (sizes) in each dimension are nfrm, freq, and nstack.
 一方、活性度310は、前記したように、閉動作及び開動作の2種の動作について、動作開始と動作終了の2種を組み合わせた、4通りの活性度310からなる。活性度310は、特徴量テンソル411に対応してフレーム毎に格納される。これにより、活性度310は2次元の配列(テンソル)となり、1次元目(行)の要素数がnfrm、2次元目(列)が4種類の活性度310のそれぞれ対応した要素の配列に格納される。 On the other hand, as described above, the activity level 310 consists of four types of activity level 310, which are a combination of two types of operation start and operation end for two types of operations, the closing operation and the opening operation. The activity level 310 is stored for each frame in correspondence with the feature amount tensor 411. As a result, the activation level 310 becomes a two-dimensional array (tensor), and the number of elements in the first dimension (row) is nfrm, and the second dimension (column) is stored in an array of elements corresponding to each of the four types of activation level 310. be done.
 (共通モデル出力データ507)
 図12は、共通モデル134における教師データのデータ構成を示す図である。図12において、共通モデル134における教師データを単に教師データと記載する。
 教師データのID(符号711)は、教師データに対して一意に付与されるIDである。
 そして、符号712に示すように、教師データは、「Yi,j[nfrmi,j,4c]」のデータを有する。教師データは、浮動小数点型のデータで示してもよいが、[1,0]型の整数で示されてもよい。
(Common model output data 507)
FIG. 12 is a diagram showing the data structure of the teacher data in the common model 134. In FIG. 12, the teacher data in the common model 134 is simply described as teacher data.
The teacher data ID (symbol 711) is an ID uniquely given to the teacher data.
As indicated by reference numeral 712, the teacher data includes data of "Y i,j [nfrm i,j , 4c]". The teacher data may be expressed as floating point type data, or may be expressed as a [1,0] type integer.
 Yi,jにおけるiは機種、又は、動作条件を示す。そして、jは教師データの番号を示す。jが示す番号は、時刻が古い方から順に付与される。また、教師データは、nfrmi,j×4cのサイズを有するテンソル(行列)であることが示されている。nfrmi,jは、図11と同様、機種i、番号jにおける時間方向のフレーム数(データ数)である。nfrmi,jは、具体的には、図11と同様「17」となる。cは、機種及び動作条件の数である。図12では、機種のみを考えるものとする。 i in Y i,j indicates the model or operating condition. Further, j indicates the number of teacher data. The numbers indicated by j are assigned in ascending order of time. Further, it is shown that the teacher data is a tensor (matrix) having a size of nfrm i,j ×4c. nfrm i,j is the number of frames (number of data) in the time direction for model i and number j, as in FIG. Specifically, nfrm i,j is "17" as in FIG. 11. c is the number of models and operating conditions. In FIG. 12, only the model is considered.
 つまり、教師データは、行方向にnfrmi,jの要素(データ)を有し、列方向に4cのデータを有する。列方向には、4種類の活性度310が機種毎に並んで格納されている。 That is, the teacher data has nfrm i,j elements (data) in the row direction and 4c data in the column direction. In the column direction, four types of activity levels 310 are stored in line for each model.
 図12の符号720に、それぞれの教師データにおける具体的な構成が示されている。「yi、j[nfrmi,j,4]」において、i、j及びnfrmi,jは「Yi,j」と同様である。そして、「4」は、行方向にnfrmi,jのサイズを有する活性度310が閉動作開始時活性度311、閉動作終了時活性度312、開動作開始時活性度313、開動作終了時活性度314の順に列方向に配列されていることを示す。なお、「zeros[nfrmi,j,4]」はすべての成分が「0」であることを示している。そして、「Yi,j[nfrmi,j,4c]」では、このような活性度310が機種毎(「機種A活性度」、「機種B活性度」、・・・「機種C活性度」(符号721~723))の順に列方向に配列されている。 Reference numeral 720 in FIG. 12 indicates a specific configuration of each teacher data. In "y i,j [nfrm i,j ,4]", i, j and nfrm i,j are the same as "Y i,j ". "4" means that the activation 310 having the size nfrm i,j in the row direction is the activation 311 at the start of the closing operation, the activation 312 at the end of the closing operation, the activation 313 at the start of the opening operation, and the activation 313 at the end of the opening operation. It shows that they are arranged in the column direction in order of activity level 314. Note that "zeros[nfrm i, j , 4]" indicates that all components are "0". In "Y i, j [nfrm i, j , 4c]", such activity 310 is calculated for each model ("Model A activity", "Model B activity", ... "Model C activity"). ” (codes 721 to 723)) are arranged in the column direction.
 つまり、図13に示すように、1つの(ある時刻の)教師データは、「機種Aの閉動作開始時活性度」、「機種Aの閉動作終了時活性度」、・・・が行方向に配列している構成を有する。図13で列数が4cとなる。なお、「機種Aの閉動作開始時活性度」、「機種Aの閉動作終了時活性度」、・・・のそれぞれは、1×nfrmi,jの要素数を有する。 In other words, as shown in FIG. 13, one piece of teacher data (at a certain time) is "activity level at the start of closing operation of model A", "activity level at the end of closing operation of model A", etc. in the row direction. It has a configuration arranged in . In FIG. 13, the number of columns is 4c. Note that each of "activity level at the start of closing operation of model A", "activity level at the end of closing operation of model A", . . . has the number of elements of 1×nfrm i,j .
 共通モデル134は、複数機種の活性度310の値を予測するモデルとして学習する。そのため、図12に示すように、それぞれ異なる機種に対応する活性度310にゼロ(zero[nfrmi,j,4])をパディングした共通モデル学習用の活性度310が教師データとして用意される。そして、共通モデル134は、共通モデル出力データ507と教師データとの誤差が小さくなるよう学習を行う。共通モデル134を作成する際にc種類の機種を用いる場合は、教師データはnfrmi,j×4c次元のデータとなる。 The common model 134 is learned as a model that predicts the value of the activity level 310 of multiple models. Therefore, as shown in FIG. 12, activation levels 310 for common model learning are prepared as teacher data, in which activation levels 310 corresponding to different models are padded with zero (zero[nfrm i, j , 4]). Then, the common model 134 performs learning so that the error between the common model output data 507 and the teacher data becomes small. If c types of models are used when creating the common model 134, the teacher data will be nfrm i,j ×4c-dimensional data.
 (診断結果表示画面800)
 図14は、本実施形態で出力装置103に出力される診断結果表示画面800の一例を示す図である。適宜、図1、図4、図6を参照する。
 診断結果表示画面800は、音響データ表示領域801、スペクトログラム表示領域802、推定活性度表示領域810、推定動作表示領域821、定格偏差表示領域822、診断結果表示領域823を有する。
 音響データ表示領域801には、マイク202を介して取得された診断用音響データ301B(図10参照)が示す音響波形が表示される。
 スペクトログラム表示領域802には、音響データ表示領域801に表示されている音響波形(診断用音響データ301B)を周波数分析した結果であるスペクトログラム401(図10参照)が表示される。
(Diagnosis result display screen 800)
FIG. 14 is a diagram showing an example of a diagnosis result display screen 800 output to the output device 103 in this embodiment. Refer to FIGS. 1, 4, and 6 as appropriate.
