WO2024013851A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2024013851A1
WO2024013851A1 PCT/JP2022/027421 JP2022027421W WO2024013851A1 WO 2024013851 A1 WO2024013851 A1 WO 2024013851A1 JP 2022027421 W JP2022027421 W JP 2022027421W WO 2024013851 A1 WO2024013851 A1 WO 2024013851A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
information
scenario
scenario setting
data
Prior art date
Application number
PCT/JP2022/027421
Other languages
French (fr)
Japanese (ja)
Inventor
春陽 越後
浩樹 原田
リュー リュー
ラン チン
シン ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/027421 priority Critical patent/WO2024013851A1/en
Publication of WO2024013851A1 publication Critical patent/WO2024013851A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 is a specification for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel. 8, 9). was made into
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • AI artificial intelligence
  • ML machine learning
  • GC Generalization Capability
  • the NR standard also discusses how to evaluate GC performance, but it is required to efficiently secure GC for the AI model without spending too much effort on monitoring/updating the AI model. However, no progress has been made in considering specific methods. If the method is not properly defined, it will not be possible to achieve appropriate overhead reduction, highly accurate channel estimation, and highly efficient resource utilization based on the AI model, and there is a risk that improvements in communication throughput and communication quality will be suppressed. .
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can realize suitable overhead reduction/channel estimation/resource utilization.
  • a terminal includes a receiving unit that receives information regarding a scenario setting that requires collection of a data set, and an artificial intelligence (Artificial Intelligence) based on a data set collected under a specific scenario setting. AI)) A controller for training the model.
  • a receiving unit that receives information regarding a scenario setting that requires collection of a data set, and an artificial intelligence (Artificial Intelligence) based on a data set collected under a specific scenario setting. AI))
  • AI artificial Intelligence
  • suitable overhead reduction/channel estimation/resource utilization can be achieved.
  • FIG. 1 is a diagram illustrating an example of an AI model management framework.
  • FIG. 2 is a diagram illustrating an example of data set collection/reporting for securing GC of an AI model according to an embodiment.
  • FIG. 3 is a diagram illustrating an example of the correspondence between use cases and scenario setting formats in the first embodiment.
  • FIG. 4 is a diagram illustrating an example of the correspondence between the AI model and the scenario setting format in the second embodiment.
  • FIG. 5 is a diagram illustrating an example of receiving information regarding scenario settings according to Embodiment 3.1.
  • FIG. 6 is a diagram illustrating an example of data set collection according to Embodiment 3.2.
  • FIG. 7 is a diagram illustrating an example of data set transmission according to Embodiment 3.3.
  • FIG. 8 is a diagram illustrating an example of training on the UE side according to the fourth embodiment.
  • FIG. 9 is a diagram illustrating an example of model selection according to Embodiment 5.1.
  • 10A and 10B are diagrams illustrating an example of GC performance evaluation in Embodiment 5.2.
  • FIG. 11 is a diagram illustrating an example of GC performance evaluation in Embodiment 5.2.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 14 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 15 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 16 is a diagram illustrating an example of a vehicle according to an embodiment.
  • AI Artificial Intelligence
  • ML machine learning
  • improved Channel State Information (CSI) feedback e.g., reduced overhead, improved accuracy, prediction
  • improved beam management e.g., improved accuracy, prediction in the time/spatial domain
  • position A terminal e.g., user terminal, user equipment (UE)/Base Station (BS)
  • BS Base Station
  • AI technology e.g., improve position estimation/prediction
  • the AI model may output at least one information such as an estimated value, a predicted value, a selected action, a classification, etc.
  • the UE/BS inputs channel state information, reference signal measurements, etc. to the AI model, and provides highly accurate channel state information/measurements/beam selection/position, future channel state information/radio link quality, etc. may be output.
  • AI may be read as an object (also referred to as a target, object, data, function, program, etc.) that has (implements) at least one of the following characteristics: ⁇ Estimation based on observed or collected information; - Selection based on observed or collected information; - Predictions based on observed or collected information.
  • estimation, prediction, and inference may be used interchangeably.
  • estimate the terms “estimate,” “predict,” and “infer” may be used interchangeably.
  • an object may be, for example, an apparatus, a device, etc., such as a UE or a BS. Furthermore, in the present disclosure, an object may correspond to a program/model/entity that operates on the device.
  • the AI model may be replaced by an object that has (implements) at least one of the following characteristics: ⁇ Produce estimates by feeding information, ⁇ Predict the estimated value by giving information, ⁇ Discover characteristics by providing information, ⁇ Select an action by providing information.
  • an AI model may refer to a data-driven algorithm that applies AI technology and generates a set of outputs based on a set of inputs.
  • AI models models, ML models, predictive analytics, predictive analysis models, tools, autoencoders (autoencoders), encoders, decoders, neural network models, AI algorithms, Schemes etc.
  • the AI model may be derived using at least one of regression analysis (eg, linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, etc.
  • the autoencoder may be interchanged with any autoencoder such as a stacked autoencoder or a convolutional autoencoder.
  • the encoder/decoder of the present disclosure may adopt models such as Residual Network (ResNet), DenseNet, RefineNet, etc.
  • an encoder encoding, encode/encoded, modification/change/control by an encoder, compressing, compress/compressed, generation ( “generate”, “generate/generated”, etc. may be used interchangeably.
  • a decoder decoding, decode/decoded, modification/change/control by a decoder, decompressing, decompress/decompressed, re- Reconstructing, reconstruct/reconstructed, etc. may be used interchangeably.
  • layers may be interchanged with layers (input layer, intermediate layer, etc.) used in the AI model.
  • the layers of the present disclosure include an input layer, an intermediate layer, an output layer, a batch normalization layer, a convolution layer, an activation layer, a dense layer, a normalization layer, a pooling layer, an attention layer, a dropout layer, It may correspond to at least one of the fully connected layers.
  • AI model training methods may include supervised learning, unsupervised learning, reinforcement learning, federated learning, and the like.
  • Supervised learning may refer to the process of training a model from input and corresponding labels.
  • Unsupervised learning may refer to the process of training a model without labeled data.
  • Reinforcement learning is the process of training a model from inputs (in other words, states) and feedback signals (in other words, rewards) resulting from the model's outputs (in other words, actions) in the environment in which the models are interacting. It can also mean
  • generation, calculation, derivation, etc. may be read interchangeably.
  • implementation, operation, operation, execution, etc. may be read interchangeably.
  • training, learning, updating, retraining, etc. may be used interchangeably.
  • inference, after-training, production use, actual use, etc. may be read interchangeably.
  • a signal may be interchanged with a signal/channel.
  • FIG. 1 is a diagram illustrating an example of an AI model management framework.
  • each stage related to the AI model is shown as a block.
  • This example is also expressed as AI model life cycle management.
  • the data collection stage corresponds to the stage of collecting data for generating/updating an AI model.
  • the data collection stage includes data reduction (e.g., deciding which data to transfer for model training/model inference), data transfer (e.g., to entities performing model training/model inference (e.g., UE, gNB)), and transfer data).
  • data collection may refer to a process in which data is collected by a network node, management entity, or UE for the purpose of AI model training/data analysis/inference.
  • process and “procedure” may be interchanged with each other.
  • collection refers to datasets (e.g., available as input/output) for training/inference of an AI model based on measurements (channel measurements, beam measurements, radio link quality measurements, location estimation, etc.) It may also mean obtaining.
  • offline field data may be data collected from the field (real world) and used for offline training of an AI model.
  • online field data may be data collected from the field (real world) and used for online training of an AI model.
  • model training is performed based on the data (training data) transferred from the collection stage.
  • This stage includes data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model training/validation, and model testing (e.g., whether the trained model meets performance thresholds). verification), model exchange (e.g., transferring a model for distributed learning), model deployment/updating (deploying/updating a model to an entity that performs model inference), etc.
  • AI model training may refer to processing for training an AI model in a data-driven manner and obtaining a trained AI model for inference.
  • AI model validation may refer to a training sub-process for evaluating the quality of an AI model using a data set different from the data set used for model training. This sub-processing helps select model parameters that generalize beyond the dataset used to train the model.
  • AI model testing refers to a sub-process of training to evaluate the performance of the final AI model using a dataset different from the dataset used for model training/validation. You may. Note that unlike validation, testing does not have to be based on subsequent model tuning.
  • model inference is performed based on the data (inference data) transferred from the collection stage.
  • This stage includes data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), and model performance feedback (the entity performing model training). (feedback of model performance to actors), output (provide model output to actors), etc.
  • AI model inference may refer to processing for producing a set of outputs from a set of inputs using a trained AI model.
  • a UE side model may refer to an AI model whose inference is completely performed in the UE.
  • a network side model may refer to an AI model whose inference is performed entirely in the network (eg, gNB).
  • the one-sided model may mean a UE-side model or a network-side model.
  • a two-sided model may refer to a pair of AI models in which joint inference is performed.
  • joint inference may include AI inference where the inference is performed jointly across the UE and the network, e.g., the first part of the inference is performed by the UE first and the remaining part is performed by the gNB. (or vice versa).
  • AI model monitoring may mean processing for monitoring the inference performance of an AI model, and may be interchanged with model performance monitoring, performance monitoring, etc.
  • model registration means giving a version identifier to a model and making it executable by compiling it on the specific hardware used in the inference stage. You may.
  • Model deployment also delivers a fully developed and tested model runtime image (or execution environment image) to the target (e.g., UE/gNB) where inference is performed. (or enable on the target).
  • target e.g., UE/gNB
  • the actor stage includes action triggers (e.g., deciding whether to trigger an action on other entities), feedback (e.g., feeding back information necessary for training data/inference data/performance feedback), etc. May include.
  • action triggers e.g., deciding whether to trigger an action on other entities
  • feedback e.g., feeding back information necessary for training data/inference data/performance feedback
  • training of a model for mobility optimization may be performed, for example, in Operation, Administration and Maintenance (Management) (OAM) in a network (Network (NW)) / gNodeB (gNB).
  • OAM Operation, Administration and Maintenance
  • NW Network
  • gNodeB gNodeB
  • the former has advantages in interoperability, large storage capacity, operator manageability, and model flexibility (e.g., feature engineering). In the latter case, the advantage is that there is no need for model update latency or data exchange for model development.
  • Inference of the above model may be performed in the gNB, for example.
  • the entity that performs the training/inference may be different.
  • Functions of the AI model may include beam management, beam prediction, autoencoder (or information compression), CSI feedback, position positioning, etc.
  • the OAM/gNB may perform model training and the gNB may perform model inference.
  • a Location Management Function may perform model training, and the LMF may perform model inference.
  • the OAM/gNB/UE may perform model training and the gNB/UE (jointly) may perform model inference.
  • the OAM/gNB/UE may perform model training and the UE may perform model inference.
  • model activation may mean activating an AI model for a specific function.
  • Model deactivation may mean disabling an AI model for a particular function.
  • Model switching may mean deactivating the currently active AI model for a particular function and activating a different AI model.
  • model transfer may mean distributing the AI model over the air interface. This distribution may include distributing one or both of the parameters of the model structure known at the receiving end, or a new model with the parameters. This distribution may also include complete models or partial models. Model download may refer to model transfer from the network to the UE. Model upload may refer to model transfer from the UE to the network.
  • GC Generalization Capability
  • GC In the field of AI/ML, GC refers to the ability of an AI model to adapt not only to the training data given during training but also to unknown data (test data) (achieve desired outputs and predict well). . GC performance is also called GC performance (or generalization performance).
  • test/inference datasets A, B, C, etc. are datasets/configurations/scenarios).
  • A, B, C, etc. are datasets/configurations/scenarios.
  • multiple it means the dataset corresponding to the multiple.
  • - Training dataset is constructed by mixing training inputs from multiple settings/scenarios, and testing/inference is performed on a single setting/scenario (e.g.
  • the scenario may be one of a scenario, a frequency range, a new merology, an inter-BS distance, an outdoor/indoor UE distribution, and a UE speed.
  • the configuration may be one or more of antenna port number, antenna configuration, bandwidth, CSI feedback payload.
  • ⁇ Scenario-based Fix the scenario and verify the GC performance of the AI model.
  • ⁇ Scenario generalization Verify the GC performance of the AI model.
  • This AI model is trained by a dataset with one or more scenarios and one or more settings and is applied to a test/inference set with the same/different scenarios and the same/different settings (e.g. training data
  • AI model update/selection A single AI model is trained based on scenario/setting #A and applied to inference/testing of the same scenario/setting #A or a different scenario/setting #B, An AI model is trained based on scenario/setting #A, further fine-tuned using additional datasets from scenario/setting #B, and applied to inference/testing of scenario/setting #B; - Multiple AI models are learned based on scenario/setting #A, scenario/setting #B, etc., and applied to inference/testing of scenario/setting #A, scenario/setting #B, etc., respectively.
  • the AI model has the following problems regarding GC: ⁇ The model was trained offline using a simulation-oriented dataset, which may not be consistent with real-world field data; - A model is trained offline/online in one scenario/setting and used for inference in another scenario/setting. Frequent model changes/updates can cause excessive signal overhead. - Models trained offline/online in mixed scenarios/settings will become outdated and incorrect if the wireless communication environment changes.
  • the present inventors came up with a method of constructing a dataset, a method of GC evaluation/verification, a model management method that takes into account GC performance (also called GC level), etc. in order to ensure GC of AI models. did. Note that each embodiment of the present disclosure may be used regardless of GC evaluation or the like (simply for acquiring a data set or the like).
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages upper layer parameters, fields, Information Elements (IEs), settings, etc.
  • IEs Information Elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • channel measurement/estimation includes, for example, a channel state information reference signal (CSI-RS), a synchronization signal (SS), a synchronization signal/broadcast channel (Synchronization Signal/Physical It may be performed using at least one of a Broadcast Channel (SS/PBCH) block, a demodulation reference signal (DMRS), a measurement reference signal (Sounding Reference Signal (SRS)), and the like.
  • CSI-RS channel state information reference signal
  • SS synchronization signal
  • SS/PBCH Broadcast Channel
  • DMRS demodulation reference signal
  • SRS Sounding Reference Signal
  • CSI includes a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a CSI-RS resource indicator (CRI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CRI CSI-RS resource indicator
  • SSBRI SS/PBCH Block Resource Indicator
  • LI Layer Indicator
  • RI Rank Indicator
  • L1-RSRP Reference in Layer 1 Signal received power (Layer 1 Reference Signal Received Power), L1-RSRQ (Reference Signal Received Quality), L1-SINR (Signal to Interference plus Noise Ratio), L1-SNR (Signal to Noise Ratio), channel matrix (or channel information regarding the precoding matrix (or precoding coefficients), and the like.
  • CSI-RS Non Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS, and CSI Interference Measurement (CSI-IM) are: They may be read interchangeably. Additionally, the CSI-RS may include other reference signals.
  • NZP Non Zero Power
  • ZP Zero Power
  • CSI-IM CSI Interference Measurement
  • the relevant entities are the UE and the BS in order to explain an AI model regarding communication between the UE and the BS, but the application of each embodiment of the present disclosure is not limited to this.
  • the UE and BS in the embodiment below may be replaced with a first UE and a second UE.
  • the UE, BS, etc. of the present disclosure may be replaced with any UE/BS.
  • data set and data may be read interchangeably.
  • channel state, channel status, channel, channel environment, etc. may be read interchangeably.
  • FIG. 2 is a diagram illustrating an example of data set collection/reporting for securing GC of an AI model according to an embodiment. Note that although similar environments are illustrated in subsequent drawings, it may be assumed that contents that are not repeatedly described are the same as those in FIG. 2.
  • the UE/BS can perform model training based on the data of scenario setting ID #1.
  • the UE/BS can perform model training based on the data of scenario setting ID #1, the data of scenario setting ID #2, or both of these data.
  • the UE/BS collects the data of scenario setting ID #1, the data of scenario setting ID #2, the data of scenario setting ID #3, or a combination thereof ( #1 and #2, #2 and #3, #1 and #3, or #1, #2 and #3).
  • the scenario setting will be mainly explained in the first/second embodiment. Training on the NW side/UE side will be mainly explained in the third/fourth embodiment.
  • the first embodiment relates to a scenario configuration format.
  • a use case using an AI model is associated with a scenario configuration format consisting of long-term features.
  • scenario configuration format may be interchanged with scenario and configuration format, scenario configuration format, scenario format, configuration format, use case format, environment format, metaformat, etc.
  • format may be interchanged with type, mode, data, setting, etc.
  • the above features may include a combination of one or more of the following elements: ⁇ Scenarios/models (Urban Macro (UMa), Urban Micro (Umi), indoor, outdoor, indoor hotspot, etc.), ⁇ Frequency/frequency range, - Numerology (or subcarrier spacing), - Distribution/set of common channel parameters (e.g. inter-site distances (ISD), gNB height, delay spread, angular spread, Doppler spread, etc.) in a single scenario/model; ⁇ UE distribution, ⁇ UE speed, ⁇ UE orbit, ⁇ Number of transmit beams/receive beams, ⁇ UE rotation pattern, gNB/UE antenna configuration (e.g.
  • ⁇ Number of cells/number of sectors ⁇ Bandwidth
  • ⁇ UE payload e.g. RSRP, SINR
  • -Channel quality e.g. RSRP, SINR
  • PCI Physical Cell ID
  • GCI Global Cell ID
  • ARFCN Absolute Radio Frequency Channel Number
  • LOS Line Of Site
  • NLOS Non-Line Of Site
  • the UE may be expected to be configured/registered with a model whose associated scenario configuration format matches the UE's configuration/status.
  • the UE may be expected to activate a model whose associated scenario configuration format matches the UE's configuration/status.
  • the correspondence between use cases and scenario setting formats may be specified in the standard, or information regarding the correspondence may be notified to the UE. Further, the features included in the scenario setting format corresponding to the use case may be specified in a standard, or information regarding the features may be notified to the UE.
  • FIG. 3 is a diagram showing an example of the correspondence between use cases and scenario setting formats in the first embodiment.
  • "AI4CSI” an AI model for CSI feedback
  • AI4BM an AI model for beam management (BM)
  • Each use case may be assigned a corresponding index, and the UE/BS may decide which AI model to use based on the notified index.
  • the use case names are just examples and are not limited to these.
  • AI4CSI is associated with a scenario configuration format that includes features such as location, AoA/ZoA, etc.
  • AI4BM is also associated with a scenario configuration format that includes characteristics such as frequency, beam configuration ID, etc.
  • the UE can suitably determine the scenario setting corresponding to the data set for training/inference based on the scenario setting format.
  • the second embodiment relates to a list of scenario setting formats.
  • the second embodiment is the same as the first embodiment in that a use case using an AI model is associated with a scenario setting format, but for each AI model for the use case, one or more scenario settings The difference is that a list of formats is associated.
  • one or more AI models may be associated with a use case.
  • One or more AI models associated with one use case may correspond to the same model structure or different model structures.
  • the scenario configuration formats included in the list may be identified, for example, by a scenario configuration ID, and the included features are used to generate a dataset for training an AI model (or correspond to a dataset). ), a range of values of (or corresponding to) a data set that can be used (or collected) for inference, and/or the like.
  • the correspondence between the AI model and the list of scenario setting formats may be specified in the standard, or information regarding the correspondence may be notified to the UE.
  • FIG. 4 is a diagram showing an example of the correspondence between the AI model and the scenario setting format in the second embodiment.
  • use case ID #1 is associated with AI models A and B
  • use case ID #2 is associated with AI models AC.
  • AI models A and B associated with use case ID #1 correspond to the same model configuration.
  • AI model A and AI models B and C associated with use case ID #2 correspond to different model configurations.
  • scenario setting IDs for each use case (even if the scenario setting ID is the same, it may indicate different scenario settings for each use case). Further, the configuration may be such that scenario setting IDs do not overlap for each use case. In this example, the scenario settings referenced (associated with the scenario setting ID) differ for each use case.
  • the scenario settings may define the value or value range of the feature.
  • the location corresponds to range 1 (for example, the latitude and longitude are within range 1)
  • the AoA/ZoA corresponds to range X (for example, AoA /ZoA is within range X).
  • scenario setting ID one or more scenario setting IDs, and the list of scenario setting IDs may be read interchangeably.
  • the use case ID/model ID/scenario setting ID may be mutually read as another information (for example, another ID) associated with the use case ID/model ID/scenario setting ID.
  • the correspondence between the other information and the use case ID/model ID/scenario setting ID may be defined in the standard, or information regarding the correspondence may be notified to the UE.
  • the UE can suitably determine the scenario setting corresponding to the data set for training/inference based on the list of scenario setting formats.
  • the third embodiment relates to training on the NW side.
  • the third embodiment may relate to training an AI model where the training process is completely performed only on the NW side.
  • the UE may receive information from the NW regarding scenario settings for which data sets need to be collected for a particular AI model for a particular use case.
  • the information regarding the scenario setting may include at least one of a corresponding scenario setting ID, a corresponding model ID, a corresponding use case ID, etc.
  • Information regarding the scenario settings may include information regarding the format of the data set that is (should be) collected. Further, the information regarding the scenario setting may be information regarding the scenario setting independent of the format of the data set to be collected (to be collected).
  • the format of the data set may correspond to the input/output data of the AI model.
  • the UE infers/obtains the format of the data set from AI model information (described later in the Supplementary section of this disclosure. The same applies to subsequent model information) or dedicated signaling (e.g., information regarding the format described above). Good too.
  • FIG. 5 is a diagram illustrating an example of receiving information regarding scenario settings according to Embodiment 3.1. Duplicate explanations regarding points similar to previous drawings will not be repeated (the same applies hereafter).
  • the UE receives from the NW information regarding scenario settings for a list of scenario settings IDs (indicating scenario settings IDs #1 and #2) corresponding to AI model A with use case ID #1.
  • the information regarding the scenario setting may include information indicating that the format of the dataset is a channel/precoding matrix, as information regarding the format of the dataset.
  • the UE may collect training datasets for a particular AI model under particular scenario settings.
  • the UE may receive a data collection request (data collection request signal) for the specific scenario setting.
  • the data collection request may include a scenario setting ID indicating a specific scenario setting.
  • the UE may collect a data set under the scenario configuration indicated by the data collection request if the scenario configuration indicated by the information regarding the scenario configuration received in Embodiment 3.1 is included. .
  • the UE may determine the particular scenario configuration based on measurements/sensing of the channel environment.
  • the UE compares the measured channel environment and the scenario setting indicated by the information regarding the scenario setting received in Embodiment 3.1, and determines that they match (the environment of the scenario setting includes the measured channel environment). If so, the UE may collect the matching data set of the scenario configuration.
  • model ID/use case ID corresponding to the data set to be collected is notified to the UE, and the UE selects the model ID/use case ID based on channel environment measurement/sensing from among the scenario settings associated with the model ID/use case ID.
  • the specific scenario settings may be determined based on the above.
  • the UE may assign a corresponding scenario setting ID to the collected data set.
  • the UE may transmit information indicating that a data set for a specific scenario setting is available (collected) to the NW.
  • Control based on data collection requests and control based on measurement/sensing of the channel environment may be used in combination.
  • the data set may be collected from the data server based on the scenario setting ID, or may be collected based on channel measurements corresponding to the format of the data set.
  • the data server may be interchanged with a repository, an uploader, a library, a cloud server, or simply a server. Further, the data server in the present disclosure may be provided by any platform such as GitHub (registered trademark), and may be operated by any company/organization.
  • GitHub registered trademark
  • the UE may collect datasets for specific AI model training based solely on NW instructions (e.g. request/trigger/terminate).
  • NW instructions e.g. request/trigger/terminate
  • the scenario configuration may be transparent to the UE. Since the UE only needs to collect data sets based on NW instructions without knowing the current environment, a reduction in the UE load can be expected.
  • FIG. 6 is a diagram illustrating an example of data set collection according to Embodiment 3.2.
  • the UE may receive the trigger information for the scenario setting ID #1 from the NW, and collect the data set for the scenario setting ID #1 based on the information.
  • collecting a data set for a certain scenario setting ID may mean associating (or labeling) the collected data set as being for a certain scenario setting ID.
  • the measured channel environment/sensing result corresponds to scenario setting ID #1 (for example, the position corresponds to range 1 and the AoA/ZoA corresponds to range X). ), the data set for scenario setting ID #1 may be collected.
