WO2024013603A1 - Machine d'exploitation de cryptomonnaie - Google Patents

Machine d'exploitation de cryptomonnaie Download PDF

Info

Publication number
WO2024013603A1
WO2024013603A1 PCT/IB2023/056738 IB2023056738W WO2024013603A1 WO 2024013603 A1 WO2024013603 A1 WO 2024013603A1 IB 2023056738 W IB2023056738 W IB 2023056738W WO 2024013603 A1 WO2024013603 A1 WO 2024013603A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary
unit
cryptocurrency
cryptocurrencies
cryptocurrency mining
Prior art date
Application number
PCT/IB2023/056738
Other languages
English (en)
Inventor
Alberto Aldo Maria BORDINO
Francesco BORDINO
Original Assignee
Demaggio, Giovanni
Associazione “The World Peace Factory”
Astra e-Tech SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Demaggio, Giovanni, Associazione “The World Peace Factory”, Astra e-Tech SA filed Critical Demaggio, Giovanni
Publication of WO2024013603A1 publication Critical patent/WO2024013603A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/50Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using hash chains, e.g. blockchains or hash trees
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/181Enclosures
    • G06F1/182Enclosures with special features, e.g. for use in industrial environments; grounding or shielding against radio frequency interference [RFI] or electromagnetical interference [EMI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/56Financial cryptography, e.g. electronic payment or e-cash