The diagnosis result display screen 800 has an acoustic data display area 801, a spectrogram display area 802, an estimated activity display area 810, an estimated operation display area 821, a rated deviation display area 822, and a diagnosis result display area 823.
In the acoustic data display area 801, an acoustic waveform indicated by the diagnostic acoustic data 301B (see FIG. 10) acquired through the microphone 202 is displayed.
In the spectrogram display area 802, a spectrogram 401 (see FIG. 10), which is the result of frequency analysis of the acoustic waveform (diagnostic acoustic data 301B) displayed in the acoustic data display area 801, is displayed.
 推定活性度表示領域810は、活性度推定処理部116が診断時に集音した診断用音響データ301Bを個別モデル136に入力した結果出力される推定活性度(第3の音響データから推定される音響モデル)681が表示される。図14に示す例において、推定活性度表示領域810には、閉動作開始時推定活性度表示領域811、閉動作終了時推定活性度表示領域812、開動作開始時推定活性度表示領域813、開動作終了時推定活性度814がそれぞれ表示されている。閉動作開始時推定活性度表示領域811には、図10に示す閉動作開始時推定活性度681Aが表示される。閉動作終了時推定活性度表示領域812には、図10に示す閉動作終了時推定活性度681Bが表示される。開動作開始時推定活性度表示領域813には、図10に示す開動作開始時推定活性度681Cが表示される。開動作終了時推定活性度814には、図10に示す開動作終了時推定活性度681Dが表示される。 The estimated activity display area 810 displays the estimated activity (acoustic estimated from the third acoustic data) that is output as a result of inputting the diagnostic acoustic data 301B collected at the time of diagnosis into the individual model 136 by the activity estimation processing unit 116. model) 681 is displayed. In the example shown in FIG. 14, the estimated activity display area 810 includes an estimated activity display area 811 at the start of the closing operation, an estimated activity display area 812 at the end of the closing operation, an estimated activity display area 813 at the start of the opening operation, and an area 812 for displaying the estimated activity at the end of the closing operation. An estimated activity level 814 at the end of the operation is displayed. The estimated activity level at the start of the closing operation 681A shown in FIG. 10 is displayed in the estimated activity level at the start of the closing operation display area 811. The estimated activity level at the end of the closing operation 681B shown in FIG. 10 is displayed in the estimated activity level at the end of the closing operation display area 812. The estimated activity level at the start of the opening operation 681C shown in FIG. 10 is displayed in the estimated activity level at the start of the opening operation display area 813. In the estimated activity level 814 at the end of the opening operation, the estimated activity level 681D at the end of the opening operation shown in FIG. 10 is displayed.
 推定動作表示領域821は、状態診断処理部117が、音響データ表示領域801に表示されている音響波形(診断用音響データ301B)について遮断器201の閉動作時のものか、開動作時のものかを判定した結果が示されている。図14に示す例では、推定活性度表示領域810に示されるように、開動作開始時及び開動作終了時の推定活性度681が活性状態となっている。つまり、開動作開始時推定活性度表示領域813に表示されている開動作開始時推定活性度681Cと、開動作終了時推定活性度814に表示されている開動作終了時推定活性度681Dが活性化している。これにより、状態診断処理部117は、音響データ表示領域801に表示されている音響波形は開動作(「Open」)時のものであると判定している。 In the estimated operation display area 821, the state diagnosis processing unit 117 determines whether the acoustic waveform (diagnostic acoustic data 301B) displayed in the acoustic data display area 801 is the one at the time of the closing operation of the circuit breaker 201 or the one at the time of the opening operation. The results are shown. In the example shown in FIG. 14, as shown in the estimated activity display area 810, the estimated activity 681 at the start of the opening operation and at the end of the opening operation is in the active state. In other words, the estimated activity at the start of the opening operation 681C displayed in the estimated activity at the start of the opening operation display area 813 and the estimated activity at the end of the opening operation 681D displayed in the estimated activity at the end of the opening operation 814 are activated. It has become Accordingly, the state diagnosis processing unit 117 determines that the acoustic waveform displayed in the acoustic data display area 801 is the one at the time of the opening operation (“Open”).
 定格偏差表示領域822には、推定活性度681によって推定された閉動作もしくは開動作のタイミングが、定格のタイミングから、どの程度ずれているかを示す数値が表示される。図14に示す例では、推定活性度681から推定される開動作開始のタイミング及び開動作終了のタイミングの平均が、定格から+0.1%ずれていることを示す。なお、定格偏差表示領域822における「+」は、タイミングが遅くなっていること示し、「-」はタイミングが早くなっていることを示す。 The rated deviation display area 822 displays a numerical value indicating how much the timing of the closing or opening operation estimated by the estimated activity level 681 deviates from the rated timing. The example shown in FIG. 14 shows that the average of the opening operation start timing and the opening operation end timing estimated from the estimated activity level 681 deviates from the rating by +0.1%. Note that "+" in the rated deviation display area 822 indicates that the timing is late, and "-" indicates that the timing is early.
 診断結果表示領域823は、状態診断処理部117による診断結果が表示される。ここでは、状態診断処理部117が、定格偏差表示領域822に表示されている、定格に対する偏差を基に、遮断器201の動作が正常か異常かを判定した結果が表示される。図14に示す例では、正常であることが示されている。 In the diagnosis result display area 823, the diagnosis result by the condition diagnosis processing unit 117 is displayed. Here, the result of the state diagnosis processing unit 117 determining whether the operation of the circuit breaker 201 is normal or abnormal is displayed based on the deviation from the rating displayed in the rating deviation display area 822. The example shown in FIG. 14 shows that it is normal.
 本実施形態によれば、遮断器201の動作時における開閉タイミング状態を音響データ301から診断する診断装置1を提供することができる。診断装置1は、予め開閉ロッドにおける接点の位置をストローク位置計測装置203で計測したストローク位置の真値(ストローク位置データ302)と、その真値と同期して計測された音響データ301とを取得する。そして、診断装置1は、ストローク位置データ302を基に、遮断器201の開閉動作の開始・終了タイミングを推定する。そして、診断装置1は、取得した遮断器201の開閉動作の開始・終了タイミングを基に、開閉及び始終端ごとに垂直に立ち上がる三角波で表現された活性度310を生成する。また、診断装置1は、音響データ301を基に生成された特徴量テンソル411から活性度310への回帰推定を行う推定モデルとして共通モデル134を用いた学習を行う。さらに、診断対象となる遮断器201が新たに設置された場合、診断装置1は、共通モデル134を初期値として、新たに設置された遮断器201の個別モデル136を学習する。 According to the present embodiment, it is possible to provide a diagnostic device 1 that diagnoses the opening/closing timing state of the circuit breaker 201 during operation based on the acoustic data 301. The diagnostic device 1 acquires the true value of the stroke position (stroke position data 302) obtained by measuring the position of the contact point on the opening/closing rod in advance with the stroke position measuring device 203, and the acoustic data 301 measured in synchronization with the true value. do. The diagnostic device 1 then estimates the start/end timing of the opening/closing operation of the circuit breaker 201 based on the stroke position data 302. Then, the diagnostic device 1 generates an activity level 310 expressed by a triangular wave that rises vertically for each opening/closing and start/end, based on the acquired start/end timings of the opening/closing operation of the circuit breaker 201. Furthermore, the diagnostic device 1 performs learning using the common model 134 as an estimation model that performs regression estimation from the feature quantity tensor 411 generated based on the acoustic data 301 to the activity degree 310. Furthermore, when the circuit breaker 201 to be diagnosed is newly installed, the diagnostic device 1 learns the individual model 136 of the newly installed circuit breaker 201 using the common model 134 as an initial value.
