WO2024013879A1 - Diagnostic control unit and diagnostic control method - Google Patents

Diagnostic control unit and diagnostic control method Download PDF

Info

Publication number
WO2024013879A1
WO2024013879A1 PCT/JP2022/027561 JP2022027561W WO2024013879A1 WO 2024013879 A1 WO2024013879 A1 WO 2024013879A1 JP 2022027561 W JP2022027561 W JP 2022027561W WO 2024013879 A1 WO2024013879 A1 WO 2024013879A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnosis
control device
vehicle
program
diagnostic
Prior art date
Application number
PCT/JP2022/027561
Other languages
French (fr)
Japanese (ja)
Inventor
好彦 赤城
修 向原
真也 佐藤
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/027561 priority Critical patent/WO2024013879A1/en
Publication of WO2024013879A1 publication Critical patent/WO2024013879A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements

Definitions

  • the present invention relates to a diagnostic control device and a diagnostic control method.
  • Patent Document 1 states that a diagnostic device for a mobile object includes "a time-series data storage means for measuring or estimating temperature, vibration, etc. and storing it as time-series data; Since the device is equipped with a wear degree calculating means for calculating the amount of wear, it is possible to predict the life with high estimation accuracy.''
  • a diagnostic control device is a diagnostic control device that is installed in a vehicle and controls diagnostic processing of the vehicle
  • the diagnostic control device is a diagnostic control device that is installed in a vehicle and controls diagnostic processing of the vehicle.
  • a data acquisition unit that acquires data
  • a predictive diagnosis unit that performs predictive diagnosis using the acquired data and extracts signs of component failure
  • a predictive diagnosis unit that performs detailed diagnosis of signs of component failure based on the results of the predictive diagnosis.
  • a detailed diagnosis section that requests a detailed diagnosis program suitable for the external device from the external device and performs a detailed diagnosis of signs of component failure using the detailed diagnosis program acquired from the external device.
  • the diagnostic control device it is sufficient to deploy only the necessary detailed diagnostic program to the diagnostic control device, thereby making it possible to reduce storage capacity resources of the diagnostic control device. This reduces the processing load on the diagnostic control device and the communication network, and enables more appropriate diagnosis. Problems, configurations, and effects other than those described above will be made clear by the following description of the embodiments.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an entire system including a diagnostic control device according to a first embodiment of the present invention.
  • FIG. 1 is a block diagram showing an example of the hardware configuration of a diagnostic control device according to a first embodiment of the present invention.
  • 1 is a block diagram showing a configuration example of a diagnostic control function of a diagnostic control device (arithmetic processing device) according to a first embodiment of the present invention.
  • FIG. It is a flowchart which shows the example of a process by the diagnostic control function of the diagnostic control apparatus based on the 1st Embodiment of this invention. It is a flowchart which shows the example of a process by the diagnostic control function of the diagnostic control apparatus based on the 2nd Embodiment of this invention.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an entire system including a diagnostic control device according to a first embodiment of the present invention.
  • FIG. 1 is a block diagram showing an example of the hardware configuration of a diagnostic
  • FIG. 7 is a block diagram showing a configuration example of a diagnostic control function of a diagnostic control device (arithmetic processing device) according to a third embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of a driver terminal device, a program server, and a maintenance contractor server according to first to third embodiments of the present invention.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an entire system including a diagnostic control device according to a first embodiment of the present invention.
  • a vehicle 100 shown in FIG. 1 is equipped with a diagnostic control device 130 that controls driving and diagnosis of the vehicle.
  • a microcontroller such as an electronic control unit (ECU) can be applied to the diagnostic control device.
  • the diagnostic control device 130 includes an arithmetic processing device 1310 and a communication IF (InterFace) 1320.
  • the arithmetic processing unit 1310 performs predictive diagnosis based on data acquired from the sensors 110, actuators 120, master ECU 140, other ECUs (not shown), etc. while the vehicle 100 is running. Then, the arithmetic processing unit 1310 acquires a necessary program (a detailed diagnosis program, a fail-safe program, etc. to be described later) from the program server 210 via OTA (Over The Air) according to the result of the predictive diagnosis.
  • OTA Over The Air
  • a vehicle is provided with a plurality of ECUs, such as an engine control ECU (not shown) and an advanced driving support system ECU (ADAS ECU).
  • Master ECU 140 is an ECU that controls vehicle 100 by collectively controlling a plurality of ECUs provided in vehicle 100.
  • ECUs involved in controlling a vehicle are also collectively referred to as a "vehicle control device.”
  • the communication IF 1320 is configured to be able to communicate with the program server 210 on the cloud 200 via a wide area network N such as the Internet. Further, the communication IF 1320 is configured to be able to communicate with the master ECU 140 or other ECUs (not shown) via an in-vehicle network (not shown) in the vehicle 100.
  • the MIL (Malfunction Indicator Lamp) 150 is a malfunction warning light arranged on the instrument panel, and is an example of the driver terminal device 540 (driver interface section) in FIG. 5, which will be described later.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the diagnostic control device 130.
  • the diagnostic control device 130 includes an input circuit 191, an A/D converter 192, a CPU (Central Processing Unit) 193, a ROM (Read Only Memory) 194, and a RAM (Random Access Memory). ) 195, an output circuit 196, and a communication IF 1320.
  • the arithmetic processing unit 1310 is configured using an A/D conversion section 192, a CPU 193, a ROM 194, and a RAM 195.
  • Each function according to the embodiment of the present invention is realized by the CPU 193 loading a program stored in the ROM 194 (an example of a storage unit) into the RAM 195 and executing it.
  • CPU 193 is an example of a control device. Note that instead of the CPU 193, a processing device such as an MPU (Micro-Processing Unit) may be used.
  • MPU Micro-Processing Unit
  • the input circuit 191 takes in signals output from the sensors 110 as input signals 190.
  • the sensors 110 include, for example, an intake flow rate sensor, a throttle sensor, a water temperature sensor, a crank angle sensor, an intake cam angle sensor, an exhaust cam angle sensor, and the like.
  • the input circuit 191 removes noise components from the input signal 190, and outputs the noise-removed signal to the A/D converter 192.
  • the A/D converter 192 converts the analog signal into a digital signal and outputs it to the CPU 193.
  • the CPU 193 takes in the digital signal output from the A/D conversion unit 192 and executes a variety of calculations, diagnosis, control, etc. by executing control logic (program) stored in a storage medium such as the ROM 194. .
  • a nonvolatile memory such as an EEPROM (Electrically Erasable and Programmable Read Only Memory) whose contents can be rewritten may be used as the ROM 194.
  • EEPROM Electrically Erasable and Programmable Read Only Memory
  • a program in which an algorithm for implementing each function according to the embodiment of the present invention is written may be stored in the ROM 194 or a non-volatile storage (not shown).
  • the non-volatile storage (not shown) stores, for example, a plurality of data acquired by the data acquisition section 310, medical record information created by the monitoring record management section 510 (see FIG.
  • this nonvolatile storage may be a storage medium that is removable from the diagnostic control device 130, such as a cassette type SSD (Solid State Drive).
  • Controlled objects include, for example, an intake valve drive device, an exhaust valve drive device, a fuel injection device, a spark plug, a steering device, a brake device, a power conversion circuit, and the like.
  • the input signal 190 is a digital signal
  • the input signal 190 is directly sent from the input circuit 191 to the CPU 193 via the signal line 198, and the CPU 193 executes necessary calculations, control, etc.
  • the communication IF 1320 is composed of a communication device and the like that controls communication with other devices.
  • the communication IF 1320 is a communication device that communicates with a wide area network N (for example, the Internet), or a communication device that communicates with an ECU or sensor in the vehicle 100 such as the master ECU 140 using a CAN (Controller Area Network) or the like. .
  • FIG. 3 is a block diagram showing a configuration example of the diagnostic control function of the diagnostic control device 130 (arithmetic processing device 1310).
  • the input circuit 191, output circuit 196, and communication IF 1320 (see FIG. 2), which perform communication processing between the diagnostic control device 130 and other devices (vehicle sensors, ECUs, servers, etc.), are omitted. There is.
  • the arithmetic processing unit 1310 of the diagnostic control device 130 includes a data acquisition section 310, a predictive diagnosis section 320, and a detailed diagnosis section 330.
  • Data acquisition unit 310 acquires data from sensors 110 in vehicle 100 and/or one or more other ECUs that control vehicle 100 such as master ECU 140 (FIG. 1) while vehicle 100 is running. .
  • the data obtained from the ECU includes sensor output values, control parameters, and the like. These data are periodically collected by the diagnostic control device 130 and stored in a non-volatile storage (not shown) within the diagnostic control device 130 in chronological order as time-series data.
  • the data acquisition unit 310 may acquire the above data even while the vehicle 100 is stopped.
  • the predictive diagnosis unit 320 performs a predictive diagnosis (primary diagnosis) using the plurality of acquired data and extracts items (hereinafter abbreviated as "predictive items") that show signs of component failure.
  • a sign of component failure can also be interpreted as component deterioration.
  • engine deterioration is extracted by detecting an increase in BGL (background level) during knock control.
  • the parts include, for example, equipment, sensors, actuators, and members forming the structure of the product to be diagnosed (vehicle 100 in this example).
  • the predictive diagnosis unit 320 performs predictive diagnosis by executing a predictive diagnosis program (primary diagnosis program) that is stored in the ROM 194 (FIG. 2) and applies a technique such as the subspace method. Then, the predictive diagnosis unit 320 sends the results of the predictive diagnosis, that is, the predictive items, to the detailed diagnostic unit 330. For example, in a certain predictive diagnosis, the predictive diagnosis unit 320 may perform predictive diagnosis A (e.g., mechanical noise predictive level exceeded), predictive diagnosis B (e.g., correlation predictive level between engine condition and air amount behavior), predictive diagnosis C (e.g., Extract the omen items such as (other omen contents).
  • predictive diagnosis A e.g., mechanical noise predictive level exceeded
  • predictive diagnosis B e.g., correlation predictive level between engine condition and air amount behavior
  • predictive diagnosis C e.g., Extract the omen items such as (other omen contents).
  • an orthonormal basis constituting a subspace for each classified class is obtained from previously prepared learning data, and input data (the above-mentioned plurality of data) is projected onto the subspace of each class for identification.
  • input data the above-mentioned plurality of data
  • an independent subspace is constructed for each class, so multi-class identification can be easily performed.
  • the subspace method performs projection calculation onto a subspace with a small number of dimensions, so the amount of calculation is small.
  • the detailed diagnosis section 330 diagnoses the failure situation from the time when a sign of component failure is extracted until the component failure occurs via the wide area network N based on the result of the predictive diagnosis performed by the predictive diagnosis section 320.
  • a suitable detailed diagnosis program is requested from the program server 210.
  • a component failure is an abnormal event of a component, such as an increase in backlash in component installation, loosening of a fitting part, or an abnormal signal level.
  • the detailed diagnosis unit 330 transmits the predictive items extracted by the predictive diagnosis performed by the predictive diagnostic unit 320 to the program server 210 as diagnostic information, and requests a detailed diagnostic program. Then, the detailed diagnosis unit 330 downloads a detailed diagnosis program suitable for the extracted symptom item from the program server 210, and performs a detailed diagnosis (secondary diagnosis) on the symptom item.
  • the detailed diagnosis program is a program for accurately detecting failures by analyzing the results of predictive diagnosis (predictive items) in detail, and has a larger amount of data than the program used for predictive diagnosis.
  • the detailed diagnosis program may be an analysis program for identifying the cause of a failure (or abnormality).
  • an example of the analysis program is a program that determines whether the increase in BGL is synchronized with the crank angle in knock control.
  • a knock detection method in knock control mainly takes a signal from a knock sensor attached to a cylinder block and converts it from analog to digital (AD). BGL corresponds to the AD conversion value when there is no knock.
  • the detailed diagnosis unit 330 determines that fail-safe processing is necessary for the component failure depending on the detailed diagnosis result by the detailed diagnosis program, and requests the program server 210 for a fail-safe program suitable for the component failure. The detailed diagnosis unit 330 then downloads the failsafe program from the program server 210 and performs failsafe processing suitable for the failure of the corresponding component.
  • the program server 210 determines whether fail-safe processing is to be performed (or not), and depending on the result of the determination, the fail-safe program is executed by the diagnostic control device 130. It may also be configured to send to. For example, if it is desired to immediately perform fail-safe processing as a result of predictive diagnosis, such a configuration may be considered.
  • FIG. 4 is a flowchart showing an example of processing by the diagnostic control function of the diagnostic control device 130.
  • the predictive diagnosis unit 320 of the diagnostic control device 130 performs processing (primary diagnosis) for diagnosing signs of component failure based on data obtained from the product to be diagnosed (for example, the vehicle 100). It is determined whether the diagnosis result is defective (NG) (step S1). If the result of the predictive diagnosis is not defective (NG), that is, if no signs of component failure are extracted (NO determination in step S1), the predictive diagnostic unit 320 ends this process. On the other hand, if the result of the predictive diagnosis is defective (NG), that is, if a symptom of component failure is extracted (YES determination in step S1), the predictive diagnosis unit 320 selects the predictive item as the result of the predictive diagnosis (diagnosis information). is sent to the detailed diagnosis section 330.
  • the detailed diagnosis unit 330 sends diagnostic information (predictive items) to the program server 210 via the wide area network N, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends the diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends the diagnostic information (predictive items) to the program server 210.
  • a detailed diagnosis program is requested (step S2).
  • the program server 210 selects the received diagnostic information (predictive symptoms) from among the plurality of detailed diagnostic programs stored in the nonvolatile storage 607 (see FIG. 6, which will be described later). item) is selected (step S3). Then, the program server 210 transmits the selected detailed diagnosis program to the diagnosis control device 130.
  • the detailed diagnosis unit 330 of the arithmetic processing unit 1310 downloads the detailed diagnosis program from the program server 210 via the wide area network N and communication IF 1320, and stores it in the ROM 194 (step S4).
  • the detailed diagnosis unit 330 executes the detailed diagnosis program stored in the ROM 194, and performs a detailed diagnosis (secondary diagnosis) on the parts for which signs of failure have been extracted in the product to be diagnosed (vehicle 100) (step S5 ).
  • the detailed diagnosis unit 330 determines whether fail-safe processing is necessary for the component failure (predictive item) for which a symptom has been extracted (step S6), and if fail-safe processing is not necessary. (NO determination in step S6), this process ends. For example, if a serious failure such as a component failure occurs and the detailed diagnosis results in a failure (NG), failsafe processing is required.
  • step S6 the detailed diagnosis unit 330 sends the results of the detailed diagnosis as diagnostic information to the program server 210, and performs a fail-safe program appropriate for component failure. (Step S7).
  • the program server 210 selects the received diagnostic information (detailed diagnosis result ) is selected (step S8).
  • the program server 210 then transmits the selected failsafe program to the diagnostic control device 130.
  • the detailed diagnosis unit 330 of the arithmetic processing unit 1310 downloads the failsafe program sent from the program server 210 via the wide area network N and the communication IF 1320, and stores it in the ROM 194 (step S9).
  • the detailed diagnosis program and failsafe program may be downloaded to the RAM 195, and the RAM 195 may temporarily hold these programs.
  • step S10 the detailed diagnosis unit 330 executes the failsafe program stored in the ROM 194, and performs failsafe processing for component failure in the product to be diagnosed (vehicle 100) (step S10). After the process in step S10, this process ends.
  • the predictive diagnosis unit 320 periodically performs predictive diagnosis and determines whether the predictive diagnosis result in step S1 is NG.
  • the arithmetic processing unit 1310 may be configured to delete the downloaded detailed diagnosis program from the ROM 194 (or RAM 195) after the detailed diagnosis is completed. For example, depending on the progress of deterioration of a product to be diagnosed, the timing at which deterioration of which component is extracted changes. Furthermore, it is also assumed that the extracted symptom items may change depending on the progress of deterioration even for the same part. Therefore, the arithmetic processing unit 1310 sequentially downloads (overwrites) different detailed diagnosis programs depending on the stage of development of a symptom of one component failure. Thereby, it is possible to obtain a detailed diagnosis program that is most suitable for the sign of component failure, depending on the stage of development of the sign of component failure.
  • the program server 210 selects the detailed diagnosis program suitable for the symptom item
  • a configuration may be adopted in which the detailed diagnosis section 330 makes this selection. That is, the detailed diagnosis unit 330 may be configured to specify a detailed diagnosis program suitable for the predictive item based on the result of the predictive diagnosis (the predictive item), and request the program server 210 to transmit the specified detailed diagnostic program. good.
  • the detailed diagnosis unit 330 may specify a fail-safe program suitable for a component failure based on the results of the detailed diagnosis, and request the program server 210 to transmit the specified fail-safe program.
  • the arithmetic processing unit (arithmetic processing unit 1310) of the diagnostic control device (diagnostic control device 130) is a diagnostic control device that is mounted on a vehicle and controls diagnostic processing of the vehicle.
  • the diagnostic control device (diagnostic control device 130) includes a data acquisition unit (data acquisition unit 310) that acquires data from sensors provided in the vehicle and a vehicle control device (for example, master ECU 140, other ECUs not shown);
  • a predictive diagnosis unit predictive diagnosis unit (predictive diagnosis unit 320) that performs predictive diagnosis using the acquired data and extracts signs of component failure;
  • a detailed diagnosis unit (detailed diagnosis unit) requests a detailed diagnosis program (secondary diagnosis program) from an external device (for example, the program server 210), and performs a detailed diagnosis of signs of component failure using the detailed diagnosis program obtained from the external device. 330).
  • the detailed diagnosis section performs A failsafe program is requested from an external device (for example, the program server 210), and failsafe processing is performed using the failsafe program obtained from the external device.
  • the diagnostic control device 130 Since it is sufficient to deploy only the necessary (for example, one) detailed diagnostic program to the diagnostic control device, resources such as ROM and RAM of the diagnostic control device (ECU) can be reduced. Therefore, in this embodiment, it is possible to simultaneously reduce the resources of the diagnostic control device 130 and make the diagnosis more detailed. That is, the resource consumption of the diagnostic control unit (ECU) and the processing load of the communication network can be reduced, and more appropriate diagnosis can be performed. For example, even if the available memory capacity of the diagnostic control device 130 is small, the diagnostic control device 130 can acquire an optimal detailed diagnosis program and perform a detailed diagnosis after a predictive diagnosis.
  • the diagnostic control device 130 can acquire an optimal detailed diagnosis program and perform a detailed diagnosis after a predictive diagnosis.
  • the suitability of fail-safe processing is determined based on the detailed diagnosis program suitable for the sign of component failure extracted by the predictive diagnosis, and the suitable fail-safe program is acquired in the diagnostic control device. . Since the diagnostic control device acquires only the necessary fail-safe program from an external device (for example, the program server 210), resources such as ROM and RAM of the diagnostic control device (ECU) can be reduced.
  • an external device for example, the program server 210
  • resources such as ROM and RAM of the diagnostic control device (ECU) can be reduced.
  • the product to be diagnosed (for example, the vehicle 100) equipped with the diagnostic control device acquires detailed diagnostic programs and fail-safe programs from external devices each time. Failsafe can be used.
  • detailed diagnostic software can also be sold additionally after the product is sold. Furthermore, by adding detailed diagnosis software as an accessory to a product (or part), the competitiveness of the part can be increased. Furthermore, in addition to the signs of component failure extracted through predictive diagnosis, it is also possible to additionally diagnose new failure phenomena that are discovered later.
