WO2024013948A1 - Semiconductor laser drive device - Google Patents

Semiconductor laser drive device Download PDF

Info

Publication number
WO2024013948A1
WO2024013948A1 PCT/JP2022/027745 JP2022027745W WO2024013948A1 WO 2024013948 A1 WO2024013948 A1 WO 2024013948A1 JP 2022027745 W JP2022027745 W JP 2022027745W WO 2024013948 A1 WO2024013948 A1 WO 2024013948A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
setting value
light amount
initial setting
laser element
Prior art date
Application number
PCT/JP2022/027745
Other languages
French (fr)
Japanese (ja)
Inventor
一貴 竹内
Original Assignee
日清紡マイクロデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡マイクロデバイス株式会社 filed Critical 日清紡マイクロデバイス株式会社
Priority to PCT/JP2022/027745 priority Critical patent/WO2024013948A1/en
Publication of WO2024013948A1 publication Critical patent/WO2024013948A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the present disclosure relates to a semiconductor laser driving device, a semiconductor laser driving method, and a distance measuring device.
  • Patent Document 1 discloses that a constant optical output is obtained by taking into consideration the droop characteristics of a semiconductor laser element used in an image forming apparatus such as a laser printer and a digital copying machine.
  • Patent Document 2 discloses that light amount correction accuracy is improved by performing light amount correction in real time according to changes in characteristics of a semiconductor laser element used in an image display device such as a laser scan display.
  • Semiconductor laser elements may be applied not only to image forming devices and image display devices, but also to distance measuring devices such as ToF (Time of Flight) sensors.
  • the ToF sensor measures the distance from the ToF sensor to the object based on the propagation time of the light from when the light is emitted toward the object until it is reflected back by the object.
  • the ToF sensor can handle three-dimensional information including not only distance information in the Z direction but also plane information in the XY directions.
  • a semiconductor laser element for a ToF sensor continuously generates short-width optical pulses in order to accurately measure the propagation time of light. Furthermore, since attenuation due to reflection at the target object and attenuation during propagation affect the sensing of the photodetector element, it is necessary to generate a sufficiently large amount of light from the semiconductor laser element.
  • semiconductor laser devices for ToF sensors are required to be driven with a large current and at high speed depending on distance and accuracy, compared to semiconductor laser devices for image forming devices or image display devices.
  • the semiconductor laser element is driven with a large current and at high speed, the temperature increases significantly due to heat generated by the semiconductor laser element itself. Therefore, even if the temperature of the semiconductor laser element changes due to the heat generated by the semiconductor laser element itself or other heat sources present in the environment in which the semiconductor laser element is used, there is a need to make it difficult for the amount of light from the semiconductor laser element to change.
  • An object of the present disclosure is to provide a semiconductor laser driving device and a semiconductor laser driving method in which the amount of light from a semiconductor laser element is unlikely to change even if the temperature of the semiconductor laser element changes due to heat generation of the semiconductor laser element itself or other heat sources. There is a particular thing. Furthermore, an object of the present disclosure is to provide a distance measuring device including such a semiconductor laser driving device.
  • a semiconductor laser driving device includes: A semiconductor laser drive device that drives a semiconductor laser element, an initial setting circuit that holds an initial setting value corresponding to a predetermined target light amount of the semiconductor laser element; a differential amplifier that obtains a measured light amount indicating the light amount generated by the semiconductor laser element from a first photodetecting element and outputs a difference signal indicating the difference between the measured light amount and the target light amount; a correction circuit that corrects the initial setting value based on the difference signal to generate a correction setting value; a current generation circuit that generates a drive current having a magnitude corresponding to the initial setting value or the correction setting value and supplies it to the semiconductor laser element; During an operation period in which the correction circuit operates the semiconductor laser device by continuously or intermittently supplying the drive current having a magnitude corresponding to the initial setting value or the correction setting value to the semiconductor laser device, Based on the difference signal, the correction setting value is generated or updated so as to reduce the difference between the measured light amount and the target light amount.
  • the semiconductor laser driving device even if the temperature of the semiconductor laser element changes due to heat generation of the semiconductor laser element itself or other heat sources, it is possible to make it difficult to cause a change in the amount of light of the semiconductor laser element. can.
  • FIG. 1 is a block diagram showing the configuration of a semiconductor laser driving device 1 according to a first embodiment.
  • 2 is a graph illustrating an example of the characteristics of the amount of light with respect to the current of the semiconductor laser element 2 driven by the semiconductor laser driving device 1 of FIG. 1.
  • FIG. 2 is a graph showing an example of a temporal change in the amount of light of a semiconductor laser element 2 driven by the semiconductor laser driving device 1 of FIG. 1.
  • FIG. 2 is a timing chart showing an example of the operation of the semiconductor laser driving device 1 of FIG. 1.
  • FIG. 2 is a timing chart showing another example of the operation of the semiconductor laser driving device 1 of FIG. 1.
  • FIG. FIG. 2 is a block diagram showing the configuration of a semiconductor laser driving device 1A according to a first comparative example.
  • FIG. 2 is a block diagram showing the configuration of a semiconductor laser driving device 1B according to a second comparative example.
  • 7 is a graph showing an example of a temporal change in the amount of light of the semiconductor laser element 2 driven by the semiconductor laser drive device 1A of FIG. 6 or the semiconductor laser drive device 1B of FIG. 7.
  • FIG. It is a block diagram showing the composition of semiconductor laser drive device 1C concerning a modification of a 1st embodiment. It is a block diagram showing the composition of distance measuring device 20 concerning a 2nd embodiment.
  • FIG. 1 is a block diagram showing the configuration of a semiconductor laser driving device 1 according to the first embodiment.
  • the semiconductor laser driving device 1 supplies a driving current Iop to the semiconductor laser element 2 to drive the semiconductor laser element 2.
  • the semiconductor laser driving device 1 obtains a measured light amount indicating the amount of light generated by the semiconductor laser element 2 from the photodetector element 3, and determines the magnitude of the drive current based on the measured light amount.
  • the semiconductor laser element 2 is, for example, a laser diode.
  • the photodetector element 3 is, for example, a photodiode.
  • the photodetector element 3 may be provided separately from the semiconductor laser element 2 or may be integrated with the semiconductor laser element 2.
  • the semiconductor laser driving device 1 includes an initial setting circuit 11, a digital/analog converter (DAC) 12, a correction circuit 13, a digital/analog converter (DAC) 14, a switch 15, a reference voltage source 16, and a differential amplifier 17. Be prepared. Each component of the semiconductor laser driving device 1 operates according to a clock signal Sclk supplied from the outside.
  • the initial setting circuit 11 holds an initial setting value corresponding to a predetermined target light amount of the semiconductor laser element 2.
  • the initial setting value is a combination of a digital code value Sbi representing the magnitude of the bias current Ibi and a digital code value Smod0 representing the magnitude of the modulation current Imod.
  • the bias current Ibi may be set equal to, for example, the minimum value of the current at which the semiconductor laser element 2 starts emitting light, that is, the threshold current Ith. When the current flowing through the semiconductor laser device 2 is smaller than the threshold current Ith, the semiconductor laser device 2 does not emit light at all or hardly emit light.
  • the bias current Ibi and the modulation current Imod are set so that when the sum of them flows through the semiconductor laser device 2, the light amount of the semiconductor laser device 2 becomes equal to the target light amount.
  • the initial setting circuit 11 predetermines the digital code values Sbi and Smod0 by executing APC (Auto Power Control) based on the difference signal Sdiff (described later) output from the differential amplifier 17 in accordance with the control signal Sinit. .
  • the initial setting circuit 11 stores digital code values Sbi and Smod0 in an internal memory 11m.
  • the digital/analog converter 12 converts the digital code value Sbi into a bias current Ibi having a corresponding current value.
  • the correction circuit 13 corrects the digital code value Smod0 based on the difference signal Sdiff (described later) output from the differential amplifier 17 in accordance with the control signal Srun, and generates a corrected digital code value Smod.
  • the correction circuit 13 stores the digital code values Smod0 and Smod in an internal memory 13m.
  • the combination of digital code values Sbi and Smod is also referred to as a "correction setting value.”
  • the correction circuit 13 corrects the initial setting value based on the difference signal Sdiff to generate a corrected setting value.
  • the digital/analog converter 14 converts the digital code value Smod into a modulation current Imod having a corresponding current value.
  • the switch 15 passes or cuts off the modulation current Imod according to the control signal Son. Therefore, when the switch 15 is turned on, the sum of the bias current Ibi and the modulation current Imod is supplied to the semiconductor laser element 2 as the drive current Iop. Further, when the switch 15 is turned off, only the bias current Ibi is supplied to the semiconductor laser element 2.
  • the photodetector element 3 generates a measurement voltage that indicates the magnitude of the measured light amount.
  • a reference voltage source 16 generates a reference voltage indicating the magnitude of the target light amount.
  • the differential amplifier 17 acquires the measured voltage from the photodetector element 3, the reference voltage from the reference voltage source 16, and outputs a difference signal Sdiff indicating the difference between the measured light amount and the target light amount.
  • the differential amplifier 17 is, for example, an operational amplifier.
  • the initial setting circuit 11 determines the initial setting value in advance based on the difference signal Sdiff, and the correction circuit 13 corrects the initial setting value based on the difference signal Sdiff to generate a corrected setting value.
  • the semiconductor laser driving device 1 has at least two periods having different operation modes, that is, an initial setting period and an operation period.
  • the semiconductor laser driving device 1 determines an initial setting value corresponding to the target light amount by gradually increasing the driving current Iop from zero.
  • the semiconductor laser driving device 1 operates the semiconductor laser device 2 by continuously or intermittently supplying the semiconductor laser device 2 with a drive current Iop having a magnitude corresponding to the initial setting value or the correction setting value. .
  • the correction circuit 13 generates or updates a correction setting value based on the difference signal Sdiff so as to reduce the difference between the measured light amount and the target light amount.
  • the magnitude of the drive current Iop can be corrected during the operation period, and therefore, even if the temperature of the semiconductor laser element 2 changes due to heat generation of the semiconductor laser element 2 itself or other heat sources, the magnitude of the drive current Iop can be corrected. Changes in the amount of light can be made less likely to occur.
  • the digital/analog converter 12, the digital/analog converter 14, and the switch 15 are a current generation circuit that generates a drive current Iop having a magnitude corresponding to the initial setting value or the correction setting value and supplies it to the semiconductor laser element 2.
  • Digital/analog converter 12 is an example of a first current source that generates bias current Ibi.
  • Digital/analog converter 14 and switch 15 are examples of a second current source that generates modulation current Imod.
  • FIG. 2 is a graph showing an example of the characteristics of the amount of light with respect to the current of the semiconductor laser element 2 driven by the semiconductor laser driving device 1 of FIG.
  • the semiconductor laser device 2 when the current flowing through the semiconductor laser device 2 is smaller than the threshold current Ith, the semiconductor laser device 2 does not emit light at all or hardly emit light.
  • the semiconductor laser device 2 exceeds the threshold current Ith, the semiconductor laser device 2 starts emitting light, and thereafter the amount of light increases in proportion to the amount of increase in the current.
  • the bias current Ibi and the modulation current Imod1 are set so that when the sum thereof flows through the semiconductor laser device 2, the light amount of the semiconductor laser device 2 becomes equal to the target light amount.
  • the semiconductor laser device 2 when the semiconductor laser device 2 is operated, the semiconductor laser device 2 itself generates heat, and the characteristics of the semiconductor laser device 2 (for example, the magnitude of the threshold current, the gradient of the light amount/current characteristics) change. Since the amount of light decreases as the temperature rises, even if the sum of the bias current Ibi and modulation current Imod1 flows through the semiconductor laser element 2, the measured amount of light becomes smaller than the target amount of light. Therefore, the semiconductor laser driving device 1 generates a modulation current Imod2 that is an increased modulation current Imod1. Modulation current Imod2 is set so that when the sum of bias current Ibi and modulation current Imod2 flows through semiconductor laser device 2, the light amount of semiconductor laser device 2 becomes equal to the target light amount.
  • Modulation current Imod2 is set so that when the sum of bias current Ibi and modulation current Imod2 flows through semiconductor laser device 2, the light amount of semiconductor laser device 2 becomes equal to the target light amount.
  • Modulation current Imod3 is set so that when the sum of bias current Ibi and modulation current Imod3 flows through semiconductor laser device 2, the light amount of semiconductor laser device 2 becomes equal to the target light amount.
  • FIG. 3 is a graph showing an example of a temporal change in the amount of light of the semiconductor laser element 2 driven by the semiconductor laser driving device 1 of FIG.
  • the semiconductor laser element 2 when using the semiconductor laser element 2 in a ToF sensor, by intermittently supplying the driving current Iop to the semiconductor laser element 2 at a frequency of several tens of MHz, the semiconductor laser element 2 continuously emits short-width optical pulses. occurs.