Definitions

  • the present invention relates to the field of cryptocurrency mining. Specifically, the present invention relates to a machine for multiple and variable cryptocurrency mining.
  • Such an organization creates machines characterized by a rigid, and therefore unmanageable or alterable, internal supply chain, which places the result of the activity in total dependence on the value of the mercantile course of the generated cryptocurrency and the cost of energy.
  • Known solutions for cryptocurrency creation are either ASICs (Application Specific Integrated Circuit Chips) used predominantly to solve Bitcoin blocks or less specific machines dedicated to solving ASICs-resistant algorithms as in the case of Ethereum: in the latter case, rigidities recur at the level of the graphics cards that are placed in series pushed and chosen from within the market offering for specific performance offered in solving the algorithm of the chosen cryptocurrency alone.
  • the known solutions therefore, present a major technical problem related to the biunique relationship between the material structure of the machine (Hardware) and the cryptocurrency to be mined.
  • a cryptocurrency mining machine that can minimize the above drawbacks.
  • a cryptocurrency mining machine that can generate value from all its computing components, thus with both CPU (Central Processing Unit) and graphics cards, that reduces and restrains power consumption, that increases throughput by optionally mining only cryptocurrencies of satisfactory market price, and that is immediate and intuitive for its easy use and deployment.
  • CPU Central Processing Unit
  • graphics cards that reduces and restrains power consumption, that increases throughput by optionally mining only cryptocurrencies of satisfactory market price, and that is immediate and intuitive for its easy use and deployment.
  • the purpose of the present invention is to realize a cryptocurrency mining machine that can minimize the above-mentioned problems.
  • the purpose of the present invention is to provide a machine for mining multiple cryptocurrencies and of the variable type that provides simple and fast handling of cryptocurrencies to be mined with a reduced cost of production, installation, and operation.
  • the cryptocurrency mining machine comprising a primary unit and a secondary unit operatively connected to each other, wherein the primary unit comprises:
  • the secondary unit includes:
  • the primary unit is adapted to perform the processing and iterations for cryptocurrency mining and includes a computer program for mining one or more cryptocurrencies from a predefined selection of cryptocurrencies
  • the secondary unit is adapted to increase the computational capacity of the primary unit for cryptocurrency mining according to the cryptocurrencies to be mined
  • the computer program for mining is operationally connected with a multi-currency electronic wallet for acquiring and/or converting the mined cryptocurrency.
  • the primary unit is provided with a primary connection slot and the secondary unit is provided with a secondary connection slot, wherein the secondary graphics cards are operationally coupled to the secondary connection slot, and wherein the primary connection slot is coupled to the secondary connection slot to define the operational connection between the primary unit and the secondary unit.
  • the computer program for mining a cryptocurrency is apt to define the cryptocurrencies to be mined from the predefined selection of cryptocurrencies according to the current course of the predefined selection of cryptocurrencies and the available computing capacity.
  • the computer program for mining a cryptocurrency is operationally connected with a multi-currency electronic wallet acted to exchange the said mined cryptocurrencies with non-minable currencies using blockchain technology.
  • the primary cooling system is of the liquid cooling type comprising a plurality of conduits within which a dielectric coolant of modified viscosity is acted to circulate, and wherein the conduits are operationally coupled to the primary processors, primary random access memory cards, and primary graphics cards.
  • the coolant that can be used may be of the dielectric oil type of mineral or silicone origin, with low or very low viscosity.
  • the primary cooling system comprises a plurality of heat transfer plates each respectively physically coupled to one of the primary processors, primary random access memory cards and primary graphics cards and each respectively in fluid connection with one of the conduits.
  • the secondary unit comprises a sealed enclosure within which the secondary graphics cards are housed, and wherein the secondary cooling system is of the liquid cooling type comprising a dielectric coolant of modified viscosity arranged within the watertight container so as to define a complete immersion of the secondary graphics cards within the dielectric coolant.
  • the employable coolant may be, for example, of the dielectric oil type of mineral or silicone origin, with low or very low viscosity.
  • the secondary cooling system comprises one or more cooling elements arranged within the sealed container and outside the dielectric coolant, and wherein the cooling elements are realized by cooling pipes for condensing the vapor generated by evaporation of the dielectric coolant.
  • the cryptocurrency mining machine includes an outer container made of insulating material, wherein the primary unit and secondary unit are housed within the outer container, and wherein the outer container includes a double Faraday cage.