  • FIG. 5 is a flowchart showing an example of processing by the diagnostic control function of the diagnostic control device according to the present embodiment.
  • steps S11 to S18 shown in FIG. 5 the processing in steps S11 to S13 is the same as the processing in steps S1 to S3 in FIG. 4, respectively, and the explanation of overlapping parts will be omitted.
  • the predictive diagnosis unit 320 of the diagnostic control device 130 performs predictive diagnosis (primary diagnosis) and determines whether the result of the predictive diagnosis is bad (NG) (step S11).
  • the predictive diagnosis unit 320 ends this process if the predictive diagnosis result is not defective (NG) (NO determination in step S11), and if the predictive diagnosis result is defective (NG) (YES determination in step S11). (determination) proceeds to step S12.
  • the detailed diagnosis unit 330 requests the program server 210 for a detailed diagnosis program suitable for performing a detailed diagnosis on the diagnostic information (predictive items) obtained in the predictive diagnosis (step S12).
  • the program server 210 selects a detailed diagnosis program suitable for the diagnostic information (predictive items) received from the diagnostic control device 130 from the nonvolatile storage 607 (step S13).
  • the number of detailed diagnosis programs selected is one or more.
  • the program server 210 determines whether the number of selected detailed diagnosis programs (number of diagnoses) is greater than a preset threshold (step S14). If the number of diagnoses is greater than the threshold (YES determination in step S14), the program server 210 proceeds to step S4 in FIG. 4 and transmits the selected detailed diagnosis program to the diagnosis control device 130.
  • the detailed diagnosis unit 330 of the arithmetic processing unit 1310 downloads the detailed diagnosis program from the program server 210 (step S4), executes the detailed diagnosis program, and performs detailed diagnosis (secondary diagnosis) on the symptom items. Execute (step S5).
  • the detailed diagnosis unit 330 determines whether fail-safe processing is necessary for the component failure (predictive item) for which a predictive sign has been extracted as a result of the detailed diagnosis (step S6). If failsafe processing is necessary (YES determination in step S6), the detailed diagnosis unit 330 downloads the corresponding failsafe program from the program server 210 and executes it (steps S7 to S10).
  • steps S4 to S6 are performed for all detailed diagnostic programs downloaded from the program server 210 by the diagnostic control device 130. Then, the determination process of step S6 is performed for each detailed diagnosis program, and when it is determined that fail-safe process is necessary, the processes of steps S7 to S10 are performed as appropriate.
  • step S14 If the number of diagnoses is equal to or less than the threshold in step S14 (NO determination in step S14), the program server 210 transmits a failsafe program for the target symptom item in addition to the selected detailed diagnosis program to the diagnostic control device 130. . Then, the detailed diagnosis unit 330 of the arithmetic processing unit 1310 downloads the detailed diagnosis program and the failsafe program from the program server 210 (step S15).
  • the detailed diagnosis unit 330 executes the downloaded detailed diagnosis program and performs a detailed diagnosis (secondary diagnosis) on the component for which a sign of failure has been extracted (step S16).
  • the detailed diagnosis unit 330 determines whether the detailed diagnosis result is NG (step S17). If it is diagnosed that a serious failure such as a component failure has occurred, the detailed diagnosis will result in a failure (NG). If the detailed diagnosis result is not defective (NG) (NO determination in step S17), the detailed diagnosis unit 330 ends this process. On the other hand, if the detailed diagnosis result is defective (NG) (YES determination in step S17), the detailed diagnosis unit 330 executes the failsafe program downloaded together with the target detailed diagnosis program, and ), a fail-safe process is performed (step S18). After the process of step S18, this process ends.
  • steps S15 to S17 is performed on all detailed diagnosis programs downloaded to the diagnostic control device 130, and the processing in step S18 is performed on the corresponding fail-safe program when the result of the detailed diagnosis is NG. It is carried out using
  • the present embodiment can obtain the following effects in addition to the same effects as the first embodiment. That is, in this embodiment, a plurality of detailed diagnostic programs and corresponding fail-safe programs are efficiently transmitted to the diagnostic control device 130 while taking into consideration the free storage capacity and processing capacity of the diagnostic control device 130, as well as the processing load of the communication network. can do.
  • the judgment criterion may be the total amount of data of the selected detailed diagnosis programs.
  • the total value of the data amount of each fail-safe program corresponding to the selected detailed diagnosis program may be compared with a threshold value.
  • the free storage capacity of the diagnostic control device 130 on the receiving side may be used as the judgment criterion. For example, when sending diagnostic information for predictive diagnosis from the diagnostic control device 130 to the program server 210, the diagnostic control device 130 also sends its own free storage capacity as resource information. Alternatively, after selecting the detailed diagnosis program in step S13, the program server 210 may inquire of the diagnostic control device 130 about the free storage capacity in step S14. With such a configuration, the program server 210 can transmit detailed diagnostic programs and failsafe programs according to the free storage capacity of the diagnostic control device 130. For example, if the free storage capacity of the diagnostic control device 130 is insufficient, a plurality of detailed diagnostic programs and failsafe programs can be reliably downloaded in two or more times without stopping or interrupting the download.
  • FIG. 6 is a block diagram showing a configuration example of the diagnostic control function of the diagnostic control device according to the third embodiment.
  • the arithmetic processing unit 1310A of the diagnostic control device 130 according to the present embodiment is different from the arithmetic processing unit 1310 (FIG. 3) of the first and second embodiments in that the monitoring record management unit 510 and the influence analysis 520 and an analysis/diagnosis result handling section 530.
  • the vehicle 100 also includes a driver terminal device 540.
  • the data acquisition unit 310 acquires data from the sensors 110 in the vehicle 100 and/or one or more ECUs that control the vehicle 100.
  • the data acquisition section 310 outputs the plurality of acquired data to the predictive diagnosis section 320 and the monitoring record management section 510.
  • the predictive diagnosis unit 320 performs predictive diagnosis (primary diagnosis) using the plurality of data acquired by the data acquisition unit 310 and outputs predictive items to the detailed diagnosis unit 330 and the influence analysis unit 520.
  • the detailed diagnosis unit 330 sends a detailed diagnosis program suitable for diagnosing the symptom items in detail to the program server via the wide area network N based on the results of the predictive diagnosis (predictive items) in the predictive diagnostic unit 320. Request to 210. Then, the detailed diagnosis unit 330 performs a detailed diagnosis (secondary diagnosis) on the symptom item using the detailed diagnosis program acquired from the program server 210. The detailed diagnosis section 330 outputs the detailed diagnosis results (diagnosis information) to the program server 210 and the analysis/diagnosis result correspondence section 530.
  • the monitoring record management unit 510 stores identification information given to each component mounted on the vehicle 100, usage period information regarding the usage period (usage record) of each of the components, and driving history information including the mileage of each of the components. , and create and manage monitoring record information (hereinafter referred to as "medical record information") for each of the parts concerned.
  • the mileage of the component is, for example, the mileage of the vehicle 100.
  • the medical record information may include the service life of each part.
  • the monitoring record management section 510 outputs the created medical record information to the influence analysis section 520.
  • the monitoring record management section 510 may periodically request the data acquisition section 310 to transmit data.
  • the influence analysis unit 520 classifies the second factors (index) by subdividing each part of the equipment configuration of the vehicle 100 including parts, and the second factors by function of the vehicle 100 while associating them with predetermined know-how items.
  • the influence of various information on the vehicle 100 (parts) is analyzed using a tree-structured FT section (Fault Tree Diagram) that stores the first factor (index).
  • the influence analysis unit 520 combines the FT unit, the predictive items extracted by the predictive diagnosis unit 320, and the medical record information created by the monitoring record management unit 510 to determine the normal condition of the vehicle 100 (parts). Analyzes conditions different from the above and the necessity of maintenance of the vehicle 100 (parts).
  • the influence analysis unit 520 may be configured to receive the above information as input and perform inference using a learning model learned to output the result of influence analysis.
  • the predetermined know-how items include, for example, expected abnormalities (errors) for each device (part), effects associated with the abnormality (error), conditions for determining abnormality or conditions for determining that maintenance is necessary, and content of maintenance. etc.
  • the analysis/diagnosis result handling unit 530 controls the driver terminal device 540 so that information based on the analysis results of the influence analysis unit 520 (including maintenance forecasts, operating mode setting states, warnings, etc.) is displayed. Furthermore, the analysis/diagnosis result handling unit 530 controls the driver terminal device 540 to display the results of the diagnosis performed by the detailed diagnosis unit 330 using the detailed diagnosis program.
  • the analysis/diagnosis result handling section 530 includes a mode setting section 531 that sets the operation mode of a plurality of ECUs external to the diagnostic control device 130 that control the vehicle 100 based on the analysis results of the influence analysis section 520. .
  • the analysis/diagnosis result handling unit 530 operates one or more ECUs that control the vehicle 100 in accordance with the operation mode (predetermined operation pattern) set by the mode setting unit 531. Examples of the operation modes include fail-safe mode, vehicle stop mode, normal operation mode, and high-speed operation mode.
  • the driver terminal device 540 (driver interface unit) is equipped with a display unit and an input unit, and is configured to display a plurality of data acquired by the data acquisition unit 310, identification information included in medical record information, period of use information, and driving history.
  • the configuration is such that information can be exchanged (sent/received and edited) with the data acquisition section 310 or the monitoring record management section 510.
  • the driver terminal device 540 corresponds to, for example, an MIL 150 (malfunction warning light).
  • the impact analysis unit 520 obtains "usable period information” or “removable distance information” that is expected to allow the vehicle 100 or its parts to be used without any inconvenience from the current point in time during the impact analysis.
  • the mode setting unit 531 of the analysis/diagnosis result handling unit 530 also controls the driver's terminal so that “usable period information” or “travelable distance information” is displayed in the form of a numerical value or a remaining fuel gauge. Control device 540.
  • the driver terminal device 540 uses the above-mentioned predicted "usable period information" or "movable distance information” to inform the maintenance contractor server 550 managed by the maintenance contractor of the vehicle 100 of the possible maintenance date.
  • a work reservation system is constructed that not only carries out inquiries but also requests "waiting period information" up to the date when maintenance can be performed.
  • "Waiting period information” is a function of the number of days required to order parts (supplies) required for maintenance (if the order delivery time is long, the waiting time will naturally be long).
  • the mode setting unit 531 adjusts the operation mode and the display state of information on the driver terminal device 540 (changes the contents, etc.) according to "standby period information", "available period information", or "travelable distance information” do.
  • the driver (or the manager of the vehicle 100) checks the waiting period information displayed on the driver terminal device 540 and considers whether to actually request maintenance. If there is no inconvenience during the waiting period, the driver (or the manager of the vehicle 100) operates the driver terminal device 540 to instruct the maintenance contractor server 550 to request maintenance.
  • the driver terminal Interrogations by device 540 can be performed automatically. Then, through the inquiry, the arithmetic processing unit 1310A updates the contents of the FT section (first factor, second factor, and predetermined know-how items) to the latest information stored in the maintenance contractor server 550. (Synchronization) is possible.
  • the predictive diagnosis section 320 performs diagnosis (FT check) based on the FT section in predictive diagnosis (primary diagnosis), and detects symptoms (predictive items) that can perform diagnosis and fail-safe processing on the ON board. It has the function of classifying symptoms (predictive items) that cannot be diagnosed. Being able to diagnose with the ON board means being able to diagnose using the self-diagnosis function of the vehicle 100 that is pre-installed in the diagnostic control unit 130 (ECU). If the ON board cannot perform diagnosis, the diagnostic control device 130 (arithmetic processing device 1310A) transmits diagnostic information to the program server 210 and moves to detailed diagnosis (secondary diagnosis). The detailed diagnosis unit 330 downloads a detailed diagnosis program (secondary diagnosis program) and performs a detailed diagnosis for a diagnosis that requires detailed information (diagnosis of a symptom item).
  • the arithmetic processing unit (arithmetic processing unit 1310A) of the diagnostic control device (diagnostic control device 130) includes identification information of parts constituting the vehicle, period of use, and mileage.
  • a monitoring record management unit (monitoring record management unit 510) that manages monitoring record information (medical record information), a tree-structured fault tree diagram (FT unit) in which at least each part is associated with each function of the vehicle, and a part failure
  • An impact analysis unit (impact analysis unit 520) that analyzes the impact of each piece of information on the vehicle by combining the warning signs and monitoring record information; It further includes an analysis/diagnosis result correspondence section (analysis/diagnosis result correspondence section 530) to be displayed on the driver terminal device (driver terminal device 540).
  • information based on the analysis results of the influence analysis unit (including maintenance forecasts, operating mode setting states, warnings, etc.) is transmitted to the driver terminal device ( (driver interface section). This allows the driver to check the condition of the vehicle (parts), whether maintenance of the vehicle (parts) is required, etc.
  • the analysis/diagnosis result correspondence unit (mode setting unit 531 of the analysis/diagnosis result correspondence unit 530):
  • the operation mode of the vehicle control unit (ECU) is set based on the result of the analysis by the influence analysis unit (influence analysis unit 520), and the operation mode setting information is transmitted to the vehicle control unit.
  • the operation mode of the vehicle control unit is set in the analysis/diagnosis result handling unit (mode setting unit) based on the analysis result of the influence analysis unit.
  • the vehicle control device can be operated in an appropriate operation mode based on the symptom items.
  • FIG. 7 is a block diagram showing an example of the hardware configuration of the program server 210, driver terminal device 540, and maintenance contractor server 550 according to the first to third embodiments.
  • the computer 600 is an example of hardware used as a computer that can operate as a program server 210, a driver terminal device 540 (for example, MIL 150), and a maintenance contractor's server 550.
  • the computer 600 includes a CPU (Central Processing Unit) 601, a ROM (Read Only Memory) 602, a RAM (Random Access Memory) 603, a display section 605, and an operation section 606, each connected to a bus.
  • the computer 600 includes a nonvolatile storage 607 and a network IF (InterFace) 608.
  • Each block may be selected according to the function and purpose of use of each device or server.
  • the computer 600 may have a form in which the display unit 605 and the operation unit 606 are not connected.
  • the CPU 601 reads software program codes that implement each function according to the embodiments described above from the ROM 602, expands them to the RAM 603, and executes them. Alternatively, the CPU 601 may directly read the program code from the ROM 602 and execute it as is. Note that the computer 600 may include a processing device such as an MPU (Micro-Processing Unit) instead of the CPU 601. Variables, parameters, etc. generated during arithmetic processing by the CPU 601 are temporarily written into the RAM 603.
  • MPU Micro-Processing Unit
  • non-volatile storage 607 for example, an HDD (Hard Disk Drive), SSD, flexible disk, optical disk, magneto-optical disk, CD-ROM, CD-R, non-volatile memory card, etc. can be used.
  • this non-volatile storage 607 in addition to the OS (Operating System) and various parameters, programs for operating the computer 600 and the like are recorded.
  • the detailed diagnosis program and failsafe program of the program server 210 and the FT section of the maintenance contractor server 550 are stored in each non-volatile storage 607.
  • Each function of the program server 210, driver terminal device 540, maintenance agent server 550, and maintenance agent server 550 is performed by the CPU 601 executing a program corresponding to each function stored in the ROM 602 or non-volatile storage 607. Realized.
  • the program is stored in the form of a computer-readable program code, and the CPU 601 sequentially executes operations according to the program code. That is, the ROM 602 or the nonvolatile storage 607 is used as an example of a computer-readable non-transitory recording medium that stores a program to be executed by a computer.
  • the network IF 608 is composed of a communication device and the like that controls communication with other devices such as a server and an ECU.
  • the arithmetic processing units 1310 and 1310A of the diagnostic control device 130 are configured to download the detailed diagnostic program and failsafe program from the program server 210.
  • a configuration may be adopted in which a plurality of detailed diagnostic programs and failsafe programs are stored in the master ECU 140, and the diagnostic control device 130 acquires these necessary programs from the master ECU 140.
  • the arithmetic processing units 1310 and 1310A of the diagnostic control device 130 can acquire the necessary detailed diagnostic program and failsafe program regardless of the communication quality of the wide area network N.
  • the detailed diagnosis unit 330 extracts the resources of the ECU applied to the diagnostic control device 130. Download detailed diagnostic programs and fail-safe programs depending on available capacity (storage capacity, processing power). For example, if three predictive items are extracted, the detailed diagnosis unit 330 may download them one by one depending on the ECU's available resources, or download one item first and then two depending on the amount of data in the program. Processing such as downloading all files at once is performed. Alternatively, if the priority of the symptom items is high or low, the detailed diagnosis unit 330 may download the detailed diagnosis program for the symptom item with a higher priority.
  • a vehicle was explained as an example of a product to be diagnosed by the diagnostic control device 130, but a product to be diagnosed is not limited to a vehicle.
  • the product to be diagnosed may be an electrical product such as a refrigerator, or a control device for the electrical product such as a controller for the refrigerator.
  • a decrease in cooling capacity due to the refrigerant starting to leak out of the refrigerator, etc. is extracted as a sign of failure of parts of the refrigerator.
  • component failures of the refrigerator include, for example, increased play in the installation of components, loosening of fitting parts, and failure to cool the inside of the refrigerator (for example, refrigerant leakage).
  • countermeasures include protecting the food in the refrigerator for which signs have been detected by purchasing another refrigerator, suppressing food deterioration by reducing the frequency of opening and closing the refrigerator door, or repairing the refrigerator. You may request a service provider to perform an inspection. Furthermore, even if the product to be diagnosed is a vehicle, there are more options for responding when there are signs of failure rather than after a complete failure.
  • the present invention is not limited to the first to third embodiments described above, and can take various other applications and modifications without departing from the gist of the present invention as described in the claims.
  • the configuration of the diagnostic control device (particularly, the arithmetic processing device) is explained in detail and specifically in order to explain the present invention in an easy-to-understand manner, and not everything that has been explained is necessarily explained. It is not limited to those having the following components. Further, it is also possible to add, replace, or delete other components to some of the configurations of the first to third embodiments.
  • each of the above-mentioned configurations, functions, processing units, etc. may be partially or entirely realized by hardware, for example, by designing an integrated circuit.
  • a broadly defined processor device such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) may be used.
  • control lines and information lines are shown to be necessary for explanation, and not all control lines and information lines are necessarily shown in the product. It doesn't necessarily mean there are. In reality, almost all the components may be considered to be interconnected.
  • each component of the diagnostic control device may be implemented in any hardware as long as the respective hardware can send and receive information to and from each other via a network.
  • the processing performed by a certain processing unit may be realized by one piece of hardware, or may be realized by distributed processing by a plurality of pieces of hardware.
  • processing steps describing chronological processing are not only processes that are performed chronologically in the described order, but also processes that are not necessarily performed chronologically, but may be performed in parallel or It also includes processes that are executed individually (for example, processes by objects). Furthermore, the processing order of processing steps that describe time-series processing may be changed within a range that does not affect the processing results.

