WO2024012374A1 - 一种资源配置方法及设备 - Google Patents

一种资源配置方法及设备 Download PDF

Info

Publication number
WO2024012374A1
WO2024012374A1 PCT/CN2023/106363 CN2023106363W WO2024012374A1 WO 2024012374 A1 WO2024012374 A1 WO 2024012374A1 CN 2023106363 W CN2023106363 W CN 2023106363W WO 2024012374 A1 WO2024012374 A1 WO 2024012374A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transmission requirement
resource
time
terminal device
Prior art date
Application number
PCT/CN2023/106363
Other languages
English (en)
French (fr)
Inventor
刘云
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210963173.8A external-priority patent/CN117460050A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024012374A1 publication Critical patent/WO2024012374A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of communication technology, and in particular, to a resource allocation method and device.
  • the fourth generation ( 4th generation, 4G) communication system i.e. Long Term Evolution (Long Term Evolution) Term Evolution (LTE) system
  • This communication method can be called Device to Device (D2D) communication, also known as sidelink (SL) communication.
  • D2D Device to Device
  • SL sidelink
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • the terminal device can reserve multiple discontinuous resources for subsequent transmissions in one transmission and transmit on the above resources. For example, when there is a need for data transmission, the terminal device reserves multiple discontinuous resources for retransmission of the data to be transmitted. Among them, a certain time interval is required between each resource. The minimum time interval between any two resources is called the minimum gap. Within this time interval, the terminal device can receive the response response corresponding to the previous transmission and the processing delay for the response response. Therefore, the minimum time interval should be greater than or equal to the delay in transmitting the corresponding response and the processing delay of the response by the terminal device.
  • the terminal device may terminate the use of the first resource after the first resource.
  • Use the second resource to retransmit the data, or use the second resource to transmit other data to avoid resource waste.
  • the above resource configuration scheme does not consider channel conditions, so data transmission through the above resource configuration scheme may affect the communication efficiency of the terminal device.
  • This application provides a resource configuration method and equipment to ensure the communication efficiency of terminal equipment.
  • embodiments of the present application provide a resource configuration method, which can be applied to the first terminal device in the SL-U system.
  • the method includes the following steps:
  • N is an integer greater than or equal to 1
  • the first terminal device can reserve resources according to the LBT duration corresponding to the N transmission requirements. Taking the LBT duration into consideration can reduce the situation where the LBT duration of a certain transmission requirement has not ended when the resource corresponding to the transmission requirement is reached, thereby improving the probability that the first terminal device can use the resource corresponding to the transmission requirement to transmit data. This ensures the communication efficiency of the terminal equipment.
  • the first terminal device can determine N resources according to the LBT duration corresponding to the N transmission requirements through the following steps:
  • the LBT duration corresponding to the nth transmission requirement determine the nth starting time; where n is a positive integer, and 1 ⁇ n ⁇ N; the nth starting time is the length of the nth transmission requirement The starting time of the resource selection range; determine the resource corresponding to the nth transmission requirement based on the nth starting time.
  • the first terminal device can determine the resources of each transmission requirement based on the LBT duration corresponding to each transmission requirement.
  • the starting time of the source selection range, and then the resources corresponding to each transmission requirement can be determined based on the starting time of the resource selection range of each transmission requirement.
  • the resources corresponding to any transmission requirement shall not be earlier than the starting time of the resource selection range of the transmission requirement. Since the starting time of the resource selection range for each transmission requirement is determined based on the LBT duration corresponding to the transmission requirement, this design can reduce the occurrence of LBT duration for a transmission requirement that has not yet ended when the resources corresponding to a certain transmission requirement are reached. Condition.
  • the first terminal device includes a physical PHY layer and a medium access control MAC layer.
  • the PHY layer may determine the nth starting time based on the LBT duration corresponding to the nth transmission requirement.
  • the first terminal device can determine the resources corresponding to the n-th transmission requirement through the following steps:
  • Method 1 The PHY layer sends the n-th start time to the MAC layer; the MAC layer determines the resource selection range of the n-th transmission requirement based on the n-th start time; so The MAC layer determines the resources corresponding to the n-th transmission requirement within the resource selection range of the n-th transmission requirement;
  • Method 2 The PHY layer determines the resource selection range of the n-th transmission requirement based on the n-th starting time; the PHY layer sends the resource selection range of the n-th transmission requirement to the MAC layer Scope; the MAC layer determines the resources corresponding to the nth transmission requirement within the resource selection range of the nth transmission requirement;
  • Method 3 The PHY layer determines the starting time unit of the resource selection range of the nth transmission requirement based on the nth starting time; the PHY layer sends the nth unit to the MAC layer The starting time unit of the resource selection range of the transmission requirement and the candidate resource set; the MAC layer determines the nth resource selection range based on the starting time unit of the nth transmission requirement in the resource candidate set. Resources corresponding to transmission requirements;
  • Method 4 The PHY layer determines the set of candidate resources for the nth transmission requirement based on the nth starting time; the PHY layer sends the candidate resources for the nth transmission requirement to the MAC layer. Set; the MAC layer determines the resource corresponding to the nth transmission requirement in the candidate resource set of the nth transmission requirement;
  • any candidate resource set contains at least one candidate resource.
  • the first terminal device can determine the resources corresponding to the n-th transmission requirement in various ways.
  • the first terminal device determines the resources corresponding to each of the N transmission requirements in parallel, it needs to ensure that the time interval between any two determined resources is greater than or equal to the minimum time interval.
  • the first terminal device/MAC layer can first determine the resources corresponding to the Nth transmission requirement in order from back to front in the time domain; and then determine the resources corresponding to the minimum time interval.
  • the resource corresponding to the N-1th transmission requirement it ends after the resource corresponding to the 1st transmission requirement is determined.