  • the UE may transmit information indicating that the data set for scenario setting ID #1 is available.
  • the UE may send information regarding the collected training dataset for a particular AI model (which may be referred to as a dataset report) to the NW.
  • a particular AI model which may be referred to as a dataset report
  • the information regarding the data set may include at least one of the data set itself, the corresponding scenario setting ID/model ID/use case ID, etc.
  • the UE may transmit information regarding the data set.
  • the data set request may include information indicating a scenario setting ID/model ID/use case ID for which the data set is desired to be requested.
  • the UE may transmit information regarding all datasets collected since sending (information regarding datasets) in response to the previous dataset request, or may transmit information regarding all datasets collected since the transmission of information regarding the dataset in response to the previous dataset request, or may send information regarding the specific scenario configuration ID/model ID.
  • Information regarding the dataset associated with the use case ID may be sent (eg, if the dataset request includes information indicating the particular scenario configuration ID/model ID/use case ID).
  • the UE When the UE transmits information regarding a dataset in response to receiving a dataset request indicating a scenario configuration ID/model ID/use case ID, the UE shall include the scenario configuration ID/model ID/use case ID in the information regarding the dataset. It is not necessary (because the NW can know the ID corresponding to the data set).
  • communications for (reporting) information regarding datasets are subject to the new quality of service for dataset transmission ( It may also be performed based on the Quality of Service (QoS) level.
  • QoS Quality of Service
  • new 5G QoS Identifier (5QI)/QoS Class Identifier (QCI) values for transmitting AI model data sets may be defined.
  • the device included in the UE/BS/core network may control communication for (reporting) information regarding the data set request based on the new 5QI/QCI value. For example, a device included in the UE/BS/core network may receive the new 5QI/QCI value for communication of a packet indicating the new 5QI/QCI value or a bearer (or network slice) corresponding to the new 5QI/QCI value. QoS control corresponding to the /QCI value may be performed.
  • the UE may transmit (upload) information regarding the data set to the data server.
  • the transmission may include transmission from the UE to the NW and transfer from the NW to the data server.
  • FIG. 7 is a diagram illustrating an example of data set transmission according to Embodiment 3.3.
  • the UE may transmit information regarding the data set to the NW.
  • the fourth embodiment relates to training on the UE side.
  • the fourth embodiment may relate to training an AI model, where the training process is performed entirely on the UE side.
  • the UE may receive information regarding scenario settings as in Embodiment 3.1, or may collect data sets as in Embodiment 3.2.
  • the UE may train the AI model based on the group of collected datasets associated with the scenario configuration ID.
  • training an AI model based on a group of datasets collected in association with a scenario setting ID may be interchanged with “training an AI model for a scenario setting ID.”
  • the UE may receive model training information (which may be referred to as training instructions, training requests, etc.) from the NW, and may train the AI model using the dataset corresponding to the information.
  • the model training information may include information on (a list of) use case ID/model ID/scenario setting ID associated with the dataset used for training. For example, if the NW determines that a model under a certain scenario setting is useful/has poor performance, the NW transmits model training information including the ID of the scenario setting to the UE, and the model is associated with the scenario setting.
  • the AI model may be trained on the UE.
  • the UE may train the AI model according to the measurement results of the channel conditions. For example, if a channel condition measurement matches a particular scenario configuration (e.g., the environment of the scenario configuration includes the measured channel condition), the UE may train an AI model associated with the particular scenario configuration. Good too.
  • a channel condition measurement matches a particular scenario configuration (e.g., the environment of the scenario configuration includes the measured channel condition)
  • the UE may train an AI model associated with the particular scenario configuration. Good too.
  • the UE may train the AI model for all combinations of available scenario settings of the dataset. For example, as described in the third embodiment, when the UE receives a model ID and a scenario setting ID, the UE trains an AI model for all possible combinations corresponding to the model ID/scenario setting ID. You may.
  • the UE may monitor the GC performance (described later in the fifth embodiment) and, if the GC performance is poor under a particular scenario setting, train the AI model for the particular scenario setting.
  • the UE may transmit information regarding the availability of the AI model (which may be referred to as model availability information) to the NW, including the use case ID/model ID/scenario setting ID. .
  • the use case ID and model ID included in the information may indicate the applied use case and AI model, respectively.
  • the scenario setting ID included in the information may indicate a trained scenario setting.
  • Model availability information may correspond to, for example, information indicating that a model is available.
  • FIG. 8 is a diagram showing an example of training on the UE side according to the fourth embodiment. In this example, it is assumed that the UE has already collected data sets for scenario setting ID #1 and scenario setting ID #2.
  • the UE may train the model corresponding to the model ID for the scenario setting corresponding to the scenario setting ID.
  • the UE may train the model with model ID #1 using the data set with scenario setting ID #1. Further, upon receiving model training information indicating model ID #1 and scenario setting ID #2, the UE may train the model with model ID #1 using the data set with scenario setting ID #2. Further, upon receiving the model training information indicating the model ID #1 and the scenario setting IDs #1 and #2, the UE transmits the model with the model ID #1 to the data set of the scenario setting ID #1 and the data set of the scenario setting ID #2. You can also train using sets.
  • the fifth embodiment relates to a UE side model.
  • the fifth embodiment may relate to an AI model where the inference is performed entirely on the UE side.
  • the UE may receive information on the list of scenario configuration IDs in the model deployment procedure of the AI model.
  • the information on the list may be included in the model information of the AI model, or may be information independent of the model information of the AI model. In the latter case, the UE may refer to the scenario configuration ID associated with the AI model ID.
  • the correspondence between the scenario setting ID and the model ID may be defined in the standard, or information regarding the correspondence may be notified to the UE.
  • the UE uses/activates/deploys a model with a corresponding AI model ID in an environment of a scenario setting with a certain scenario setting ID based on the information in the received AI model information/scenario setting ID list. You may decide (select).
  • the UE uses/activates/deploys from among these AI models based on at least one of the following: You may choose a model: - Scenario settings and measured channel conditions associated with the AI model; - UE state (e.g. UE speed); ⁇ Settings/activation from NW.
  • the UE may perform the above model selection even when receiving information on multiple AI models that include (or are associated with) different scenario setting IDs.
  • the UE may report model information (and corresponding scenario setting ID) regarding the determined model to the NW.
  • FIG. 9 is a diagram showing an example of model selection according to Embodiment 5.1.
  • the AI models corresponding to these IDs are defined as having the function of estimating the highest CSI-RS beam, as shown in the figure. Note that this is just an example, and the details of the model are not limited to this.
  • the UE may decide which model to use, for example, based on the measured channel conditions.
  • the UE can appropriately select a model.
  • a Key Performance Indicator (KPI) of GC performance may be at least one of the following (in other words, GC performance may be represented/evaluated by at least one KPI below): : Final/experimental performance KPIs for specific use cases (e.g. throughput) that can be obtained after model inference; - KPIs of AI model performance that can be obtained after model training/testing (e.g., generalization error/bias/variance (dispersion error), layer rotation, AI model performance for each scenario).
  • KPI Key Performance Indicator
  • the generalization error/bias/variance may be, for example, a value obtained by comparing the output of an AI model in different scenario settings.
  • Layer rotation is the variation (or change) in the cosine of the angle between the weight vector and a particular vector (e.g. trained weight vector, untrained weight vector, etc.) for each layer of the neural network. There may be.
  • the UE may check (evaluate) whether at least one of the following conditions is met for one or more GC performance: ⁇ Option 1 (absolute method): The GC performance of the active/registered/configured model under a certain scenario setting is lower/higher than the threshold, - Option 2 (relative method): GC performance of active/registered/configured model under one scenario setting is lower/higher than GC performance under another scenario setting, ⁇ Option 3: The GC performance of a certain model falls below the threshold a certain number of times over a certain period of time.
  • GC performance may be read as performance obtained by adding offset X (X is, for example, a real number) to GC performance.
  • Offset X may be determined based on factors other than pure performance (reproducibility performance) (eg, unmonitored/monitor-free performance). By introducing an offset, it is possible to evaluate a model that comprehensively considers other factors.
  • the unmonitored/unnecessary performance may correspond to at least one of overhead, reliability (of the model/calculated value), model complexity, power consumption for calculation, etc.
  • Values such as X and threshold values may be specified in advance in the standard, may be determined based on the UE capabilities, may be notified from the NW to the UE, or may be determined based on scenario settings. (may be determined based on the scenario settings) or may be included in the AI model information (may be determined based on the model). Information regarding values such as X and threshold values may be defined/notified for each model/model group/scenario setting/scenario setting group.
  • Which (or which combination) of options 1-3 the UE should check may be prescribed/notified for each model/model group/scenario setting/scenario setting group.
  • FIGS. 10A and 10B are diagrams showing an example of GC performance evaluation in Embodiment 5.2.
  • FIG. 10A shows an example of option 1 above.
  • the UE evaluates that the GC performance of model ID #1 and scenario setting ID #1 is lower than the threshold value.
  • FIG. 10B shows an example of option 2 above.
  • the UE assumes that offset X (X>0) is applied to the GC performance of model ID #1 and scenario setting ID #1. Further, the UE evaluates that the GC performance of model ID #1 and scenario setting ID #2 is lower than the GC performance of model ID #1 and scenario setting ID #1 to which offset X is applied.
  • Option 3 may include, for example, the following steps for a model/scenario configuration: - start a timer when the first counter counts that the GC performance is less than the first value for a first number of times or more; - Stop the timer when the second counter counts a second number of times or more that the GC performance is greater than the second value while the timer is running; - Resetting the second counter if the GC performance is less than the first value while the timer is running; - if the GC performance is greater than the first value, resetting the first counter; - When the timer expires, the GC performance is evaluated as "poor".
  • the first value may be a first threshold value (threshold out ), or a value that is lower by a first offset (offset out ) from a reference value (baseline value) for a specific model/scenario setting. It may be.
  • the second value may be a second threshold (threshold in ) or may be a second offset (offset in ) greater than the reference value (baseline value) for the particular model/scenario setting. There may be.
  • resetting the counter may mean setting the counter to a specific value (for example, 0).
  • values such as the first/second threshold, baseline value, first/second offset, first/second counter, counter granularity, timer time length, etc. may be defined in advance in the standard, may be determined based on the UE capabilities, may be notified from the NW to the UE, or may be included in the AI model information (determined based on the model). ). Information regarding these values may be defined/notified for each model/scenario setting.
  • FIG. 11 is a diagram showing an example of GC performance evaluation in Embodiment 5.2.
  • the GC performance is initially good, but when the first counter counts that it is less than a first value a first number of times, a timer is started. After that, while the timer was running, the second counter counted that the GC performance was greater than the second value several times, but the second counter did not exceed the second number and the timer expired.
  • the GC performance of this model/scenario setting is evaluated to be low.
  • the UE may evaluate one or more GC performances and select (determine) the top K (K is an integer) performances.
  • the value of K may be specified in advance in the standard, may be determined based on the UE capability, may be notified to the UE from the NW, or may be determined based on the model. It may be information (may be determined based on a model).
  • the UE may derive GC performance based on one or more GC performances and one or more unmonitored/monitor-unnecessary performances.
  • GC performance may be averaged/weighted over a period of time when evaluated/compared. Information regarding the period, averaging/weighting method, etc. may be specified in advance in the standard, may be determined based on the UE capability, may be notified from the NW to the UE, or may be linked to the model. (It may also be determined based on a model.)
  • the UE may switch to another model. For example, the UE determines the model to be applied (or the model to be used) to a certain scenario setting based on the GC performance evaluated under the conditions (at least one of options 1-3) described in Embodiment 5.2. You can.
  • the UE can appropriately perform GC performance evaluation.
  • inference/evaluation based on the AI model can be appropriately performed on the UE side.
  • the sixth embodiment relates to a UE side model.
  • the sixth embodiment may relate to an AI model where the inference is performed entirely on the UE side.
  • the performance report in the sixth embodiment may be a report regarding GC performance.
  • the UE may transmit a performance report based on information notified from the NW. For example, the UE may transmit performance reports in periodically/semi-persistent/aperiodically scheduled uplink resources based on RRC/MAC CE/DCI. In this case, the performance report may be included in the UCI. At this time, the UE may determine the reporting period/offset based on the RRC/MAC CE/DCI.
  • the UE may itself determine the trigger related to the performance report and transmit the performance report when the trigger is triggered. For example, the UE may send a performance report if the conditions mentioned in embodiment 5.2 (eg, at least one of options 1-3) are met. In this case, the performance report may be included in the MAC CE (because it can be transmitted if the PUSCH is scheduled).
  • the UE may send performance reports when a new model is activated/registered/configured.
  • the UE may also send a performance report when a timer based on configured/specified parameters (eg, the timer shown in option 3) expires.
  • the performance report may include at least one of the information shown in Embodiment 5.2, such as information indicating one or more GC performances, information indicating the performance of a model corresponding to (a list of) scenario setting IDs, etc. good.
  • the performance report may include information indicating the model/scenario setting corresponding to the reported GC performance (for example, model ID, scenario setting ID). At least one of the number of information indicating GC performance included in the performance report, the number (list of) scenario setting IDs included in the performance report, etc. is determined based on K shown in Embodiment 5.2. Good too.
  • the UE may determine the reported performance based on at least one of the following: - Performance evaluated under the conditions described in Embodiment 5.2 (for example, at least one of options 1-3), - Performance selected based on K shown in Embodiment 5.2, -Performance determined to be reported based on notification from NW.
  • the above notification may be, for example, a model activation command, or may be a notification including information indicating a report/monitor target.
  • the UE may report the GC performance of activated/monitored models.
  • the UE may report the performance of model #2.
  • the UE may not report the performance of model #1.
  • the UE can appropriately transmit a performance report.
  • the seventh embodiment relates to a NW side model.
  • the seventh embodiment may relate to an AI model in which inference is completely performed only on the NW side.
  • the UE may transmit information on the list of scenario setting IDs in the model transfer procedure of the AI model.
  • the information on the list may be included in the model information of the AI model, or may be information independent of the model information of the AI model.
  • the UE may transmit the information on the list of scenario setting IDs as part of the model information, or as an RRC information element independent of the model information.
  • the UE may transmit model information indicating model ID #1 and scenario setting ID #1, model information indicating model ID #1 and scenario setting ID #2, or model information indicating model ID #1 and scenario setting ID #2.
  • Model information indicating ID #1 and scenario setting IDs #1 and #2 may be transmitted.
  • the UE can appropriately transmit the scenario setting ID to the NW.
  • AI model information may mean information including at least one of the following: ⁇ AI model input/output information, ⁇ Pre-processing/post-processing information for AI model input/output, ⁇ Information on AI model parameters, ⁇ Training information for AI models (training information), ⁇ Inference information for AI models, ⁇ Performance information regarding AI models.
  • the input/output information of the AI model may include information regarding at least one of the following: - Contents of input/output data (e.g. RSRP, SINR, amplitude/phase information in channel matrix (or precoding matrix), information on angle of arrival (AoA), angle of departure (AoD)) ), location information), ⁇ Data auxiliary information (may be called meta information), - type of input/output data (e.g. immutable value, floating point number), - bit width of input/output data (e.g. 64 bits for each input value), - Quantization interval (quantization step size) of input/output data (for example, 1 dBm for L1-RSRP), - The range that input/output data can take (for example, [0, 1]).
  • - Contents of input/output data e.g. RSRP, SINR, amplitude/phase information in channel matrix (or precoding matrix), information on angle of arrival (AoA), angle of departure (AoD))
  • the information regarding AoA may include information regarding at least one of the azimuth angle of arrival and the zenith angle of arrival (ZoA). Further, the information regarding the AoD may include, for example, information regarding at least one of a radial azimuth angle of departure and a radial zenith angle of depth (ZoD).
  • the location information may be location information regarding the UE/NW.
  • Location information includes information (e.g., latitude, longitude, altitude) obtained using a positioning system (e.g., Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.), and information (e.g., latitude, longitude, altitude) adjacent to the UE.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • Information on the serving (or serving) BS e.g., BS/cell identifier (ID), BS-UE distance, direction/angle of the BS (UE) as seen from the UE (BS),
  • the information may include at least one of the coordinates of the BS (UE) as seen from the BS (e.g., X/Y/Z axis coordinates, etc.), the specific address of the UE (e.g., Internet Protocol (IP) address), etc.
  • IP Internet Protocol
  • the location information of the UE is not limited to information based on the location of the BS, but may be information based on a specific point.
  • the location information may include information regarding its own implementation (for example, location/position/orientation of antennas, location/orientation of antenna panels, number of antennas, number of antenna panels, etc.).
  • the location information may include mobility information.
  • the mobility information may include information indicating at least one of the mobility type, the moving speed of the UE, the acceleration of the UE, the moving direction of the UE, and the like.
  • the mobility types are fixed location UE, movable/moving UE, no mobility UE, low mobility UE, and medium mobility UE.
  • environmental information may be information regarding the environment in which the data is acquired/used, such as frequency information (band ID, etc.), environment type information (indoor, etc.). , outdoor, Urban Macro (UMa), Urban Micro (Umi), etc.), Line Of Site (LOS)/Non-Line Of Site (NLOS), etc. Good too.
  • frequency information band ID, etc.
  • environment type information indoor, etc.
  • outdoor Urban Macro (UMa), Urban Micro (Umi), etc.
  • LOS Line Of Site
  • NLOS Non-Line Of Site
  • LOS may mean that the UE and BS are in an environment where they can see each other (or there is no shielding), and NLOS may mean that the UE and BS are not in an environment where they can see each other (or there is a shield). It can also mean The information indicating LOS/NLOS may indicate a soft value (for example, probability of LOS/NLOS) or may indicate a hard value (for example, either LOS/NLOS).
  • meta information may mean, for example, information regarding input/output information suitable for an AI model, information regarding acquired/obtainable data, etc.
  • the meta information includes information regarding beams of RS (for example, CSI-RS/SRS/SSB, etc.) (for example, the pointing angle of each beam, 3 dB beam width, the shape of the pointing beam, (number of beams), gNB/UE antenna layout information, frequency information, environment information, meta information ID, etc.
  • RS for example, CSI-RS/SRS/SSB, etc.
  • the meta information may be used as input/output of the AI model.
  • the pre-processing/post-processing information for the input/output of the AI model may include information regarding at least one of the following: - whether to apply normalization (e.g., Z-score normalization, min-max normalization); - Parameters for normalization (e.g. mean/variance for Z-score normalization, minimum/maximum for min-max normalization), - Whether to apply a specific numerical conversion method (e.g. one hot encoding, label encoding, etc.); - Selection rules for whether or not to be used as training data.
  • normalization e.g., Z-score normalization, min-max normalization
  • Parameters for normalization e.g. mean/variance for Z-score normalization, minimum/maximum for min-max normalization
  • a specific numerical conversion method e.g. one hot encoding, label encoding, etc.
  • Selection rules for whether or not to be used as training data.
  • the information on the parameters of the AI model may include information regarding at least one of the following: ⁇ Weight information in the AI model (e.g. neuron coefficients (coupling coefficients)), ⁇ Structure of the AI model, ⁇ Type of AI model as a model component (e.g. ResNet, DenseNet, RefineNet, Transformer model, CRBlock, Recurrent Neural Network (RNN), Long Short Memory -Term Memory (LSTM)), Gated Recurrent Unit (GRU)), - Functions of the AI model as a model component (e.g. decoder, encoder).
  • ⁇ Weight information in the AI model e.g. neuron coefficients (coupling coefficients)
  • ⁇ Structure of the AI model e.g. ResNet, DenseNet, RefineNet, Transformer model, CRBlock, Recurrent Neural Network (RNN), Long Short Memory -Term Memory (LSTM)), Gated Recurrent Unit (GRU)
  • - Functions of the AI model as a model component
  • the weight information in the AI model may include information regarding at least one of the following: ⁇ Bit width (size) of weight information, ⁇ Quantization interval of weight information, - Granularity of weight information, ⁇ The range that weight information can take, ⁇ Weight parameters in the AI model, ⁇ Difference information from the AI model before update (if updating), ⁇ Weight initialization methods (e.g. zero initialization, random initialization (based on normal distribution/uniform distribution/truncated normal distribution), Xavier initialization (for sigmoid functions), He initialization (rectified) For Rectified Linear Units (ReLU)).
  • ⁇ Bit width (size) of weight information e.g. zero initialization, random initialization (based on normal distribution/uniform distribution/truncated normal distribution), Xavier initialization (for sigmoid functions), He initialization (rectified) For Rectified Linear Units (ReLU)).
  • the structure of the AI model may include information regarding at least one of the following: ⁇ Number of layers, - Type of layer (e.g. convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer), ⁇ Layer information, - Time series specific parameters (e.g. bidirectionality, time step), - Parameters for training (e.g. type of function (L2 regularization, dropout function, etc.), where to put this function (e.g. after which layer)).
  • ⁇ Number of layers e.g. convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer
  • ⁇ Layer information e.g. bidirectionality, time step
  • Parameters for training e.g. type of function (L2 regularization, dropout function, etc.), where to put this function (e.g. after which layer)).
  • the layer information may include information regarding at least one of the following: ⁇ Number of neurons in each layer, ⁇ Kernel size, ⁇ Stride for pooling layer/convolution layer, ⁇ Pooling method (MaxPooling, AveragePooling, etc.), ⁇ Residual block information, ⁇ Number of heads, ⁇ Normalization methods (batch normalization, instance normalization, layer normalization, etc.), - Activation function (sigmoid, tanh function, ReLU, leaky ReLU information, Maxout, Softmax).
  • an AI model may be included as a component of another AI model.
  • an AI model may be an AI model in which processing proceeds in the following order: ResNet as model component #1, a transformer model as model component #2, a dense layer, and a normalization layer.
  • the training information for the AI model may include information regarding at least one of the following: ⁇ Information for the optimization algorithm (e.g., optimization type (Stochastic Gradient Descent (SGD), AdaGrad, Adam, etc.), optimization parameters (learning rate, momentum, etc.) information, etc.), ⁇ Information on the loss function (for example, information on the metrics of the loss function (Mean Absolute Error (MAE), Mean Square Error (MSE)), cross entropy loss, NLLLoss, Kullback- Leibler (KL) divergence, etc.), parameters to be frozen for training (e.g. layers, weights), - parameters to be updated (e.g.
  • optimization type Stochastic Gradient Descent (SGD), AdaGrad, Adam, etc.
  • optimization parameters learning rate, momentum, etc.
  • ⁇ Information on the loss function for example, information on the metrics of the loss function (Mean Absolute Error (MAE), Mean Square Error (MSE)),
  • ⁇ Parameters for example, layers, weights
  • How to train/update the AI model e.g. (recommended) number of epochs, batch size, number of data used for training.
  • the inference information for the AI model may include information regarding branch pruning of a decision tree, parameter quantization, functions of the AI model, and the like.
  • the function of the AI model may correspond to at least one of, for example, time domain beam prediction, spatial domain beam prediction, an autoencoder for CSI feedback, an autoencoder for beam management, etc.
  • An autoencoder for CSI feedback may be used as follows: - The UE inputs the CSI/channel matrix/precoding matrix into the encoder's AI model and transmits the output encoded bits as CSI feedback (CSI report). - The BS inputs the received encoded bits into the decoder's AI model and reconstructs the output CSI/channel matrix/precoding matrix.
  • the UE/BS inputs sparse (or thick) beam-based measurements (beam quality, e.g. RSRP) into an AI model and outputs dense (or thin) beam quality.
  • beam quality e.g. RSRP
  • the UE/BS may input time-series (past, current, etc.) measurement results (beam quality, e.g. RSRP) to the AI model and output future beam quality.
  • time-series past, current, etc.
  • beam quality e.g. RSRP
  • the performance information regarding the AI model may include information regarding the expected value of a loss function defined for the AI model.
  • the AI model information in the present disclosure may include information regarding the applicable range (applicable range) of the AI model.
  • the applicable range may be indicated by a physical cell ID, a serving cell index, etc.
  • Information regarding the scope of application may be included in the above-mentioned environmental information.
  • AI model information regarding a specific AI model may be predefined in a standard, or may be notified to the UE from a network (NW).
  • the AI model defined in the standard may be called a reference AI model.
  • AI model information regarding the reference AI model may be referred to as reference AI model information.