 遮断器201の診断時において、診断装置1は、音響データ301を基に、既に学習済みの個別モデル136を用いて、診断対象となっている遮断器201の活性度310を推定する(推定活性度681)。そして、診断装置1は、推定された活性度310(推定活性度681)のピークの値から、診断対象となっている遮断器201の開閉動作タイミングを推定する。さらに、診断装置1は、推定された開閉動作タイミングについて、定格からの偏差を算出する。そして、診断装置1は、当該偏差から遮断器201の動作状態の診断を行う。 When diagnosing the circuit breaker 201, the diagnostic device 1 estimates the activation level 310 of the circuit breaker 201 to be diagnosed, based on the acoustic data 301 and using the already learned individual model 136 (estimated activation level). degree 681). Then, the diagnostic device 1 estimates the opening/closing operation timing of the circuit breaker 201 to be diagnosed from the peak value of the estimated activation level 310 (estimated activation level 681). Furthermore, the diagnostic device 1 calculates the deviation from the rating regarding the estimated opening/closing operation timing. Then, the diagnostic device 1 diagnoses the operating state of the circuit breaker 201 based on the deviation.
 新規の遮断器201について学習を行う場合、これまでは、学習用の音響データ301と、接点のストローク位置データ302の組を、新たに、かつ、大量に収集する必要がある。このため、これまでの技術では新規の遮断器201に対する学習用のデータ収集のための工数が多くなる。また、学習用のデータを収集するため、遮断器201を実際に動作させる必要がある。このため、計測に伴う遮断器201の開閉動作により遮断器201の劣化が過大となる。 When learning about a new circuit breaker 201, it has been necessary to newly collect a large amount of sets of learning acoustic data 301 and contact stroke position data 302. For this reason, in the conventional technology, the number of man-hours for collecting data for learning with respect to the new circuit breaker 201 increases. Furthermore, in order to collect data for learning, it is necessary to actually operate the circuit breaker 201. Therefore, the deterioration of the circuit breaker 201 becomes excessive due to the opening/closing operation of the circuit breaker 201 accompanying the measurement.
 本実施形態では多数の遮断器201から、予め共通モデル134が作成される。そして、新規の遮断器201に関する個別モデル136を作成する際には、学習済みの共通モデル134を初期値として、新規の遮断器201の個別モデル136を学習する。これにより、新規の遮断器201に関する個別モデル136の学習に必要な学習データの量を大幅に削減することが可能となる。これにより、学習データを収集するための遮断器201の開閉動作回数を減らすことができ、遮断器201の劣化を防止することができる。 In this embodiment, a common model 134 is created in advance from a large number of circuit breakers 201. When creating the individual model 136 for the new circuit breaker 201, the individual model 136 for the new circuit breaker 201 is learned using the learned common model 134 as an initial value. This makes it possible to significantly reduce the amount of learning data required for learning the individual model 136 regarding the new circuit breaker 201. Thereby, the number of times the circuit breaker 201 is opened and closed for collecting learning data can be reduced, and deterioration of the circuit breaker 201 can be prevented.
 例えば、複数種類の遮断器201の音響データ301から抽出される特徴量テンソル411と、開閉動作音に関する活性度310の真値のペアが用意される。そして、診断装置1は、特徴量テンソル411をある決められた次元数の潜在空間に変換する。ある決められた次元数の潜在空間は、4種類の活性度310である。 For example, a pair of the feature quantity tensor 411 extracted from the acoustic data 301 of the plurality of types of circuit breakers 201 and the true value of the activity degree 310 regarding the opening/closing operation sound is prepared. Then, the diagnostic device 1 converts the feature quantity tensor 411 into a latent space with a predetermined number of dimensions. A latent space with a certain number of dimensions has four types of activation degrees 310.
 そして、診断装置1は、変換された表現(4種類の活性度310)によって、複数種類の遮断器201の開閉動作のタイミングを分類する。さらに、診断装置1は、遮断器201の開閉動作音の活性度310を回帰予測するモデル(共通モデル134)を学習する。これにより、診断装置1は、開閉動作音のタイミングを予測するのに適した4種類の活性度310を求められるような学習を行う。 Then, the diagnostic device 1 classifies the timing of the opening/closing operations of the plurality of types of circuit breakers 201 based on the converted expressions (four types of activity levels 310). Furthermore, the diagnostic device 1 learns a model (common model 134) that regression predicts the activity level 310 of the opening/closing operation sound of the circuit breaker 201. Thereby, the diagnostic device 1 performs learning such that four types of activity levels 310 suitable for predicting the timing of opening/closing operation sounds can be determined.
 新規の遮断器201に対するモデル(個別モデル136)を構築するため、診断装置1は、共通モデル134の生成時と同様の手順で特徴量テンソル411を生成する。そして、共通モデル134の深層ニューラルネットワークN1のモデルと重み(ニューロンの結合強度)を流用することで、診断装置1は、第5の変換データ506から開閉動作音の活性度310を回帰推定するための層(第2のフルコネクションニューラルネットワーク層522)を加えて個別モデル136の学習を行う。個別モデル136では、診断対象となる新規の遮断器201について、開閉動作の始終端タイミングの活性度310のみを回帰推定できればよい。そのため、個別モデル136の出力は4個(閉動作開始時活性度311、閉動作終了時活性度312、開動作開始時活性度313、開動作終了時活性度314に対応する出力)のノードとなる。こうした手順で個別モデル学習(S1)が行われることにより、少ない学習サンプルであっても、個別モデル136の学習の収束性を向上することができる。 In order to construct a model (individual model 136) for the new circuit breaker 201, the diagnostic device 1 generates the feature quantity tensor 411 using the same procedure as when generating the common model 134. Then, by reusing the model and weights (neuron connection strength) of the deep neural network N1 of the common model 134, the diagnostic device 1 can regressively estimate the activation degree 310 of the opening/closing operation sound from the fifth converted data 506. (second full-connection neural network layer 522) to train the individual model 136. The individual model 136 only needs to be able to regression estimate the activity level 310 at the start and end timings of the opening/closing operation for the new circuit breaker 201 to be diagnosed. Therefore, the output of the individual model 136 corresponds to four nodes (outputs corresponding to the activation level at the start of closing operation 311, the activation level at the end of closing operation 312, the activation level at the start of opening operation 313, and the activation level at the end of opening operation 314). Become. By performing individual model learning (S1) using such a procedure, the convergence of learning of the individual model 136 can be improved even with a small number of learning samples.