  • the first terminal device/MAC layer can first determine the resources corresponding to the transmission requirements with the smallest resource selection range in order from small to large resource selection ranges; and then determine the resources corresponding to the minimum time interval when the minimum time interval is met. Determine the resources corresponding to the transmission demand with the next smallest resource selection range; and end after determining the resources corresponding to the transmission demand with the largest resource selection range.
  • the first terminal device/MAC layer can first select a resource from the candidate resource set with the smallest time domain range in order of the time domain range of the candidate resource set from small to large; Then, under the requirement of meeting the minimum time interval, the next resource is selected from the candidate resource set with the second smallest time domain range; it ends after a resource is selected from the candidate resource set with the largest time domain range.
  • the time interval between any two resources is greater than or equal to the minimum time interval.
  • the nth starting time conforms to t 0 +T n ; wherein, T n conforms to the following formula:
  • t 0 is the time when the first terminal device has a transmission demand
  • t n LBT is the LBT duration corresponding to the nth transmission demand
  • t s is the length of the time unit used for scheduling data transmission resources
  • T offset is the offset value
  • t cpe is the duration of cyclic prefix expansion.
  • this design can reduce the probability of the following situation occurring: reaching the n-th transmission requirement
  • the corresponding resource is that the LBT duration of the n-th transmission requirement has not yet ended, thereby improving the probability that the first terminal device can use the resource corresponding to the n-th transmission requirement to transmit data.
  • the first terminal device may determine the nth starting time according to the LBT duration corresponding to the nth transmission requirement through the following steps:
  • the nth starting time is determined according to the LBT duration corresponding to the nth transmission demand and the resources corresponding to the previous transmission demand of the nth transmission demand; wherein, the nth transmission demand
  • the previous transmission requirement is the transmission requirement whose resource position is located before the n transmission requirements among the N transmission requirements.
  • the first terminal device Since the first terminal device performs LBT on the nth transmission requirement, before the resources corresponding to the nth transmission requirement arrive, the first terminal device will perform LBT on the previous transmission requirement of the nth transmission requirement. Data is transmitted on the corresponding resources. Therefore, the channels will be occupied at the locations of the resources corresponding to these previous transmission requirements, which results in the actual LBT duration of the first terminal device for the n-th transmission requirement being likely to be extended. Based on this, when determining the starting time of the resource selection range of the nth transmission requirement, the first terminal device not only considers the LBT duration corresponding to the nth transmission requirement, but also needs to consider the time of the nth transmission requirement. First transfer the resources corresponding to the requirements.
  • this design can reduce the probability of the following situation occurring: reaching the n-th transmission requirement
  • the corresponding resource is that the LBT duration of the n-th transmission requirement has not yet ended, thereby improving the probability that the first terminal device can use the resource corresponding to the n-th transmission requirement to transmit data.
  • the nth starting time conforms to t 0 +T n ; wherein, T n conforms to the following formula:
  • t 0 is the time when the first terminal device has a transmission demand
  • t n LBT is the LBT duration corresponding to the nth transmission demand
  • t s is the length of the time unit used for scheduling data transmission resources
  • T offset is the offset value
  • t cpe is the duration of cyclic prefix extension
  • ti,R is the duration of the resource corresponding to the i-th previous transmission requirement of the n-th transmission requirement, is the sum of the durations of the resources corresponding to the n-1 previous transmission requirements of the n-th transmission requirement
  • S i, R is the resource occupied by the resources corresponding to the i-th previous transmission requirement of the n-th transmission requirement the number of time units, It is the sum of the number of time units occupied by the resources corresponding to the n-1 previous transmission requirements of the n-th transmission requirement.
  • this design can reduce the probability of the following situation occurring: reaching the n-th transmission requirement
  • the corresponding resource is that the LBT duration of the n-th transmission requirement has not yet ended, thereby improving the probability that the first terminal device can use the resource corresponding to the n-th transmission requirement to transmit data.
  • the first terminal device may determine the nth starting time according to the LBT duration corresponding to the nth transmission requirement through the following steps:
  • the previous transmission requirement of the nth transmission requirement is a transmission requirement whose resource position is located before the n transmission requirements among the N transmission requirements;
  • the previous response response includes the response response that the first terminal device or other terminal devices should receive before the resource corresponding to the n-th transmission requirement.
  • the first terminal device Since the first terminal device performs LBT on the nth transmission requirement, before the resources corresponding to the nth transmission requirement arrive, the first terminal device will perform LBT on the previous transmission requirement of the nth transmission requirement. Data is transmitted on the corresponding resources, and the first terminal device or other terminal devices will receive the response response on the resource corresponding to the previous response response. Therefore, the resources corresponding to these previous transmission requirements and the resources corresponding to the previous response response are The channel at the location will be occupied, which results in the actual LBT duration of the n-th transmission requirement of the first terminal device possibly being extended.
  • the first terminal device when determining the starting time of the resource selection range of the nth transmission requirement, the first terminal device not only considers the LBT duration corresponding to the nth transmission requirement, but also needs to consider the time of the nth transmission requirement.
  • the resources corresponding to the request are transmitted first, and the resources corresponding to the previous response are transmitted.
  • this design enough time is reserved for the first terminal device to perform LBT before the n-th starting time. Therefore, this design can reduce the probability of the following situation occurring: reaching the n-th transmission requirement
  • the corresponding resource is that the LBT duration of the n-th transmission requirement has not yet ended, thereby improving the probability that the first terminal device can use the resource corresponding to the n-th transmission requirement to transmit data.
  • the previous response response of the nth transmission requirement includes the response response of the previous transmission requirement of the nth transmission requirement; or the previous response response of the nth transmission requirement Comprises the response response of the previous transmission requirement of the n-th transmission requirement, and the response response of at least one first transmission; wherein the first transmission is the response that the first terminal device monitors and does not receive the response response. transmission.