  • the semiconductor laser element 2 when the semiconductor laser element 2 is operated, the semiconductor laser element 2 itself generates heat, and the amount of light may gradually decrease.
  • by correcting the magnitude of the drive current Iop during the operation period it is possible to make it difficult for the amount of light from the semiconductor laser element 2 to change.
  • FIG. 4 is a timing chart showing an example of the operation of the semiconductor laser driving device 1 of FIG. 1.
  • FIG. 4 shows temporal changes in the control signals Sinit, Srun, and Son, the clock signal Sclk, the digital code values Snbi and Smod, and the amount of light.
  • control signal Srun is at a low level (L), and the correction circuit 13 does not correct the input digital code value Smod0 and outputs it as it is as the digital code value Smod.
  • control signal Son is at a low level, and the switch 51 is turned off.
  • the initial setting circuit 11 executes APC.
  • the initial setting circuit 11 gradually increases the digital code value Sbi while referring to the difference signal Sdiff, and holds the digital code value bi1 when the amount of light starts to increase at a rate higher than a predetermined rate of change.
  • the control signal Son transitions from low level to high level, and switch 15 is turned on.
  • the initial setting circuit 11 gradually increases the digital code value Smod0 while referring to the difference signal Sdiff, and holds the digital code value mod1 when the measured light amount reaches the target light amount.
  • the initial setting circuit 11 holds the digital code values bi and mod1 as initial setting values corresponding to the target light amount, that is, as the digital code values Sbi and Smod0. After that, the control signals Sinit and Son transition from high level to low level, and the initial setting period ends.
  • the semiconductor laser driving device 1 starts an operation period in which the semiconductor laser element 2 is turned on for a desired task.
  • the operation period includes a first time period in which only the bias current Ibi is supplied to the semiconductor laser device 2, and a second time period in which the sum of the bias current Ibi and the modulation current Imod is supplied as the drive current Iop to the semiconductor laser device 2. and repeating the first and second time intervals alternately.
  • the control signal Son is at a low level and the switch 51 is turned off.
  • the control signal Son is at a high level and the switch 51 is turned on.
  • the correction circuit 13 does not correct the digital code value Smod0 based on the difference signal Sdiff.
  • the correction circuit 13 maintains the digital code value Smod as it is.
  • the correction circuit 13 initializes the correction setting value every predetermined period of the clock signal Sclk. It may be changed so as to approach the value. In the example of FIG. 4, the digital code value Smod is reduced so as to approach the digital code value mod1.
  • the correction circuit 13 corrects the digital code value Smod0 based on the difference signal Sdiff so as to reduce the difference between the measured light amount and the target light amount, and generates a corrected digital code value Smod.
  • the digital code value Smod gradually increases.
  • the amount of light may gradually decrease as shown by the broken line at the bottom of FIG. 4 ("no correction"). According to this embodiment, by correcting the magnitude of the drive current Iop during the operation period, it is possible to make it difficult for the amount of light from the semiconductor laser element 2 to change.
  • the period and step width for changing the digital code value by the initial setting circuit 11 and the correction circuit 13 may be determined depending on the application and usage environment of the semiconductor laser device 2.
  • FIG. 5 is a timing chart showing another example of the operation of the semiconductor laser driving device 1 of FIG. 1.
  • the correction circuit 13 holds the digital code value Smod immediately before the transition from the second time interval to the first time interval (time t5 in FIG. 5).
  • the correction circuit 13 holds the digital code value mod2 as the digital code value Smod.
  • the semiconductor laser driving device 1 When transitioning from the first time period to the second time period (time t6 in FIG. 5), the semiconductor laser driving device 1 generates a driving current Iop having a magnitude corresponding to the held digital code values Sbi and Smod. It is generated and supplied to the semiconductor laser device 2.
  • FIG. 6 is a block diagram showing the configuration of a semiconductor laser driving device 1A according to a first comparative example.
  • the semiconductor laser driving device 1A has a configuration in which the correction circuit 13 is removed from the semiconductor laser driving device 1 of FIG.
  • the configuration of FIG. 6 is used, for example, to drive a semiconductor laser element for a general image forming apparatus or image display apparatus.
  • the image forming device and the image display device scan a frame including an image area and a non-image area using a raster scan method.
  • the semiconductor laser driving device 1A corrects the light intensity of the semiconductor laser element 2 according to the ambient temperature by forcibly turning on the semiconductor laser element 2 and executing APC. be able to.
  • the semiconductor laser driving device 1A cannot correct the light amount of the semiconductor laser element 2, for example, when scanning an image area. Therefore, in the configuration of FIG. 6, the amount of light from the semiconductor laser element 2 may increase or decrease depending on the temperature change of the semiconductor laser element 2.
  • FIG. 7 is a block diagram showing the configuration of a semiconductor laser driving device 1B according to a second comparative example.
  • the semiconductor laser driving device 1B includes a correction circuit 13B and a memory 18 in place of the correction circuit 13 in FIG.
  • the memory 18 stores a predetermined pattern for correcting the digital code value Smod0.
  • the correction circuit 13B corrects the digital code value Smod0 based on the pattern read from the memory 18, and generates a corrected digital code value Smod.
  • the configuration shown in FIG. 7 assumes applications such as laser printers and digital copying machines where the surrounding environment of the semiconductor laser element does not change significantly, and has the characteristic that the light amount of the semiconductor laser element 2 increases or decreases according to the temperature change of the semiconductor laser element 2. Requires the precondition that it can be inferred. Therefore, when the usage environment is not always constant and unpredictable environmental changes occur, such as with a ToF sensor, the configuration shown in FIG. 7 cannot follow changes in the amount of light from the semiconductor laser element 2.
  • FIG. 8 is a graph showing an example of a temporal change in the amount of light of the semiconductor laser element 2 driven by the semiconductor laser drive device 1A of FIG. 6 or the semiconductor laser drive device 1B of FIG. 7. According to the configurations shown in FIGS. 6 and 7, when the semiconductor laser element 2 is operated, the semiconductor laser element 2 itself generates heat, and the amount of light may gradually decrease.
  • the semiconductor laser driving device 1 by correcting the magnitude of the driving current Iop during the operation period, the amount of light of the semiconductor laser element 2 changes as described with reference to FIG. can be made less likely to occur. Further, according to the semiconductor laser driving device 1 according to the present embodiment, as shown in FIG. 7, it is possible to follow any change in light amount depending on the usage environment, without being limited to the correction pattern stored in advance in the storage device. I can do it. Further, according to the semiconductor laser driving device 1 according to the present embodiment, it is possible to immediately respond to a sudden change in the amount of light.
  • FIG. 9 is a block diagram showing the configuration of a semiconductor laser driving device 1C according to a modification of the first embodiment.
  • the semiconductor laser driving device 1C includes an initial setting circuit 11C in place of the initial setting circuit 11 of the semiconductor laser driving device 1 of FIG.
  • the initial setting circuit 11C does not execute APC and holds predetermined initial setting values in the internal memory 11m. By not performing APC, costs can be lower than in the case of FIG.
  • FIG. 10 is a block diagram showing the configuration of a distance measuring device 20 according to the second embodiment.
  • the distance measuring device 20 includes a semiconductor laser drive device 1 , a semiconductor laser element 2 , a photodetection element 3 , a photodetection element 4 , and a processing circuit 5 .
  • the semiconductor laser drive device 1, semiconductor laser element 2, and photodetector element 3 in FIG. 10 are configured in the same manner as the corresponding components in FIG.
  • the photodetector element 4 acquires the amount of reflected light that indicates the amount of light generated by the semiconductor laser device 2 and reflected by the object 30 .
  • the processing circuit 5 calculates the distance from the distance measuring device 20 to the object 30 based on the amount of reflected light.
  • the processing circuit 5 generates the clock signal Sclk and control signals Sinit, Srun, and Son shown in FIG.
  • the distance measuring device 20 is, for example, a ToF sensor that acquires a three-dimensional image of the object 30 viewed from the distance measuring device 20. Since the distance measuring device 20 includes the semiconductor laser driving device 1 according to the first embodiment, even if the temperature of the semiconductor laser device 2 changes due to heat generation of the semiconductor laser device 2 itself or other heat sources, the semiconductor laser Changes in the light amount of the element 2 can be made less likely to occur. Therefore, the distance measuring device 20 can calculate the distance from the distance measuring device 20 to the target object 30 with high accuracy.
  • FIGS. 4 and 5 a case has been described in which the digital code value Smod of the correction setting value is generated so as to be larger than the digital code value Smod0 of the initial setting value.
  • the digital code value Smod may be generated to be smaller than the digital code value Smod0.
  • the initial setting circuit 11 may re-execute APC.
  • a semiconductor laser driving device 1 is a semiconductor laser driving device 1 that drives a semiconductor laser element 2, and includes an initial setting circuit 11, a differential amplifier 17, a correction circuit 13, and a current generation circuit. Equipped with The initial setting circuit 11 holds an initial setting value corresponding to a predetermined target light amount of the semiconductor laser element 2.
  • the differential amplifier 17 acquires a measured light amount indicating the light amount generated by the semiconductor laser element 2 from the first photodetector element 3, and outputs a difference signal Sdiff indicating the difference between the measured light amount and the target light amount.
  • the correction circuit 13 corrects the initial setting value based on the difference signal Sdiff to generate a corrected setting value.
  • the current generation circuit generates a drive current Iop having a magnitude corresponding to the initial set value or the corrected set value and supplies it to the semiconductor laser element 2 .
  • the correction circuit 13 corrects the difference during an operation period in which the semiconductor laser device 2 is operated by continuously or intermittently supplying the drive current Iop having a magnitude corresponding to the initial setting value or the correction setting value to the semiconductor laser device 2. Based on the signal Sdiff, a correction setting value is generated or updated so as to reduce the difference between the measured light amount and the target light amount.
  • the semiconductor laser driving device 1 may be configured as follows.
  • the current generation circuit includes a first current source that generates a bias current Ibi and a second current source that generates a modulation current Imod.
  • the operating period includes a first time period and a second time period that alternate with each other.
  • the current generation circuit supplies the bias current Ibi to the semiconductor laser device 2.
  • the current generation circuit supplies the sum of the bias current Ibi and the modulation current Imod to the semiconductor laser device 2 as the drive current Iop.
  • the semiconductor laser drive device 1 according to the first or second aspect may be configured as follows.
  • the correction circuit 13 changes the correction setting value so as to approach the initial setting value at predetermined intervals in the first time interval.
  • the semiconductor laser drive device 1 according to the first or second aspect may be configured as follows.
  • the correction circuit 13 holds the correction setting value immediately before the transition from the second time period to the first time period.
  • the current generation circuit generates a drive current Iop having a magnitude corresponding to the held correction setting value and supplies it to the semiconductor laser element 2 when transitioning from the first time period to the second time period.
  • the semiconductor laser driving device 1 may be configured as follows.
  • the initial setting circuit 11 determines an initial setting value in advance based on the difference signal Sdiff.
  • the semiconductor laser driving device 1C may be configured as follows.
  • the initial setting circuit 11C holds predetermined initial setting values.
  • a distance measuring device 20 includes a semiconductor laser driving device 1 according to one of the first to seventh aspects, a semiconductor laser element 2, and an amount of light generated by the semiconductor laser element 2.
  • a first photodetector element 3 that obtains a measured light amount indicating the amount of light emitted by the semiconductor laser element 2 and reflected by the object, and a second photodetector element 4 that obtains the amount of reflected light that indicates the amount of light generated by the semiconductor laser element 2 and reflected by the object.
  • a processing circuit 5 that calculates the distance to the target object based on the distance to the target object.
  • the semiconductor laser driving method is a semiconductor laser driving method for driving the semiconductor laser element 2, and includes the following steps.
  • the method includes the step of maintaining an initial setting value corresponding to a predetermined target light amount of the semiconductor laser device 2.
  • the method includes the steps of acquiring a measured light amount indicating the light amount generated by the semiconductor laser element 2 from the first photodetecting element, and outputting a difference signal Sdiff indicating the difference between the measured light amount and the target light amount.
  • This method includes the steps of correcting the initial setting value based on the difference signal Sdiff to generate a correction setting value, and generating a drive current Iop having a magnitude corresponding to the initial setting value or the correction setting value to drive the semiconductor laser device 2. including the step of supplying.
  • the step of generating the correction setting value is an operation of operating the semiconductor laser device 2 by continuously or intermittently supplying the driving current Iop having a magnitude corresponding to the initial setting value or the correction setting value to the semiconductor laser device 2.
  • the period includes generating or updating a correction setting value based on the difference signal Sdiff so as to reduce the difference between the measured light amount and the target light amount.

