WO2024014033A1 - Method for producing granules, and granules - Google Patents

Method for producing granules, and granules Download PDF

Info

Publication number
WO2024014033A1
WO2024014033A1 PCT/JP2023/006491 JP2023006491W WO2024014033A1 WO 2024014033 A1 WO2024014033 A1 WO 2024014033A1 JP 2023006491 W JP2023006491 W JP 2023006491W WO 2024014033 A1 WO2024014033 A1 WO 2024014033A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar
granules
less
crystalline
mass
Prior art date
Application number
PCT/JP2023/006491
Other languages
French (fr)
Japanese (ja)
Inventor
晋一 村田
文恵 當天
健夫 清水
克嗣 萩原
Original Assignee
Dm三井製糖株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dm三井製糖株式会社 filed Critical Dm三井製糖株式会社
Publication of WO2024014033A1 publication Critical patent/WO2024014033A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B30/00Crystallisation; Crystallising apparatus; Separating crystals from mother liquors ; Evaporating or boiling sugar juice
    • C13B30/02Crystallisation; Crystallising apparatus
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B40/00Drying sugar
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B50/00Sugar products, e.g. powdered, lump or liquid sugar; Working-up of sugar

Definitions

  • the present invention relates to a method for producing granules and granules.
  • Powderization is a method for maintaining the stability and fluidity of materials, and one method for powderization is spray drying.
  • Spray drying is a method of spraying a solution or suspension into a gas and rapidly drying it to obtain a dry powder.
  • the drying temperature during spray drying is generally high.
  • Enzymes, yeast, and microbial cells are denatured and deactivated by contact with high-temperature gases, and volatile fragrances easily evaporate, making it difficult to sufficiently retain their original properties. From the viewpoint of preventing such losses due to spray drying, proposals have been made so far (for example, Patent Document 1).
  • One aspect of the present invention aims to provide a simple and efficient method for producing granules and granules obtained by the method.
  • the present invention provides the following inventions.
  • It contains at least one kind of raw material selected from the group consisting of crystalline sugar and crystalline sugar alcohol, and a part of the raw material is dissolved without dissolving all of the raw material and crystallizing the raw material after the dissolution. obtaining a crystal suspension containing in a crystalline state;
  • the sugar and the sugar alcohol are monosaccharides, disaccharides, trisaccharides, and sugar alcohols thereof.
  • the functional material is an enzyme, a microorganism, or a fragrance.
  • (A) shows a microscopic image of a crystal suspension obtained by the method of Example 1, and (B) shows a microscopic image of a crystal suspension obtained by the method of Comparative Example 1.
  • (A) shows an electron microscope image of the granules obtained by the method of Example 3, and (B) shows an enlarged image of (A).
  • (A) shows an electron microscope image of granules obtained by the method of Comparative Example 3, and (B) shows an enlarged image of (A).
  • (A) shows the evaluation results of the hygroscopicity of the granules obtained by the method of Example 3, and (B) shows the evaluation results of the hygroscopicity of the granules obtained by the method of Comparative Example 3.
  • the method for producing granules according to the present embodiment includes at least one type of raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols, and includes dissolving all of the raw materials and crystallizing the raw materials after the dissolution.
  • the method includes a step (mixing step) of obtaining a crystal suspension in which a part of the raw material is contained in a crystalline state without performing the above steps, and a step of spray drying the crystal suspension under low temperature conditions (spray drying step).
  • ⁇ Mixing process> In the mixing step, first, a crystal suspension containing at least one type of raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols and containing a portion of the raw material in a crystalline state is obtained.
  • crystalline sugar and/or sugar alcohol means a solid sugar and/or sugar alcohol whose constituent atoms are three-dimensionally regularly repeated.
  • saccharide and/or sugar alcohol in an amorphous state refers to a solid or liquid sugar and/or sugar alcohol that does not have such regular repeats.
  • the crystalline sugar and crystalline sugar alcohol are preferably monosaccharides, disaccharides, trisaccharides, and sugar alcohols thereof from the viewpoint of improving operability in the mixing step.
  • Examples of monosaccharides include glucose, galactose, mannose, fructose, allose, and allulose.
  • Disaccharides include isomaltulose, sucrose, lactulose, lactose, maltose, trehalose, cellobiose, and the like.
  • Trisaccharides include nigerotriose, maltotriose, raffinose, and the like.
  • Isomaltulose is a disaccharide trademarked as "palatinose” by Mitsui Sugar Co., Ltd.
  • sugar alcohols examples include sorbitol, erythritol, xylitol, maltitol, lactitol, mannitol, ⁇ -glucopyranosyl-1,1-mannitol, ⁇ -glucopyranosyl-1,6-sorbitol, and the like.
  • the above-mentioned crystalline sugars and sugar alcohols may be used alone or in combination of two or more.
  • the crystal suspension may contain two or more types of crystalline sugars, may contain two or more types of crystalline sugar alcohols, or may contain a combination of crystalline sugars and crystalline sugar alcohols. Two or more types may be contained.
  • the method for producing granules according to this embodiment is a simple method, the average shortness of the particles constituting the granules can be obtained even when two or more types of crystalline sugars and alcohols are used (for example, when two types of sugars are used).
  • Granules having a sufficiently small ratio of average major axis to diameter (for example, 3.1 or less) can be obtained.
  • Granules in which the ratio of the average major axis to the average minor axis of the constituent particles is sufficiently small tend to have excellent stability and fluidity.
  • the content of crystalline sugar and/or sugar alcohol contained in the crystal suspension is preferably 30% by mass or more, based on the total amount of the crystal suspension, from the viewpoint of making it easier to obtain granules with excellent fluidity.
  • the content is 40% by mass or more, more preferably 45% by mass or more, even more preferably 50% by mass or more.
  • the content of crystalline sugar and/or sugar alcohol is preferably 90% by mass or less, more preferably 80% by mass or less, based on the total amount of crystal suspension. It is not more than 70% by mass, more preferably not more than 70% by mass.
  • the supernatant Brix value (Bx) of the crystal suspension is 20.00 or more, 25.00 or more, 27.00 or more, 29.00 or more, or 31.00 or more, from the viewpoint of making it easier to obtain granules with excellent fluidity. 85.00 or less, 75.00 or less, 65.00 or less, 55.00 or less, 45.00 or less, 40.00 or less, from the viewpoint of maintaining good operability in the mixing process and spray drying process. Or it may be 35.00 or less.
  • the Brix value (Bx) in this specification means the Ref Brix value calculated from the refractive index, and can be measured with a Brix meter (for example, a digital refractometer (RX-5000), manufactured by Atago Co., Ltd.).
  • a Brix meter for example, a digital refractometer (RX-5000), manufactured by Atago Co., Ltd.
  • the method for measuring the supernatant Brix value of the crystal suspension is as described in Examples below.
  • the crystallization rate of the crystal suspension is 25% by mass or more, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, 50% by mass.
  • the content may be 55% by mass or more, or 60% by mass or more.
  • the crystallization rate may be 90% by mass or less, 85% by mass or less, 80% by mass or less, or 78% by mass or less.
  • the crystallization rate in this specification is measured by the method described in the Examples below.
  • the crystallization rate can be determined by performing operations that physically or chemically add or remove crystals, such as filter filtration, centrifugation, gravity sedimentation, dissolution by adding water and/or heating, and adjusting consumption of crystal components due to chemical reactions. It can be adjusted by Adjustments can also be made by operations that increase the number of crystals, such as adding and mixing crystal components.
  • the crystal suspension only needs to contain crystal nuclei, and the size of the crystal nuclei is not particularly limited as long as it is a size that can stably exist in the crystal suspension.
  • the size of the crystal nucleus may be, for example, larger than the critical crystal nucleus.
  • the viscosity of the crystal suspension is 1550 mPa at 25°C, since the decrease in the recovery rate of granules after spray drying is further suppressed and the occurrence of caking of granules after spray drying is further suppressed.
  • the viscosity of the crystal suspension may be from 50 to 1550 mP
  • the average particle size of the crystalline sugar and/or sugar alcohol in the crystal suspension is 1.00 ⁇ m or more, 2.00 ⁇ m or more, 3.00 ⁇ m or more, 4.00 ⁇ m or more, It may be 5.00 ⁇ m or more, 6.00 ⁇ m or more, 7.00 ⁇ m or more, 8.00 ⁇ m or more, 9.00 ⁇ m or more, 10.00 ⁇ m or more, 11.00 ⁇ m or more, or 12.00 ⁇ m or more.
  • the average particle diameter of the sugar and/or sugar alcohol in the crystalline state is 30.00 ⁇ m or less, 25.00 ⁇ m or less, 20.00 ⁇ m or less, 18.00 ⁇ m or less, 15.90 ⁇ m from the viewpoint of further suppressing the occurrence of granule collapse. Below, it may be 14.00 ⁇ m or less, 13.00 ⁇ m or less, 12.00 ⁇ m or less, or 11.00 ⁇ m or less.
  • the average particle size of the crystalline sugar and/or sugar alcohol may be, for example, 1.00 to 15.90 ⁇ m.
  • the average particle size of the crystalline sugar and/or sugar alcohol in the crystal suspension can be determined by adding or removing a solvent or solute, changing the solvent temperature, dissolution time, stirring time, crushing with a stirrer or grinder, filtration, etc. It can be adjusted by crystallization operations such as sugar hydrolysis.
  • the "average particle size of sugar and/or sugar alcohol in a crystalline state” can be measured with a digital microscope.
  • a digital microscope for the measurement, for example, SKM-S31B-PC manufactured by Saito Optical Co., Ltd. can be used. The details of the method for measuring the average particle size are as described in the Examples below.
  • the standard deviation of the average particle size of the crystalline sugar and/or sugar alcohol in the crystal suspension is 10.70 ⁇ m or less, 9.00 ⁇ m or less, 8.00 ⁇ m or less, 7.00 ⁇ m or less, or 6.00 ⁇ m or less. It's good to be there.
  • a small standard deviation of the average particle size means that the variation in the average particle size is small.
  • the standard deviation of the average particle size of the crystalline sugar and/or sugar alcohol in the crystal suspension may be, for example, 1.0 ⁇ m or more, 3.0 ⁇ m or more, or 5.0 ⁇ m or more.
  • the standard deviation of the average particle size of the crystalline sugar and/or sugar alcohol in the crystal suspension may be, for example, 1.00 to 10.70 ⁇ m.
  • standard deviation refers to Microsoft (registered trademark) Excel's STDEV. This is the unbiased standard deviation obtained using the S function.
  • the average minor axis of the crystalline sugar and/or sugar alcohol in the crystal suspension may be 1.00 ⁇ m or more, 4.00 ⁇ m or more, 6.00 ⁇ m or more, or 8.00 ⁇ m or more, and 20.00 ⁇ m or less. , 15.0 ⁇ m or less, or 13.0 ⁇ m or less.
  • the average major axis of the crystalline sugar and/or sugar alcohol in the crystal suspension may be 5.00 ⁇ m or more, 7.00 ⁇ m or more, or 9.00 ⁇ m or more, and 30.00 ⁇ m or less, 25.00 ⁇ m or less, Or it may be 20.00 ⁇ m or less.
  • the ratio of the average major axis (unit: ⁇ m) to the average minor axis (unit: ⁇ m) of the sugar and/or sugar alcohol in the crystalline state in the crystal suspension is set to 5. 00 or less, 2.50 or less, 2.00 or less, 1.70 or less, or 1.50 or less, and may be 1.00 or more, 1.10 or more, or 1.15 or more.
  • the ratio of the average major axis to the average minor axis may be, for example, 1.00 to 1.70.
  • the standard deviation of the ratio of the average major axis (unit: ⁇ m) to the average minor axis (unit: ⁇ m) of the crystalline sugar and/or sugar alcohol in the crystal suspension is 0.50 or less, 0.45 or less, or It may be 0.40 or less, 0.05 or more, 0.10 or more, or 0.15 or more.
  • the crystal suspension contains a solvent.
  • the solvent may be, for example, an organic solvent such as ethanol, methanol, acetone, isopropanol, or water.
  • the content of the solvent in the crystal suspension is 10% by mass or more, 20% by mass or more, or 30% by mass or more, based on the total mass of the solvent and raw materials, or based on the total mass of the crystal suspension. It may be 50% by mass or less, or 45% by mass or less.
  • the above-mentioned crystal suspension may be used as it is as a crystal suspension (spray liquid) to be spray-dried, or may be used as a spray liquid after being mixed with other components.
  • Other components include sugars, sugar alcohols, solvents, functional materials, and mixtures thereof.
  • a functional material is not limited to any material or component that exhibits a certain function in a composition (for example, food, medicine, etc.) obtained by combining it with other materials.
  • Functional materials may be materials that are affected by the surrounding environment such as moisture, heat, light, acids, oxygen, molecular movement, ultraviolet light, electrical interactions, physical stimulation, or even materials that lose their functionality when heated. good.
  • functional materials include amino acids, peptides (including hormones), proteins (including enzymes and antibodies), fatty acids, vitamins, minerals, microorganisms (for example, lactic acid bacteria, butyric acid bacteria, Bacillus natto, Bifidobacterium and Bacteria such as actinomycetes, molds and yeast), hormones other than peptides, fragrances, phages, antibiotics other than peptides, natural raw materials such as crude drugs, and industrial raw materials such as metals.
  • microorganisms for example, lactic acid bacteria, butyric acid bacteria, Bacillus natto, Bifidobacterium and Bacteria such as actinomycetes, molds and yeast
  • hormones other than peptides for example, lactic acid bacteria, butyric acid bacteria, Bacillus natto, Bifidobacterium and Bacteria such as actinomycetes, molds and yeast
  • hormones other than peptides for example, fragrances, phag
  • a crystal suspension (spray liquid) to be spray-dried is produced by mixing at least one kind of raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols with a solvent, so that some of the raw materials are crystallized.
  • the mixing of the raw material and the solvent in step A is carried out so that the Brix value (Bx) may be 40 or more, 50 or more, 55 or more, or 60 or more, and 85 or less, 75 or less, or 70 or less. good.
  • step A crystal suspension A can be obtained, for example, by mixing raw materials and a solvent and stirring the resulting mixture for 1 to 3 hours while maintaining the temperature at 25 to 35 ° C. can.
  • the rotation speed during stirring may be, for example, 250 to 400 rpm.
  • crystal suspension A supernatant Brix value, crystallization rate, average particle diameter of sugar and/or sugar alcohol in crystalline state, average major axis, average minor axis, ratio of average major axis to average minor axis, and standard deviation thereof
  • the specific embodiments may be the same as those exemplified as the specific embodiments of the crystal suspension described above.
  • step B crystal suspension A and sugar solution are mixed.
  • Mixing of crystal suspension A and sugar solution may be carried out while maintaining the temperature at 25-35°C.
  • the sugar solution contains sugar and/or sugar alcohol and a solvent. Part or all of the sugar and sugar alcohol contained in the sugar solution may be dissolved in a solvent. As the sugar and sugar alcohol, those mentioned above can be used.
  • the sugar solution may contain one or more sugars and/or sugar alcohols.
  • the sugar and/or sugar alcohol in the sugar solution may contain the same kind of sugar and/or sugar alcohol as the sugar and/or sugar alcohol in the crystal suspension A, or may contain a different kind.
  • a sugar solution can be obtained, for example, by mixing sugar and/or sugar alcohol and a solvent.
  • the sugar solution may be obtained by mixing sugar and/or sugar alcohol with a solvent to dissolve the sugar and/or sugar alcohol at a temperature of 80° C. or higher.
  • the sugar solution may be kept at 25-35°C after preparation.
  • the Brix value (Bx) of the sugar solution may be 50 or more, 55 or more, or 60 or more, and may be 85 or less, 75 or less, or 70 or less.
  • the mixing amount of the sugar solution may be 5 parts by mass or more, 10 parts by mass or more, or 15 parts by mass or more, and 30 parts by mass or less, 25 parts by mass or less, or 20 parts by mass or more, based on 100 parts by mass of the crystal suspension. It may be less than parts by mass.
  • Crystal suspension B contains a portion of at least one raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols in a crystalline state.
  • the crystal suspension B can be directly spray-dried as a spray liquid.
  • the content of sugar and/or sugar alcohol in the spray liquid is 40% by mass or more, 50% by mass or more, or 60% by mass, based on the total mass of the solvent and raw materials, or based on the total mass of the crystal suspension. % or more, and may be 90% by mass or less, 80% by mass or less, or 70% by mass or less.
  • the spray liquid includes a first sugar raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols, and a first sugar raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols; A second sugar raw material different from the sugar raw material may be contained.
  • the first sugar raw material may be, for example, isomaltulose.
  • the second sugar raw material may contain one or more of the above-mentioned sugars or sugar alcohols, as long as they are different from the first sugar raw material, and may contain sucrose.
  • the content of the first sugar raw material is 70.0 parts by mass or more, 75.0 parts by mass or more, 80.0 parts by mass or more, 85.0 parts by mass or more with respect to 100 parts by mass of solids in the spray liquid. , 90.0 parts by mass or more, or 95.0 parts by mass or more, and 99.9 parts by mass or less, 95.0 parts by mass or less, or 90.0 parts by mass or less.
  • solid content refers to the total amount of the composition excluding the amount of solvent (eg, water).
  • the content of the second sugar raw material is 1.0 parts by mass or more, 3 parts by mass or more based on 100 parts by mass of solids in the spray liquid. .0 parts by mass or more, 5.0 parts by mass or more, 8.0 parts by mass or more, 10.0 parts by mass or more, 12.0 parts by mass or more, or 15.0 parts by mass or more, and 30.0 parts by mass parts by weight or less, 25.0 parts by weight or less, 20 parts by weight or less, 15 parts by weight or less, 10 parts by weight or less, or 5 parts by weight or less.
  • the timing of incorporating the functional material into the spray liquid is not particularly limited, but for example, after premixing the functional material and the sugar solution to prepare a mixed liquid, A spray liquid may be obtained by mixing the liquid mixture and crystal suspension A.
  • the content of the functional material may be 0.01 parts by mass or more, 0.05 parts by mass or more, or 0.1 parts by mass or more, and 5 parts by mass or less, based on 100 parts by mass of the above-mentioned crystal suspension. , 3 parts by weight or less, or 1 part by weight or less.
  • the amount of functional material added can be adjusted as appropriate depending on the type of functional material.
  • the mixing step all the raw materials are not dissolved and the raw materials are not crystallized after all the raw materials have been dissolved. Dissolution of all the raw materials can be confirmed visually, for example. Other methods for confirming the dissolution of all raw materials include, for example, observing crystallization induction using a microscope. When the crystal suspension dropped onto the slide glass is observed for 5 minutes using a microscope at room temperature of 25° C., it can be determined that all the raw materials have been dissolved if no crystal precipitation is observed.
  • Dissolution of all the raw materials is usually performed by heating a liquid containing the raw materials and a solvent, mixing the heated solvent and the raw materials, etc.
  • the temperature of the liquid during heating or the temperature of the heated solvent is not particularly limited, and may be, for example, 70°C or higher or 75°C or higher, and 100°C or lower.
  • the solvent to be mixed with the raw materials is not heated in order to dissolve all of the raw materials.
  • Crystallization of the raw materials after all of the raw materials have been dissolved can be performed by a known method.
  • Examples of the method of crystallizing the raw material after all the raw materials have been dissolved include a method of cooling a solution of the raw material (cooling crystallization method), a reaction crystallization method, and the like. In the mixing step described above, in addition to the operation of dissolving all the raw materials, the operation of crystallizing the raw materials is not performed.
  • the temperature of the solution of the raw material by cooling (cooling temperature) is set depending on the type of crystalline sugar and/or sugar alcohol.
  • the cooling temperature is typically 25°C or less or 20°C or less, and may be 5°C or more, 10°C or more, or 15°C or more.
  • the spray drying process is a process of spray drying the above-mentioned crystal suspension (spray liquid) under low temperature conditions.
  • Spray drying can be performed using a spray dryer in one embodiment.
  • As the spray dryer for example, OC-16 manufactured by Okawara Kakoki Co., Ltd. can be used.
  • Low-temperature conditions refer to conditions at a lower temperature (eg, 60° C. or lower) than the temperature at which conventional spray drying is performed (eg, higher than 60° C.).
  • a crystal suspension containing a portion of the sugar and/or sugar alcohol in a crystalline state is used, suitable granules can be obtained even if spray drying is performed at a lower temperature than conventionally.
  • the low-temperature condition may be such that the function of the functional material is not lost.
  • an enzyme is included as the functional material
  • deactivation of the enzyme due to spray drying under high temperature conditions can be suppressed.
  • a fragrance is included as a functional material, volatilization of the fragrance due to spray drying under high temperature conditions can be suppressed.
  • spray drying is performed under low temperature conditions means that the inlet air temperature (inlet temperature) in the spray dryer is performed under the above-mentioned temperature conditions.
  • the inlet air temperature in the spray drying step is preferably 60°C or less, 55°C or less, 50°C or less, 45°C or less, 40°C or less, 35°C or less, 30°C or less, 25°C or less, 20°C or less, °C or lower, or 15°C or lower.
  • the inlet air temperature may be, for example, 0°C or higher, 5°C or higher, or 10°C or higher. That is, the inlet air temperature in the spray drying process may be from 0 to 60°C, or may be from 0 to 50°C.
  • the outlet air temperature (exhaust air temperature) in the spray dryer may be, for example, 50° C. or less, 40° C. or less, 35° C. or less, 30° C. or less, 25° C. or less, 20° C. or less, or 15° C. or less, and 0.
  • the temperature may be higher than or equal to 5°C, or higher than or equal to 10°C.
  • the liquid temperature of the crystal suspension in the spray drying step may be, for example, 60°C or lower, 50°C or lower, or 45°C or lower, or 10°C or higher, 15°C or higher, or 20°C or higher.
  • the atomizer rotation speed in spray drying may be 3000 rpm or more, 5000 rpm or more, or 10000 rpm or more, and may be 25000 rpm or less, 20000 rpm or less, or 18000 rpm or less.