  • the double Faraday cage is made by a plurality of at least partially overlapping metal elements made of copper and brass.
  • FIG. 1 illustrates a frontal perspective view of a cryptocurrency mining machine in accordance with the present invention enclosed within an outer container, according to a preferred embodiment
  • FIG. 2 illustrates a schematic view of the components of the primary unit of the cryptocurrency mining machine in Figure 1;
  • FIG. 3 illustrates a schematic view of the components of the secondary unit of the cryptocurrency mining machine in Figure 1;
  • FIG. 4A illustrates a perspective view of the secondary unit of the Figure 1 cryptocurrency mining machine
  • Figure 4B illustrates the secondary unit of Figure 4A equipped with the coolant
  • Figure 4C illustrates the secondary unit of Figure 4B, in which the coolant is illustrated as a function of the convective cycle.
  • FIGS 1-4C illustrate a cryptocurrency mining machine 1 according to the present invention.
  • the cryptocurrency mining machine 1 comprising a primary unit 10 and a secondary unit 20 operatively connected to each other.
  • Said units 10, 20 are preferably housed within an outer container 101 made of an insulating material, as exemplified Figure 1.
  • said outer container 101 preferably comprises a double Faraday cage.
  • said double Faraday cage is realized by a plurality of at least partially overlapping metal elements 111, 112, 113, 114 made of copper and brass.
  • Figure 1 illustrates by way of example the aforementioned outer container 101 made of composite insulation material that houses within it a double weave of copper and brass that realizes the double Faraday cage.
  • This shielding made of complementary materials such as brass and copper protects the machine and its electronic components from the influence and interference produced by external magnetic fields and high or very high frequency electromagnetic radiation. The presence of this protection improves the speed and durability performance of the most stressed components of the machine and in particular of the primary processor, primary random access memory card, and primary graphics card, the latter components described in more detail below.
  • the double structure of the Faraday cage is of the overlapping type and made with an orthogonal weave of the metal elements, which are arranged with vertical extension 114, with horizontal extension 113, with right 111 inclination of 45°, and with left 112 inclination of 45°.
  • Such overlapping weave is preferably made between the composite layers of the outer container 101.
  • the metal elements with vertical extension 114 and with horizontal extension 113 are made with copper filaments less than 0.5mm in diameter, while the metal elements with right tilt 111 and left tilt 112 are made with brass filaments less than 0.5mm in diameter.
  • Primary unit 10 includes at least one primary motherboard 110, a primary processor 210 operationally coupled to primary motherboard 110 and preferably of the 32/64 partition type with high or very high processing speed, a primary random access memory card 310 operatively coupled to the primary motherboard 110, two primary graphics cards 410 operatively coupled to the primary motherboard 110, and a primary unit cooling system 10 suitable for cooling the primary processor 210, random access memory card 310, and primary graphics cards 410.
  • primary unit 10 includes additional components, such as utility sockets (or Slots) of the primary motherboard and extension slots, a low-voltage DC power supply (not shown), a push-button power on/off system, a solid-state storage (SSD) drive for rapid management of autoloading of BIOS -accessory instructions from the primary motherboard and all major operational functions, high-performance graphics cards (GPUs) integrated through the appropriate plugs to the primary motherboard, cabling, connections, and ports, which will not be in the following more detailed.
  • utility sockets or Slots
  • low-voltage DC power supply not shown
  • a push-button power on/off system a solid-state storage (SSD) drive for rapid management of autoloading of BIOS -accessory instructions from the primary motherboard and all major operational functions
  • SSD solid-state storage
  • GPUs high-performance graphics cards
  • the primary unit 10 may include a primary motherboard 110 of the type ASUSTek ROG CROSSHAIR VIII DARL HERO, a primary processor 210 of the type32xAMD Ryzen 9 5950X 16-Core, two primary graphics cards 410 of the type Radeon RX 5600 XT 6128 MB Sapphire and GeForce RTX 3070Ti7981 MB-Gigabyte, and as a solid-state storage unit a Hard Disk ATA CT 500MX500SSD1-500GB.
  • the operating system employed in the preferred form of realization is of the Linux type, equipped with HIVE OS software for cryptocurrency mining.
  • the primary drive may also include one, two or more of the elements listed above, such as the primary processor, the primary random access memory card, and the primary graphics card.
  • the primary cooling system is preferably of the liquid cooling type.
  • the said system preferably applied to the computing components, comprising a plurality of conduits 511 (illustrated in Figure 2) within which a dielectric coolant of modified viscosity is apt to circulate.
  • Such conduits 511 are operationally coupled to the primary processors, primary random access memory cards, and primary graphics cards for the purpose of defining their cooling.