  • the nth starting time conforms to t 0 +T n ; wherein, T n conforms to the following formula:
  • t 0 is the time when the first terminal device has a transmission demand
  • t n LBT is the LBT duration corresponding to the nth transmission demand
  • t s is the length of the time unit used for scheduling data transmission resources
  • T offset is the offset value
  • t cpe is the duration of cyclic prefix extension
  • ti,R is the duration of the resource corresponding to the i-th previous transmission requirement of the n-th transmission requirement, is the sum of the duration of resources corresponding to n-1 previous transmission requirements of the n-th transmission requirement
  • t n HARQ is the total duration of resources corresponding to the previous response responses of the n-th transmission requirement
  • S i,R is the number of time units occupied by the resources corresponding to the i-th previous transmission requirement of the n-th transmission requirement, is the sum of the number of time units occupied by the resources corresponding to the n-1 previous transmission requirements of the n-th transmission requirement
  • S n,HARQ is the number of time
  • this design can reduce the probability of the following situation occurring: reaching the n-th transmission requirement
  • the corresponding resource is that the LBT duration of the n-th transmission requirement has not yet ended, thereby improving the probability that the first terminal device can use the resource corresponding to the n-th transmission requirement to transmit data.
  • the first terminal device may also perform the following steps:
  • the nth starting time is re-determined based on the remaining LBT duration corresponding to the nth transmission requirement. ; According to the redetermined nth starting time, redetermine the resources corresponding to the nth transmission requirement.
  • the first terminal device can also reselect resources for this transmission requirement to ensure data transmission reliability.
  • determining that the LBT duration corresponding to the n-th transmission demand has not ended includes at least one of the following: determining at the first time that the LBT duration corresponding to the n-th transmission demand has not ended; or determining first The duration is less than the remaining LBT duration corresponding to the nth transmission requirement; wherein the first time is located before the starting time of the resource corresponding to the nth transmission requirement, or the first time is the nth transmission requirement.
  • the starting time of the resource corresponding to the nth transmission requirement; the first duration is the duration between the first time and the starting time of the resource corresponding to the nth transmission requirement.
  • the first terminal device before the first terminal device transmits data on the N resources, it can also determine the kth starting time based on the LBT duration corresponding to the kth transmission requirement; wherein, the The kth transmission requirement is the subsequent transmission requirement of the nth transmission requirement, k is a positive integer, and n ⁇ k ⁇ N; the kth starting time is the resource selection of the kth transmission requirement The starting time of the range; according to the k-th starting time, determine the resource corresponding to the k-th transmission requirement; after the first terminal device determines that the LBT duration corresponding to the n-th transmission requirement has not ended , the kth starting time can also be re-determined based on the remaining LBT duration corresponding to the k-th transmission requirement; or the k-th starting time can be re-determined based on the remaining LBT duration corresponding to the n-th transmission requirement and the minimum time interval.
  • the first terminal device may also re-determine the resources corresponding to the subsequent transmission requirement.
  • the first terminal device before the first terminal device transmits data on the N resources, it may also transmit data based on the kth
  • the LBT duration corresponding to the demand determines the k-th starting time; wherein, the k-th transmission demand is the subsequent transmission demand of the n-th transmission demand, k is a positive integer, and n ⁇ k ⁇ N; so
  • the kth starting time is the starting time of the resource selection range of the kth transmission requirement; the resource corresponding to the kth transmission requirement is determined according to the kth starting time; the first After determining that the LBT duration corresponding to the n-th transmission requirement has not ended, the terminal device determines that the second duration is less than the remaining LBT duration corresponding to the k-th transmission requirement; or determines that the second duration has been experienced since the first time
  • the second time after is later than the starting time of the resource corresponding to the k-th transmission requirement; wherein, the second duration is the remaining LBT duration corresponding to the n-th transmission requirement and (
  • the first terminal device can also determine the resources corresponding to subsequent transmission requirements, and only re-determine the resources corresponding to subsequent transmission requirements that have a risk of unavailability. .
  • the first terminal device can determine N start times according to the LBT duration corresponding to the N transmission requirements; wherein, the jth start time among the N start times is the starting time of the resource selection range of the jth transmission requirement among the N transmission requirements; when none of the N starting times exceeds the third time, determine the nth starting time based on the The resources corresponding to the nth transmission requirement; wherein, the third time is the time after the third duration from the time when the transmission requirement occurs on the first terminal device, and the value of the third duration is based on the The data transmission delay of the first terminal device is determined.
  • the data delay can be guaranteed to be within the third time.
  • the data transmission delay range of a terminal device since the starting time of the resource selection range for each transmission requirement does not exceed the third time, in this way, when the first terminal device transmits data on the determined N resources, the data delay can be guaranteed to be within the third time.
  • the first terminal device when the g-th starting time exceeds the third time (where g is a positive integer, and 1 ⁇ g ⁇ N), the first terminal device can also be implemented in the following manner Resource configuration:
  • Method 1 Send a first resource request to a second terminal device; receive first resource configuration information from the second terminal device; wherein the first resource configuration information is used to indicate that the second terminal device is the The resources allocated by the first terminal device, the second terminal device is the receiving end of the N transmission requirements, and the transmission resources occupied by the first resource request are the first terminal device and the second terminal device.
  • the first resource configuration information is used to indicate that the second terminal device is the The resources allocated by the first terminal device, the second terminal device is the receiving end of the N transmission requirements, and the transmission resources occupied by the first resource request are the first terminal device and the second terminal device.