  • the AI model information in the present disclosure may include an index (for example, may be referred to as an AI model index, AI model ID, model ID, etc.) for identifying an AI model.
  • the AI model information in the present disclosure may include an AI model index in addition to/instead of the input/output information of the AI model described above.
  • the association between the AI model index and the AI model information (for example, input/output information of the AI model) may be predetermined in the standard, or may be notified from the NW to the UE.
  • the AI model information in the present disclosure may be associated with the AI model, and may also be referred to as AI model relevant information, simply related information, or the like.
  • the AI model related information does not need to explicitly include information for identifying the AI model.
  • the AI model related information may be information containing only meta information, for example.
  • a model ID may be mutually read as an ID corresponding to a set of AI models (model set ID). Further, in the present disclosure, the model ID may be interchanged with the meta information ID.
  • the meta information (or meta information ID) may be associated with beam-related information (beam settings) as described above. For example, the meta information (or meta information ID) may be used by the UE to select an AI model considering which beams the BS is using, or the UE may apply the deployed AI model. It may be used to inform the BS which beam to use for this purpose.
  • the meta information ID may be interchanged with an ID corresponding to a set of meta information (meta information set ID).
  • the notification of any information to the UE is performed using physical layer signaling (e.g., DCI), upper layer signaling (e.g., RRC).
  • MAC CE MAC CE
  • specific signals/channels eg, PDCCH, PDSCH, reference signals
  • the MAC CE may be identified by including a new logical channel ID (LCID), which is not specified in the existing standard, in the MAC subheader.
  • LCID logical channel ID
  • the above notification When the above notification is performed by a DCI, the above notification includes a specific field of the DCI, a radio network temporary identifier (Radio Network Temporary Identifier (RNTI)), the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • notification of any information to the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
  • the notification of any information from the UE (to the NW) in the above embodiments is performed using physical layer signaling (e.g. UCI), upper layer signaling (e.g. , RRC signaling, MAC CE), specific signals/channels (eg, PUCCH, PUSCH, reference signals), or a combination thereof.
  • physical layer signaling e.g. UCI
  • upper layer signaling e.g. , RRC signaling, MAC CE
  • specific signals/channels eg, PUCCH, PUSCH, reference signals
  • the MAC CE may be identified by including a new LCID that is not defined in the existing standard in the MAC subheader.
  • the above notification may be transmitted using PUCCH or PUSCH.
  • notification of arbitrary information from the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the embodiments described above may be applied if certain conditions are met.
  • the specific conditions may be specified in the standard, or may be notified to the UE/BS using upper layer signaling/physical layer signaling.
  • At least one of the embodiments described above may be applied only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: - supporting specific processing/operation/control/information for at least one of the above embodiments; ⁇ Supported use cases, ⁇ Number of AI models supported per use case, - Number of supported scenario configurations per AI model per use case.
  • the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency) or a capability that is applied across all frequencies (e.g., cell, band, band combination, BWP, component carrier, etc.). or a combination thereof), or it may be a capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2). Alternatively, it may be a capability for each subcarrier spacing (SCS), or a capability for each Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • SCS subcarrier spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • the UE configures/activates specific information related to the embodiment described above (or performs the operation of the embodiment described above) by upper layer signaling/physical layer signaling. / May be applied when triggered.
  • the specific information may be information indicating that the use of the AI model is enabled, arbitrary RRC parameters for a specific release (for example, Rel. 18/19), or the like.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
  • a terminal comprising: a transmitting unit that transmits information regarding the data set indicating an identifier (ID) of the specific scenario setting.
  • ID an identifier
  • the terminal according to supplementary note 1 wherein the control unit collects the data set under the specific scenario setting in response to receiving a data collection request signal indicating an ID of the specific scenario setting.
  • the receiving unit receives information regarding scenario settings that require collection of data sets.
  • a receiving unit that receives information regarding scenario settings that require data set collection;
  • a terminal having a control unit that trains an artificial intelligence (AI) model based on a data set collected under a specific scenario setting.
  • AI artificial intelligence
  • the terminal according to supplementary note 1 wherein the control unit trains the AI model based on the data set in response to receiving model training information indicating an identifier (ID) of the specific scenario setting.
  • ID an identifier
  • the terminal according to appendix 1 or 2 wherein the control unit determines the specific scenario setting based on a measurement result of a channel state.
  • the control unit determines the specific scenario setting based on the generalization ability of the monitored AI model.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • Core Network 30 is, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management (SMF), Unified Data Management. T (UDM), ApplicationFunction (AF), Data Network (DN), Location Management Network Functions (NF) such as Function (LMF) and Operation, Administration and Maintenance (Management) (OAM) may also be included.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management
  • UDM Unified Data Management.
  • AF ApplicationFunction
  • DN Location Management Network Functions
  • NF Location Management Network Functions
  • LMF Location Management Network Functions
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 13 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 120 may form at least one of a transmit beam and a receive beam using digital beam forming (e.g., precoding), analog beam forming (e.g., phase rotation), or the like.
  • digital beam forming e.g., precoding
  • analog beam forming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 is the receiving power (for example, Reference Signal Received Power (RSRP)), Receive Quality (eg, Reference Signal Received Quality (RSRQ), Signal To InterfERENCE PLUS NOI. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20.
  • signals backhaul signaling
  • devices included in the core network 30 for example, network nodes providing NF, other base stations 10, etc.
  • User data user plane data
  • control plane data etc. may be acquired and transmitted.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 may transmit a request for a data set for a specific artificial intelligence (AI) model to the user terminal 20.
  • the transmitting/receiving unit 120 may receive information regarding the data set indicating an identifier (ID) of a particular scenario setting.
  • ID an identifier
  • the transmitting/receiving unit 120 may transmit information regarding scenario settings for which data sets need to be collected to the user terminal 20.
  • the control unit 110 stores an identifier ( The transmission of model training information indicating the Identifier (ID) may also be controlled.
  • FIG. 14 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitting/receiving unit 220 may receive a request for a data set for a specific artificial intelligence (AI) model.
  • the control unit 210 may collect the data set under specific scenario settings.
  • the transmitting/receiving unit 220 may transmit information regarding the data set indicating an identifier (ID) of the specific scenario setting.
  • ID an identifier
  • the control unit 210 may collect the data set under the specific scenario setting in response to receiving a data collection request signal indicating the ID of the specific scenario setting.
  • the transmitting/receiving unit 220 may receive information regarding scenario settings that require collection of data sets.
  • the transmitting/receiving unit 220 may receive information regarding scenario settings that require collection of data sets.
  • the control unit 210 may train an artificial intelligence (AI) model based on a data set collected under a specific scenario setting.
  • AI artificial intelligence
  • the control unit 210 may train the AI model based on the data set in response to receiving model training information indicating an identifier (ID) of the specific scenario setting.
  • ID an identifier
  • the control unit 210 may determine the specific scenario setting based on the measurement results of the channel state.
  • the control unit 210 may determine the specific scenario setting based on the generalization ability of the monitored AI model.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 15 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, network controller, network card, communication module, etc.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame configuration. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 16 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified,
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • words meaning "good”, “bad”, “large”, “small”, “high”, “low”, “early”, “slow”, etc. may be read interchangeably. (Not limited to original, comparative, and superlative).
  • words meaning "good”, “bad”, “large”, “small”, “high”, “low”, “early”, “slow”, etc. are replaced with “i-th”. They may be interchanged as expressions (not limited to the original, comparative, and superlative) (for example, “the highest” may be interchanged with “the i-th highest”).

Abstract

A terminal according to one aspect of the present disclosure comprises: a reception unit that receives information pertaining to a scenario setting which requires collection of a dataset; and a control unit that trains an artificial intelligence (AI) model on the basis of a dataset collected based on a specific scenario setting. According to one aspect of the present disclosure, suitable overhead reduction, channel estimation, and resource utilization can be achieved.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates, lower delays, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) is a specification for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel. 8, 9). was made into
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (for example, also referred to as 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 or later) are also being considered. .
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のような人工知能(Artificial Intelligence(AI))技術を活用することが検討されている。 Regarding future wireless communication technology, the use of artificial intelligence (AI) technology such as machine learning (ML) is being considered for network/device control and management.
 AI/MLの分野において、汎化能力(Generalization Capability(GC))とは、訓練時に与えられた訓練データだけでなく、未知のデータ(テストデータ)に適応する(望ましい出力を行える、うまく予測できる)AIモデルの能力のことをいう。GCの性能のことをGC性能(又は汎化性能)とも呼ぶ。 In the field of AI/ML, Generalization Capability (GC) refers to the ability to adapt not only to the training data given during training but also to unknown data (test data) (able to produce desired outputs, be able to predict well) ) Refers to the ability of an AI model. GC performance is also called GC performance (or generalization performance).
 どのようにGC性能を評価するかについて、NR規格でも議論されているが、AIモデルのモニタ/更新にあまり手間をかけずに、当該AIモデルのGCを効率的に確保することが求められているが、具体的な手法については検討が進んでいない。当該方法を適切に規定しなければ、AIモデルに基づく適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。 The NR standard also discusses how to evaluate GC performance, but it is required to efficiently secure GC for the AI model without spending too much effort on monitoring/updating the AI model. However, no progress has been made in considering specific methods. If the method is not properly defined, it will not be possible to achieve appropriate overhead reduction, highly accurate channel estimation, and highly efficient resource utilization based on the AI model, and there is a risk that improvements in communication throughput and communication quality will be suppressed. .
 そこで、本開示は、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can realize suitable overhead reduction/channel estimation/resource utilization.
 本開示の一態様に係る端末は、データセットの収集が必要なシナリオ設定に関する情報を受信する受信部と、特定のシナリオ設定のもとで収集されるデータセットに基づいて人工知能(Artificial Intelligence(AI))モデルを訓練する制御部と、を有する。 A terminal according to an aspect of the present disclosure includes a receiving unit that receives information regarding a scenario setting that requires collection of a data set, and an artificial intelligence (Artificial Intelligence) based on a data set collected under a specific scenario setting. AI)) A controller for training the model.
 本開示の一態様によれば、好適なオーバーヘッド低減/チャネル推定/リソースの利用を実現できる。 According to one aspect of the present disclosure, suitable overhead reduction/channel estimation/resource utilization can be achieved.
図1は、AIモデルの管理のフレームワークの一例を示す図である。FIG. 1 is a diagram illustrating an example of an AI model management framework. 図2は、一実施形態に係るAIモデルのGC確保のための、データセットの収集/報告の一例を示す図である。FIG. 2 is a diagram illustrating an example of data set collection/reporting for securing GC of an AI model according to an embodiment. 図3は、第1の実施形態におけるユースケースとシナリオ設定フォーマットとの対応関係の一例を示す図である。FIG. 3 is a diagram illustrating an example of the correspondence between use cases and scenario setting formats in the first embodiment. 図4は、第2の実施形態におけるAIモデルとシナリオ設定フォーマットとの対応関係の一例を示す図である。FIG. 4 is a diagram illustrating an example of the correspondence between the AI model and the scenario setting format in the second embodiment. 図5は、実施形態3.1にかかるシナリオ設定に関する情報の受信の一例を示す図である。FIG. 5 is a diagram illustrating an example of receiving information regarding scenario settings according to Embodiment 3.1. 図6は、実施形態3.2にかかるデータセットの収集の一例を示す図である。FIG. 6 is a diagram illustrating an example of data set collection according to Embodiment 3.2. 図7は、実施形態3.3にかかるデータセットの送信の一例を示す図である。FIG. 7 is a diagram illustrating an example of data set transmission according to Embodiment 3.3. 図8は、第4の実施形態にかかるUE側の訓練の一例を示す図である。FIG. 8 is a diagram illustrating an example of training on the UE side according to the fourth embodiment. 図9は、実施形態5.1にかかるモデル選択の一例を示す図である。FIG. 9 is a diagram illustrating an example of model selection according to Embodiment 5.1. 図10A及び10Bは、実施形態5.2におけるGC性能評価の一例を示す図である。10A and 10B are diagrams illustrating an example of GC performance evaluation in Embodiment 5.2. 図11は、実施形態5.2におけるGC性能評価の一例を示す図である。FIG. 11 is a diagram illustrating an example of GC performance evaluation in Embodiment 5.2. 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図13は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of the configuration of a base station according to an embodiment. 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. 図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 15 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. 図16は、一実施形態に係る車両の一例を示す図である。FIG. 16 is a diagram illustrating an example of a vehicle according to an embodiment.
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のようなAI技術を活用することが検討されている。
(Application of Artificial Intelligence (AI) technology to wireless communications)
Regarding future wireless communication technology, the use of AI technology such as machine learning (ML) is being considered for network/device control and management.
 例えば、チャネル状態情報(Channel State Information(CSI))フィードバックの向上(例えば、オーバーヘッド低減、正確度改善、予測)、ビームマネジメントの改善(例えば、正確度改善、時間/空間領域での予測)、位置測定の改善(例えば、位置推定/予測の改善)などのために、端末(terminal、ユーザ端末(user terminal)、User Equipment(UE))/基地局(Base Station(BS))がAI技術を活用することが検討されている。 For example, improved Channel State Information (CSI) feedback (e.g., reduced overhead, improved accuracy, prediction), improved beam management (e.g., improved accuracy, prediction in the time/spatial domain), position A terminal, user terminal, user equipment (UE)/Base Station (BS) utilizes AI technology to improve measurements (e.g., improve position estimation/prediction), etc. It is being considered to do so.
 AIモデルは、入力される情報に基づいて、推定値、予測値、選択される動作、分類、などの少なくとも1つの情報を出力してもよい。UE/BSは、AIモデルに対して、チャネル状態情報、参照信号測定値などを入力して、高精度なチャネル状態情報/測定値/ビーム選択/位置、将来のチャネル状態情報/無線リンク品質などを出力してもよい。 Based on the input information, the AI model may output at least one information such as an estimated value, a predicted value, a selected action, a classification, etc. The UE/BS inputs channel state information, reference signal measurements, etc. to the AI model, and provides highly accurate channel state information/measurements/beam selection/position, future channel state information/radio link quality, etc. may be output.
 なお、本開示において、AIは、以下の少なくとも1つの特徴を有する(実施する)オブジェクト(対象、客体、データ、関数、プログラムなどとも呼ばれる)で読み替えられてもよい:
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
Note that in this disclosure, AI may be read as an object (also referred to as a target, object, data, function, program, etc.) that has (implements) at least one of the following characteristics:
・Estimation based on observed or collected information;
- Selection based on observed or collected information;
- Predictions based on observed or collected information.
 本開示において、推定(estimation)、予測(prediction)、推論(inference)は、互いに読み替えられてもよい。また、本開示において、推定する(estimate)、予測する(predict)、推論する(infer)は、互いに読み替えられてもよい。 In the present disclosure, estimation, prediction, and inference may be used interchangeably. Furthermore, in the present disclosure, the terms "estimate," "predict," and "infer" may be used interchangeably.
 本開示において、オブジェクトは、例えば、UE、BSなどの装置、デバイスなどであってもよい。また、本開示において、オブジェクトは、当該装置において動作するプログラム/モデル/エンティティに該当してもよい。 In the present disclosure, an object may be, for example, an apparatus, a device, etc., such as a UE or a BS. Furthermore, in the present disclosure, an object may correspond to a program/model/entity that operates on the device.
 また、本開示において、AIモデルは、以下の少なくとも1つの特徴を有する(実施する)オブジェクトで読み替えられてもよい:
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
Furthermore, in this disclosure, the AI model may be replaced by an object that has (implements) at least one of the following characteristics:
・Produce estimates by feeding information,
・Predict the estimated value by giving information,
・Discover characteristics by providing information,
・Select an action by providing information.
 また、本開示において、AIモデルは、AI技術を適用し、入力のセットに基づいて出力のセットを生成するデータドリブンアルゴリズムを意味してもよい。 Additionally, in this disclosure, an AI model may refer to a data-driven algorithm that applies AI technology and generates a set of outputs based on a set of inputs.
 また、本開示において、AIモデル、モデル、MLモデル、予測分析(predictive analytics)、予測分析モデル、ツール、自己符号化器(オートエンコーダ(autoencoder))、エンコーダ、デコーダ、ニューラルネットワークモデル、AIアルゴリズム、スキームなどは、互いに読み替えられてもよい。また、AIモデルは、回帰分析(例えば、線形回帰分析、重回帰分析、ロジスティック回帰分析)、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク、ディープラーニングなどの少なくとも1つを用いて導出されてもよい。 In addition, in this disclosure, AI models, models, ML models, predictive analytics, predictive analysis models, tools, autoencoders (autoencoders), encoders, decoders, neural network models, AI algorithms, Schemes etc. may be read interchangeably. Further, the AI model may be derived using at least one of regression analysis (eg, linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machine, random forest, neural network, deep learning, etc.
 本開示において、オートエンコーダは、積層オートエンコーダ、畳み込みオートエンコーダなど任意のオートエンコーダと互いに読み替えられてもよい。本開示のエンコーダ/デコーダは、Residual Network(ResNet)、DenseNet、RefineNetなどのモデルを採用してもよい。 In the present disclosure, the autoencoder may be interchanged with any autoencoder such as a stacked autoencoder or a convolutional autoencoder. The encoder/decoder of the present disclosure may adopt models such as Residual Network (ResNet), DenseNet, RefineNet, etc.
 また、本開示において、エンコーダ、エンコーディング(encoding)、エンコードする/される(encode/encoded)、エンコーダによる修正/変更/制御、圧縮(compressing)、圧縮する/される(compress/compressed)、生成(generating)、生成する/される(generate/generated)などは、互いに読み替えられてもよい。 In addition, in this disclosure, an encoder, encoding, encode/encoded, modification/change/control by an encoder, compressing, compress/compressed, generation ( "generate", "generate/generated", etc. may be used interchangeably.
 また、本開示において、デコーダ、デコーディング(decoding)、デコードする/される(decode/decoded)、デコーダによる修正/変更/制御、展開(decompressing)、展開する/される(decompress/decompressed)、再構成(reconstructing)、再構成する/される(reconstruct/reconstructed)などは、互いに読み替えられてもよい。 In addition, in this disclosure, a decoder, decoding, decode/decoded, modification/change/control by a decoder, decompressing, decompress/decompressed, re- Reconstructing, reconstruct/reconstructed, etc. may be used interchangeably.
 本開示において、(AIモデルについての)レイヤは、AIモデルにおいて利用されるレイヤ(入力層、中間層など)と互いに読み替えられてもよい。本開示のレイヤ(層)は、入力層、中間層、出力層、バッチ正規化層、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層、ドロップアウト層、全結合層などの少なくとも1つに該当してもよい。 In this disclosure, layers (with respect to the AI model) may be interchanged with layers (input layer, intermediate layer, etc.) used in the AI model. The layers of the present disclosure include an input layer, an intermediate layer, an output layer, a batch normalization layer, a convolution layer, an activation layer, a dense layer, a normalization layer, a pooling layer, an attention layer, a dropout layer, It may correspond to at least one of the fully connected layers.
 本開示において、AIモデルの訓練方法には、教師あり学習(supervised learning)、教師なし学習(unsupervised learning)、強化学習(Reinforcement learning)、連合学習(federated learning)などが含まれてもよい。教師あり学習は、入力及び対応するラベルからモデルを訓練する処理を意味してもよい。教師なし学習は、ラベル付きデータなしでモデルを訓練する処理を意味してもよい。強化学習は、モデルが相互作用している環境において、入力(言い換えると、状態)と、モデルの出力(言い換えると、アクション)から生じるフィードバック信号(言い換えると、報酬)と、からモデルを訓練する処理を意味してもよい。 In the present disclosure, AI model training methods may include supervised learning, unsupervised learning, reinforcement learning, federated learning, and the like. Supervised learning may refer to the process of training a model from input and corresponding labels. Unsupervised learning may refer to the process of training a model without labeled data. Reinforcement learning is the process of training a model from inputs (in other words, states) and feedback signals (in other words, rewards) resulting from the model's outputs (in other words, actions) in the environment in which the models are interacting. It can also mean
 本開示において、生成、算出、導出などは、互いに読み替えられてもよい。本開示において、実施、運用、動作、実行などは、互いに読み替えられてもよい。本開示において、訓練、学習、更新、再訓練などは、互いに読み替えられてもよい。本開示において、推論、訓練後(after-training)、本番の利用、実際の利用、などは互いに読み替えられてもよい。本開示において、信号は、信号/チャネルと互いに読み替えられてもよい。 In this disclosure, generation, calculation, derivation, etc. may be read interchangeably. In this disclosure, implementation, operation, operation, execution, etc. may be read interchangeably. In this disclosure, training, learning, updating, retraining, etc. may be used interchangeably. In this disclosure, inference, after-training, production use, actual use, etc. may be read interchangeably. In this disclosure, a signal may be interchanged with a signal/channel.
 図1は、AIモデルの管理のフレームワークの一例を示す図である。本例では、AIモデルに関連する各ステージがブロックで示されている。本例は、AIモデルのライフサイクル管理とも表現される。 FIG. 1 is a diagram illustrating an example of an AI model management framework. In this example, each stage related to the AI model is shown as a block. This example is also expressed as AI model life cycle management.
 データ収集ステージは、AIモデルの生成/更新のためのデータを収集する段階に該当する。データ収集ステージは、データ整理(例えば、どのデータをモデル訓練/モデル推論のために転送するかの決定)、データ転送(例えば、モデル訓練/モデル推論を行うエンティティ(例えば、UE、gNB)に対して、データを転送)などを含んでもよい。 The data collection stage corresponds to the stage of collecting data for generating/updating an AI model. The data collection stage includes data reduction (e.g., deciding which data to transfer for model training/model inference), data transfer (e.g., to entities performing model training/model inference (e.g., UE, gNB)), and transfer data).
 なお、データ収集は、AIモデル訓練/データ分析/推論を目的として、ネットワークノード、管理エンティティ又はUEによってデータが収集される処理を意味してもよい。本開示において、処理、手順は互いに読み替えられてもよい。また、本開示において、収集は、測定(チャネル測定、ビーム測定、無線リンク品質測定、位置推定など)に基づいてAIモデルの訓練/推論のための(例えば、入力/出力として利用できる)データセットを取得することを意味してもよい。 Note that data collection may refer to a process in which data is collected by a network node, management entity, or UE for the purpose of AI model training/data analysis/inference. In the present disclosure, the terms "process" and "procedure" may be interchanged with each other. Also, in this disclosure, collection refers to datasets (e.g., available as input/output) for training/inference of an AI model based on measurements (channel measurements, beam measurements, radio link quality measurements, location estimation, etc.) It may also mean obtaining.
 本開示において、オフラインフィールドデータは、フィールド(現実世界)から収集され、AIモデルのオフライン訓練のために用いられるデータであってもよい。また、本開示において、オンラインフィールドデータは、フィールド(現実世界)から収集され、AIモデルのオンライン訓練のために用いられるデータであってもよい。 In the present disclosure, offline field data may be data collected from the field (real world) and used for offline training of an AI model. Also, in the present disclosure, online field data may be data collected from the field (real world) and used for online training of an AI model.
 モデル訓練ステージでは、収集ステージから転送されるデータ(訓練用データ)に基づいてモデル訓練が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル訓練/バリデーション(検証)、モデルテスティング(例えば、訓練されたモデルが性能の閾値を満たすかの確認)、モデル交換(例えば、分散学習のためのモデルの転送)、モデルデプロイメント/更新(モデル推論を行うエンティティに対してモデルをデプロイ/更新)などを含んでもよい。 In the model training stage, model training is performed based on the data (training data) transferred from the collection stage. This stage includes data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model training/validation, and model testing (e.g., whether the trained model meets performance thresholds). verification), model exchange (e.g., transferring a model for distributed learning), model deployment/updating (deploying/updating a model to an entity that performs model inference), etc.
 なお、AIモデル訓練(AI model training)は、データドリブンな方法でAIモデルを訓練し、推論のための訓練されたAIモデルを取得するための処理を意味してもよい。 Note that AI model training may refer to processing for training an AI model in a data-driven manner and obtaining a trained AI model for inference.
 また、AIモデルバリデーション(AI model validation)は、モデル訓練に使用したデータセットとは異なるデータセットを用いてAIモデルの品質を評価するための訓練のサブ処理を意味してもよい。当該サブ処理は、モデル訓練に使用したデータセットを超えて汎化するモデルパラメータの選択に役立つ。 Furthermore, AI model validation may refer to a training sub-process for evaluating the quality of an AI model using a data set different from the data set used for model training. This sub-processing helps select model parameters that generalize beyond the dataset used to train the model.