  • Such a primary cooling system is also provided with a 512 coolant circulation pump, a flow equalizer, and one or more heat exchange elements.
  • the latter in the form of embodiment illustrated therein, are defined by a plurality of heat exchange plates each respectively physically coupled to one of the primary processors, primary random access memory cards and primary graphics cards and each respectively in fluid connection with one of the conduits 511.
  • the secondary unit 20 includes at least a plurality of secondary graphics cards 120 suitable for computing for cryptocurrency mining and a secondary cooling system of the secondary unit 20 apt to cool said secondary graphics cards 120.
  • the secondary unit 20 is apt to decisively increase the computing power produced and, thus, the mining capacity of the machine 1 according to the present invention, so it uses a cooling system capable of protecting the integrity of its components and maintaining its performance.
  • the secondary cooling system is of the liquid cooling type comprising a dielectric coolant of modified viscosity.
  • the aforementioned secondary unit 20 includes a watertight enclosure 502 within which the secondary graphics cards 120 are housed. So, the coolant is arranged within the sealed container 502 in such a way as to define full immersion of the secondary graphics cards 120 within the dielectric coolant.
  • the secondary cooling system comprises one or more cooling elements 522, depicted in number of eight in Figures 4A-4C but equally possible in any number according to further and not illustrated forms of embodiment, arranged within the sealed container 502 and out of said dielectric coolant.
  • Such cooling elements 522 are made by means of cooling tubes for condensing the vapor generated by evaporation of said dielectric coolant.
  • cooling elements 522 are made with a spiral structure consisting of micro-tube bundles made of highly conductive metallic material.
  • the application of total immersion in dielectric liquid and the presence of the 522 cooling elements also allows the cooling effects to be optimized by the convective cycle triggered during operation.
  • the hot parts of the computing principals of the secondary graphics cards 120 give up heat to the dielectric liquid, which begins to store thermal energy and to form a plurality of gaseous bubbles involved in a significant upward-oriented convective motion. Having finished their upward motion, the bubbles transit from the immersion liquid part to the atmospheric- gaseous part of the sealed 502 container in which the secondary 120 graphics boards are housed, thus saturating it with vapors, as shown in Figure 4C.
  • the vapors then encounter the cooling elements 522 and upon contact with these realize a new physical change of state from gaseous to liquid by absorbing thermal energy and causing the creation of droplets that fall by gravity into the dielectric bath below.
  • the cooler part of the liquid that has fallen back into the immersion bath forms the downward part of the convection current that will bring this heavier component back into contact with the hot surfaces of the computational components.
  • This change-of-state process absorbs energy and assists the cooling system for radiant heat exchange between inside and outside.
  • the dielectric immersion system not only achieves passive cooling that lowers the overall energy costs of machine 1 operation, but also optimizes its treated surfaces and functionally relates the immersion liquid volume and mass to the performance and characteristics of machine 1 itself
  • Dielectric liquid immersion also performs a protective and custodial action against oxidation and contamination phenomena otherwise operated by the atmosphere and in particular by suspended dust.
  • the machine 1 is composed of two separate and complementary units 10, 20 preferably connected to each other by a specific multi-plug male-female quick wiring connection.
  • the primary unit 10 is provided with one or more primary connection slots 151 and the secondary unit 20 is provided with one or more secondary connection slots 152.
  • the secondary graphics cards 120 are operationally coupled to the secondary connection slot 152, and at the same time, the primary connection slot 151 is coupled to the secondary connection slot 152 to define the operational connection between the primary unit 10 and the secondary unit 20.
  • the machine 1 is preferably suitable to be powered by an uninterruptible power supply (not shown) arranged for the direct exploitation of energy produced from renewable and similar sources, mainly of photovoltaic origin.
  • the uninterruptible power supply is structured on high-performance 20V batteries, also with backup function with coverage and reserve of power at least equal to the daily consumption developed by the machine 1 itself.
  • the special conformation of the uninterruptible power supply block and its functional expansion has a very important purpose and that is to reduce the energy-consuming steps of voltage transformation and conformation thus making possible the electrical operation of the whole system with low-voltage direct current.
  • This innovation significantly promotes the association of the entire cyber mining of new cryptocurrency with renewable energy sources rather than fossil resources by positioning self-consumption choices on the use of low-voltage direct current (DC) (20V ⁇ 2V).
  • DC direct current