  • Method 2 Send a second resource request to the network device; receive second resource configuration information from the network device; wherein the second resource configuration information is used to indicate that the network device allocates the resource to the first terminal device. resource;
  • Method 3 Use the resource where the remaining transmission time COT of the second terminal device is located to send data; wherein the second terminal device is the receiving end of the N transmission requirements.
  • the first terminal device Since the starting time of the resource selection range of some transmission requirements exceeds the third time, even if the first terminal device determines N resources corresponding to N transmission requirements, it may not be able to guarantee that the data delay is within the first terminal device's time. within the data transmission delay range. Based on this, the first terminal device can continue to send data on the resource where the remaining COT of the second terminal device or network device is located, thereby ensuring data transmission delay.
  • the first terminal device can obtain the LBT duration corresponding to M transmission requirements; wherein the M transmission requirements include the N transmission requirements; M is an integer greater than N; according to The LBT duration corresponding to the M transmission requirements determines M start times; wherein, the m-th start time among the M start times is the resource selection for the m-th transmission requirement among the M transmission requirements.
  • the starting time of the range; m is a positive integer, and 1 ⁇ m ⁇ M; wherein, among the M transmission requirements, the starting time of the resource selection range of the N transmission requirements does not exceed the third time, except The starting time of the resource selection range of transmission requirements other than the N transmission requirements exceeds the third time; the third time is after a third period of time starting from the time when the transmission requirement appears on the first terminal device.
  • the value of the third duration is determined based on the data transmission delay of the first terminal device; the first terminal device determines the resources corresponding to the N transmission requirements, and is not sure about the M Resources corresponding to transmission requirements other than the N transmission requirements in the transmission requirements; in the above case, after the first terminal device transmits data on the N resources, the first terminal device can The transmission results indicated by the response responses of the N resources determine whether to continue sending data on the resource where the remaining COT of the second terminal device or network device is located; wherein the second terminal device is the N transmission requirement pick up End.
  • the first terminal device may only determine the resources corresponding to this part of the transmission requirements. In this way, after the first terminal device transmits data on the resources corresponding to the N transmission requirements, it determines whether the remaining COT of the second terminal device or network device is based on the transmission results indicated by the response responses of the N transmission requirements. Continue to send data on the resource where it is located.
  • the first terminal device When the transmission results indicated by the response responses to the N transmission requirements indicate successful data transmission, the first terminal device does not need to seek other resource configuration methods; and when the transmission results indicated by the response responses to the N transmission requirements indicate data transmission failure, , the first terminal device can continue to transmit data using the resource configuration method in the previous design.
  • LBT is started when the first terminal device has a transmission requirement; or LBT is started during the process of determining the N resources; or LBT is started after the N resources are determined.
  • LBT starts when the PHY layer sends the n-th starting time to the MAC layer; or when the PHY layer sends the n-th transmission required resource to the MAC layer
  • LBT is started; or when the PHY layer sends the starting time unit of the resource selection range and the candidate resource set of the nth transmission requirement to the MAC layer, LBT is started; or when the The LBT starts when the PHY layer sends the candidate resource set of the n-th transmission requirement to the MAC layer; or when the MAC layer notifies the PHY layer of the resources corresponding to the n-th transmission requirement, the LBT starts LBT.
  • embodiments of the present application provide a communication method, which can be applied to terminal devices in the SL-U system.
  • the methods include:
  • Selecting a first resource in a first frequency band transmitting target data on a second resource in a second frequency band; wherein the bandwidth of the first frequency band is greater than the bandwidth of the second frequency band, or the bandwidth of the first frequency band is less than The bandwidth of the second frequency band; a resource mapping relationship exists between the frequency domain location of the first resource and the frequency domain location of the second resource; the resource mapping relationship is used to map the first resource to the Describe the second resource.
  • the terminal device can implement resource mapping between two frequency bands with different bandwidths. For example, if the terminal device reserves the first resource in the first frequency band in order to transmit the target data, and subsequently seizes the channel in the second frequency band through LBT, then at this time, the terminal device can map the first resource to the third frequency band through the above method.
  • the second resource is obtained in the second frequency band, so that the target data can be transmitted in the preempted channel.
  • the terminal device may select the second resource in the second frequency band according to the resource mapping relationship and the frequency domain location of the first resource; wherein, the first The resources include a first resource block RB, the second resource includes a second RB; the frequency domain location of the first resource includes the RB number of the first RB in the first frequency band; the second resource The frequency domain position includes the RB number of the second RB in the second frequency band; the resource mapping relationship is used to represent the RB number between the RB number in the first frequency band and the RB number in the second frequency band. Mapping relations.
  • the terminal device can implement resource mapping between two frequency bands with different bandwidths through the resource mapping relationship.
  • the terminal device may also determine a first target sub-channel among a plurality of first sub-channels corresponding to the first frequency band according to the frequency domain position of the first resource;
  • the frequency domain position of the two resources determines the second target sub-channel among the plurality of second sub-channels corresponding to the second frequency band; when the number of RBs occupied by the second target sub-channel is greater than the number of RBs occupied by the first target sub-channel
  • the encoded signal is rate matched to obtain a target signal; or when the number of RBs occupied by the second target subchannel is less than the first target subchannel
  • the number of occupied RBs is based on the second
  • the number of RBs occupied by the target sub-channel is used to puncture the encoded signal to obtain a target signal; wherein the encoded signal is obtained by encoding the target data according to the number of RBs occupied by the first target sub-channel;
  • the terminal equipment can also realize mapping of sub-channels corresponding to different frequency bands.
  • an embodiment of the present application provides a communication device, including a unit for performing each of the steps in the above first to seventh aspects.
  • embodiments of the present application provide a terminal device, including a processor, a memory, and a processor; wherein, the transceiver is used to receive and send signals; the memory is used to store program instructions and data; The processor is configured to read program instructions and data in the memory to implement the method provided in the first or second aspect above.