 そして、遮断器201の診断が行われる際、マイク202による集音のみが行われ、取得された音響データ301から抽出される特徴量テンソル411を基に学習済みの個別モデル136を用いて、推定活性度681が算出される。そして、診断装置1は、推定活性度681のピークの位置から、遮断器201の開閉動作タイミングを知ることができる。その後、診断装置1は、推定された開閉動作タイミングと、定格のタイミングとを比較することで、遮断器201の健全性を検査する。このようにすることで、迅速、かつ、学習の収束性が向上した個別モデル136を使用した遮断器201の診断が可能となる。 When diagnosing the circuit breaker 201, only sound is collected by the microphone 202, and the learned individual model 136 is used to estimate the An activity level 681 is calculated. The diagnostic device 1 can determine the opening/closing operation timing of the circuit breaker 201 from the peak position of the estimated activity level 681. Thereafter, the diagnostic device 1 tests the health of the circuit breaker 201 by comparing the estimated opening/closing operation timing with the rated timing. By doing so, it becomes possible to quickly diagnose the circuit breaker 201 using the individual model 136 with improved learning convergence.
 つまり、本実施形態の診断装置1に、個別モデル136を用いることによって、音響を計測するマイク202のみで遮断器201の開閉動作イベントのタイミング情報を精度高く測定することが可能となる。また、本実施形態の診断装置1は、個別モデル136を用いて推定される開閉動作の重要なイベント(本実施形態では開閉動作)のタイミングの変化から、遮断器201の状態の診断を行うことが可能となる。 That is, by using the individual model 136 in the diagnostic device 1 of this embodiment, it becomes possible to accurately measure the timing information of the opening/closing operation event of the circuit breaker 201 using only the microphone 202 that measures sound. Furthermore, the diagnostic device 1 of this embodiment diagnoses the state of the circuit breaker 201 based on changes in the timing of important events of opening/closing operations (opening/closing operations in this embodiment) estimated using the individual model 136. becomes possible.
 このようにすることで、ストローク位置計測装置203を使用せず、マイク202のみによる遮断器201の診断を行うことが可能となる。また、個別モデル136に診断用の特徴量テンソル411を入力した結果、推測される活性度310(推定活性度681)を基に、動作タイミングが推測される。また、推測された動作タイミングを基に、具体的には、推測された動作タイミングと、定格の動作タイミングとのずれの度合いを基に遮断器201の診断が行われる。これにより、遮断器201の診断を定量的に行うことができる。 By doing so, it becomes possible to diagnose the circuit breaker 201 using only the microphone 202 without using the stroke position measuring device 203. In addition, the operation timing is estimated based on the estimated activation level 310 (estimated activation level 681) as a result of inputting the diagnostic feature tensor 411 to the individual model 136. Further, the circuit breaker 201 is diagnosed based on the estimated operation timing, specifically, based on the degree of deviation between the estimated operation timing and the rated operation timing. Thereby, the diagnosis of the circuit breaker 201 can be performed quantitatively.
 このように、本実施形態によれば、あらかじめ多数の遮断器201で学習した共通モデル134を用意し、新たな遮断器201の診断を行う場合にはモデルをゼロから作成するのではなく、共通モデル134をベースに追加学習が行われる。これにより、少ない学習サンプルから効果的に個別モデル136を作成することができる。特に、個別モデル学習(S2)では、第2のフルコネクションニューラルネットワーク522の箇所だけが、共通モデル134の構成と異なっている。これにより、新規の遮断器201の診断のためのモデルを低コストで構築することができる。加えて、本実施形態では、個別モデル学習(S2)では、第2のフルコネクションニューラルネットワーク522の箇所のみニューロンの結合強度の初期値が乱数となる。これにより、個別モデル136の収束を確実、かつ、迅速に行うことができる。 In this way, according to the present embodiment, the common model 134 that has been trained on a large number of circuit breakers 201 is prepared in advance, and when diagnosing a new circuit breaker 201, the common model 134 is prepared in advance, and the model is not created from scratch. Additional learning is performed based on the model 134. Thereby, the individual model 136 can be effectively created from a small number of learning samples. In particular, in the individual model learning (S2), only the second full-connection neural network 522 differs from the common model 134 in its configuration. Thereby, a model for diagnosing the new circuit breaker 201 can be constructed at low cost. In addition, in this embodiment, in the individual model learning (S2), the initial value of the connection strength of neurons is a random number only in the second full-connection neural network 522. This allows the individual model 136 to converge reliably and quickly.
 そして、本実施形態では、ストローク位置計測装置203のストローク位置データ302を基に、動作開始時刻、動作終了時刻が推定される。そして、推定された動作開始時刻、動作終了時刻に対して活性度310が対応付けられる。これにより、ユーザによる手作業を行うことなく、教師データ(活性度310)と、入力データ(特徴量テンソル411)との対応付けを行うことができる。 In this embodiment, the operation start time and operation end time are estimated based on the stroke position data 302 of the stroke position measuring device 203. Then, the activity level 310 is associated with the estimated operation start time and operation end time. Thereby, the teacher data (activity level 310) and the input data (feature amount tensor 411) can be associated without any manual work by the user.
 また、本実施形態では、スペクトログラム401を時間窓W2で切り出すことにより、特徴量テンソル411を生成している。これにより、遮断器201が発生する動作音を基に、学習が行われ、学習結果を使用した診断が行われる。これにより、遮断器201特有の周波数分布による診断が可能となるため、診断精度を向上させることができる。 Furthermore, in this embodiment, the feature amount tensor 411 is generated by cutting out the spectrogram 401 at the time window W2. Thereby, learning is performed based on the operating sound generated by the circuit breaker 201, and diagnosis is performed using the learning results. This enables diagnosis based on the frequency distribution unique to the circuit breaker 201, thereby improving diagnostic accuracy.
 本実施形態では、共通モデル134を生成する際、遮断器201の区別は考慮していない。共通モデル134を生成する際、診断対象となる遮断器201と同じ種類の遮断器201から収集される音響データ301や、ストローク位置データ302を基に共通モデル134が学習されてもよい。遮断器201の種類とは、変電所の遮断器201、受電設備の遮断器201、新幹線の遮断器201、一般家庭にあるブレーカ等である。また、遮断器201の種類は、開動作と閉動作との間の時間等で区別されるものであってもよい。 In this embodiment, when generating the common model 134, the distinction between circuit breakers 201 is not taken into consideration. When generating the common model 134, the common model 134 may be learned based on the acoustic data 301 and stroke position data 302 collected from the same type of circuit breaker 201 as the circuit breaker 201 to be diagnosed. The types of circuit breakers 201 include a circuit breaker 201 in a substation, a circuit breaker 201 in a power receiving facility, a circuit breaker 201 in a bullet train, a circuit breaker in a general household, and the like. Furthermore, the types of circuit breakers 201 may be distinguished by the time between opening and closing operations.
 図8に示す深層ニューラルネットワークN1は画像分野でしばしば用いられている。深層ニューラルネットワークN1は画像分野に用いられる場合、教師データとして画像が用いられる。本実施形態では、遮断器201の開動作時及び閉動作時に発声している音のモデルを三角波で表現した活性度310が用いられている。このように本実施形態で用いられる深層ニューラルネットワークN1は画像分野で用いられる深層ニューラルネットワークN1とは、まったく異なる用いられ方をしている。 The deep neural network N1 shown in FIG. 8 is often used in the image field. When the deep neural network N1 is used in the image field, images are used as training data. In this embodiment, the activity level 310 is used, which is a triangular wave representing a model of the sound produced during the opening and closing operations of the circuit breaker 201. In this way, the deep neural network N1 used in this embodiment is used in a completely different manner from the deep neural network N1 used in the image field.