  • Primary unit 10 is apt to perform the processing and iterations for cryptocurrency mining and comprises a cryptocurrency mining processor program for mining one or more cryptocurrencies from a predefined selection of cryptocurrencies, wherein said mining processor program is operationally connected with a multi-currency electronic wallet for acquiring and/or converting said mined cryptocurrency.
  • the cryptocurrency extraction computer program is capable of defining the cryptocurrencies to be extracted from the predefined selection of cryptocurrencies according to the current course of the predefined selection of cryptocurrencies and the available computing capacity.
  • the computer program for extracting a cryptocurrency is preferably operationally connected with a multicurrency electronic wallet suitable for exchanging the extracted cryptocurrencies for non-extractable currencies using blockchain technology.
  • primary unit 10 realizes the most complex and extensive part of the management functions.
  • Such a unit 10 is complete with respect to the purposes of the invention, and is capable of operating all cyber mining functions.
  • its flexibility and production qualities, although very high performance, are not able to develop enough value to compete industrially with ASICs, even though they are rigid and mono-extractive.
  • secondary unit 20 is apt to increase the computational capacity of primary unit 10 for cryptocurrency mining depending on the cryptocurrencies to be mined.
  • Primary unit 10 in fact, is capable of performing cryptocurrency mining with both primary processor 210 and primary graphics cards 410, and is able to vary the portfolio of cryptocurrencies to be mined with remote management of both operating system software settings and settings that regulate speeds, frequencies, and any other physical details of the computing hardware components.
  • Primary unit 10 turns on and starts up automatically with a simple press on a start button by loading programs and implementing instructions on the SSD board that also simultaneously activate the components that make up secondary unit 20.
  • Machine 1 activates its operating system, which in turn launches the extraction computer program (Hive-OS) that directly (Peer-to-Peer) or indirectly (Peer-to- Pool) works on solving the algorithms assigned by the cryptocurrency to be extracted in the time and maimer prescribed by the specific extraction protocol.
  • Hive-OS extraction computer program
  • Peer-to-Peer directly (Peer-to-Peer) or indirectly (Peer-to- Pool) works on solving the algorithms assigned by the cryptocurrency to be extracted in the time and maimer prescribed by the specific extraction protocol.
  • the fees extracted from the mining activity are automatically credited to the multicurrency electronic wallet (or electronic purses) prepared at time intervals that can be selected and ranging from 20 minutes to indefinite storage with the option of recall.
  • the fees are transferred to special positions set up on financial platforms operating in the cryptocurrency markets and traded according to opportunity and contingency criteria with others operating in the antagonistic Proof-of-Work or Proof-of-Stake 'mining' sector by acquiring additional value during the times of storage.
  • cryptographic financial values are transferred, or converted into legal tender, or used as payment through debit/prepaid cards capable of instantly converting stored credits into payment values in the specific currency of the desired economic transaction.
  • Multicurrency electronic wallets of mined cryptocurrencies are, therefore, linked with transfer and payment systems and financial platforms for intra-crypto (between one cryptocurrency and another) and extra-crypto (between cryptocurrencies and legal tender currencies) currency exchange.
  • This linkage system makes it possible to access and use qualified financial services, which are necessary for the monetary and commercial use of realized cryptocurrencies.
  • This function of the machine is important and represents the overcoming of the dichotomy between the two systems of new currency generation contemplated by the current dynamics of cryptocurrency development, dissemination and use, making both "Proof-of-Work" energy enhancement and "Proof-of-Stake” financial enhancement actions exploitable within one production process.
  • the computational capacity produced by machine 1 is certainly a significant magnitude in mining cybernetic tasks, and the invention's ability to produce computational power applicable to different algorithms allows it to operate with the flexibility that ASICs cannot structurally achieve.
  • the Invention is able to produce useful computing power for cybernetic extraction with both its CPU and GPUs.
  • photovoltaic source allows not transforming electric current from direct current (DC) to alternating current (AC) and storing it in back-up batteries directly within the uninterruptible and rectifier unit.
  • Uninterruptible Power Supply/Power Supply Block's operating options allow it to exclude direct connection from the grid, thus working mainly on battery backup: the flexibility of such a system directly powering the machine with DC at 20V allows, by way of example only, to purchase power from the grid at the time of lowest cost to employ it through battery storage during periods or times of highest cost, or to employ it directly from its generation in low voltage DC without the energy-intensive intervention of inverters, otherwise necessary.