  • the spray drying step may include an additional post-drying step, for example, for the purpose of adjusting the moisture content of the granules.
  • the post-drying step may be, for example, blowing air on the granules attached to the can wall in a spray dryer for a predetermined period of time to further volatilize the moisture in the granules.
  • the granules obtained by spray drying may be stored in a desiccator containing silica gel for a predetermined period of time.
  • the degree of caking of the granules may be less than 10.0% by weight or less than 9.5% by weight, 0.1% by weight or more, 0.5% by weight or more, 1.0% by weight or more, 1.5% by weight or more. It may be at least 2.0 mass%, at least 2.5 mass%, at least 3.0 mass%, or at least 4.0 mass%.
  • the degree of caking of the granules refers to the percentage of the granules that do not pass through a 2 mm sieve and a 1 mm sieve after one week of spray drying, and is measured by the method described in the Examples below. Ru.
  • the recovery rate of the granules according to this embodiment may be 40.0 mass% or more, or 45.0 mass% or more, and 100.0 mass% or less, 90.0 mass% or less, or 80.0 mass% or less. , or 75.0% by mass or less.
  • the recovery rate of granules is measured by the method described in Examples below.
  • the granules according to the present embodiment contain at least one selected from the group consisting of crystalline sugars and crystalline sugar alcohols, and some of the crystalline sugars and/or sugar alcohols are in a crystalline state and others are in a crystalline state. part is in an amorphous state.
  • the ratio of the average major axis to the average minor axis of the particles constituting the granules is 3.1 or less.
  • the granules can be obtained, for example, by the method for producing granules described above.
  • the granules may further contain a functional material.
  • the detailed aspects of the crystalline sugar, the crystalline sugar alcohol, and the functional material are the same as those described above, so a description thereof will be omitted.
  • the term "granule” as used herein refers to an aggregate of particles, and the particles constituting the granule (granule particles) contain one or more types selected from the group consisting of crystalline sugar and sugar alcohol.
  • the granules may contain two or more types of crystalline sugars, may contain two or more types of crystalline sugar alcohols, or may contain two or more types of crystalline sugars and crystalline sugar alcohols in combination. May contain.
  • the granules include a first sugar raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols, and a first sugar raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols; It may also contain a second sugar raw material different from the raw material.
  • a first sugar raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols
  • a first sugar raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols
  • It may also contain a second sugar raw material different from the raw material.
  • the first sugar raw material may be, for example, isomaltulose.
  • the second sugar raw material may contain one or more of the above-mentioned sugars or sugar alcohols, as long as they are different from the first sugar raw material, and may contain sucrose.
  • the content of the first sugar raw material is 70.0 parts by mass or more, 75.0 parts by mass or more, 80.0 parts by mass or more, based on 100 parts by mass of the total amount of crystalline sugar and crystalline sugar alcohol.
  • the amount may be 85.0 parts by weight or more, 90.0 parts by weight or more, or 95.0 parts by weight or more, and may be 99.9 parts by weight or less, 95.0 parts by weight or less, or 90.0 parts by weight or less.
  • the content of the second sugar raw material is 1.0 parts by mass or more based on 100 parts by mass of the total amount of crystalline sugar and crystalline sugar alcohol, and 3. It may be 0 parts by mass or more, 5.0 parts by mass or more, 8.0 parts by mass or more, 10.0 parts by mass or more, 12.0 parts by mass or more, or 15.0 parts by mass or more, and 30.0 parts by mass. The amount may be 25.0 parts by mass or less, 20 parts by mass or less, 15 parts by mass or less, 10 parts by mass or less, or 5 parts by mass or less.
  • the granules according to one embodiment are composed of granule particles in which a portion of the crystalline sugar and/or sugar alcohol is in a crystalline state, and the sugar and/or sugar alcohol in the crystalline state are aggregated with each other.
  • the other part (other part) of the crystalline sugar and/or sugar alcohol is in an amorphous state and is held in the gap formed by the aggregated crystalline sugar and/or sugar alcohol. is preferred.
  • the granules contain a functional material, it is preferable that the functional material is also held in the gaps formed between crystalline sugars and/or sugar alcohols.
  • the aggregation of crystalline sugars and/or sugar alcohols can be confirmed by observing the appearance of granules or the morphology of fractured surfaces of granules using a scanning electron microscope (SEM) or digital microscope. . It can be confirmed by the following method that the sugar and/or sugar alcohol in an amorphous state and the functional material are retained in the above-mentioned gap.
  • SEM scanning electron microscope
  • TA7000 Real View DSC
  • the number of crystalline sugars and/or sugar alcohols (number of crystals) contained in the particles constituting the granules is, for example, 10 or more, and may be 50 or more, or 100 or more.
  • the number of crystals may be 1000 or less.
  • the number of crystals can be determined visually by observation using a scanning electron microscope.
  • the shape of the particles constituting the granules may be approximately spherical from the viewpoint of better fluidity of the granules.
  • the particles constituting the granules may have irregularities on their surfaces in order to improve fluidity.
  • the average particle size of the granules is 10.00 ⁇ m or more, 20.00 ⁇ m or more, 40.00 ⁇ m or more, 60.00 ⁇ m or more, 80.00 ⁇ m or more, or It may be 90.00 ⁇ m or more, and for better solubility, it may be 200.00 ⁇ m or less, 150.00 ⁇ m or less, 140.00 ⁇ m or less, 135.00 ⁇ m or less, or 118 ⁇ m or less.
  • the average particle size of the granules may be, for example, 20.00 to 118.00 ⁇ m.
  • the "average particle size of granules" in this specification can be measured using an electron microscope.
  • Miniscope TM3030 manufactured by Hitachi High-Technologies Corporation can be used.
  • the details of the method for measuring the average particle diameter of the granules are as described in the Examples below.
  • the standard deviation of the average particle diameter of the granules may be 40 ⁇ m or less, or 30 ⁇ m or less, and may be 5 ⁇ m or more, or 10 ⁇ m or more, since the granules are less likely to solidify.
  • the average minor axis of the granules may be 80 ⁇ m or more, or 95 ⁇ m or more, and 150 ⁇ m or less, or 130 ⁇ m or less.
  • the average major axis of the granules may be 75 ⁇ m or more, or 95 ⁇ m or more, and 200 ⁇ m or less, or 150 ⁇ m or less.
  • the ratio of the average major axis to the average minor axis of the granules is 1.40 or less, 1.20 or less, 1.10 or less, or 1.04 or less, since the stability and fluidity of the granules are better. Generally, it may be 1.00 or more, or 1.01 or more.
  • the ratio of the average major axis to the average minor axis of the granules may be, for example, from 1.00 to 1.04.
  • the standard deviation of the ratio of the average major axis to the average minor axis of the granules is 0.20 or less, or 0.12 ⁇ m or less, since the granules are easier to dry, less caking, and have better fluidity. It may be 0.01 ⁇ m or more.
  • the average particle size of the particles constituting the granules may be 5.00 ⁇ m or more, 10.00 ⁇ m or more, or 15.00 ⁇ m or more, and 50.00 ⁇ m or less, 40.00 ⁇ m or less, 30.00 ⁇ m or less, or 25.00 ⁇ m or less. Or it may be 20.00 or less.
  • the average particle size of the particles constituting the granules may be, for example, 10.00 to 20.00 ⁇ m.
  • the standard deviation of the average particle diameter of the particles constituting the granules is 10.00 ⁇ m or less, 8.00 ⁇ m or less, 6.00 ⁇ m or less, 4.00 ⁇ m or less, or It may be 3.3 ⁇ m or less, 1.00 ⁇ m or more, or 2.00 ⁇ m or more.
  • the standard deviation of the average particle diameter of particles constituting the granules may be, for example, 1.00 to 3.30 ⁇ m.
  • the average minor axis of the particles constituting the granules may be 5.0 ⁇ m or more, or 10.0 ⁇ m or more, and may be 30.0 ⁇ m or less, or 25.0 ⁇ m or less.
  • the average major axis of the particles constituting the granules may be 10.0 ⁇ m or more, or 15.0 ⁇ m or more, and 50 ⁇ m or less, or 35 ⁇ m or less.
  • the ratio of the average major axis to the average minor axis of the particles constituting the granules is 3.1 or less.
  • the ratio of the average major axis to the average minor axis of the particles constituting the granules is 2.8 or less, 2.5 or less, 2.2 or less, or 1.9 or less, for better stability and fluidity. It may be 0.5 or more, 1.0 or more, or 1.4 or more.
  • the standard deviation of the ratio of the average major axis to the average minor axis of the particles constituting the granules may be 0.4 or less, or 0.3 or less, or more than 0.0, or 0.1 or more.
  • the total pore volume of the granules is 0.0265 cm 3 /g or more, 0.0270 cm 3 /g or more, 0.0275 cm 3 /g or more, 0.0280 cm 3 /g or more, or 0.0290 cm 3 /g or more. It may be less than 0.0400 cm 3 /g, less than 0.0350 cm 3 /g, less than 0.0300 cm 3 /g, and less than 0.0290 cm 3 /g.
  • the total specific surface area of the granules may be 2.000 m 2 /g or more, 4.000 m 2 /g or more, 6.000 m 2 /g or more, or 8.000 m 2 /g or more, and 10.000 m 2 /g Below, it may be 9.000 m 2 /g or more or 8.5000 m 2 /g or less.
  • the average pore diameter of the granules may be 60,000 ⁇ or less, 40,000 ⁇ or less, 20,000 ⁇ or less, 10,000 ⁇ or less, 5,000 ⁇ or less, 1,000 ⁇ or less, 800 ⁇ or less, or 600 ⁇ or less, from the viewpoint of better granule stability.
  • the thickness may be 400 ⁇ or more, or 550 ⁇ or more.
  • the porosity of the granules may be 3.80% or more, 3.90% or more, or 3.95% or more, and 8.00% or less, 5.00% or less, 4.50% or less, or 4. It may be 10% or less.
  • the fragrance retention rate of the granules containing the fragrance may be 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100% or more, and 150% or less, 140% or less, or 130% or less. It may be.
  • the total pore volume, total specific surface area, average pore diameter, porosity, and fragrance retention rate of the granules can be measured by the method described in the Examples below.
  • the method for producing granules according to this embodiment includes a step of completely dissolving the raw material, a step of crystallizing the raw material, a step of drying by vacuum freezing, or a crystal suspension for the purpose of completely dissolving or crystallizing the raw material. Since the step of heating the granules before spray drying can be omitted, it is possible to manufacture granules using a simpler method than conventional methods.
  • the granules according to the present embodiment can be efficiently manufactured with simpler operations, and the occurrence of caking is suppressed. Furthermore, the granules according to the present embodiment can be manufactured efficiently with simpler operations, while also suppressing deterioration in hygroscopicity, fluidity, and jetability.
  • the granules are obtained by spray drying under low temperature conditions, when the granules contain functional materials, the functions of the included functional materials are less likely to be lost due to heat. In other words, even after the drying process, the granules retain the functionality of the functional material well. Normally, when obtaining granules by spray drying, it is difficult to obtain suitable granules unless spray drying is performed under higher temperature conditions. However, the granules according to this embodiment can be easily obtained even under low temperature conditions.
  • the granules according to the embodiments described above can be used, for example, as a material to be added to foods, food additives, pharmaceuticals, cosmetics, quasi-drugs, or pharmaceuticals, animal feed, fertilizers, fragrances, antibiotics, soil conditioners, etc. Can be used.
  • Example 1> (Preparation of crystal suspension) Put 3.25 kg of Palatinose (registered trademark of Mitsui Sugar Co., Ltd., PST-N) and 1.75 kg of water into an 8 L metal container, dilute to Brix (Bx) 65, and suspend the crystals. I got the liquid. Thereafter, while maintaining the temperature of the crystal suspension at 30° C., it was stirred for 2 hours at 350 rpm with a stirrer (Shinto Kagaku Co., Ltd., Three-One Motor, BL-1200) to obtain a crystal suspension A1.
  • Palatinose registered trademark of Mitsui Sugar Co., Ltd., PST-N
  • Bx Brix
  • Spray drying Approximately 4 kg of the spray liquid maintained at 30° C. was spray-dried using a spray dryer (Okawara Kakoki Co., Ltd., OC-16 (dry type)). The spray drying conditions were as shown below. Air blowing temperature: 40°C Exhaust air temperature: 28°C Air blower inverter frequency: 60Hz Exhaust air volume: 38Hz Inner pressure control: slight positive pressure Atomizer rotation speed: 14,000 rpm (setting: 33Hz) Raw material supply rate: 50mL/min, 4.0kg/h (setting: 8.5Hz) Equipment: OC-16 (dry type)
  • Example 2 (Preparation of crystal suspension) Crystal suspension was prepared in the same manner as in Example 1 to obtain crystal suspension A1, except that 6.5 kg of PST-N and 3.5 kg of water were used, and the rotation speed of the stirrer was changed to 300 rpm. Liquid A2 was obtained.
  • Example 3 (Preparation and spray drying of crystal suspension) A brown sugar flavor aqueous solution was prepared by mixing 19.0 g of brown sugar flavor (Kokuto Micron H-80210, Takasago International Corporation) and 71.0 g of ion-exchanged water. 1.9 kg of the Bx60 sugar solution obtained by the method described in "(Preparation of spray liquid)" of Example 2 and 90.0 g of the brown sugar flavor aqueous solution were mixed to prepare a flavored sugar solution. 1.90 kg of flavored sugar solution was mixed with the crystal suspension A2 obtained by the method of Example 2 to prepare a spray liquid having a solid content ratio of palatinose:sucrose of 85:15. Using the obtained spray liquid, spray drying was performed under the same conditions as in Example 2.
  • Bx60 sucrose syrup containing granulated sugar and Bx60 palatinose syrup containing PST-N are prepared as Bx60 sugar solution (a). was prepared.
  • the prepared Bx60 sugar solution (a) was maintained at a temperature of 30° C. using a water bath (TAITEC Co., Ltd., PERSONAL-11).
  • the brown sugar flavor aqueous solution (b) was prepared by mixing 9.5 g of brown sugar flavor (Kokutou Micron H-80210, Takasago International Corporation) and 40.5 g of ion-exchanged water.
  • Bx60 sugar solution (a) and brown sugar flavor aqueous solution (b) were mixed to have the composition shown in Table 1, and the crystal suspension (c1) was mixed with the resulting mixture. In this way, a spray liquid having the composition shown in Table 2 was prepared.
  • drying air was continued to be sent for 40 minutes without changing the operating conditions of the spray dryer to dry the interior of the dryer. Thereafter, the dried material was scraped off and collected.
  • ⁇ Comparative example 1> (Preparation of comparative suspension) 3.25 kg of PST-N and 1.75 kg of water were placed in an 8 L metal container and boiled at 80° C. for 1 hour. After confirming that the sugar was completely dissolved, water was added to the metal container and adjusted to Bx65. The suspension in the metal container was cooled to 20°C using a water bath containing 7°C water. While stirring at 300 rpm, irradiation was performed for 15 minutes using an ultrasonic oscillator (SMT Corporation, ULTRA SONIC HOMOGENIZER, UH-600S) (memory 8, continuous irradiation). Thereafter, while maintaining the temperature of the contents at 30° C., the mixture was stirred with a stirrer at 300 rpm for 1 hour and 45 minutes to obtain comparative suspension B1.
  • SMT Corporation Ultrasonic oscillator
  • UH-600S ultrasonic oscillator
  • a spray liquid was prepared and spray-dried in the same manner as in Example 1, except that comparative suspension B1 was used in place of crystal suspension A1.
  • Comparative suspension B2 was obtained in the same manner as the procedure for obtaining comparative suspension B1 in Comparative Example 1, except that 6.5 kg of PST-N and 3.5 kg of water were used.
  • Spray liquids were prepared and spray-dried in the same manner as in Examples 4 to 7, except that the comparative suspension (c2) was used in place of the crystal suspension (c1).
  • Bx ⁇ Brix value (Bx)> Bx was measured with a Ref Bx meter (RX-5000 ⁇ , manufactured by Atago Co., Ltd.).
  • ⁇ Viscosity> The viscosity was measured at a liquid temperature of 25° C. using a B-type viscometer (Tokyo Keiki Co., Ltd., Model BL). Viscometer adapter no. 3 was attached, and the measuring part was immersed in the object for 15 seconds at a rotational speed of 12 rpm. The readings were then recorded. Based on the conversion coefficient of the B-type viscometer, the reading value was multiplied by 100 to calculate the viscosity (mPa ⁇ s) of the object.
  • B-type viscometer Tokyo Keiki Co., Ltd., Model BL
  • Viscometer adapter no. 3 was attached, and the measuring part was immersed in the object for 15 seconds at a rotational speed of 12 rpm. The readings were then recorded. Based on the conversion coefficient of the B-type viscometer, the reading value was multiplied by 100 to calculate the viscosity (mPa ⁇ s) of the object.
  • the product recovery rate (yield) was determined by the ratio of the weight of the granules after spray drying (g) to the weight of solid content (g) in the spray liquid.
  • Water activity (%) was measured using a water activity measuring device (METER, Dew Point water activity Meter AquaLAb Series 4TE) using 5 g or 10 mL of granules.
  • the method of the example produces uniformly crystals with a moderately small crystal size in the crystal suspension and spray liquid, the viscosity is low, and the granules after spray drying are The recovery rate was good.
  • the water activities were equivalent.
  • ⁇ Crystal diameter of particles in crystal suspension and spray liquid The crystal suspension or spray liquid was dropped onto a slide glass, a cover glass was placed thereon, and the measurement was performed at a magnification of 1000 times.
  • the average particle size is measured using a digital microscope (Saito Kogaku Co., Ltd., SKM-S31B-PC) for any 10 or more sugar crystals, and the particle size of each of the 10 or more sugar crystals that make up the sugar crystals. The average was taken.
  • FIGS. 1A and 1B show microscopic images of crystal suspensions obtained by the methods of Example 1 and Comparative Example 1, respectively.
  • FIG. 2 shows an electron microscope image of the granules obtained by the method of Example 3.
  • FIG. 3 shows an electron microscope image of granules obtained by the method of Comparative Example 3.
  • ⁇ Standard deviation> The average particle diameter, average major axis, average minor axis, and standard deviation of the ratio of the average major axis to the average minor axis are calculated using STDEV. Calculated using S function.
  • a multifunctional powder physical property measuring instrument is used to determine the disintegration angle (°), difference angle (°), and degree of dispersion (%) of the granules, and the index corresponding to each measurement value obtained based on Carr's theory and the flow rate are calculated. By adding up the indices based on the sex index, the jet sex index was obtained. The temperature and humidity at the time of measurement were 25° C. and 50%.
  • Fluidity evaluation criteria Fluidity index value Level of fluidity 90-100 Best 80-89 Good 70-79 Fairly good 60-69 Fair 40-59 Not very good 0-19 Very poor
  • the bulk densities (loose bulk density, hardened bulk density, dynamic bulk density) of the granules of Examples and Comparative Examples were determined using a multifunctional powder physical property measuring device.
  • the granules obtained by the method of the example showed the same bulk density as the method of the comparative example.
  • hygroscopicity of granules The hygroscopicity (adsorption/desorption isotherm) of the granules obtained by each method of Example 3 and Comparative Example 3 was measured using a dynamic water vapor adsorption measuring device (Surface Measurement Systems Ltd., DVS Intrinsic). Using 10 mg of the sample, the relative humidity was increased in 5% increments from 0% to 90%, and then lowered to 0% using the same procedure. Maintain a constant relative humidity until the rate of change in water content (dm/dt) of the sample falls below 0.02 in 10 minutes, or even after 30 minutes if it does not reach 0.02%/min, and the temperature remains constant. It was kept at 25°C.
  • FIG. 4(A) The results of evaluating the hygroscopicity of the granules obtained by the method of Example 3 are shown in FIG. 4(A).
  • FIG. 4(B) The evaluation results of the hygroscopicity of the granules obtained by the method of Comparative Example 3 are shown in FIG. 4(B).
  • the granules obtained by the method of the example showed the same adsorption/desorption isotherm as the granules obtained by the method of the comparative example, and had the same hygroscopicity.
  • Example 1 ⁇ Evaluation of average pore diameter, total pore volume, porosity, and total specific surface area of granules> Example 1 and Comparative Example 1
  • the average pore diameter, total pore volume, porosity, and total specific surface area of the granules obtained by each method were evaluated using a mercury intrusion pore size analyzer (Quantachrome, POREMASTER 60GT). 0.4 g of the sample was subjected to a mercury intrusion pore size analyzer and measured at 20°C.
  • Average pore diameter Cumulative 50% pore diameter
  • Total pore volume Total amount of mercury injected (cm 3 )/Sample weight (g)
  • Porosity sample pore volume (cm 3 ) x sample bulk density (g/cm 3 ) / sample weight (g) x 100
  • Total specific surface area specific surface area assuming that the pores are open cylindrical (calculated from pore distribution and volume)
  • the granules obtained by the method of Example 1 had a smaller average pore diameter, higher total pore volume, higher total specific surface area, and higher porosity than the granules obtained by the method of Comparative Example 1.
  • fragrance retention rates of the granules obtained by the methods of Examples 4 and 6 and Comparative Examples 4 and 6 were measured using a portable odor sensor (Shin Cosmos Electric Co., Ltd., XP-329IIIR). 50 g of the sample was placed in an aluminum pack (Nippon Seisakusha, Lamizip flat bag bottom open type AL-G) and sealed. In addition, for zero value setting, sealed aluminum packs without samples were used as standard products: 42.4 g of Palatinose (Mitsui Sugar Co., Ltd., PST-N), 7 g of granulated sugar (Mitsui Sugar Co., Ltd., GN).
  • a sealed aluminum pack was prepared by mixing and adding 5 g of brown sugar flavoring and 0.125 g of brown sugar flavor (Kokutou Micron H-80210, Takasago International Corporation). After each aluminum pack was left standing at room temperature of 25°C for 3 hours, the scent intensity inside the aluminum pack was measured for 5 minutes using the monitoring mode of a portable odor sensor, and the highest scent intensity in 5 minutes was determined as the scent of the sample or standard product.
  • the granules obtained by the method of the example showed the same or higher aroma retention than the granules obtained by the method of the comparative example with the same sugar content, and the aroma retention was the same or higher. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Glanulating (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

The present invention pertains to a method for producing granules which is equipped with: a step for mixing a solvent and one or more types of starting material selected from the group consisting of a crystalline sugar and a crystalline sugar alcohol, and obtaining a crystalline suspension in which some of the starting material is contained in a crystal state, without melting all the starting material and then crystallizing the melted starting material; and a step for spray-drying the crystalline suspension in low temperature conditions.