Abstract

Provided is a diagnostic control device that is installed in a vehicle, and controls the diagnostic processes of the vehicle, the device comprising: a data acquisition unit that acquires data from a vehicle control device and a sensor provided to the vehicle; a symptom diagnosis unit that performs symptom diagnosis using the acquired data and extracts a symptom of a component malfunction; and a detailed diagnostic unit that requests, from an external device, a detailed diagnostic program suitable for performing a detailed diagnosis on the symptom of the component malfunction on the basis of the results of the symptom diagnosis, and performs a detailed diagnosis of the symptom of the component malfunction by means of the detailed diagnostic program obtained from the external device.

Description

診断制御装置及び診断制御方法Diagnostic control device and diagnostic control method
 本発明は、診断制御装置及び診断制御方法に関する。 The present invention relates to a diagnostic control device and a diagnostic control method.
 近年、自動車を所有する人が減少し、自動車の利用形態として、一台の自動車を複数の個人や会社が共同で利用するカーシェアリングなどが増加している。このため、以前のような特定の利用者(個人、法人)が自動車の管理、点検を行う機会が減少している。一方で、自動車をはじめコンピューター制御されるシステムにおいて、自己診断機能はシステムの点検及び保守をする上で欠かせない機能の一つである。 In recent years, the number of people who own cars has decreased, and car sharing, in which a single car is used jointly by multiple individuals or companies, is increasing. For this reason, there are fewer opportunities for specific users (individuals, corporations) to manage and inspect automobiles as in the past. On the other hand, in computer-controlled systems such as automobiles, a self-diagnosis function is one of the essential functions for inspecting and maintaining the system.
 例えば、特許文献1には、移動体の診断装置が「温度、振動などを測定又は推定し、時系列データとして保存する時系列データ保存手段と、この時系列データに基づいて対象機器の損耗度を演算する損耗度演算手段を備えるため、推定精度の高い寿命予測が可能となる。」ことが記載されている。 For example, Patent Document 1 states that a diagnostic device for a mobile object includes "a time-series data storage means for measuring or estimating temperature, vibration, etc. and storing it as time-series data; Since the device is equipped with a wear degree calculating means for calculating the amount of wear, it is possible to predict the life with high estimation accuracy.''
特開2008-52660号公報JP2008-52660A
 ところで、車両の診断に必要であるからといって、想定される全ての情報を電子制御ユニット(ECU:Electronic Control Unit)に格納すると、それらの情報のデータ量がECU内のROMやRAM等の記憶媒体の記憶容量をオーバーしてしまう。一方、オンラインで遠隔診断することも可能であるが、リアルタイムに診断するには通信の遅延を避けるために、一定レベル以上の通信量と通信速度で通信することが必要となる。このため、オンラインによる遠隔診断では、リアルタイム性の高い診断は難しい。 By the way, if all the information that is assumed to be necessary for vehicle diagnosis is stored in the electronic control unit (ECU), the amount of data of that information will be limited to the ROM, RAM, etc. in the ECU. The storage capacity of the storage medium is exceeded. On the other hand, online remote diagnosis is also possible, but real-time diagnosis requires communication at a certain level of communication volume and communication speed to avoid communication delays. For this reason, it is difficult to perform highly real-time diagnosis using online remote diagnosis.
 上記の状況から、診断を行う電子制御ユニットや通信ネットワークの処理負荷を低減し、かつ、より適切な診断を可能とする手法が要望されていた。 Due to the above situation, there has been a need for a method that reduces the processing load on the electronic control unit and communication network that perform the diagnosis, and enables more appropriate diagnosis.
 上記の課題を解決するために、本発明の一態様の診断制御装置は、車両に搭載され当該車両の診断処理を制御する診断制御装置であって、車両に設けられたセンサ及び車両制御装置からデータを取得するデータ取得部と、取得したデータを用いて予兆診断を行い部品故障の予兆を抽出する予兆診断部と、予兆診断の結果に基づいて、部品故障の予兆について詳細な診断を行うのに適した詳細診断プログラムを外部装置へ要求し、外部装置から取得した詳細診断プログラムにより部品故障の予兆について詳細な診断を行う詳細診断部と、を備える。 In order to solve the above problems, a diagnostic control device according to one aspect of the present invention is a diagnostic control device that is installed in a vehicle and controls diagnostic processing of the vehicle, and the diagnostic control device is a diagnostic control device that is installed in a vehicle and controls diagnostic processing of the vehicle. A data acquisition unit that acquires data, a predictive diagnosis unit that performs predictive diagnosis using the acquired data and extracts signs of component failure, and a predictive diagnosis unit that performs detailed diagnosis of signs of component failure based on the results of the predictive diagnosis. and a detailed diagnosis section that requests a detailed diagnosis program suitable for the external device from the external device and performs a detailed diagnosis of signs of component failure using the detailed diagnosis program acquired from the external device.
 本発明の少なくとも一態様によれば、必要な詳細診断プログラムだけを診断制御装置に展開すれば済むため、診断制御装置の記憶容量リソースの削減が可能となる。これにより、診断制御装置や通信ネットワークの処理負荷を低減し、かつ、より適切な診断が可能となる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to at least one aspect of the present invention, it is sufficient to deploy only the necessary detailed diagnostic program to the diagnostic control device, thereby making it possible to reduce storage capacity resources of the diagnostic control device. This reduces the processing load on the diagnostic control device and the communication network, and enables more appropriate diagnosis.
Problems, configurations, and effects other than those described above will be made clear by the following description of the embodiments.
本発明の第1の実施形態に係る診断制御装置を含むシステム全体の構成例を示す概略図である。1 is a schematic diagram showing an example of the configuration of an entire system including a diagnostic control device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る診断制御装置のハードウェア構成例を示すブロック図である。FIG. 1 is a block diagram showing an example of the hardware configuration of a diagnostic control device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る診断制御装置(演算処理装置)の診断制御機能の構成例を示すブロック図である。1 is a block diagram showing a configuration example of a diagnostic control function of a diagnostic control device (arithmetic processing device) according to a first embodiment of the present invention. FIG. 本発明の第1の実施形態に係る診断制御装置の診断制御機能による処理例を示すフローチャートである。It is a flowchart which shows the example of a process by the diagnostic control function of the diagnostic control apparatus based on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る診断制御装置の診断制御機能による処理例を示すフローチャートである。It is a flowchart which shows the example of a process by the diagnostic control function of the diagnostic control apparatus based on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る診断制御装置(演算処理装置)の診断制御機能の構成例を示すブロック図である。FIG. 7 is a block diagram showing a configuration example of a diagnostic control function of a diagnostic control device (arithmetic processing device) according to a third embodiment of the present invention. 本発明の第1乃至第3の実施形態に係る運転者端末装置、プログラムサーバ、及び整備実施業者サーバのハードウェア構成例を示すブロック図である。FIG. 2 is a block diagram showing an example of the hardware configuration of a driver terminal device, a program server, and a maintenance contractor server according to first to third embodiments of the present invention.
 以下、本発明を実施するための形態(以下、「実施形態」と称する)の例について、添付図面を参照して説明する。本明細書及び添付図面において、同一の構成要素又は実質的に同一の機能を有する構成要素には同一の符号を付して重複する説明を省略する。同一あるいは同様の機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。また、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。 Hereinafter, examples of modes for carrying out the present invention (hereinafter referred to as "embodiments") will be described with reference to the accompanying drawings. In this specification and the accompanying drawings, the same components or components having substantially the same functions are denoted by the same reference numerals, and redundant explanation will be omitted. When there are multiple components having the same or similar functions, the same reference numerals may be given different suffixes for explanation. Furthermore, if there is no need to distinguish between these multiple components, the subscripts may be omitted in the description.
<第1の実施形態>
 はじめに、本発明の第1の実施形態に係る診断制御装置について図1~図4を参照して説明する。
<First embodiment>
First, a diagnostic control device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
[診断制御装置を含むシステム全体の構成]
 図1は、本発明の第1の実施形態に係る診断制御装置を含むシステム全体の構成例を示す概略図である。図1に示す車両100には、自動車の運転や診断を制御する診断制御装置130が搭載されている。診断制御装置は、例えば、電子制御ユニット(ECU)等のマイクロコントローラを適用することができる。診断制御装置130は、演算処理装置1310と、通信IF(InterFace)1320とを備える。
[Overall system configuration including diagnostic control device]
FIG. 1 is a schematic diagram showing an example of the configuration of an entire system including a diagnostic control device according to a first embodiment of the present invention. A vehicle 100 shown in FIG. 1 is equipped with a diagnostic control device 130 that controls driving and diagnosis of the vehicle. For example, a microcontroller such as an electronic control unit (ECU) can be applied to the diagnostic control device. The diagnostic control device 130 includes an arithmetic processing device 1310 and a communication IF (InterFace) 1320.
 演算処理装置1310は、車両100の走行中に、センサ類110やアクチュエータ類120、マスターECU140、図示しない他のECU等から取得したデータに基づいて、予兆診断を行う。そして、演算処理装置1310は、予兆診断の結果に応じて、プログラムサーバ210から必要なプログラム(後述する詳細診断プログラム、フェールセーフプログラム等)をOTA(Over The Air)により取得する。 The arithmetic processing unit 1310 performs predictive diagnosis based on data acquired from the sensors 110, actuators 120, master ECU 140, other ECUs (not shown), etc. while the vehicle 100 is running. Then, the arithmetic processing unit 1310 acquires a necessary program (a detailed diagnosis program, a fail-safe program, etc. to be described later) from the program server 210 via OTA (Over The Air) according to the result of the predictive diagnosis.
 一般的に、車両には、図示しないエンジン制御用のECUや、先進運転支援システム用のECU(ADAS ECU)など、複数のECUが設けられている。マスターECU140は、車両100に設けられた複数のECUを統括的に制御することで、車両100を制御するECUである。本明細書では、車両の制御に係わるECUを総称して「車両制御装置」とも表記する。 Generally, a vehicle is provided with a plurality of ECUs, such as an engine control ECU (not shown) and an advanced driving support system ECU (ADAS ECU). Master ECU 140 is an ECU that controls vehicle 100 by collectively controlling a plurality of ECUs provided in vehicle 100. In this specification, ECUs involved in controlling a vehicle are also collectively referred to as a "vehicle control device."
 通信IF1320は、インターネット等の広域ネットワークNを介してクラウド200上のプログラムサーバ210と通信できるように構成されている。また、通信IF1320は、車両100内の車載ネットワーク(図示略)を介して、マスターECU140又は図示しない他のECU等と通信可能に構成されている。 The communication IF 1320 is configured to be able to communicate with the program server 210 on the cloud 200 via a wide area network N such as the Internet. Further, the communication IF 1320 is configured to be able to communicate with the master ECU 140 or other ECUs (not shown) via an in-vehicle network (not shown) in the vehicle 100.
 MIL(Malfunction Indicator Lamp)150は、インストルメントパネルに配置された故障警告灯であって、後述する図5の運転者端末装置540(運転者インターフェース部)の一例である。 The MIL (Malfunction Indicator Lamp) 150 is a malfunction warning light arranged on the instrument panel, and is an example of the driver terminal device 540 (driver interface section) in FIG. 5, which will be described later.
[診断制御装置のハードウェア構成]
 次に、診断制御装置130のハードウェア構成について図2を参照して説明する。図2は、診断制御装置130のハードウェア構成例を示すブロック図である。
[Hardware configuration of diagnostic control device]
Next, the hardware configuration of the diagnostic control device 130 will be explained with reference to FIG. 2. FIG. 2 is a block diagram showing an example of the hardware configuration of the diagnostic control device 130.
 図2に示すように、診断制御装置130は、入力回路191、A/D変換部192、中央演算装置であるCPU(Central Processing Unit)193、ROM(Read Only Memory)194、RAM(Random Access Memory)195、出力回路196、及び通信IF1320を備える。例えば、演算処理装置1310は、A/D変換部192、CPU193、ROM194、及びRAM195を用いて構成される。 As shown in FIG. 2, the diagnostic control device 130 includes an input circuit 191, an A/D converter 192, a CPU (Central Processing Unit) 193, a ROM (Read Only Memory) 194, and a RAM (Random Access Memory). ) 195, an output circuit 196, and a communication IF 1320. For example, the arithmetic processing unit 1310 is configured using an A/D conversion section 192, a CPU 193, a ROM 194, and a RAM 195.
 CPU193が、ROM194(記憶部の一例)に格納されたプログラムをRAM195に展開して実行することで、本発明の実施形態に係る各機能が実現される。CPU193は、制御装置の一例である。なお、CPU193の代わりに、MPU(Micro-Processing Unit)等の処理装置が用いられてもよい。 Each function according to the embodiment of the present invention is realized by the CPU 193 loading a program stored in the ROM 194 (an example of a storage unit) into the RAM 195 and executing it. CPU 193 is an example of a control device. Note that instead of the CPU 193, a processing device such as an MPU (Micro-Processing Unit) may be used.
 入力回路191は、センサ類110から出力された信号を入力信号190として取り込む。センサ類110は、例えば、吸気流量センサ、スロットルセンサ、水温センサ、クランク角センサ、吸気カム角センサ、排気カム角センサ等である。入力回路191は、入力信号190がアナログ信号の場合に、入力信号190からノイズ成分の除去等を行い、ノイズ除去後の信号をA/D変換部192に出力する。 The input circuit 191 takes in signals output from the sensors 110 as input signals 190. The sensors 110 include, for example, an intake flow rate sensor, a throttle sensor, a water temperature sensor, a crank angle sensor, an intake cam angle sensor, an exhaust cam angle sensor, and the like. When the input signal 190 is an analog signal, the input circuit 191 removes noise components from the input signal 190, and outputs the noise-removed signal to the A/D converter 192.
 A/D変換部192は、アナログ信号をデジタル信号に変換し、CPU193に出力する。CPU193は、A/D変換部192から出力されたデジタル信号を取り込み、ROM194等の記憶媒体に記憶された制御ロジック(プログラム)を実行することによって、多種多様な演算、診断及び制御等を実行する。 The A/D converter 192 converts the analog signal into a digital signal and outputs it to the CPU 193. The CPU 193 takes in the digital signal output from the A/D conversion unit 192 and executes a variety of calculations, diagnosis, control, etc. by executing control logic (program) stored in a storage medium such as the ROM 194. .
 なお、CPU193の演算結果、及びA/D変換部192の変換結果は、RAM195に一時的に記憶される。また、本実施形態では、ROM194として、内容の書き換えが可能なEEPROM(Electrically Erasable and Programmable Read Only Memory)等の不揮発性メモリを用いてもよい。例えば、ROM194又は不図示の不揮発性ストレージに、本発明の実施形態に係る各機能を実現するためのアルゴリズムが記述されたプログラムが記憶されてもよい。不図示の不揮発性ストレージには、例えば、データ取得部310で取得した複数のデータ、後述する監視記録管理部510(図5参照)で作成したカルテ情報、影響解析部520(図5参照)が参照するFT部などのデータが格納される。なお、この不揮発性ストレージは、カセットタイプSSD(Solid State Drive)などの、診断制御装置130に対して着脱可能な記憶媒体であってもよい。 Note that the calculation results of the CPU 193 and the conversion results of the A/D converter 192 are temporarily stored in the RAM 195. Further, in this embodiment, a nonvolatile memory such as an EEPROM (Electrically Erasable and Programmable Read Only Memory) whose contents can be rewritten may be used as the ROM 194. For example, a program in which an algorithm for implementing each function according to the embodiment of the present invention is written may be stored in the ROM 194 or a non-volatile storage (not shown). The non-volatile storage (not shown) stores, for example, a plurality of data acquired by the data acquisition section 310, medical record information created by the monitoring record management section 510 (see FIG. 5), which will be described later, and the influence analysis section 520 (see FIG. 5). Data such as the FT section to be referenced is stored. Note that this nonvolatile storage may be a storage medium that is removable from the diagnostic control device 130, such as a cassette type SSD (Solid State Drive).
 CPU193の演算結果は、出力回路196から制御信号197として出力され、制御対象のアクチュエータ類120の制御に用いられる。制御対象は、例えば、吸気バルブ駆動装置、排気バルブ駆動装置、燃料噴射装置、点火プラグ、操舵装置、ブレーキ装置、電力変換回路等である。 The calculation result of the CPU 193 is output as a control signal 197 from the output circuit 196, and is used to control the actuators 120 to be controlled. Controlled objects include, for example, an intake valve drive device, an exhaust valve drive device, a fuel injection device, a spark plug, a steering device, a brake device, a power conversion circuit, and the like.
 入力信号190がデジタル信号の場合は、入力信号190が入力回路191から信号線198を介して直接CPU193に送られ、CPU193が必要な演算及び制御等を実行する。 When the input signal 190 is a digital signal, the input signal 190 is directly sent from the input circuit 191 to the CPU 193 via the signal line 198, and the CPU 193 executes necessary calculations, control, etc.
 通信IF1320は、他の装置との間で行われる通信の制御を行う通信デバイス等により構成される。例えば、通信IF1320は、広域ネットワークN(例えば、インターネット)と通信を行う通信デバイス、又は、CAN(Controller Area Network)などによりマスターECU140等の車両100内のECUやセンサと通信を行う通信デバイスである。 The communication IF 1320 is composed of a communication device and the like that controls communication with other devices. For example, the communication IF 1320 is a communication device that communicates with a wide area network N (for example, the Internet), or a communication device that communicates with an ECU or sensor in the vehicle 100 such as the master ECU 140 using a CAN (Controller Area Network) or the like. .
[診断制御機能の構成]
 次に、診断制御装置130(演算処理装置1310)の診断制御機能の構成について図3を参照して説明する。図3は、診断制御装置130(演算処理装置1310)の診断制御機能の構成例を示すブロック図である。図3では、診断制御装置130と他の装置(車載センサ、ECU、サーバ等)との通信処理を行う、入力回路191、出力回路196、及び通信IF1320(図2参照)の記載を省略している。
[Configuration of diagnostic control function]
Next, the configuration of the diagnostic control function of the diagnostic control device 130 (arithmetic processing device 1310) will be described with reference to FIG. 3. FIG. 3 is a block diagram showing a configuration example of the diagnostic control function of the diagnostic control device 130 (arithmetic processing device 1310). In FIG. 3, the input circuit 191, output circuit 196, and communication IF 1320 (see FIG. 2), which perform communication processing between the diagnostic control device 130 and other devices (vehicle sensors, ECUs, servers, etc.), are omitted. There is.
 診断制御装置130の演算処理装置1310は、データ取得部310と、予兆診断部320と、詳細診断部330とを備える。 The arithmetic processing unit 1310 of the diagnostic control device 130 includes a data acquisition section 310, a predictive diagnosis section 320, and a detailed diagnosis section 330.
 データ取得部310は、車両100の走行中に、車両100内のセンサ類110、及び/又は、マスターECU140(図1)等の車両100を制御する他の一又は複数のECUからデータを取得する。ECUから得られるデータは、センサ出力値や制御用パラメータなどである。これらのデータは、定期的に診断制御装置130へ収集されて、診断制御装置130内の不図示の不揮発性ストレージに時系列に沿って時系列データとして蓄積される。データ取得部310は、車両100の停止中にも上記のデータを取得してもよい。 Data acquisition unit 310 acquires data from sensors 110 in vehicle 100 and/or one or more other ECUs that control vehicle 100 such as master ECU 140 (FIG. 1) while vehicle 100 is running. . The data obtained from the ECU includes sensor output values, control parameters, and the like. These data are periodically collected by the diagnostic control device 130 and stored in a non-volatile storage (not shown) within the diagnostic control device 130 in chronological order as time-series data. The data acquisition unit 310 may acquire the above data even while the vehicle 100 is stopped.
 予兆診断部320は、取得した複数のデータを用いて予兆診断(一次診断)を行い部品故障の予兆がみられる項目(以下「予兆項目」と略記する)を抽出する。部品故障の予兆は、部品の劣化と言い換えることもできる。例えば、ノック制御においてBGL(バックグラウンドレベル)の増加を検出したことにより、エンジンの劣化(ガタ)を抽出する。部品は、例えば、診断対象製品(本例では車両100)を構成する機器、センサ、アクチュエータ、診断対象製品の構造をなす部材などである。 The predictive diagnosis unit 320 performs a predictive diagnosis (primary diagnosis) using the plurality of acquired data and extracts items (hereinafter abbreviated as "predictive items") that show signs of component failure. A sign of component failure can also be interpreted as component deterioration. For example, engine deterioration (backlash) is extracted by detecting an increase in BGL (background level) during knock control. The parts include, for example, equipment, sensors, actuators, and members forming the structure of the product to be diagnosed (vehicle 100 in this example).