  • Machine 1 mines in "Proof-of-Work” with both 32/64-partition CPUs (Processors) and 2 to 20 GPUs (Graphics Cards) increasing its productivity and, more importantly, mining flexibility that extends cybernated crypto currencies to a minimum number of two.
  • the components and computing systems are all liquid-cooled, both in primary unit 10 and secondary unit 20, albeit with different modes and principles: with conduits and ducts aimed at heat exchange with radiant principals in primary unit 10 and by total immersion and prevalent heat absorption by change of physical state (liquid to gaseous and gaseous to liquid) during the convective cycle of secondary unit 20.
  • the high cost of the constituent components of the machine 1 associated with the high risk of exposure to wear by oxidation, the polluting action of atmospheric dust was significantly limited with the watertight management of the circuits and processors realized by liquid cooling.
  • insulating composite materials were used, within which a double Faraday cage was made of complementary materials such as copper and brass.
  • Machine 1 was built to be able to express maximum compatibility between the material (hardware) and immaterial (software) components and developed with criteria of immediacy and intuitive simplicity: for these reasons, the system and operational settings load automatically with the startup programs in a preordained and sequential maimer after the apparatus is turned on via in start button.
  • Machine 1 allows to vary with simplified and intuitive command, even remotely, its working set-up i.e., the electrical power used, the fundamental setting of the hardware components, the cryptocurrencies to be mined and, thus, the respective cryptographic protocol algorithms.
  • machine 1 allows to vary with simplified and intuitive command, managed by specific application also remotely, the system of acquisition of the blocks to be cybemetically mined i.e. 'direct' (Peer- to-Peer) or 'mediated' (Peer-to-Pool), in this case with automatic search, selection and positioning suggested according to the general conditions of association.
  • 'direct' Peer- to-Peer
  • 'mediated' Peer-to-Pool
  • the cryptocurrency mining machine according to the present invention is, therefore, capable of providing simple and secure handling of cryptocurrency mining with reduced production and installation cost.
  • the cryptocurrency mining machine enables low maintenance operation, where the most stressed components are preserved as much as possible, thereby avoiding damage that would make the machine less efficient.
  • the multiple and variable crypto currency mining machine enables it to optimize its computational potential by involving all computing units in the overall cyber mining production, to increase its operational flexibility by complementarily and/or alternatively selecting a series of cryptocurrencies chosen according to their contingent market course, to decrease overall energy consumption with the dedicated introduction of a low voltage, direct current (DC - Direct Current) power supply/continuity unit supported by a sized renewable power generation apparatus, to access through blockchain technology to P2P (Peer-to-Peer: Equivalent Diffuse Networks) for cryptocurrency generation, to reduce interference from "electronic smog," to dissipate thermal excess compatibly with realization of maximum computing capacity of components subjected to overheating, to protect from the damaging action of atmospheric particles by cooling the main components by total immersion and thermal release at very high exchange surface area.
  • P2P Peeer-to-Peer: Equivalent Diffuse Networks
  • the primary unit realizes the systemic component, intensively processing management interactions subject to software interventions and functional setting settings while the secondary unit develops computing power in liquid environment and environmentally isolated conditions.
  • Such a primary unit is a potentially autonomous and functionally complete apparatus of which the secondary unit represents an enhancement in terms of increasing the applied computational capacity and technological resources aimed at optimizing the result of cybernetic extraction, the durability and preservation in efficiency of the hardware and thus the overall improvement of its operating conditions.
  • Machine performance recovery also takes place after mining and acquisition in multi-currency electronic wallets of rewards by transferring and exchanging cryptocurrencies mined in PoW system with others that are not "minable” but offer PoS-type valorization processes.
  • This further valorization activity is entrusted to systems with blockchain technology that are embodied in a software system of algorithmic-cybernetic automation of placements.
  • the machine according to the present invention introduces, with the principle of best possible performance, a cybernetic solution with high automation produced through the simultaneous application of a plurality of elements, in the following partially listed.
  • the cryptocurrency mining machine represents, therefore, a domestic 'cyber mining' product potentially usable and exploitable in a widespread and simplified way, in contrast to the machines existing today that develop rigid functional characteristics related to an ASICs-type mining logic, aimed at a professional user, bearer of specific notions and information, and with a high expenditure of energy acquired from 220-240V AC network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