 また、AIモデルテスティング(AI model testing)は、モデル訓練/バリデーションに使用したデータセットとは異なるデータセットを使用して、最終的なAIモデルの性能を評価するための訓練のサブ処理を意味してもよい。なお、テスティングは、バリデーションとは異なり、その後のモデルチューニングを前提としなくてもよい。 Also, AI model testing refers to a sub-process of training to evaluate the performance of the final AI model using a dataset different from the dataset used for model training/validation. You may. Note that unlike validation, testing does not have to be based on subsequent model tuning.
 モデル推論ステージでは、収集ステージから転送されるデータ(推論用データ)に基づいてモデル推論が行われる。このステージは、データ準備(例えば、データの前処理、クリーニング、フォーマット化、変換などの実施)、モデル推論、モデルモニタリング(例えば、モデル推論の性能をモニタ)、モデル性能フィードバック(モデル訓練を行うエンティティに対してモデル性能をフィードバック)、出力(アクターに対してモデルの出力を提供)などを含んでもよい。 At the model inference stage, model inference is performed based on the data (inference data) transferred from the collection stage. This stage includes data preparation (e.g., performing data preprocessing, cleaning, formatting, transformation, etc.), model inference, model monitoring (e.g., monitoring the performance of model inference), and model performance feedback (the entity performing model training). (feedback of model performance to actors), output (provide model output to actors), etc.
 なお、AIモデル推論(AI model inference)は、訓練されたAIモデルを用いて入力のセットから出力のセットを産み出すための処理を意味してもよい。 Note that AI model inference may refer to processing for producing a set of outputs from a set of inputs using a trained AI model.
 また、UE側(UE side)モデルは、その推論が完全にUEにおいて実施されるAIモデルを意味してもよい。ネットワーク側(Network side)モデルは、その推論が完全にネットワーク(例えば、gNB)において実施されるAIモデルを意味してもよい。 Additionally, a UE side model may refer to an AI model whose inference is completely performed in the UE. A network side model may refer to an AI model whose inference is performed entirely in the network (eg, gNB).
 また、片側(one-sided)モデルは、UE側モデル又はネットワーク側モデルを意味してもよい。両側(two-sided)モデルは、共同推論(joint inference)が行われるペアのAIモデルを意味してもよい。ここで、共同推論は、その推論がUEとネットワークにわたって共同で行われるAI推論を含んでもよく、例えば、推論の第1の部分がUEによって最初に行われ、残りの部分がgNBによって行われてもよい(又はその逆が行われてもよい)。 Also, the one-sided model may mean a UE-side model or a network-side model. A two-sided model may refer to a pair of AI models in which joint inference is performed. Here, joint inference may include AI inference where the inference is performed jointly across the UE and the network, e.g., the first part of the inference is performed by the UE first and the remaining part is performed by the gNB. (or vice versa).
 また、AIモデルモニタリング(AI model monitoring)は、AIモデルの推論性能をモニタするための処理を意味してもよく、モデル性能モニタリング、性能モニタリングなどと互いに読み替えられてもよい。 Furthermore, AI model monitoring may mean processing for monitoring the inference performance of an AI model, and may be interchanged with model performance monitoring, performance monitoring, etc.
 なお、モデル登録(モデルレジストレーション(model registration))は、モデルにバージョン識別子を付与し、推論段階において利用される特定のハードウェアにコンパイルすることを介して当該モデルを実行可能にすることを意味してもよい。また、モデル配置(モデルデプロイメント(model deployment))は、完全に開発されテストされたモデルのランタイムイメージ(又は実行環境のイメージ)を、推論が実施されるターゲット(例えば、UE/gNB)に配信する(又は当該ターゲットにおいて有効化する)ことを意味してもよい。 Note that model registration means giving a version identifier to a model and making it executable by compiling it on the specific hardware used in the inference stage. You may. Model deployment also delivers a fully developed and tested model runtime image (or execution environment image) to the target (e.g., UE/gNB) where inference is performed. (or enable on the target).
 アクターステージは、アクショントリガ(例えば、他のエンティティに対してアクションをトリガするか否かの決定)、フィードバック(例えば、訓練用データ/推論用データ/性能フィードバックのために必要な情報をフィードバック)などを含んでもよい。 The actor stage includes action triggers (e.g., deciding whether to trigger an action on other entities), feedback (e.g., feeding back information necessary for training data/inference data/performance feedback), etc. May include.
 なお、例えばモビリティ最適化のためのモデルの訓練は、例えば、ネットワーク(Network(NW))における保守運用管理(Operation、Administration and Maintenance(Management)(OAM))/gNodeB(gNB)において行われてもよい。前者の場合、相互運用、大容量ストレージ、オペレータの管理性、モデルの柔軟性(フィーチャーエンジニアリングなど)が有利である。後者の場合、モデル更新のレイテンシ、モデル展開のためのデータ交換などが不要な点が有利である。上記モデルの推論は、例えば、gNBにおいて行われてもよい。 Note that, for example, training of a model for mobility optimization may be performed, for example, in Operation, Administration and Maintenance (Management) (OAM) in a network (Network (NW)) / gNodeB (gNB). good. The former has advantages in interoperability, large storage capacity, operator manageability, and model flexibility (e.g., feature engineering). In the latter case, the advantage is that there is no need for model update latency or data exchange for model development. Inference of the above model may be performed in the gNB, for example.
 ユースケース(言い換えると、AIモデルの機能)に応じて、訓練/推論を行うエンティティは異なってもよい。AIモデルの機能(function)は、ビーム管理、ビーム予測、オートエンコーダ(又は情報圧縮)、CSIフィードバック、位置測位などを含んでもよい。 Depending on the use case (in other words, the functionality of the AI model), the entity that performs the training/inference may be different. Functions of the AI model may include beam management, beam prediction, autoencoder (or information compression), CSI feedback, position positioning, etc.
 例えば、メジャメントレポートに基づくAI支援ビーム管理については、OAM/gNBがモデル訓練を行い、gNBがモデル推論を行ってもよい。 For example, for AI-assisted beam management based on measurement reports, the OAM/gNB may perform model training and the gNB may perform model inference.
 AI支援UEアシステッドポジショニングについては、Location Management Function(LMF)がモデル訓練を行い、当該LMFがモデル推論を行ってもよい。 For AI-assisted UE assisted positioning, a Location Management Function (LMF) may perform model training, and the LMF may perform model inference.
 オートエンコーダを用いるCSIフィードバック/チャネル推定については、OAM/gNB/UEがモデル訓練を行い、gNB/UEが(ジョイントで)モデル推論を行ってもよい。 For CSI feedback/channel estimation using an autoencoder, the OAM/gNB/UE may perform model training and the gNB/UE (jointly) may perform model inference.
 ビーム測定に基づくAI支援ビーム管理又はAI支援UEベースドポジショニングについては、OAM/gNB/UEがモデル訓練を行い、UEがモデル推論を行ってもよい。 For AI-assisted beam management based on beam measurements or AI-assisted UE-based positioning, the OAM/gNB/UE may perform model training and the UE may perform model inference.
 なお、モデルアクティベーションは、特定の機能のためのAIモデルを有効化することを意味してもよい。モデルディアクティベーションは、特定の機能のためのAIモデルを無効化することを意味してもよい。モデルスイッチングは、特定の機能のための現在アクティブなAIモデルをディアクティベートし、異なるAIモデルをアクティベートすることを意味してもよい。 Note that model activation may mean activating an AI model for a specific function. Model deactivation may mean disabling an AI model for a particular function. Model switching may mean deactivating the currently active AI model for a particular function and activating a different AI model.
 また、モデル転送(model transfer)は、エアインターフェース上でAIモデルを配信することを意味してもよい。この配信は、受信側において既知のモデル構造のパラメータ、又はパラメータを有する新しいモデルの一方又は両方を配信することを含んでもよい。また、この配信は、完全なモデル又は部分的なモデルを含んでもよい。モデルダウンロードは、ネットワークからUEへのモデル転送を意味してもよい。モデルアップロードは、UEからネットワークへのモデル転送を意味してもよい。 Additionally, model transfer may mean distributing the AI model over the air interface. This distribution may include distributing one or both of the parameters of the model structure known at the receiving end, or a new model with the parameters. This distribution may also include complete models or partial models. Model download may refer to model transfer from the network to the UE. Model upload may refer to model transfer from the UE to the network.
(汎化能力(Generalization Capability(GC)))
 AI/MLの分野において、GCとは、訓練時に与えられた訓練データだけでなく、未知のデータ(テストデータ)に適応する(望ましい出力を行える、うまく予測できる)AIモデルの能力のことをいう。GCの性能のことをGC性能(又は汎化性能)とも呼ぶ。
(Generalization Capability (GC))
In the field of AI/ML, GC refers to the ability of an AI model to adapt not only to the training data given during training but also to unknown data (test data) (achieve desired outputs and predict well). . GC performance is also called GC performance (or generalization performance).
 どのようにGC性能を評価するかについて、NR規格でも議論されている。例えば、訓練データセットとテスト/推論セット(テスト/推論用データセット)との観点からは以下が議論されている(なお、A、B、Cなどはデータセット/設定(configuration)/シナリオ(scenario)の名前であり、複数列挙される場合は当該複数に対応するデータセットを意味する。以下の議論について同様):
 ・訓練データセットは複数の設定/シナリオからの訓練入力を混合して構築され、テスト/推論は単一の設定/シナリオに対して実行される(例えば、訓練データセット=ABであり推論データセットはBである、又は、訓練データセット=CDEであり推論データセットはBである)、
 ・訓練データセットは単一の設定/シナリオらの訓練入力を混合して構築され、テスト/推論は別の単一の設定/シナリオに対して実行される(例えば、訓練データセット=Aであり推論データセットはBである)、
 ・訓練データセットは単一の設定/シナリオらの訓練入力を混合して構築され、テスト/推論は同じ設定/シナリオに対して実行される(例えば、訓練データセット=Aであり推論データセットはAである)。
The NR standard also discusses how to evaluate GC performance. For example, the following is discussed from the perspective of training datasets and test/inference sets (test/inference datasets) (A, B, C, etc. are datasets/configurations/scenarios). ), and if multiple are listed, it means the dataset corresponding to the multiple. The same applies to the discussion below):
- Training dataset is constructed by mixing training inputs from multiple settings/scenarios, and testing/inference is performed on a single setting/scenario (e.g. training dataset = AB and inference dataset is B, or the training dataset = CDE and the inference dataset is B),
A training dataset is constructed by mixing training inputs from a single setting/scenario, and testing/inference is performed against another single setting/scenario (e.g. training dataset = A and The inference dataset is B),
A training dataset is constructed by mixing training inputs from a single configuration/scenario, and testing/inference is performed for the same configuration/scenario (e.g., training dataset = A and inference dataset is A).
 なお、シナリオ(scenario)は、シナリオ、周波数レンジ、ニューメロロジー、BS間距離、屋外/屋内UE分布、UE速度のうちの1つであってもよい。設定(configuration)は、アンテナポート番号、アンテナ構成、帯域幅、CSIフィードバックペイロードの1つ又は複数であってもよい。 Note that the scenario may be one of a scenario, a frequency range, a new merology, an inter-BS distance, an outdoor/indoor UE distribution, and a UE speed. The configuration may be one or more of antenna port number, antenna configuration, bandwidth, CSI feedback payload.
 また、訓練データセットとテスト/推論セットを構成するための様々なシナリオ及び設定の組み合わせ/優先順位をどのように考えるかについての観点からは以下が議論されている:
 ・シナリオベースド:シナリオを固定し、AIモデルのGC性能を検証する。このAIモデルは、1つの特定のシナリオと1つ又は複数の設定を有するデータセットによって訓練され、同じシナリオと同じ/異なる設定を有するテスト/推論セットに適用される(例えば、訓練データセットはシナリオ=Aかつ設定=abであり推論データセットはシナリオ=Aかつ設定=cである)、
 ・シナリオの一般化:AIモデルのGC性能を検証する。このAIモデルは、1つ又は複数のシナリオと1つ又は複数の設定を有するデータセットによって訓練され、同じ/異なるシナリオと同じ/異なる設定を有するテスト/推論セットに適用される(例えば、訓練データセットはシナリオ=Aかつ設定=abであり推論データセットはシナリオ=Bかつ設定=cである、又は、訓練データセットはシナリオ=Aかつ設定=abであり推論データセットはシナリオ=Bかつ設定=abである)。
Additionally, the following is discussed in terms of how to consider the combination/prioritization of various scenarios and settings for configuring training datasets and test/inference sets:
・Scenario-based: Fix the scenario and verify the GC performance of the AI model. This AI model is trained by a dataset with one specific scenario and one or more settings and applied to a test/inference set with the same scenario and same/different settings (e.g. the training dataset is = A and setting = ab, and the inference dataset is scenario = A and setting = c),
・Scenario generalization: Verify the GC performance of the AI model. This AI model is trained by a dataset with one or more scenarios and one or more settings and is applied to a test/inference set with the same/different scenarios and the same/different settings (e.g. training data The set is scenario = A and setting = ab and the inference dataset is scenario = B and setting = c, or the training dataset is scenario = A and setting = ab and the inference dataset is scenario = B and setting = ab).
 また、AIモデル更新/選択の観点からは以下が議論されている:
 ・単一のAIモデルがシナリオ/設定#Aに基づいて学習され、同じシナリオ/設定#A又は異なるシナリオ/設定#Bの推論/テストに適用される、
 ・AIモデルがシナリオ/設定#Aに基づいて学習され、さらにシナリオ/設定#Bからの追加データセットを用いてファインチューニングされ、シナリオ/設定#Bの推論/テストに適用される、
 ・複数のAIモデルがシナリオ/設定#A、シナリオ/設定#B、…に基づいてそれぞれ学習され、シナリオ/設定#A、シナリオ/設定#B、…の推論/テストにそれぞれ適用される。
Additionally, the following is being discussed from the perspective of AI model update/selection:
- A single AI model is trained based on scenario/setting #A and applied to inference/testing of the same scenario/setting #A or a different scenario/setting #B,
An AI model is trained based on scenario/setting #A, further fine-tuned using additional datasets from scenario/setting #B, and applied to inference/testing of scenario/setting #B;
- Multiple AI models are learned based on scenario/setting #A, scenario/setting #B, etc., and applied to inference/testing of scenario/setting #A, scenario/setting #B, etc., respectively.
 以上から、AIモデルには、GCに関する以下のような問題点がある:
 ・モデルはシミュレーション指向のデータセットを用いてオフラインで学習されたものであり、当該データセットは現実世界のフィールドデータとの整合性が取れていない可能性がある、
 ・モデルはあるシナリオ/設定においてオフライン/オンライン学習され、別のシナリオ/設定において推論に使用される。頻繁にモデルが変更/更新されると、信号のオーバーヘッドが過剰になる、
 ・混在するシナリオ/設定においてオフライン/オンライン学習されたモデルは、無線通信環境が変化すると、モデルが古くて正しくなくなる。
From the above, the AI model has the following problems regarding GC:
・The model was trained offline using a simulation-oriented dataset, which may not be consistent with real-world field data;
- A model is trained offline/online in one scenario/setting and used for inference in another scenario/setting. Frequent model changes/updates can cause excessive signal overhead.
- Models trained offline/online in mixed scenarios/settings will become outdated and incorrect if the wireless communication environment changes.
 したがって、AIモデルのモニタ/更新にあまり手間をかけずに、当該AIモデルのGCを効率的に確保することが求められているが、具体的な手法については検討が進んでいない。当該方法を適切に規定しなければ、AIモデルに基づく適切なオーバーヘッド低減/高精度なチャネル推定/高効率なリソースの利用が達成できず、通信スループット/通信品質の向上が抑制されるおそれがある。 Therefore, there is a need to efficiently secure the GC of the AI model without spending much effort on monitoring/updating the AI model, but no progress has been made in considering a specific method. If the method is not properly defined, it will not be possible to achieve appropriate overhead reduction, highly accurate channel estimation, and highly efficient resource utilization based on the AI model, and there is a risk that improvements in communication throughput and communication quality will be suppressed. .
 そこで、本発明者らは、AIモデルのGC確保のための、データセットの構築方法、GC評価/検証方法、GC性能(GCレベルと呼ばれてもよい)を考慮したモデル管理方法などを着想した。なお、本開示の各実施形態は、GCの評価などとは関係なく(単にデータセットの取得などのために)用いられてもよい。 Therefore, the present inventors came up with a method of constructing a dataset, a method of GC evaluation/verification, a model management method that takes into account GC performance (also called GC level), etc. in order to ensure GC of AI models. did. Note that each embodiment of the present disclosure may be used regardless of GC evaluation or the like (simply for acquiring a data set or the like).
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied singly or in combination.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably. Furthermore, in the present disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In the present disclosure, "activate", "deactivate", "indicate", "select", "configure", "update", "determine", etc. may be read interchangeably. In this disclosure, supporting, controlling, being able to control, operating, capable of operating, etc. may be read interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In the present disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, upper layer parameters, fields, Information Elements (IEs), settings, etc. may be read interchangeably. In the present disclosure, the terms Medium Access Control Element (CE), update command, activation/deactivation command, etc. may be read interchangeably.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like. Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, an index, an identifier (ID), an indicator, a resource ID, etc. may be read interchangeably. In this disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
 本開示において、チャネル測定/推定は、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号(Synchronization Signal(SS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、復調用参照信号(DeModulation Reference Signal(DMRS))、測定用参照信号(Sounding Reference Signal(SRS))などの少なくとも1つを用いて行われてもよい。 In the present disclosure, channel measurement/estimation includes, for example, a channel state information reference signal (CSI-RS), a synchronization signal (SS), a synchronization signal/broadcast channel (Synchronization Signal/Physical It may be performed using at least one of a Broadcast Channel (SS/PBCH) block, a demodulation reference signal (DMRS), a measurement reference signal (Sounding Reference Signal (SRS)), and the like.
 本開示において、CSIは、チャネル品質インディケーター(Channel Quality Indicator(CQI))、プリコーディング行列インディケーター(Precoding Matrix Indicator(PMI))、CSI-RSリソースインディケーター(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソースインディケーター(SS/PBCH Block Resource Indicator(SSBRI))、レイヤインディケーター(Layer Indicator(LI))、ランクインディケーター(Rank Indicator(RI))、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)、チャネル行列(又はチャネル係数)に関する情報、プリコーディング行列(又はプリコーディング係数)に関する情報などの少なくとも1つを含んでもよい。 In this disclosure, CSI includes a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a CSI-RS resource indicator (CRI). , SS/PBCH Block Resource Indicator (SSBRI), Layer Indicator (LI), Rank Indicator (RI), L1-RSRP (Reference in Layer 1) Signal received power (Layer 1 Reference Signal Received Power), L1-RSRQ (Reference Signal Received Quality), L1-SINR (Signal to Interference plus Noise Ratio), L1-SNR (Signal to Noise Ratio), channel matrix (or channel information regarding the precoding matrix (or precoding coefficients), and the like.
 本開示において、CSI-RS、ノンゼロパワー(Non Zero Power(NZP))CSI-RS、ゼロパワー(Zero Power(ZP))CSI-RS及びCSI干渉測定(CSI Interference Measurement(CSI-IM))は、互いに読み替えられてもよい。また、CSI-RSは、その他の参照信号を含んでもよい。 In the present disclosure, CSI-RS, Non Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS, and CSI Interference Measurement (CSI-IM) are: They may be read interchangeably. Additionally, the CSI-RS may include other reference signals.
 以下の実施形態では、UE-BS間の通信に関するAIモデルを説明するため、関連する主体はUE及びBSであるが、本開示の各実施形態の適用は、これに限られない。例えば、別の主体間の通信(例えば、UE-UE間の通信)については、下記実施形態のUE及びBSを、第1のUE及び第2のUEで読み替えてもよい。言い換えると、本開示のUE、BSなどは、いずれも任意のUE/BSで読み替えられてもよい。 In the following embodiments, the relevant entities are the UE and the BS in order to explain an AI model regarding communication between the UE and the BS, but the application of each embodiment of the present disclosure is not limited to this. For example, for communication between different entities (for example, communication between UE and UE), the UE and BS in the embodiment below may be replaced with a first UE and a second UE. In other words, the UE, BS, etc. of the present disclosure may be replaced with any UE/BS.
 なお、本開示において、データセット及びデータは互いに読み替えられてもよい。また、本開示において、チャネル状態、チャネルステータス、チャネル、チャネル環境などは、互いに読み替えられてもよい。 Note that in the present disclosure, data set and data may be read interchangeably. Further, in the present disclosure, channel state, channel status, channel, channel environment, etc. may be read interchangeably.
(無線通信方法)
 図2は、一実施形態に係るAIモデルのGC確保のための、データセットの収集/報告の一例を示す図である。なお、以降の図面でも同様の環境が図示されるが、重複して説明しない内容は、図2と同様であると想定されてもよい。
(Wireless communication method)
FIG. 2 is a diagram illustrating an example of data set collection/reporting for securing GC of an AI model according to an embodiment. Note that although similar environments are illustrated in subsequent drawings, it may be assumed that contents that are not repeatedly described are the same as those in FIG. 2.
 以下の実施形態によれば、図2に示すように、あるBSが形成するセル内のUEが、シナリオ設定ID#1、#2及び#3のためのデータを、移動しつつ(異なる地点において)収集/報告できる。 According to the embodiment below, as shown in FIG. ) can be collected/reported.
 シナリオ設定ID#1のデータが収集できれば、UE/BSは、シナリオ設定ID#1のデータに基づいてモデル訓練を実施できる。 If the data of scenario setting ID #1 can be collected, the UE/BS can perform model training based on the data of scenario setting ID #1.
 シナリオ設定ID#1及び#2のデータが収集できれば、UE/BSは、シナリオ設定ID#1のデータ、シナリオ設定ID#2のデータ又はこれら両方のデータに基づいてモデル訓練を実施できる。 If the data of scenario setting ID #1 and #2 can be collected, the UE/BS can perform model training based on the data of scenario setting ID #1, the data of scenario setting ID #2, or both of these data.
 シナリオ設定ID#1、#2及び#3のデータが収集できれば、UE/BSは、シナリオ設定ID#1のデータ、シナリオ設定ID#2のデータ、シナリオ設定ID#3のデータ又はこれらの組み合わせ(#1及び#2、#2及び#3、#1及び#3、又は#1、#2及び#3)に基づいてモデル訓練を実施できる。 If the data of scenario setting ID #1, #2, and #3 can be collected, the UE/BS collects the data of scenario setting ID #1, the data of scenario setting ID #2, the data of scenario setting ID #3, or a combination thereof ( #1 and #2, #2 and #3, #1 and #3, or #1, #2 and #3).
 シナリオ設定については、第1/第2の実施形態で主に説明する。NW側/UE側における訓練については、第3/第4の実施形態で主に説明する。 The scenario setting will be mainly explained in the first/second embodiment. Training on the NW side/UE side will be mainly explained in the third/fourth embodiment.
<第1の実施形態>
 第1の実施形態は、シナリオ設定フォーマット(scenario configuration format)に関する。
<First embodiment>
The first embodiment relates to a scenario configuration format.
 第1の実施形態において、AIモデルを用いるユースケースは、長期的な特徴(long-tern features)から構成されるシナリオ設定フォーマットと関連付けられる。 In a first embodiment, a use case using an AI model is associated with a scenario configuration format consisting of long-term features.
 なお、長期的な特徴は、短期/中期/長期的な特徴、単に特徴などと互いに読み替えられてもよい。また、シナリオ設定フォーマットは、シナリオ及び設定フォーマット(scenario and configuration format)、シナリオ構成フォーマット、シナリオフォーマット、設定フォーマット、ユースケースフォーマット、環境フォーマット、メタフォーマットなどと互いに読み替えられてもよい。また、フォーマットは、タイプ、モード、データ、設定などと互いに読み替えられてもよい。 Note that long-term characteristics may be interchanged with short-term/medium-term/long-term characteristics, or simply characteristics. Further, the scenario configuration format may be interchanged with scenario and configuration format, scenario configuration format, scenario format, configuration format, use case format, environment format, metaformat, etc. Further, the format may be interchanged with type, mode, data, setting, etc.