Abstract

In the present invention, an initial setting circuit (11) holds an initial setting value corresponding to a preset target light amount of a semiconductor laser element (2). A differential amplifier (17) acquires, from a first optical detection element (3), a measured light amount indicating the light amount generated by the semiconductor laser element (2), and outputs a difference signal indicating the difference between the measured light amount and the target light amount. A correction circuit (13) generates a correction setting value by correcting the initial setting value on the basis of the difference signal. A current generating circuit generates and supplies to the semiconductor laser element (2) a drive current having a magnitude corresponding to the initial setting value or the corrected setting value. The correction circuit (13), during an operation period in which the drive current having a magnitude corresponding to the initial setting value or the corrected setting value is continuously or intermittently supplied to the semiconductor laser element (2) to operate the semiconductor laser element (2), generates or updates the corrected setting value on the basis of the difference signal so as to reduce the difference between the measured light amount and the target light amount.

Description

半導体レーザ駆動装置Semiconductor laser drive device
 本開示は、半導体レーザ駆動装置、半導体レーザ駆動方法、及び距離測定装置に関する。 The present disclosure relates to a semiconductor laser driving device, a semiconductor laser driving method, and a distance measuring device.
 一般的に、半導体レーザ素子の光量は、当該素子の温度変化に応じて増減する。半導体レーザ素子の光量の変化を補償するために、例えば、特許文献1及び2の技術が開示されている。特許文献1は、レーザプリンタ及びディジタル複写機などの画像形成装置に使用される半導体レーザ素子のドループ特性を考慮して一定の光出力を得ることを開示している。特許文献2は、レーザスキャンディスプレイなどの画像表示装置に使用される半導体レーザ素子の特性の変化に応じた光量補正をリアルタイムに行うことで光量補正精度を高めることを開示している。 In general, the amount of light from a semiconductor laser element increases or decreases depending on the temperature change of the element. In order to compensate for changes in the amount of light from a semiconductor laser element, techniques disclosed in Patent Documents 1 and 2, for example, have been disclosed. Patent Document 1 discloses that a constant optical output is obtained by taking into consideration the droop characteristics of a semiconductor laser element used in an image forming apparatus such as a laser printer and a digital copying machine. Patent Document 2 discloses that light amount correction accuracy is improved by performing light amount correction in real time according to changes in characteristics of a semiconductor laser element used in an image display device such as a laser scan display.
特許第5672845号公報Patent No. 5672845 特許第5125390号公報Patent No. 5125390
 半導体レーザ素子は、画像形成装置及び画像表示装置だけでなく、例えばToF(Time of Flight)センサのような距離測定装置にも適用されることがある。ToFセンサは、光を対象物に向けて放射してから対象物により反射されて戻るまでの光の伝搬時間に基づいて、当該ToFセンサから対象物までの距離を測定する。ToFセンサは、Z方向の距離情報だけでなくXY方向の平面情報を含む三次元情報を扱うことができる。 Semiconductor laser elements may be applied not only to image forming devices and image display devices, but also to distance measuring devices such as ToF (Time of Flight) sensors. The ToF sensor measures the distance from the ToF sensor to the object based on the propagation time of the light from when the light is emitted toward the object until it is reflected back by the object. The ToF sensor can handle three-dimensional information including not only distance information in the Z direction but also plane information in the XY directions.
 ToFセンサ用の半導体レーザ素子は、光の伝搬時間を正確に測定するために、短幅の光パルスを連続的に発生する。また、対象物における反射による減衰及び伝搬中の減衰は、光検出素子のセンシングに影響を与えるので、半導体レーザ素子から十分に大きな光量を発生する必要がある。概して、ToFセンサ用の半導体レーザ素子は、画像形成装置又は画像表示装置用の半導体レーザ素子と比較して、距離及び精度に応じて大電流かつ高速での駆動が求められる。しかしながら、半導体レーザ素子が大電流かつ高速で駆動される場合、半導体レーザ素子自体の発熱による温度の増大が顕著になる。従って、半導体レーザ素子自体の発熱又は半導体レーザ素子の利用環境に存在する他の熱源によって半導体レーザ素子の温度が変化しても、半導体レーザ素子の光量の変化を生じにくくすることが求められる。 A semiconductor laser element for a ToF sensor continuously generates short-width optical pulses in order to accurately measure the propagation time of light. Furthermore, since attenuation due to reflection at the target object and attenuation during propagation affect the sensing of the photodetector element, it is necessary to generate a sufficiently large amount of light from the semiconductor laser element. In general, semiconductor laser devices for ToF sensors are required to be driven with a large current and at high speed depending on distance and accuracy, compared to semiconductor laser devices for image forming devices or image display devices. However, when the semiconductor laser element is driven with a large current and at high speed, the temperature increases significantly due to heat generated by the semiconductor laser element itself. Therefore, even if the temperature of the semiconductor laser element changes due to the heat generated by the semiconductor laser element itself or other heat sources present in the environment in which the semiconductor laser element is used, there is a need to make it difficult for the amount of light from the semiconductor laser element to change.
 本開示の目的は、半導体レーザ素子自体の発熱又は他の熱源によって半導体レーザ素子の温度が変化しても、半導体レーザ素子の光量の変化が生じにくい半導体レーザ駆動装置及び半導体レーザ駆動方法を提供することにある。さらに、本開示の目的は、そのような半導体レーザ駆動装置を備えた距離測定装置を提供することにある。 An object of the present disclosure is to provide a semiconductor laser driving device and a semiconductor laser driving method in which the amount of light from a semiconductor laser element is unlikely to change even if the temperature of the semiconductor laser element changes due to heat generation of the semiconductor laser element itself or other heat sources. There is a particular thing. Furthermore, an object of the present disclosure is to provide a distance measuring device including such a semiconductor laser driving device.
 本開示の一態様に係る半導体レーザ駆動装置は、
 半導体レーザ素子を駆動する半導体レーザ駆動装置であって、
 前記半導体レーザ素子の予め決められた目標光量に対応する初期設定値を保持する初期設定回路と、
 前記半導体レーザ素子によって発生された光量を示す測定光量を第1の光検出素子から取得し、前記測定光量と前記目標光量との差を示す差信号を出力する差動増幅器と、
 前記差信号に基づいて前記初期設定値を補正して補正設定値を生成する補正回路と、
 前記初期設定値又は前記補正設定値に対応する大きさを有する駆動電流を生成して前記半導体レーザ素子に供給する電流生成回路とを備え、
 前記補正回路は、前記初期設定値又は前記補正設定値に対応する大きさを有する前記駆動電流を前記半導体レーザ素子に連続的又は断続的に供給して前記半導体レーザ素子を動作させる動作期間において、前記差信号に基づいて、前記測定光量と前記目標光量との差を低減するように前記補正設定値を生成又は更新する。
A semiconductor laser driving device according to one aspect of the present disclosure includes:
A semiconductor laser drive device that drives a semiconductor laser element,
an initial setting circuit that holds an initial setting value corresponding to a predetermined target light amount of the semiconductor laser element;
a differential amplifier that obtains a measured light amount indicating the light amount generated by the semiconductor laser element from a first photodetecting element and outputs a difference signal indicating the difference between the measured light amount and the target light amount;
a correction circuit that corrects the initial setting value based on the difference signal to generate a correction setting value;
a current generation circuit that generates a drive current having a magnitude corresponding to the initial setting value or the correction setting value and supplies it to the semiconductor laser element;
During an operation period in which the correction circuit operates the semiconductor laser device by continuously or intermittently supplying the drive current having a magnitude corresponding to the initial setting value or the correction setting value to the semiconductor laser device, Based on the difference signal, the correction setting value is generated or updated so as to reduce the difference between the measured light amount and the target light amount.
 本開示の一態様に係る半導体レーザ駆動装置によれば、半導体レーザ素子自体の発熱又は他の熱源によって半導体レーザ素子の温度が変化しても、半導体レーザ素子の光量の変化を生じにくくすることができる。 According to the semiconductor laser driving device according to one aspect of the present disclosure, even if the temperature of the semiconductor laser element changes due to heat generation of the semiconductor laser element itself or other heat sources, it is possible to make it difficult to cause a change in the amount of light of the semiconductor laser element. can.
第1の実施形態に係る半導体レーザ駆動装置1の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a semiconductor laser driving device 1 according to a first embodiment. 図1の半導体レーザ駆動装置1によって駆動される半導体レーザ素子2の電流に対する光量の特性の例を示すグラフである。2 is a graph illustrating an example of the characteristics of the amount of light with respect to the current of the semiconductor laser element 2 driven by the semiconductor laser driving device 1 of FIG. 1. FIG. 図1の半導体レーザ駆動装置1によって駆動される半導体レーザ素子2の光量の時間的変化の例を示すグラフである。2 is a graph showing an example of a temporal change in the amount of light of a semiconductor laser element 2 driven by the semiconductor laser driving device 1 of FIG. 1. FIG. 図1の半導体レーザ駆動装置1の動作例を示すタイミングチャートである。2 is a timing chart showing an example of the operation of the semiconductor laser driving device 1 of FIG. 1. FIG. 図1の半導体レーザ駆動装置1のもう1つの動作例を示すタイミングチャートである。2 is a timing chart showing another example of the operation of the semiconductor laser driving device 1 of FIG. 1. FIG. 第1の比較例に係る半導体レーザ駆動装置1Aの構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a semiconductor laser driving device 1A according to a first comparative example. 第2の比較例に係る半導体レーザ駆動装置1Bの構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a semiconductor laser driving device 1B according to a second comparative example. 図6の半導体レーザ駆動装置1A又は図7の半導体レーザ駆動装置1Bによって駆動される半導体レーザ素子2の光量の時間的変化の例を示すグラフである。7 is a graph showing an example of a temporal change in the amount of light of the semiconductor laser element 2 driven by the semiconductor laser drive device 1A of FIG. 6 or the semiconductor laser drive device 1B of FIG. 7. FIG. 第1の実施形態の変形例に係る半導体レーザ駆動装置1Cの構成を示すブロック図である。It is a block diagram showing the composition of semiconductor laser drive device 1C concerning a modification of a 1st embodiment. 第2の実施形態に係る距離測定装置20の構成を示すブロック図である。It is a block diagram showing the composition of distance measuring device 20 concerning a 2nd embodiment.
 以下、図面を参照して、本開示の実施形態について説明する。各図面にわたって、同様の構成要素は同じ参照番号で示す。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Like components are designated with the same reference numerals throughout the drawings.
[第1の実施形態]
[第1の実施形態の構成]
 図1は、第1の実施形態に係る半導体レーザ駆動装置1の構成を示すブロック図である。半導体レーザ駆動装置1は、半導体レーザ素子2に駆動電流Iopを供給して半導体レーザ素子2を駆動する。半導体レーザ駆動装置1は、半導体レーザ素子2によって発生された光量を示す測定光量を光検出素子3から取得し、測定光量に基づいて駆動電流の大きさを決定する。
[First embodiment]
[Configuration of first embodiment]
FIG. 1 is a block diagram showing the configuration of a semiconductor laser driving device 1 according to the first embodiment. The semiconductor laser driving device 1 supplies a driving current Iop to the semiconductor laser element 2 to drive the semiconductor laser element 2. The semiconductor laser driving device 1 obtains a measured light amount indicating the amount of light generated by the semiconductor laser element 2 from the photodetector element 3, and determines the magnitude of the drive current based on the measured light amount.
 半導体レーザ素子2は、例えば、レーザダイオードである。光検出素子3は、例えば、フォトダイオードである。光検出素子3は、半導体レーザ素子2と別個に設けられてもよく、半導体レーザ素子2に一体化されてもよい。 The semiconductor laser element 2 is, for example, a laser diode. The photodetector element 3 is, for example, a photodiode. The photodetector element 3 may be provided separately from the semiconductor laser element 2 or may be integrated with the semiconductor laser element 2.
 半導体レーザ駆動装置1は、初期設定回路11、ディジタル/アナログ変換器(DAC)12、補正回路13、ディジタル/アナログ変換器(DAC)14、スイッチ15、基準電圧源16、及び差動増幅器17を備える。半導体レーザ駆動装置1の各構成要素は、外部から供給されるクロック信号Sclkに従って動作する。 The semiconductor laser driving device 1 includes an initial setting circuit 11, a digital/analog converter (DAC) 12, a correction circuit 13, a digital/analog converter (DAC) 14, a switch 15, a reference voltage source 16, and a differential amplifier 17. Be prepared. Each component of the semiconductor laser driving device 1 operates according to a clock signal Sclk supplied from the outside.