 予兆診断部320は、ROM194(図2)に格納された、部分空間法などの手法を適用した予兆診断プログラム(一次診断プログラム)を実行して予兆診断を行う。そして、予兆診断部320は、予兆診断の結果、すなわち予兆項目を詳細診断部330へ送出する。例えば、予兆診断部320は、ある予兆診断において、予兆診断A(例えば、メカノイズの予兆レベルオーバー)、予兆診断B(例えば、エンジン状態と空気量挙動の相関予兆レベル)、予兆診断C(例えば、その他の予兆内容)のように予兆項目を抽出する。 The predictive diagnosis unit 320 performs predictive diagnosis by executing a predictive diagnosis program (primary diagnosis program) that is stored in the ROM 194 (FIG. 2) and applies a technique such as the subspace method. Then, the predictive diagnosis unit 320 sends the results of the predictive diagnosis, that is, the predictive items, to the detailed diagnostic unit 330. For example, in a certain predictive diagnosis, the predictive diagnosis unit 320 may perform predictive diagnosis A (e.g., mechanical noise predictive level exceeded), predictive diagnosis B (e.g., correlation predictive level between engine condition and air amount behavior), predictive diagnosis C (e.g., Extract the omen items such as (other omen contents).
 なお、部分空間法は、分類したクラスごとに部分空間を構成する正規直交基底を予め用意した学習データから求め、入力データ(上記複数のデータ)を各クラスの部分空間に射影して識別する。部分空間法では、クラスごとの独立した部分空間を構成させるので、多クラス識別が容易にできる。また、部分空間法は、特徴数が大きくても次元の少ない部分空間へ射影計算をするので、計算量が少ない。 Note that in the subspace method, an orthonormal basis constituting a subspace for each classified class is obtained from previously prepared learning data, and input data (the above-mentioned plurality of data) is projected onto the subspace of each class for identification. In the subspace method, an independent subspace is constructed for each class, so multi-class identification can be easily performed. Furthermore, even if the number of features is large, the subspace method performs projection calculation onto a subspace with a small number of dimensions, so the amount of calculation is small.
 詳細診断部330は、予兆診断部320での予兆診断の結果に基づいて、広域ネットワークNを経由して、部品故障の予兆が抽出されてから部品故障に至るまでの故障状況を診断するのに適した詳細診断プログラムを、プログラムサーバ210に要求する。部品故障は、部品の異常事象であって、例えば、部品取付けガタの増加、嵌合部の緩み、信号レベル異常などである。詳細診断部330は、予兆診断部320の予兆診断で抽出された予兆項目を、診断情報としてプログラムサーバ210に送信し、詳細診断プログラムを要求する。そして、詳細診断部330は、抽出された予兆項目に適した詳細診断プログラムをプログラムサーバ210からダウンロードして、当該予兆項目について詳細な診断(二次診断)を行う。 The detailed diagnosis section 330 diagnoses the failure situation from the time when a sign of component failure is extracted until the component failure occurs via the wide area network N based on the result of the predictive diagnosis performed by the predictive diagnosis section 320. A suitable detailed diagnosis program is requested from the program server 210. A component failure is an abnormal event of a component, such as an increase in backlash in component installation, loosening of a fitting part, or an abnormal signal level. The detailed diagnosis unit 330 transmits the predictive items extracted by the predictive diagnosis performed by the predictive diagnostic unit 320 to the program server 210 as diagnostic information, and requests a detailed diagnostic program. Then, the detailed diagnosis unit 330 downloads a detailed diagnosis program suitable for the extracted symptom item from the program server 210, and performs a detailed diagnosis (secondary diagnosis) on the symptom item.
 詳細診断プログラムは、予兆診断の結果(予兆項目)を詳細に分析して故障を正確に検出するためのプログラムであり、予兆診断に用いられるプログラムよりもデータ量が大きい。なお、詳細診断プログラムは、故障(又は異常)の原因を特定するための解析プログラムであってもよい。例えば、解析プログラムとして、ノック制御においてBGLの増加がクランク角に同期しているかどうかを判定するプログラムなどが挙げられる。一般的にノック制御におけるノック検出手法では、主にシリンダブロックに取り付けられたノックセンサの信号を取り込みアナログ-デジタル変換(AD)する。BGLは、ノックなし時のAD変換値に相当する。 The detailed diagnosis program is a program for accurately detecting failures by analyzing the results of predictive diagnosis (predictive items) in detail, and has a larger amount of data than the program used for predictive diagnosis. Note that the detailed diagnosis program may be an analysis program for identifying the cause of a failure (or abnormality). For example, an example of the analysis program is a program that determines whether the increase in BGL is synchronized with the crank angle in knock control. In general, a knock detection method in knock control mainly takes a signal from a knock sensor attached to a cylinder block and converts it from analog to digital (AD). BGL corresponds to the AD conversion value when there is no knock.
 また、詳細診断部330は、詳細診断プログラムによる詳細診断の結果によっては、部品故障に関してフェールセーフ処理が必要と判断し、プログラムサーバ210に該当部品故障に適したフェールセーフプログラムを要求する。そして、詳細診断部330は、フェールセーフプログラムをプログラムサーバ210からダウンロードして、該当部品故障に適したフェールセーフ処理を行う。 Further, the detailed diagnosis unit 330 determines that fail-safe processing is necessary for the component failure depending on the detailed diagnosis result by the detailed diagnosis program, and requests the program server 210 for a fail-safe program suitable for the component failure. The detailed diagnosis unit 330 then downloads the failsafe program from the program server 210 and performs failsafe processing suitable for the failure of the corresponding component.
 なお、詳細診断部330からプログラムサーバ210に送信した診断情報の内容によっては、プログラムサーバ210がフェールセーフ処理の有無(是非)を判定し、判定の結果に応じてフェールセーフプログラムを診断制御装置130へ送信する構成としてもよい。例えば、予兆診断の結果、直ちにフェールセーフ処理の実施が望まれる場合には、このような構成が考えられる。 Note that depending on the content of the diagnostic information sent from the detailed diagnosis unit 330 to the program server 210, the program server 210 determines whether fail-safe processing is to be performed (or not), and depending on the result of the determination, the fail-safe program is executed by the diagnostic control device 130. It may also be configured to send to. For example, if it is desired to immediately perform fail-safe processing as a result of predictive diagnosis, such a configuration may be considered.
[診断制御機能による処理]
 次に、診断制御装置130の診断制御機能による処理について図4を参照して説明する。図4は、診断制御装置130の診断制御機能による処理例を示すフローチャートである。
[Processing by diagnostic control function]
Next, processing by the diagnostic control function of the diagnostic control device 130 will be described with reference to FIG. 4. FIG. 4 is a flowchart showing an example of processing by the diagnostic control function of the diagnostic control device 130.
 診断制御装置130(演算処理装置1310)の予兆診断部320は、診断対象製品(例えば、車両100)から得られるデータを基に、部品故障の予兆を診断する処理(一次診断)を行い、予兆診断の結果が不良(NG)かどうかを判定する(ステップS1)。予兆診断の結果が不良(NG)ではなかった場合、すなわち部品故障の予兆が抽出されなかった場合は(ステップS1のNO判定)、予兆診断部320は本処理を終了する。一方、予兆診断の結果が不良(NG)だった場合、すなわち部品故障の予兆が抽出された場合は(ステップS1のYES判定)、予兆診断部320は予兆診断の結果(診断情報)として予兆項目を詳細診断部330へ送信する。 The predictive diagnosis unit 320 of the diagnostic control device 130 (computation processing device 1310) performs processing (primary diagnosis) for diagnosing signs of component failure based on data obtained from the product to be diagnosed (for example, the vehicle 100). It is determined whether the diagnosis result is defective (NG) (step S1). If the result of the predictive diagnosis is not defective (NG), that is, if no signs of component failure are extracted (NO determination in step S1), the predictive diagnostic unit 320 ends this process. On the other hand, if the result of the predictive diagnosis is defective (NG), that is, if a symptom of component failure is extracted (YES determination in step S1), the predictive diagnosis unit 320 selects the predictive item as the result of the predictive diagnosis (diagnosis information). is sent to the detailed diagnosis section 330.
 次に、詳細診断部330は、広域ネットワークNを経由して、診断情報(予兆項目)をプログラムサーバ210に送信して、その後部品故障に至るまでの間、詳細な診断を行うのに適した詳細診断プログラムを要求する(ステップS2)。 Next, the detailed diagnosis unit 330 sends diagnostic information (predictive items) to the program server 210 via the wide area network N, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends the diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends diagnostic information (predictive items) to the program server 210, and then sends the diagnostic information (predictive items) to the program server 210. A detailed diagnosis program is requested (step S2).
 次に、プログラムサーバ210は、診断情報及び詳細診断プログラムの要求を受け付けると、不揮発性ストレージ607(後述する図6を参照)に格納した複数の詳細診断プログラムの中から、受信した診断情報(予兆項目)に適した詳細診断プログラムを選択する(ステップS3)。そして、プログラムサーバ210は、選択した詳細診断プログラムを診断制御装置130に送信する。 Next, upon receiving the request for diagnostic information and a detailed diagnostic program, the program server 210 selects the received diagnostic information (predictive symptoms) from among the plurality of detailed diagnostic programs stored in the nonvolatile storage 607 (see FIG. 6, which will be described later). item) is selected (step S3). Then, the program server 210 transmits the selected detailed diagnosis program to the diagnosis control device 130.
 次に、演算処理装置1310の詳細診断部330は、広域ネットワークN及び通信IF1320を介して、プログラムサーバ210から詳細診断プログラムをダウンロードし、ROM194に格納する(ステップS4)。 Next, the detailed diagnosis unit 330 of the arithmetic processing unit 1310 downloads the detailed diagnosis program from the program server 210 via the wide area network N and communication IF 1320, and stores it in the ROM 194 (step S4).
 次に、詳細診断部330は、ROM194に格納された詳細診断プログラムを実行し、診断対象製品(車両100)において故障の予兆が抽出された部品について詳細診断(二次診断)を行う(ステップS5)。 Next, the detailed diagnosis unit 330 executes the detailed diagnosis program stored in the ROM 194, and performs a detailed diagnosis (secondary diagnosis) on the parts for which signs of failure have been extracted in the product to be diagnosed (vehicle 100) (step S5 ).
 次に、詳細診断部330は、詳細診断を実行した結果、予兆が抽出された部品故障(予兆項目)に対するフェールセーフ処理が必要かどうかを判定し(ステップS6)、フェールセーフ処理が必要ない場合には(ステップS6のNO判定)、本処理を終了する。一例として、部品故障など重大な障害が発生して詳細診断の結果が不良(NG)の場合、フェールセーフ処理が必要である。 Next, as a result of executing the detailed diagnosis, the detailed diagnosis unit 330 determines whether fail-safe processing is necessary for the component failure (predictive item) for which a symptom has been extracted (step S6), and if fail-safe processing is not necessary. (NO determination in step S6), this process ends. For example, if a serious failure such as a component failure occurs and the detailed diagnosis results in a failure (NG), failsafe processing is required.
 一方、フェールセーフ処理が必要な場合には(ステップS6のYES判定)、詳細診断部330は、プログラムサーバ210に診断情報として詳細診断の結果を送信し、部品故障に対して適切なフェールセーフプログラムを要求する(ステップS7)。 On the other hand, if fail-safe processing is necessary (YES determination in step S6), the detailed diagnosis unit 330 sends the results of the detailed diagnosis as diagnostic information to the program server 210, and performs a fail-safe program appropriate for component failure. (Step S7).
 次に、プログラムサーバ210は、フェールセーフプログラムの要求を受け付けると、不揮発性ストレージ607(後述する図6を参照)に格納した複数のフェールセーフプログラムの中から、受信した診断情報(詳細診断の結果)に適したフェールセーフプログラムを選択する(ステップS8)。そして、プログラムサーバ210は、選択したフェールセーフプログラムを診断制御装置130に送信する。 Next, when the program server 210 receives a request for a failsafe program, the program server 210 selects the received diagnostic information (detailed diagnosis result ) is selected (step S8). The program server 210 then transmits the selected failsafe program to the diagnostic control device 130.
 次に、演算処理装置1310の詳細診断部330は、広域ネットワークN及び通信IF1320を介して、プログラムサーバ210から送信されたフェールセーフプログラムをダウンロードし、ROM194に格納する(ステップS9)。なお、詳細診断プログラム及びフェールセーフプログラムをRAM195にダウンロードし、RAM195がこれらのプログラムを一時的に保持する形態としてもよい。 Next, the detailed diagnosis unit 330 of the arithmetic processing unit 1310 downloads the failsafe program sent from the program server 210 via the wide area network N and the communication IF 1320, and stores it in the ROM 194 (step S9). Note that the detailed diagnosis program and failsafe program may be downloaded to the RAM 195, and the RAM 195 may temporarily hold these programs.
 次に、詳細診断部330は、ROM194に格納されたフェールセーフプログラムを実行し、診断対象製品(車両100)において部品故障に対するフェールセーフ処理を実施する(ステップS10)。ステップS10の処理後、本処理を終了する。 Next, the detailed diagnosis unit 330 executes the failsafe program stored in the ROM 194, and performs failsafe processing for component failure in the product to be diagnosed (vehicle 100) (step S10). After the process in step S10, this process ends.
 予兆診断部320は、定期的に予兆診断を実施し、ステップS1の予兆診断結果がNGかどうかの判定を行う。演算処理装置1310では、詳細診断が終了後、ダウンロードした詳細診断プログラムをROM194(又はRAM195)から削除する構成としてもよい。例えば、診断対象製品の劣化の進展に応じて、どのタイミングでどの部品の劣化が抽出されるかが変わる。また、同じ部品であっても劣化の進展によって、抽出される予兆項目が変わることも想定される。そこで、演算処理装置1310は、一つの部品故障の予兆の進展の段階に応じて、異なる詳細診断プログラムを順番にダウンロード(上書き)する。これにより、部品故障の予兆の進展の段階に応じて、部品故障の予兆に最適な詳細診断プログラムを取得することができる。 The predictive diagnosis unit 320 periodically performs predictive diagnosis and determines whether the predictive diagnosis result in step S1 is NG. The arithmetic processing unit 1310 may be configured to delete the downloaded detailed diagnosis program from the ROM 194 (or RAM 195) after the detailed diagnosis is completed. For example, depending on the progress of deterioration of a product to be diagnosed, the timing at which deterioration of which component is extracted changes. Furthermore, it is also assumed that the extracted symptom items may change depending on the progress of deterioration even for the same part. Therefore, the arithmetic processing unit 1310 sequentially downloads (overwrites) different detailed diagnosis programs depending on the stage of development of a symptom of one component failure. Thereby, it is possible to obtain a detailed diagnosis program that is most suitable for the sign of component failure, depending on the stage of development of the sign of component failure.
[第1の実施形態の変形例]
 なお、プログラムサーバ210が、予兆項目に適した詳細診断プログラムを選択していたが、詳細診断部330がこの選択を行う構成としてもよい。すなわち、詳細診断部330が、予兆診断の結果(予兆項目)に基づいて、予兆項目に適した詳細診断プログラムを特定し、その特定した詳細診断プログラムの送信をプログラムサーバ210に要求する構成としてもよい。また、詳細診断部330が、詳細診断の結果に基づいて部品故障に適したフェールセーフプログラムを特定し、その特定したフェールセーフプログラムの送信をプログラムサーバ210に要求する構成としてもよい。
[Modification of the first embodiment]
Although the program server 210 selects the detailed diagnosis program suitable for the symptom item, a configuration may be adopted in which the detailed diagnosis section 330 makes this selection. That is, the detailed diagnosis unit 330 may be configured to specify a detailed diagnosis program suitable for the predictive item based on the result of the predictive diagnosis (the predictive item), and request the program server 210 to transmit the specified detailed diagnostic program. good. Alternatively, the detailed diagnosis unit 330 may specify a fail-safe program suitable for a component failure based on the results of the detailed diagnosis, and request the program server 210 to transmit the specified fail-safe program.
 以上のとおり、第1の実施形態に係る診断制御装置(診断制御装置130)の演算処理装置(演算処理装置1310)は、車両に搭載され当該車両の診断処理を制御する診断制御装置である。診断制御装置(診断制御装置130)は、車両に設けられたセンサ及び車両制御装置(例えば、マスターECU140、不図示の他のECU)からデータを取得するデータ取得部(データ取得部310)と、その取得したデータを用いて予兆診断を行い部品故障の予兆を抽出する予兆診断部(予兆診断部320)と、予兆診断の結果に基づいて、部品故障の予兆について詳細な診断を行うのに適した詳細診断プログラム(二次診断プログラム)を外部装置(例えば、プログラムサーバ210)へ要求し、外部装置から取得した詳細診断プログラムにより部品故障の予兆について詳細な診断を行う詳細診断部(詳細診断部330)と、を備える。 As described above, the arithmetic processing unit (arithmetic processing unit 1310) of the diagnostic control device (diagnostic control device 130) according to the first embodiment is a diagnostic control device that is mounted on a vehicle and controls diagnostic processing of the vehicle. The diagnostic control device (diagnostic control device 130) includes a data acquisition unit (data acquisition unit 310) that acquires data from sensors provided in the vehicle and a vehicle control device (for example, master ECU 140, other ECUs not shown); A predictive diagnosis unit (predictive diagnosis unit 320) that performs predictive diagnosis using the acquired data and extracts signs of component failure; A detailed diagnosis unit (detailed diagnosis unit) requests a detailed diagnosis program (secondary diagnosis program) from an external device (for example, the program server 210), and performs a detailed diagnosis of signs of component failure using the detailed diagnosis program obtained from the external device. 330).
 また、第1の実施形態に係る診断制御装置(診断制御装置130)では、詳細診断部(詳細診断部330)は、詳細診断プログラムによる部品故障の予兆についての詳細な診断の結果に基づいて、フェールセーフプログラムを外部装置(例えば、プログラムサーバ210)へ要求し、その外部装置から取得したフェールセーフプログラムによりフェールセーフ処理を実施する。 Furthermore, in the diagnostic control device (diagnostic control device 130) according to the first embodiment, the detailed diagnosis section (detailed diagnosis section 330) performs A failsafe program is requested from an external device (for example, the program server 210), and failsafe processing is performed using the failsafe program obtained from the external device.
[第1の実施形態の効果]
 従来は、発生頻度が低いまれな故障に対しても初めから詳細診断を実施していたため、あらゆる故障に対してそれぞれに詳細診断プログラムを準備する必要があった。このため、ECU等で構成される診断制御装置に、これらの多数の詳細診断プログラムを記憶するための大きな記憶容量のリソースを用意する必要があった。しかし、本実施形態では、診断制御装置が負担の少ない予兆診断を実行し、抽出された部品故障の予兆(予兆項目)に適したより負荷の大きい詳細診断プログラムのみを選択して、診断制御装置130が外部装置(例えば、プログラムサーバ210)から当該詳細診断プログラムのみを取得する。必要な(例えば一個の)詳細診断プログラムだけを診断制御装置に展開すれば済むため、診断制御装置(ECU)のROM、RAM等のリソースの削減が可能となる。したがって、本実施形態では、診断制御装置130の少リソース化と診断の詳細化の両立を実現することができる。すなわち、診断制御装置(ECU)のリソース消費や通信ネットワークの処理負荷を低減し、かつ、より適切な診断が可能となる。例えば、診断制御装置130の記憶容量の空き容量が小さい場合であっても、予兆診断後に診断制御装置130が最適な詳細診断プログラムを取得して詳細な診断を実施できる。
[Effects of the first embodiment]
In the past, detailed diagnosis was performed from the beginning even for rare failures that occurred infrequently, so it was necessary to prepare a detailed diagnosis program for each failure. Therefore, it is necessary to provide a large storage capacity resource for storing a large number of detailed diagnostic programs in a diagnostic control device such as an ECU. However, in the present embodiment, the diagnostic control device executes a predictive diagnosis with a small burden, selects only a detailed diagnosis program with a heavy burden that is suitable for the extracted component failure symptom (predictive item), and the diagnostic control device 130 acquires only the detailed diagnosis program from an external device (eg, program server 210). Since it is sufficient to deploy only the necessary (for example, one) detailed diagnostic program to the diagnostic control device, resources such as ROM and RAM of the diagnostic control device (ECU) can be reduced. Therefore, in this embodiment, it is possible to simultaneously reduce the resources of the diagnostic control device 130 and make the diagnosis more detailed. That is, the resource consumption of the diagnostic control unit (ECU) and the processing load of the communication network can be reduced, and more appropriate diagnosis can be performed. For example, even if the available memory capacity of the diagnostic control device 130 is small, the diagnostic control device 130 can acquire an optimal detailed diagnosis program and perform a detailed diagnosis after a predictive diagnosis.
 また、本実施形態によれば、予兆診断で抽出された部品故障の予兆に適した詳細診断プログラムに基づいて、フェールセーフ処理の是非を判定し、適したフェールセーフプログラムを診断制御装置に取得する。診断制御装置が必要なフェールセーフプログラムのみを外部装置(例えば、プログラムサーバ210)から取得するため、診断制御装置(ECU)のROM、RAM等のリソースの削減が可能となる。 Further, according to the present embodiment, the suitability of fail-safe processing is determined based on the detailed diagnosis program suitable for the sign of component failure extracted by the predictive diagnosis, and the suitable fail-safe program is acquired in the diagnostic control device. . Since the diagnostic control device acquires only the necessary fail-safe program from an external device (for example, the program server 210), resources such as ROM and RAM of the diagnostic control device (ECU) can be reduced.
 また、本実施形態によれば、診断制御装置が搭載された診断対象製品(例えば車両100)は、外部装置からその都度詳細診断プログラムやフェールセーフプログラムを取得するため、最新の診断技術、最新のフェールセーフを使用することができる。 Furthermore, according to the present embodiment, the product to be diagnosed (for example, the vehicle 100) equipped with the diagnostic control device acquires detailed diagnostic programs and fail-safe programs from external devices each time. Failsafe can be used.
 なお、ビジネス的には、製品の販売後に詳細診断ソフトウェアを追加で売ることもできる。また、詳細診断ソフトウェアを製品(又は部品)の付属品として付加することで、部品競争力を上げることもできる。また、予兆診断で抽出された部品故障の予兆に対し、後から判明した、新しい不具合現象の診断も追加で実施することができる。 Additionally, from a business perspective, detailed diagnostic software can also be sold additionally after the product is sold. Furthermore, by adding detailed diagnosis software as an accessory to a product (or part), the competitiveness of the part can be increased. Furthermore, in addition to the signs of component failure extracted through predictive diagnosis, it is also possible to additionally diagnose new failure phenomena that are discovered later.
<第2の実施形態>