 上記特徴は、以下の要素の1つ又は複数の組み合わせを含んでもよい:
 ・シナリオ/モデル(Urban Macro(UMa)、Urban Micro(Umi)、屋内(indoor)、屋外(outdoor)、インドアホットスポットなど)、
 ・周波数/周波数レンジ、
 ・ニューメロロジー(又はサブキャリア間隔)、
 ・単一のシナリオ/モデルにおける一般的チャネルパラメータ(例えば、サイト間距離(inter-site distances(ISD))、gNB高さ、遅延スプレッド、角度スプレッド、ドップラースプレッドなど)の分布/セット、
 ・UE分布、
 ・UE速度、
 ・UE軌道、
 ・送信ビーム/受信ビームの数、
 ・UE回転パターン、
 ・gNB/UEアンテナ構成(例えば、送受信アンテナベクトル)、
 ・セル数/セクタ数、
 ・帯域幅、
 ・UEペイロード、
 ・チャネル品質(例えば、RSRP、SINR)、
 ・ビーム設定ID(beam configuration ID)、
 ・物理セルID(Physical Cell ID(PCI))、
 ・グローバルセルID(Global Cell ID(GCI))、
 ・絶対無線周波数チャネル番号(Absolute Radio Frequency Channel Number(ARFCN))、
 ・Line Of Site(LOS)/Non-Line Of Site(NLOS)の確率。
The above features may include a combination of one or more of the following elements:
・Scenarios/models (Urban Macro (UMa), Urban Micro (Umi), indoor, outdoor, indoor hotspot, etc.),
・Frequency/frequency range,
- Numerology (or subcarrier spacing),
- Distribution/set of common channel parameters (e.g. inter-site distances (ISD), gNB height, delay spread, angular spread, Doppler spread, etc.) in a single scenario/model;
・UE distribution,
・UE speed,
・UE orbit,
・Number of transmit beams/receive beams,
・UE rotation pattern,
gNB/UE antenna configuration (e.g. transmit and receive antenna vectors),
・Number of cells/number of sectors,
・Bandwidth,
・UE payload,
-Channel quality (e.g. RSRP, SINR),
・Beam configuration ID,
・Physical Cell ID (PCI),
・Global Cell ID (GCI),
・Absolute Radio Frequency Channel Number (ARFCN),
・Probability of Line Of Site (LOS)/Non-Line Of Site (NLOS).
 第1の実施形態において、UEは、関連するシナリオ設定フォーマットがUEの設定/ステータスと一致するモデルを設定/登録(レジスタ)されることが期待されてもよい。 In the first embodiment, the UE may be expected to be configured/registered with a model whose associated scenario configuration format matches the UE's configuration/status.
 また、第1の実施形態において、UEは、関連するシナリオ設定フォーマットがUEの設定/ステータスと一致するモデルをアクティベートすることが期待されてもよい。 Also, in the first embodiment, the UE may be expected to activate a model whose associated scenario configuration format matches the UE's configuration/status.
 ユースケースとシナリオ設定フォーマットとの対応関係は、規格において規定されてもよいし、当該対応関係に関する情報がUEに通知されてもよい。また、ユースケースに対応するシナリオ設定フォーマットに含まれる特徴は、規格において規定されてもよいし、当該特徴に関する情報がUEに通知されてもよい。 The correspondence between use cases and scenario setting formats may be specified in the standard, or information regarding the correspondence may be notified to the UE. Further, the features included in the scenario setting format corresponding to the use case may be specified in a standard, or information regarding the features may be notified to the UE.
 図3は、第1の実施形態におけるユースケースとシナリオ設定フォーマットとの対応関係の一例を示す図である。本例では、ユースケースとして「AI4CSI」(CSIフィードバック向けのAIモデル)、「AI4BM」(ビーム管理(Beam Management(BM))向けのAIモデル)が示されている。各ユースケースは、対応するインデックスが付されてもよく、UE/BSは通知されるインデックスに基づいて、利用するAIモデルを決定してもよい。なお、ユースケース名は一例であって、これらに限られない。 FIG. 3 is a diagram showing an example of the correspondence between use cases and scenario setting formats in the first embodiment. In this example, "AI4CSI" (an AI model for CSI feedback) and "AI4BM" (an AI model for beam management (BM)) are shown as use cases. Each use case may be assigned a corresponding index, and the UE/BS may decide which AI model to use based on the notified index. Note that the use case names are just examples and are not limited to these.
 本例では、AI4CSIは、位置、AoA/ZoAなどの特徴を含むシナリオ設定フォーマットに関連付けられている。また、AI4BMは、周波数、ビーム設定IDなどの特徴を含むシナリオ設定フォーマットに関連付けられている。 In this example, AI4CSI is associated with a scenario configuration format that includes features such as location, AoA/ZoA, etc. AI4BM is also associated with a scenario configuration format that includes characteristics such as frequency, beam configuration ID, etc.
 以上説明した第1の実施形態によれば、UEは、シナリオ設定フォーマットに基づいて、訓練/推論のためのデータセットに対応するシナリオ設定を好適に判断できる。 According to the first embodiment described above, the UE can suitably determine the scenario setting corresponding to the data set for training/inference based on the scenario setting format.
<第2の実施形態>
 第2の実施形態は、シナリオ設定フォーマットのリストに関する。
<Second embodiment>
The second embodiment relates to a list of scenario setting formats.
 第2の実施形態は、AIモデルを用いるユースケースがシナリオ設定フォーマットと関連付けられる点で第1の実施形態と同じであるが、当該ユースケースのためのAIモデルごとに、1つ以上のシナリオ設定フォーマットのリストが関連付けられる点が異なる。 The second embodiment is the same as the first embodiment in that a use case using an AI model is associated with a scenario setting format, but for each AI model for the use case, one or more scenario settings The difference is that a list of formats is associated.
 なお、ユースケースには1つ以上のAIモデルが関連付けられてもよい。1つのユースケースに関連付けられる1つ以上のAIモデルは、同じモデル構造(structure)に対応してもよいし、異なるモデル構造に対応してもよい。 Note that one or more AI models may be associated with a use case. One or more AI models associated with one use case may correspond to the same model structure or different model structures.
 当該リストに含まれるシナリオ設定フォーマットは、例えば、シナリオ設定IDによって識別されてもよく、また、含まれる特徴が、AIモデルの訓練のためのデータセットの生成に用いられる(又はデータセットに対応する)値の範囲、推論のために使用可能な(又は収集される)データセットの(又はデータセットに対応する)値の範囲などの少なくとも一方に関連付けられてもよい。 The scenario configuration formats included in the list may be identified, for example, by a scenario configuration ID, and the included features are used to generate a dataset for training an AI model (or correspond to a dataset). ), a range of values of (or corresponding to) a data set that can be used (or collected) for inference, and/or the like.
 AIモデルとシナリオ設定フォーマットのリストとの対応関係は、規格において規定されてもよいし、当該対応関係に関する情報がUEに通知されてもよい。 The correspondence between the AI model and the list of scenario setting formats may be specified in the standard, or information regarding the correspondence may be notified to the UE.
 図4は、第2の実施形態におけるAIモデルとシナリオ設定フォーマットとの対応関係の一例を示す図である。本例では、ユースケースID#1にAIモデルA、Bが関連付けられ、ユースケースID#2にAIモデルA-Cが関連付けられている。 FIG. 4 is a diagram showing an example of the correspondence between the AI model and the scenario setting format in the second embodiment. In this example, use case ID #1 is associated with AI models A and B, and use case ID #2 is associated with AI models AC.
 ユースケースID#1に関連付けられるAIモデルA、Bは、同じモデル構成に対応する。ユースケースID#2に関連付けられるAIモデルAと、AIモデルB及びCと、は異なるモデル構成に対応する。 AI models A and B associated with use case ID #1 correspond to the same model configuration. AI model A and AI models B and C associated with use case ID #2 correspond to different model configurations.
 ユースケースごとにシナリオ設定IDが重複することを許容してもよい(同じシナリオ設定IDであっても、ユースケースごとに異なるシナリオ設定を示してもよい)。また、ユースケースごとにシナリオ設定IDが重複しないように構成されてもよい。本例では、ユースケースごとに参照される(シナリオ設定IDと関連付けられる)シナリオ設定が異なる。 It may be possible to allow duplicate scenario setting IDs for each use case (even if the scenario setting ID is the same, it may indicate different scenario settings for each use case). Further, the configuration may be such that scenario setting IDs do not overlap for each use case. In this example, the scenario settings referenced (associated with the scenario setting ID) differ for each use case.
 本開示において、シナリオ設定は、特徴の値又は値の範囲を規定してもよい。例えば、図4において、ユースケースID#1についてのシナリオ設定ID#1は、位置がレンジ1(例えば、緯度経度がレンジ1の範囲内)に該当し、AoA/ZoAがレンジX(例えば、AoA/ZoAがレンジXの範囲内)に該当するシナリオ設定を示す。 In the present disclosure, the scenario settings may define the value or value range of the feature. For example, in FIG. 4, for scenario setting ID #1 for use case ID #1, the location corresponds to range 1 (for example, the latitude and longitude are within range 1), and the AoA/ZoA corresponds to range X (for example, AoA /ZoA is within range X).
 なお、本開示の以降において、シナリオ設定ID、1つ以上のシナリオ設定ID及びシナリオ設定IDのリストは、互いに読み替えられてもよい。 Note that hereinafter the scenario setting ID, one or more scenario setting IDs, and the list of scenario setting IDs may be read interchangeably.
 また、本開示において、ユースケースID/モデルID/シナリオ設定IDは、ユースケースID/モデルID/シナリオ設定IDと関連付けられる別の情報(例えば、別のID)と互いに読み替えられてもよい。当該別の情報とユースケースID/モデルID/シナリオ設定IDとの対応関係、規格において規定されてもよいし、当該対応関係に関する情報がUEに通知されてもよい。 Furthermore, in the present disclosure, the use case ID/model ID/scenario setting ID may be mutually read as another information (for example, another ID) associated with the use case ID/model ID/scenario setting ID. The correspondence between the other information and the use case ID/model ID/scenario setting ID may be defined in the standard, or information regarding the correspondence may be notified to the UE.
 以上説明した第2の実施形態によれば、UEは、シナリオ設定フォーマットのリストに基づいて、訓練/推論のためのデータセットに対応するシナリオ設定を好適に判断できる。 According to the second embodiment described above, the UE can suitably determine the scenario setting corresponding to the data set for training/inference based on the list of scenario setting formats.
<第3の実施形態>
 第3の実施形態は、NW側における訓練に関する。第3の実施形態は、NW側だけで訓練処理が完全に実施されるAIモデルの訓練に関連してもよい。
<Third embodiment>
The third embodiment relates to training on the NW side. The third embodiment may relate to training an AI model where the training process is completely performed only on the NW side.
[実施形態3.1:シナリオ設定に関する情報の受信]
 UEは、NWから、特定のユースケースの特定のAIモデルについて、データセットの収集が必要なシナリオ設定に関する情報を受信してもよい。
[Embodiment 3.1: Receiving information regarding scenario settings]
The UE may receive information from the NW regarding scenario settings for which data sets need to be collected for a particular AI model for a particular use case.
 当該シナリオ設定に関する情報には、対応するシナリオ設定ID、対応するモデルID、対応するユースケースIDなどの少なくとも1つが含まれてもよい。 The information regarding the scenario setting may include at least one of a corresponding scenario setting ID, a corresponding model ID, a corresponding use case ID, etc.
 シナリオ設定に関する情報は、収集される(収集すべき)データセットのフォーマットに関する情報を含んでもよい。また、シナリオ設定に関する情報は、収集される(収集すべき)データセットのフォーマットとは独立したシナリオ設定に関する情報であってもよい。 Information regarding the scenario settings may include information regarding the format of the data set that is (should be) collected. Further, the information regarding the scenario setting may be information regarding the scenario setting independent of the format of the data set to be collected (to be collected).
 データセットのフォーマットは、AIモデルの入力/出力のデータに対応してもよい。UEは、データセットのフォーマットを、AIモデル情報(本開示の<補足>において後述する。以降のモデル情報も同様である)又は専用のシグナリング(例えば、上記フォーマットに関する情報)から推測/取得してもよい。 The format of the data set may correspond to the input/output data of the AI model. The UE infers/obtains the format of the data set from AI model information (described later in the Supplementary section of this disclosure. The same applies to subsequent model information) or dedicated signaling (e.g., information regarding the format described above). Good too.
 図5は、実施形態3.1にかかるシナリオ設定に関する情報の受信の一例を示す図である。これまでの図面と類似する点については重複する説明を繰り返さない(以降も同様)。 FIG. 5 is a diagram illustrating an example of receiving information regarding scenario settings according to Embodiment 3.1. Duplicate explanations regarding points similar to previous drawings will not be repeated (the same applies hereafter).
 本例では、UEは、NWから、ユースケースID#1のAIモデルAに対応するシナリオ設定IDのリスト(シナリオ設定ID#1、#2を示す)についてのシナリオ設定に関する情報を受信する。また、当該シナリオ設定に関する情報は、データセットのフォーマットに関する情報として、データセットのフォーマットがチャネル/プリコーディング行列であることを示す情報を含んでもよい。 In this example, the UE receives from the NW information regarding scenario settings for a list of scenario settings IDs (indicating scenario settings IDs #1 and #2) corresponding to AI model A with use case ID #1. Further, the information regarding the scenario setting may include information indicating that the format of the dataset is a channel/precoding matrix, as information regarding the format of the dataset.
[実施形態3.2:データセットの収集]
 UEは、特定のAIモデルのための訓練用のデータセットを、特定のシナリオ設定のもとで収集してもよい。
[Embodiment 3.2: Data set collection]
The UE may collect training datasets for a particular AI model under particular scenario settings.
 UEは、上記特定のシナリオ設定のデータ収集要求(データ収集要求信号)を受信してもよい。例えば、当該データ収集要求は、特定のシナリオ設定を示すシナリオ設定IDを含んでもよい。UEは、当該データ収集要求が示すシナリオ設定が、実施形態3.1において受信したシナリオ設定に関する情報が示すシナリオ設定に含まれる場合に、当該シナリオ設定のもとでデータセットを収集してもよい。 The UE may receive a data collection request (data collection request signal) for the specific scenario setting. For example, the data collection request may include a scenario setting ID indicating a specific scenario setting. The UE may collect a data set under the scenario configuration indicated by the data collection request if the scenario configuration indicated by the information regarding the scenario configuration received in Embodiment 3.1 is included. .
 UEは、チャネル環境の測定/センシングに基づいて、上記特定のシナリオ設定を決定してもよい。UEは、測定したチャネル環境と、実施形態3.1において受信したシナリオ設定に関する情報が示すシナリオ設定と、を比較し、これらが一致する(シナリオ設定の環境に、測定したチャネル環境が含まれる)場合、UEは一致した当該シナリオ設定のデータセットを収集してもよい。 The UE may determine the particular scenario configuration based on measurements/sensing of the channel environment. The UE compares the measured channel environment and the scenario setting indicated by the information regarding the scenario setting received in Embodiment 3.1, and determines that they match (the environment of the scenario setting includes the measured channel environment). If so, the UE may collect the matching data set of the scenario configuration.
 なお、収集すべきデータセットに対応するモデルID/ユースケースIDのみがUEに通知され、当該UEが、モデルID/ユースケースIDに関連付けられるシナリオ設定のなかから、チャネル環境の測定/センシングに基づいて、上記特定のシナリオ設定を決定してもよい。 Note that only the model ID/use case ID corresponding to the data set to be collected is notified to the UE, and the UE selects the model ID/use case ID based on channel environment measurement/sensing from among the scenario settings associated with the model ID/use case ID. The specific scenario settings may be determined based on the above.
 UEは、収集したデータセットに、対応するシナリオ設定IDを付与してもよい。UEは、NWに対して、特定のシナリオ設定のためのデータセットが利用可能である(収集できた)ことを示す情報を送信してもよい。 The UE may assign a corresponding scenario setting ID to the collected data set. The UE may transmit information indicating that a data set for a specific scenario setting is available (collected) to the NW.
 データ収集要求に基づく制御と、チャネル環境の測定/センシングに基づく制御と、は組み合わせて用いられてもよい。 Control based on data collection requests and control based on measurement/sensing of the channel environment may be used in combination.
 なお、本開示において、データセットは、データサーバから、シナリオ設定IDに基づいて収集されてもよいし、データセットのフォーマットに対応するチャネル測定に基づいて収集されてもよい。 Note that in the present disclosure, the data set may be collected from the data server based on the scenario setting ID, or may be collected based on channel measurements corresponding to the format of the data set.
 なお、本開示において、データサーバは、レポジトリ、アップローダ、ライブラリ、クラウドサーバ、単にサーバなどと互いに読み替えられてもよい。また、本開示におけるデータサーバは、GitHub(登録商標)など任意のプラットフォームによって提供されてもよく、任意の企業/団体によって運営されてもよい。 Note that in the present disclosure, the data server may be interchanged with a repository, an uploader, a library, a cloud server, or simply a server. Further, the data server in the present disclosure may be provided by any platform such as GitHub (registered trademark), and may be operated by any company/organization.
 UEは、NW指示(例えば、要求/トリガ/ターミネート)のみに基づいて、特定のAIモデル訓練のためのデータセットを収集してもよい。この場合、シナリオ設定は、UEに対して透過的であってもよい。UEは、現在の環境を把握しなくても、NW指示に基づいてデータセットを収集さえすればよいため、UE負荷の低減が期待できる。 The UE may collect datasets for specific AI model training based solely on NW instructions (e.g. request/trigger/terminate). In this case, the scenario configuration may be transparent to the UE. Since the UE only needs to collect data sets based on NW instructions without knowing the current environment, a reduction in the UE load can be expected.
 図6は、実施形態3.2にかかるデータセットの収集の一例を示す図である。 FIG. 6 is a diagram illustrating an example of data set collection according to Embodiment 3.2.
 UEは、NWから、シナリオ設定ID#1のトリガ情報を受信し、当該情報に基づいてシナリオ設定ID#1向けのデータセットを収集してもよい。なお、本開示において、あるシナリオ設定ID向けのデータセットを収集することは、収集したデータセットがあるシナリオ設定ID向けであると関連付け(又はラベリング)することを意味してもよい。 The UE may receive the trigger information for the scenario setting ID #1 from the NW, and collect the data set for the scenario setting ID #1 based on the information. Note that in the present disclosure, collecting a data set for a certain scenario setting ID may mean associating (or labeling) the collected data set as being for a certain scenario setting ID.
 また、UEは、上記トリガ情報を受信しない場合であっても、測定したチャネル環境/センシング結果がシナリオ設定ID#1に該当する(例えば、位置がレンジ1に該当し、AoA/ZoAがレンジXに該当する)ことを認識すると、シナリオ設定ID#1向けのデータセットを収集してもよい。 Furthermore, even if the UE does not receive the above trigger information, the measured channel environment/sensing result corresponds to scenario setting ID #1 (for example, the position corresponds to range 1 and the AoA/ZoA corresponds to range X). ), the data set for scenario setting ID #1 may be collected.
 また、UEは、シナリオ設定ID#1向けのデータセットを収集すると、シナリオ設定ID#1のためのデータセットが利用可能であることを示す情報を送信してもよい。 Furthermore, when the UE collects the data set for scenario setting ID #1, it may transmit information indicating that the data set for scenario setting ID #1 is available.
[実施形態3.3:データセットの送信]
 UEは、収集した特定のAIモデルのための訓練用のデータセットに関する情報(データセット報告と呼ばれてもよい)を、NWに送信してもよい。
[Embodiment 3.3: Transmission of data set]
The UE may send information regarding the collected training dataset for a particular AI model (which may be referred to as a dataset report) to the NW.
 当該データセットに関する情報には、データセット自体、対応するシナリオ設定ID/モデルID/ユースケースIDなどの少なくとも1つが含まれてもよい。 The information regarding the data set may include at least one of the data set itself, the corresponding scenario setting ID/model ID/use case ID, etc.
 UEは、データセット要求(データセット要求信号)を受信した後(又は当該要求の受信時応じて)、データセットに関する情報を送信してもよい。データセット要求は、データセットの要求を希望するシナリオ設定ID/モデルID/ユースケースIDを示す情報を含んでもよい。UEは、データセット要求を受信すると、前回のデータセット要求に対する(データセットに関する情報の)送信以降に収集された全データセットに関する情報を送信してもよいし、特定のシナリオ設定ID/モデルID/ユースケースIDに関連付けられるデータセットに関する情報を送信してもよい(例えば、データセット要求が当該特定のシナリオ設定ID/モデルID/ユースケースIDを示す情報を含む場合)。 After receiving the data set request (data set request signal) (or in response to the reception of the request), the UE may transmit information regarding the data set. The data set request may include information indicating a scenario setting ID/model ID/use case ID for which the data set is desired to be requested. When the UE receives a dataset request, the UE may transmit information regarding all datasets collected since sending (information regarding datasets) in response to the previous dataset request, or may transmit information regarding all datasets collected since the transmission of information regarding the dataset in response to the previous dataset request, or may send information regarding the specific scenario configuration ID/model ID. / Information regarding the dataset associated with the use case ID may be sent (eg, if the dataset request includes information indicating the particular scenario configuration ID/model ID/use case ID).
 UEは、シナリオ設定ID/モデルID/ユースケースIDを示すデータセット要求の受信に応じてデータセットに関する情報を送信する場合、当該データセットに関する情報にシナリオ設定ID/モデルID/ユースケースIDを含めなくてもよい(NWがデータセットに対応するIDを把握できるため)。 When the UE transmits information regarding a dataset in response to receiving a dataset request indicating a scenario configuration ID/model ID/use case ID, the UE shall include the scenario configuration ID/model ID/use case ID in the information regarding the dataset. It is not necessary (because the NW can know the ID corresponding to the data set).
 なお、データセットに関する情報の(報告の)ための通信(例えば、UE-BS間の通信、BS-コアネットワークの通信、コアネットワーク内の通信など)は、データセット送信のための新しいサービス品質(Quality of Service(QoS))レベルに基づいて行われてもよい。例えば、AIモデルのデータセット送信のための、新たな5G QoS Identifier(5QI)/QoS Class Identifier(QCI)の値が定義されてもよい。 Note that communications for (reporting) information regarding datasets (e.g., UE-BS communications, BS-core network communications, communications within the core network, etc.) are subject to the new quality of service for dataset transmission ( It may also be performed based on the Quality of Service (QoS) level. For example, new 5G QoS Identifier (5QI)/QoS Class Identifier (QCI) values for transmitting AI model data sets may be defined.
 UE/BS/コアネットワークに含まれる装置は、データセット要求に関する情報の(報告の)ための通信について、上記新たな5QI/QCI値に基づく制御を行ってもよい。例えば、UE/BS/コアネットワークに含まれる装置は、上記新たな5QI/QCI値を示すパケット、又は上記新たな5QI/QCI値に対応するベアラ(又はネットワークスライス)の通信について、上記新たな5QI/QCI値に対応するQoS制御を行ってもよい。 The device included in the UE/BS/core network may control communication for (reporting) information regarding the data set request based on the new 5QI/QCI value. For example, a device included in the UE/BS/core network may receive the new 5QI/QCI value for communication of a packet indicating the new 5QI/QCI value or a bearer (or network slice) corresponding to the new 5QI/QCI value. QoS control corresponding to the /QCI value may be performed.
 UEは、上記データセットに関する情報を、データサーバに送信(アップロード)してもよい。当該送信はUEからNWへの送信と、NWからデータサーバへの転送と、を含んでもよい。 The UE may transmit (upload) information regarding the data set to the data server. The transmission may include transmission from the UE to the NW and transfer from the NW to the data server.
 図7は、実施形態3.3にかかるデータセットの送信の一例を示す図である。 FIG. 7 is a diagram illustrating an example of data set transmission according to Embodiment 3.3.