 初期設定回路11は、半導体レーザ素子2の予め決められた目標光量に対応する初期設定値を保持する。初期設定値は、バイアス電流Ibiの大きさを表すディジタルコード値Sbiと、変調電流Imodの大きさを表すディジタルコード値Smod0との組み合わせである。バイアス電流Ibiは、例えば、半導体レーザ素子2が発光し始める電流の最小値、すなわち、しきい値電流Ithに等しく設定されてもよい。半導体レーザ素子2に流れる電流がしきい値電流Ithよりも小さいとき、半導体レーザ素子2はまったく発光しないか、ほとんど発光しない。バイアス電流Ibi及び変調電流Imodは、それらの和が半導体レーザ素子2に流れているとき、半導体レーザ素子2の光量が目標光量に等しくなるように設定される。初期設定回路11は、制御信号Sinitに従って、差動増幅器17から出力される差信号Sdiff(後述)に基づいてAPC(Auto Power Control)を実行することにより、ディジタルコード値Sbi及びSmod0を予め決定する。初期設定回路11は、ディジタルコード値Sbi及びSmod0を内部のメモリ11mに格納する。 The initial setting circuit 11 holds an initial setting value corresponding to a predetermined target light amount of the semiconductor laser element 2. The initial setting value is a combination of a digital code value Sbi representing the magnitude of the bias current Ibi and a digital code value Smod0 representing the magnitude of the modulation current Imod. The bias current Ibi may be set equal to, for example, the minimum value of the current at which the semiconductor laser element 2 starts emitting light, that is, the threshold current Ith. When the current flowing through the semiconductor laser device 2 is smaller than the threshold current Ith, the semiconductor laser device 2 does not emit light at all or hardly emit light. The bias current Ibi and the modulation current Imod are set so that when the sum of them flows through the semiconductor laser device 2, the light amount of the semiconductor laser device 2 becomes equal to the target light amount. The initial setting circuit 11 predetermines the digital code values Sbi and Smod0 by executing APC (Auto Power Control) based on the difference signal Sdiff (described later) output from the differential amplifier 17 in accordance with the control signal Sinit. . The initial setting circuit 11 stores digital code values Sbi and Smod0 in an internal memory 11m.
 ディジタル/アナログ変換器12は、ディジタルコード値Sbiを、対応する電流値を有するバイアス電流Ibiに変換する。 The digital/analog converter 12 converts the digital code value Sbi into a bias current Ibi having a corresponding current value.
 補正回路13は、制御信号Srunに従って、差動増幅器17から出力される差信号Sdiff(後述)に基づいてディジタルコード値Smod0を補正し、補正されたディジタルコード値Smodを生成する。補正回路13は、ディジタルコード値Smod0及びSmodを内部のメモリ13mに格納する。 The correction circuit 13 corrects the digital code value Smod0 based on the difference signal Sdiff (described later) output from the differential amplifier 17 in accordance with the control signal Srun, and generates a corrected digital code value Smod. The correction circuit 13 stores the digital code values Smod0 and Smod in an internal memory 13m.
 本明細書では、ディジタルコード値Sbi及びSmodの組み合わせを「補正設定値」とも呼ぶ。言いかえると、補正回路13は、差信号Sdiffに基づいて初期設定値を補正して補正設定値を生成する。 In this specification, the combination of digital code values Sbi and Smod is also referred to as a "correction setting value." In other words, the correction circuit 13 corrects the initial setting value based on the difference signal Sdiff to generate a corrected setting value.
 ディジタル/アナログ変換器14は、ディジタルコード値Smodを、対応する電流値を有する変調電流Imodに変換する。 The digital/analog converter 14 converts the digital code value Smod into a modulation current Imod having a corresponding current value.
 スイッチ15は、制御信号Sonに従って、変調電流Imodを通過又は遮断する。従って、スイッチ15がオンされたとき、バイアス電流Ibi及び変調電流Imodの和が駆動電流Iopとして半導体レーザ素子2に供給される。また、スイッチ15がオフされたとき、バイアス電流Ibiのみが半導体レーザ素子2に供給される。 The switch 15 passes or cuts off the modulation current Imod according to the control signal Son. Therefore, when the switch 15 is turned on, the sum of the bias current Ibi and the modulation current Imod is supplied to the semiconductor laser element 2 as the drive current Iop. Further, when the switch 15 is turned off, only the bias current Ibi is supplied to the semiconductor laser element 2.
 光検出素子3は、測定光量の大きさを示す測定電圧を発生する。基準電圧源16は、目標光量の大きさを示す基準電圧を発生する。差動増幅器17は、測定電圧を光検出素子3から取得し、基準電圧を基準電圧源16から取得し、測定光量と目標光量との差を示す差信号Sdiffを出力する。差動増幅器17は、例えば、演算増幅器である。前述したように、初期設定回路11は、差信号Sdiffに基づいて初期設定値を予め決定し、補正回路13は、差信号Sdiffに基づいて初期設定値を補正して補正設定値を生成する。 The photodetector element 3 generates a measurement voltage that indicates the magnitude of the measured light amount. A reference voltage source 16 generates a reference voltage indicating the magnitude of the target light amount. The differential amplifier 17 acquires the measured voltage from the photodetector element 3, the reference voltage from the reference voltage source 16, and outputs a difference signal Sdiff indicating the difference between the measured light amount and the target light amount. The differential amplifier 17 is, for example, an operational amplifier. As described above, the initial setting circuit 11 determines the initial setting value in advance based on the difference signal Sdiff, and the correction circuit 13 corrects the initial setting value based on the difference signal Sdiff to generate a corrected setting value.
 半導体レーザ駆動装置1は、異なる動作モードを有する少なくとも2つの期間、すなわち、初期設定期間及び動作期間を有する。初期設定期間では、半導体レーザ駆動装置1は、駆動電流Iopをゼロから次第に増大させることで、目標光量に対応する初期設定値を決定する。動作期間では、半導体レーザ駆動装置1は、初期設定値又は補正設定値に対応する大きさを有する駆動電流Iopを半導体レーザ素子2に連続的又は断続的に供給して半導体レーザ素子2を動作させる。補正回路13は、動作期間において、差信号Sdiffに基づいて、測定光量と目標光量との差を低減するように補正設定値を生成又は更新する。これにより、動作期間において駆動電流Iopの大きさを補正することができ、従って、半導体レーザ素子2自体の発熱又は他の熱源によって半導体レーザ素子2の温度が変化しても、半導体レーザ素子2の光量の変化を生じにくくすることができる。 The semiconductor laser driving device 1 has at least two periods having different operation modes, that is, an initial setting period and an operation period. During the initial setting period, the semiconductor laser driving device 1 determines an initial setting value corresponding to the target light amount by gradually increasing the driving current Iop from zero. During the operation period, the semiconductor laser driving device 1 operates the semiconductor laser device 2 by continuously or intermittently supplying the semiconductor laser device 2 with a drive current Iop having a magnitude corresponding to the initial setting value or the correction setting value. . During the operation period, the correction circuit 13 generates or updates a correction setting value based on the difference signal Sdiff so as to reduce the difference between the measured light amount and the target light amount. As a result, the magnitude of the drive current Iop can be corrected during the operation period, and therefore, even if the temperature of the semiconductor laser element 2 changes due to heat generation of the semiconductor laser element 2 itself or other heat sources, the magnitude of the drive current Iop can be corrected. Changes in the amount of light can be made less likely to occur.
 ディジタル/アナログ変換器12、ディジタル/アナログ変換器14、及びスイッチ15は、初期設定値又は補正設定値に対応する大きさを有する駆動電流Iopを生成して半導体レーザ素子2に供給する電流生成回路の一例である。ディジタル/アナログ変換器12は、バイアス電流Ibiを生成する第1の電流源の一例である。ディジタル/アナログ変換器14及びスイッチ15は、変調電流Imodを生成する第2の電流源の一例である。 The digital/analog converter 12, the digital/analog converter 14, and the switch 15 are a current generation circuit that generates a drive current Iop having a magnitude corresponding to the initial setting value or the correction setting value and supplies it to the semiconductor laser element 2. This is an example. Digital/analog converter 12 is an example of a first current source that generates bias current Ibi. Digital/analog converter 14 and switch 15 are examples of a second current source that generates modulation current Imod.
[第1の実施形態の動作]
 図2は、図1の半導体レーザ駆動装置1によって駆動される半導体レーザ素子2の電流に対する光量の特性の例を示すグラフである。前述したように、半導体レーザ素子2に流れる電流がしきい値電流Ithよりも小さいとき、半導体レーザ素子2はまったく発光しないか、ほとんど発光しない。半導体レーザ素子2に流れる電流がしきい値電流Ithを超えると半導体レーザ素子2が発光し始め、その後、光量は電流の増加量に比例して増大する。バイアス電流Ibi及び変調電流Imod1は、それらの和が半導体レーザ素子2に流れているとき、半導体レーザ素子2の光量が目標光量に等しくなるように設定される。
[Operation of the first embodiment]
FIG. 2 is a graph showing an example of the characteristics of the amount of light with respect to the current of the semiconductor laser element 2 driven by the semiconductor laser driving device 1 of FIG. As described above, when the current flowing through the semiconductor laser device 2 is smaller than the threshold current Ith, the semiconductor laser device 2 does not emit light at all or hardly emit light. When the current flowing through the semiconductor laser device 2 exceeds the threshold current Ith, the semiconductor laser device 2 starts emitting light, and thereafter the amount of light increases in proportion to the amount of increase in the current. The bias current Ibi and the modulation current Imod1 are set so that when the sum thereof flows through the semiconductor laser device 2, the light amount of the semiconductor laser device 2 becomes equal to the target light amount.
 なお、半導体レーザ素子2を動作させると半導体レーザ素子2自体が発熱し、半導体レーザ素子2の特性(例えば、しきい値電流の大きさ、光量・電流特性の勾配)が変化する。温度の上昇に応じて光量が低減するので、バイアス電流Ibi及び変調電流Imod1の和が半導体レーザ素子2に流れていても、測定光量が目標光量よりも小さくなる。従って、半導体レーザ駆動装置1は、変調電流Imod1を増大させた変調電流Imod2を生成する。変調電流Imod2は、バイアス電流Ibi及び変調電流Imod2の和が半導体レーザ素子2に流れているとき、半導体レーザ素子2の光量が目標光量に等しくなるように設定される。 Note that when the semiconductor laser device 2 is operated, the semiconductor laser device 2 itself generates heat, and the characteristics of the semiconductor laser device 2 (for example, the magnitude of the threshold current, the gradient of the light amount/current characteristics) change. Since the amount of light decreases as the temperature rises, even if the sum of the bias current Ibi and modulation current Imod1 flows through the semiconductor laser element 2, the measured amount of light becomes smaller than the target amount of light. Therefore, the semiconductor laser driving device 1 generates a modulation current Imod2 that is an increased modulation current Imod1. Modulation current Imod2 is set so that when the sum of bias current Ibi and modulation current Imod2 flows through semiconductor laser device 2, the light amount of semiconductor laser device 2 becomes equal to the target light amount.
 また、測定電流が目標電流よりも大きい場合には、変調電流Imod1を減少させた変調電流Imod3を生成する。変調電流Imod3は、バイアス電流Ibi及び変調電流Imod3の和が半導体レーザ素子2に流れているとき、半導体レーザ素子2の光量が目標光量に等しくなるように設定される。 Furthermore, when the measured current is larger than the target current, a modulation current Imod3 is generated by reducing the modulation current Imod1. Modulation current Imod3 is set so that when the sum of bias current Ibi and modulation current Imod3 flows through semiconductor laser device 2, the light amount of semiconductor laser device 2 becomes equal to the target light amount.
 図3は、図1の半導体レーザ駆動装置1によって駆動される半導体レーザ素子2の光量の時間的変化の例を示すグラフである。例えば、半導体レーザ素子2をToFセンサにおいて使用する場合、駆動電流Iopを半導体レーザ素子2に数十MHzの周期で断続的に供給することで、半導体レーザ素子2は、短幅の光パルスを連続的に発生する。しかしながら、前述したように、半導体レーザ素子2を動作させると半導体レーザ素子2自体が発熱し、光量が次第に低下する可能性がある。本実施形態によれば、動作期間において駆動電流Iopの大きさを補正することにより、半導体レーザ素子2の光量の変化を生じにくくすることができる。 FIG. 3 is a graph showing an example of a temporal change in the amount of light of the semiconductor laser element 2 driven by the semiconductor laser driving device 1 of FIG. For example, when using the semiconductor laser element 2 in a ToF sensor, by intermittently supplying the driving current Iop to the semiconductor laser element 2 at a frequency of several tens of MHz, the semiconductor laser element 2 continuously emits short-width optical pulses. occurs. However, as described above, when the semiconductor laser element 2 is operated, the semiconductor laser element 2 itself generates heat, and the amount of light may gradually decrease. According to this embodiment, by correcting the magnitude of the drive current Iop during the operation period, it is possible to make it difficult for the amount of light from the semiconductor laser element 2 to change.
 図4は、図1の半導体レーザ駆動装置1の動作例を示すタイミングチャートである。図4は、制御信号Sinit,Srun,Son、クロック信号Sclk、ディジタルコード値Snbi,Smod、及び光量の時間的変化を示す。 FIG. 4 is a timing chart showing an example of the operation of the semiconductor laser driving device 1 of FIG. 1. FIG. 4 shows temporal changes in the control signals Sinit, Srun, and Son, the clock signal Sclk, the digital code values Snbi and Smod, and the amount of light.
 初期状態において、制御信号Srunはローレベル(L)であり、補正回路13は、入力されたディジタルコード値Smod0を補正せず、そのままディジタルコード値Smodとして出力する。また、初期状態において、制御信号Sonはローレベルであり、スイッチ51はオフされている。 In the initial state, the control signal Srun is at a low level (L), and the correction circuit 13 does not correct the input digital code value Smod0 and outputs it as it is as the digital code value Smod. Further, in the initial state, the control signal Son is at a low level, and the switch 51 is turned off.