  • embodiments of the present application provide a terminal device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store programs and data, and the at least one processing element is used to execute the above aspects of the present application. Methods provided in the first aspect or the second aspect.
  • embodiments of the present application also provide a computer program, which when the computer program is run on a computer, causes the computer to execute the method provided in any of the above aspects.
  • the computer may be a terminal device.
  • embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program When the computer program is executed by a computer, it causes the computer to execute the method provided in any of the above aspects.
  • the computer may be a terminal device.
  • embodiments of the present application also provide a chip, which is used to read the computer program stored in the memory and execute the method provided in any of the above aspects.
  • the chip may include a processor and a memory, and the processor is coupled to the memory and used to read the computer program stored in the memory to implement the method provided in the above embodiments.
  • embodiments of the present application also provide a chip system.
  • the chip system includes a processor and is used to support a computer device to implement the method provided in any of the above aspects.
  • the chip system also includes a memory, and the memory is used to save necessary programs and data of the computer device.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • Figure 1 is a schematic diagram of resource reservation in a sidelink scenario provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of a communication scenario provided by an embodiment of the present application.
  • Figure 3 is a flow chart of a resource configuration method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a resource configuration example provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of an example of resource configuration provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a resource configuration example provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a resource configuration example provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a resource configuration example provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a resource configuration example provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of a resource configuration example provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of a resource configuration example provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of a resource configuration example provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of a resource configuration example provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of a resource configuration example provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of a resource configuration scenario provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of a resource configuration scenario provided by an embodiment of the present application.
  • Figure 17 is a flow chart of a communication method provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram of the distribution between frequency bands of different bandwidths provided by an embodiment of the present application.
  • Figure 19 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 20 is a structural diagram of a terminal device provided by an embodiment of the present application.
  • This application provides a resource configuration method and equipment to ensure the communication efficiency of terminal equipment.
  • the method and equipment are based on the same A technical concept, since the principles of problem solving by methods and equipment are similar, the implementation of equipment and methods can refer to each other, and the repeated points will not be repeated.
  • Network equipment is a device in a communication system that connects terminal equipment to a wireless network.
  • the network device may also be called a base station or a radio access network (radio access network, RAN) node (or device).
  • radio access network radio access network
  • gNB transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • AP access point
  • BSC base station controller
  • BTS base transceiver station
  • HNB home Node B
  • BBU baseband unit
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure separates the protocol layer of the eNB in the long term evolution (LTE) system.
  • LTE long term evolution
  • Some protocol layer functions are centralized controlled by the CU, and the remaining part or all protocol layer functions are distributed in the DU and controlled by the CU.
  • Centralized control of DU is centralized control of DU.
  • Terminal equipment is a device that provides voice and/or data connectivity to users.
  • Terminal equipment can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device can be a handheld device with wireless connection function, various vehicle-mounted devices, roadside units, etc.
  • some examples of terminal devices are: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MID), smart point of sale terminals (POS), and wearable devices.
  • VR virtual reality
  • AR augmented reality
  • wireless terminals in industrial control wireless terminals in self-driving, remote medical surgery
  • Wireless terminals in smart grid wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, various Smart meters (smart water meters, smart electricity meters, smart gas meters), eLTE-DSA UE, equipment with integrated access and backhaul (IAB) capabilities, vehicle-mounted electronic control unit (ECU) etc.
  • ECU electronice control unit
  • T-BOX telematics boxes
  • Communication equipment is a device that supports wireless communication technology and can communicate with other devices.
  • the specific form of the communication device is not limited.
  • the communication device may be a terminal device, a network device, etc.
  • Frequency band is a continuous frequency resource, used as a carrier in the data transmission process of communication equipment.
  • the frequency band has two characteristics, frequency point and bandwidth.
  • the frequency point and bandwidth can determine the frequency range of the frequency band, including the minimum frequency boundary (also called the starting frequency) and the maximum frequency boundary (also called the end frequency) of the frequency point.
  • the frequency band can be divided into multiple sub-carriers.
  • the value of SCS can be 15kHz, 30kHz, 60kHz, etc.
  • a resource block in the frequency domain, can contain a fixed number of subcarriers, so a frequency band can include multiple RBs. For example, 12 subcarriers in the frequency domain can constitute one RB.
  • Resources which are time-frequency resources used by communication equipment to transmit data, are also called physical resources. Resource is a concept in two dimensions, including time domain and frequency domain.
  • time involved in the embodiments of this application can be counted by traditional time units such as seconds, milliseconds, microseconds, etc., or can also be counted by time units defined for time domain resources in the communication field.
  • time units in the communication field may include, but are not limited to, subframes, slots, symbols, etc., which are not limited in this application.
  • Time unit is the unit or time granularity used for scheduling time domain resources.
  • the time unit used for scheduling data transmission resources may be one time slot, half a time slot, or several symbols, etc. This application does not limit this.
  • Response response used to indicate whether the data is sent successfully.
  • the receiving end of the data sends according to the transmission status of the data, thereby notifying the sending end of the transmission status of the data, so that the sending end determines whether the data needs to be retransmitted based on the data transmission result indicated by the response response.
  • the receiving end can feedback a response to the sending end regarding the transmission status of the transmission. response.
  • the response may also be called hybrid automatic repeat request response confirmation (HARQ-acknowledgment, HARQ-ACK), or HARQ response, or HARQ response, referred to as HARQ for short.
  • HARQ-acknowledgment HARQ-ACK
  • HARQ response HARQ response
  • acknowledgment response Acknowledgement
  • NACK Negative Acknowledgment
  • the plurality involved in this application refers to two or more. At least one means one or more.
  • the terminal device when the terminal device needs to transmit target data, it reserves multiple discontinuous resources for the transmission of the target data (such as initial transmission and retransmission), and then the terminal device can transmit the target data on the reserved resources.