 UEは、NWからデータセット要求(リクエスト)を受信すると、NWに対してデータセットに関する情報を送信してもよい。この情報は、シナリオ設定ID#1を示す情報を含んでもよい。この情報は、NWから特定のデータサーバに転送されてもよい。データセットに関する情報は、5QI=XXに対応するQoSの通信によって行われてもよい。 Upon receiving a data set request from the NW, the UE may transmit information regarding the data set to the NW. This information may include information indicating scenario setting ID #1. This information may be transferred from the NW to a specific data server. Information regarding the data set may be provided through QoS communication corresponding to 5QI=XX.
 以上説明した第3の実施形態によれば、NW側におけるAIモデルの訓練を適切に実施できる。 According to the third embodiment described above, it is possible to appropriately train the AI model on the NW side.
<第4の実施形態>
 第4の実施形態は、UE側における訓練に関する。第4の実施形態は、UE側だけで訓練処理が完全に実施されるAIモデルの訓練に関連してもよい。
<Fourth embodiment>
The fourth embodiment relates to training on the UE side. The fourth embodiment may relate to training an AI model, where the training process is performed entirely on the UE side.
 第4の実施形態において、UEは、実施形態3.1と同様にシナリオ設定に関する情報を受信したり、実施形態3.2と同様にデータセットの収集を行ったりしてもよい。 In the fourth embodiment, the UE may receive information regarding scenario settings as in Embodiment 3.1, or may collect data sets as in Embodiment 3.2.
 UEは、シナリオ設定IDに関連付けられて収集されたデータセットのグループに基づいて、AIモデルを訓練してもよい。本開示において、「シナリオ設定IDに関連付けられて収集されたデータセットのグループに基づいてAIモデルを訓練する」は、「シナリオ設定IDについてAIモデルを訓練する」と互いに読み替えられてもよい。 The UE may train the AI model based on the group of collected datasets associated with the scenario configuration ID. In this disclosure, "training an AI model based on a group of datasets collected in association with a scenario setting ID" may be interchanged with "training an AI model for a scenario setting ID."
 UEは、NWからモデル訓練情報(訓練指示、訓練要求などと呼ばれてもよい)を受信し、当該情報に対応するデータセットを用いてAIモデルを訓練してもよい。モデル訓練情報は、訓練に用いるデータセットに関連付けられるユースケースID/モデルID/シナリオ設定ID(のリスト)の情報を含んでもよい。例えば、NWは、あるシナリオ設定のもとでのモデルが有用である/性能が劣ると判断した場合に、当該シナリオ設定のIDを含むモデル訓練情報をUEに送信し、当該シナリオ設定に関連付けられるAIモデルをUEに訓練させてもよい。 The UE may receive model training information (which may be referred to as training instructions, training requests, etc.) from the NW, and may train the AI model using the dataset corresponding to the information. The model training information may include information on (a list of) use case ID/model ID/scenario setting ID associated with the dataset used for training. For example, if the NW determines that a model under a certain scenario setting is useful/has poor performance, the NW transmits model training information including the ID of the scenario setting to the UE, and the model is associated with the scenario setting. The AI model may be trained on the UE.
 UEは、チャネル状態の測定結果に応じて、AIモデルを訓練してもよい。例えば、チャネル状態の測定結果が特定のシナリオ設定に一致する(例えば、シナリオ設定の環境に、測定したチャネル状態が含まれる)場合、UEは当該特定のシナリオ設定に関連付けられるAIモデルを訓練してもよい。 The UE may train the AI model according to the measurement results of the channel conditions. For example, if a channel condition measurement matches a particular scenario configuration (e.g., the environment of the scenario configuration includes the measured channel condition), the UE may train an AI model associated with the particular scenario configuration. Good too.
 UEは、データセットの利用可能なシナリオ設定の全ての組み合わせについて、AIモデルを訓練してもよい。例えば、第3の実施形態で述べたように、UEは、モデルID及びシナリオ設定IDを受信すると、UEは、当該モデルID/シナリオ設定IDに対応する全ての可能な組合せについて、AIモデルを訓練してもよい。 The UE may train the AI model for all combinations of available scenario settings of the dataset. For example, as described in the third embodiment, when the UE receives a model ID and a scenario setting ID, the UE trains an AI model for all possible combinations corresponding to the model ID/scenario setting ID. You may.
 UEは、GC性能をモニタして(第5の実施形態で後述)、特定のシナリオ設定の下でGC性能が劣っている場合、当該特定のシナリオ設定についてAIモデルを訓練してもよい。 The UE may monitor the GC performance (described later in the fifth embodiment) and, if the GC performance is poor under a particular scenario setting, train the AI model for the particular scenario setting.
 UEは、AIモデルの訓練後、当該AIモデルの可用性に関する情報(モデル可用性情報と呼ばれてもよい)を、ユースケースID/モデルID/シナリオ設定IDを含めて、NWに送信してもよい。当該情報に含まれるユースケースID、モデルIDは、適用されるユースケース、AIモデルをそれぞれ示してもよい。当該情報に含まれるシナリオ設定IDは、訓練されたシナリオ設定を示してもよい。モデル可用性情報は、例えば、モデルを利用可能であることを示す情報に該当してもよい。 After training the AI model, the UE may transmit information regarding the availability of the AI model (which may be referred to as model availability information) to the NW, including the use case ID/model ID/scenario setting ID. . The use case ID and model ID included in the information may indicate the applied use case and AI model, respectively. The scenario setting ID included in the information may indicate a trained scenario setting. Model availability information may correspond to, for example, information indicating that a model is available.
 図8は、第4の実施形態にかかるUE側の訓練の一例を示す図である。本例では、UEは既にシナリオ設定ID#1及びシナリオ設定ID#2についてデータセットを収集済みであると想定する。 FIG. 8 is a diagram showing an example of training on the UE side according to the fourth embodiment. In this example, it is assumed that the UE has already collected data sets for scenario setting ID #1 and scenario setting ID #2.
 UEは、NWからユースケースID/モデルID/シナリオ設定IDを含むモデル訓練情報を受信すると、シナリオ設定IDに対応するシナリオ設定について、モデルIDに対応するモデルを訓練してもよい。 When the UE receives model training information including the use case ID/model ID/scenario setting ID from the NW, the UE may train the model corresponding to the model ID for the scenario setting corresponding to the scenario setting ID.
 例えば、UEは、モデルID#1及びシナリオ設定ID#1を示すモデル訓練情報を受信すると、モデルID#1のモデルをシナリオ設定ID#1のデータセットを用いて訓練してもよい。また、UEは、モデルID#1及びシナリオ設定ID#2を示すモデル訓練情報を受信すると、モデルID#1のモデルをシナリオ設定ID#2のデータセットを用いて訓練してもよい。また、UEは、モデルID#1及びシナリオ設定ID#1、#2を示すモデル訓練情報を受信すると、モデルID#1のモデルをシナリオ設定ID#1のデータセット及びシナリオ設定ID#2のデータセットを用いて訓練してもよい。 For example, upon receiving model training information indicating model ID #1 and scenario setting ID #1, the UE may train the model with model ID #1 using the data set with scenario setting ID #1. Further, upon receiving model training information indicating model ID #1 and scenario setting ID #2, the UE may train the model with model ID #1 using the data set with scenario setting ID #2. Further, upon receiving the model training information indicating the model ID #1 and the scenario setting IDs #1 and #2, the UE transmits the model with the model ID #1 to the data set of the scenario setting ID #1 and the data set of the scenario setting ID #2. You can also train using sets.
 以上説明した第4の実施形態によれば、UE側におけるAIモデルの訓練を適切に実施できる。 According to the fourth embodiment described above, it is possible to appropriately train an AI model on the UE side.
<第5の実施形態>
 第5の実施形態は、UE側モデルに関する。第5の実施形態は、UE側だけで推論が完全に実施されるAIモデルに関連してもよい。
<Fifth embodiment>
The fifth embodiment relates to a UE side model. The fifth embodiment may relate to an AI model where the inference is performed entirely on the UE side.
[実施形態5.1:シナリオ設定IDのリストの情報の受信]
 UEは、AIモデルのモデルデプロイメント手順において、シナリオ設定IDのリストの情報を受信してもよい。当該リストの情報は、当該AIモデルのモデル情報に含まれてもよいし、当該AIモデルのモデル情報とは独立の情報であってもよい。後者の場合、UEは、AIモデルIDに関連付けられるシナリオ設定IDを参照してもよい。シナリオ設定IDとモデルIDとの対応関係は、規格において規定されてもよいし、当該対応関係に関する情報がUEに通知されてもよい。
[Embodiment 5.1: Receiving information on list of scenario setting IDs]
The UE may receive information on the list of scenario configuration IDs in the model deployment procedure of the AI model. The information on the list may be included in the model information of the AI model, or may be information independent of the model information of the AI model. In the latter case, the UE may refer to the scenario configuration ID associated with the AI model ID. The correspondence between the scenario setting ID and the model ID may be defined in the standard, or information regarding the correspondence may be notified to the UE.
 UEは、例えば、受信したAIモデル情報/シナリオ設定IDのリストの情報に基づいて、あるシナリオ設定IDのシナリオ設定の環境下において、対応するAIモデルIDのモデルを使用する/アクティベートする/デプロイすると決定(選択)してもよい。 For example, the UE uses/activates/deploys a model with a corresponding AI model ID in an environment of a scenario setting with a certain scenario setting ID based on the information in the received AI model information/scenario setting ID list. You may decide (select).
 UEは、同じシナリオ設定IDを含む(又は関連付けられる)複数のAIモデルの情報を受信した場合、これらのAIモデルの中から、以下の少なくとも1つに基づいて、使用する/アクティベートする/デプロイするモデルを選択してもよい:
 ・AIモデルに関連付けられるシナリオ設定及び測定されるチャネル状態、
 ・UEの状態(例えば、UEの速度)、
 ・NWからの設定/アクティベーション。
When the UE receives information on multiple AI models that include (or are associated with) the same scenario configuration ID, the UE uses/activates/deploys from among these AI models based on at least one of the following: You may choose a model:
- Scenario settings and measured channel conditions associated with the AI model;
- UE state (e.g. UE speed);
・Settings/activation from NW.
 なお、UEは、異なるシナリオ設定IDを含む(又は関連付けられる)複数のAIモデルの情報を受信した場合でも、上記のモデル選択を実施してもよい。 Note that the UE may perform the above model selection even when receiving information on multiple AI models that include (or are associated with) different scenario setting IDs.
 UEは、あるシナリオ設定に適用するモデルを選択(決定)する場合、NWに対して決定したモデルに関するモデル情報(及び対応するシナリオ設定ID)を報告してもよい。 When selecting (determining) a model to be applied to a certain scenario setting, the UE may report model information (and corresponding scenario setting ID) regarding the determined model to the NW.
 図9は、実施形態5.1にかかるモデル選択の一例を示す図である。本例において、UEは、モデルID=00001及び00002を示すAIモデル情報を受信した。これらのIDに対応するAIモデルは、図示されるように最高のCSI-RSビームを推定する機能を有するなど規定されている。なお、あくまで例であって、モデルの詳細はこれに限られない。 FIG. 9 is a diagram showing an example of model selection according to Embodiment 5.1. In this example, the UE received AI model information indicating model ID=00001 and 00002. The AI models corresponding to these IDs are defined as having the function of estimating the highest CSI-RS beam, as shown in the figure. Note that this is just an example, and the details of the model are not limited to this.
 本例では、モデルID=00001はシナリオ設定ID#1及び#2に関連付けられ、モデルID=00002はシナリオ設定ID#2及び#3に関連付けられており、どちらも同じシナリオ設定ID#2を含む。 In this example, model ID = 00001 is associated with scenario setting ID #1 and #2, and model ID = 00002 is associated with scenario setting ID #2 and #3, both of which include the same scenario setting ID #2. .
 UEは、例えば測定されるチャネル状態に基づいて、どちらのモデルを用いるかを決定してもよい。UEは、図示されるUEの移動経路の最初の位置においては、現在の状態により近いシナリオ設定ID(#1-#2)に対応するモデルID=00001のモデルを用いると決定してもよく、中央の位置においては、UEは、現在の状態により近いシナリオ設定ID(#2-#3)に対応するモデルID=00002のモデルを用いると決定してもよい。 The UE may decide which model to use, for example, based on the measured channel conditions. The UE may decide to use the model with model ID = 00001 corresponding to the scenario configuration ID (#1-#2) that is closer to the current state at the first position of the UE's movement path illustrated; In the central position, the UE may decide to use the model with model ID=00002, which corresponds to the scenario configuration ID (#2-#3) that is closer to the current state.
 以上説明した実施形態5.1によれば、UEは適切にモデルを選択できる。 According to Embodiment 5.1 described above, the UE can appropriately select a model.
[実施形態5.2:GC性能のモニタ]
 UEは、モデル推論中に、GC性能の状態をモニタしてもよい。GC性能の重要性能指標(Key Performance Indicator(KPI))は、以下の少なくとも1つであってもよい(言い換えると、GC性能は、以下の少なくとも1つのKPIによって表され/評価されてもよい):
 ・モデル推論の後に取得可能な、特定のユースケースに対する最終的な/実験的な性能のKPI(例えば、スループット)、
 ・モデル訓練/テスト後に取得可能な、AIモデル性能のKPI(例えば、一般化エラー/バイアス(バイアスエラー)/分散(分散エラー)、レイヤ回転、シナリオ毎のAIモデル性能)。
[Embodiment 5.2: Monitoring GC performance]
The UE may monitor the state of GC performance during model inference. A Key Performance Indicator (KPI) of GC performance may be at least one of the following (in other words, GC performance may be represented/evaluated by at least one KPI below): :
Final/experimental performance KPIs for specific use cases (e.g. throughput) that can be obtained after model inference;
- KPIs of AI model performance that can be obtained after model training/testing (e.g., generalization error/bias/variance (dispersion error), layer rotation, AI model performance for each scenario).
 一般化エラー/バイアス/分散は、例えば、異なるシナリオ設定におけるAIモデルの出力を比較することによって得られる値であってもよい。レイヤ回転は、ニューラルネットワークの各層についての、重みベクトルと特定のベクトル(例えば、訓練済み重みベクトル、訓練前の重みベクトル)など)との間の角度の余弦(コサイン)のばらつき(又は変化)であってもよい。 The generalization error/bias/variance may be, for example, a value obtained by comparing the output of an AI model in different scenario settings. Layer rotation is the variation (or change) in the cosine of the angle between the weight vector and a particular vector (e.g. trained weight vector, untrained weight vector, etc.) for each layer of the neural network. There may be.
 UEは、1つ以上のGC性能について、以下の条件のうち少なくとも1つを満たすかどうかをチェック(評価)してもよい:
 ・オプション1(絶対方式):あるシナリオ設定下でのアクティブな/レジスタされる/設定されるモデルのGC性能が、閾値より低い/高い、
 ・オプション2(相対方式):あるシナリオ設定下でのアクティブな/レジスタされる/設定されるモデルのGC性能が、別のシナリオ設定下でのGC性能より低い/高い、
 ・オプション3:あるモデルのGC性能が、一定期間にわたって一定回数以上閾値未満となった。
The UE may check (evaluate) whether at least one of the following conditions is met for one or more GC performance:
・Option 1 (absolute method): The GC performance of the active/registered/configured model under a certain scenario setting is lower/higher than the threshold,
- Option 2 (relative method): GC performance of active/registered/configured model under one scenario setting is lower/higher than GC performance under another scenario setting,
・Option 3: The GC performance of a certain model falls below the threshold a certain number of times over a certain period of time.
 なお、本開示において、GC性能は、GC性能にオフセットX(Xは例えば実数)を加えた性能と互いに読み替えられてもよい。オフセットXは、純粋な性能(再現性能)とは別の要因(例えば、モニタされない/モニタ不要な性能)に基づいて決定されてもよい。オフセットを導入することによって、当該別の要因も包括的に考慮したモデル評価が可能である。 Note that in the present disclosure, GC performance may be read as performance obtained by adding offset X (X is, for example, a real number) to GC performance. Offset X may be determined based on factors other than pure performance (reproducibility performance) (eg, unmonitored/monitor-free performance). By introducing an offset, it is possible to evaluate a model that comprehensively considers other factors.
 ここで、モニタされない/モニタ不要な性能は、オーバーヘッド、(モデル/算出される値の)信頼性、モデルの複雑さ、算出にかかる電力消費などの少なくとも1つに該当してもよい。 Here, the unmonitored/unnecessary performance may correspond to at least one of overhead, reliability (of the model/calculated value), model complexity, power consumption for calculation, etc.
 X、閾値などの値(又は当該値に関する情報)は、予め規格において規定されてもよいし、UE能力に基づいて決定されてもよいし、NWからUEに通知されてもよいし、シナリオ設定に含まれてもよい(シナリオ設定に基づいて決定されてもよい)し、AIモデル情報に含まれてもよい(モデルに基づいて決定されてもよい)。X、閾値などの値に関する情報は、モデル/モデルのグループ/シナリオ設定/シナリオ設定のグループごとに規定/通知されてもよい。 Values such as X and threshold values (or information regarding the values) may be specified in advance in the standard, may be determined based on the UE capabilities, may be notified from the NW to the UE, or may be determined based on scenario settings. (may be determined based on the scenario settings) or may be included in the AI model information (may be determined based on the model). Information regarding values such as X and threshold values may be defined/notified for each model/model group/scenario setting/scenario setting group.
 UEがオプション1-3のどれ(又はどの組み合わせ)をチェックするかについては、モデル/モデルのグループ/シナリオ設定/シナリオ設定のグループごとに規定/通知されてもよい。 Which (or which combination) of options 1-3 the UE should check may be prescribed/notified for each model/model group/scenario setting/scenario setting group.
 図10A及び10Bは、実施形態5.2におけるGC性能評価の一例を示す図である。 FIGS. 10A and 10B are diagrams showing an example of GC performance evaluation in Embodiment 5.2.
 図10Aは、上記オプション1の例を示す。本例では、UEは、モデルID#1かつシナリオ設定ID#1のGC性能が閾値より低いと評価する。 FIG. 10A shows an example of option 1 above. In this example, the UE evaluates that the GC performance of model ID #1 and scenario setting ID #1 is lower than the threshold value.
 図10Bは、上記オプション2の例を示す。本例では、UEは、モデルID#1かつシナリオ設定ID#1のGC性能にオフセットX(ただし、X>0)が適用されると想定する。また、UEは、モデルID#1かつシナリオ設定ID#2のGC性能が、オフセットXが適用されたモデルID#1かつシナリオ設定ID#1のGC性能より低いと評価する。 FIG. 10B shows an example of option 2 above. In this example, the UE assumes that offset X (X>0) is applied to the GC performance of model ID #1 and scenario setting ID #1. Further, the UE evaluates that the GC performance of model ID #1 and scenario setting ID #2 is lower than the GC performance of model ID #1 and scenario setting ID #1 to which offset X is applied.
 上記オプション3をより具体的に説明する。オプション3は、あるモデル/あるシナリオ設定について、例えば以下のステップを含んでもよい:
 ・GC性能が第1の値未満であることが第1のカウンタによって第1の回数以上カウントされると、タイマを起動する、
 ・タイマが起動中、GC性能が第2の値より大きいことが第2のカウンタによって第2の回数以上カウントされると、上記タイマを停止する、
 ・タイマが起動中、GC性能が第1の値未満である場合、第2のカウンタをリセットする、
 ・GC性能が第1の値より大きい場合、第1のカウンタをリセットする、
 ・タイマが満了すると、GC性能は「低い」と評価する。
Option 3 above will be explained in more detail. Option 3 may include, for example, the following steps for a model/scenario configuration:
- start a timer when the first counter counts that the GC performance is less than the first value for a first number of times or more;
- Stop the timer when the second counter counts a second number of times or more that the GC performance is greater than the second value while the timer is running;
- Resetting the second counter if the GC performance is less than the first value while the timer is running;
- if the GC performance is greater than the first value, resetting the first counter;
- When the timer expires, the GC performance is evaluated as "poor".
 なお、第1の値は、第1の閾値(thresholdout)であってもよいし、特定のモデル/シナリオ設定についての基準値(ベースライン値)から第1のオフセット(offsetout)だけ低い値であってもよい。 Note that the first value may be a first threshold value (threshold out ), or a value that is lower by a first offset (offset out ) from a reference value (baseline value) for a specific model/scenario setting. It may be.
 また、第2の値は、第2の閾値(thresholdin)であってもよいし、特定のモデル/シナリオ設定についての基準値(ベースライン値)から第2のオフセット(offsetin)だけ大きいであってもよい。 Additionally, the second value may be a second threshold (threshold in ) or may be a second offset (offset in ) greater than the reference value (baseline value) for the particular model/scenario setting. There may be.
 なお、カウンタのリセットは、カウンタを特定の値(例えば、0)にすることを意味してもよい。 Note that resetting the counter may mean setting the counter to a specific value (for example, 0).
 ここで、第1/第2の閾値、ベースライン値、第1/第2のオフセット、第1/第2のカウンタ、カウンタの粒度、タイマの時間長などの値(又は当該値に関する情報)は、予め規格において規定されてもよいし、UE能力に基づいて決定されてもよいし、NWからUEに通知されてもよいし、AIモデル情報に含まれてもよい(モデルに基づいて決定されてもよい)。これらの値に関する情報は、モデル/シナリオ設定ごとに規定/通知されてもよい。 Here, values (or information regarding the values) such as the first/second threshold, baseline value, first/second offset, first/second counter, counter granularity, timer time length, etc. may be defined in advance in the standard, may be determined based on the UE capabilities, may be notified from the NW to the UE, or may be included in the AI model information (determined based on the model). ). Information regarding these values may be defined/notified for each model/scenario setting.
 図11は、実施形態5.2におけるGC性能評価の一例を示す図である。本例では、GC性能は、最初は良いが、第1の値未満であることが第1のカウンタによって第1の回数以上カウントされると、タイマが起動される。その後、タイマが起動中にGC性能が第2の値より大きいことが第2のカウンタによって何回かはカウントされたが、第2のカウンタが第2の回数以上にはならず、タイマが満了し、このモデル/シナリオ設定のGC性能は低いと評価される。 FIG. 11 is a diagram showing an example of GC performance evaluation in Embodiment 5.2. In this example, the GC performance is initially good, but when the first counter counts that it is less than a first value a first number of times, a timer is started. After that, while the timer was running, the second counter counted that the GC performance was greater than the second value several times, but the second counter did not exceed the second number and the timer expired. However, the GC performance of this model/scenario setting is evaluated to be low.
 実施形態5.2において、UEは、1つ以上のGC性能を評価し、上位K(Kは整数)個の性能を選択(決定)してもよい。 In embodiment 5.2, the UE may evaluate one or more GC performances and select (determine) the top K (K is an integer) performances.
 Kの値(又は当該値に関する情報)は、予め規格において規定されてもよいし、UE能力に基づいて決定されてもよいし、NWからUEに通知されてもよいし、モデルに紐づいた情報でもよい(モデルに基づいて決定されてもよい)。 The value of K (or information regarding the value) may be specified in advance in the standard, may be determined based on the UE capability, may be notified to the UE from the NW, or may be determined based on the model. It may be information (may be determined based on a model).
 なお、本開示において、UEは、1つ以上のGC性能と、1つ以上のモニタされない/モニタ不要な性能と、に基づいてGC性能を導出してもよい。また、本開示において、GC性能は、評価/比較の際には、ある期間にわたって平均化/重みづけされてもよい。当該期間、平均化/重みづけ手法などに関する情報は、予め規格において規定されてもよいし、UE能力に基づいて決定されてもよいし、NWからUEに通知されてもよいし、モデルに紐づいた情報でもよい(モデルに基づいて決定されてもよい)。 Note that in the present disclosure, the UE may derive GC performance based on one or more GC performances and one or more unmonitored/monitor-unnecessary performances. Also, in this disclosure, GC performance may be averaged/weighted over a period of time when evaluated/compared. Information regarding the period, averaging/weighting method, etc. may be specified in advance in the standard, may be determined based on the UE capability, may be notified from the NW to the UE, or may be linked to the model. (It may also be determined based on a model.)
 なお、UEは、あるモデルのGC性能が十分でない場合、別のモデルへのスイッチングを実施してもよい。UEは、例えば、実施形態5.2で述べた条件(オプション1-3の少なくとも1つ)において評価されるGC性能に基づいて、あるシナリオ設定に適用するモデル(又は利用するモデル)を決定してもよい。 Note that if the GC performance of a certain model is not sufficient, the UE may switch to another model. For example, the UE determines the model to be applied (or the model to be used) to a certain scenario setting based on the GC performance evaluated under the conditions (at least one of options 1-3) described in Embodiment 5.2. You can.