Description

顆粒を製造する方法及び顆粒Method for manufacturing granules and granules
 本発明は、顆粒を製造する方法及び顆粒に関する。 The present invention relates to a method for producing granules and granules.
 食品及び医薬品等の製造において、温度及び湿度等の様々な環境変化を想定して、素材の安定性と扱いやすさ(流動性)を維持することは非常に重要である。素材の安定性及び流動性を維持する方法には粉末化があり、粉末化の一方法として噴霧乾燥がある。 In the production of foods, pharmaceuticals, etc., it is extremely important to maintain the stability and ease of handling (fluidity) of materials in anticipation of various environmental changes such as temperature and humidity. Powderization is a method for maintaining the stability and fluidity of materials, and one method for powderization is spray drying.
 噴霧乾燥とは、溶液又は懸濁液を気体中に噴霧して急速に乾燥させ、乾燥粉末を得る方法である。噴霧乾燥時の乾燥温度は一般的に高温である。酵素、酵母及び菌体は高温気体との接触で変性及び失活すること、易揮発性の香料では揮発が容易に進行することにより、本来の特性を十分に保持することが困難となる。このような噴霧乾燥による損失を防ぐ観点からこれまでにも提案がなされている(例えば特許文献1)。 Spray drying is a method of spraying a solution or suspension into a gas and rapidly drying it to obtain a dry powder. The drying temperature during spray drying is generally high. Enzymes, yeast, and microbial cells are denatured and deactivated by contact with high-temperature gases, and volatile fragrances easily evaporate, making it difficult to sufficiently retain their original properties. From the viewpoint of preventing such losses due to spray drying, proposals have been made so far (for example, Patent Document 1).
特開2021-106571号公報JP2021-106571A
 結晶性の糖及び/又は結晶性の糖アルコールを含み、結晶状態の糖及び/又は糖アルコール同士が形成する間隙に、非結晶状態の糖及び/又は糖アルコールが保持されている顆粒を製造するためには、結晶としての安定性、顆粒の噴霧乾燥中の易乾燥性及び噴霧乾燥後の安定性・流動性等の点から、糖及び/又は糖アルコールを完全に溶解させた後に、噴霧乾燥前に再度結晶を析出させることが重要と考えられている。そのため、噴霧乾燥に用いる懸濁液を製造するにあたり、原料である糖及び/又は糖アルコールを完全溶解させた上で加温・冷却して、再度一部の結晶を析出させる方法(結晶析出法)が採られてきた。しかし、このような結晶析出法は工程が複雑であり、結晶を析出させる装置を有しない場合には実施が困難であった。更に、析出操作によって目的の大きさの結晶だけでなく多数の微結晶も発生してしまう場合があり、噴霧乾燥後の顆粒の回収率が低下することがあった。 Produce granules containing crystalline sugar and/or crystalline sugar alcohol, in which amorphous sugar and/or sugar alcohol are held in the gaps formed between the crystalline sugar and/or sugar alcohol. In order to achieve this, from the viewpoints of stability as crystals, ease of drying during spray drying of granules, and stability/flowability after spray drying, spray drying is carried out after completely dissolving the sugar and/or sugar alcohol. It is considered important to precipitate the crystals again beforehand. Therefore, when producing a suspension used for spray drying, the raw material sugar and/or sugar alcohol is completely dissolved, heated and cooled, and some crystals are precipitated again (crystal precipitation method). ) has been adopted. However, such a crystal precipitation method requires a complicated process and is difficult to implement if a device for crystal precipitation is not available. Furthermore, the precipitation operation may generate not only crystals of the desired size but also a large number of microcrystals, which may reduce the recovery rate of granules after spray drying.
 本発明の一側面は、簡便かつ効率的に顆粒を製造する方法及び当該方法により得られる顆粒を提供することを目的とする。 One aspect of the present invention aims to provide a simple and efficient method for producing granules and granules obtained by the method.
 本発明は、以下の各発明を提供する。
[1]
 結晶性の糖及び結晶性の糖アルコールからなる群より選ばれる少なくとも一種の原料を含有し、前記原料全部の溶解及び該溶解後の前記原料の結晶化を行うことなく、前記原料の一部が結晶状態で含まれる結晶懸濁液を得る工程と、
 前記結晶懸濁液を低温条件で噴霧乾燥する工程と、を備える、顆粒を製造する方法。
[2]
 前記糖及び前記糖アルコールが単糖、二糖、三糖及びこれらの糖アルコールである、[1]に記載の方法。
[3]
 前記原料がパラチノース、スクロース及びトレハロースからなる群より選ばれる少なくとも一種である、[1]又は[2]に記載の方法。
[4]
 前記噴霧乾燥の入口温度が0~60℃の条件で行われる、[1]~[3]のいずれかに記載の方法。
[5]
 前記結晶懸濁液が機能材料を更に含有する、[1]~[4]のいずれかに記載の方法。
[6]
 前記機能材料が酵素、微生物、又は香料である、[5]に記載の方法。
[7]
 前記結晶懸濁液の粘度が25℃において50~1550mPa・sである、[1]~[6]のいずれかに記載の方法。
[8]
 前記結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均粒径が1.0~15.9μmである、[1]~[7]のいずれかに記載の方法。
[9]
 前記結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均粒径の標準偏差が1.00~10.70μmである、[1]~[8]のいずれかに記載の方法。
[10]
 前記結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均短径に対する平均長径の比が1.00~1.70である、[1]~[9]のいずれかに記載の方法。
[11]
 前記顆粒を構成する粒子の平均短径に対する平均長径の比が1.00~3.10である、[1]~[10]のいずれかに記載の方法。
[12]
 前記顆粒の固結度が10.0質量%未満である、[1]~[11]のいずれかに記載の方法。
[13]
 結晶性の糖及び結晶性の糖アルコールからなる群より選ばれる少なくとも一種を含有する顆粒であって、
 前記糖及び/又は前記糖アルコールは、一部が結晶状態であり、他部が非結晶状態であり、前記顆粒を構成する粒子の平均短径に対する平均長径の比が3.1以下である、顆粒。
[14]
 前記糖及び前記糖アルコールが、単糖、二糖、三糖及びこれらの糖アルコールである、[13]に記載の顆粒。
[15]
 前記結晶性の糖及び結晶性の糖アルコールからなる群より選ばれる少なくとも一種が、パラチノース、スクロース及びトレハロースからなる群より選ばれる少なくとも1種である、[13]又は[14]に記載の顆粒。
[16]
 機能材料を更に含有する、[13]~[15]のいずれかに記載の顆粒。
[17]
 前記機能材料が酵素、微生物、又は香料である、[16]に記載の顆粒。
[18]
 前記顆粒を構成する粒子の平均粒径が10.00~20.00μmである、[13]~[17]のいずれかに記載の顆粒。
[19]
 前記顆粒を構成する粒子の平均粒径の標準偏差が1.00~3.30μmである、[13]~[18]のいずれかに記載の顆粒。
[20]
 前記顆粒の固結度が10.0質量%未満である、[13]~[19]のいずれかに記載の顆粒。
The present invention provides the following inventions.
[1]
It contains at least one kind of raw material selected from the group consisting of crystalline sugar and crystalline sugar alcohol, and a part of the raw material is dissolved without dissolving all of the raw material and crystallizing the raw material after the dissolution. obtaining a crystal suspension containing in a crystalline state;
A method for producing granules, comprising the step of spray drying the crystal suspension under low temperature conditions.
[2]
The method according to [1], wherein the sugar and the sugar alcohol are monosaccharides, disaccharides, trisaccharides, and sugar alcohols thereof.
[3]
The method according to [1] or [2], wherein the raw material is at least one selected from the group consisting of palatinose, sucrose, and trehalose.
[4]
The method according to any one of [1] to [3], wherein the spray drying is performed at an inlet temperature of 0 to 60°C.
[5]
The method according to any one of [1] to [4], wherein the crystal suspension further contains a functional material.
[6]
The method according to [5], wherein the functional material is an enzyme, a microorganism, or a fragrance.
[7]
The method according to any one of [1] to [6], wherein the crystal suspension has a viscosity of 50 to 1550 mPa·s at 25°C.
[8]
The method according to any one of [1] to [7], wherein the crystalline sugar and/or sugar alcohol in the crystal suspension has an average particle size of 1.0 to 15.9 μm.
[9]
The method according to any one of [1] to [8], wherein the standard deviation of the average particle size of the crystalline sugar and/or sugar alcohol in the crystal suspension is 1.00 to 10.70 μm.
[10]
The method according to any one of [1] to [9], wherein the ratio of the average major axis to the average minor axis of the crystalline sugar and/or sugar alcohol in the crystal suspension is 1.00 to 1.70. .
[11]
The method according to any one of [1] to [10], wherein the ratio of the average major axis to the average minor axis of the particles constituting the granules is 1.00 to 3.10.
[12]
The method according to any one of [1] to [11], wherein the degree of caking of the granules is less than 10.0% by mass.
[13]
Granules containing at least one selected from the group consisting of crystalline sugar and crystalline sugar alcohol,
A part of the sugar and/or the sugar alcohol is in a crystalline state and the other part is in an amorphous state, and the ratio of the average major axis to the average minor axis of the particles constituting the granules is 3.1 or less. Granules.
[14]
The granule according to [13], wherein the sugar and the sugar alcohol are monosaccharides, disaccharides, trisaccharides, and sugar alcohols thereof.
[15]
The granule according to [13] or [14], wherein at least one selected from the group consisting of crystalline sugar and crystalline sugar alcohol is at least one selected from the group consisting of palatinose, sucrose, and trehalose.
[16]
The granule according to any one of [13] to [15], further containing a functional material.
[17]
The granule according to [16], wherein the functional material is an enzyme, a microorganism, or a fragrance.
[18]
The granules according to any one of [13] to [17], wherein the particles constituting the granules have an average particle diameter of 10.00 to 20.00 μm.
[19]
The granule according to any one of [13] to [18], wherein the standard deviation of the average particle diameter of the particles constituting the granule is 1.00 to 3.30 μm.
[20]
The granule according to any one of [13] to [19], wherein the degree of caking of the granule is less than 10.0% by mass.
 本発明の一側面によれば、簡便かつ効率的に顆粒を製造する方法及び当該方法により得られる顆粒を提供することができる。 According to one aspect of the present invention, it is possible to provide a method for easily and efficiently producing granules, and granules obtained by the method.
(A)は実施例1の方法で得た結晶懸濁液の顕微鏡画像を示し、(B)は比較例1の方法で得た結晶懸濁液の顕微鏡画像を示す。(A) shows a microscopic image of a crystal suspension obtained by the method of Example 1, and (B) shows a microscopic image of a crystal suspension obtained by the method of Comparative Example 1. (A)は実施例3の方法で得た顆粒の電子顕微鏡画像を示し、(B)は(A)の拡大画像を示す。(A) shows an electron microscope image of the granules obtained by the method of Example 3, and (B) shows an enlarged image of (A). (A)は比較例3の方法で得た顆粒の電子顕微鏡画像を示し、(B)は(A)の拡大画像を示す。(A) shows an electron microscope image of granules obtained by the method of Comparative Example 3, and (B) shows an enlarged image of (A). (A)は実施例3の方法で得た顆粒の吸湿性の評価結果を示し、(B)は比較例3の方法で得た顆粒の吸湿性の評価結果を示す。(A) shows the evaluation results of the hygroscopicity of the granules obtained by the method of Example 3, and (B) shows the evaluation results of the hygroscopicity of the granules obtained by the method of Comparative Example 3.
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the numerical ranges described stepwise in this specification, the upper limit or lower limit of the numerical range of one step can be arbitrarily combined with the upper limit or lower limit of the numerical range of another step. In the numerical ranges described in this specification, the upper limit or lower limit of the numerical range may be replaced with the values shown in the examples.
<顆粒の製造方法>
 本実施形態に係る顆粒を製造する方法は、結晶性の糖及び結晶性の糖アルコールからなる群より選ばれる少なくとも一種の原料を含有し、原料全部の溶解及び該溶解後の原料の結晶化を行うことなく、原料の一部が結晶状態で含まれる結晶懸濁液を得る工程(混合工程)と、結晶懸濁液を低温条件で噴霧乾燥する工程(噴霧乾燥工程)と、を備える。
<Method for producing granules>
The method for producing granules according to the present embodiment includes at least one type of raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols, and includes dissolving all of the raw materials and crystallizing the raw materials after the dissolution. The method includes a step (mixing step) of obtaining a crystal suspension in which a part of the raw material is contained in a crystalline state without performing the above steps, and a step of spray drying the crystal suspension under low temperature conditions (spray drying step).
<混合工程>
 混合工程では、まず、結晶性の糖及び結晶性の糖アルコールからなる群より選ばれる少なくとも一種の原料を含有し、原料の一部が結晶状態で含まれる結晶懸濁液を得る。
<Mixing process>
In the mixing step, first, a crystal suspension containing at least one type of raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols and containing a portion of the raw material in a crystalline state is obtained.
 本明細書において、「結晶状態の糖及び/又は糖アルコール」とは、構成原子が三次元的に規則正しい繰り返しからなる固体状の糖及び/又は糖アルコールを意味する。本明細書において、「非結晶状態の糖及び/又は糖アルコール」とは、そのような規則正しい繰り返しを有さない固体状の、又は液体状の糖及び/又は糖アルコールをいう。 As used herein, the term "crystalline sugar and/or sugar alcohol" means a solid sugar and/or sugar alcohol whose constituent atoms are three-dimensionally regularly repeated. As used herein, "sugar and/or sugar alcohol in an amorphous state" refers to a solid or liquid sugar and/or sugar alcohol that does not have such regular repeats.
 結晶性の糖及び結晶性の糖アルコールは、混合工程での操作性を高める観点から、好ましくは、単糖、二糖、三糖、及びこれらの糖アルコールである。 The crystalline sugar and crystalline sugar alcohol are preferably monosaccharides, disaccharides, trisaccharides, and sugar alcohols thereof from the viewpoint of improving operability in the mixing step.
 単糖としては、グルコース、ガラクトース、マンノース、フルクトース、アロース、アルロース等が挙げられる。二糖としては、イソマルツロース、スクロース、ラクツロース、ラクトース、マルトース、トレハロース、セロビオース等が挙げられる。三糖としては、ニゲロトリオース、マルトトリオース、ラフィノース等が挙げられる。なお、イソマルツロースは、「パラチノース」として三井製糖株式会社が商標登録している二糖である。 Examples of monosaccharides include glucose, galactose, mannose, fructose, allose, and allulose. Disaccharides include isomaltulose, sucrose, lactulose, lactose, maltose, trehalose, cellobiose, and the like. Trisaccharides include nigerotriose, maltotriose, raffinose, and the like. Isomaltulose is a disaccharide trademarked as "palatinose" by Mitsui Sugar Co., Ltd.
 糖アルコールとしては、ソルビトール、エリスリトール、キシリトール、マルチトール、ラクチトール、マンニトール、α-グルコピラノシル-1,1-マンニトール、α-グルコピラノシル-1,6-ソルビトール等が挙げられる。 Examples of sugar alcohols include sorbitol, erythritol, xylitol, maltitol, lactitol, mannitol, α-glucopyranosyl-1,1-mannitol, α-glucopyranosyl-1,6-sorbitol, and the like.
 上述した結晶性の糖及び糖アルコールは、一種を単独で又は二種以上を組み合わせて用いられてよい。結晶懸濁液は、結晶性の糖を二種以上含有していてもよく、結晶性の糖アルコールを二種以上含有していてもよく、結晶性の糖及び結晶性の糖アルコールを組み合わせて二種以上含有していてもよい。本実施形態に係る顆粒を製造する方法は、簡便な方法でありながら、二種以上の結晶性の糖及びアルコールを用いる場合(例えば、2種の糖を用いる場合)でも構成する粒子の平均短径に対する平均長径の比が十分に小さい(例えば、3.1以下)顆粒を得ることができる。構成する粒子の平均短径に対する平均長径の比が十分に小さい顆粒は、安定性及び流動性に優れる傾向がある。 The above-mentioned crystalline sugars and sugar alcohols may be used alone or in combination of two or more. The crystal suspension may contain two or more types of crystalline sugars, may contain two or more types of crystalline sugar alcohols, or may contain a combination of crystalline sugars and crystalline sugar alcohols. Two or more types may be contained. Although the method for producing granules according to this embodiment is a simple method, the average shortness of the particles constituting the granules can be obtained even when two or more types of crystalline sugars and alcohols are used (for example, when two types of sugars are used). Granules having a sufficiently small ratio of average major axis to diameter (for example, 3.1 or less) can be obtained. Granules in which the ratio of the average major axis to the average minor axis of the constituent particles is sufficiently small tend to have excellent stability and fluidity.
 結晶懸濁液中に含まれる結晶性の糖及び/又は糖アルコールの含有量は、流動性に優れる顆粒を得やすくする観点からは、結晶懸濁液全量基準で、30質量%以上、好ましくは40質量%以上、より好ましくは45質量%以上、更に好ましくは50質量%以上である。結晶性の糖及び/又は糖アルコールの含有量は、混合工程及び噴霧乾燥工程で良好な操作性を保つ観点からは、結晶懸濁液全量基準で、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下である。 The content of crystalline sugar and/or sugar alcohol contained in the crystal suspension is preferably 30% by mass or more, based on the total amount of the crystal suspension, from the viewpoint of making it easier to obtain granules with excellent fluidity. The content is 40% by mass or more, more preferably 45% by mass or more, even more preferably 50% by mass or more. From the viewpoint of maintaining good operability in the mixing step and spray drying step, the content of crystalline sugar and/or sugar alcohol is preferably 90% by mass or less, more preferably 80% by mass or less, based on the total amount of crystal suspension. It is not more than 70% by mass, more preferably not more than 70% by mass.
 結晶懸濁液の上清ブリックス値(Bx)は、流動性に優れる顆粒を得やすくする観点から、20.00以上、25.00以上、27.00以上、29.00以上又は31.00以上であってよく、混合工程及び噴霧乾燥工程で良好な操作性を保つ観点から、85.00以下、75.00以下、65.00以下、55.00以下、45.00以下、40.00以下又は35.00以下であってよい。 The supernatant Brix value (Bx) of the crystal suspension is 20.00 or more, 25.00 or more, 27.00 or more, 29.00 or more, or 31.00 or more, from the viewpoint of making it easier to obtain granules with excellent fluidity. 85.00 or less, 75.00 or less, 65.00 or less, 55.00 or less, 45.00 or less, 40.00 or less, from the viewpoint of maintaining good operability in the mixing process and spray drying process. Or it may be 35.00 or less.
 本明細書におけるブリックス値(Bx)は、屈折率から算出されるレフブリックス値を意味し、ブリックス計(例えば、デジタル屈折計(RX-5000)、株式会社アタゴ製)により測定することができる。結晶懸濁液の上清ブリックス値の測定方法は後述する実施例のとおりである。 The Brix value (Bx) in this specification means the Ref Brix value calculated from the refractive index, and can be measured with a Brix meter (for example, a digital refractometer (RX-5000), manufactured by Atago Co., Ltd.). The method for measuring the supernatant Brix value of the crystal suspension is as described in Examples below.
 結晶懸濁液の晶出率は、流動性に優れる顆粒を得やすくする観点から、25質量%以上、30質量%以上、35質量%以上、40質量%以上、45質量%以上、50質量%以上、55質量%以上、又は60質量%以上であってよい。晶出率は、噴霧乾燥工程において良好な操作性を保つ観点から、90質量%以下、85質量%以下、80質量%以下又は78質量%以下であってよい。本明細書における晶出率は、後述する実施例に記載の方法によって測定される。 From the viewpoint of making it easier to obtain granules with excellent fluidity, the crystallization rate of the crystal suspension is 25% by mass or more, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, 50% by mass. The content may be 55% by mass or more, or 60% by mass or more. From the viewpoint of maintaining good operability in the spray drying process, the crystallization rate may be 90% by mass or less, 85% by mass or less, 80% by mass or less, or 78% by mass or less. The crystallization rate in this specification is measured by the method described in the Examples below.
 晶出率は、例えば、フィルターろ過、遠心分離、重力沈降、加水及び/又は加温による溶解、化学反応に伴う結晶成分の消費調整等、結晶を物理的又は化学的に加除する操作を行うことにより調整することができる。結晶成分の投入及び混合等、結晶を増やす操作によっても調整することができる。 The crystallization rate can be determined by performing operations that physically or chemically add or remove crystals, such as filter filtration, centrifugation, gravity sedimentation, dissolution by adding water and/or heating, and adjusting consumption of crystal components due to chemical reactions. It can be adjusted by Adjustments can also be made by operations that increase the number of crystals, such as adding and mixing crystal components.
 結晶懸濁液は結晶核を含有していればよく、結晶核の大きさは、結晶懸濁液中で安定に存在できる大きさ以上であれば特に制限されない。結晶核の大きさは、例えば臨界結晶核以上の大きさであってもよい。 The crystal suspension only needs to contain crystal nuclei, and the size of the crystal nuclei is not particularly limited as long as it is a size that can stably exist in the crystal suspension. The size of the crystal nucleus may be, for example, larger than the critical crystal nucleus.