 次に、本発明の第2の実施形態に係る診断制御装置の診断制御機能による処理について図5を参照して説明する。本実施形態に係る診断制御装置(演算処理装置)の構成は、第1の実施形態に係る診断制御装置130(演算処理装置1310)(図1-図3)と同じである。
<Second embodiment>
Next, processing by the diagnostic control function of the diagnostic control device according to the second embodiment of the present invention will be described with reference to FIG. The configuration of the diagnostic control device (computation processing device) according to this embodiment is the same as the diagnosis control device 130 (computation processing device 1310) (FIGS. 1-3) according to the first embodiment.
 図5は、本実施形態に係る診断制御装置の診断制御機能による処理例を示すフローチャートである。図5に示したステップS11~S18のうちステップS11~S13の処理は、それぞれ図4のステップS1~S3の処理と同じであり、重複する部分の説明は簡略する。 FIG. 5 is a flowchart showing an example of processing by the diagnostic control function of the diagnostic control device according to the present embodiment. Among steps S11 to S18 shown in FIG. 5, the processing in steps S11 to S13 is the same as the processing in steps S1 to S3 in FIG. 4, respectively, and the explanation of overlapping parts will be omitted.
 まず、診断制御装置130(演算処理装置1310)の予兆診断部320は、予兆診断(一次診断)を実施してその予兆診断の結果が不良(NG)かどうかを判定する(ステップS11)。予兆診断部320は、予兆診断の結果が不良(NG)ではなかった場合(ステップS11のNO判定)は本処理を終了し、予兆診断の結果が不良(NG)だった場合(ステップS11のYES判定)はステップS12へ進む。 First, the predictive diagnosis unit 320 of the diagnostic control device 130 (arithmetic processing unit 1310) performs predictive diagnosis (primary diagnosis) and determines whether the result of the predictive diagnosis is bad (NG) (step S11). The predictive diagnosis unit 320 ends this process if the predictive diagnosis result is not defective (NG) (NO determination in step S11), and if the predictive diagnosis result is defective (NG) (YES determination in step S11). (determination) proceeds to step S12.
 次に、詳細診断部330は、予兆診断で得られた診断情報(予兆項目)について詳細な診断を行うのに適した詳細診断プログラムをプログラムサーバ210に要求する(ステップS12)。 Next, the detailed diagnosis unit 330 requests the program server 210 for a detailed diagnosis program suitable for performing a detailed diagnosis on the diagnostic information (predictive items) obtained in the predictive diagnosis (step S12).
 次に、プログラムサーバ210は、診断制御装置130から受信した診断情報(予兆項目)に適した詳細診断プログラムを、不揮発性ストレージ607から選択する(ステップS13)。選択される詳細診断プログラムの数は、1又は複数である。 Next, the program server 210 selects a detailed diagnosis program suitable for the diagnostic information (predictive items) received from the diagnostic control device 130 from the nonvolatile storage 607 (step S13). The number of detailed diagnosis programs selected is one or more.
 次に、プログラムサーバ210は、選択した詳細診断プログラムの数(診断数)が予め設定したしきい値よりも大きいか否かを判定する(ステップS14)。プログラムサーバ210は、診断数がしきい値よりも多い場合(ステップS14のYES判定)は図4のステップS4へ進み、選択した詳細診断プログラムを診断制御装置130に送信する。 Next, the program server 210 determines whether the number of selected detailed diagnosis programs (number of diagnoses) is greater than a preset threshold (step S14). If the number of diagnoses is greater than the threshold (YES determination in step S14), the program server 210 proceeds to step S4 in FIG. 4 and transmits the selected detailed diagnosis program to the diagnosis control device 130.
 診断制御装置130において、演算処理装置1310の詳細診断部330は、プログラムサーバ210から詳細診断プログラムをダウンロードし(ステップS4)、詳細診断プログラムを実行して予兆項目について詳細診断(二次診断)を実施する(ステップS5)。 In the diagnostic control device 130, the detailed diagnosis unit 330 of the arithmetic processing unit 1310 downloads the detailed diagnosis program from the program server 210 (step S4), executes the detailed diagnosis program, and performs detailed diagnosis (secondary diagnosis) on the symptom items. Execute (step S5).
 次に、詳細診断部330は、詳細診断の結果、予兆が抽出された部品故障(予兆項目)に対するフェールセーフ処理が必要かどうかを判定する(ステップS6)。そして、詳細診断部330は、フェールセーフ処理が必要な場合には(ステップS6のYES判定)、プログラムサーバ210から該当するフェールセーフプログラムをダウンロードして実行する(ステップS7~S10)。 Next, the detailed diagnosis unit 330 determines whether fail-safe processing is necessary for the component failure (predictive item) for which a predictive sign has been extracted as a result of the detailed diagnosis (step S6). If failsafe processing is necessary (YES determination in step S6), the detailed diagnosis unit 330 downloads the corresponding failsafe program from the program server 210 and executes it (steps S7 to S10).
 本実施形態においてステップS4~S6の処理は、診断制御装置130がプログラムサーバ210からダウンロードした全ての詳細診断プログラムに対して実施される。そして、詳細診断プログラムごとにステップS6の判定処理が実施され、フェールセーフ処理が必要と判断された場合に適宜ステップS7~S10の処理が実施される。 In this embodiment, the processes of steps S4 to S6 are performed for all detailed diagnostic programs downloaded from the program server 210 by the diagnostic control device 130. Then, the determination process of step S6 is performed for each detailed diagnosis program, and when it is determined that fail-safe process is necessary, the processes of steps S7 to S10 are performed as appropriate.
 図5のフローチャートの説明に戻る。ステップS14において診断数がしきい値以下の場合(ステップS14のNO判定)、プログラムサーバ210は、選択した詳細診断プログラムに加えて対象の予兆項目に対するフェールセーフプログラムを、診断制御装置130に送信する。そして、演算処理装置1310の詳細診断部330は、プログラムサーバ210から詳細診断プログラムとフェールセーフプログラムをダウンロードする(ステップS15)。 Returning to the explanation of the flowchart in FIG. 5. If the number of diagnoses is equal to or less than the threshold in step S14 (NO determination in step S14), the program server 210 transmits a failsafe program for the target symptom item in addition to the selected detailed diagnosis program to the diagnostic control device 130. . Then, the detailed diagnosis unit 330 of the arithmetic processing unit 1310 downloads the detailed diagnosis program and the failsafe program from the program server 210 (step S15).
 次に、詳細診断部330は、ダウンロードした詳細診断プログラムを実行し、故障の予兆が抽出された部品について詳細診断(二次診断)を行う(ステップS16)。 Next, the detailed diagnosis unit 330 executes the downloaded detailed diagnosis program and performs a detailed diagnosis (secondary diagnosis) on the component for which a sign of failure has been extracted (step S16).
 次に、詳細診断部330は、その詳細診断の結果が不良(NG)かどうかを判定する(ステップS17)。部品故障など重大な障害が発生していると診断された場合、詳細診断の結果は不良(NG)となる。詳細診断の結果が不良(NG)ではない場合(ステップS17のNO判定)、詳細診断部330は本処理を終了する。一方、詳細診断の結果が不良(NG)の場合(ステップS17のYES判定)、詳細診断部330は、対象の詳細診断プログラムと一緒にダウンロードしたフェールセーフプログラムを実行し、診断対象製品(車両100)においてフェールセーフ処理を実施する(ステップS18)。ステップS18の処理後、本処理を終了する。 Next, the detailed diagnosis unit 330 determines whether the detailed diagnosis result is NG (step S17). If it is diagnosed that a serious failure such as a component failure has occurred, the detailed diagnosis will result in a failure (NG). If the detailed diagnosis result is not defective (NG) (NO determination in step S17), the detailed diagnosis unit 330 ends this process. On the other hand, if the detailed diagnosis result is defective (NG) (YES determination in step S17), the detailed diagnosis unit 330 executes the failsafe program downloaded together with the target detailed diagnosis program, and ), a fail-safe process is performed (step S18). After the process of step S18, this process ends.
 ステップS15~S17の処理は、診断制御装置130にダウンロードされた全ての詳細診断プログラムに対して実施され、ステップS18の処理は、詳細診断の結果が不良(NG)の場合に該当するフェールセーフプログラムを用いて実施される。 The processing in steps S15 to S17 is performed on all detailed diagnosis programs downloaded to the diagnostic control device 130, and the processing in step S18 is performed on the corresponding fail-safe program when the result of the detailed diagnosis is NG. It is carried out using
 このように、本実施形態では、選択された詳細診断プログラムの数(診断数)によって、診断制御装置130に詳細診断プログラムだけを送信するか、詳細診断プログラムとともにフェールセーフプログラムを送信するかを決定する。このような構成により、本実施形態は、第1の実施形態と同様の効果に加えて、次のような効果を得ることができる。すなわち、本実施形態では、診断制御装置130の空き記憶容量や処理能力、並びに通信ネットワークの処理負荷を考慮しつつ、複数の詳細診断プログラムと対応するフェールセーフプログラムを効率よく診断制御装置130に送信することができる。 In this way, in this embodiment, it is determined whether to send only the detailed diagnosis program to the diagnostic control device 130 or to send the failsafe program together with the detailed diagnosis program, depending on the number of selected detailed diagnosis programs (number of diagnoses). do. With such a configuration, the present embodiment can obtain the following effects in addition to the same effects as the first embodiment. That is, in this embodiment, a plurality of detailed diagnostic programs and corresponding fail-safe programs are efficiently transmitted to the diagnostic control device 130 while taking into consideration the free storage capacity and processing capacity of the diagnostic control device 130, as well as the processing load of the communication network. can do.
[第2の実施形態の変形例]
 ここで、判断基準を、選択された詳細診断プログラムの数(診断数)の代わりに、選択された詳細診断プログラムのデータ量の合計としてもよい。なお、判断基準にプログラムのデータ量を用いる場合、選択された詳細診断プログラムと対応するフェールセーフプログラムの各々のデータ量の合計値を、しきい値と比較する構成としてもよい。
[Modification of second embodiment]
Here, instead of the number of selected detailed diagnosis programs (number of diagnoses), the judgment criterion may be the total amount of data of the selected detailed diagnosis programs. In addition, when using the data amount of a program as a determination criterion, the total value of the data amount of each fail-safe program corresponding to the selected detailed diagnosis program may be compared with a threshold value.
 また、判断基準に受信側の診断制御装置130の空き記憶容量を用いてもよい。例えば、診断制御装置130からプログラムサーバ210に予兆診断の診断情報を送る際に、診断制御装置130がリソース情報として自身の空き記憶容量も併せて送信する。あるいは、ステップS13で詳細診断プログラムを選択した後に、ステップS14においてプログラムサーバ210から診断制御装置130に空き記憶容量を問い合わせるようにしてもよい。このような構成とすることにより、プログラムサーバ210は、診断制御装置130の空き記憶容量に合わせて、詳細診断プログラムとフェールセーフプログラムを送信することができる。例えば、診断制御装置130の空き記憶容量が足りない場合にダウンロードを停止又は中断することなく、複数の詳細診断プログラムとフェールセーフプログラムを、2回以上に分けて確実にダウンロードすることができる。 Furthermore, the free storage capacity of the diagnostic control device 130 on the receiving side may be used as the judgment criterion. For example, when sending diagnostic information for predictive diagnosis from the diagnostic control device 130 to the program server 210, the diagnostic control device 130 also sends its own free storage capacity as resource information. Alternatively, after selecting the detailed diagnosis program in step S13, the program server 210 may inquire of the diagnostic control device 130 about the free storage capacity in step S14. With such a configuration, the program server 210 can transmit detailed diagnostic programs and failsafe programs according to the free storage capacity of the diagnostic control device 130. For example, if the free storage capacity of the diagnostic control device 130 is insufficient, a plurality of detailed diagnostic programs and failsafe programs can be reliably downloaded in two or more times without stopping or interrupting the download.
<第3の実施形態>
 次に、本発明の第3の実施形態に係る診断制御装置の診断制御機能の構成について図6を参照して説明する。
<Third embodiment>
Next, the configuration of the diagnostic control function of the diagnostic control device according to the third embodiment of the present invention will be described with reference to FIG. 6.
 図6は、第3の実施形態に係る診断制御装置の診断制御機能の構成例を示すブロック図である。図6において、本実施形態に係る診断制御装置130の演算処理装置1310Aが第1及び第2の実施形態の演算処理装置1310(図3)と異なる点は、監視記録管理部510と、影響解析部520と、解析・診断結果対応部530を備える点である。また、車両100は、運転者端末装置540を備える。 FIG. 6 is a block diagram showing a configuration example of the diagnostic control function of the diagnostic control device according to the third embodiment. In FIG. 6, the arithmetic processing unit 1310A of the diagnostic control device 130 according to the present embodiment is different from the arithmetic processing unit 1310 (FIG. 3) of the first and second embodiments in that the monitoring record management unit 510 and the influence analysis 520 and an analysis/diagnosis result handling section 530. The vehicle 100 also includes a driver terminal device 540.
 データ取得部310は、車両100内のセンサ類110、及び/又は、車両100を制御する1又は複数のECUからデータを取得する。データ取得部310は、取得した複数のデータを、予兆診断部320と監視記録管理部510へ出力する。 The data acquisition unit 310 acquires data from the sensors 110 in the vehicle 100 and/or one or more ECUs that control the vehicle 100. The data acquisition section 310 outputs the plurality of acquired data to the predictive diagnosis section 320 and the monitoring record management section 510.
 予兆診断部320は、データ取得部310において取得した複数のデータを用いて予兆診断(一次診断)を行い、予兆項目を、詳細診断部330と影響解析部520へ出力する。 The predictive diagnosis unit 320 performs predictive diagnosis (primary diagnosis) using the plurality of data acquired by the data acquisition unit 310 and outputs predictive items to the detailed diagnosis unit 330 and the influence analysis unit 520.
 詳細診断部330は、予兆診断部320での予兆診断の結果(予兆項目)に基づいて、広域ネットワークNを経由して、予兆項目を詳細に診断するのに適した詳細診断プログラムを、プログラムサーバ210に要求する。そして、詳細診断部330は、プログラムサーバ210から取得した詳細診断プログラムにより、当該予兆項目について詳細な診断(二次診断)を行う。詳細診断部330は、詳細診断の結果(診断情報)をプログラムサーバ210と解析・診断結果対応部530へ出力する。 The detailed diagnosis unit 330 sends a detailed diagnosis program suitable for diagnosing the symptom items in detail to the program server via the wide area network N based on the results of the predictive diagnosis (predictive items) in the predictive diagnostic unit 320. Request to 210. Then, the detailed diagnosis unit 330 performs a detailed diagnosis (secondary diagnosis) on the symptom item using the detailed diagnosis program acquired from the program server 210. The detailed diagnosis section 330 outputs the detailed diagnosis results (diagnosis information) to the program server 210 and the analysis/diagnosis result correspondence section 530.
 監視記録管理部510は、車両100に実装される部品それぞれに付与された識別情報と、当該部品それぞれの使用期間(使用実績)に関する使用期間情報と、当該部品それぞれの走行距離を含む走行履歴情報とを記憶して、当該部品それぞれの監視記録情報(以下「カルテ情報」と呼称する)を作成し管理する。部品の走行距離とは、例えば、車両100の走行距離である。カルテ情報には、部品ごとの耐用期間が含まれてもよい。監視記録管理部510は、作成したカルテ情報を影響解析部520へ出力する。監視記録管理部510が、データ取得部310に対して定期的にデータ送信を要求するようにしてもよい。 The monitoring record management unit 510 stores identification information given to each component mounted on the vehicle 100, usage period information regarding the usage period (usage record) of each of the components, and driving history information including the mileage of each of the components. , and create and manage monitoring record information (hereinafter referred to as "medical record information") for each of the parts concerned. The mileage of the component is, for example, the mileage of the vehicle 100. The medical record information may include the service life of each part. The monitoring record management section 510 outputs the created medical record information to the influence analysis section 520. The monitoring record management section 510 may periodically request the data acquisition section 310 to transmit data.
 影響解析部520は、部品を含む車両100の機器構成各部を細分した第2要因(索引)と、所定のノウハウ事項への対応づけをしつつ上記第2要因を車両100の機能毎に分類した第1要因(索引)とを記憶した、木構造のFT部(Fault Tree Diagram)を用いて、車両100(部品)に対する各種情報の影響解析を行う。具体的には、影響解析部520は、FT部と、予兆診断部320で抽出された予兆項目と、監視記録管理部510で作成されたカルテ情報とを組み合わせて、車両100(部品)の通常とは異なった状態、及び車両100(部品)の保守の要否等を解析する。例えば、影響解析部520は、上記の各情報を入力として、影響解析の結果を出力するように学習した学習モデルを用いて推論を行う構成としてもよい。所定のノウハウ事項は、例えば、機器(部品)ごとの想定される異常(エラー)、異常(エラー)に伴う影響、異常と判断する条件や保守が必要であると判断する条件、及び保守の内容などである。 The influence analysis unit 520 classifies the second factors (index) by subdividing each part of the equipment configuration of the vehicle 100 including parts, and the second factors by function of the vehicle 100 while associating them with predetermined know-how items. The influence of various information on the vehicle 100 (parts) is analyzed using a tree-structured FT section (Fault Tree Diagram) that stores the first factor (index). Specifically, the influence analysis unit 520 combines the FT unit, the predictive items extracted by the predictive diagnosis unit 320, and the medical record information created by the monitoring record management unit 510 to determine the normal condition of the vehicle 100 (parts). Analyzes conditions different from the above and the necessity of maintenance of the vehicle 100 (parts). For example, the influence analysis unit 520 may be configured to receive the above information as input and perform inference using a learning model learned to output the result of influence analysis. The predetermined know-how items include, for example, expected abnormalities (errors) for each device (part), effects associated with the abnormality (error), conditions for determining abnormality or conditions for determining that maintenance is necessary, and content of maintenance. etc.
 解析・診断結果対応部530は、影響解析部520の解析結果に基づく情報(整備予報、動作モード設定状態、及び警報等を含む)が表示されるように運転者端末装置540を制御する。また、解析・診断結果対応部530は、詳細診断部330が詳細診断プログラムにより診断した結果が、運転者端末装置540に表示されるように制御する。 The analysis/diagnosis result handling unit 530 controls the driver terminal device 540 so that information based on the analysis results of the influence analysis unit 520 (including maintenance forecasts, operating mode setting states, warnings, etc.) is displayed. Furthermore, the analysis/diagnosis result handling unit 530 controls the driver terminal device 540 to display the results of the diagnosis performed by the detailed diagnosis unit 330 using the detailed diagnosis program.
 さらに、解析・診断結果対応部530は、影響解析部520の解析結果に基づいて車両100を制御する、診断制御装置130の外部の複数のECUの動作モードの設定を行うモード設定部531を備える。解析・診断結果対応部530は、モード設定部531で設定した動作モード(所定の動作パターン)に沿うように車両100を制御する一又は複数のECUを作動させる。動作モードは、一例として、フェールセーフモード、車両停止モード、通常運転モード、高速運転モードなどがある。 Further, the analysis/diagnosis result handling section 530 includes a mode setting section 531 that sets the operation mode of a plurality of ECUs external to the diagnostic control device 130 that control the vehicle 100 based on the analysis results of the influence analysis section 520. . The analysis/diagnosis result handling unit 530 operates one or more ECUs that control the vehicle 100 in accordance with the operation mode (predetermined operation pattern) set by the mode setting unit 531. Examples of the operation modes include fail-safe mode, vehicle stop mode, normal operation mode, and high-speed operation mode.
 運転者端末装置540(運転者インターフェース部)は、表示部及び入力部を具備するようにしてデータ取得部310で取得した複数のデータ、カルテ情報に含まれる識別情報、使用期間情報、及び走行履歴情報を、データ取得部310又は監視記録管理部510との間で融通(送受信や編集)することが可能に構成されている。運転者端末装置540は、例えば、MIL150(故障警告灯)に相当する。 The driver terminal device 540 (driver interface unit) is equipped with a display unit and an input unit, and is configured to display a plurality of data acquired by the data acquisition unit 310, identification information included in medical record information, period of use information, and driving history. The configuration is such that information can be exchanged (sent/received and edited) with the data acquisition section 310 or the monitoring record management section 510. The driver terminal device 540 corresponds to, for example, an MIL 150 (malfunction warning light).
 ここで、影響解析部520、解析・診断結果対応部530、及び運転者端末装置540についてさらに説明する。
 影響解析部520は、影響解析に際して現時点から車両100又は部品を不都合なく使用することが可能であると予想される「使用可能期間情報」又は「走行可能距離情報」を求める。また、解析・診断結果対応部530のモード設定部531は、「使用可能期間情報」又は「走行可能距離情報」が数値、あるいは残量ゲージの表示形態にて表示されるように、運転者端末装置540を制御する。
Here, the influence analysis section 520, analysis/diagnosis result handling section 530, and driver terminal device 540 will be further explained.
The impact analysis unit 520 obtains "usable period information" or "removable distance information" that is expected to allow the vehicle 100 or its parts to be used without any inconvenience from the current point in time during the impact analysis. The mode setting unit 531 of the analysis/diagnosis result handling unit 530 also controls the driver's terminal so that “usable period information” or “travelable distance information” is displayed in the form of a numerical value or a remaining fuel gauge. Control device 540.