 以上説明した実施形態5.2によれば、UEは適切にGC性能評価を実施できる。 According to Embodiment 5.2 described above, the UE can appropriately perform GC performance evaluation.
 以上説明した第5の実施形態によれば、UE側におけるAIモデルに基づく推論/評価を適切に実施できる。 According to the fifth embodiment described above, inference/evaluation based on the AI model can be appropriately performed on the UE side.
<第6の実施形態>
 第6の実施形態は、UE側モデルに関する。第6の実施形態は、UE側だけで推論が完全に実施されるAIモデルに関連してもよい。
<Sixth embodiment>
The sixth embodiment relates to a UE side model. The sixth embodiment may relate to an AI model where the inference is performed entirely on the UE side.
 まず、性能報告について説明する。第6の実施形態における性能報告は、GC性能に関する報告であってもよい。 First, we will explain the performance report. The performance report in the sixth embodiment may be a report regarding GC performance.
[報告のタイミング]
 UEは、NWから通知される情報に基づいて性能報告を送信してもよい。例えば、UEは、RRC/MAC CE/DCIに基づいて、周期的/セミパーシステント/非周期的にスケジューリングされる上りリンクリソースにおいて、性能報告を送信してもよい。この場合、性能報告はUCIに含まれてもよい。このとき、UEは、報告の周期/オフセットを、RRC/MAC CE/DCIに基づいて決定してもよい。
[Timing of report]
The UE may transmit a performance report based on information notified from the NW. For example, the UE may transmit performance reports in periodically/semi-persistent/aperiodically scheduled uplink resources based on RRC/MAC CE/DCI. In this case, the performance report may be included in the UCI. At this time, the UE may determine the reporting period/offset based on the RRC/MAC CE/DCI.
 UEは、自身が性能報告に関するトリガを判断して、当該トリガがされた場合に性能報告を送信してもよい。例えば、UEは、実施形態5.2で述べた条件(例えば、オプション1-3の少なくとも1つ)が満たされる場合に、性能報告を送信してもよい。この場合、性能報告はMAC CEに含まれてもよい(PUSCHがスケジューリングされれば送信できるため)。 The UE may itself determine the trigger related to the performance report and transmit the performance report when the trigger is triggered. For example, the UE may send a performance report if the conditions mentioned in embodiment 5.2 (eg, at least one of options 1-3) are met. In this case, the performance report may be included in the MAC CE (because it can be transmitted if the PUSCH is scheduled).
 UEは、新しいモデルがアクティベート/レジスタ/設定される場合に、性能報告を送信してもよい。また、UEは、設定/指定されるパラメータに基づくタイマ(例えば、オプション3に示したタイマ)が満了する場合に、性能報告を送信してもよい。 The UE may send performance reports when a new model is activated/registered/configured. The UE may also send a performance report when a timer based on configured/specified parameters (eg, the timer shown in option 3) expires.
[報告の内容]
 性能報告には、実施形態5.2で示した、1つ以上のGC性能を示す情報、シナリオ設定ID(のリスト)に対応するモデルの性能を示す情報、などの少なくとも1つが含まれてもよい。
[Contents of report]
The performance report may include at least one of the information shown in Embodiment 5.2, such as information indicating one or more GC performances, information indicating the performance of a model corresponding to (a list of) scenario setting IDs, etc. good.
 性能報告には、報告されるGC性能に対応するモデル/シナリオ設定を示す情報(例えば、モデルID、シナリオ設定ID)が含まれてもよい。性能報告に含まれるGC性能を示す情報の数、性能報告に含まれるシナリオ設定ID(のリスト)の数、などの少なくとも1つは、実施形態5.2で示したKに基づいて決定されてもよい。 The performance report may include information indicating the model/scenario setting corresponding to the reported GC performance (for example, model ID, scenario setting ID). At least one of the number of information indicating GC performance included in the performance report, the number (list of) scenario setting IDs included in the performance report, etc. is determined based on K shown in Embodiment 5.2. Good too.
 UEは、報告される性能を、以下の少なくとも1つに基づいて決定してもよい:
 ・実施形態5.2で述べた条件(例えば、オプション1-3の少なくとも1つ)において評価される性能、
 ・実施形態5.2で示したKに基づいて選択される性能、
 ・NWからの通知に基づいて報告対象として決定される性能。
The UE may determine the reported performance based on at least one of the following:
- Performance evaluated under the conditions described in Embodiment 5.2 (for example, at least one of options 1-3),
- Performance selected based on K shown in Embodiment 5.2,
-Performance determined to be reported based on notification from NW.
 上記通知は、例えば、モデルのアクティベーションコマンドであってもよいし、報告/モニタ対象を示す情報を含む通知であってもよい。UEは、アクティベート/モニタされるモデルのGC性能を報告してもよい。 The above notification may be, for example, a model activation command, or may be a notification including information indicating a report/monitor target. The UE may report the GC performance of activated/monitored models.
 例えば、UEがモデル#1及び#2を有する場合であって、これらのうちモデル#2のみがアクティベートされる場合、UEは、モデル#2の性能を報告してもよい。UEは、モデル#1の性能は報告しなくてもよい。 For example, if the UE has models #1 and #2, and only model #2 is activated, the UE may report the performance of model #2. The UE may not report the performance of model #1.
 以上説明した第6の実施形態によれば、UEは適切に性能報告を送信できる。 According to the sixth embodiment described above, the UE can appropriately transmit a performance report.
<第7の実施形態>
 第7の実施形態は、NW側モデルに関する。第7の実施形態は、NW側だけで推論が完全に実施されるAIモデルに関連してもよい。
<Seventh embodiment>
The seventh embodiment relates to a NW side model. The seventh embodiment may relate to an AI model in which inference is completely performed only on the NW side.
 UEは、AIモデルのモデル転送手順において、シナリオ設定IDのリストの情報を送信してもよい。当該リストの情報は、当該AIモデルのモデル情報に含まれてもよいし、当該AIモデルのモデル情報とは独立の情報であってもよい。 The UE may transmit information on the list of scenario setting IDs in the model transfer procedure of the AI model. The information on the list may be included in the model information of the AI model, or may be information independent of the model information of the AI model.
 つまり、UEは、シナリオ設定IDのリストの情報を、モデル情報の一部として送信してもよいし、モデル情報とは独立したRRC情報要素として送信してもよい。 In other words, the UE may transmit the information on the list of scenario setting IDs as part of the model information, or as an RRC information element independent of the model information.
 例えば、UEは、モデルID#1及びシナリオ設定ID#1を示すモデル情報を送信してもよいし、モデルID#1及びシナリオ設定ID#2を示すモデル情報を送信してもよいし、モデルID#1及びシナリオ設定ID#1、#2を示すモデル情報を送信してもよい。 For example, the UE may transmit model information indicating model ID #1 and scenario setting ID #1, model information indicating model ID #1 and scenario setting ID #2, or model information indicating model ID #1 and scenario setting ID #2. Model information indicating ID #1 and scenario setting IDs #1 and #2 may be transmitted.
 以上説明した第7の実施形態によれば、UEは、NWに対して適切にシナリオ設定IDを送信できる。 According to the seventh embodiment described above, the UE can appropriately transmit the scenario setting ID to the NW.
<補足>
[AIモデル情報]
 本開示において、AIモデル情報は、以下の少なくとも1つを含む情報を意味してもよい:
 ・AIモデルの入力/出力の情報、
 ・AIモデルの入力/出力のための前処理/後処理の情報、
 ・AIモデルのパラメータの情報、
 ・AIモデルのための訓練情報(トレーニング情報)、
 ・AIモデルのための推論情報、
 ・AIモデルに関する性能情報。
<Supplement>
[AI model information]
In this disclosure, AI model information may mean information including at least one of the following:
・AI model input/output information,
・Pre-processing/post-processing information for AI model input/output,
・Information on AI model parameters,
・Training information for AI models (training information),
・Inference information for AI models,
・Performance information regarding AI models.
 ここで、上記AIモデルの入力/出力の情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・入力/出力データの内容(例えば、RSRP、SINR、チャネル行列(又はプリコーディング行列)における振幅/位相情報、到来角度(Angle of Arrival(AoA))に関する情報、放射角度(Angle of Departure(AoD))に関する情報、位置情報)、
 ・データの補助情報(メタ情報と呼ばれてもよい)、
 ・入力/出力データのタイプ(例えば、不変値(immutable value)、浮動小数点数)、
 ・入力/出力データのビット幅(例えば、各入力値について64ビット)、
 ・入力/出力データの量子化間隔(量子化ステップサイズ)(例えば、L1-RSRPについて、1dBm)、
 ・入力/出力データが取り得る範囲(例えば、[0、1])。
Here, the input/output information of the AI model may include information regarding at least one of the following:
- Contents of input/output data (e.g. RSRP, SINR, amplitude/phase information in channel matrix (or precoding matrix), information on angle of arrival (AoA), angle of departure (AoD)) ), location information),
・Data auxiliary information (may be called meta information),
- type of input/output data (e.g. immutable value, floating point number),
- bit width of input/output data (e.g. 64 bits for each input value),
- Quantization interval (quantization step size) of input/output data (for example, 1 dBm for L1-RSRP),
- The range that input/output data can take (for example, [0, 1]).
 なお、本開示において、AoAに関する情報は、到来方位角度(azimuth angle of arrival)及び到来天頂角度(zenith angle of arrival(ZoA))の少なくとも1つに関する情報を含んでもよい。また、AoDに関する情報は、例えば、放射方位角度(azimuth angle of departure)及び放射天頂角度(zenith angle of depature(ZoD))の少なくとも1つに関する情報を含んでもよい。 Note that in the present disclosure, the information regarding AoA may include information regarding at least one of the azimuth angle of arrival and the zenith angle of arrival (ZoA). Further, the information regarding the AoD may include, for example, information regarding at least one of a radial azimuth angle of departure and a radial zenith angle of depth (ZoD).
 本開示において、位置情報は、UE/NWに関する位置情報であってもよい。位置情報は、測位システム(例えば、衛星測位システム(Global Navigation Satellite System(GNSS)、Global Positioning System(GPS)など))を用いて得られる情報(例えば、緯度、経度、高度)、当該UEに隣接する(又はサービング中の)BSの情報(例えば、BS/セルの識別子(Identifier(ID))、BS-UE間の距離、UE(BS)から見たBS(UE)の方向/角度、UE(BS)から見たBS(UE)の座標(例えば、X/Y/Z軸の座標)など)、UEの特定のアドレス(例えば、Internet Protocol(IP)アドレス)などの少なくとも1つを含んでもよい。UEの位置情報は、BSの位置を基準とする情報に限られず、特定のポイントを基準とする情報であってもよい。 In the present disclosure, the location information may be location information regarding the UE/NW. Location information includes information (e.g., latitude, longitude, altitude) obtained using a positioning system (e.g., Global Navigation Satellite System (GNSS), Global Positioning System (GPS), etc.), and information (e.g., latitude, longitude, altitude) adjacent to the UE. Information on the serving (or serving) BS (e.g., BS/cell identifier (ID), BS-UE distance, direction/angle of the BS (UE) as seen from the UE (BS), The information may include at least one of the coordinates of the BS (UE) as seen from the BS (e.g., X/Y/Z axis coordinates, etc.), the specific address of the UE (e.g., Internet Protocol (IP) address), etc. . The location information of the UE is not limited to information based on the location of the BS, but may be information based on a specific point.
 位置情報は、自身の実装に関する情報(例えば、アンテナの位置(location/position)/向き、アンテナパネルの位置/向き、アンテナの数、アンテナパネルの数など)を含んでもよい。 The location information may include information regarding its own implementation (for example, location/position/orientation of antennas, location/orientation of antenna panels, number of antennas, number of antenna panels, etc.).
 位置情報は、モビリティ情報を含んでもよい。モビリティ情報は、モビリティタイプを示す情報、UEの移動速度、UEの加速度、UEの移動方向などの少なくとも1つを示す情報を含んでもよい。 The location information may include mobility information. The mobility information may include information indicating at least one of the mobility type, the moving speed of the UE, the acceleration of the UE, the moving direction of the UE, and the like.
 ここで、モビリティタイプは、固定位置UE(fixed location UE)、移動可能/移動中UE(movable/moving UE)、モビリティ無しUE(no mobility UE)、低モビリティUE(low mobility UE)、中モビリティUE(middle mobility UE)、高モビリティUE(high mobility UE)、セル端UE(cell-edge UE)、非セル端UE(not-cell-edge UE)などの少なくとも1つに該当してもよい。 Here, the mobility types are fixed location UE, movable/moving UE, no mobility UE, low mobility UE, and medium mobility UE. (middle mobility UE), high mobility UE (high mobility UE), cell-edge UE (cell-edge UE), and non-cell-edge UE (not-cell-edge UE).
 本開示において、(データのための)環境情報は、データが取得される/利用される環境に関する情報であってもよく、例えば、周波数情報(バンドIDなど)、環境タイプ情報(屋内(indoor)、屋外(outdoor)、Urban Macro(UMa)、Urban Micro(Umi)などの少なくとも1つを示す情報)、Line Of Site(LOS)/Non-Line Of Site(NLOS)を示す情報などに該当してもよい。 In this disclosure, environmental information (for data) may be information regarding the environment in which the data is acquired/used, such as frequency information (band ID, etc.), environment type information (indoor, etc.). , outdoor, Urban Macro (UMa), Urban Micro (Umi), etc.), Line Of Site (LOS)/Non-Line Of Site (NLOS), etc. Good too.
 ここで、LOSは、UE及びBSが互いに見通せる環境にある(又は遮蔽物がない)ことを意味してもよく、NLOSは、UE及びBSが互いに見通せる環境にない(又は遮蔽物がある)ことを意味してもよい。LOS/NLOSを示す情報は、ソフト値(例えば、LOS/NLOSの確率)を示してもよいし、ハード値(例えば、LOS/NLOSのいずれか)を示してもよい。 Here, LOS may mean that the UE and BS are in an environment where they can see each other (or there is no shielding), and NLOS may mean that the UE and BS are not in an environment where they can see each other (or there is a shield). It can also mean The information indicating LOS/NLOS may indicate a soft value (for example, probability of LOS/NLOS) or may indicate a hard value (for example, either LOS/NLOS).
 本開示において、メタ情報は、例えば、AIモデルに適した入力/出力情報に関する情報、取得した/取得できるデータに関する情報などを意味してもよい。メタ情報は、具体的には、RS(例えば、CSI-RS/SRS/SSBなど)のビームに関する情報(例えば、各ビームの指向している角度、3dBビーム幅、指向しているビームの形状、ビームの数)、gNB/UEのアンテナのレイアウト情報、周波数情報、環境情報、メタ情報IDなどを含んでもよい。なお、メタ情報は、AIモデルの入力/出力として用いられてもよい。 In the present disclosure, meta information may mean, for example, information regarding input/output information suitable for an AI model, information regarding acquired/obtainable data, etc. Specifically, the meta information includes information regarding beams of RS (for example, CSI-RS/SRS/SSB, etc.) (for example, the pointing angle of each beam, 3 dB beam width, the shape of the pointing beam, (number of beams), gNB/UE antenna layout information, frequency information, environment information, meta information ID, etc. Note that the meta information may be used as input/output of the AI model.
 上記AIモデルの入力/出力のための前処理/後処理の情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・正規化(例えば、Zスコア正規化(標準化)、最小-最大(min-max)正規化)を適用するか否か、
 ・正規化のためのパラメータ(例えば、Zスコア正規化については平均/分散、最小-最大正規化については最小値/最大値)、
 ・特定の数値変換方法(例えば、ワンホットエンコーディング(one hot encoding)、ラベルエンコーディング(label encoding)など)を適用するか否か、
 ・訓練データとして用いられるか否かの選択ルール。
The pre-processing/post-processing information for the input/output of the AI model may include information regarding at least one of the following:
- whether to apply normalization (e.g., Z-score normalization, min-max normalization);
- Parameters for normalization (e.g. mean/variance for Z-score normalization, minimum/maximum for min-max normalization),
- Whether to apply a specific numerical conversion method (e.g. one hot encoding, label encoding, etc.);
- Selection rules for whether or not to be used as training data.
 例えば、入力情報xに対して前処理としてZスコア正規化(xnew=(x-μ)/σ。ここで、μはxの平均、σは標準偏差)を行った正規化済み入力情報xnewをAIモデルに入力してもよく、AIモデルからの出力youtに後処理を掛けて最終的な出力yが得られてもよい。 For example, normalized input information x that has been subjected to Z-score normalization (x new = (x-μ)/σ, where μ is the average of x and σ is the standard deviation) as a preprocessing for input information x. new may be input into the AI model, and the output y out from the AI model may be post-processed to obtain the final output y.
 上記AIモデルのパラメータの情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・AIモデルにおける重み(例えば、ニューロンの係数(結合係数))情報、
 ・AIモデルの構造(structure)、
 ・モデルコンポーネントとしてのAIモデルのタイプ(例えば、Residual Network(ResNet)、DenseNet、RefineNet、トランスフォーマー(Transformer)モデル、CRBlock、回帰型ニューラルネットワーク(Recurrent Neural Network(RNN))、長・短期記憶(Long Short-Term Memory(LSTM))、ゲート付き回帰型ユニット(Gated Recurrent Unit(GRU))),
 ・モデルコンポーネントとしてのAIモデルの機能(例えば、デコーダ、エンコーダ)。
The information on the parameters of the AI model may include information regarding at least one of the following:
・Weight information in the AI model (e.g. neuron coefficients (coupling coefficients)),
・Structure of the AI model,
・Type of AI model as a model component (e.g. ResNet, DenseNet, RefineNet, Transformer model, CRBlock, Recurrent Neural Network (RNN), Long Short Memory -Term Memory (LSTM)), Gated Recurrent Unit (GRU)),
- Functions of the AI model as a model component (e.g. decoder, encoder).
 なお、上記AIモデルにおける重み情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・重み情報のビット幅(サイズ)、
 ・重み情報の量子化間隔、
 ・重み情報の粒度、
 ・重み情報が取り得る範囲、
 ・AIモデルにおける重みのパラメータ、
 ・更新前のAIモデルからの差分の情報(更新する場合)、
 ・重み初期化(weight initialization)の方法(例えば、ゼロ初期化、ランダム初期化(正規分布/一様分布/切断正規分布に基づく)、Xavier初期化(シグモイド関数向け)、He初期化(整流化線形ユニット(Rectified Linear Units(ReLU))向け))。
Note that the weight information in the AI model may include information regarding at least one of the following:
・Bit width (size) of weight information,
・Quantization interval of weight information,
- Granularity of weight information,
・The range that weight information can take,
・Weight parameters in the AI model,
・Difference information from the AI model before update (if updating),
・Weight initialization methods (e.g. zero initialization, random initialization (based on normal distribution/uniform distribution/truncated normal distribution), Xavier initialization (for sigmoid functions), He initialization (rectified) For Rectified Linear Units (ReLU)).
 また、上記AIモデルの構造は、以下の少なくとも1つに関する情報を含んでもよい:
 ・レイヤ数、
 ・レイヤのタイプ(例えば、畳み込み層、活性化層、デンス(dense)層、正規化層、プーリング層、アテンション層)、
 ・レイヤ情報、
 ・時系列特有のパラメータ(例えば、双方向性、時間ステップ)、
 ・訓練のためのパラメータ(例えば、機能のタイプ(L2正則化、ドロップアウト機能など)、どこに(例えば、どのレイヤの後に)この機能を置くか)。
Further, the structure of the AI model may include information regarding at least one of the following:
・Number of layers,
- Type of layer (e.g. convolution layer, activation layer, dense layer, normalization layer, pooling layer, attention layer),
・Layer information,
- Time series specific parameters (e.g. bidirectionality, time step),
- Parameters for training (e.g. type of function (L2 regularization, dropout function, etc.), where to put this function (e.g. after which layer)).
 上記レイヤ情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・各レイヤにおけるニューロン数、
 ・カーネルサイズ、
 ・プーリング層/畳み込み層のためのストライド、
 ・プーリング方法(MaxPooling、AveragePoolingなど)、
 ・残差ブロックの情報、
 ・ヘッド(head)数、
 ・正規化方法(バッチ正規化、インスタンス正規化、レイヤ正規化など)、
 ・活性化関数(シグモイド、tanh関数、ReLU、リーキーReLUの情報、Maxout、Softmax)。
The layer information may include information regarding at least one of the following:
・Number of neurons in each layer,
・Kernel size,
・Stride for pooling layer/convolution layer,
・Pooling method (MaxPooling, AveragePooling, etc.),
・Residual block information,
・Number of heads,
・Normalization methods (batch normalization, instance normalization, layer normalization, etc.),
- Activation function (sigmoid, tanh function, ReLU, leaky ReLU information, Maxout, Softmax).
 あるAIモデルは、別のAIモデルのコンポーネントとして含まれてもよい。例えば、あるAIモデルは、モデルコンポーネント#1であるResNet、モデルコンポーネント#2であるトランスフォーマーモデル、デンス層及び正規化層の順に処理が進むAIモデルであってもよい。 One AI model may be included as a component of another AI model. For example, an AI model may be an AI model in which processing proceeds in the following order: ResNet as model component #1, a transformer model as model component #2, a dense layer, and a normalization layer.
 上記AIモデルのための訓練情報は、以下の少なくとも1つに関する情報を含んでもよい:
 ・最適化アルゴリズムのための情報(例えば、最適化の種類(確率的勾配降下法(Stochastic Gradient Descent(SGD)))、AdaGrad、Adamなど)、最適化のパラメータ(学習率(learning rate)、モメンタム情報など)、
 ・損失関数の情報(例えば、損失関数の指標(metrics)に関する情報(平均絶対誤差(Mean Absolute Error(MAE))、平均二乗誤差(Mean Square Error(MSE))、クロスエントロピーロス、NLLLoss、Kullback-Leibler(KL)ダイバージェンスなど))、
 ・訓練用に凍結されるべきパラメータ(例えば、レイヤ、重み)、
 ・更新されるべきパラメータ(例えば、レイヤ、重み)、
 ・訓練用の初期パラメータであるべき(初期パラメータとして用いられるべき)パラメータ(例えば、レイヤ、重み)、
 ・AIモデルの訓練/更新方法(例えば、(推奨)エポック数、バッチサイズ、訓練に使用するデータ数)。
The training information for the AI model may include information regarding at least one of the following:
・Information for the optimization algorithm (e.g., optimization type (Stochastic Gradient Descent (SGD), AdaGrad, Adam, etc.), optimization parameters (learning rate, momentum, etc.) information, etc.),
・Information on the loss function (for example, information on the metrics of the loss function (Mean Absolute Error (MAE), Mean Square Error (MSE)), cross entropy loss, NLLLoss, Kullback- Leibler (KL) divergence, etc.),
parameters to be frozen for training (e.g. layers, weights),
- parameters to be updated (e.g. layers, weights),
・Parameters (for example, layers, weights) that should be initial parameters for training (should be used as initial parameters),
- How to train/update the AI model (e.g. (recommended) number of epochs, batch size, number of data used for training).
 上記AIモデルのための推論情報は、決定木の枝剪定(branch pruning)、パラメータ量子化、AIモデルの機能などに関する情報を含んでもよい。ここで、AIモデルの機能は、例えば、時間ドメインビーム予測、空間ドメインビーム予測、CSIフィードバック向けのオートエンコーダ、ビーム管理向けのオートエンコーダなどの少なくとも1つに該当してもよい。 The inference information for the AI model may include information regarding branch pruning of a decision tree, parameter quantization, functions of the AI model, and the like. Here, the function of the AI model may correspond to at least one of, for example, time domain beam prediction, spatial domain beam prediction, an autoencoder for CSI feedback, an autoencoder for beam management, etc.
 CSIフィードバック向けのオートエンコーダは、以下のように用いられてもよい:
 ・UEは、エンコーダのAIモデルに、CSI/チャネル行列/プリコーディング行列を入力して出力される、エンコードされるビットを、CSIフィードバック(CSIレポート)として送信する、
 ・BSは、デコーダのAIモデルに、受信したエンコードされるビットを入力して出力される、CSI/チャネル行列/プリコーディング行列を再構成する。
An autoencoder for CSI feedback may be used as follows:
- The UE inputs the CSI/channel matrix/precoding matrix into the encoder's AI model and transmits the output encoded bits as CSI feedback (CSI report).