 結晶懸濁液の粘度は25℃において、噴霧乾燥後の顆粒の回収率の低下が更に抑制されること、及び、噴霧乾燥後の顆粒の固結の発生が更に抑制されることから、1550mPa・s以下、1400mPa・s以下、1300mPa・s以下、1200mPa・s以下、1100mPa・s以下、1000mPa・s以下、900mPa・s以下、800mPa・s以下、700mPa・s以下、600mPa・s以下、又は500mPa・s以下であってよく、50mPa・s以上、100mPa・s以上、200mPa・s以上、300mPa・s以上、400mPa・s以上、500mPa・s以上、600mPa・s以上、700mPa・s以上、800mPa・s以上、900mPa・s以上、1000mPa・s以上、又は1100mPa・s以上であってよい。結晶懸濁液の粘度は25℃において50~1550mPa・sであってよい。結晶懸濁液の粘度は、後述する実施例に記載の方法によって測定される。 The viscosity of the crystal suspension is 1550 mPa at 25°C, since the decrease in the recovery rate of granules after spray drying is further suppressed and the occurrence of caking of granules after spray drying is further suppressed. s or less, 1400 mPa・s or less, 1300 mPa・s or less, 1200 mPa・s or less, 1100 mPa・s or less, 1000 mPa・s or less, 900 mPa・s or less, 800 mPa・s or less, 700 mPa・s or less, 600 mPa・s or less, or 500 mPa・It may be 50 mPa・s or more, 100 mPa・s or more, 200 mPa・s or more, 300 mPa・s or more, 400 mPa・s or more, 500 mPa・s or more, 600 mPa・s or more, 700 mPa・s or more, 800 mPa・s s or more, 900 mPa·s or more, 1000 mPa·s or more, or 1100 mPa·s or more. The viscosity of the crystal suspension may be from 50 to 1550 mPa·s at 25°C. The viscosity of the crystal suspension is measured by the method described in Examples below.
 結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均粒径は、顆粒の流動性を保つ観点から、1.00μm以上、2.00μm以上、3.00μm以上、4.00μm以上、5.00μm以上、6.00μm以上、7.00μm以上、8.00μm以上、9.00μm以上、10.00μm以上、11.00μm以上、又は12.00μm以上であってよい。結晶状態の糖及び/又は糖アルコールの平均粒径は、顆粒の崩壊の発生を更に抑制する観点から、30.00μm以下、25.00μm以下、20.00μm以下、18.00μm以下、15.90μm以下、14.00μm以下、13.00μm以下、12.00μm以下、又は11.00μm以下であってよい。結晶状態の糖及び/又は糖アルコールの平均粒径は、例えば、1.00~15.90μmであってよい。 From the viewpoint of maintaining the fluidity of the granules, the average particle size of the crystalline sugar and/or sugar alcohol in the crystal suspension is 1.00 μm or more, 2.00 μm or more, 3.00 μm or more, 4.00 μm or more, It may be 5.00 μm or more, 6.00 μm or more, 7.00 μm or more, 8.00 μm or more, 9.00 μm or more, 10.00 μm or more, 11.00 μm or more, or 12.00 μm or more. The average particle diameter of the sugar and/or sugar alcohol in the crystalline state is 30.00 μm or less, 25.00 μm or less, 20.00 μm or less, 18.00 μm or less, 15.90 μm from the viewpoint of further suppressing the occurrence of granule collapse. Below, it may be 14.00 μm or less, 13.00 μm or less, 12.00 μm or less, or 11.00 μm or less. The average particle size of the crystalline sugar and/or sugar alcohol may be, for example, 1.00 to 15.90 μm.
 結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均粒径は、溶媒又は溶質の加除、溶媒温度、溶解時間、撹拌時間の変更、撹拌機又は粉砕機による破砕、濾過等による分画、糖の加水分解等による晶析操作により調整することができる。 The average particle size of the crystalline sugar and/or sugar alcohol in the crystal suspension can be determined by adding or removing a solvent or solute, changing the solvent temperature, dissolution time, stirring time, crushing with a stirrer or grinder, filtration, etc. It can be adjusted by crystallization operations such as sugar hydrolysis.
 本明細書における「結晶状態の糖及び/又は糖アルコールの平均粒径」は、デジタルマイクロスコープにより測定できる。測定のために、例えば斉藤光学株式会社製のSKM-S31B-PCを用いることができる。平均粒径の測定方法の詳細は、後述する実施例に記載のとおりである。 In this specification, the "average particle size of sugar and/or sugar alcohol in a crystalline state" can be measured with a digital microscope. For the measurement, for example, SKM-S31B-PC manufactured by Saito Optical Co., Ltd. can be used. The details of the method for measuring the average particle size are as described in the Examples below.
 結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均粒径の標準偏差は、10.70μm以下、9.00μm以下、8.00μm以下、7.00μm以下、又は6.00μm以下であってよい。平均粒径の標準偏差が小さいことは平均粒径のばらつきが小さいことを意味する。平均粒径の標準偏差が上述した範囲内にあることによって、過度な粘度上昇が抑制されやすくなり、これによって、噴霧乾燥機内への顆粒の付着が更に抑制され、結果として、回収率がより一層改善される。結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均粒径の標準偏差は、例えば、1.0μm以上、3.0μm以上、又は5.0μm以上であってよい。結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均粒径の標準偏差は、例えば、1.00~10.70μmであってよい。 The standard deviation of the average particle size of the crystalline sugar and/or sugar alcohol in the crystal suspension is 10.70 μm or less, 9.00 μm or less, 8.00 μm or less, 7.00 μm or less, or 6.00 μm or less. It's good to be there. A small standard deviation of the average particle size means that the variation in the average particle size is small. By having the standard deviation of the average particle size within the above range, excessive viscosity increase can be easily suppressed, which further suppresses the adhesion of granules inside the spray dryer, and as a result, the recovery rate is further improved. Improved. The standard deviation of the average particle size of the crystalline sugar and/or sugar alcohol in the crystal suspension may be, for example, 1.0 μm or more, 3.0 μm or more, or 5.0 μm or more. The standard deviation of the average particle size of the crystalline sugar and/or sugar alcohol in the crystal suspension may be, for example, 1.00 to 10.70 μm.
 本明細書において、「標準偏差」は、マイクロソフト(登録商標)・エクセルのSTDEV.S関数で求める不偏標準偏差である。 In this specification, "standard deviation" refers to Microsoft (registered trademark) Excel's STDEV. This is the unbiased standard deviation obtained using the S function.
 結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均短径は、1.00μm以上、4.00μm以上、6.00μm以上、又は8.00μm以上であってよく、20.00μm以下、15.0μm以下、又は13.0μm以下であってよい。結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均長径は、5.00μm以上、7.00μm以上、又は9.00μm以上であってよく、30.00μm以下、25.00μm以下、又は20.00μm以下であってよい。 The average minor axis of the crystalline sugar and/or sugar alcohol in the crystal suspension may be 1.00 μm or more, 4.00 μm or more, 6.00 μm or more, or 8.00 μm or more, and 20.00 μm or less. , 15.0 μm or less, or 13.0 μm or less. The average major axis of the crystalline sugar and/or sugar alcohol in the crystal suspension may be 5.00 μm or more, 7.00 μm or more, or 9.00 μm or more, and 30.00 μm or less, 25.00 μm or less, Or it may be 20.00 μm or less.
 結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均短径(単位:μm)に対する平均長径(単位:μm)の比は、顆粒の流動性及び安定性を保つ観点から、5.00以下、2.50以下、2.00以下、1.70以下、又は1.50以下であってよく、1.00以上、1.10以上、又は1.15以上であってよい。平均短径に対する平均長径の比は、例えば、1.00~1.70であってよい。結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均短径(単位:μm)に対する平均長径(単位:μm)の比の標準偏差は、0.50以下、0.45以下、又は0.40以下であってよく、0.05以上、0.10以上、又は0.15以上であってよい。 From the viewpoint of maintaining the fluidity and stability of the granules, the ratio of the average major axis (unit: μm) to the average minor axis (unit: μm) of the sugar and/or sugar alcohol in the crystalline state in the crystal suspension is set to 5. 00 or less, 2.50 or less, 2.00 or less, 1.70 or less, or 1.50 or less, and may be 1.00 or more, 1.10 or more, or 1.15 or more. The ratio of the average major axis to the average minor axis may be, for example, 1.00 to 1.70. The standard deviation of the ratio of the average major axis (unit: μm) to the average minor axis (unit: μm) of the crystalline sugar and/or sugar alcohol in the crystal suspension is 0.50 or less, 0.45 or less, or It may be 0.40 or less, 0.05 or more, 0.10 or more, or 0.15 or more.
 結晶懸濁液は溶媒を含有する。溶媒は、例えば、エタノール、メタノール、アセトン、イソプロパノール等の有機溶剤、又は水等であってよい。 The crystal suspension contains a solvent. The solvent may be, for example, an organic solvent such as ethanol, methanol, acetone, isopropanol, or water.
 結晶懸濁液中の溶媒の含有量は、溶媒及び原料の合計質量を基準として、又は結晶懸濁液の全質量を基準として、10質量%以上、20質量%以上、又は30質量%以上であってよく、50質量%以下、又は45質量%以下であってよい。 The content of the solvent in the crystal suspension is 10% by mass or more, 20% by mass or more, or 30% by mass or more, based on the total mass of the solvent and raw materials, or based on the total mass of the crystal suspension. It may be 50% by mass or less, or 45% by mass or less.
 上述した結晶懸濁液は、噴霧乾燥される結晶懸濁液(噴霧液)としてそのまま用いられてもよく、他の成分と混合した後に噴霧液として用いられてもよい。他の成分としては、糖、糖アルコール、溶媒、機能材料及びこれらの混合物等が挙げられる。 The above-mentioned crystal suspension may be used as it is as a crystal suspension (spray liquid) to be spray-dried, or may be used as a spray liquid after being mixed with other components. Other components include sugars, sugar alcohols, solvents, functional materials, and mixtures thereof.
 機能材料とは、他の材料と組み合わせて得られる組成物(例えば食品、医薬品等)において、何らかの機能を発揮する材料、あるいは成分であれば限られない。機能材料は、水分、熱、光、酸、酸素、分子運動、紫外線、電気的相互作用、物理刺激といった周囲環境に影響を受ける材料であってもよく、加熱により機能を失う材料であってもよい。機能材料としては、より具体的には、アミノ酸、ペプチド(ホルモンを含む)、タンパク質(酵素及び抗体を含む)、脂肪酸、ビタミン、ミネラル、微生物(例えば、乳酸菌、酪酸菌、納豆菌、ビフィズス菌及び放線菌などの細菌、カビ・酵母)、ペプチド以外のホルモン、香料、ファージ、ペプチド以外の抗生物質、生薬などの天然原料、金属などの工業原料等が挙げられる。 A functional material is not limited to any material or component that exhibits a certain function in a composition (for example, food, medicine, etc.) obtained by combining it with other materials. Functional materials may be materials that are affected by the surrounding environment such as moisture, heat, light, acids, oxygen, molecular movement, ultraviolet light, electrical interactions, physical stimulation, or even materials that lose their functionality when heated. good. More specifically, functional materials include amino acids, peptides (including hormones), proteins (including enzymes and antibodies), fatty acids, vitamins, minerals, microorganisms (for example, lactic acid bacteria, butyric acid bacteria, Bacillus natto, Bifidobacterium and Bacteria such as actinomycetes, molds and yeast), hormones other than peptides, fragrances, phages, antibiotics other than peptides, natural raw materials such as crude drugs, and industrial raw materials such as metals.
 噴霧乾燥される結晶懸濁液(噴霧液)は、例えば、結晶性の糖及び結晶性の糖アルコールからなる群より選ばれる少なくとも一種の原料と溶媒とを混合して、原料の一部が結晶状態で含まれる結晶懸濁液Aを得る工程(工程A)、並びに、結晶懸濁液Aと糖溶液とを混合して、原料の一部が結晶状態で含まれ、噴霧乾燥される結晶懸濁液B(噴霧液)を得る工程(工程B)とを含む方法によって得ることができる。 A crystal suspension (spray liquid) to be spray-dried is produced by mixing at least one kind of raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols with a solvent, so that some of the raw materials are crystallized. A step (Step A) of obtaining a crystal suspension A in which a part of the raw material is contained in a crystal state (step A), and a crystal suspension in which a part of the raw material is contained in a crystal state by mixing the crystal suspension A and a sugar solution and is spray-dried. It can be obtained by a method including a step (step B) of obtaining a suspension liquid B (spray liquid).
 工程Aにおける原料と溶媒との混合はブリックス値(Bx)が、40以上、50以上、55以上、又は60以上であってよく、85以下、75以下、又は70以下となるように行われてよい。 The mixing of the raw material and the solvent in step A is carried out so that the Brix value (Bx) may be 40 or more, 50 or more, 55 or more, or 60 or more, and 85 or less, 75 or less, or 70 or less. good.
 工程Aにおいて、結晶懸濁液Aは、例えば、原料と、溶媒とを混合し、得られる混合液を、25~35℃の温度に保持しながら、1~3時間撹拌することによって得ることができる。撹拌時の回転数は、例えば、250~400rpmであってよい。 In step A, crystal suspension A can be obtained, for example, by mixing raw materials and a solvent and stirring the resulting mixture for 1 to 3 hours while maintaining the temperature at 25 to 35 ° C. can. The rotation speed during stirring may be, for example, 250 to 400 rpm.
 結晶懸濁液Aにおける、上清ブリックス値、晶出率、結晶状態の糖及び/又は糖アルコールの平均粒径、平均長径、平均短径及び平均短径に対する平均長径の比並びにこれらの標準偏差等の具体的態様は、上述した結晶懸濁液の具体的態様として例示したものと同様であってよい。 In crystal suspension A, supernatant Brix value, crystallization rate, average particle diameter of sugar and/or sugar alcohol in crystalline state, average major axis, average minor axis, ratio of average major axis to average minor axis, and standard deviation thereof The specific embodiments may be the same as those exemplified as the specific embodiments of the crystal suspension described above.
 工程Bでは、結晶懸濁液Aと糖溶液とが混合される。結晶懸濁液Aと糖溶液との混合は、温度を25~35℃に保持しながら行われてよい。 In step B, crystal suspension A and sugar solution are mixed. Mixing of crystal suspension A and sugar solution may be carried out while maintaining the temperature at 25-35°C.
 糖溶液は、糖及び/又は糖アルコールと、溶媒とを含む。糖溶液に含まれる糖及び糖アルコールの一部又は全部は溶媒に溶解していてよい。糖及び糖アルコールは上述したものを用いることができる。糖溶液は、1種又は2種以上の糖及び/又は糖アルコールを含んでいてもよい。糖溶液中の糖及び/又は糖アルコールは、結晶懸濁液A中の糖及び/又は糖アルコールと同種のものを含んでいてもよく、異種のものを含んでいてもよい。 The sugar solution contains sugar and/or sugar alcohol and a solvent. Part or all of the sugar and sugar alcohol contained in the sugar solution may be dissolved in a solvent. As the sugar and sugar alcohol, those mentioned above can be used. The sugar solution may contain one or more sugars and/or sugar alcohols. The sugar and/or sugar alcohol in the sugar solution may contain the same kind of sugar and/or sugar alcohol as the sugar and/or sugar alcohol in the crystal suspension A, or may contain a different kind.
 糖溶液は、例えば、糖及び/又は糖アルコールと、溶媒とを混合することによって得ることができる。糖溶液は、80℃以上の温度条件で、糖及び/又は糖アルコールと、溶媒とを混合して糖及び/又は糖アルコールを溶解させることによって得てもよい。糖溶液は、調製後に25~35℃に保持されていてよい。 A sugar solution can be obtained, for example, by mixing sugar and/or sugar alcohol and a solvent. The sugar solution may be obtained by mixing sugar and/or sugar alcohol with a solvent to dissolve the sugar and/or sugar alcohol at a temperature of 80° C. or higher. The sugar solution may be kept at 25-35°C after preparation.
 糖溶液のブリックス値(Bx)は、50以上、55以上、又は60以上であってよく、85以下、75以下、又は70以下であってよい。 The Brix value (Bx) of the sugar solution may be 50 or more, 55 or more, or 60 or more, and may be 85 or less, 75 or less, or 70 or less.
 糖溶液の混合量は、結晶懸濁液100質量部に対して、5質量部以上、10質量部以上、又は15質量部以上であってよく、30質量部以下、25質量部以下、又は20質量部以下であってよい。 The mixing amount of the sugar solution may be 5 parts by mass or more, 10 parts by mass or more, or 15 parts by mass or more, and 30 parts by mass or less, 25 parts by mass or less, or 20 parts by mass or more, based on 100 parts by mass of the crystal suspension. It may be less than parts by mass.
 結晶懸濁液Bは、結晶性の糖及び結晶性の糖アルコールからなる群より選ばれる少なくとも一種の原料の一部が結晶状態で含まれる。結晶懸濁液Bは噴霧液としてそのまま噴霧乾燥することができる。 Crystal suspension B contains a portion of at least one raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols in a crystalline state. The crystal suspension B can be directly spray-dried as a spray liquid.
 噴霧液における、上清ブリックス値、晶出率、結晶状態の糖及び/又は糖アルコールの平均粒径、平均長径、平均短径及び平均短径に対する平均長径の比並びにこれらの標準偏差等の具体的態様は、上述した結晶懸濁液の具体的態様として例示したものと同様であってよく、異なっていてもよい。 Specifics of the supernatant Brix value, crystallization rate, average particle diameter of sugar and/or sugar alcohol in a crystalline state, average major axis, average minor axis, ratio of average major axis to average minor axis, and standard deviation of these in the spray liquid. The specific embodiments may be the same as or different from those exemplified as the specific embodiments of the crystal suspension described above.
 噴霧液中の糖及び/又は糖アルコールの含有量は、溶媒及び原料の合計質量を基準として、又は結晶懸濁液の全質量を基準として、40質量%以上、50質量%以上、又は60質量%以上であってよく、90質量%以下、80質量%以下、又は70質量%以下であってよい。 The content of sugar and/or sugar alcohol in the spray liquid is 40% by mass or more, 50% by mass or more, or 60% by mass, based on the total mass of the solvent and raw materials, or based on the total mass of the crystal suspension. % or more, and may be 90% by mass or less, 80% by mass or less, or 70% by mass or less.
 噴霧液は、結晶性の糖及び結晶性の糖アルコールからなる群より選択される第1の糖原料と、結晶性の糖及び結晶性の糖アルコールからなる群より選択され、かつ、第1の糖原料とは異なる第2の糖原料と、を含有していてよい。第1の糖原料は、例えば、イソマルツロースであってよい。第2の糖原料は、第1の糖原料と異なるものであれば1種又は2種以上の上述した糖又は糖アルコールを含んでいてよく、スクロースを含んでいてよい。 The spray liquid includes a first sugar raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols, and a first sugar raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols; A second sugar raw material different from the sugar raw material may be contained. The first sugar raw material may be, for example, isomaltulose. The second sugar raw material may contain one or more of the above-mentioned sugars or sugar alcohols, as long as they are different from the first sugar raw material, and may contain sucrose.
 第1の糖原料の含有量は、噴霧液中の固形分100質量部に対して、70.0質量部以上、75.0質量部以上、80.0質量部以上、85.0質量部以上、90.0質量部以上又は95.0質量部以上であってよく、99.9質量部以下、95.0質量部以下又は90.0質量部以下であってよい。本明細書において、「固形分」は、組成物全量から溶媒(例えば水)量を除いた量を意味する。 The content of the first sugar raw material is 70.0 parts by mass or more, 75.0 parts by mass or more, 80.0 parts by mass or more, 85.0 parts by mass or more with respect to 100 parts by mass of solids in the spray liquid. , 90.0 parts by mass or more, or 95.0 parts by mass or more, and 99.9 parts by mass or less, 95.0 parts by mass or less, or 90.0 parts by mass or less. As used herein, "solid content" refers to the total amount of the composition excluding the amount of solvent (eg, water).
 噴霧液が第1の糖原料及び第2の糖原料を含有する場合、第2の糖原料の含有量は、噴霧液中の固形分100質量部に対して、1.0質量部以上、3.0質量部以上、5.0質量部以上、8.0質量部以上、10.0質量部以上、12.0質量部以上、又は15.0質量部以上であってよく、30.0質量部以下、25.0質量部以下、20質量部以下、15質量部以下、10質量部以下又は5質量部以下であってよい。 When the spray liquid contains the first sugar raw material and the second sugar raw material, the content of the second sugar raw material is 1.0 parts by mass or more, 3 parts by mass or more based on 100 parts by mass of solids in the spray liquid. .0 parts by mass or more, 5.0 parts by mass or more, 8.0 parts by mass or more, 10.0 parts by mass or more, 12.0 parts by mass or more, or 15.0 parts by mass or more, and 30.0 parts by mass parts by weight or less, 25.0 parts by weight or less, 20 parts by weight or less, 15 parts by weight or less, 10 parts by weight or less, or 5 parts by weight or less.
 機能材料を含有する噴霧液を調製する場合、機能材料を噴霧液に含有させる際のタイミングは特に制限されないが、例えば、機能材料と、上記糖溶液とを予め混合して混合液を調製後、当該混合液と、結晶懸濁液Aとを混合して噴霧液を得てもよい。 When preparing a spray liquid containing a functional material, the timing of incorporating the functional material into the spray liquid is not particularly limited, but for example, after premixing the functional material and the sugar solution to prepare a mixed liquid, A spray liquid may be obtained by mixing the liquid mixture and crystal suspension A.
 機能材料の含有量は、上述した結晶懸濁液100質量部に対して、0.01質量部以上、0.05質量部以上、又は0.1質量部以上であってよく、5質量部以下、3質量部以下、又は1質量部以下であってよい。機能材料の添加量は、機能材料の種類によって適宜調整することができる。 The content of the functional material may be 0.01 parts by mass or more, 0.05 parts by mass or more, or 0.1 parts by mass or more, and 5 parts by mass or less, based on 100 parts by mass of the above-mentioned crystal suspension. , 3 parts by weight or less, or 1 part by weight or less. The amount of functional material added can be adjusted as appropriate depending on the type of functional material.