 制御信号Sinitがローレベルからハイレベル(H)に遷移したとき、初期設定期間が開始し、初期設定回路11はAPCを実行する。初期設定回路11は、差信号Sdiffを参照しながらディジタルコード値Sbiを次第に増大させ、予め決められた変化率よりも高いレートで光量が増大し始めたときのディジタルコード値bi1を保持する。次いで、制御信号Sonがローレベルからハイレベルに遷移し、スイッチ15がオンされる。初期設定回路11は、差信号Sdiffを参照しながらディジタルコード値Smod0を次第に増大させ、測定光量が目標光量に達したときのディジタルコード値mod1を保持する。初期設定回路11は、ディジタルコード値bi及びmod1を目標光量に対応する初期設定値として、すなわち、ディジタルコード値Sbi及びSmod0として保持する。その後、制御信号Sinit及びSonがハイレベルからローレベルに遷移し、初期設定期間が終了する。 When the control signal Sinit transitions from low level to high level (H), the initial setting period starts, and the initial setting circuit 11 executes APC. The initial setting circuit 11 gradually increases the digital code value Sbi while referring to the difference signal Sdiff, and holds the digital code value bi1 when the amount of light starts to increase at a rate higher than a predetermined rate of change. Next, the control signal Son transitions from low level to high level, and switch 15 is turned on. The initial setting circuit 11 gradually increases the digital code value Smod0 while referring to the difference signal Sdiff, and holds the digital code value mod1 when the measured light amount reaches the target light amount. The initial setting circuit 11 holds the digital code values bi and mod1 as initial setting values corresponding to the target light amount, that is, as the digital code values Sbi and Smod0. After that, the control signals Sinit and Son transition from high level to low level, and the initial setting period ends.
 その後、半導体レーザ駆動装置1は、所望のタスクのために半導体レーザ素子2を点灯させる動作期間を開始する。動作期間は、バイアス電流Ibiのみを半導体レーザ素子2に供給する第1の時間区間と、バイアス電流Ibi及び変調電流Imodの和を駆動電流Iopとして半導体レーザ素子2に供給する第2の時間区間とを含み、第1及び第2の時間区間を交互に繰り返す。 Thereafter, the semiconductor laser driving device 1 starts an operation period in which the semiconductor laser element 2 is turned on for a desired task. The operation period includes a first time period in which only the bias current Ibi is supplied to the semiconductor laser device 2, and a second time period in which the sum of the bias current Ibi and the modulation current Imod is supplied as the drive current Iop to the semiconductor laser device 2. and repeating the first and second time intervals alternately.
 第1の動作区間では、制御信号Sonがローレベルであり、スイッチ51がオフされる。一方、第2の動作区間では、制御信号Sonがハイレベルであり、スイッチ51がオンされる。 In the first operation period, the control signal Son is at a low level and the switch 51 is turned off. On the other hand, in the second operation period, the control signal Son is at a high level and the switch 51 is turned on.
 また、第1の動作区間では、制御信号Srunがローレベルに設定される。この場合、補正回路13は、差信号Sdiffに基づくディジタルコード値Smod0の補正を実施しない。ディジタルコード値Smodが初期設定値のディジタルコード値Smod0に一致している場合(時間区間t3~t4)、補正回路13は、ディジタルコード値Smodをそのまま維持する。ディジタルコード値Smodが初期設定値のディジタルコード値Smod0とは異なる値に補正されている場合(時間区間t5~t6)、補正回路13は、クロック信号Sclkの所定周期ごとに補正設定値を初期設定値に近づけるように変化させてもよい。図4の例では、ディジタルコード値Smodがディジタルコード値mod1に近づくように低減されている。これは、所定時間にわたって変調電流Imodが半導体レーザ素子2に供給されない場合、半導体レーザ素子2の温度が低下するので、補正されたディジタルコード値Smodが目標光量に対して過大になると考えられるからである。一方、第2の動作区間では、制御信号Srunがハイレベルに設定される。この場合、補正回路13は、差信号Sdiffに基づいて、測定光量と目標光量との差を低減するようにディジタルコード値Smod0を補正し、補正されたディジタルコード値Smodを生成する。図4の例では、ディジタルコード値Smodが次第に増大している。 Furthermore, in the first operation period, the control signal Srun is set to low level. In this case, the correction circuit 13 does not correct the digital code value Smod0 based on the difference signal Sdiff. When the digital code value Smod matches the initial setting value digital code value Smod0 (time interval t3 to t4), the correction circuit 13 maintains the digital code value Smod as it is. When the digital code value Smod is corrected to a value different from the initial setting value digital code value Smod0 (time interval t5 to t6), the correction circuit 13 initializes the correction setting value every predetermined period of the clock signal Sclk. It may be changed so as to approach the value. In the example of FIG. 4, the digital code value Smod is reduced so as to approach the digital code value mod1. This is because if the modulation current Imod is not supplied to the semiconductor laser device 2 for a predetermined period of time, the temperature of the semiconductor laser device 2 will drop, and the corrected digital code value Smod is considered to become excessive with respect to the target light amount. be. On the other hand, in the second operation period, the control signal Srun is set to a high level. In this case, the correction circuit 13 corrects the digital code value Smod0 based on the difference signal Sdiff so as to reduce the difference between the measured light amount and the target light amount, and generates a corrected digital code value Smod. In the example of FIG. 4, the digital code value Smod gradually increases.
 補正回路13によりディジタルコード値Smod0を補正しなかった場合、図4の最下段の破線(「補正なし」)に示すように、光量が次第に低下する可能性がある。本実施形態によれば、動作期間において駆動電流Iopの大きさを補正することにより、半導体レーザ素子2の光量の変化を生じにくくすることができる。 If the digital code value Smod0 is not corrected by the correction circuit 13, the amount of light may gradually decrease as shown by the broken line at the bottom of FIG. 4 ("no correction"). According to this embodiment, by correcting the magnitude of the drive current Iop during the operation period, it is possible to make it difficult for the amount of light from the semiconductor laser element 2 to change.
 初期設定回路11及び補正回路13によりディジタルコード値を変化させる周期及びステップ幅は、半導体レーザ素子2の用途及び利用環境に応じて決定されてもよい。 The period and step width for changing the digital code value by the initial setting circuit 11 and the correction circuit 13 may be determined depending on the application and usage environment of the semiconductor laser device 2.
 図5は、図1の半導体レーザ駆動装置1のもう1つの動作例を示すタイミングチャートである。補正回路13は、第2の時間区間から第1の時間区間に遷移する直前(図5の時刻t5)におけるディジタルコード値Smodを保持する。図5の例では、補正回路13は、ディジタルコード値mod2をディジタルコード値Smodとして保持する。第1の時間区間から第2の時間区間に遷移するとき(図5の時刻t6)、半導体レーザ駆動装置1は、保持されたディジタルコード値Sbi及びSmodに対応する大きさを有する駆動電流Iopを生成して半導体レーザ素子2に供給する。例えば、第1及び第2の時間区間を短い周期で交替する場合、変調電流Imodが半導体レーザ素子2に供給されない期間中における半導体レーザ素子2の温度変化を無視することができる。この場合、直前の周期において半導体レーザ素子2を点灯させたときのディジタルコード値Smodを保持することにより、半導体レーザ素子2を次に点灯させたときに光量の変化を生じにくくすることができる。 FIG. 5 is a timing chart showing another example of the operation of the semiconductor laser driving device 1 of FIG. 1. The correction circuit 13 holds the digital code value Smod immediately before the transition from the second time interval to the first time interval (time t5 in FIG. 5). In the example of FIG. 5, the correction circuit 13 holds the digital code value mod2 as the digital code value Smod. When transitioning from the first time period to the second time period (time t6 in FIG. 5), the semiconductor laser driving device 1 generates a driving current Iop having a magnitude corresponding to the held digital code values Sbi and Smod. It is generated and supplied to the semiconductor laser device 2. For example, when the first and second time periods are alternated at short intervals, temperature changes in the semiconductor laser device 2 during the period in which the modulation current Imod is not supplied to the semiconductor laser device 2 can be ignored. In this case, by holding the digital code value Smod when the semiconductor laser element 2 was turned on in the immediately previous cycle, it is possible to prevent a change in the amount of light from occurring when the semiconductor laser element 2 is turned on next time.
[比較例]
 図6は、第1の比較例に係る半導体レーザ駆動装置1Aの構成を示すブロック図である。半導体レーザ駆動装置1Aは、図1の半導体レーザ駆動装置1から補正回路13を除去した構成を有する。図6の構成は、例えば、一般的な画像形成装置又は画像表示装置用の半導体レーザ素子を駆動するために使用される。画像形成装置及び画像表示装置は、画像領域及び非画像領域を含むフレームをラスタースキャン方式で走査する。半導体レーザ駆動装置1Aは、非画像領域を走査しているとき、半導体レーザ素子2を強制的に点灯させてAPCを実行することで、周囲の温度に応じて半導体レーザ素子2の光量を補正することができる。しかしながら、半導体レーザ駆動装置1Aは、APCを実行した後、例えば画像領域を走査しているときには、半導体レーザ素子2の光量を補正することができない。従って、図6の構成では、半導体レーザ素子2の温度変化に応じて半導体レーザ素子2の光量が増減する可能性がある。
[Comparative example]
FIG. 6 is a block diagram showing the configuration of a semiconductor laser driving device 1A according to a first comparative example. The semiconductor laser driving device 1A has a configuration in which the correction circuit 13 is removed from the semiconductor laser driving device 1 of FIG. The configuration of FIG. 6 is used, for example, to drive a semiconductor laser element for a general image forming apparatus or image display apparatus. The image forming device and the image display device scan a frame including an image area and a non-image area using a raster scan method. When scanning a non-image area, the semiconductor laser driving device 1A corrects the light intensity of the semiconductor laser element 2 according to the ambient temperature by forcibly turning on the semiconductor laser element 2 and executing APC. be able to. However, after performing APC, the semiconductor laser driving device 1A cannot correct the light amount of the semiconductor laser element 2, for example, when scanning an image area. Therefore, in the configuration of FIG. 6, the amount of light from the semiconductor laser element 2 may increase or decrease depending on the temperature change of the semiconductor laser element 2.
 図7は、第2の比較例に係る半導体レーザ駆動装置1Bの構成を示すブロック図である。半導体レーザ駆動装置1Bは、図1の補正回路13に代えて、補正回路13B及びメモリ18を備える。メモリ18は、ディジタルコード値Smod0を補正するための所定のパターンを格納する。補正回路13Bは、メモリ18から読み出されたパターンに基づいてディジタルコード値Smod0を補正し、補正されたディジタルコード値Smodを生成する。図7の構成は、レーザプリンタ及びディジタル複写機といった、半導体レーザ素子の周辺環境が大きく変化しない用途を想定し、半導体レーザ素子2の温度変化に応じて半導体レーザ素子2の光量が増減する特性を推測可能であるいう前提条件を必要とする。従って、ToFセンサのように、利用環境が一定であるとは限らず、予測できない環境変化が生じる場合には、図7の構成は、半導体レーザ素子2の光量変化に追従することができない。 FIG. 7 is a block diagram showing the configuration of a semiconductor laser driving device 1B according to a second comparative example. The semiconductor laser driving device 1B includes a correction circuit 13B and a memory 18 in place of the correction circuit 13 in FIG. The memory 18 stores a predetermined pattern for correcting the digital code value Smod0. The correction circuit 13B corrects the digital code value Smod0 based on the pattern read from the memory 18, and generates a corrected digital code value Smod. The configuration shown in FIG. 7 assumes applications such as laser printers and digital copying machines where the surrounding environment of the semiconductor laser element does not change significantly, and has the characteristic that the light amount of the semiconductor laser element 2 increases or decreases according to the temperature change of the semiconductor laser element 2. Requires the precondition that it can be inferred. Therefore, when the usage environment is not always constant and unpredictable environmental changes occur, such as with a ToF sensor, the configuration shown in FIG. 7 cannot follow changes in the amount of light from the semiconductor laser element 2.
 図8は、図6の半導体レーザ駆動装置1A又は図7の半導体レーザ駆動装置1Bによって駆動される半導体レーザ素子2の光量の時間的変化の例を示すグラフである。図6及び図7の構成によれば、半導体レーザ素子2を動作させると半導体レーザ素子2自体が発熱し、光量が次第に低下する可能性がある。 FIG. 8 is a graph showing an example of a temporal change in the amount of light of the semiconductor laser element 2 driven by the semiconductor laser drive device 1A of FIG. 6 or the semiconductor laser drive device 1B of FIG. 7. According to the configurations shown in FIGS. 6 and 7, when the semiconductor laser element 2 is operated, the semiconductor laser element 2 itself generates heat, and the amount of light may gradually decrease.
 一方、本実施形態に係る半導体レーザ駆動装置1によれば、動作期間において駆動電流Iopの大きさを補正することにより、図3を参照して説明したように、半導体レーザ素子2の光量の変化を生じにくくすることができる。また、本実施形態に係る半導体レーザ駆動装置1によれば、図7に示すように、記憶装置に予め格納された補正パターンに限定されず、利用環境に応じた任意の光量変化に追従することができる。また、本実施形態に係る半導体レーザ駆動装置1によれば、光量の急峻な変化に対しても即時に応答することができる。 On the other hand, according to the semiconductor laser driving device 1 according to the present embodiment, by correcting the magnitude of the driving current Iop during the operation period, the amount of light of the semiconductor laser element 2 changes as described with reference to FIG. can be made less likely to occur. Further, according to the semiconductor laser driving device 1 according to the present embodiment, as shown in FIG. 7, it is possible to follow any change in light amount depending on the usage environment, without being limited to the correction pattern stored in advance in the storage device. I can do it. Further, according to the semiconductor laser driving device 1 according to the present embodiment, it is possible to immediately respond to a sudden change in the amount of light.
[第1の実施形態の変形例]
 図9は、第1の実施形態の変形例に係る半導体レーザ駆動装置1Cの構成を示すブロック図である。半導体レーザ駆動装置1Cは、図1の半導体レーザ駆動装置1の初期設定回路11に代えて、初期設定回路11Cを備える。初期設定回路11Cは、APCを実行せず、予め決定された初期設定値を内部のメモリ11mに保持する。APCを実行しないことにより、図1の場合よりもコストを低下させることができる。
[Modification of the first embodiment]