 また、本実施形態では、活性度310として、遮断器201の動作時に音が発生した時刻に垂直にたちあがり、その後、所定の傾きで減衰する三角波が用いられているが、これに限らない。例えば、図15に示すように、矩形波による活性度310A,310Bが活性度310として用いられてもよい。図15に示す活性度310A,310Bは、遮断器201の動作開始時点で時間軸に対して垂直に立ち上がる矩形波で表現されている。なお、図15において、活性度310Aは、開動作もしくは閉動作の開始音のモデルであり、活性度310Bは、開動作もしくは閉動作の終了音のモデルである。 Further, in this embodiment, a triangular wave is used as the activity level 310, which rises vertically at the time when the sound is generated when the circuit breaker 201 is operated, and then decays at a predetermined slope, but the present invention is not limited to this. For example, as shown in FIG. 15, activation levels 310A and 310B based on rectangular waves may be used as the activation level 310. Activities 310A and 310B shown in FIG. 15 are expressed by rectangular waves that rise perpendicularly to the time axis at the time when the circuit breaker 201 starts operating. In FIG. 15, the activity level 310A is a model of the start sound of the opening or closing operation, and the activity level 310B is a model of the end sound of the opening or closing operation.
 また、本実施形態では、遮断器201の開動作時及び閉動作時に発生する音を基に、共通モデル134、個別モデル136、及び、遮断器201の診断が行われているが、これに限らない。例えば、ヒューズが切れる音等を基に、共通モデル134、個別モデル136、及び、遮断器201の診断が行われてもよい。 Further, in this embodiment, the common model 134, the individual model 136, and the circuit breaker 201 are diagnosed based on the sounds generated during the opening and closing operations of the circuit breaker 201, but the diagnosis is not limited to this. do not have. For example, the common model 134, individual model 136, and circuit breaker 201 may be diagnosed based on the sound of a fuse blowing.
 本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。 The present invention is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
 また、前記した各構成、機能、各部111~117、補助記憶装置130等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図3に示すように、前記した各構成、機能等は、CPU等の中央処理装置101がそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、HDに格納すること以外に、メモリや、SSD等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
Further, a part or all of the above-described configurations, functions, units 111 to 117, auxiliary storage device 130, etc. may be realized in hardware by designing, for example, an integrated circuit. Further, as shown in FIG. 3, each of the above-described configurations, functions, etc. may be realized by software by having the central processing unit 101 such as a CPU interpret and execute programs for realizing the respective functions. Information such as programs, tables, files, etc. that realize each function can be stored in memory, recording devices such as SSD, IC (Integrated Circuit) cards, SD (Secure Digital) cards, DVDs, etc., in addition to being stored on the HD. (Digital Versatile Disc) and other recording media.
Furthermore, in each embodiment, control lines and information lines are shown that are considered necessary for explanation, and not all control lines and information lines are necessarily shown in terms of the product. In reality, almost all configurations can be considered interconnected.
 1   診断装置(遮断器モデル生成装置)
 103 出力装置(表示装置)
 110 診断ソフト
 112 スペクトログラム生成部(特徴量生成部)
 113 特徴量抽出処理部(特徴量設定部)
 114 共通モデル学習部(第1の学習部)
 115 個別モデル学習部(第2の学習部)
 116 活性度推定処理部(診断部)
 117 状態診断処理部(診断部)
 118 音響診断部(診断部)
 133 共通学習用データ
 134 共通モデル(第1の学習モデル)
 135 個別学習用データ
 136 個別モデル(第2の学習モデル)
 137 診断用パラメータ
 138 診断履歴情報
 201 遮断器
 201a 遮断器(第1の遮断器)
 201b 遮断器(第1の遮断器)
 201c 遮断器(第2の遮断器)
 202 マイク(集音装置)
 203 ストローク位置計測装置(接点位置計測装置)
 211 診断結果
 301 音響データ(第1の音響データ、第2の音響データ、第3の音響データ)
 301a 音響データ
 301b 音響データ
 301A 学習用音響データ(第1の音響データ、第2の音響データ)
 301B 診断用音響データ(第3の音響データ)
 302 ストローク位置データ(接点位置データ)
 302a ストローク位置データ
 302b ストローク位置データ
 310 活性度(音響モデル、三角波)
 310a 活性度(第1の音響モデル、三角波)
 310b 活性度(第1の音響モデル、三角波)
 310c 活性度(第2の音響モデル、三角波)
 310A 活性度(音響モデル、矩形波)
 310B 活性度(音響モデル、矩形波)
 311 閉動作開始時活性度(遮断器の閉動作時が開始する際に発せられる動作音について生成される活性度)
 312 閉動作終了時活性度(遮断器の閉動作時が終了する際に発せられる動作音について生成される活性度)
 313 開動作開始時活性度(遮断器の開動作時が開始する際に発せられる動作音について生成される活性度)
 314 開動作終了時活性度(遮断器の開動作時が終了する際に発せられる動作音について生成される活性度)
 401 スペクトログラム
 411 特徴量テンソル(特徴量、第1の特徴量、第2の特徴量)
 411a 特徴量テンソル(特徴量、第1の特徴量)
 411b 特徴量テンソル(特徴量、第1の特徴量)
 411c 特徴量テンソル(特徴量、第2の特徴量)
 411z 特徴量テンソル(特徴量)
 502 第1の変換データ
 503 第2の変換データ
 504 第3の変換データ
 505 第4の変換データ
 506 第5の変換データ
 507 共通モデル出力データ
 511 畳み込みニューラルネットワーク層
 512 第1のプーリング層
 513 第2のプーリング層
 521 第1のフルコネクションニューラルネットワーク層
 522 第2のフルコネクションニューラルネットワーク層
 531 個別モデル出力データ
 681 推定活性度(推定される音響モデル)
 681A 閉動作開始時推定活性度
 681B 閉動作終了時推定活性度
 681C 開動作開始時推定活性度
 681D 開動作終了時推定活性度
 801 音響データ表示領域
 802 スペクトログラム表示領域
 810 推定活性度表示領域(第3の音響データから推定される音響モデルが表示)
 811 閉動作開始時推定活性度表示領域
 812 閉動作終了時推定活性度表示領域
 813 開動作開始時推定活性度表示領域
 814 開動作終了時推定活性度
 821 推定動作表示領域
 822 定格偏差表示領域
 823 診断結果表示領域(診断結果を表示)
 N1 深層ニューラルネットワーク(ニューラルネットワーク、第1のニューラルネットワーク)
 N2 深層ニューラルネットワーク(ニューラルネットワーク、第2のニューラルネットワーク)
 W1  時間窓
 W2  時間窓
 Z   遮断器診断システム(遮断器モデル生成システム)
 S1  共通モデル学習(第1の学習、第1の学習ステップ)
 S2  個別モデル学習(第2の学習、第2の学習ステップ)
1 Diagnostic device (breaker model generation device)
103 Output device (display device)
110 Diagnostic software 112 Spectrogram generation unit (feature generation unit)
113 Feature extraction processing unit (feature setting unit)
114 Common model learning section (first learning section)
115 Individual model learning section (second learning section)
116 Activity estimation processing unit (diagnosis unit)
117 Status diagnosis processing unit (diagnosis unit)
118 Acoustic Diagnosis Department (Diagnosis Department)
133 Common learning data 134 Common model (first learning model)
135 Individual learning data 136 Individual model (second learning model)
137 Diagnostic parameters 138 Diagnostic history information 201 Circuit breaker 201a Circuit breaker (first circuit breaker)
201b Circuit breaker (first circuit breaker)
201c circuit breaker (second circuit breaker)
202 Microphone (sound collection device)
203 Stroke position measuring device (contact position measuring device)
211 Diagnosis result 301 Acoustic data (first acoustic data, second acoustic data, third acoustic data)
301a acoustic data 301b acoustic data 301A learning acoustic data (first acoustic data, second acoustic data)
301B Diagnostic acoustic data (third acoustic data)
302 Stroke position data (contact position data)
302a Stroke position data 302b Stroke position data 310 Activity level (acoustic model, triangular wave)
310a Activity (first acoustic model, triangular wave)