 運転者端末装置540は、上記の予想された「使用可能期間情報」又は「走行可能距離情報」を用いて、車両100の整備実施業者が管理する整備実施業者サーバ550への整備実施可能日の問い合わせを実行するとともに、整備実施可能日までの「待機期間情報」を求める作業予約システムを構成する。「待機期間情報」は、整備に必要とされる部品(用品)の取り寄せに要する日数の関数(取り寄せ納期が長いとき、待機時間も当然長くなる)である。モード設定部531は、「待機期間情報」、「使用可能期間情報」又は「走行可能距離情報」に応じて、動作モード及び運転者端末装置540における情報の表示状態を調整(内容の変更等)する。 The driver terminal device 540 uses the above-mentioned predicted "usable period information" or "movable distance information" to inform the maintenance contractor server 550 managed by the maintenance contractor of the vehicle 100 of the possible maintenance date. A work reservation system is constructed that not only carries out inquiries but also requests "waiting period information" up to the date when maintenance can be performed. "Waiting period information" is a function of the number of days required to order parts (supplies) required for maintenance (if the order delivery time is long, the waiting time will naturally be long). The mode setting unit 531 adjusts the operation mode and the display state of information on the driver terminal device 540 (changes the contents, etc.) according to "standby period information", "available period information", or "travelable distance information" do.
 運転者(又は車両100の管理者)は、運転者端末装置540に表示される待期期間情報を確認して、実際に整備実施を依頼するかどうかを検討する。そして、待期期間に不都合がなければ、運転者(又は車両100の管理者)は、運転者端末装置540を操作して整備実施業者サーバ550へ整備実施の依頼を指示する。 The driver (or the manager of the vehicle 100) checks the waiting period information displayed on the driver terminal device 540 and considers whether to actually request maintenance. If there is no inconvenience during the waiting period, the driver (or the manager of the vehicle 100) operates the driver terminal device 540 to instruct the maintenance contractor server 550 to request maintenance.
 診断制御装置130(演算処理装置1310A)の通信IF1320(図1、図2)において、所定の無線通信網(広域ネットワークN)を経由して整備実施業者サーバ550へ接続することによって、運転者端末装置540による問い合わせを自動的に実行可能である。そして、当該問い合わせを介して、演算処理装置1310Aでは、FT部の内容(第1要因、第2要因、及び所定のノウハウ事項)を整備実施業者サーバ550に保存されている最新の情報へと更新(同期)可能である。 At the communication IF 1320 (FIGS. 1 and 2) of the diagnostic control device 130 (processing device 1310A), the driver terminal Interrogations by device 540 can be performed automatically. Then, through the inquiry, the arithmetic processing unit 1310A updates the contents of the FT section (first factor, second factor, and predetermined know-how items) to the latest information stored in the maintenance contractor server 550. (Synchronization) is possible.
 予兆診断部320は、上述したとおり、予兆診断(一次診断)において、FT部に基づく診断(FTチェック)を実施し、ONボードで診断、フェールセーフ処理を行える予兆(予兆項目)と、ONボードで診断できない予兆(予兆項目)とを分類する機能を有する。ONボードで診断できるとは、診断制御装置130(ECU)に予め搭載された車両100の自己診断機能で診断できるという意味である。ONボードで診断できない場合には、診断制御装置130(演算処理装置1310A)は、診断情報をプログラムサーバ210に送信して詳細診断(二次診断)へ移行する。そして、詳細診断部330は、詳細情報が必要な診断(予兆項目の診断)については、詳細診断プログラム(二次診断プログラム)をダウンロードして詳細な診断を行う。 As described above, the predictive diagnosis section 320 performs diagnosis (FT check) based on the FT section in predictive diagnosis (primary diagnosis), and detects symptoms (predictive items) that can perform diagnosis and fail-safe processing on the ON board. It has the function of classifying symptoms (predictive items) that cannot be diagnosed. Being able to diagnose with the ON board means being able to diagnose using the self-diagnosis function of the vehicle 100 that is pre-installed in the diagnostic control unit 130 (ECU). If the ON board cannot perform diagnosis, the diagnostic control device 130 (arithmetic processing device 1310A) transmits diagnostic information to the program server 210 and moves to detailed diagnosis (secondary diagnosis). The detailed diagnosis unit 330 downloads a detailed diagnosis program (secondary diagnosis program) and performs a detailed diagnosis for a diagnosis that requires detailed information (diagnosis of a symptom item).
 以上のとおり、第3の実施形態に係る診断制御装置(診断制御装置130)の演算処理装置(演算処理装置1310A)は、車両を構成する部品の識別情報と、使用期間と、走行距離を含む監視記録情報(カルテ情報)を管理する監視記録管理部(監視記録管理部510)と、少なくとも部品の各々を車両の機能ごとに対応づけた木構造のフォールトツリーダイアグラム(FT部)と、部品故障の予兆と、監視記録情報とを組み合わせて、各情報の車両への影響を解析する影響解析部(影響解析部520)と、影響解析部による解析の結果に基づく情報を、車両に搭載された運転者端末装置(運転者端末装置540)に表示する解析・診断結果対応部(解析・診断結果対応部530)と、を更に備える。 As described above, the arithmetic processing unit (arithmetic processing unit 1310A) of the diagnostic control device (diagnostic control device 130) according to the third embodiment includes identification information of parts constituting the vehicle, period of use, and mileage. A monitoring record management unit (monitoring record management unit 510) that manages monitoring record information (medical record information), a tree-structured fault tree diagram (FT unit) in which at least each part is associated with each function of the vehicle, and a part failure An impact analysis unit (impact analysis unit 520) that analyzes the impact of each piece of information on the vehicle by combining the warning signs and monitoring record information; It further includes an analysis/diagnosis result correspondence section (analysis/diagnosis result correspondence section 530) to be displayed on the driver terminal device (driver terminal device 540).
 このように構成された本実施形態によれば、影響解析部の解析の結果に基づく情報(整備予報、動作モード設定状態、及び警報等を含む)が、車両に搭載された運転者端末装置(運転者インターフェース部)に表示される。これにより、運転者は、車両(部品)の状態や、車両(部品)の保守の要否等を確認することができる。 According to this embodiment configured in this way, information based on the analysis results of the influence analysis unit (including maintenance forecasts, operating mode setting states, warnings, etc.) is transmitted to the driver terminal device ( (driver interface section). This allows the driver to check the condition of the vehicle (parts), whether maintenance of the vehicle (parts) is required, etc.
 また、本実施形態に係る診断制御装置(診断制御装置130)の演算処理装置(演算処理装置1310A)では、解析・診断結果対応部(解析・診断結果対応部530のモード設定部531)は、影響解析部(影響解析部520)による解析の結果に基づいて車両制御装置(ECU)の動作モードの設定を行い、車両制御装置へ動作モードの設定情報を送信する。 Furthermore, in the arithmetic processing unit (arithmetic processing unit 1310A) of the diagnostic control device (diagnosis control device 130) according to the present embodiment, the analysis/diagnosis result correspondence unit (mode setting unit 531 of the analysis/diagnosis result correspondence unit 530): The operation mode of the vehicle control unit (ECU) is set based on the result of the analysis by the influence analysis unit (influence analysis unit 520), and the operation mode setting information is transmitted to the vehicle control unit.
 このように構成された本実施形態によれば、解析・診断結果対応部(モード設定部)において、影響解析部の解析結果に基づいて車両制御装置(ECU)の動作モードの設定が行われるため、予兆項目に基づいて車両制御装置を適切な動作モードで走行させることができる。 According to this embodiment configured in this way, the operation mode of the vehicle control unit (ECU) is set in the analysis/diagnosis result handling unit (mode setting unit) based on the analysis result of the influence analysis unit. , the vehicle control device can be operated in an appropriate operation mode based on the symptom items.
[各サーバ及び運転者端末装置のハードウェア構成]
 次に、上述した第1乃至第3の実施形態に係るプログラムサーバ210、運転者端末装置540、及び整備実施業者サーバ550のハードウェア構成について、図7を参照して説明する。
[Hardware configuration of each server and driver terminal device]
Next, the hardware configurations of the program server 210, driver terminal device 540, and maintenance contractor server 550 according to the first to third embodiments described above will be described with reference to FIG.
 図7は、第1乃至第3の実施形態に係るプログラムサーバ210、運転者端末装置540、及び整備実施業者サーバ550のハードウェア構成例を示すブロック図である。 FIG. 7 is a block diagram showing an example of the hardware configuration of the program server 210, driver terminal device 540, and maintenance contractor server 550 according to the first to third embodiments.
 計算機600は、プログラムサーバ210、運転者端末装置540(例えば、MIL150)、及び整備実施業者のサーバ550として動作可能なコンピューターとして用いられるハードウェアの一例である。計算機600は、バスにそれぞれ接続されたCPU(Central Processing Unit)601、ROM(Read Only Memory)602、及びRAM(Random Access Memory)603、表示部605、及び操作部606を備える。さらに、計算機600は、不揮発性ストレージ607及びネットワークIF(InterFace)608を備える。 The computer 600 is an example of hardware used as a computer that can operate as a program server 210, a driver terminal device 540 (for example, MIL 150), and a maintenance contractor's server 550. The computer 600 includes a CPU (Central Processing Unit) 601, a ROM (Read Only Memory) 602, a RAM (Random Access Memory) 603, a display section 605, and an operation section 606, each connected to a bus. Furthermore, the computer 600 includes a nonvolatile storage 607 and a network IF (InterFace) 608.
 各装置やサーバの機能や使用目的に合わせて各ブロックは取捨選択されてもよい。例えば、プログラムサーバ210や整備実施業者サーバ550において、計算機600は、表示部605や操作部606が接続されていない形態でもよい。 Each block may be selected according to the function and purpose of use of each device or server. For example, in the program server 210 and the maintenance contractor server 550, the computer 600 may have a form in which the display unit 605 and the operation unit 606 are not connected.
 CPU601は、上述した実施形態に係る各機能を実現するソフトウェアのプログラムコードをROM602から読み出してRAM603に展開して実行する。もしくは、CPU601は、プログラムコードをROM602から直接読み出してそのまま実行する場合もある。なお、計算機600は、CPU601の代わりに、MPU(Micro-Processing Unit)等の処理装置を備えてもよい。RAM603には、CPU601による演算処理の途中に発生した変数やパラメータ等が一時的に書き込まれる。 The CPU 601 reads software program codes that implement each function according to the embodiments described above from the ROM 602, expands them to the RAM 603, and executes them. Alternatively, the CPU 601 may directly read the program code from the ROM 602 and execute it as is. Note that the computer 600 may include a processing device such as an MPU (Micro-Processing Unit) instead of the CPU 601. Variables, parameters, etc. generated during arithmetic processing by the CPU 601 are temporarily written into the RAM 603.
 不揮発性ストレージ607としては、例えば、HDD(Hard Disk Drive)、SSD、フレキシブルディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、不揮発性のメモリカード等を用いることができる。この不揮発性ストレージ607には、OS(Operating System)、各種のパラメータの他に、計算機600を機能させるためのプログラム等が記録される。プログラムサーバ210の詳細診断プログラム及びフェールセーフプログラム、及び、整備実施業者サーバ550のFT部は、各々の不揮発性ストレージ607に保存される。 As the non-volatile storage 607, for example, an HDD (Hard Disk Drive), SSD, flexible disk, optical disk, magneto-optical disk, CD-ROM, CD-R, non-volatile memory card, etc. can be used. In this non-volatile storage 607, in addition to the OS (Operating System) and various parameters, programs for operating the computer 600 and the like are recorded. The detailed diagnosis program and failsafe program of the program server 210 and the FT section of the maintenance contractor server 550 are stored in each non-volatile storage 607.
 プログラムサーバ210、運転者端末装置540、整備実施業者サーバ550、及び整備実施業者サーバ550の各機能は、CPU601がROM602又は不揮発性ストレージ607に格納された各機能に対応するプログラムを実行することにより実現される。プログラムは、コンピューターが読取り可能なプログラムコードの形態で格納され、CPU601は、当該プログラムコードに従った動作を逐次実行する。つまり、ROM602又は不揮発性ストレージ607は、コンピューターによって実行されるプログラムを格納した、コンピューター読取可能な非一過性の記録媒体の一例として用いられる。 Each function of the program server 210, driver terminal device 540, maintenance agent server 550, and maintenance agent server 550 is performed by the CPU 601 executing a program corresponding to each function stored in the ROM 602 or non-volatile storage 607. Realized. The program is stored in the form of a computer-readable program code, and the CPU 601 sequentially executes operations according to the program code. That is, the ROM 602 or the nonvolatile storage 607 is used as an example of a computer-readable non-transitory recording medium that stores a program to be executed by a computer.
 ネットワークIF608は、サーバやECUなどの他の装置との間で行われる通信の制御を行う通信デバイス等により構成される。 The network IF 608 is composed of a communication device and the like that controls communication with other devices such as a server and an ECU.
<変形例>
 上述した第1乃至第3の実施形態において、診断制御装置130の演算処理装置1310,1310Aは、詳細診断プログラム及びフェールセーフプログラムを、プログラムサーバ210からダウンロードする構成としている。ただし、例えば、マスターECU140に複数の詳細診断プログラム及びフェールセーフプログラムを保存しておき、診断制御装置130が、マスターECU140からこれらの必要なプログラムを取得する構成としてもよい。この場合、診断制御装置130の演算処理装置1310,1310Aは、広域ネットワークNの通信品質によらず、必要な詳細診断プログラム及びフェールセーフプログラムを取得することができる。
<Modified example>
In the first to third embodiments described above, the arithmetic processing units 1310 and 1310A of the diagnostic control device 130 are configured to download the detailed diagnostic program and failsafe program from the program server 210. However, for example, a configuration may be adopted in which a plurality of detailed diagnostic programs and failsafe programs are stored in the master ECU 140, and the diagnostic control device 130 acquires these necessary programs from the master ECU 140. In this case, the arithmetic processing units 1310 and 1310A of the diagnostic control device 130 can acquire the necessary detailed diagnostic program and failsafe program regardless of the communication quality of the wide area network N.
 また、上述した第1乃至第3の実施形態において、予兆診断で同時に2個以上の予兆項目が抽出された場合には、詳細診断部330は、診断制御装置130に適用されているECUのリソース(記憶容量、処理能力)の余力に応じて詳細診断プログラム及びフェールセーフプログラムをダウンロードする。例えば、3個の予兆項目が抽出された場合、詳細診断部330は、ECUのリソースの余力に応じて、1個ずつダウンロードする、又は、プログラムのデータ量によっては初めに1個、次に2個まとめてダウンロードするといった処理を行う。あるいは、予兆項目の優先順位に高低がある場合には、詳細診断部330は、より優先順位の高い予兆項目に対する詳細診断プログラムからダウンロードするようにしてもよい。 Furthermore, in the first to third embodiments described above, when two or more predictive items are extracted at the same time in the predictive diagnosis, the detailed diagnosis unit 330 extracts the resources of the ECU applied to the diagnostic control device 130. Download detailed diagnostic programs and fail-safe programs depending on available capacity (storage capacity, processing power). For example, if three predictive items are extracted, the detailed diagnosis unit 330 may download them one by one depending on the ECU's available resources, or download one item first and then two depending on the amount of data in the program. Processing such as downloading all files at once is performed. Alternatively, if the priority of the symptom items is high or low, the detailed diagnosis unit 330 may download the detailed diagnosis program for the symptom item with a higher priority.
 また、上述した第1乃至第3の実施形態では、診断制御装置130の診断対象製品として車両を例に説明したが、診断対象製品は車両に限定されない。例えば、診断対象製品は、冷蔵庫などの電気製品、又は該冷蔵庫のコントローラといった電気製品の制御装置でもよい。例えば、冷蔵庫の場合、冷蔵庫の部品故障の予兆として、冷蔵庫の冷媒が抜け始めたことなどによる冷却能力の低下などが抽出される。また、冷蔵庫の部品故障は、例えば、部品取付けガタの増加、嵌合部の緩み、冷蔵庫内が冷えない(例えば、冷媒抜け)などである。 Further, in the first to third embodiments described above, a vehicle was explained as an example of a product to be diagnosed by the diagnostic control device 130, but a product to be diagnosed is not limited to a vehicle. For example, the product to be diagnosed may be an electrical product such as a refrigerator, or a control device for the electrical product such as a controller for the refrigerator. For example, in the case of a refrigerator, a decrease in cooling capacity due to the refrigerant starting to leak out of the refrigerator, etc., is extracted as a sign of failure of parts of the refrigerator. In addition, component failures of the refrigerator include, for example, increased play in the installation of components, loosening of fitting parts, and failure to cool the inside of the refrigerator (for example, refrigerant leakage).
 上述した第1乃至第3の実施形態の効果として、診断対象製品(部品)の故障の予兆を抽出することにより、診断対象製品(部品)が完全に故障する前のとり得る対応手段の数が多いことが挙げられる。例えば、冷蔵庫の場合、対応手段として、別の冷蔵庫を購入することで予兆が抽出された冷蔵庫内の食材を守る、冷蔵庫の扉の開け閉め頻度を減らすことで食材の劣化を抑制する、あるいは修理サービス業者に点検を依頼するなどがある。また、診断対象製品が車両の場合であっても、完全に故障した後よりも故障の予兆の段階で対応した方が、対応手段の選択肢が増える。 As an effect of the first to third embodiments described above, by extracting signs of failure in the product (part) to be diagnosed, the number of possible countermeasures that can be taken before the product (part) to be diagnosed completely fails is reduced. There are many things to mention. For example, in the case of a refrigerator, countermeasures include protecting the food in the refrigerator for which signs have been detected by purchasing another refrigerator, suppressing food deterioration by reducing the frequency of opening and closing the refrigerator door, or repairing the refrigerator. You may request a service provider to perform an inspection. Furthermore, even if the product to be diagnosed is a vehicle, there are more options for responding when there are signs of failure rather than after a complete failure.
 さらに、本発明は上述した第1乃至第3の実施形態に限られるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、その他種々の応用例、変形例を取り得ることは勿論である。例えば、上述した第1乃至第3の実施形態は本発明を分かりやすく説明するために診断制御装置(特に、演算処理装置)の構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成要素を備えるものに限定されない。また、第1乃至第3の実施形態の構成の一部について、他の構成要素の追加又は置換、削除をすることも可能である。 Furthermore, the present invention is not limited to the first to third embodiments described above, and can take various other applications and modifications without departing from the gist of the present invention as described in the claims. Of course. For example, in the first to third embodiments described above, the configuration of the diagnostic control device (particularly, the arithmetic processing device) is explained in detail and specifically in order to explain the present invention in an easy-to-understand manner, and not everything that has been explained is necessarily explained. It is not limited to those having the following components. Further, it is also possible to add, replace, or delete other components to some of the configurations of the first to third embodiments.
 また、上記の各構成、機能、処理部等は、それらの一部又は全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。ハードウェアとして、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などの広義のプロセッサデバイスを用いてもよい。 Further, each of the above-mentioned configurations, functions, processing units, etc. may be partially or entirely realized by hardware, for example, by designing an integrated circuit. As the hardware, a broadly defined processor device such as an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) may be used.
 また、上述した第1乃至第3の実施形態に係る診断制御装置において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成要素が相互に接続されていると考えてもよい。 In addition, in the diagnostic control device according to the first to third embodiments described above, the control lines and information lines are shown to be necessary for explanation, and not all control lines and information lines are necessarily shown in the product. It doesn't necessarily mean there are. In reality, almost all the components may be considered to be interconnected.
 また、上述した第1乃至第3の実施形態に係る診断制御装置の各構成要素は、それぞれのハードウェアがネットワークを介して互いに情報を送受信できるならば、いずれのハードウェアに実装されてもよい。また、ある処理部により実施される処理が、1つのハードウェアにより実現されてもよいし、複数のハードウェアによる分散処理により実現されてもよい。 Further, each component of the diagnostic control device according to the first to third embodiments described above may be implemented in any hardware as long as the respective hardware can send and receive information to and from each other via a network. . Moreover, the processing performed by a certain processing unit may be realized by one piece of hardware, or may be realized by distributed processing by a plurality of pieces of hardware.
 また、本明細書において、時系列的な処理を記述する処理ステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的、あるいは個別に実行される処理(例えば、オブジェクトによる処理)をも含むものである。また、時系列的な処理を記述する処理ステップについては、処理結果に影響を及ぼさない範囲で、処理順序を変更してもよい。 In addition, in this specification, processing steps describing chronological processing are not only processes that are performed chronologically in the described order, but also processes that are not necessarily performed chronologically, but may be performed in parallel or It also includes processes that are executed individually (for example, processes by objects). Furthermore, the processing order of processing steps that describe time-series processing may be changed within a range that does not affect the processing results.
 100…車両、 110…センサ類、 120…アクチュエータ類、 130…診断制御装置、 140…マスターECU、 150…MIL、 210…プログラムサーバ、 310…データ取得部、 320…予兆診断部、 330…詳細診断部、 510…監視記録管理部、 520…影響解析部、 530…解析・診断結果対応部、 531…モード設定部、 540…運転者端末装置、 550…整備実施業者サーバ、 1310,1310A…演算処理装置、 1320…通信IF 100... Vehicle, 110... Sensors, 120... Actuators, 130... Diagnostic control device, 140... Master ECU, 150... MIL, 210... Program server, 310... Data acquisition section, 320... Predictive diagnosis section, 330... Detailed diagnosis Department, 510... Monitoring record management department, 520... Effect analysis section, 530... Analysis/diagnosis result handling section, 531... Mode setting section, 540... Driver terminal device, 550... Maintenance contractor server, 1310, 1310A... Arithmetic processing Device, 1320...Communication IF