FIG. 9 is a block diagram showing the configuration of a semiconductor laser driving device 1C according to a modification of the first embodiment. The semiconductor laser driving device 1C includes an initial setting circuit 11C in place of the initial setting circuit 11 of the semiconductor laser driving device 1 of FIG. The initial setting circuit 11C does not execute APC and holds predetermined initial setting values in the internal memory 11m. By not performing APC, costs can be lower than in the case of FIG.
[第2の実施形態]
 図10は、第2の実施形態に係る距離測定装置20の構成を示すブロック図である。距離測定装置20は、半導体レーザ駆動装置1、半導体レーザ素子2、光検出素子3、光検出素子4、及び処理回路5を備える。図10の半導体レーザ駆動装置1、半導体レーザ素子2、及び光検出素子3は、図1の対応する構成要素と同様に構成される。光検出素子4は、半導体レーザ素子2によって発生されて対象物30によって反射された光量を示す反射光量を取得する。処理回路5は、反射光量に基づいて、距離測定装置20から対象物30までの距離を計算する。処理回路5は、図1のクロック信号Sclk及び制御信号Sinit,Srun,Sonを発生する。距離測定装置20は、例えば、距離測定装置20から見た対象物30の三次元画像を取得するToFセンサである。距離測定装置20は、第1の実施形態に係る半導体レーザ駆動装置1を備えたことにより、半導体レーザ素子2自体の発熱又は他の熱源によって半導体レーザ素子2の温度が変化しても、半導体レーザ素子2の光量の変化を生じにくくすることができる。従って、距離測定装置20は、距離測定装置20から対象物30までの距離を高精度に計算することができる。
[Second embodiment]
FIG. 10 is a block diagram showing the configuration of a distance measuring device 20 according to the second embodiment. The distance measuring device 20 includes a semiconductor laser drive device 1 , a semiconductor laser element 2 , a photodetection element 3 , a photodetection element 4 , and a processing circuit 5 . The semiconductor laser drive device 1, semiconductor laser element 2, and photodetector element 3 in FIG. 10 are configured in the same manner as the corresponding components in FIG. The photodetector element 4 acquires the amount of reflected light that indicates the amount of light generated by the semiconductor laser device 2 and reflected by the object 30 . The processing circuit 5 calculates the distance from the distance measuring device 20 to the object 30 based on the amount of reflected light. The processing circuit 5 generates the clock signal Sclk and control signals Sinit, Srun, and Son shown in FIG. The distance measuring device 20 is, for example, a ToF sensor that acquires a three-dimensional image of the object 30 viewed from the distance measuring device 20. Since the distance measuring device 20 includes the semiconductor laser driving device 1 according to the first embodiment, even if the temperature of the semiconductor laser device 2 changes due to heat generation of the semiconductor laser device 2 itself or other heat sources, the semiconductor laser Changes in the light amount of the element 2 can be made less likely to occur. Therefore, the distance measuring device 20 can calculate the distance from the distance measuring device 20 to the target object 30 with high accuracy.
[他の変形例]
 図4及び図5では、初期設定値のディジタルコード値Smod0よりも大きくなるように補正設定値のディジタルコード値Smodを生成する場合について説明した。しかしながら、半導体レーザ素子2の利用環境に応じて、ディジタルコード値Smod0よりも小さくなるようにディジタルコード値Smodを生成してもよい。
[Other variations]
In FIGS. 4 and 5, a case has been described in which the digital code value Smod of the correction setting value is generated so as to be larger than the digital code value Smod0 of the initial setting value. However, depending on the usage environment of the semiconductor laser device 2, the digital code value Smod may be generated to be smaller than the digital code value Smod0.
 しきい値電流Ithが大幅に変化したと考えられる場合、初期設定回路11は、APCを再実行してもよい。 If it is considered that the threshold current Ith has changed significantly, the initial setting circuit 11 may re-execute APC.
[実施形態のまとめ]
 本開示の第1の態様に係る半導体レーザ駆動装置1は、半導体レーザ素子2を駆動する半導体レーザ駆動装置1であって、初期設定回路11、差動増幅器17、補正回路13、及び電流生成回路を備える。初期設定回路11は、半導体レーザ素子2の予め決められた目標光量に対応する初期設定値を保持する。差動増幅器17は、半導体レーザ素子2によって発生された光量を示す測定光量を第1の光検出素子3から取得し、測定光量と目標光量との差を示す差信号Sdiffを出力する。補正回路13は、差信号Sdiffに基づいて初期設定値を補正して補正設定値を生成する。電流生成回路は、初期設定値又は補正設定値に対応する大きさを有する駆動電流Iopを生成して半導体レーザ素子2に供給する。補正回路13は、初期設定値又は前記補正設定値に対応する大きさを有する駆動電流Iopを半導体レーザ素子2に連続的又は断続的に供給して半導体レーザ素子2を動作させる動作期間において、差信号Sdiffに基づいて、測定光量と目標光量との差を低減するように補正設定値を生成又は更新する。
[Summary of embodiments]
A semiconductor laser driving device 1 according to a first aspect of the present disclosure is a semiconductor laser driving device 1 that drives a semiconductor laser element 2, and includes an initial setting circuit 11, a differential amplifier 17, a correction circuit 13, and a current generation circuit. Equipped with The initial setting circuit 11 holds an initial setting value corresponding to a predetermined target light amount of the semiconductor laser element 2. The differential amplifier 17 acquires a measured light amount indicating the light amount generated by the semiconductor laser element 2 from the first photodetector element 3, and outputs a difference signal Sdiff indicating the difference between the measured light amount and the target light amount. The correction circuit 13 corrects the initial setting value based on the difference signal Sdiff to generate a corrected setting value. The current generation circuit generates a drive current Iop having a magnitude corresponding to the initial set value or the corrected set value and supplies it to the semiconductor laser element 2 . The correction circuit 13 corrects the difference during an operation period in which the semiconductor laser device 2 is operated by continuously or intermittently supplying the drive current Iop having a magnitude corresponding to the initial setting value or the correction setting value to the semiconductor laser device 2. Based on the signal Sdiff, a correction setting value is generated or updated so as to reduce the difference between the measured light amount and the target light amount.
 本開示の第2の態様に係る半導体レーザ駆動装置1によれば、第1の態様に係る半導体レーザ駆動装置1は以下のように構成されてもよい。電流生成回路は、バイアス電流Ibiを生成する第1の電流源と、変調電流Imodを生成する第2の電流源とを備える。動作期間は、互いに交替する第1の時間区間及び第2の時間区間を含む。第1の時間区間において、電流生成回路は、バイアス電流Ibiを半導体レーザ素子2に供給する。第2の時間区間において、電流生成回路は、バイアス電流Ibi及び変調電流Imodの和を駆動電流Iopとして半導体レーザ素子2に供給する。 According to the semiconductor laser driving device 1 according to the second aspect of the present disclosure, the semiconductor laser driving device 1 according to the first aspect may be configured as follows. The current generation circuit includes a first current source that generates a bias current Ibi and a second current source that generates a modulation current Imod. The operating period includes a first time period and a second time period that alternate with each other. In the first time period, the current generation circuit supplies the bias current Ibi to the semiconductor laser device 2. In the second time period, the current generation circuit supplies the sum of the bias current Ibi and the modulation current Imod to the semiconductor laser device 2 as the drive current Iop.
 本開示の第3の態様に係る半導体レーザ駆動装置1によれば、第1又は第2の態様に係る半導体レーザ駆動装置1は以下のように構成されてもよい。補正回路13は、第1の時間区間において、所定周期ごとに補正設定値を初期設定値に近づけるように変化させる。 According to the semiconductor laser drive device 1 according to the third aspect of the present disclosure, the semiconductor laser drive device 1 according to the first or second aspect may be configured as follows. The correction circuit 13 changes the correction setting value so as to approach the initial setting value at predetermined intervals in the first time interval.
 本開示の第4の態様に係る半導体レーザ駆動装置1によれば、第1又は第2の態様に係る半導体レーザ駆動装置1は以下のように構成されてもよい。補正回路13は、第2の時間区間から第1の時間区間に遷移する直前における補正設定値を保持する。電流生成回路は、第1の時間区間から第2の時間区間に遷移するとき、保持された補正設定値に対応する大きさを有する駆動電流Iopを生成して半導体レーザ素子2に供給する。 According to the semiconductor laser drive device 1 according to the fourth aspect of the present disclosure, the semiconductor laser drive device 1 according to the first or second aspect may be configured as follows. The correction circuit 13 holds the correction setting value immediately before the transition from the second time period to the first time period. The current generation circuit generates a drive current Iop having a magnitude corresponding to the held correction setting value and supplies it to the semiconductor laser element 2 when transitioning from the first time period to the second time period.
 本開示の第5の態様に係る半導体レーザ駆動装置1によれば、第1~第4のうちの1つの態様に係る半導体レーザ駆動装置1は以下のように構成されてもよい。初期設定回路11は、差信号Sdiffに基づいて初期設定値を予め決定する。 According to the semiconductor laser driving device 1 according to the fifth aspect of the present disclosure, the semiconductor laser driving device 1 according to one of the first to fourth aspects may be configured as follows. The initial setting circuit 11 determines an initial setting value in advance based on the difference signal Sdiff.
 本開示の第6の態様に係る半導体レーザ駆動装置1Cによれば、第1~第4のうちの1つの態様に係る半導体レーザ駆動装置1は以下のように構成されてもよい。初期設定回路11Cは、予め決定された初期設定値を保持する。 According to the semiconductor laser driving device 1C according to the sixth aspect of the present disclosure, the semiconductor laser driving device 1 according to one of the first to fourth aspects may be configured as follows. The initial setting circuit 11C holds predetermined initial setting values.
 本開示の第7の態様に係る距離測定装置20は、第1~第7のうちの1つの態様に係る半導体レーザ駆動装置1と、半導体レーザ素子2と、半導体レーザ素子2によって発生された光量を示す測定光量を取得する第1の光検出素子3と、半導体レーザ素子2によって発生されて対象物によって反射された光量を示す反射光量を取得する第2の光検出素子4と、反射光量に基づいて、対象物までの距離を計算する処理回路5とを備える。 A distance measuring device 20 according to a seventh aspect of the present disclosure includes a semiconductor laser driving device 1 according to one of the first to seventh aspects, a semiconductor laser element 2, and an amount of light generated by the semiconductor laser element 2. A first photodetector element 3 that obtains a measured light amount indicating the amount of light emitted by the semiconductor laser element 2 and reflected by the object, and a second photodetector element 4 that obtains the amount of reflected light that indicates the amount of light generated by the semiconductor laser element 2 and reflected by the object. and a processing circuit 5 that calculates the distance to the target object based on the distance to the target object.
 本開示の第8の態様に係る半導体レーザ駆動方法は、半導体レーザ素子2を駆動する半導体レーザ駆動方法であって、下記のステップを含む。本方法は、半導体レーザ素子2の予め決められた目標光量に対応する初期設定値を保持するステップを含む。本方法は、半導体レーザ素子2によって発生された光量を示す測定光量を第1の光検出素子から取得し、測定光量と目標光量との差を示す差信号Sdiffを出力するステップを含む。本方法は、差信号Sdiffに基づいて初期設定値を補正して補正設定値を生成するステップと初期設定値又は補正設定値に対応する大きさを有する駆動電流Iopを生成して半導体レーザ素子2に供給するステップを含む。補正設定値を生成するステップは、初期設定値又は前記補正設定値に対応する大きさを有する駆動電流Iopを半導体レーザ素子2に連続的又は断続的に供給して半導体レーザ素子2を動作させる動作期間において、差信号Sdiffに基づいて、測定光量と目標光量との差を低減するように補正設定値を生成又は更新することを含む。 The semiconductor laser driving method according to the eighth aspect of the present disclosure is a semiconductor laser driving method for driving the semiconductor laser element 2, and includes the following steps. The method includes the step of maintaining an initial setting value corresponding to a predetermined target light amount of the semiconductor laser device 2. The method includes the steps of acquiring a measured light amount indicating the light amount generated by the semiconductor laser element 2 from the first photodetecting element, and outputting a difference signal Sdiff indicating the difference between the measured light amount and the target light amount. This method includes the steps of correcting the initial setting value based on the difference signal Sdiff to generate a correction setting value, and generating a drive current Iop having a magnitude corresponding to the initial setting value or the correction setting value to drive the semiconductor laser device 2. including the step of supplying. The step of generating the correction setting value is an operation of operating the semiconductor laser device 2 by continuously or intermittently supplying the driving current Iop having a magnitude corresponding to the initial setting value or the correction setting value to the semiconductor laser device 2. The period includes generating or updating a correction setting value based on the difference signal Sdiff so as to reduce the difference between the measured light amount and the target light amount.
1,1A~1C 半導体レーザ駆動装置
2 半導体レーザ素子
3 光検出素子
4 光検出素子
5 処理回路
11,11C 初期設定回路
11m メモリ
12 ディジタル/アナログ変換器(DAC)
13,13B 補正回路
13m メモリ
n14 ディジタル/アナログ変換器(DAC)
15 スイッチ
16 基準電圧源
17 差動増幅器
18 メモリ
20 距離測定装置
30 対象物
1,1A to 1C Semiconductor laser driver 2 Semiconductor laser element 3 Photodetector element 4 Photodetector element 5 Processing circuit 11, 11C Initial setting circuit 11m Memory 12 Digital/analog converter (DAC)
13,13B Correction circuit 13m Memory n14 Digital/analog converter (DAC)
15 Switch 16 Reference voltage source 17 Differential amplifier 18 Memory 20 Distance measuring device 30 Target object