  • the embodiment of the present application does not limit the number of reserved resources N, which may be a positive integer greater than or equal to 1, such as 4, 5, 10, 20, 24, 36, etc.
  • the terminal device can determine the number N of resources that need to be reserved this time based on the number threshold of reserved resources.
  • the terminal device may determine the number of reserved resources N required to repeatedly transmit the target data according to the reliability requirements of the target data.
  • the number N is also smaller.
  • the medium access control (MAC) layer of the terminal device determines that a transmission requirement occurs (that is, t 0 ), it can notify the physical (Physical, PHY) layer; at this time, the PHY layer can Select some candidate resources (which may be called candidate resource sets later) within the selection range [t 0 +T offset , t 0 +T PDB ], and report the candidate resource set to the MAC layer.
  • the MAC layer can select N resources from the candidate resource set. Among them, one resource corresponds to one transmission requirement, and each transmission requirement is used for one transmission (one retransmission of target data).
  • the resource selection range can also be called the resource selection window.
  • T offset is the offset value between the starting time of the resource selection range and the time t 0 when the terminal device has transmission requirements
  • T PDB is the data transmission delay according to the terminal device (such as packet delay margin (packet delay budget, PDB)) determined, optional, T PDB can be equal to the data transmission delay, or can be less than the data transmission delay.
  • the specific values of T offset and T PDB are set by the terminal device, where the terminal device can determine the value of T offset according to the value range of T offset .
  • the value range of T offset is defined in standard TS 38.214 as For details related to SCS, please refer to the relevant definitions in the communication standards, which will not be described again here.
  • the time interval between any two resources is less than or equal to the minimum time interval (minimum gap).
  • the minimum time interval is configured by the network device through radio resource control (RRC) signaling, or is specified by the communication standard.
  • RRC radio resource control
  • the terminal device can receive the response response corresponding to the previous resource and the processing delay for the response response within the time interval. Therefore, the minimum time interval should be greater than or equal to the sum of the delay of the response response corresponding to the previous resource, the duration of the resource corresponding to the response response, and the processing delay of the response response by the terminal device.
  • the physical (PHY) layer of the terminal device can sense the channel condition within the sensing window.
  • the MAC layer of the terminal device notifies the PHY layer that there is a transmission requirement, and the PHY layer responds according to the sensing
  • a candidate resource set is selected within the resource selection range [t 0 +T offset , t 0 +T PDB ], and the candidate resource set is reported to the MAC layer; the MAC layer selects the candidate resource set in the candidate resource set according to the minimum time interval.
  • Select 3 resources as shown in Figure 1, and notify the PHY layer of the 3 resources so that the PHY layer can send data on the 3 resources. For example, in this application, resources and transmission requirements are sorted in time order.
  • the sensing window is a period of time before the terminal device has transmission demand t 0. It is used for terminal device sensing and can be expressed as is the processing delay of the terminal device, and T p is related to the time slot data in the sensing window. perception window and You can refer to the relevant definitions in the communication standards, which will not be repeated here.
  • the time interval between any two resources is greater than or equal to the minimum time interval. In this way, if the terminal device receives an ACK from resource 1 after transmitting data on resource 1, the terminal device can terminate data transmission on resource 2 and resource 3, or transmit other data in resource 2 and resource 3. , thereby avoiding waste of resources.
  • resource pool is a logically
  • the concept of a resource pool includes multiple resources. Among them, any resource is used to transmit data.
  • a terminal device transmits data, it needs to select a resource from the resource pool for transmission.
  • Scenario 1 The resources used by the terminal device are configured by the network device.
  • the terminal device can select resources from the resource pool for data transmission according to the instruction information of the network device.
  • This resource allocation method is also called Mode 1 (Mode 1).
  • Scenario 2 The terminal device autonomously selects resources from the resource pool for data transmission. This resource allocation method is called Mode 2.
  • the frequency domain resources occupied by each resource pool include at least one subchannel (subchannel).
  • the frequency domain resources (number of RBs) occupied by each sub-channel are the same.
  • the frequency domain resources occupied by each sub-channel may be different.
  • S-U Sidelink-unlicensed spectrum
  • SL-U is an important topic in the current discussion of communication standards.
  • the main content is sidelink transmission in unlicensed spectrum (unlicense). Since the frequency domain resources used are unlicensed spectrum, the communication standard introduces two access mechanisms: Type 1 and Type 2.
  • Type 1 is suitable for scenarios where the terminal device seizes the channel and requires the terminal device to perform listen before talk (LBT). That is, the terminal device needs to monitor the channel before transmitting, and after monitoring that the channel is idle, seize the channel and use the channel for transmission.
  • LBT listen before talk
  • Type 2 is suitable for sharing resources obtained by other terminal devices through Type 1.
  • terminal device 1 has grabbed a transmission opportunity within a period of time through Type 1 (the standard is called channel occupancy time (COT)).
  • COT channel occupancy time
  • the terminal device can also instruct other terminal devices.
  • Type 2 access is used to access the remaining COT of terminal equipment 1 occupied.
  • COT-sharing This behavior of sharing COT with other terminal devices (taking terminal device 2 as an example) is called COT-sharing.
  • terminal devices performing COT-sharing need to be related, such as having a sending and receiving relationship or being in the same terminal device group.
  • Type 2 can be further divided into several situations. The following uses Type 2A and Type 2B as examples for explanation.
  • Type 2A means that terminal equipment 2 detects that the channel is idle within 25 ⁇ s after other terminal equipment ends transmission, and then occupies the channel. That is, after sensing that the channel is not occupied within 25 ⁇ s after other terminal equipment ends transmission, terminal equipment 2 occupies the channel.