Claims (7)

  1.  車両に搭載され前記車両の診断処理を制御する診断制御装置であって、
     前記車両に設けられたセンサ及び車両制御装置からデータを取得するデータ取得部と、
     前記データを用いて予兆診断を行い部品故障の予兆を抽出する予兆診断部と、
     前記予兆診断の結果に基づいて、前記部品故障の予兆について詳細な診断を行うのに適した詳細診断プログラムを外部装置へ要求し、前記外部装置から取得した前記詳細診断プログラムにより前記部品故障の予兆について詳細な診断を行う詳細診断部と、を備える
     診断制御装置。
    A diagnostic control device that is mounted on a vehicle and controls diagnostic processing of the vehicle,
    a data acquisition unit that acquires data from a sensor and a vehicle control device provided in the vehicle;
    a predictive diagnosis unit that performs predictive diagnosis using the data and extracts signs of component failure;
    Based on the result of the predictive diagnosis, a detailed diagnosis program suitable for performing a detailed diagnosis of the signs of component failure is requested from an external device, and the detailed diagnosis program obtained from the external device detects the signs of component failure. A diagnostic control device, comprising: a detailed diagnosis section that performs a detailed diagnosis.
  2.  前記詳細診断部は、前記詳細診断プログラムによる前記部品故障の予兆についての前記詳細な診断の結果に基づいて、フェールセーフプログラムを外部装置へ要求し、前記外部装置から取得した前記フェールセーフプログラムによりフェールセーフ処理を実施する
     請求項1に記載の診断制御装置。
    The detailed diagnosis section requests a fail-safe program from an external device based on the detailed diagnosis of signs of component failure by the detailed diagnosis program, and executes a fail-safe program using the fail-safe program acquired from the external device. The diagnostic control device according to claim 1, wherein the diagnostic control device performs safe processing.
  3.  前記車両を構成する部品の識別情報と、使用期間と、走行距離を含む監視記録情報を管理する監視記録管理部と、
     少なくとも前記部品の各々を前記車両の機能ごとに対応づけた木構造のフォールトツリーダイアグラムと、前記部品故障の予兆と、前記監視記録情報とを組み合わせて、各情報の前記車両への影響を解析する影響解析部と、
     前記影響解析部による解析の結果に基づく情報を、前記車両に搭載された運転者端末装置に表示する解析・診断結果対応部と、を更に備える
     請求項1に記載の診断制御装置。
    a monitoring record management unit that manages monitoring record information including identification information of parts constituting the vehicle, periods of use, and mileage;
    Analyzing the influence of each piece of information on the vehicle by combining at least a tree-structured fault tree diagram in which each of the parts is associated with each function of the vehicle, the signs of component failure, and the monitoring record information. Impact analysis department and
    The diagnostic control device according to claim 1, further comprising: an analysis/diagnosis result correspondence unit that displays information based on the results of the analysis by the influence analysis unit on a driver terminal device installed in the vehicle.
  4.  前記解析・診断結果対応部は、前記影響解析部による解析の結果に基づいて車両制御装置の動作モードの設定を行い、前記車両制御装置へ前記動作モードの設定情報を送信する
     請求項3に記載の診断制御装置。
    The analysis/diagnosis result handling unit sets an operation mode of the vehicle control device based on the result of the analysis by the influence analysis unit, and transmits setting information of the operation mode to the vehicle control device. diagnostic control unit.
  5.  前記詳細診断部は、前記予兆診断の結果を前記車両外に設置されたサーバへ送信し、前記サーバから前記詳細診断プログラムをダウンロードする
     請求項1に記載の診断制御装置。
    The diagnostic control device according to claim 1, wherein the detailed diagnosis unit transmits the results of the predictive diagnosis to a server installed outside the vehicle, and downloads the detailed diagnosis program from the server.
  6.  前記詳細診断部は、前記予兆診断の結果を前記車両内の車両制御装置へ送信し、前記車両制御装置から前記詳細診断プログラムを取得する
     請求項1に記載の診断制御装置。
    The diagnostic control device according to claim 1, wherein the detailed diagnosis unit transmits the result of the predictive diagnosis to a vehicle control device in the vehicle, and acquires the detailed diagnosis program from the vehicle control device.
  7.  車両に搭載され前記車両の診断処理を制御する診断制御装置による診断制御方法であって、
     前記車両に設けられたセンサ及び車両制御装置からデータを取得する処理と、
     前記データを用いて予兆診断を行い部品故障の予兆を抽出する処理と、
     前記予兆診断の結果に基づいて、前記部品故障の予兆について詳細な診断を行うのに適した詳細診断プログラムを外部装置へ要求し、前記外部装置から取得した前記詳細診断プログラムにより前記部品故障の予兆について詳細な診断を行う処理と、を含む
     診断制御方法。
    A diagnostic control method using a diagnostic control device installed in a vehicle and controlling diagnostic processing of the vehicle, the method comprising:
    A process of acquiring data from a sensor and a vehicle control device provided in the vehicle;
    A process of performing predictive diagnosis using the data and extracting signs of component failure;
    Based on the result of the predictive diagnosis, a detailed diagnosis program suitable for performing a detailed diagnosis of the signs of component failure is requested from an external device, and the detailed diagnosis program obtained from the external device detects the signs of component failure. and a diagnostic control method.
PCT/JP2022/027561 2022-07-13 2022-07-13 Diagnostic control unit and diagnostic control method WO2024013879A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027561 WO2024013879A1 (en) 2022-07-13 2022-07-13 Diagnostic control unit and diagnostic control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027561 WO2024013879A1 (en) 2022-07-13 2022-07-13 Diagnostic control unit and diagnostic control method