Claims (8)

  1.  半導体レーザ素子を駆動する半導体レーザ駆動装置であって、
     前記半導体レーザ素子の予め決められた目標光量に対応する初期設定値を保持する初期設定回路と、
     前記半導体レーザ素子によって発生された光量を示す測定光量を第1の光検出素子から取得し、前記測定光量と前記目標光量との差を示す差信号を出力する差動増幅器と、
     前記差信号に基づいて前記初期設定値を補正して補正設定値を生成する補正回路と、
     前記初期設定値又は前記補正設定値に対応する大きさを有する駆動電流を生成して前記半導体レーザ素子に供給する電流生成回路とを備え、
     前記補正回路は、前記初期設定値又は前記補正設定値に対応する大きさを有する前記駆動電流を前記半導体レーザ素子に連続的又は断続的に供給して前記半導体レーザ素子を動作させる動作期間において、前記差信号に基づいて、前記測定光量と前記目標光量との差を低減するように前記補正設定値を生成又は更新する、
    半導体レーザ駆動装置。
    A semiconductor laser drive device that drives a semiconductor laser element,
    an initial setting circuit that holds an initial setting value corresponding to a predetermined target light amount of the semiconductor laser element;
    a differential amplifier that obtains a measured light amount indicating the light amount generated by the semiconductor laser element from a first photodetecting element and outputs a difference signal indicating the difference between the measured light amount and the target light amount;
    a correction circuit that corrects the initial setting value based on the difference signal to generate a correction setting value;
    a current generation circuit that generates a drive current having a magnitude corresponding to the initial setting value or the correction setting value and supplies it to the semiconductor laser element;
    During an operation period in which the correction circuit operates the semiconductor laser device by continuously or intermittently supplying the drive current having a magnitude corresponding to the initial setting value or the correction setting value to the semiconductor laser device, generating or updating the correction setting value based on the difference signal so as to reduce the difference between the measured light amount and the target light amount;
    Semiconductor laser drive device.
  2.  前記電流生成回路は、バイアス電流を生成する第1の電流源と、変調電流を生成する第2の電流源とを備え、
     前記動作期間は、互いに交替する第1の時間区間及び第2の時間区間を含み、
     前記第1の時間区間において、前記電流生成回路は、前記バイアス電流を前記半導体レーザ素子に供給し、
     前記第2の時間区間において、前記電流生成回路は、前記バイアス電流及び前記変調電流の和を前記駆動電流として前記半導体レーザ素子に供給する、
    請求項1記載の半導体レーザ駆動装置。
    The current generation circuit includes a first current source that generates a bias current and a second current source that generates a modulation current,
    The operating period includes a first time period and a second time period that alternate with each other,
    In the first time period, the current generation circuit supplies the bias current to the semiconductor laser element,
    In the second time period, the current generation circuit supplies the sum of the bias current and the modulation current to the semiconductor laser device as the drive current.
    The semiconductor laser driving device according to claim 1.
  3.  前記補正回路は、前記第1の時間区間において、所定周期ごとに前記補正設定値を前記初期設定値に近づけるように変化させる、
    請求項2記載の半導体レーザ駆動装置。
    The correction circuit changes the correction setting value so as to approach the initial setting value at every predetermined period in the first time interval.
    The semiconductor laser driving device according to claim 2.
  4.  前記補正回路は、前記第2の時間区間から前記第1の時間区間に遷移する直前における前記補正設定値を保持し、
     前記電流生成回路は、前記第1の時間区間から前記第2の時間区間に遷移するとき、前記保持された補正設定値に対応する大きさを有する駆動電流を生成して前記半導体レーザ素子に供給する、
    請求項2記載の半導体レーザ駆動装置。
    The correction circuit holds the correction setting value immediately before transition from the second time period to the first time period,
    The current generation circuit generates a drive current having a magnitude corresponding to the held correction setting value and supplies it to the semiconductor laser element when transitioning from the first time period to the second time period. do,
    The semiconductor laser driving device according to claim 2.
  5.  前記初期設定回路は、前記差信号に基づいて前記初期設定値を予め決定する、
    請求項1~4のうちの1つに記載の半導体レーザ駆動装置。
    The initial setting circuit predetermines the initial setting value based on the difference signal.
    A semiconductor laser driving device according to claim 1.
  6.  前記初期設定回路は、予め決定された前記初期設定値を保持する、
    請求項1~4のうちの1つに記載の半導体レーザ駆動装置。
    the initial setting circuit holds the initial setting value determined in advance;
    A semiconductor laser driving device according to claim 1.
  7.  請求項1記載の半導体レーザ駆動装置と、
     半導体レーザ素子と、
     前記半導体レーザ素子によって発生された光量を示す測定光量を取得する第1の光検出素子と、
     前記半導体レーザ素子によって発生されて対象物によって反射された光量を示す反射光量を取得する第2の光検出素子と、
     前記反射光量に基づいて、前記対象物までの距離を計算する処理回路とを備える、
    距離測定装置。
    A semiconductor laser driving device according to claim 1;
    a semiconductor laser element;
    a first photodetection element that obtains a measurement light amount indicating the light amount generated by the semiconductor laser element;
    a second photodetection element that obtains an amount of reflected light indicating the amount of light generated by the semiconductor laser element and reflected by the object;
    and a processing circuit that calculates the distance to the object based on the amount of reflected light.
    Distance measuring device.
  8.  半導体レーザ素子を駆動する半導体レーザ駆動方法であって、
     前記半導体レーザ素子の予め決められた目標光量に対応する初期設定値を保持するステップと、
     前記半導体レーザ素子によって発生された光量を示す測定光量を第1の光検出素子から取得し、前記測定光量と前記目標光量との差を示す差信号を出力するステップと、
     前記差信号に基づいて前記初期設定値を補正して補正設定値を生成するステップと
     前記初期設定値又は前記補正設定値に対応する大きさを有する駆動電流を生成して前記半導体レーザ素子に供給するステップとを含み、
     前記補正設定値を生成するステップは、前記初期設定値又は前記補正設定値に対応する大きさを有する前記駆動電流を前記半導体レーザ素子に連続的又は断続的に供給して前記半導体レーザ素子を動作させる動作期間において、前記差信号に基づいて、前記測定光量と前記目標光量との差を低減するように補正設定値を生成又は更新することを含む、
    半導体レーザ駆動方法。
    A semiconductor laser driving method for driving a semiconductor laser element, the method comprising:
    holding an initial setting value corresponding to a predetermined target light amount of the semiconductor laser element;
    acquiring a measured light amount indicating the light amount generated by the semiconductor laser element from a first photodetecting element, and outputting a difference signal indicating the difference between the measured light amount and the target light amount;
    correcting the initial setting value based on the difference signal to generate a correction setting value; and generating a drive current having a magnitude corresponding to the initial setting value or the correction setting value and supplying it to the semiconductor laser element. and a step of
    The step of generating the correction setting value includes operating the semiconductor laser device by continuously or intermittently supplying the drive current having a magnitude corresponding to the initial setting value or the correction setting value to the semiconductor laser device. generating or updating a correction setting value based on the difference signal so as to reduce the difference between the measured light amount and the target light amount during the operation period to
    Semiconductor laser driving method.
PCT/JP2022/027745 2022-07-14 2022-07-14 Semiconductor laser drive device WO2024013948A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027745 WO2024013948A1 (en) 2022-07-14 2022-07-14 Semiconductor laser drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027745 WO2024013948A1 (en) 2022-07-14 2022-07-14 Semiconductor laser drive device