- The BS inputs the received encoded bits into the decoder's AI model and reconstructs the output CSI/channel matrix/precoding matrix.
 空間ドメインビーム予測では、UE/BSは、AIモデルに、疎な(又は太い)ビームに基づく測定結果(ビーム品質。例えば、RSRP)を入力して、密な(又は細い)ビーム品質を出力してもよい。 In spatial domain beam prediction, the UE/BS inputs sparse (or thick) beam-based measurements (beam quality, e.g. RSRP) into an AI model and outputs dense (or thin) beam quality. You can.
 時間ドメインビーム予測では、UE/BSは、AIモデルに、時系列(過去、現在などの)測定結果(ビーム品質。例えば、RSRP)を入力して、将来のビーム品質を出力してもよい。 In time-domain beam prediction, the UE/BS may input time-series (past, current, etc.) measurement results (beam quality, e.g. RSRP) to the AI model and output future beam quality.
 上記AIモデルに関する性能情報は、AIモデルのために定義される損失関数の期待値に関する情報を含んでもよい。 The performance information regarding the AI model may include information regarding the expected value of a loss function defined for the AI model.
 本開示におけるAIモデル情報は、AIモデルの適用範囲(適用可能範囲)に関する情報を含んでもよい。当該適用範囲は、物理セルID、サービングセルインデックスなどによって示されてもよい。適用範囲に関する情報は、上述の環境情報に含まれてもよい。 The AI model information in the present disclosure may include information regarding the applicable range (applicable range) of the AI model. The applicable range may be indicated by a physical cell ID, a serving cell index, etc. Information regarding the scope of application may be included in the above-mentioned environmental information.
 特定のAIモデルに関するAIモデル情報は、規格において予め定められてもよいし、ネットワーク(Network(NW))からUEに通知されてもよい。規格において規定されるAIモデルは、参照(reference)AIモデルと呼ばれてもよい。参照AIモデルに関するAIモデル情報は、参照AIモデル情報と呼ばれてもよい。 AI model information regarding a specific AI model may be predefined in a standard, or may be notified to the UE from a network (NW). The AI model defined in the standard may be called a reference AI model. AI model information regarding the reference AI model may be referred to as reference AI model information.
 なお、本開示におけるAIモデル情報は、AIモデルを特定するためのインデックス(例えば、AIモデルインデックス、AIモデルID、モデルIDなどと呼ばれてもよい)を含んでもよい。本開示におけるAIモデル情報は、上述のAIモデルの入力/出力の情報などに加えて/の代わりに、AIモデルインデックスを含んでもよい。AIモデルインデックスとAIモデル情報(例えば、AIモデルの入力/出力の情報)との関連付けは、規格において予め定められてもよいし、NWからUEに通知されてもよい。 Note that the AI model information in the present disclosure may include an index (for example, may be referred to as an AI model index, AI model ID, model ID, etc.) for identifying an AI model. The AI model information in the present disclosure may include an AI model index in addition to/instead of the input/output information of the AI model described above. The association between the AI model index and the AI model information (for example, input/output information of the AI model) may be predetermined in the standard, or may be notified from the NW to the UE.
 本開示におけるAIモデル情報は、AIモデルに関連付けられてもよく、AIモデル関連情報(relevant information)、単に関連情報などと呼ばれてもよい。AIモデル関連情報には、AIモデルを特定するための情報は明示的に含まれなくてもよい。AIモデル関連情報は、例えばメタ情報のみを含んだ情報であってもよい。 The AI model information in the present disclosure may be associated with the AI model, and may also be referred to as AI model relevant information, simply related information, or the like. The AI model related information does not need to explicitly include information for identifying the AI model. The AI model related information may be information containing only meta information, for example.
 本開示において、モデルIDは、AIモデルのセットに対応するID(モデルセットID)と互いに読み替えられてもよい。また、本開示において、モデルIDは、メタ情報IDと互いに読み替えられてもよい。メタ情報(又はメタ情報ID)は、上述したようにビームに関する情報(ビーム設定)と関連付けられてもよい。例えば、メタ情報(又はメタ情報ID)は、どのビームをBSが使用しているかを考慮してUEがAIモデルを選択するために用いられてもよいし、UEがデプロイしたAIモデルを適用するためにBSがどのビームを使用すべきかを通知するために用いられてもよい。なお、本開示において、メタ情報IDは、メタ情報のセットに対応するID(メタ情報セットID)と互いに読み替えられてもよい。 In the present disclosure, a model ID may be mutually read as an ID corresponding to a set of AI models (model set ID). Further, in the present disclosure, the model ID may be interchanged with the meta information ID. The meta information (or meta information ID) may be associated with beam-related information (beam settings) as described above. For example, the meta information (or meta information ID) may be used by the UE to select an AI model considering which beams the BS is using, or the UE may apply the deployed AI model. It may be used to inform the BS which beam to use for this purpose. Note that in the present disclosure, the meta information ID may be interchanged with an ID corresponding to a set of meta information (meta information set ID).
[UEへの情報の通知]
 上述の実施形態における(NWから)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Notification of information to UE]
In the embodiments described above, the notification of any information to the UE (from the NW) (in other words, the reception of any information from the BS in the UE) is performed using physical layer signaling (e.g., DCI), upper layer signaling (e.g., RRC). MAC CE), specific signals/channels (eg, PDCCH, PDSCH, reference signals), or a combination thereof.
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。 When the above notification is performed by a MAC CE, the MAC CE may be identified by including a new logical channel ID (LCID), which is not specified in the existing standard, in the MAC subheader.
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。 When the above notification is performed by a DCI, the above notification includes a specific field of the DCI, a radio network temporary identifier (Radio Network Temporary Identifier (RNTI)), the format of the DCI, etc.
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Additionally, notification of any information to the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Notification of information from UE]
The notification of any information from the UE (to the NW) in the above embodiments (in other words, the transmission/reporting of any information to the BS in the UE) is performed using physical layer signaling (e.g. UCI), upper layer signaling (e.g. , RRC signaling, MAC CE), specific signals/channels (eg, PUCCH, PUSCH, reference signals), or a combination thereof.
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。 When the above notification is performed by a MAC CE, the MAC CE may be identified by including a new LCID that is not defined in the existing standard in the MAC subheader.
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。 When the above notification is performed by UCI, the above notification may be transmitted using PUCCH or PUSCH.
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Further, notification of arbitrary information from the UE in the above embodiments may be performed periodically, semi-persistently, or aperiodically.
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
[About application of each embodiment]
At least one of the embodiments described above may be applied if certain conditions are met. The specific conditions may be specified in the standard, or may be notified to the UE/BS using upper layer signaling/physical layer signaling.
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。 At least one of the embodiments described above may be applied only to UEs that have reported or support a particular UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報をサポートすること、
 ・サポートされるユースケース、
 ・ユースケースあたりのサポートされるAIモデルの数、
 ・ユースケースあたりAIモデルあたりのサポートされるシナリオ設定の数。
The particular UE capability may indicate at least one of the following:
- supporting specific processing/operation/control/information for at least one of the above embodiments;
・Supported use cases,
・Number of AI models supported per use case,
- Number of supported scenario configurations per AI model per use case.
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。 Further, the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency) or a capability that is applied across all frequencies (e.g., cell, band, band combination, BWP, component carrier, etc.). or a combination thereof), or it may be a capability for each frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2). Alternatively, it may be a capability for each subcarrier spacing (SCS), or a capability for each Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex). The capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、AIモデルの利用を有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。 In addition, at least one of the embodiments described above may be configured such that the UE configures/activates specific information related to the embodiment described above (or performs the operation of the embodiment described above) by upper layer signaling/physical layer signaling. / May be applied when triggered. For example, the specific information may be information indicating that the use of the AI model is enabled, arbitrary RRC parameters for a specific release (for example, Rel. 18/19), or the like.
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。 If the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 特定の人工知能(Artificial Intelligence(AI))モデルのためのデータセットの要求を受信する受信部と、
 前記データセットを特定のシナリオ設定のもとで収集する制御部と、
 前記特定のシナリオ設定の識別子(Identifier(ID))を示す、前記データセットに関する情報を送信する送信部と、を有する端末。
[付記2]
 前記制御部は、前記特定のシナリオ設定のIDを示すデータ収集要求信号の受信に応じて、前記データセットを前記特定のシナリオ設定のもとで収集する付記1に記載の端末。
[付記3]
 前記受信部は、データセットの収集が必要なシナリオ設定に関する情報を受信する
付記1又は付記2に記載の端末。
(Additional note)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Additional note 1]
a receiver for receiving a request for a dataset for a particular Artificial Intelligence (AI) model;
a control unit that collects the data set under specific scenario settings;
A terminal comprising: a transmitting unit that transmits information regarding the data set indicating an identifier (ID) of the specific scenario setting.
[Additional note 2]
The terminal according to supplementary note 1, wherein the control unit collects the data set under the specific scenario setting in response to receiving a data collection request signal indicating an ID of the specific scenario setting.
[Additional note 3]
The terminal according to Supplementary Note 1 or 2, wherein the receiving unit receives information regarding scenario settings that require collection of data sets.
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 データセットの収集が必要なシナリオ設定に関する情報を受信する受信部と、
 特定のシナリオ設定のもとで収集されるデータセットに基づいて人工知能(Artificial Intelligence(AI))モデルを訓練する制御部と、を有する端末。
[付記2]
 前記制御部は、前記特定のシナリオ設定の識別子(Identifier(ID))を示すモデル訓練情報の受信に応じて、前記データセットに基づいて前記AIモデルを訓練する付記1に記載の端末。
[付記3]
 前記制御部は、チャネル状態の測定結果に基づいて、前記特定のシナリオ設定を判断する付記1又は付記2に記載の端末。
[付記4]
 前記制御部は、モニタされる前記AIモデルの汎化能力に基づいて、前記特定のシナリオ設定を判断する付記1から付記3のいずれかに記載の端末。
(Additional note)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Additional note 1]
a receiving unit that receives information regarding scenario settings that require data set collection;
A terminal having a control unit that trains an artificial intelligence (AI) model based on a data set collected under a specific scenario setting.
[Additional note 2]
The terminal according to supplementary note 1, wherein the control unit trains the AI model based on the data set in response to receiving model training information indicating an identifier (ID) of the specific scenario setting.
[Additional note 3]
The terminal according to appendix 1 or 2, wherein the control unit determines the specific scenario setting based on a measurement result of a channel state.
[Additional note 4]
The terminal according to any one of Supplementary Notes 1 to 3, wherein the control unit determines the specific scenario setting based on the generalization ability of the monitored AI model.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 12 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (also simply referred to as system 1) uses Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). It may also be a system that realizes communication using
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Additionally, the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare. User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、ApplicationFunction(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。 Core Network 30 is, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management (SMF), Unified Data Management. T (UDM), ApplicationFunction (AF), Data Network (DN), Location Management Network Functions (NF) such as Function (LMF) and Operation, Administration and Maintenance (Management) (OAM) may also be included. Note that multiple functions may be provided by one network node. Further, communication with an external network (eg, the Internet) may be performed via the DN.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A wireless access method may also be called a waveform. Note that in the wireless communication system 1, other wireless access methods (for example, other single carrier transmission methods, other multicarrier transmission methods) may be used as the UL and DL radio access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the wireless communication system 1, uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, upper layer control information, etc. may be transmitted by PUSCH. Furthermore, a Master Information Block (MIB) may be transmitted via the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlinks, uplinks, etc. may be expressed without adding "link". Furthermore, various channels may be expressed without adding "Physical" at the beginning.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In addition, in the wireless communication system 1, measurement reference signals (Sounding Reference Signal (SRS)), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS). good. Note that DMRS may be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図13は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 13 is a diagram illustrating an example of the configuration of a base station according to an embodiment. The base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like. The control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140. The control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120. The control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123. The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212. The transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 1211 and an RF section 122. The reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitter/receiver 120 may form at least one of a transmit beam and a receive beam using digital beam forming (e.g., precoding), analog beam forming (e.g., phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted. A baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 120 (RF section 122) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may perform measurements regarding the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 is the receiving power (for example, Reference Signal Received Power (RSRP)), Receive Quality (eg, Reference Signal Received Quality (RSRQ), Signal To InterfERENCE PLUS NOI. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured. The measurement results may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20. User data (user plane data), control plane data, etc. may be acquired and transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
 なお、送受信部120は、特定の人工知能(Artificial Intelligence(AI))モデルのためのデータセットの要求を、ユーザ端末20に送信してもよい。送受信部120は、特定のシナリオ設定の識別子(Identifier(ID))を示す、前記データセットに関する情報を受信してもよい。 Note that the transmitting/receiving unit 120 may transmit a request for a data set for a specific artificial intelligence (AI) model to the user terminal 20. The transmitting/receiving unit 120 may receive information regarding the data set indicating an identifier (ID) of a particular scenario setting.
 なお、送受信部120は、データセットの収集が必要なシナリオ設定に関する情報を、ユーザ端末20に送信してもよい。制御部110は、特定のシナリオ設定のもとで前記ユーザ端末20において収集されるデータセットに基づいて人工知能(Artificial Intelligence(AI))モデルを訓練させるために、前記特定のシナリオ設定の識別子(Identifier(ID))を示すモデル訓練情報の送信を制御してもよい。 Note that the transmitting/receiving unit 120 may transmit information regarding scenario settings for which data sets need to be collected to the user terminal 20. The control unit 110 stores an identifier ( The transmission of model training information indicating the Identifier (ID) may also be controlled.
(ユーザ端末)
 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 14 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. The user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223. The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212. The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 2211 and an RF section 222. The reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Note that whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (for example, PUSCH), the transmitting/receiving unit 220 (transmission processing unit 2211) performs the above processing in order to transmit the channel using the DFT-s-OFDM waveform. DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving unit 220 (measuring unit 223) may perform measurements regarding the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement results may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
 なお、送受信部220は、特定の人工知能(Artificial Intelligence(AI))モデルのためのデータセットの要求を受信してもよい。制御部210は、前記データセットを特定のシナリオ設定のもとで収集してもよい。送受信部220は、前記特定のシナリオ設定の識別子(Identifier(ID))を示す、前記データセットに関する情報を送信してもよい。 Note that the transmitting/receiving unit 220 may receive a request for a data set for a specific artificial intelligence (AI) model. The control unit 210 may collect the data set under specific scenario settings. The transmitting/receiving unit 220 may transmit information regarding the data set indicating an identifier (ID) of the specific scenario setting.
 制御部210は、前記特定のシナリオ設定のIDを示すデータ収集要求信号の受信に応じて、前記データセットを前記特定のシナリオ設定のもとで収集してもよい。 The control unit 210 may collect the data set under the specific scenario setting in response to receiving a data collection request signal indicating the ID of the specific scenario setting.
 送受信部220は、データセットの収集が必要なシナリオ設定に関する情報を受信してもよい。 The transmitting/receiving unit 220 may receive information regarding scenario settings that require collection of data sets.
 なお、送受信部220は、データセットの収集が必要なシナリオ設定に関する情報を受信してもよい。制御部210は、特定のシナリオ設定のもとで収集されるデータセットに基づいて人工知能(Artificial Intelligence(AI))モデルを訓練してもよい。 Note that the transmitting/receiving unit 220 may receive information regarding scenario settings that require collection of data sets. The control unit 210 may train an artificial intelligence (AI) model based on a data set collected under a specific scenario setting.
 制御部210は、前記特定のシナリオ設定の識別子(Identifier(ID))を示すモデル訓練情報の受信に応じて、前記データセットに基づいて前記AIモデルを訓練してもよい。 The control unit 210 may train the AI model based on the data set in response to receiving model training information indicating an identifier (ID) of the specific scenario setting.
 制御部210は、チャネル状態の測定結果に基づいて、前記特定のシナリオ設定を判断してもよい。 The control unit 210 may determine the specific scenario setting based on the measurement results of the channel state.
 制御部210は、モニタされる前記AIモデルの汎化能力に基づいて、前記特定のシナリオ設定を判断してもよい。 The control unit 210 may determine the specific scenario setting based on the generalization ability of the monitored AI model.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 15 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in this disclosure, words such as apparatus, circuit, device, section, unit, etc. can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, the processing may be performed by one processor, or the processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Note that the processor 1001 may be implemented using one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a portion of the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, network controller, network card, communication module, etc. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include. For example, the above-described transmitting/receiving section 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modified example)
Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal may be interchanged. Also, the signal may be a message. The reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard. Further, a component carrier (CC) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame configuration. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Additionally, an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier. Good too. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are not in any way exclusive designations. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Additionally, information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer. Information, signals, etc. may be input and output via multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like. Further, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, notification of prescribed information (for example, notification of "X") is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (such as infrared, microwave, etc.) to , a server, or other remote source, these wired and/or wireless technologies are included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may refer to devices (eg, base stations) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, "precoding", "precoder", "weight (precoding weight)", "quasi-co-location (QCL)", "Transmission Configuration Indication state (TCI state)", "space "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", and "panel" are interchangeable. can be used.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "Base Station (BS)", "Wireless base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , "cell," "sector," "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In the present disclosure, a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" are used interchangeably. can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 図16は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 16 is a diagram illustrating an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49. The electronic control section 49 may be called an electronic control unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52. air pressure signals of the front wheels 46/rear wheels 47, a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor. 56, a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40. Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the base station 10, user terminal 20, etc. described above. Further, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 The communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions that the base station 10 described above has. Further, words such as "uplink" and "downlink" may be replaced with words corresponding to inter-terminal communication (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be replaced with sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 10 may have the functions that the user terminal 20 described above has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, the operations performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is an integer or decimal number, for example)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods. The present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these systems. Furthermore, a combination of multiple systems (for example, a combination of LTE or LTE-A and 5G) may be applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment" can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be "determining", such as accessing data in memory (eg, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment" is considered to mean "judging" resolving, selecting, choosing, establishing, comparing, etc. Good too. In other words, "judgment (decision)" may be considered to be "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Furthermore, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected", "coupled", or any variations thereof refer to any connection or coupling, direct or indirect, between two or more elements. can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access."
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising". It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」などを意味する文言は、互いに読み替えられてもよい(原級、比較級、最上級を限らず)。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」などを意味する文言は、「i番目に」を付けた表現として互いに読み替えられてもよい(原級、比較級、最上級を限らず)(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In the present disclosure, "less than or equal to", "less than", "more than", "more than", "equal to", etc. may be read interchangeably. In addition, in the present disclosure, words meaning "good", "bad", "large", "small", "high", "low", "early", "slow", etc. may be read interchangeably. (Not limited to original, comparative, and superlative). In addition, in this disclosure, words meaning "good", "bad", "large", "small", "high", "low", "early", "slow", etc. are replaced with "i-th". They may be interchanged as expressions (not limited to the original, comparative, and superlative) (for example, "the highest" may be interchanged with "the i-th highest").
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, "of", "for", "regarding", "related to", "associated with", etc. are used to refer to each other. It may be read differently.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the invention as determined based on the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and does not have any limiting meaning on the invention according to the present disclosure.

Claims (6)

  1.  データセットの収集が必要なシナリオ設定に関する情報を受信する受信部と、
     特定のシナリオ設定のもとで収集されるデータセットに基づいて人工知能(Artificial Intelligence(AI))モデルを訓練する制御部と、を有する端末。
    a receiving unit that receives information regarding scenario settings that require data set collection;
    A terminal having a control unit that trains an artificial intelligence (AI) model based on a data set collected under a specific scenario setting.
  2.  前記制御部は、前記特定のシナリオ設定の識別子(Identifier(ID))を示すモデル訓練情報の受信に応じて、前記データセットに基づいて前記AIモデルを訓練する請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit trains the AI model based on the data set in response to receiving model training information indicating an identifier (ID) of the specific scenario setting.
  3.  前記制御部は、チャネル状態の測定結果に基づいて、前記特定のシナリオ設定を判断する請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit determines the specific scenario setting based on a measurement result of a channel state.
  4.  前記制御部は、モニタされる前記AIモデルの汎化能力に基づいて、前記特定のシナリオ設定を判断する請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit determines the specific scenario setting based on the generalization ability of the monitored AI model.
  5.  データセットの収集が必要なシナリオ設定に関する情報を受信するステップと、
     特定のシナリオ設定のもとで収集されるデータセットに基づいて人工知能(Artificial Intelligence(AI))モデルを訓練するステップと、を有する端末の無線通信方法。
    receiving information about scenario settings for which datasets need to be collected;
    1. A method for wireless communication of a terminal, comprising: training an artificial intelligence (AI) model based on a data set collected under a specific scenario setting.
  6.  データセットの収集が必要なシナリオ設定に関する情報を、端末に送信する送信部と、
     特定のシナリオ設定のもとで前記端末において収集されるデータセットに基づいて人工知能(Artificial Intelligence(AI))モデルを訓練させるために、前記特定のシナリオ設定の識別子(Identifier(ID))を示すモデル訓練情報の送信を制御する制御部と、を有する基地局。
    a transmitting unit that transmits information regarding scenario settings that require data set collection to the terminal;
    Indicating an identifier (ID) of the specific scenario setting to train an Artificial Intelligence (AI) model based on a dataset collected at the terminal under the specific scenario setting. A base station comprising: a control unit that controls transmission of model training information.
PCT/JP2022/027421 2022-07-12 2022-07-12 Terminal, wireless communication method, and base station WO2024013851A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027421 WO2024013851A1 (en) 2022-07-12 2022-07-12 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027421 WO2024013851A1 (en) 2022-07-12 2022-07-12 Terminal, wireless communication method, and base station

Publications (1)

Publication Number Publication Date
WO2024013851A1 true WO2024013851A1 (en) 2024-01-18

Family

ID=89536330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027421 WO2024013851A1 (en) 2022-07-12 2022-07-12 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2024013851A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on evaluation on AI/ML for CSI feedback", 3GPP DRAFT; R1-2203451, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052152983 *
FUJITSU: "Discussions on general aspects of AI/ML framework", 3GPP DRAFT; R1-2205075, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052191734 *
MEDIATEK INC.: "Overview to Support Artificial Intelligence over Air Interface", 3GPP DRAFT; R1-2205099, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 2 May 2022 (2022-05-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052146687 *
QUALCOMM INCORPORATED: "General Aspects of AI/ML Framework", 3GPP DRAFT; R1-2205023, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052144132 *

Similar Documents

Publication Publication Date Title
WO2024013851A1 (en) Terminal, wireless communication method, and base station
WO2024013852A1 (en) Terminal, radio communication method, and base station
WO2024004219A1 (en) Terminal, radio communication method, and base station
WO2024004220A1 (en) Terminal, radio communication method, and base station
WO2024004217A1 (en) Terminal, wireless communication method, and base station
WO2024004218A1 (en) Terminal, wireless communication method, and base station
WO2023218543A1 (en) Terminal, radio communication method, and base station
WO2024100725A1 (en) Terminal, wireless communication method, and base station
WO2024004189A1 (en) Terminal, wireless communication method and base station
WO2023218650A1 (en) Terminal, radio communication method, and base station
WO2024004187A1 (en) Terminal, radio communication method, and base station
WO2024004186A1 (en) Terminal, radio communication method, and base station
WO2024004194A1 (en) Terminal, wireless communication method, and base station
WO2023218544A1 (en) Terminal, radio communication method, and base station
WO2024004188A1 (en) Terminal, wireless communication method, and base station
WO2024080023A1 (en) Terminal, wireless communication method, and base station
WO2024038613A1 (en) Terminal, wireless communication method, and base station
WO2024038617A1 (en) Terminal, wireless communication method, and base station
WO2024038614A1 (en) Terminal, wireless communication method, and base station
WO2023199437A1 (en) Terminal, wireless communication method, and base station
WO2024075262A1 (en) Terminal, wireless communication method, and base station
WO2023199438A1 (en) Terminal, wireless communication method, and base station
WO2024075261A1 (en) Terminal, wireless communication method, and base station
WO2024038616A1 (en) Terminal, wireless communication method, and base station
WO2024075263A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951065

Country of ref document: EP

Kind code of ref document: A1