  • Type 2B means that terminal equipment 2 will occupy the channel if it detects that the channel is idle within 16 ⁇ s after other terminal equipment ends transmission.
  • the difference between Type 2B and Type 2A is that the duration of COT is increased by 9 ⁇ s, which is the duration of one sensing time slot.
  • the sensing slot is the time unit used in the unlicensed spectrum for the terminal device to sense whether the channel is busy.
  • the corresponding duration of a sensing time slot can be 9 ⁇ s.
  • the sensing time slot has nothing to do with the sensing window.
  • the duration of the COT of the terminal device may be related to the channel access priority class (CAPC) of the terminal device.
  • CAC channel access priority class
  • the maximum COT duration is 2ms; when the terminal device's CAPC is 2, the maximum COT duration is 4ms; when the terminal device's CAPC is 3 or 4, the COT duration is 3 or 4.
  • the maximum is 6ms or 10ms.
  • the LBT mechanism requires terminal equipment to monitor the channel for clear channel assessment (CCA) detection (hereinafter referred to as channel detection) before using unlicensed spectrum resources to send data. Data transmission can only be carried out after ensuring that the channel is idle.
  • CCA clear channel assessment
  • the main idea of LBT is: before the terminal device needs to send data, the terminal device can generate a random number R.
  • the random number R is used to represent the number of times that the channel needs to be detected to be idle before data is sent.
  • the terminal device can maintain the random number R through a counter. For example, the initial value of the counter is the random number R.
  • the terminal device performs channel detection in each sensing time slot after generating the random number R.
  • the counter When the channel is detected to be idle in a certain sensing time slot, the counter is updated to decrement the count value by 1; if the terminal device detects that the channel is idle in a certain sensing time slot, If it is detected that the channel is busy, it will stop updating the counter, and continue channel detection in each subsequent sensing time slot, until it detects that the channel is idle, and then start counting the counter. The terminal device continues to detect the channel and update the counter through the above method, until the counter reaches 0, and then starts to occupy the channel and transmit data.
  • the random numbers generated by the terminal device when performing LBT for different times may be different.
  • the terminal device can generate random numbers within the range of random number values.
  • the random number value range may be related to the CAPC of the terminal device. For example, when the CAPC of the terminal device is 1, the random number range is [3,7]; when the CAPC of the terminal device is 2, the random number range is [7,15]; When the CAPC of the terminal device is 3 or 4, the random number range is [15,1023].
  • the random number R generated by the terminal device is used to represent the number of times that the channel needs to be detected to be idle before data is sent. In other words, the random number R is used to determine the number of sensing slots for channel detection.
  • the LBT duration of the terminal device can be determined based on the random number R. For example, the LBT duration is equal to t sensing *R, or equal to t sensing *R+defer duration.
  • the remaining LBT duration of the terminal device is determined based on the remaining random number R left .
  • the remaining LBT duration may be equal to t sensing *R left , or equal to t sensing *R left +defer duration.
  • t sensing is the duration of the sensing time slot
  • defer duration 16 ⁇ s + m p * 9 ⁇ s.
  • m p is related to the CAPC of the terminal device. For details, please refer to the relevant definitions in the communication standards, which will not be described again here.
  • the LBT duration can also be called a backoff time window (contention window, CW), and the random number R can also be called a backoff random number.
  • SL-U as a synchronous system, can only be accessed at designated time domain locations. Therefore, in order to better occupy the channel, the terminal device can also send CPE to seize the channel before accessing the channel.
  • the specific time length for the terminal device to seize the channel may be related to the CAPC of the terminal device, may be specified by the standard, or may be set internally by the terminal device.
  • the duration of the CPE sent by the terminal device can be recorded as t cpe .
  • t cpe generally does not exceed 1 symbol time.
  • New radio-unlicensed spectrum new radio-unlicense, NR-U
  • network equipment and terminal equipment communicate on unlicensed spectrum.
  • the network device can schedule multiple terminal devices to send data to the network device within a time slot. Since the transmission of each terminal device is carried either on one time slot or on multiple consecutive time slots, the terminal device can send data within the COT of the network device, or perform LBT preemption at the location scheduled by the network device channel to complete the transmission requirements.
  • FIG 2 shows a communication scenario to which the method provided by the embodiment of the present application is applicable.
  • this communication scenario may include: a network device, and multiple terminal devices (terminal device a and terminal device b in Figure 2).
  • Network equipment is an entity on the network side that can receive and transmit wireless signals. It is responsible for providing wireless access-related services to terminal equipment in the community it manages, and realizing physical layer functions, resource scheduling, wireless resource management, and quality of service (Quality). of Service, QoS) management, wireless access control and mobility management functions.
  • QoS quality of service
  • Terminal equipment is an entity on the user side that can receive and transmit wireless signals and needs to access the network through network equipment.
  • the terminal device supports sidelink communication.
  • Sidelink communication technology is a near-field communication technology that can directly connect terminal devices, also known as proximity services (ProSe) communication technology, or D2D communication technology.
  • ProSe proximity services
  • D2D communication technology D2D communication technology
  • multiple terminal devices that are geographically close and support sidelink communication can form a sidelink system, as shown in the sidelink system composed of terminal device a and terminal device b in Figure 2.
  • sidelink communication can be performed between terminal devices.
  • the network device and the terminal device can be connected through the air interface (i.e., Uu interface), thereby realizing communication between the terminal device and the network device (this communication can be referred to as Uu communication, or cellular network communication).
  • Adjacent terminal devices can establish sidelink connections for communication through the PC5 interface.
  • the sidelink system is also called the SL-U system.
  • the communication scenario shown in Figure 2 is an example and does not limit the communication scenarios to which the method provided by the embodiment of the present application is applicable.