 混合工程では、原料全部の溶解及び原料全部の溶解後の原料の結晶化が行われない。原料全部の溶解は例えば目視にて確認することができる。原料全部の溶解を確認するその他の方法としては、例えば、マイクロスコープで結晶化誘導を観察することが挙げられる。スライドガラスに滴下した結晶懸濁液を室温25℃でマイクロスコープを用いて5分間観察した際に、結晶の析出が確認されないことをもって原料全部が溶解したと判断することができる。 In the mixing step, all the raw materials are not dissolved and the raw materials are not crystallized after all the raw materials have been dissolved. Dissolution of all the raw materials can be confirmed visually, for example. Other methods for confirming the dissolution of all raw materials include, for example, observing crystallization induction using a microscope. When the crystal suspension dropped onto the slide glass is observed for 5 minutes using a microscope at room temperature of 25° C., it can be determined that all the raw materials have been dissolved if no crystal precipitation is observed.
 原料全部の溶解は、通常、原料及び溶媒を含む液体を加熱すること、及び、加温した溶媒と原料とを混合すること等によって行われる。加熱する際の液体の温度又は加温した溶媒の温度は、特に制限されないが、例えば、70℃以上又は75℃以上であってよく、100℃以下であってよい。上述した混合工程では、結晶懸濁液を調製する際に、原料と混合する溶媒が原料全部を溶解するために加熱されない。 Dissolution of all the raw materials is usually performed by heating a liquid containing the raw materials and a solvent, mixing the heated solvent and the raw materials, etc. The temperature of the liquid during heating or the temperature of the heated solvent is not particularly limited, and may be, for example, 70°C or higher or 75°C or higher, and 100°C or lower. In the above-mentioned mixing step, when preparing a crystal suspension, the solvent to be mixed with the raw materials is not heated in order to dissolve all of the raw materials.
 原料全部の溶解後の原料の結晶化は公知の方法によって行われ得る。原料全部の溶解後に原料を結晶化させる方法は、原料の溶解液を冷却する方法(冷却晶析法)及び反応晶析法等が挙げられる。上述した混合工程では、原料全部を溶解させる操作に加えて、上記結晶化させる操作が行われない。 Crystallization of the raw materials after all of the raw materials have been dissolved can be performed by a known method. Examples of the method of crystallizing the raw material after all the raw materials have been dissolved include a method of cooling a solution of the raw material (cooling crystallization method), a reaction crystallization method, and the like. In the mixing step described above, in addition to the operation of dissolving all the raw materials, the operation of crystallizing the raw materials is not performed.
 冷却晶析法により結晶化が行われる場合、冷却による原料の溶解液の温度(冷却温度)は、結晶性の糖及び/又は糖アルコールの種類により設定される。冷却温度は、典型的には、25℃以下又は20℃以下であり、5℃以上、10℃以上、又は15℃以上であってよい。 When crystallization is performed by the cooling crystallization method, the temperature of the solution of the raw material by cooling (cooling temperature) is set depending on the type of crystalline sugar and/or sugar alcohol. The cooling temperature is typically 25°C or less or 20°C or less, and may be 5°C or more, 10°C or more, or 15°C or more.
<噴霧乾燥工程>
 噴霧乾燥工程は、上述した結晶懸濁液(噴霧液)を低温条件で噴霧乾燥する工程である。噴霧乾燥は、一実施形態において、噴霧乾燥機(スプレードライヤー)を用いて行うことができる。噴霧乾燥機としては、例えば、大川原化工機株式会社製のOC-16を用いることができる。
<Spray drying process>
The spray drying process is a process of spray drying the above-mentioned crystal suspension (spray liquid) under low temperature conditions. Spray drying can be performed using a spray dryer in one embodiment. As the spray dryer, for example, OC-16 manufactured by Okawara Kakoki Co., Ltd. can be used.
 低温条件とは、従来の噴霧乾燥で行われていた温度(例えば60℃より高温)よりも低温条件(例えば60℃以下)であることを意味する。本実施形態では、糖及び/又は糖アルコールの一部が結晶状態で含まれる結晶懸濁液を用いるため、従来よりも低温条件で噴霧乾燥を行っても、好適な顆粒を得ることができる。 Low-temperature conditions refer to conditions at a lower temperature (eg, 60° C. or lower) than the temperature at which conventional spray drying is performed (eg, higher than 60° C.). In this embodiment, since a crystal suspension containing a portion of the sugar and/or sugar alcohol in a crystalline state is used, suitable granules can be obtained even if spray drying is performed at a lower temperature than conventionally.
 低温条件は、機能材料が有する機能が失われない程度の温度条件であってもよい。本実施形態では、例えば、機能材料として酵素を含む場合、高温条件での噴霧乾燥による酵素の失活を抑制することができる。機能材料として香料を含む場合、高温条件での噴霧乾燥による香料の揮発を抑制することができる。 The low-temperature condition may be such that the function of the functional material is not lost. In this embodiment, for example, when an enzyme is included as the functional material, deactivation of the enzyme due to spray drying under high temperature conditions can be suppressed. When a fragrance is included as a functional material, volatilization of the fragrance due to spray drying under high temperature conditions can be suppressed.
 低温条件で噴霧乾燥が行われていることは、噴霧乾燥機における入口空気温度(入口温度)が上述したような温度条件で行われていることをいう。 The fact that spray drying is performed under low temperature conditions means that the inlet air temperature (inlet temperature) in the spray dryer is performed under the above-mentioned temperature conditions.
 一実施形態において、噴霧乾燥工程における入口空気温度は、好ましくは、60℃以下、55℃以下、50℃以下、45℃以下、40℃以下、35℃以下、30℃以下、25℃以下、20℃以下、又は15℃以下である。入口空気温度は、例えば、0℃以上、5℃以上、又は10℃以上であってもよい。すなわち、噴霧乾燥工程における入口空気温度は、0~60℃であってよく、0~50℃であってもよい。 In one embodiment, the inlet air temperature in the spray drying step is preferably 60°C or less, 55°C or less, 50°C or less, 45°C or less, 40°C or less, 35°C or less, 30°C or less, 25°C or less, 20°C or less, ℃ or lower, or 15℃ or lower. The inlet air temperature may be, for example, 0°C or higher, 5°C or higher, or 10°C or higher. That is, the inlet air temperature in the spray drying process may be from 0 to 60°C, or may be from 0 to 50°C.
 噴霧乾燥機における出口空気温度(排風温度)は、例えば、50℃以下、40℃以下、35℃以下、30℃以下、25℃以下、20℃以下、又は15℃以下であってよく、0℃以上、5℃以上、又は10℃以上であってよい。 The outlet air temperature (exhaust air temperature) in the spray dryer may be, for example, 50° C. or less, 40° C. or less, 35° C. or less, 30° C. or less, 25° C. or less, 20° C. or less, or 15° C. or less, and 0. The temperature may be higher than or equal to 5°C, or higher than or equal to 10°C.
 噴霧乾燥工程における結晶懸濁液の液温は、例えば、60℃以下、50℃以下、又は45℃以下であってよく、10℃以上、15℃以上、又は20℃以上であってよい。 The liquid temperature of the crystal suspension in the spray drying step may be, for example, 60°C or lower, 50°C or lower, or 45°C or lower, or 10°C or higher, 15°C or higher, or 20°C or higher.
 噴霧乾燥において、結晶懸濁液の供給量、雰囲気温度、雰囲気湿度等の他の条件は、それぞれ適宜調整されてよい。 In spray drying, other conditions such as the supply amount of the crystal suspension, the ambient temperature, and the ambient humidity may be adjusted as appropriate.
 例えば、噴霧乾燥におけるアトマイザ回転数は、3000rpm以上、5000rpm以上、又は10000rpm以上であってよく、25000rpm以下、20000rpm以下、又は18000rpm以下であってよい。 For example, the atomizer rotation speed in spray drying may be 3000 rpm or more, 5000 rpm or more, or 10000 rpm or more, and may be 25000 rpm or less, 20000 rpm or less, or 18000 rpm or less.
 噴霧乾燥工程では、例えば顆粒の水分量を調整することを目的として、更なる後乾燥工程を備えてもよい。後乾燥工程は、例えば、噴霧乾燥機における缶壁に付着した顆粒に対して所定時間送風を行い、顆粒の水分を更に揮発させることであってよい。あるいは、噴霧乾燥により得られた顆粒を、シリカゲルを入れたデシケーター内等に所定時間保管することであってもよい。 The spray drying step may include an additional post-drying step, for example, for the purpose of adjusting the moisture content of the granules. The post-drying step may be, for example, blowing air on the granules attached to the can wall in a spray dryer for a predetermined period of time to further volatilize the moisture in the granules. Alternatively, the granules obtained by spray drying may be stored in a desiccator containing silica gel for a predetermined period of time.
 顆粒の固結度は、10.0質量%未満、又は9.5質量%以下であってよく、0.1質量%以上、0.5質量%以上、1.0質量%以上、1.5質量%以上、2.0質量%以上、2.5質量%以上、3.0質量%以上又は4.0質量%以上であってよい。顆粒の固結度は、噴霧乾燥1週間後の前記顆粒のうち、目開き2mmの篩及び目開き1mmの篩を通過しない部分の割合を意味し、後述する実施例に記載の方法によって測定される。 The degree of caking of the granules may be less than 10.0% by weight or less than 9.5% by weight, 0.1% by weight or more, 0.5% by weight or more, 1.0% by weight or more, 1.5% by weight or more. It may be at least 2.0 mass%, at least 2.5 mass%, at least 3.0 mass%, or at least 4.0 mass%. The degree of caking of the granules refers to the percentage of the granules that do not pass through a 2 mm sieve and a 1 mm sieve after one week of spray drying, and is measured by the method described in the Examples below. Ru.
 本実施形態に係る顆粒の回収率は、40.0質量%以上、又は45.0質量%以上であってよく、100.0質量%以下、90.0質量%以下、80.0質量%以下、又は75.0質量%以下であってよい。顆粒の回収率は、後述する実施例に記載の方法によって測定される。 The recovery rate of the granules according to this embodiment may be 40.0 mass% or more, or 45.0 mass% or more, and 100.0 mass% or less, 90.0 mass% or less, or 80.0 mass% or less. , or 75.0% by mass or less. The recovery rate of granules is measured by the method described in Examples below.
<顆粒>
 本実施形態に係る顆粒は、結晶性の糖及び結晶性の糖アルコールからなる群より選ばれる少なくとも一種を含有し、結晶性の糖及び/又は糖アルコールは、一部が結晶状態であり、他部が非結晶状態である。当該顆粒を構成する粒子の平均短径に対する平均長径の比は、3.1以下である。当該顆粒は、例えば、上述した顆粒を製造する方法により得ることができる。
<Granules>
The granules according to the present embodiment contain at least one selected from the group consisting of crystalline sugars and crystalline sugar alcohols, and some of the crystalline sugars and/or sugar alcohols are in a crystalline state and others are in a crystalline state. part is in an amorphous state. The ratio of the average major axis to the average minor axis of the particles constituting the granules is 3.1 or less. The granules can be obtained, for example, by the method for producing granules described above.
 当該顆粒は、機能材料を更に含んでいてよい。結晶性の糖、結晶性の糖アルコール、及び機能材料の詳細な態様は、上述したものと同様であるため説明を省略する。本明細書における「顆粒」は、粒子の集合体であり、顆粒を構成する粒子(顆粒粒子)が、結晶性の糖及び糖アルコールからなる群より選ばれる一種又は二種以上を含有する。 The granules may further contain a functional material. The detailed aspects of the crystalline sugar, the crystalline sugar alcohol, and the functional material are the same as those described above, so a description thereof will be omitted. The term "granule" as used herein refers to an aggregate of particles, and the particles constituting the granule (granule particles) contain one or more types selected from the group consisting of crystalline sugar and sugar alcohol.
 顆粒は、結晶性の糖を二種以上含有していてもよく、結晶性の糖アルコールを二種以上含有していてもよく、結晶性の糖及び結晶性の糖アルコールを組み合わせて二種以上含有していてもよい。 The granules may contain two or more types of crystalline sugars, may contain two or more types of crystalline sugar alcohols, or may contain two or more types of crystalline sugars and crystalline sugar alcohols in combination. May contain.
 顆粒は、結晶性の糖及び結晶性の糖アルコールからなる群より選択される第1の糖原料と、結晶性の糖及び結晶性の糖アルコールからなる群より選択され、かつ、第1の糖原料とは異なる第2の糖原料と、を含有してもよい。顆粒が第1の糖原料と、第2の糖原料とを含有する場合、顆粒の流動性、並びに機能材料及び顆粒の安定性がより優れたものとなる。 The granules include a first sugar raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols, and a first sugar raw material selected from the group consisting of crystalline sugars and crystalline sugar alcohols; It may also contain a second sugar raw material different from the raw material. When the granules contain the first sugar raw material and the second sugar raw material, the fluidity of the granules and the stability of the functional material and the granules are better.
 第1の糖原料は、例えば、イソマルツロースであってよい。第2の糖原料は、第1の糖原料と異なるものであれば1種又は2種以上の上述した糖又は糖アルコールを含んでいてよく、スクロースを含んでいてよい。 The first sugar raw material may be, for example, isomaltulose. The second sugar raw material may contain one or more of the above-mentioned sugars or sugar alcohols, as long as they are different from the first sugar raw material, and may contain sucrose.
 第1の糖原料の含有量は、結晶性の糖及び結晶性の糖アルコールの総量100質量部に対して、70.0質量部以上、75.0質量部以上、80.0質量部以上、85.0質量部以上、90.0質量部以上又は95.0質量部以上であってよく、99.9質量部以下、95.0質量部以下又は90.0質量部以下であってよい。 The content of the first sugar raw material is 70.0 parts by mass or more, 75.0 parts by mass or more, 80.0 parts by mass or more, based on 100 parts by mass of the total amount of crystalline sugar and crystalline sugar alcohol. The amount may be 85.0 parts by weight or more, 90.0 parts by weight or more, or 95.0 parts by weight or more, and may be 99.9 parts by weight or less, 95.0 parts by weight or less, or 90.0 parts by weight or less.
 顆粒が第2の糖原料を含有する場合、第2の糖原料の含有量は、結晶性の糖及び結晶性の糖アルコールの総量100質量部に対して、1.0質量部以上、3.0質量部以上、5.0質量部以上、8.0質量部以上、10.0質量部以上、12.0質量部以上、又は15.0質量部以上であってよく、30.0質量部以下、25.0質量部以下、20質量部以下、15質量部以下、10質量部以下又は5質量部以下であってよい。 When the granules contain the second sugar raw material, the content of the second sugar raw material is 1.0 parts by mass or more based on 100 parts by mass of the total amount of crystalline sugar and crystalline sugar alcohol, and 3. It may be 0 parts by mass or more, 5.0 parts by mass or more, 8.0 parts by mass or more, 10.0 parts by mass or more, 12.0 parts by mass or more, or 15.0 parts by mass or more, and 30.0 parts by mass. The amount may be 25.0 parts by mass or less, 20 parts by mass or less, 15 parts by mass or less, 10 parts by mass or less, or 5 parts by mass or less.
 一実施形態に係る顆粒は、結晶性の糖及び/又は糖アルコールの一部が結晶状態であり、この結晶状態の糖及び/又は糖アルコール同士が凝集した顆粒粒子から構成されている。この場合、結晶性の糖及び/又は糖アルコールの他の一部(他部)は非結晶状態であり、凝集した結晶状態の糖及び/又は糖アルコール同士が形成する間隙に保持されていることが好ましい。顆粒が機能材料を含む場合、機能材料もまた、結晶状態の糖及び/又は糖アルコール同士が形成する間隙に保持されていることが好ましい。 The granules according to one embodiment are composed of granule particles in which a portion of the crystalline sugar and/or sugar alcohol is in a crystalline state, and the sugar and/or sugar alcohol in the crystalline state are aggregated with each other. In this case, the other part (other part) of the crystalline sugar and/or sugar alcohol is in an amorphous state and is held in the gap formed by the aggregated crystalline sugar and/or sugar alcohol. is preferred. When the granules contain a functional material, it is preferable that the functional material is also held in the gaps formed between crystalline sugars and/or sugar alcohols.
 結晶状態の糖及び/又は糖アルコール同士が凝集していることは、走査型電子顕微鏡(SEM)又はデジタルマイクロスコープにより顆粒粒子の外観、又は、顆粒粒子の破断面を形態観察することにより確認できる。非結晶状態の糖及び/又は糖アルコール、並びに機能材料が上記間隙に保持されていることは、下記の方法により確認することができる。
(1)示差走査熱量計(DSC、例えば日立ハイテクサイエンス株式会社製のリアルビューDSC(TA7000))で昇温中の顆粒を形態観察する。これにより、非結晶状態の糖、糖アルコールが昇温によってガラス転移することが視認できる。
(2)偏光顕微鏡(例えばメイジテクノ株式会社製の偏光顕微鏡(MT9200L))で、結晶状態と非結晶状態の偏光性の違いを視認する。
The aggregation of crystalline sugars and/or sugar alcohols can be confirmed by observing the appearance of granules or the morphology of fractured surfaces of granules using a scanning electron microscope (SEM) or digital microscope. . It can be confirmed by the following method that the sugar and/or sugar alcohol in an amorphous state and the functional material are retained in the above-mentioned gap.
(1) Observe the morphology of the granules during heating using a differential scanning calorimeter (DSC, for example, Real View DSC (TA7000) manufactured by Hitachi High-Tech Science Co., Ltd.). As a result, it can be visually confirmed that sugars and sugar alcohols in an amorphous state undergo a glass transition due to temperature rise.
(2) Using a polarizing microscope (for example, a polarizing microscope (MT9200L) manufactured by Meiji Techno Co., Ltd.), visually confirm the difference in polarization between the crystalline state and the amorphous state.
 顆粒を構成する粒子に含まれる結晶状態の糖及び/又は糖アルコールの数(結晶の数)は、例えば10個以上であり、50個以上、又は100個以上であってもよい。結晶の数は、1000個以下であってもよい。結晶の数は、走査型電子顕微鏡により観察して目視により測定できる。 The number of crystalline sugars and/or sugar alcohols (number of crystals) contained in the particles constituting the granules is, for example, 10 or more, and may be 50 or more, or 100 or more. The number of crystals may be 1000 or less. The number of crystals can be determined visually by observation using a scanning electron microscope.
 顆粒を構成する粒子の形状は、顆粒の流動性がより優れる観点から、略球状であってよい。顆粒を構成する粒子は、流動性により優れる観点から、その表面に凹凸を有していてもよい。 The shape of the particles constituting the granules may be approximately spherical from the viewpoint of better fluidity of the granules. The particles constituting the granules may have irregularities on their surfaces in order to improve fluidity.
 顆粒の平均粒径は、顆粒が更に固結しにくく、流動性が良好であることから、10.00μm以上、20.00μm以上、40.00μm以上、60.00μm以上、80.00μm以上、又は90.00μm以上であってよく、溶解性が更に良好であることから、200.00μm以下、150.00μm以下、140.00μm以下、135.00μm以下、又は118μm以下であってよい。顆粒の平均粒径は、例えば、20.00~118.00μmであってよい。 The average particle size of the granules is 10.00 μm or more, 20.00 μm or more, 40.00 μm or more, 60.00 μm or more, 80.00 μm or more, or It may be 90.00 μm or more, and for better solubility, it may be 200.00 μm or less, 150.00 μm or less, 140.00 μm or less, 135.00 μm or less, or 118 μm or less. The average particle size of the granules may be, for example, 20.00 to 118.00 μm.
 本明細書における「顆粒の平均粒径」は、電子顕微鏡により測定できる。測定のために、例えば株式会社日立ハイテクノロジーズ製のMiniscopeTM3030を用いることができる。顆粒の平均粒径の測定方法の詳細は、後述する実施例に記載のとおりである。 The "average particle size of granules" in this specification can be measured using an electron microscope. For the measurement, for example, Miniscope TM3030 manufactured by Hitachi High-Technologies Corporation can be used. The details of the method for measuring the average particle diameter of the granules are as described in the Examples below.
 顆粒の平均粒径の標準偏差は、顆粒がより固結しにくいものとなることから、40μm以下、又は30μm以下であってよく、5μm以上又は10μm以上であってよい。 The standard deviation of the average particle diameter of the granules may be 40 μm or less, or 30 μm or less, and may be 5 μm or more, or 10 μm or more, since the granules are less likely to solidify.
 顆粒の平均短径は、80μm以上、又は95μm以上であってよく、150μm以下、又は130μm以下であってよい。顆粒の平均長径は、75μm以上、又は95μm以上であってよく、200μm以下、又は150μm以下であってよい。 The average minor axis of the granules may be 80 μm or more, or 95 μm or more, and 150 μm or less, or 130 μm or less. The average major axis of the granules may be 75 μm or more, or 95 μm or more, and 200 μm or less, or 150 μm or less.
 顆粒の平均短径に対する平均長径の比は、顆粒の安定性及び流動性が更に良好であることから、1.40以下、1.20以下、1.10以下、又は1.04以下であってよく、1.00以上、又は1.01以上であってよい。顆粒の平均短径に対する平均長径の比は、例えば、1.00~1.04であってよい。顆粒の平均短径に対する平均長径の比の標準偏差は、顆粒の乾燥しやすさ、固結しにくさ及び流動性が更に良好であることから、0.20以下、又は0.12μm以下であってよく、0.01μm以上であってよい。 The ratio of the average major axis to the average minor axis of the granules is 1.40 or less, 1.20 or less, 1.10 or less, or 1.04 or less, since the stability and fluidity of the granules are better. Generally, it may be 1.00 or more, or 1.01 or more. The ratio of the average major axis to the average minor axis of the granules may be, for example, from 1.00 to 1.04. The standard deviation of the ratio of the average major axis to the average minor axis of the granules is 0.20 or less, or 0.12 μm or less, since the granules are easier to dry, less caking, and have better fluidity. It may be 0.01 μm or more.