310b Activity (first acoustic model, triangular wave)
310c activity (second acoustic model, triangular wave)
310A activity (acoustic model, square wave)
310B Activity (acoustic model, square wave)
311 Activation level at the start of closing operation (activity level generated regarding the operation sound emitted when the closing operation of the circuit breaker starts)
312 Activation level at the end of closing operation (activity level generated for the operation sound emitted when the closing operation of the circuit breaker ends)
313 Activation level at the start of opening operation (activity level generated regarding the operation sound emitted when the opening operation of the circuit breaker starts)
314 Activation degree at the end of opening operation (activation degree generated regarding the operation sound emitted when the opening operation of the circuit breaker ends)
401 Spectrogram 411 Feature tensor (feature, first feature, second feature)
411a Feature tensor (feature, first feature)
411b Feature tensor (feature, first feature)
411c Feature tensor (feature, second feature)
411z Feature tensor (feature)
502 First conversion data 503 Second conversion data 504 Third conversion data 505 Fourth conversion data 506 Fifth conversion data 507 Common model output data 511 Convolutional neural network layer 512 First pooling layer 513 Second conversion data Pooling layer 521 First full-connection neural network layer 522 Second full-connection neural network layer 531 Individual model output data 681 Estimated activity (estimated acoustic model)
681A Estimated activity at the start of closing operation 681B Estimated activity at the end of closing operation 681C Estimated activity at the start of opening operation 681D Estimated activity at the end of opening operation 801 Acoustic data display area 802 Spectrogram display area 810 Estimated activity display area (third Displays the acoustic model estimated from the acoustic data of
811 Estimated activity display area at the start of closing operation 812 Estimated activity display area at the end of closing operation 813 Estimated activity display area at the start of opening operation 814 Estimated activity at the end of opening operation 821 Estimated operation display area 822 Rated deviation display area 823 Diagnosis Result display area (displays diagnosis results)
N1 Deep neural network (neural network, first neural network)
N2 Deep neural network (neural network, second neural network)
W1 Time window W2 Time window Z Circuit breaker diagnosis system (breaker model generation system)
S1 Common model learning (first learning, first learning step)
S2 Individual model learning (second learning, second learning step)

Claims (14)

  1.  電力の遮断を行う遮断器の動作音を集音し、音響データとして出力する集音装置と、
     複数設置されている前記遮断器である第1の遮断器から取得された前記音響データである第1の音響データから生成される特徴量である第1の特徴量を入力データとし、前記第1の特徴量に対応付けられている音響モデルである第1の音響モデルを教師データとする学習である第1の学習によって、第1の学習モデルを出力する第1の学習部と、
     前記第1の遮断器とは異なる前記遮断器である第2の遮断器から取得された前記音響データである第2の音響データを基に生成された特徴量である第2の特徴量を入力データとし、前記第2の特徴量に対応付けられている前記音響モデルである第2の音響モデルを教師データとする学習である第2の学習によって、第2の学習モデルを出力する第2の学習部と、
     を有し、
     前記音響モデルは、前記遮断器の前記動作音をモデル化したものであり、
     前記第2の学習では、前記第1の学習の結果出力される前記第1の学習モデルを前記第2の学習における前記第2の学習モデルの初期値として利用する
     ことを特徴とする遮断器モデル生成システム。
    A sound collection device that collects the operating sound of a circuit breaker that cuts off power and outputs it as acoustic data;
    A first feature quantity that is a feature quantity generated from the first acoustic data that is the acoustic data acquired from the first circuit breaker that is the plurality of circuit breakers installed is input data, and the first a first learning unit that outputs a first learning model through first learning that is learning using a first acoustic model that is an acoustic model that is associated with the feature amount as teacher data;
    Input a second feature amount that is a feature amount generated based on second acoustic data that is the acoustic data obtained from the second circuit breaker that is the circuit breaker different from the first circuit breaker. data, and outputs a second learning model through second learning, which is learning using the second acoustic model, which is the acoustic model associated with the second feature amount, as teacher data. Learning department and
    has
    The acoustic model is a model of the operating sound of the circuit breaker,
    In the second learning, the first learning model output as a result of the first learning is used as an initial value of the second learning model in the second learning. generation system.
  2.  前記第1の学習部で行われる前記第1の学習、及び、前記第2の学習部で行われる前記第2の学習で用いられるニューラルネットワークは、複数段階のニューラルネットワークで構成され、
     前記第2の学習に用いられる第2のニューラルネットワークの構成は、前記第1の学習に用いられる第1のニューラルネットワークと同じ構造を有しており、
     前記第1の学習部は、
     前記第1の学習を行う際、前記第1のニューラルネットワークを構成するニューロンの結合強度の初期値を乱数として、前記第1のニューラルネットワークの学習を行うことで、前記ニューロンの前記結合強度を前記第1の学習モデルとして出力し、
     前記第2の学習部は、
     前記第2のニューラルネットワークを構成する前記ニューラルネットワークのうち、出力の1つ前段の前記ニューラルネットワークにおける前記ニューロンの前記結合強度の初期値を乱数とし、その他の前記ニューラルネットワークにおける前記ニューロンの前記結合強度の初期値を、前記第1の学習モデルによる前記結合強度とする
     ことを特徴とする請求項1に記載の遮断器モデル生成システム。
    The neural network used in the first learning carried out in the first learning unit and the second learning carried out in the second learning unit is composed of a multi-stage neural network,
    The configuration of the second neural network used for the second learning has the same structure as the first neural network used for the first learning,
    The first learning section includes:
    When performing the first learning, the learning of the first neural network is performed using the initial value of the connection strength of neurons constituting the first neural network as a random number, so that the connection strength of the neurons is output as the first learning model,
    The second learning section includes:
    Among the neural networks constituting the second neural network, the initial value of the connection strength of the neurons in the neural network one stage before the output is a random number, and the connection strength of the neurons in the other neural networks The circuit breaker model generation system according to claim 1, wherein an initial value of is set as the coupling strength by the first learning model.