Publications (1)

Publication Number Publication Date
WO2024013879A1 true WO2024013879A1 (en) 2024-01-18

Family

ID=89536170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027561 WO2024013879A1 (en) 2022-07-13 2022-07-13 Diagnostic control unit and diagnostic control method

Country Status (1)

Country Link
WO (1) WO2024013879A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119339A (en) * 1995-10-26 1997-05-06 Honda Motor Co Ltd Operational history collecting and managing system of automotive unit
JPH10257661A (en) * 1996-12-03 1998-09-25 Toshiba Corp Monitoring control system and storage recording program for executing the same
JP2004249980A (en) * 2003-02-19 2004-09-09 Robert Bosch Gmbh Fault tolerant vdc system for automobile, and method for making vdc system fault tolerant
JP2007322377A (en) * 2006-06-05 2007-12-13 Hino Motors Ltd On-board failure diagnosis apparatus and method for testing same
JP2016170740A (en) * 2015-03-16 2016-09-23 日立オートモティブシステムズ株式会社 Software updating device and software updating method
JP2019196036A (en) * 2018-05-07 2019-11-14 トヨタ自動車株式会社 Diagnostic apparatus, diagnostic system, and diagnostic method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119339A (en) * 1995-10-26 1997-05-06 Honda Motor Co Ltd Operational history collecting and managing system of automotive unit
JPH10257661A (en) * 1996-12-03 1998-09-25 Toshiba Corp Monitoring control system and storage recording program for executing the same
JP2004249980A (en) * 2003-02-19 2004-09-09 Robert Bosch Gmbh Fault tolerant vdc system for automobile, and method for making vdc system fault tolerant
JP2007322377A (en) * 2006-06-05 2007-12-13 Hino Motors Ltd On-board failure diagnosis apparatus and method for testing same
JP2016170740A (en) * 2015-03-16 2016-09-23 日立オートモティブシステムズ株式会社 Software updating device and software updating method
JP2019196036A (en) * 2018-05-07 2019-11-14 トヨタ自動車株式会社 Diagnostic apparatus, diagnostic system, and diagnostic method

Similar Documents

Publication Publication Date Title
US10665039B2 (en) Distributed monitoring and control of a vehicle
US11541899B2 (en) Vehicle diagnosis apparatus, vehicle diagnosis system, and vehicle diagnosis program
US20230186697A1 (en) Systems and methods for in-vehicle predictive failure detection
JP7139257B2 (en) VEHICLE SECURITY MONITORING DEVICE, METHOD AND PROGRAM
CN106843190B (en) Distributed vehicle health management system
US8296252B2 (en) Process and apparatus for evaluating operational risks for aiding in vehicular maintenance decisions
EP3156862B1 (en) Methods and apparatus for the creation and use of reusable fault model components in fault modeling and complex system prognostics
CN102043680B (en) Method and system for refreshing ECU (Electronic Control Unit) embedded software and downloading program
US8346700B2 (en) Vehicle health monitoring reasoner architecture for diagnostics and prognostics
JP2003516275A (en) How to identify car errors
US11126730B2 (en) Inspection system
US11769355B2 (en) Fault diagnosis support device
JP2006518299A (en) Apparatus and method for on-board diagnosis based on model
Mesgarpour et al. Overview of telematics-based prognostics and health management systems for commercial vehicles
US8359577B2 (en) Software health management testbed
US20210171221A1 (en) Onboard diagnosis and correlation of failure data to maintenance actions
WO2024013879A1 (en) Diagnostic control unit and diagnostic control method
KR102255599B1 (en) System and method for providing vehicle diagnosis service
US20220385544A1 (en) Early detection of cable failure in automotive networks
EP4095533A2 (en) Early detection of cable failure in automotive networks
US20220284740A1 (en) Method for determining the operating state of vehicle components
US11794758B2 (en) Selective health information reporting systems including integrated diagnostic models providing least and most possible cause information
KR102242227B1 (en) System and method for providing vehicle diagnosis information using vehicle gateway device
US20220366735A1 (en) Distributed system and data processing method
WO2024009141A1 (en) Vehicle data output method and vehicle data output device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951093

Country of ref document: EP

Kind code of ref document: A1