 顆粒を構成する粒子の平均粒径は、5.00μm以上、10.00μm以上、又は15.00μm以上であってよく、50.00μm以下、40.00μm以下、30.00μm以下、25.00μm以下又は20.00以下であってよい。顆粒を構成する粒子の平均粒径は、例えば、10.00~20.00μmであってよい。 The average particle size of the particles constituting the granules may be 5.00 μm or more, 10.00 μm or more, or 15.00 μm or more, and 50.00 μm or less, 40.00 μm or less, 30.00 μm or less, or 25.00 μm or less. Or it may be 20.00 or less. The average particle size of the particles constituting the granules may be, for example, 10.00 to 20.00 μm.
 顆粒を構成する粒子の平均粒径の標準偏差は、顆粒の安定性及び流動性が更に良好である観点から、10.00μm以下、8.00μm以下、6.00μm以下、4.00μm以下、又は3.3μm以下であってよく、1.00μm以上、又は2.00μm以上であってよい。顆粒を構成する粒子の平均粒径の標準偏差は、例えば、1.00~3.30μmであってよい。 The standard deviation of the average particle diameter of the particles constituting the granules is 10.00 μm or less, 8.00 μm or less, 6.00 μm or less, 4.00 μm or less, or It may be 3.3 μm or less, 1.00 μm or more, or 2.00 μm or more. The standard deviation of the average particle diameter of particles constituting the granules may be, for example, 1.00 to 3.30 μm.
 顆粒を構成する粒子の平均短径は、5.0μm以上、又は10.0μm以上であってよく、30.0μm以下、25.0μm以下であってよい。顆粒を構成する粒子の平均長径は、10.0μm以上、又は15.0μm以上であってよく、50μm以下、又は35μm以下であってよい。 The average minor axis of the particles constituting the granules may be 5.0 μm or more, or 10.0 μm or more, and may be 30.0 μm or less, or 25.0 μm or less. The average major axis of the particles constituting the granules may be 10.0 μm or more, or 15.0 μm or more, and 50 μm or less, or 35 μm or less.
 顆粒を構成する粒子の平均短径に対する平均長径の比は、3.1以下である。顆粒を構成する粒子の平均短径に対する平均長径の比が3.1以下であることによって、顆粒の安定性及び流動性が優れたものとなっている。顆粒を構成する粒子の平均短径に対する平均長径の比は、安定性及び流動性が更に良好であることから、2.8以下、2.5以下、2.2以下、又は1.9以下であってよく、0.5以上、1.0以上、又は1.4以上であってよい。 The ratio of the average major axis to the average minor axis of the particles constituting the granules is 3.1 or less. When the ratio of the average major axis to the average minor axis of the particles constituting the granules is 3.1 or less, the stability and fluidity of the granules are excellent. The ratio of the average major axis to the average minor axis of the particles constituting the granules is 2.8 or less, 2.5 or less, 2.2 or less, or 1.9 or less, for better stability and fluidity. It may be 0.5 or more, 1.0 or more, or 1.4 or more.
 顆粒を構成する粒子の平均短径に対する平均長径の比の標準偏差は、0.4以下、又は0.3以下であってよく、0.0超、又は0.1以上であってよい。 The standard deviation of the ratio of the average major axis to the average minor axis of the particles constituting the granules may be 0.4 or less, or 0.3 or less, or more than 0.0, or 0.1 or more.
 顆粒の総細孔容積は、0.0265cm/g以上、0.0270cm/g以上、0.0275cm/g以上、0.0280cm/g以上又は0.0290cm/g以上であってよく、0.0400cm/g以下、0.0350cm/g以下、0.0300cm/g以下、0.0290cm/g以下であってよい。 The total pore volume of the granules is 0.0265 cm 3 /g or more, 0.0270 cm 3 /g or more, 0.0275 cm 3 /g or more, 0.0280 cm 3 /g or more, or 0.0290 cm 3 /g or more. It may be less than 0.0400 cm 3 /g, less than 0.0350 cm 3 /g, less than 0.0300 cm 3 /g, and less than 0.0290 cm 3 /g.
 顆粒の総比表面積は、2.000m/g以上、4.000m/g以上、6.000m/g以上、又は8.000m/g以上であってよく、10.000m/g以下、9.000m/g以上又は8.5000m/g以下であってよい。 The total specific surface area of the granules may be 2.000 m 2 /g or more, 4.000 m 2 /g or more, 6.000 m 2 /g or more, or 8.000 m 2 /g or more, and 10.000 m 2 /g Below, it may be 9.000 m 2 /g or more or 8.5000 m 2 /g or less.
 顆粒の平均細孔直径は、顆粒の安定性が更に良好である観点から、60000Å以下、40000Å以下、20000Å以下、10000Å以下、5000Å以下、1000Å以下、800Å以下、又は600Å以下であってよく、200Å以上、400Å以上、又は550Å以上であってよい。 The average pore diameter of the granules may be 60,000 Å or less, 40,000 Å or less, 20,000 Å or less, 10,000 Å or less, 5,000 Å or less, 1,000 Å or less, 800 Å or less, or 600 Å or less, from the viewpoint of better granule stability. The thickness may be 400 Å or more, or 550 Å or more.
 顆粒の気孔率は、3.80%以上、3.90%以上、又は3.95%以上であってよく、8.00%以下、5.00%以下、4.50%以下、又は4.10%以下であってよい。 The porosity of the granules may be 3.80% or more, 3.90% or more, or 3.95% or more, and 8.00% or less, 5.00% or less, 4.50% or less, or 4. It may be 10% or less.
 香料を含有する顆粒の保香率は、50%以上、60%以上、70%以上、80%以上、90%以上又は100%以上であってよく、150%以下、140%以下又は130%以下であってよい。 The fragrance retention rate of the granules containing the fragrance may be 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100% or more, and 150% or less, 140% or less, or 130% or less. It may be.
 顆粒の総細孔容積、総比表面積、平均細孔直径、気孔率及び保香率は後述する実施例に記載の方法によって測定することができる。 The total pore volume, total specific surface area, average pore diameter, porosity, and fragrance retention rate of the granules can be measured by the method described in the Examples below.
 本実施形態に係る顆粒の製造方法は、原料を完全に溶解する工程、原料を結晶化させる工程、真空凍結により乾燥を行う工程、又は原料の完全溶解若しくは結晶化を目的とした結晶懸濁液を噴霧乾燥前に加温する工程を省略することができるため、従来の方法よりも簡便な方法により顆粒を製造することが可能である。 The method for producing granules according to this embodiment includes a step of completely dissolving the raw material, a step of crystallizing the raw material, a step of drying by vacuum freezing, or a crystal suspension for the purpose of completely dissolving or crystallizing the raw material. Since the step of heating the granules before spray drying can be omitted, it is possible to manufacture granules using a simpler method than conventional methods.
 本実施形態に係る顆粒は、より簡便な操作で効率的に製造可能でありながら、固結の発生が抑制されている。更に、本実施形態に係る顆粒は、より簡便な操作で効率的に製造可能でありながら、吸湿性、流動性及び噴流性の低下も抑制されている。 The granules according to the present embodiment can be efficiently manufactured with simpler operations, and the occurrence of caking is suppressed. Furthermore, the granules according to the present embodiment can be manufactured efficiently with simpler operations, while also suppressing deterioration in hygroscopicity, fluidity, and jetability.
 顆粒は低温条件で噴霧乾燥することにより得られるため、顆粒が機能材料を含有する場合、包含される機能材料の機能が熱により失われにくい。すなわち、この顆粒は、乾燥工程を経てもなお機能材料の機能が良好に保持されている。通常、噴霧乾燥により顆粒を得る場合には、より高温の条件で噴霧乾燥をしなければ好適な顆粒を得ることが困難である。しかし、本実施形態に係る顆粒は、低温条件であっても好適な顆粒を容易に得ることができる。 Since the granules are obtained by spray drying under low temperature conditions, when the granules contain functional materials, the functions of the included functional materials are less likely to be lost due to heat. In other words, even after the drying process, the granules retain the functionality of the functional material well. Normally, when obtaining granules by spray drying, it is difficult to obtain suitable granules unless spray drying is performed under higher temperature conditions. However, the granules according to this embodiment can be easily obtained even under low temperature conditions.
 上述した実施形態に係る顆粒は、例えば、食品、食品添加物、医薬品、化粧品、医薬部外品又は医薬品、動物飼料、肥料、香料、抗生物質、土壌改良剤等に添加されるための材料として用いることができる。 The granules according to the embodiments described above can be used, for example, as a material to be added to foods, food additives, pharmaceuticals, cosmetics, quasi-drugs, or pharmaceuticals, animal feed, fertilizers, fragrances, antibiotics, soil conditioners, etc. Can be used.
 以下、実施例により本発明をより具体的に説明する。ただし、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to the following examples.
<実施例1>
(結晶懸濁液の調製)
 8L容積の金属容器に、パラチノース(三井製糖株式会社の登録商標)(三井製糖株式会社、PST-N)3.25kg及び水1.75kgを入れ、ブリックス(Bx)65に希釈し、結晶懸濁液を得た。その後、結晶懸濁液の温度を30℃で保持しながら、攪拌機(新東科学株式会社、スリーワンモータ、BL-1200)350rpmで2時間撹拌して、結晶懸濁液A1を得た。
<Example 1>
(Preparation of crystal suspension)
Put 3.25 kg of Palatinose (registered trademark of Mitsui Sugar Co., Ltd., PST-N) and 1.75 kg of water into an 8 L metal container, dilute to Brix (Bx) 65, and suspend the crystals. I got the liquid. Thereafter, while maintaining the temperature of the crystal suspension at 30° C., it was stirred for 2 hours at 350 rpm with a stirrer (Shinto Kagaku Co., Ltd., Three-One Motor, BL-1200) to obtain a crystal suspension A1.
(噴霧液の調製)
 3Lのポリジョッキに、グラニュ糖(三井製糖株式会社、GN)900g、及び80℃以上に温めたイオン交換水300gを入れ、糖が完全に溶解するまで撹拌した。得られた糖溶液を、Bxが60になるまでイオン交換水で希釈し、Bx60の糖溶液を1.5L調製した。調製したBx60の糖溶液は、ウォーターバス(タイテック株式会社、PERSONAL-11)で温度を30℃に維持した。結晶懸濁液A1に、上述のBx60の糖溶液0.96kgを混合し、パラチノース:スクロースの固形分比率が85:15となる噴霧液を調製した。
(Preparation of spray liquid)
900 g of granulated sugar (Mitsui Sugar Co., Ltd., GN) and 300 g of ion-exchanged water heated to 80° C. or higher were placed in a 3 L plastic jug and stirred until the sugar was completely dissolved. The obtained sugar solution was diluted with ion-exchanged water until Bx reached 60 to prepare 1.5 L of Bx60 sugar solution. The temperature of the prepared Bx60 sugar solution was maintained at 30° C. in a water bath (TAITEC Co., Ltd., PERSONAL-11). 0.96 kg of the above-mentioned Bx60 sugar solution was mixed with the crystal suspension A1 to prepare a spray liquid having a solid content ratio of palatinose:sucrose of 85:15.
(噴霧乾燥)
 30℃に維持した噴霧液約4kgを噴霧乾燥機(大川原化工機株式会社、OC-16(乾式))を用いて噴霧乾燥した。噴霧乾燥の条件は次に示す条件とした。
送風温度:40℃
排風温度:28℃
送風インバータ周波数:60Hz
排風風量:38Hz
塔内制圧:微陽圧
アトマイザ回転数:14,000rpm(設定:33Hz)
原料供給速度:50mL/min,4.0kg/h(設定:8.5Hz)
装置:OC-16(乾式)
(spray drying)
Approximately 4 kg of the spray liquid maintained at 30° C. was spray-dried using a spray dryer (Okawara Kakoki Co., Ltd., OC-16 (dry type)). The spray drying conditions were as shown below.
Air blowing temperature: 40℃
Exhaust air temperature: 28℃
Air blower inverter frequency: 60Hz
Exhaust air volume: 38Hz
Inner pressure control: slight positive pressure Atomizer rotation speed: 14,000 rpm (setting: 33Hz)
Raw material supply rate: 50mL/min, 4.0kg/h (setting: 8.5Hz)
Equipment: OC-16 (dry type)
<実施例2>
(結晶懸濁液の調製)
 PST-Nを6.5kg、水を3.5kg用いたこと、撹拌機の回転数を300rpmに変更したこと以外は、実施例1の結晶懸濁液A1を得る手順と同様にして結晶懸濁液A2を得た。
<Example 2>
(Preparation of crystal suspension)
Crystal suspension was prepared in the same manner as in Example 1 to obtain crystal suspension A1, except that 6.5 kg of PST-N and 3.5 kg of water were used, and the rotation speed of the stirrer was changed to 300 rpm. Liquid A2 was obtained.
(噴霧液の調製)
 3Lのポリジョッキに、グラニュ糖(三井製糖株式会社、GN)1800g、80℃以上に温めたイオン交換水600gを入れ、糖が完全に溶解するまで攪拌した。Bxが60になるまでイオン交換水で希釈し、Bx60の糖溶液を1.5L調製した。調製したBx60の糖溶液は、ウォーターバス(タイテック株式会社、PERSONAL-11)で温度を30℃に維持した。Bx60の糖溶液1.9kgとイオン交換水90.0gとを混合し、香料なしの糖溶液を調製した。結晶懸濁液A2に、上述した香料なしの糖溶液1.90kgを混合し、パラチノース:スクロースの固形分比率が85:15となる噴霧液を調製した。
(Preparation of spray liquid)
1800 g of granulated sugar (Mitsui Sugar Co., Ltd., GN) and 600 g of ion-exchanged water heated to 80° C. or higher were placed in a 3 L plastic jug and stirred until the sugar was completely dissolved. The mixture was diluted with ion-exchanged water until Bx reached 60 to prepare 1.5 L of Bx60 sugar solution. The temperature of the prepared Bx60 sugar solution was maintained at 30° C. in a water bath (TAITEC Co., Ltd., PERSONAL-11). A fragrance-free sugar solution was prepared by mixing 1.9 kg of Bx60 sugar solution and 90.0 g of ion exchange water. 1.90 kg of the above-mentioned fragrance-free sugar solution was mixed with the crystal suspension A2 to prepare a spray liquid having a solid content ratio of palatinose:sucrose of 85:15.
(噴霧乾燥)
 約10kgの噴霧液を30℃に維持しながら、モーノポンプ(兵神装備株式会社、3NTL08PUL)を使用して全量噴霧乾燥した。噴霧乾燥の条件は、次に示す条件とした。
送風温度:40℃
排風温度:28-30℃
送風風量:60Hz
排風風量:38Hz
塔内静圧:微陽圧
アトマイザ回転数:14,000rpm(設定:33Hz)
アトマイザ種類:ディスク式アトマイザ
原料供給速度:50mL/min,4.0kg/h(設定:8.5Hz)
装置:OC-16(乾式)
(spray drying)
While maintaining approximately 10 kg of the spray liquid at 30° C., the entire amount was spray-dried using a Mono pump (3NTL08PUL, Heishin Giki Co., Ltd.). The spray drying conditions were as shown below.
Air blowing temperature: 40℃
Exhaust air temperature: 28-30℃
Air flow rate: 60Hz
Exhaust air volume: 38Hz
Static pressure inside the tower: slightly positive pressure Atomizer rotation speed: 14,000 rpm (setting: 33Hz)
Atomizer type: Disk type atomizer Raw material supply rate: 50mL/min, 4.0kg/h (setting: 8.5Hz)
Equipment: OC-16 (dry type)
<実施例3>
(結晶懸濁液の調製及び噴霧乾燥)
 黒糖香料(高砂香料工業株式会社、コクトウミクロンH-80210)19.0gとイオン交換水71.0gを混合し、黒糖香料水溶液を調製した。実施例2の「(噴霧液の調製)」に記載の方法で得たBx60の糖溶液1.9kgと黒糖香料水溶液90.0gとを混合し、香料入り糖溶液を調製した。実施例2の方法で得た結晶懸濁液A2に香料入り糖溶液1.90kgを混合し、パラチノース:スクロースの固形分比率が85:15となる噴霧液を調製した。得られた噴霧液を用いて、実施例2と同様の条件で噴霧乾燥を行った。
<Example 3>
(Preparation and spray drying of crystal suspension)
A brown sugar flavor aqueous solution was prepared by mixing 19.0 g of brown sugar flavor (Kokuto Micron H-80210, Takasago International Corporation) and 71.0 g of ion-exchanged water. 1.9 kg of the Bx60 sugar solution obtained by the method described in "(Preparation of spray liquid)" of Example 2 and 90.0 g of the brown sugar flavor aqueous solution were mixed to prepare a flavored sugar solution. 1.90 kg of flavored sugar solution was mixed with the crystal suspension A2 obtained by the method of Example 2 to prepare a spray liquid having a solid content ratio of palatinose:sucrose of 85:15. Using the obtained spray liquid, spray drying was performed under the same conditions as in Example 2.
<実施例4~7>
(結晶懸濁液の調製)
 8L容積の金属容器に、PST-N3.25kg及び水2.4kgを入れ、Bx57.5に希釈した。その後、希釈物を温度30℃で保持しながら、攪拌機(新東科学株式会社、スリーワンモータ、BL-1200)300rpmで2時間撹拌して結晶懸濁液(c1)を得た。
<Examples 4 to 7>
(Preparation of crystal suspension)
3.25 kg of PST-N and 2.4 kg of water were placed in an 8 L metal container and diluted to Bx57.5. Thereafter, the diluted product was stirred for 2 hours at 300 rpm with a stirrer (Shinto Kagaku Co., Ltd., Three-One Motor, BL-1200) while maintaining the temperature at 30° C. to obtain a crystal suspension (c1).
(噴霧液の調製)
 3Lのポリジョッキに、グラニュ糖(三井製糖株式会社、GN)1800g、又はPST-N1800gを入れ、80℃以上に温めたイオン交換水1200gを入れ、糖が完全に溶解するまで攪拌した。得られた各糖溶液をBxが60になるまでイオン交換水で希釈することによって、Bx60の糖溶液(a)として、グラニュ糖を含むBx60のスクロースシロップと、PST-Nを含むBx60のパラチノースシロップとを調製した。調製したBx60の糖溶液(a)は、ウォーターバス(タイテック株式会社、PERSONAL-11)を用いて温度30℃に保持した。
(Preparation of spray liquid)
1800 g of granulated sugar (Mitsui Sugar Co., Ltd., GN) or 1800 g of PST-N was placed in a 3 L plastic jug, and 1200 g of ion exchange water heated to 80° C. or higher was added, followed by stirring until the sugar was completely dissolved. By diluting each of the obtained sugar solutions with ion-exchanged water until Bx reaches 60, Bx60 sucrose syrup containing granulated sugar and Bx60 palatinose syrup containing PST-N are prepared as Bx60 sugar solution (a). was prepared. The prepared Bx60 sugar solution (a) was maintained at a temperature of 30° C. using a water bath (TAITEC Co., Ltd., PERSONAL-11).
 黒糖香料水溶液(b)は、黒糖香料(高砂香料工業株式会社、コクトウミクロンH-80210)9.5gとイオン交換水40.5gを混合することによって調製した。 The brown sugar flavor aqueous solution (b) was prepared by mixing 9.5 g of brown sugar flavor (Kokutou Micron H-80210, Takasago International Corporation) and 40.5 g of ion-exchanged water.
 表1に示す組成となるように、Bx60の糖溶液(a)と黒糖香料水溶液(b)とを混合し、得られた混合液に結晶懸濁液(c1)を混合した。これにより、表2に示す組成の噴霧液を調製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Bx60 sugar solution (a) and brown sugar flavor aqueous solution (b) were mixed to have the composition shown in Table 1, and the crystal suspension (c1) was mixed with the resulting mixture. In this way, a spray liquid having the composition shown in Table 2 was prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(噴霧乾燥)
 噴霧液を30℃に維持しながら、次に示す条件でモーノポンプ(兵神装備株式会社、3NTL08PUL)を使用して全量(6.7kg)噴霧乾燥した。
送風温度:30℃
排風温度:28.1-24.0℃
送風風量:60Hz
排風風量:38Hz
塔内静圧:微陽圧
アトマイザ回転数:14,000rpm(設定:33Hz)
アトマイザ種類:ディスク式アトマイザ
原料供給速度:50mL/min,4.0kg/h(設定:8.5Hz)
装置:OC-16(乾式)
(spray drying)
While maintaining the spray liquid at 30° C., the entire amount (6.7 kg) was spray-dried using a Mono pump (3NTL08PUL, Heishin Giki Co., Ltd.) under the following conditions.
Air blowing temperature: 30℃
Exhaust air temperature: 28.1-24.0℃
Air flow rate: 60Hz
Exhaust air volume: 38Hz
Static pressure inside the tower: slightly positive pressure Atomizer rotation speed: 14,000 rpm (setting: 33Hz)
Atomizer type: Disk type atomizer Raw material supply rate: 50mL/min, 4.0kg/h (setting: 8.5Hz)
Equipment: OC-16 (dry type)
 噴霧終了後、噴霧乾燥機の運転条件を変えず、そのまま40分間、乾燥エアを送り続け、乾燥機の庫内を乾燥させた。その後、乾燥物をかき落として回収した。 After the spraying was completed, drying air was continued to be sent for 40 minutes without changing the operating conditions of the spray dryer to dry the interior of the dryer. Thereafter, the dried material was scraped off and collected.
<比較例1>
(比較用懸濁液の調製)
 8L容積の金属容器に、PST-N3.25kg及び水1.75kgを入れて、80℃で1時間湯煎した。糖が完全に溶解したことを確認後、金属容器に水を入れてBx65に調節した。金属容器内の懸濁液を7℃の水を入れた水浴を用いて20℃になるまで冷却した。300rpmで撹拌しながら、超音波発振機(株式会社エスエムテー、ULTRA SONIC HOMOGENIZER、UH-600S)(メモリ8、連続照射)で15分間照射した。その後、内容物の温度を30℃に維持しながら、攪拌機300rpmで1時間45分撹拌して、比較用懸濁液B1を得た。
<Comparative example 1>
(Preparation of comparative suspension)
3.25 kg of PST-N and 1.75 kg of water were placed in an 8 L metal container and boiled at 80° C. for 1 hour. After confirming that the sugar was completely dissolved, water was added to the metal container and adjusted to Bx65. The suspension in the metal container was cooled to 20°C using a water bath containing 7°C water. While stirring at 300 rpm, irradiation was performed for 15 minutes using an ultrasonic oscillator (SMT Corporation, ULTRA SONIC HOMOGENIZER, UH-600S) (memory 8, continuous irradiation). Thereafter, while maintaining the temperature of the contents at 30° C., the mixture was stirred with a stirrer at 300 rpm for 1 hour and 45 minutes to obtain comparative suspension B1.
(噴霧液の調製及び噴霧乾燥)
 結晶懸濁液A1に代えて比較用懸濁液B1を用いたこと以外は、実施例1と同様にして噴霧液の調製及び噴霧乾燥を行った。
(Preparation of spray liquid and spray drying)
A spray liquid was prepared and spray-dried in the same manner as in Example 1, except that comparative suspension B1 was used in place of crystal suspension A1.
<比較例2>
(比較用懸濁液の調製)
 PST-Nを6.5kg、水を3.5kg用いたこと以外は、比較例1の比較用懸濁液B1を得る手順と同様にして、比較用懸濁液B2を得た。
<Comparative example 2>
(Preparation of comparative suspension)
Comparative suspension B2 was obtained in the same manner as the procedure for obtaining comparative suspension B1 in Comparative Example 1, except that 6.5 kg of PST-N and 3.5 kg of water were used.
(結晶懸濁液の調製及び噴霧乾燥)
 結晶懸濁液A2に代えて比較用懸濁液B2を用いたこと以外は、実施例2と同様にして噴霧液の調製及び噴霧乾燥を行った。
(Preparation and spray drying of crystal suspension)
A spray liquid was prepared and spray-dried in the same manner as in Example 2, except that comparative suspension B2 was used in place of crystal suspension A2.
<比較例3>
(比較用懸濁液の調製及び噴霧乾燥)
 比較用懸濁液B1に上述した香料入り糖溶液1.90kgを混合し、パラチノース:スクロースの固形分比率が85:15となる噴霧液を調製した。得られた噴霧液を用いて、実施例2と同様の条件で噴霧乾燥を行った。
<Comparative example 3>
(Preparation and spray drying of comparative suspension)
1.90 kg of the flavored sugar solution mentioned above was mixed with comparative suspension B1 to prepare a spray liquid having a solid content ratio of palatinose:sucrose of 85:15. Using the obtained spray liquid, spray drying was performed under the same conditions as in Example 2.