  3.  前記遮断器の動作は、前記遮断器の開動作、及び、閉動作であり、
     前記音響モデルは、前記遮断器の閉動作時が開始する際に発せられる前記動作音、前記遮断器の閉動作時が終了する際に発せられる前記動作音、前記遮断器の開動作時が開始する際に発せられる前記動作音、及び、前記遮断器の開動作時が終了する際に発せられる前記動作音のそれぞれについて生成される
     ことを特徴とする請求項2に記載の遮断器モデル生成システム。
    The operation of the circuit breaker is an opening operation and a closing operation of the circuit breaker,
    The acoustic model includes the operating sound emitted when the circuit breaker starts to close, the operating sound emitted when the circuit breaker finishes closing, and the circuit breaker starting to open. The circuit breaker model generation system according to claim 2, wherein the circuit breaker model generation system is generated for each of the operation sound emitted when opening the circuit breaker, and the operation sound emitted when the opening operation of the circuit breaker ends. .
  4.  前記第2の遮断器から前記集音装置によって取得され、前記第2の音響データとは異なる前記音響データである第3の音響データを基に生成される前記特徴量である第3の特徴量を、前記第2の学習の結果、出力される前記第2の学習モデルに入力し、当該第2の学習モデルから出力された出力結果を基に、前記第2の遮断器の動作に関する診断を行う診断部
     を有することを特徴とする請求項1に記載の遮断器モデル生成システム。
    a third feature quantity that is the feature quantity that is obtained from the second circuit breaker by the sound collection device and that is generated based on third acoustic data that is the acoustic data different from the second acoustic data; is input into the second learning model that is output as a result of the second learning, and based on the output result output from the second learning model, a diagnosis regarding the operation of the second circuit breaker is made. The circuit breaker model generation system according to claim 1, further comprising a diagnostic section for performing diagnosis.
  5.  前記診断部は、
     前記第3の音響データを基に生成される前記特徴量である第3の特徴量が前記第2の学習モデルに入力されることで出力される結果から推定される動作タイミングを基に、前記第2の遮断器に異常が生じているか否かを判定する
     ことを特徴とする請求項4に記載の遮断器モデル生成システム。
    The diagnostic department includes:
    The third feature amount, which is the feature amount generated based on the third acoustic data, is input to the second learning model and the operation timing is estimated from the result outputted. The circuit breaker model generation system according to claim 4, further comprising determining whether or not an abnormality has occurred in the second circuit breaker.
  6.  前記診断部は、
     推定される前記動作タイミングと、基準となる動作タイミングとのずれの度合いを算出し、前記ずれの度合いが所定値以上であれば、前記第2の遮断器に異常が生じていると判定する
     ことを特徴とする請求項5に記載の遮断器モデル生成システム。
    The diagnostic department includes:
    Calculating the degree of deviation between the estimated operation timing and the reference operation timing, and determining that an abnormality has occurred in the second circuit breaker if the degree of deviation is a predetermined value or more. The circuit breaker model generation system according to claim 5, characterized in that:
  7.  前記遮断器の動作は、前記遮断器の開動作、及び、閉動作であり、
     前記音響モデルは、前記遮断器の開動作時が開始する際に発せられる前記動作音、前記遮断器の開動作時が終了する際に発せられる前記動作音、前記遮断器の閉動作時が開始する際に発せられる前記動作音、及び、前記遮断器の閉動作時が終了する際に発せられる前記動作音であり、
     前記診断部において、出力される前記出力結果は、前記第3の音響データを前記第2の学習モデルに入力することで推定される前記音響モデルであり、
     前記診断部は、
     前記第3の音響データから推定される前記音響モデルを基に、前記動作タイミングを推定する
     ことを特徴とする請求項5に記載の遮断器モデル生成システム。
    The operation of the circuit breaker is an opening operation and a closing operation of the circuit breaker,
    The acoustic model includes the operating sound emitted when the opening operation of the circuit breaker starts, the operation sound emitted when the opening operation of the circuit breaker ends, and the operation sound starting when the circuit breaker closes. the operating sound emitted when the circuit breaker closes, and the operating sound emitted when the closing operation of the circuit breaker ends;
    In the diagnosis unit, the output result is the acoustic model estimated by inputting the third acoustic data to the second learning model,
    The diagnostic department includes:
    The circuit breaker model generation system according to claim 5, wherein the operation timing is estimated based on the acoustic model estimated from the third acoustic data.
  8.  前記第3の音響データから推定される前記音響モデル、及び、前記診断部による前記第2の遮断器の診断結果を、少なくとも表示装置に表示する
     ことを特徴とする請求項7に記載の遮断器モデル生成システム。
    The circuit breaker according to claim 7, wherein the acoustic model estimated from the third acoustic data and the diagnosis result of the second circuit breaker by the diagnosis unit are displayed on at least a display device. Model generation system.
  9.  前記遮断器の接点の位置を計測し、接点位置データとして出力する接点位置計測装置と、
     前記音響データ、及び、前記接点位置計測装置から出力された前記接点位置データを基に、前記音響モデルと、前記音響データを基に生成された特徴量と、を対応付ける特徴量設定部と、
     を有することを特徴とする請求項1に記載の遮断器モデル生成システム。
    a contact position measuring device that measures the position of the contact of the circuit breaker and outputs it as contact position data;
    a feature setting unit that associates the acoustic model with a feature generated based on the acoustic data based on the acoustic data and the contact position data output from the contact position measuring device;
    The circuit breaker model generation system according to claim 1, characterized in that it has the following.
  10.  前記音響データからスペクトログラムを生成し、当該スペクトログラムについて、所定の時間窓を、所定の時間幅でずらしつつ取得することで、前記特徴量を生成する特徴量生成部
     を有することを特徴とする請求項1に記載の遮断器モデル生成システム。
    Claim characterized by comprising: a feature amount generation unit that generates a spectrogram from the acoustic data, and generates the feature amount by acquiring a predetermined time window of the spectrogram while shifting it by a predetermined time width. 1. The circuit breaker model generation system according to 1.
  11.  前記音響モデルは、
     前記遮断器の動作開始時点で時間軸に対して垂直に立ち上がり、その後、所定の傾きで減衰する三角波で表現される
     ことを特徴とする請求項1に記載の遮断器モデル生成システム。
    The acoustic model is
    The circuit breaker model generation system according to claim 1, characterized in that the circuit breaker model generation system is expressed as a triangular wave that rises perpendicularly to the time axis at the start of operation of the circuit breaker and then attenuates at a predetermined slope.
  12.  前記音響モデルは、
     前記遮断器の動作開始時点で時間軸に対して垂直に立ち上がる矩形波で表現される
     ことを特徴とする請求項2に記載の遮断器モデル生成システム。
    The acoustic model is
    The circuit breaker model generation system according to claim 2, wherein the circuit breaker model generation system is expressed by a rectangular wave that rises perpendicularly to the time axis at the time when the circuit breaker starts operating.