Publications (1)

Publication Number Publication Date
WO2024013948A1 true WO2024013948A1 (en) 2024-01-18

Family

ID=89536314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027745 WO2024013948A1 (en) 2022-07-14 2022-07-14 Semiconductor laser drive device

Country Status (1)

Country Link
WO (1) WO2024013948A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192043A (en) * 1985-02-20 1986-08-26 Sharp Corp Semiconductor laser driving device
JPS6482583A (en) * 1987-09-25 1989-03-28 Hitachi Ltd Output stabilizing circuit for semiconductor laser
JP2005045097A (en) * 2003-07-24 2005-02-17 Japan Aviation Electronics Industry Ltd Device and method for driving laser diode
WO2007007733A1 (en) * 2005-07-11 2007-01-18 Matsushita Electric Industrial Co., Ltd. Light source, light source device, laser image forming device and integrated circuit
US10680715B1 (en) * 2019-07-22 2020-06-09 Semtech Corporation Digital implementation of closed loop optical modulation amplitude controller for laser diode
WO2021075340A1 (en) * 2019-10-15 2021-04-22 ソニーセミコンダクタソリューションズ株式会社 Illumination device and ranging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192043A (en) * 1985-02-20 1986-08-26 Sharp Corp Semiconductor laser driving device
JPS6482583A (en) * 1987-09-25 1989-03-28 Hitachi Ltd Output stabilizing circuit for semiconductor laser
JP2005045097A (en) * 2003-07-24 2005-02-17 Japan Aviation Electronics Industry Ltd Device and method for driving laser diode
WO2007007733A1 (en) * 2005-07-11 2007-01-18 Matsushita Electric Industrial Co., Ltd. Light source, light source device, laser image forming device and integrated circuit
US10680715B1 (en) * 2019-07-22 2020-06-09 Semtech Corporation Digital implementation of closed loop optical modulation amplitude controller for laser diode
WO2021075340A1 (en) * 2019-10-15 2021-04-22 ソニーセミコンダクタソリューションズ株式会社 Illumination device and ranging device

Similar Documents

Publication Publication Date Title
US20110228037A1 (en) Laser driving unit and image forming apparatus
KR101645081B1 (en) Semiconductor laser driving device and image forming apparatus
EP2827184A1 (en) Image display device
US8976426B2 (en) Light source driving circuit, optical scanning device, and image forming apparatus
WO2024013948A1 (en) Semiconductor laser drive device
JP4908979B2 (en) Laser light quantity control device
US8933979B2 (en) Electrophotographic-type image forming apparatus
JP5216673B2 (en) Light receiver for distance meter and distance meter
TW202415142A (en) Semiconductor laser driving device, semiconductor laser driving method and distance measuring device
EP1324072B1 (en) Distance measuring device
JP5125976B2 (en) Optical modulation circuit, optical modulation apparatus, image display apparatus, image forming apparatus, and optical modulation method
US20210382153A1 (en) Method and apparatus for characterizing a time-of-flight sensor and/or a cover covering the time-of-flight sensor
US20220050207A1 (en) Light projecting device, tof sensor provided with same and distance image generator
JP2000203080A (en) Imaging apparatus
JP2002100831A (en) Semiconductor laser controller
JP2012187811A (en) Semiconductor laser drive device and image forming apparatus with the same
JP4186563B2 (en) Light source control device
JPH10173261A (en) Driving circuit for semiconductor light-emitting element and image recorder
JP2009090525A (en) Image forming apparatus and its adjusting method
JP2005262478A (en) Light beam emission controller
JPH06334248A (en) Drive circuit for laser diode
JPH1070330A (en) Laser driving circuit
JPH09311283A (en) Laser optical scanner
JP2024007815A (en) Mirror drive device, light source device, optical scanner, and correction method
JPH1051053A (en) Laser driving circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951162

Country of ref document: EP

Kind code of ref document: A1