<比較例4~7>
(比較用懸濁液の調製)
 8L容積の金属容器に、PST-N3.25kgと水2.4kgを入れて、80℃で1時間湯煎した。糖が完全に溶解したことを確認後、水を入れてBx57.5に調節した。8L容積の金属容器を7℃の水に水浴して、20℃になるまで内容物を冷却した。300rpmで撹拌しながら、超音波発振機(株式会社エスエムテー、ULTRA SONIC HOMOGENIZER、UH-600S)(メモリ8、連続照射)で15分間照射した。その後、内容物の温度を30℃に維持しながら、攪拌機300rpmで1時間45分撹拌して比較用懸濁液(c2)を得た。
<Comparative Examples 4 to 7>
(Preparation of comparative suspension)
3.25 kg of PST-N and 2.4 kg of water were placed in an 8 L metal container and boiled at 80° C. for 1 hour. After confirming that the sugar was completely dissolved, water was added to adjust the Bx to 57.5. The contents were cooled to 20°C by bathing the 8L volume metal container in 7°C water. While stirring at 300 rpm, irradiation was performed for 15 minutes using an ultrasonic oscillator (SMT Corporation, ULTRA SONIC HOMOGENIZER, UH-600S) (memory 8, continuous irradiation). Thereafter, while maintaining the temperature of the contents at 30° C., the mixture was stirred with a stirrer at 300 rpm for 1 hour and 45 minutes to obtain a comparative suspension (c2).
(噴霧液の調製及び噴霧乾燥)
 結晶懸濁液(c1)に代えて比較用懸濁液(c2)を用いたこと以外は、実施例4~7と同様にして噴霧液の調製及び噴霧乾燥を行った。
Figure JPOXMLDOC01-appb-T000003
(Preparation of spray liquid and spray drying)
Spray liquids were prepared and spray-dried in the same manner as in Examples 4 to 7, except that the comparative suspension (c2) was used in place of the crystal suspension (c1).
Figure JPOXMLDOC01-appb-T000003
<ブリックス値(Bx)>
 BxはレフBx計(株式会社アタゴ、RX-5000α)で測定した。
<Brix value (Bx)>
Bx was measured with a Ref Bx meter (RX-5000α, manufactured by Atago Co., Ltd.).
<晶出率>
 晶出率は、結晶懸濁液又は噴霧液を1.5mL容エッペンドルフチューブに1g入れ、遠心分離機(株式会社佐久間製作所、M150IV)を用いて16,000rpmで1分間遠心分離を行い、上清を除いた際の残存結晶質量と、結晶懸濁液又は噴霧液の質量を、以下の式に当てはめて算出した。
晶出率(質量%)=残存結晶質量(g)/(結晶懸濁液又は噴霧液の質量(g))×100
<Crystallization rate>
The crystallization rate was determined by putting 1 g of the crystal suspension or spray into a 1.5 mL Eppendorf tube, centrifuging it for 1 minute at 16,000 rpm using a centrifuge (Sakuma Seisakusho Co., Ltd., M150IV), and removing the supernatant. The mass of the remaining crystals after removing and the mass of the crystal suspension or spray liquid were calculated by applying the following formula.
Crystallization rate (mass%) = remaining crystal mass (g) / (mass of crystal suspension or spray liquid (g)) x 100
<粘度>
 粘度はB型粘度計(東京計器株式会社、BL型)を使用して液温25℃での粘度を測定した。粘度計のアダプターNo.3を装着して、回転速度12rpmで15秒間、対象物に測定部を浸漬させた。その後、読み値を記録した。B型粘度計の換算係数に基づいて、読み値を100倍して、対象物の粘度(mPa・s)を算出した。
<Viscosity>
The viscosity was measured at a liquid temperature of 25° C. using a B-type viscometer (Tokyo Keiki Co., Ltd., Model BL). Viscometer adapter no. 3 was attached, and the measuring part was immersed in the object for 15 seconds at a rotational speed of 12 rpm. The readings were then recorded. Based on the conversion coefficient of the B-type viscometer, the reading value was multiplied by 100 to calculate the viscosity (mPa·s) of the object.
<顆粒の外観>
 得られた顆粒の外観評価は、電子顕微鏡(株式会社日立ハイテクノロジーズ、TM3030-Plus)を用いて行った。
<Appearance of granules>
The appearance of the obtained granules was evaluated using an electron microscope (TM3030-Plus, Hitachi High-Technologies Corporation).
<製品回収率(歩留まり)の評価>
 製品回収率(歩留まり)(質量%)は、噴霧液中の固形分重量(g)に対する噴霧乾燥後の顆粒重量(g)の割合で求めた。
<Evaluation of product recovery rate (yield)>
The product recovery rate (yield) (mass %) was determined by the ratio of the weight of the granules after spray drying (g) to the weight of solid content (g) in the spray liquid.
<水分活性の評価>
 水分活性(%)は、水分活性測定装置(METER社、Dew Point water activity Meter AquaLAb Series4TE)により顆粒5g又は10mLを用いて測定した。
Figure JPOXMLDOC01-appb-T000004
<Evaluation of water activity>
Water activity (%) was measured using a water activity measuring device (METER, Dew Point water activity Meter AquaLAb Series 4TE) using 5 g or 10 mL of granules.
Figure JPOXMLDOC01-appb-T000004
 Bx及び晶出率が同等であっても、実施例の方法では、結晶懸濁液及び噴霧液中の結晶径が適度に小さい結晶が均一に生成し、粘度も低く、噴霧乾燥後の顆粒の回収率が良好であった。実施例及び比較例の方法において、水分活性は同等であった。 Even if the Bx and crystallization rate are the same, the method of the example produces uniformly crystals with a moderately small crystal size in the crystal suspension and spray liquid, the viscosity is low, and the granules after spray drying are The recovery rate was good. In the methods of Examples and Comparative Examples, the water activities were equivalent.
<顆粒の固結度合いの評価>
(1)篩評価(一部サンプルのみ)
 得られた顆粒1~2kgをアルミパック(チャック下長さ340mm×240mm)に入れて密封して室温25℃で1週間保存した後、目開き2mm、1mmの篩にそれぞれ通して、篩上、篩下の重量を測定し、以下の基準で固結の度合いを評価した。
・弱:顆粒の1割未満が篩上にある。
・中:顆粒の1割以上3割未満が篩上にある。
・強:顆粒の3割以上が篩上にある。
<Evaluation of degree of granule caking>
(1) Sieve evaluation (some samples only)
1 to 2 kg of the obtained granules were placed in an aluminum pack (length under the zipper: 340 mm x 240 mm), sealed and stored at room temperature at 25°C for one week. The weight of the under sieve was measured, and the degree of caking was evaluated based on the following criteria.
- Weak: Less than 10% of the granules are on the sieve.
- Medium: 10% or more but less than 30% of the granules are on the sieve.
- Strong: More than 30% of the granules are on the sieve.
(2)目視確認
 アルミパックに入れて密封して室温25℃で1か月以上保存した顆粒を、黒紙の上に各500g広げて以下の基準で固結度合いを目視で確認した。表6は、実施例1及び比較例1の方法で得た顆粒の評価結果を示す。
・弱:顆粒の1割未満が塊状に固結している。
・中:顆粒の1割以上3割未満が塊状に固結している。
・強:顆粒の3割以上が塊状に固結している。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(2) Visual confirmation 500g of each granule, which had been sealed in an aluminum pack and stored at room temperature of 25°C for more than one month, was spread on black paper and the degree of caking was visually confirmed according to the following criteria. Table 6 shows the evaluation results of the granules obtained by the methods of Example 1 and Comparative Example 1.
- Weak: Less than 10% of the granules are solidified into lumps.
- Medium: 10% or more but less than 30% of the granules are solidified into lumps.
・Strong: More than 30% of the granules are solidified into lumps.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5に示すとおり、従来法(結晶析出法)の比較例の方法で得た顆粒の多くは中程度の固結を示したのに対して、実施例の方法で作製した顆粒では固結はほとんど確認されなかった。 As shown in Table 5, most of the granules obtained by the conventional method (crystal precipitation method) in the comparative example showed moderate caking, whereas the granules produced by the method in the example showed no caking. Almost never confirmed.
<結晶懸濁液及び噴霧液中の粒子の結晶径>
 結晶懸濁液又は噴霧液をスライドガラスに滴下し、カバーガラスを乗せて、倍率1000倍で計測した。平均粒径の測定方法は、デジタルマイクロスコープ(斉藤光学株式会社、SKM-S31B-PC)で任意の10個以上の糖結晶に対して、それらを構成する各10個以上の糖結晶の粒径の平均をとった。結晶懸濁液又は噴霧液中の測定対象とする粒子10個以上において、第1方向の距離と、第1方向と直交する第2方向の距離とがそれぞれの中間点で交わったときの第1方向の距離及び第2方向の距離をそれぞれ横幅及び縦幅として測定した。第1方向は、測定対象とする全粒子において同じ方向である。測定された横幅及び縦幅の内、長い方を長径、短い方を短径として測定対象の粒子における平均を平均長径及び平均短径とした。図1(A)及び(B)はそれぞれ実施例1及び比較例1の方法で得た結晶懸濁液の顕微鏡画像を示す。
<Crystal diameter of particles in crystal suspension and spray liquid>
The crystal suspension or spray liquid was dropped onto a slide glass, a cover glass was placed thereon, and the measurement was performed at a magnification of 1000 times. The average particle size is measured using a digital microscope (Saito Kogaku Co., Ltd., SKM-S31B-PC) for any 10 or more sugar crystals, and the particle size of each of the 10 or more sugar crystals that make up the sugar crystals. The average was taken. 1st when the distance in the first direction and the distance in the second direction orthogonal to the first direction intersect at the midpoint of each of 10 or more particles to be measured in the crystal suspension or spray liquid The distance in the direction and the distance in the second direction were measured as the horizontal width and the vertical width, respectively. The first direction is the same direction for all particles to be measured. Of the measured widths and lengths, the longer one was the major axis and the shorter one was the minor axis, and the averages of the particles to be measured were taken as the average major axis and the average minor axis. FIGS. 1A and 1B show microscopic images of crystal suspensions obtained by the methods of Example 1 and Comparative Example 1, respectively.
<顆粒及び顆粒を構成する粒子の結晶径>
 顆粒径及び顆粒を構成する粒子の結晶径を電子顕微鏡(日立ハイテク社、MiniscopeTM3030)を用いて測定した。実施例及び比較例の方法で得られた顆粒を10個ずつ観察し、各顆粒の長幅、短幅を計測し顆粒径の平均値を求めた。顆粒に含まれる結晶3~10個の長幅、短幅をそれぞれ計測し顆粒中の結晶径の平均値を求めた。図2は実施例3の方法で得た顆粒の電子顕微鏡画像を示す。図3は比較例3の方法で得た顆粒の電子顕微鏡画像を示す。
<Crystal diameter of granules and particles constituting the granules>
The granule diameter and the crystal diameter of the particles constituting the granules were measured using an electron microscope (Miniscope TM3030, manufactured by Hitachi High-Tech Corporation). Ten granules obtained by the methods of Examples and Comparative Examples were observed, the long width and short width of each granule were measured, and the average value of the granule diameter was determined. The long width and short width of 3 to 10 crystals contained in the granules were measured, and the average value of the crystal diameter in the granules was determined. FIG. 2 shows an electron microscope image of the granules obtained by the method of Example 3. FIG. 3 shows an electron microscope image of granules obtained by the method of Comparative Example 3.
<標準偏差>
 平均粒径、平均長径、平均短径及び平均短径に対する平均長径の比の標準偏差は、マイクロソフト(登録商標)・エクセルのSTDEV.S関数で算出した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
<Standard deviation>
The average particle diameter, average major axis, average minor axis, and standard deviation of the ratio of the average major axis to the average minor axis are calculated using STDEV. Calculated using S function.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
<流動性、噴流性及び嵩密度の評価>
 実施例及び比較例の顆粒について、R.L.Carrにより提案された「流動性指数」及び「噴流性指数」を算出した(Carr,R.L.“Evaluating flow properties of solids.”Chem.Eng.(1965)72(163-168))。多機能型粉体物性測定器(株式会社セイシン企業、マルチテスターMT-02)を用いて、顆粒の安息角(°)、スパチュラ角(°)、圧縮度(%)及び均一度(-)を求め、Carrの理論に基づき、各測定値に対応する指数を得た。各測定値の指数を合算することにより、流動性指数を得た。多機能型粉体物性測定器で、顆粒の崩壊角(°)及び差角(°)、分散度(%)を求め、Carrの理論に基づき得られた各測定値に対応する指数と、流動性指数に基づく指数を足し合わせることにより、噴流性指数を得た。測定時の温湿度は25℃、50%であった。
<Evaluation of fluidity, jetability and bulk density>
Regarding the granules of Examples and Comparative Examples, R. L. The "flowability index" and "jetability index" proposed by Carr were calculated (Carr, R.L. "Evaluating flow properties of solids." Chem. Eng. (1965) 72 (163-168)). Using a multifunctional powder property measuring instrument (Seishin Enterprise Co., Ltd., Multitester MT-02), the angle of repose (°), spatula angle (°), degree of compaction (%), and uniformity (-) of the granules were measured. Based on Carr's theory, an index corresponding to each measured value was obtained. A fluidity index was obtained by summing the index of each measurement value. A multifunctional powder physical property measuring instrument is used to determine the disintegration angle (°), difference angle (°), and degree of dispersion (%) of the granules, and the index corresponding to each measurement value obtained based on Carr's theory and the flow rate are calculated. By adding up the indices based on the sex index, the jet sex index was obtained. The temperature and humidity at the time of measurement were 25° C. and 50%.
 次に示すCarrの評価基準に基づき、顆粒の流動性及び噴流性を評価した。
流動性の評価基準
流動性指数値 流動性の程度
90~100 最も良好
80~89  良好
70~79  かなり良好
60~69  普通
40~59  あまり良くない
0~19   非常に悪い
The fluidity and jetability of the granules were evaluated based on Carr's evaluation criteria shown below.
Fluidity evaluation criteria Fluidity index value Level of fluidity 90-100 Best 80-89 Good 70-79 Fairly good 60-69 Fair 40-59 Not very good 0-19 Very poor
噴流性の評価基準
噴流性指数値 噴流性の程度
80~100 非常に強い
60~79  かなり強い
40~59  傾向がある
25~39  あるかもしれない
0~24   なし
Jetability evaluation criteria Jetability index value Degree of jetness 80-100 Very strong 60-79 Fairly strong 40-59 Tendency 25-39 Possible 0-24 None
 実施例の方法で得られた顆粒は、より簡便な操作で得られたものでありながら、比較例の方法と同様に良好な流動性及び噴流性を有していた。 Although the granules obtained by the method of the example were obtained by a simpler operation, they had good fluidity and jetability similar to the method of the comparative example.
 安息角及び均一度については粉体工学用語辞典(一般社団法人粉体工学会、更新日2021年5月17日、URL:http://www.sptj.jp/powderpedia/words/10382/)に記載のカーの流動性指数表に基づいて別途流動性を評価した。 Regarding the angle of repose and uniformity, please refer to the Powder Engineering Terminology Dictionary (Powder Engineering Society of Japan, updated on May 17, 2021, URL: http://www.sptj.jp/powderpedia/words/10382/) The fluidity was separately evaluated based on Kerr's fluidity index table described above.
 実施例及び比較例の顆粒について、多機能型粉体物性測定器で嵩密度(ゆるめ嵩密度、固め嵩密度、動的嵩密度)を求めた。実施例の方法で得られた顆粒は比較例の方法と同様の嵩密度を示した。
Figure JPOXMLDOC01-appb-T000011
The bulk densities (loose bulk density, hardened bulk density, dynamic bulk density) of the granules of Examples and Comparative Examples were determined using a multifunctional powder physical property measuring device. The granules obtained by the method of the example showed the same bulk density as the method of the comparative example.
Figure JPOXMLDOC01-appb-T000011
<顆粒の吸湿性の評価>
 実施例3及び比較例3それぞれの方法で得た顆粒の吸湿性(吸脱着等温線)は動的水蒸気吸着測定装置(Surface Measurement Systems Ltd.、DVS Intrinsic)を用いて測定した。サンプル10mgを用いて、5%ずつ相対湿度を上げ、0%から90%まで上昇させたのち、同様の手順で0%に低下させた。サンプルの含水量変化率(dm/dt)が10分間で0.02を下回るまで、又は0.02%/minに達しない場合でも30分後までは一定の相対湿度を維持し、温度は常時25℃に保った。実施例3の方法で得た顆粒の吸湿性の評価結果を図4(A)に示す。比較例3の方法で得た顆粒の吸湿性の評価結果を図4(B)に示す。
<Evaluation of hygroscopicity of granules>
The hygroscopicity (adsorption/desorption isotherm) of the granules obtained by each method of Example 3 and Comparative Example 3 was measured using a dynamic water vapor adsorption measuring device (Surface Measurement Systems Ltd., DVS Intrinsic). Using 10 mg of the sample, the relative humidity was increased in 5% increments from 0% to 90%, and then lowered to 0% using the same procedure. Maintain a constant relative humidity until the rate of change in water content (dm/dt) of the sample falls below 0.02 in 10 minutes, or even after 30 minutes if it does not reach 0.02%/min, and the temperature remains constant. It was kept at 25°C. The results of evaluating the hygroscopicity of the granules obtained by the method of Example 3 are shown in FIG. 4(A). The evaluation results of the hygroscopicity of the granules obtained by the method of Comparative Example 3 are shown in FIG. 4(B).
 実施例の方法で得た顆粒は、比較例の方法で得た顆粒と同様の吸脱着等温線を示し、吸湿性が同等であることが確認された。 It was confirmed that the granules obtained by the method of the example showed the same adsorption/desorption isotherm as the granules obtained by the method of the comparative example, and had the same hygroscopicity.
<顆粒の平均細孔直径、総細孔容積、気孔率及び総比表面積の評価>
 実施例1及び比較例1それぞれの方法で得た顆粒の平均細孔直径、総細孔容積、気孔率及び総比表面積を水銀圧入孔径分析装置(Quantachrome社、POREMASTER 60GT)を用いて評価した。サンプル0.4gを水銀圧入孔径分析装置に供し、20℃で測定した。
平均細孔直径=累積50%細孔径
総細孔容積=圧入された総水銀量(cm)/サンプル重量(g)
気孔率=サンプルの細孔容積(cm)×サンプル嵩密度(g/cm)/サンプル重量(g)×100
総比表面積=細孔を開放系円筒形と仮定したときの比表面積(細孔分布及び容積から算出)
Figure JPOXMLDOC01-appb-T000012
<Evaluation of average pore diameter, total pore volume, porosity, and total specific surface area of granules>
Example 1 and Comparative Example 1 The average pore diameter, total pore volume, porosity, and total specific surface area of the granules obtained by each method were evaluated using a mercury intrusion pore size analyzer (Quantachrome, POREMASTER 60GT). 0.4 g of the sample was subjected to a mercury intrusion pore size analyzer and measured at 20°C.
Average pore diameter = Cumulative 50% pore diameter Total pore volume = Total amount of mercury injected (cm 3 )/Sample weight (g)
Porosity = sample pore volume (cm 3 ) x sample bulk density (g/cm 3 ) / sample weight (g) x 100
Total specific surface area = specific surface area assuming that the pores are open cylindrical (calculated from pore distribution and volume)
Figure JPOXMLDOC01-appb-T000012
 実施例1の方法で得た顆粒は、比較例1の方法で得た顆粒よりも、平均細孔直径が小さく、総細孔容積、総比表面積及び気孔率が高い結果となった。 The granules obtained by the method of Example 1 had a smaller average pore diameter, higher total pore volume, higher total specific surface area, and higher porosity than the granules obtained by the method of Comparative Example 1.
<顆粒の保香率の評価>
 実施例4及び6、比較例4及び6それぞれの方法で得た顆粒の保香率はポータブル型ニオイセンサ(新コスモス電機株式会社、XP-329IIIR)を用いて測定した。サンプル50gを、アルミパック(日本生産社、ラミジップ 平袋底開きタイプAL-G)に入れて密封した。また、ゼロ値設定用として、サンプルを入れずに密封したアルミパックを、標準品として、パラチノース(三井製糖株式会社、PST-N)42.4g、グラニュ糖(三井製糖株式会社、GN)7.5g、黒糖香料(高砂香料工業株式会社、コクトウミクロンH-80210)0.125gを混合して入れ、密封したアルミパックを用意した。室温25℃で各アルミパックを3時間静置した後のアルミパック内の香り強度をポータブル型ニオイセンサのモニタリング・モードで5分間測定し、5分間で最も高い香り強度をサンプル又は標準品の香り強度とし、以下の式で各サンプルの保香率を算出した。
保香率(%)=サンプルの香り強度/標準品の香り強度×100
なお、ゼロ値設定用のアルミパック内を香り強度ゼロとした。
Figure JPOXMLDOC01-appb-T000013
<Evaluation of fragrance retention rate of granules>
The fragrance retention rates of the granules obtained by the methods of Examples 4 and 6 and Comparative Examples 4 and 6 were measured using a portable odor sensor (Shin Cosmos Electric Co., Ltd., XP-329IIIR). 50 g of the sample was placed in an aluminum pack (Nippon Seisakusha, Lamizip flat bag bottom open type AL-G) and sealed. In addition, for zero value setting, sealed aluminum packs without samples were used as standard products: 42.4 g of Palatinose (Mitsui Sugar Co., Ltd., PST-N), 7 g of granulated sugar (Mitsui Sugar Co., Ltd., GN). A sealed aluminum pack was prepared by mixing and adding 5 g of brown sugar flavoring and 0.125 g of brown sugar flavor (Kokutou Micron H-80210, Takasago International Corporation). After each aluminum pack was left standing at room temperature of 25°C for 3 hours, the scent intensity inside the aluminum pack was measured for 5 minutes using the monitoring mode of a portable odor sensor, and the highest scent intensity in 5 minutes was determined as the scent of the sample or standard product. The fragrance retention rate of each sample was calculated using the following formula.
Fragrance retention rate (%) = sample fragrance intensity/standard product fragrance intensity x 100
Note that the scent intensity inside the aluminum pack for setting the zero value was set to zero.
Figure JPOXMLDOC01-appb-T000013
 実施例の方法で得た顆粒は、同じ砂糖含有率の比較例の方法で得た顆粒と同様又はそれ以上の保香率を示し、保香性が同等又はそれ以上であることが確認された。