  13.  電力の遮断を行う遮断器について、複数の前記遮断器である第1の遮断器の動作音のデータである第1の音響データから生成される特徴量である第1の特徴量を入力データとし、前記第1の特徴量に対応付けられている音響モデルである第1の音響モデルを教師データとする学習である第1の学習によって、第1の学習モデルを出力する第1の学習部と、
     前記第1の遮断器とは異なる前記遮断器である第2の遮断器の動作音のデータである第2の音響データを基に生成された特徴量である第2の特徴量を入力データとし、前記第2の特徴量に対応付けられている前記音響モデルである第2の音響モデルを教師データとする学習である第2の学習によって、第2の学習モデルを出力する第2の学習部と、
     を有し、
     前記音響モデルは、前記遮断器の前記動作音をモデル化したものであり、
     前記第2の学習では、前記第1の学習の結果出力される第1の学習モデルを前記第2の学習における第2の学習モデルの初期値として利用する
     ことを特徴とする遮断器モデル生成装置。
    Regarding a circuit breaker that cuts off power, input data is a first feature amount that is a feature amount generated from first acoustic data that is data of the operating sound of a first circuit breaker that is a plurality of circuit breakers. , a first learning unit that outputs a first learning model through first learning that is learning using a first acoustic model that is an acoustic model associated with the first feature amount as teacher data; ,
    Input data is a second feature amount that is a feature amount generated based on second acoustic data that is data of an operating sound of the second circuit breaker that is different from the first circuit breaker. , a second learning unit that outputs a second learning model through second learning that is learning using the second acoustic model that is the acoustic model associated with the second feature amount as training data; and,
    has
    The acoustic model is a model of the operation sound of the circuit breaker,
    In the second learning, a first learning model output as a result of the first learning is used as an initial value of a second learning model in the second learning. .
  14.  電力の遮断を行う遮断器について、複数の前記遮断器である第1の遮断器の動作音のデータである第1の音響データから生成される特徴量である第1の特徴量を入力データとし、前記第1の特徴量に対応付けられている音響モデルである第1の音響モデルを教師データとする学習である第1の学習によって、第1の学習モデルを出力する第1の学習ステップと、
     前記第1の遮断器とは異なる前記遮断器である第2の遮断器の動作音のデータである第2の音響データを基に生成された特徴量である第2の特徴量を入力データとし、前記第2の特徴量に対応付けられている前記音響モデルである第2の音響モデルを教師データとする学習である第2の学習によって、第2の学習モデルを出力する第2の学習ステップと、
     を有し、
     前記音響モデルは、前記遮断器の前記動作音をモデル化したものであり、
     前記第2の学習では、前記第1の学習の結果出力される第1の学習モデルを前記第2の学習における第2の学習モデルの初期値として利用する
     ことを特徴とする遮断器モデル生成方法。
    Regarding a circuit breaker that cuts off power, input data is a first feature amount that is a feature amount generated from first acoustic data that is data of the operating sound of a first circuit breaker that is a plurality of circuit breakers. , a first learning step of outputting a first learning model through first learning that is learning using a first acoustic model that is an acoustic model associated with the first feature amount as training data; ,
    Input data is a second feature amount that is a feature amount generated based on second acoustic data that is data of an operating sound of the second circuit breaker that is different from the first circuit breaker. , a second learning step of outputting a second learning model by second learning that is learning using the second acoustic model that is the acoustic model associated with the second feature amount as teacher data; and,
    has
    The acoustic model is a model of the operation sound of the circuit breaker,
    A circuit breaker model generation method characterized in that, in the second learning, a first learning model output as a result of the first learning is used as an initial value of a second learning model in the second learning. .
PCT/JP2023/010966 2022-07-11 2023-03-20 Isolator model generating system, isolator model generating device, and isolator model generating method WO2024014061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-111393 2022-07-11
JP2022111393A JP2024009691A (en) 2022-07-11 2022-07-11 Breaker model generation system, breaker model generation device, and breaker model generation method

Publications (1)

Publication Number Publication Date
WO2024014061A1 true WO2024014061A1 (en) 2024-01-18

Family

ID=89536460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010966 WO2024014061A1 (en) 2022-07-11 2023-03-20 Isolator model generating system, isolator model generating device, and isolator model generating method

Country Status (2)

Country Link
JP (1) JP2024009691A (en)
WO (1) WO2024014061A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235436A (en) * 1994-02-25 1995-09-05 Hitachi Ltd Loaded tap changeover switch and abnormality diagnostic device thereof and abnormality diagnostic method thereof
JPH11354341A (en) * 1998-06-11 1999-12-24 Toshiba Corp Monitor device for tap switcher while loaded
JP2018147261A (en) * 2017-03-06 2018-09-20 Kddi株式会社 Model integration device, model integration system, method and program
JP2019184341A (en) * 2018-04-05 2019-10-24 東芝三菱電機産業システム株式会社 Power conversion system and breaker diagnosing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235436A (en) * 1994-02-25 1995-09-05 Hitachi Ltd Loaded tap changeover switch and abnormality diagnostic device thereof and abnormality diagnostic method thereof
JPH11354341A (en) * 1998-06-11 1999-12-24 Toshiba Corp Monitor device for tap switcher while loaded
JP2018147261A (en) * 2017-03-06 2018-09-20 Kddi株式会社 Model integration device, model integration system, method and program
JP2019184341A (en) * 2018-04-05 2019-10-24 東芝三菱電機産業システム株式会社 Power conversion system and breaker diagnosing device

Also Published As

Publication number Publication date
JP2024009691A (en) 2024-01-23

Similar Documents

Publication Publication Date Title
JP5278310B2 (en) Diagnostic system
CN111638028B (en) High-voltage parallel reactor mechanical state evaluation method based on vibration characteristics
KR100887433B1 (en) System, device, and methods for updating system-monitoring models
CN110398348B (en) Memory, and method and device for diagnosing mechanical fault of high-voltage circuit breaker
US10228994B2 (en) Information processing system, information processing method, and program
US11115295B2 (en) Methods and systems for online monitoring using a variable data
CN109029589B (en) Bridge structures safety condition monitoring system
CN112631240A (en) Spacecraft fault active detection method and device
Burgas et al. Principal component analysis for monitoring electrical consumption of academic buildings
JP2000259223A (en) Plant monitoring device
CN108415810A (en) Hard disk state monitoring method and device
CN116756909A (en) Early warning diagnosis system of thermal power plant based on data model and mechanism model
CN116012681A (en) Method and system for diagnosing motor faults of pipeline robot based on sound vibration signal fusion
JP2004505364A (en) Remote diagnosis method of industrial technical process
WO2024014061A1 (en) Isolator model generating system, isolator model generating device, and isolator model generating method
KR20220133579A (en) Apparatus and method for predicting remaining useful life of train
WO2021011065A1 (en) Time-series data condensation and graphical signature analysis
KR102601338B1 (en) Apparatus for predicting equipment failure using learning data based on maintenance history and method thereof
CN106500831B (en) Detection method and device of vibration sensor
KR102195266B1 (en) Fault diagnosis method for plant using sound signal
CN113988188A (en) Fault diagnosis method, fault diagnosis device, electronic equipment and storage medium
JPH09502261A (en) Measuring instrument that can judge
JP2001209628A (en) Pattern matching method
KR20200001913A (en) Display method of fault forecast and diagnostic system of power plant
WO2022113494A1 (en) Learning device, learning method, and failure prediction system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839240

Country of ref document: EP

Kind code of ref document: A1