La présente invention concerne une machine (1) pour l'exploitation de cryptomonnaies comprenant une unité primaire (10) et une unité secondaire (20) reliées fonctionnellement l'une à l'autre, l'unité primaire (10) étant apte à effectuer le traitement et les itérations pour l'exploitation de cryptomonnaies et comprenant un programme informatique pour exploiter une ou plusieurs cryptomonnaies à partir d'une sélection prédéfinie de cryptomonnaies, l'unité secondaire (20) étant apte à augmenter la capacité de calcul de l'unité primaire (10) pour une exploitation de cryptomonnaie en fonction des cryptomonnaies à exploiter, et le programme de processeur d'exploitation étant fonctionnellement connecté à un portefeuille électronique à devises multiples pour acquérir et/ou convertir la cryptomonnaie exploitée.
PCT/IB2023/056738 2022-07-15 2023-06-29 Machine d'exploitation de cryptomonnaie WO2024013603A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CHCH000841/2022 2022-07-15
CH00841/22A CH718486A2 (it) 2022-07-15 2022-07-15 Macchina per l'estrazione di criptovalute.

Publications (1)

Publication Number Publication Date
WO2024013603A1 true WO2024013603A1 (fr) 2024-01-18

Family

ID=83995248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/056738 WO2024013603A1 (fr) 2022-07-15 2023-06-29 Machine d'exploitation de cryptomonnaie

Country Status (2)

Country Link
CH (1) CH718486A2 (fr)
WO (1) WO2024013603A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243265B1 (en) * 1999-10-06 2001-06-05 Intel Corporation Processor EMI shielding
WO2019204898A1 (fr) * 2018-04-26 2019-10-31 10518590 Canada Inc. Planification de charge de travail dans un environnement informatique distribué sur la base d'une valeur de calcul appliquée
WO2020061305A1 (fr) * 2018-09-19 2020-03-26 TMGCore, LLC Plate-forme de refroidissement par immersion dans un liquide
US20200151015A1 (en) * 2018-11-13 2020-05-14 Asustek Computer Inc. Digital currency mining device and digital currency mining management method
JP2022078287A (ja) * 2021-03-23 2022-05-24 バイドゥ ユーエスエイ エルエルシー 冷却ユニット、サーバシャーシおよび電子ラック

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243265B1 (en) * 1999-10-06 2001-06-05 Intel Corporation Processor EMI shielding
WO2019204898A1 (fr) * 2018-04-26 2019-10-31 10518590 Canada Inc. Planification de charge de travail dans un environnement informatique distribué sur la base d'une valeur de calcul appliquée
WO2020061305A1 (fr) * 2018-09-19 2020-03-26 TMGCore, LLC Plate-forme de refroidissement par immersion dans un liquide
US20200151015A1 (en) * 2018-11-13 2020-05-14 Asustek Computer Inc. Digital currency mining device and digital currency mining management method
JP2022078287A (ja) * 2021-03-23 2022-05-24 バイドゥ ユーエスエイ エルエルシー 冷却ユニット、サーバシャーシおよび電子ラック
EP4033870A2 (fr) * 2021-03-23 2022-07-27 Baidu USA LLC Unité de refroidissement de liquide pour des dispositifs périphériques

Also Published As

Publication number Publication date
CH718486A2 (it) 2022-11-15

Similar Documents

Publication Publication Date Title
Bland et al. Jaguar: The world’s most powerful computer
US9943005B2 (en) Modular data center
Savin et al. Joint supercomputer center of the Russian Academy of Sciences: Present and future
Haywood et al. Thermodynamic feasibility of harvesting data center waste heat to drive an absorption chiller
WO2019139632A1 (fr) Procédé et système d'alimentation dynamique d'un centre de données flexible au moyen de sources d'énergie non utilisées
US10344744B2 (en) Energy production from waste heat using a shape memory drive or heat engine
Sharma et al. Design and operational analysis of a green data center
US20210321543A1 (en) Liquid cooled module for narrow pitch slots
CN112117510A (zh) 用于电池组的自激活热量管理系统
Mukherjee et al. A detailed study on data centre energy efficiency and efficient cooling techniques
JP2023543778A (ja) ディスアグリゲーテッド・コンピューター・システム
WO2024013603A1 (fr) Machine d'exploitation de cryptomonnaie
CN205692107U (zh) 一种分布式架构的集群微服务器系统
CN102496998A (zh) 一种云集装箱绿色能源供电装置
CN112259852A (zh) 用于电池模块的架设计
US20230025369A1 (en) Methods and apparatus for an autonomous stage-switching multi-stage cooling device
Bland et al. Jaguar: The world’s most powerful computer system–an update
JP5378292B2 (ja) 情報処理システム及び情報処理方法
Ni et al. CFD simulation study of flow equalisation plate model in single-phase immersion liquid cooling for servers
JP2024504702A (ja) 電子コンポーネントを冷却するための没入型冷却ユニット及びこれを使用する方法
EP3937264A1 (fr) Procédé, appareil et produit de programme informatique pour le refroidissement multiphase d'un dispositif électronique mobile
CN105068871B (zh) 运算资源的控制方法和装置
Dai et al. Data center energy flow and efficiency
Anagnostopoulou et al. Quantifying the environmental advantages of large-scale computing
US11991857B2 (en) Modular liquid cooling architecture for liquid cooling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745260

Country of ref document: EP

Kind code of ref document: A1