 
It was confirmed that the granules obtained by the method of the example showed the same or higher aroma retention than the granules obtained by the method of the comparative example with the same sugar content, and the aroma retention was the same or higher. .

Claims (19)

  1.  結晶性の糖及び結晶性の糖アルコールからなる群より選ばれる少なくとも一種の原料を含有し、前記原料全部の溶解及び該溶解後の前記原料の結晶化を行うことなく、前記原料の一部が結晶状態で含まれる結晶懸濁液を得る工程と、
     前記結晶懸濁液を低温条件で噴霧乾燥する工程と、を備え、
     前記噴霧乾燥が入口温度が0~60℃の条件で行われる、顆粒を製造する方法。
    It contains at least one kind of raw material selected from the group consisting of crystalline sugar and crystalline sugar alcohol, and a part of the raw material is dissolved without dissolving all of the raw material and crystallizing the raw material after the dissolution. obtaining a crystal suspension containing in a crystalline state;
    Spray drying the crystal suspension under low temperature conditions,
    A method for producing granules, wherein the spray drying is performed at an inlet temperature of 0 to 60°C.
  2.  前記糖及び前記糖アルコールが単糖、二糖、三糖及びこれらの糖アルコールである、請求項1に記載の方法。 The method according to claim 1, wherein the sugar and the sugar alcohol are monosaccharides, disaccharides, trisaccharides, and sugar alcohols thereof.
  3.  前記原料がパラチノース、スクロース及びトレハロースからなる群より選ばれる少なくとも一種である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the raw material is at least one selected from the group consisting of palatinose, sucrose, and trehalose.
  4.  前記結晶懸濁液が機能材料を更に含有する、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the crystal suspension further contains a functional material.
  5.  前記機能材料が酵素、微生物、又は香料である、請求項4に記載の方法。 The method according to claim 4, wherein the functional material is an enzyme, a microorganism, or a fragrance.
  6.  前記結晶懸濁液の粘度が25℃において50~1550mPa・sである、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the viscosity of the crystal suspension is 50 to 1550 mPa·s at 25°C.
  7.  前記結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均粒径が1.00~15.90μmである、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the crystalline sugar and/or sugar alcohol in the crystal suspension has an average particle size of 1.00 to 15.90 μm.
  8.  前記結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均粒径の標準偏差が1.00~10.70μmである、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the standard deviation of the average particle diameter of the crystalline sugar and/or sugar alcohol in the crystal suspension is 1.00 to 10.70 μm.
  9.  前記結晶懸濁液中の結晶状態の糖及び/又は糖アルコールの平均短径に対する平均長径の比が1.00~1.70である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the ratio of the average major axis to the average minor axis of the crystalline sugar and/or sugar alcohol in the crystal suspension is 1.00 to 1.70.
  10.  前記顆粒を構成する粒子の平均短径に対する平均長径の比が3.1以下である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the ratio of the average major axis to the average minor axis of the particles constituting the granules is 3.1 or less.
  11.  前記顆粒の固結度が10.0質量%未満である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the degree of caking of the granules is less than 10.0% by mass.
  12.  結晶性の糖及び結晶性の糖アルコールからなる群より選ばれる少なくとも一種を含有する顆粒であって、
     前記糖及び/又は前記糖アルコールは、一部が結晶状態であり、他部が非結晶状態であり、
     前記顆粒を構成する粒子の平均短径に対する平均長径の比が3.1以下である、顆粒。
    Granules containing at least one selected from the group consisting of crystalline sugar and crystalline sugar alcohol,
    A part of the sugar and/or the sugar alcohol is in a crystalline state and the other part is in an amorphous state,
    Granules, wherein the ratio of the average major axis to the average minor axis of the particles constituting the granules is 3.1 or less.
  13.  前記糖及び前記糖アルコールが、単糖、二糖、三糖及びこれらの糖アルコールである、請求項12に記載の顆粒。 The granule according to claim 12, wherein the sugar and the sugar alcohol are monosaccharides, disaccharides, trisaccharides, and sugar alcohols thereof.
  14.  前記結晶性の糖及び結晶性の糖アルコールからなる群より選ばれる少なくとも一種が、パラチノース、スクロース及びトレハロースからなる群より選ばれる少なくとも1種である、請求項12又は13に記載の顆粒。 The granule according to claim 12 or 13, wherein at least one selected from the group consisting of crystalline sugar and crystalline sugar alcohol is at least one selected from the group consisting of palatinose, sucrose, and trehalose.
  15.  機能材料を更に含有する、請求項12又は13に記載の顆粒。 The granule according to claim 12 or 13, further comprising a functional material.
  16.  前記機能材料が酵素、微生物、又は香料である、請求項15に記載の顆粒。 The granule according to claim 15, wherein the functional material is an enzyme, a microorganism, or a fragrance.
  17.  前記顆粒を構成する粒子の平均粒径が10.00~20.00μmである、請求項12又は13に記載の顆粒。 The granules according to claim 12 or 13, wherein the particles constituting the granules have an average particle diameter of 10.00 to 20.00 μm.
  18.  前記顆粒を構成する粒子の平均粒径の標準偏差が1.00~3.30μmである、請求項12又は13に記載の顆粒。 The granule according to claim 12 or 13, wherein the standard deviation of the average particle diameter of the particles constituting the granule is 1.00 to 3.30 μm.
  19.  前記顆粒の固結度が10.0質量%未満である、請求項12又は13に記載の顆粒。

     
    The granules according to claim 12 or 13, wherein the degree of caking of the granules is less than 10.0% by mass.

PCT/JP2023/006491 2022-07-15 2023-02-22 Method for producing granules, and granules WO2024014033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022114199A JP7197743B1 (en) 2022-07-15 2022-07-15 Method for producing granules and granules
JP2022-114199 2022-07-15

Publications (1)

Publication Number Publication Date
WO2024014033A1 true WO2024014033A1 (en) 2024-01-18

Family

ID=84687868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006491 WO2024014033A1 (en) 2022-07-15 2023-02-22 Method for producing granules, and granules

Country Status (2)

Country Link
JP (1) JP7197743B1 (en)
WO (1) WO2024014033A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197743B1 (en) * 2022-07-15 2022-12-27 Dm三井製糖株式会社 Method for producing granules and granules

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0056174A1 (en) * 1981-01-08 1982-07-21 General Foods Inc. Soluble coffee process
JPH0748300A (en) * 1993-08-05 1995-02-21 Nobumichi Nakano Production of sorbitol powder having high fluidity
JPH099986A (en) * 1994-07-19 1997-01-14 Hayashibara Biochem Lab Inc Trehalose and its production and use
JPH09108000A (en) * 1995-10-23 1997-04-28 Towa Chem Ind Co Ltd Production of highly fluid mixed powder composition comprising sugar and sorbitol
JPH09110891A (en) * 1995-10-23 1997-04-28 Towa Chem Ind Co Ltd Highly fluid maltitol powder and its production
JPH09121900A (en) * 1995-10-27 1997-05-13 Towa Chem Ind Co Ltd Production of high-fluidity powdery mixture of sucrose and maltitol
JPH09157285A (en) * 1995-12-06 1997-06-17 Towa Chem Ind Co Ltd Production of mixed powdery composition of ascorbic acid with maltitol having high fluidity
JPH10168093A (en) * 1996-12-10 1998-06-23 Hayashibara Biochem Lab Inc Crystalline powdery glucide, its production and use thereof
WO2001017503A2 (en) * 1999-09-09 2001-03-15 British Sugar Plc Sugar compositions
WO2003068007A1 (en) * 2002-02-18 2003-08-21 Ajinomoto Co., Inc. Dry powder holding flavor and aroma components and process for producing the same
JP2004002620A (en) * 2001-11-22 2004-01-08 Hayashibara Biochem Lab Inc Aroma retaining method and use thereof
JP2004180640A (en) * 2002-12-06 2004-07-02 Hayashibara Biochem Lab Inc Powder containing beta-maltose hydrous crystal, method for producing the same and use thereof
JP2013005790A (en) * 2011-05-23 2013-01-10 Mitsui Sugar Co Ltd Method for producing solid material from saccharide solution, and solid material
JP2014515597A (en) * 2011-03-04 2014-07-03 インターナショナル フレーバーズ アンド フラグランシズ インコーポレイテッド Spray-dried composition capable of retaining volatile compounds and method for producing the composition
CN104028167A (en) * 2014-06-19 2014-09-10 山东福田药业有限公司 Isomalt granulation process
US8939388B1 (en) * 2010-09-27 2015-01-27 ZoomEssence, Inc. Methods and apparatus for low heat spray drying
WO2017126598A1 (en) * 2016-01-20 2017-07-27 株式会社林原 Α,α-trehalose dihydrate crystal-containing powder, method for producing same, and use of same
JP7197743B1 (en) * 2022-07-15 2022-12-27 Dm三井製糖株式会社 Method for producing granules and granules

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0056174A1 (en) * 1981-01-08 1982-07-21 General Foods Inc. Soluble coffee process
JPH0748300A (en) * 1993-08-05 1995-02-21 Nobumichi Nakano Production of sorbitol powder having high fluidity
JPH099986A (en) * 1994-07-19 1997-01-14 Hayashibara Biochem Lab Inc Trehalose and its production and use
JPH09108000A (en) * 1995-10-23 1997-04-28 Towa Chem Ind Co Ltd Production of highly fluid mixed powder composition comprising sugar and sorbitol
JPH09110891A (en) * 1995-10-23 1997-04-28 Towa Chem Ind Co Ltd Highly fluid maltitol powder and its production
JPH09121900A (en) * 1995-10-27 1997-05-13 Towa Chem Ind Co Ltd Production of high-fluidity powdery mixture of sucrose and maltitol
JPH09157285A (en) * 1995-12-06 1997-06-17 Towa Chem Ind Co Ltd Production of mixed powdery composition of ascorbic acid with maltitol having high fluidity
JPH10168093A (en) * 1996-12-10 1998-06-23 Hayashibara Biochem Lab Inc Crystalline powdery glucide, its production and use thereof
WO2001017503A2 (en) * 1999-09-09 2001-03-15 British Sugar Plc Sugar compositions
JP2004002620A (en) * 2001-11-22 2004-01-08 Hayashibara Biochem Lab Inc Aroma retaining method and use thereof
WO2003068007A1 (en) * 2002-02-18 2003-08-21 Ajinomoto Co., Inc. Dry powder holding flavor and aroma components and process for producing the same
JP2004180640A (en) * 2002-12-06 2004-07-02 Hayashibara Biochem Lab Inc Powder containing beta-maltose hydrous crystal, method for producing the same and use thereof
US8939388B1 (en) * 2010-09-27 2015-01-27 ZoomEssence, Inc. Methods and apparatus for low heat spray drying
JP2014515597A (en) * 2011-03-04 2014-07-03 インターナショナル フレーバーズ アンド フラグランシズ インコーポレイテッド Spray-dried composition capable of retaining volatile compounds and method for producing the composition
JP2013005790A (en) * 2011-05-23 2013-01-10 Mitsui Sugar Co Ltd Method for producing solid material from saccharide solution, and solid material
CN104028167A (en) * 2014-06-19 2014-09-10 山东福田药业有限公司 Isomalt granulation process
WO2017126598A1 (en) * 2016-01-20 2017-07-27 株式会社林原 Α,α-trehalose dihydrate crystal-containing powder, method for producing same, and use of same
JP7197743B1 (en) * 2022-07-15 2022-12-27 Dm三井製糖株式会社 Method for producing granules and granules

Also Published As

Publication number Publication date
JP2024011889A (en) 2024-01-25
JP7197743B1 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
Larhrib et al. The influence of carrier and drug morphology on drug delivery from dry powder formulations
Alves et al. Phospholipid dry powders produced by spray drying processing: structural, thermodynamic and physical properties
TW575433B (en) Process for the manufacture of amorphous products by means of convection drying
WO2024014033A1 (en) Method for producing granules, and granules
JP5337027B2 (en) Spherical mannitol crystal particles
US4710231A (en) Solid fructose
CA2640165A1 (en) A method of producing porous microparticles
EP2055197A1 (en) Method for evaporative crystallisation of maltitol
CN111643487B (en) Lactose microsphere and preparation method thereof
JP5405294B2 (en) Process for producing powder composition and product obtained
Zhang et al. Investigation on the spherical crystallization process of cefotaxime sodium
WO2003070023A1 (en) Amino acid powder and process for producing the same
EP0735042B1 (en) Maltitol composition and its process of preparation
JP5090345B2 (en) Method for producing powder containing xylitol crystal particles and other polyol
JP3955087B2 (en) Highly flowable maltitol powder and method for producing the same
JP7174871B2 (en) Method for producing granules and granules
KR20010057572A (en) Dextrose hydrate in powder form and a process for the preparation thereof
RU2465892C1 (en) Method of obtaining highly dispersed meloxicame
EP0832899A1 (en) Lactitol composition and process for the preparation thereof
CN114805046B (en) Eutectic structure of vanillin and amide compound and preparation method thereof
CN115385776B (en) Erythritol crystal and preparation method and application thereof
JP6571100B2 (en) Iohexol powder and method of using the same
CN112999170B (en) Ibuprofen-loaded menthol composite particle and preparation method thereof
CN109535022B (en) Preparation method for improving fluidity of L-carnitine fumarate
JP3561565B2 (en) Method for producing mixed powder composition of sugar and sorbitol with high fluidity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839213

Country of ref document: EP

Kind code of ref document: A1