  • various communication technologies can be used between network equipment and terminal equipment, such as fifth generation (The 5th Generation, 5G) communication technology (NR technology), 4G communication technology, sixth generation (The 6th Generation, 6G) ) communication technology, and communication technology based on the evolution of the above technologies.
  • the sidelink-U system can be applied to V2X, Long Term Evolution-Vehicle (LTE-V), V2V, Internet of Vehicles, Machine Type Communications (MTC), Internet of Things (IoT) ), long-term evolution-machine to machine (LTE-M), machine to machine (M2M), and other specific scenarios, this application is not limited to this.
  • LTE-V Long Term Evolution-Vehicle
  • V2V Internet of Vehicles
  • MTC Machine Type Communications
  • IoT Internet of Things
  • LTE-M long-term evolution-machine to machine
  • M2M machine to machine
  • the terminal device can reserve at least one resource for the transmission target data. resources to ensure the transmission reliability of the target data.
  • the resource reservation scheme provided in the first point above does not take the channel conditions into consideration.
  • the SL-U system uses unlicensed spectrum and does not consider the channel conditions. It is likely that multiple terminal devices will use the same resource for transmission, affecting the terminal devices. communication efficiency.
  • the resource reservation scheme provided in the first point above does not consider the LBT duration, when this scheme is used in SL-U, the following situation may occur: the starting time of the reserved resource is reached in the time domain, but the LBT of the terminal device Before it ends, this will cause the reserved resource to be unavailable, thus affecting the communication efficiency of the terminal device.
  • embodiments of the present application provide a resource configuration method. This method can be applied to the communication scenario shown in Figure 2. Referring to the flow chart shown in FIG. 3 , the method provided by the embodiment of the present application will be described in detail below, taking the first terminal device and the second terminal device as examples.
  • the first terminal device obtains the listen-before-talk LBT duration corresponding to N transmission requirements.
  • N is an integer greater than or equal to 1.
  • each transmission requirement is a requirement for the first terminal device to transmit target data, where the first transmission requirement is used to initially transmit the target data, and subsequent other transmission requirements are used to retransmit the target data.
  • the MAC layer of the first terminal device may notify the PHY layer of the first terminal device, and the PHY layer executes S301.
  • the PHY layer of the first terminal device may determine the number N of transmission requirements (ie, the maximum number of times N to retransmit the target data).
  • the first terminal device having a transmission requirement may, but is not limited to, include: when the first terminal device generates or receives target data that needs to be transmitted.
  • the MAC layer notifies the PHY layer of the occurrence of a transmission requirement. Therefore, the time when the transmission requirement occurs on the first terminal device can be limited to the time when the MAC layer notifies the PHY layer of the occurrence of the transmission requirement.
  • the PHY layer of the first terminal device can generate a random number R for the N transmission requirements; and then the PHY layer can determine the corresponding response of the N transmission requirements based on the random number R.
  • the LBT duration for example, the LBT duration corresponding to the N transmission requirements is equal to t sensing *R, or equal to t sensing *R+defer duration. In this implementation manner, the LBT durations corresponding to the N transmission requirements are the same.
  • the PHY layer of the first terminal device can generate a corresponding random number for each transmission requirement; and then the PHY layer can determine each transmission requirement based on the random number corresponding to each transmission requirement.
  • the LBT duration corresponding to each transmission requirement Taking the nth transmission requirement as an example, the random number corresponding to the nth transmission requirement generated by the PHY layer is recorded as R n , then the PHY layer can generate a random number R according to the random number R corresponding to the nth transmission requirement. n , determine the LBT duration corresponding to the nth transmission requirement.
  • the LBT duration corresponding to the n-th transmission requirement is equal to t sensing *R n , or t sensing *R n +defer duration.
  • n is a positive integer, and 1 ⁇ n ⁇ N.
  • the LBT duration corresponding to different transmission requirements may be different.
  • t sensing is the duration of the sensing time slot.
  • the first terminal device determines N resources according to the LBT duration corresponding to the N transmission requirements.
  • the N resources correspond to the N transmission requirements one-to-one, and when N is an integer greater than 1, the time interval between any two resources is greater than or equal to the minimum time interval.
  • the first terminal device can reserve resources according to the LBT duration corresponding to the N transmission requirements. Taking the LBT duration into consideration can reduce the situation where the LBT duration of a certain transmission requirement has not ended when the resource corresponding to the transmission requirement is reached, thereby improving the probability that the first terminal device can use the resource corresponding to the transmission requirement to transmit data. This ensures the communication efficiency of the terminal equipment.
  • the first terminal device when the number of transmission requirements is multiple, the first terminal device also needs to consider that the time interval between any two resources is greater than or equal to the minimum time interval to ensure that the first terminal device can Within, the response response corresponding to the previous resource can be received, and subsequent processing can be performed on the result indicated by the response response.
  • the first terminal device may determine the resources corresponding to each transmission requirement based on the LBT duration corresponding to each transmission requirement.
  • the following takes the n-th transmission requirement as an example.
  • the first terminal device can determine the resources corresponding to the n-th transmission requirement through the following steps:
  • the first terminal device determines the nth starting time based on the LBT duration corresponding to the nth transmission requirement. Among them, n is positive An integer, and 1 ⁇ n ⁇ N; the nth starting time is the starting time of the resource selection range of the nth transmission requirement.
  • the first terminal device determines the resources corresponding to the nth transmission requirement according to the nth starting time.
  • the first terminal device can determine the starting time of the resource selection range of N transmission requirements through A1, and then perform A2, so that when determining N resources, the first terminal device can Ensure that the time interval between any two resources is greater than or equal to the minimum time interval.
  • the first terminal device may, but is not limited to, perform the above step A1 in any of the following methods 1 to 3 to determine the nth starting time.
  • Method 1 The first terminal device determines the nth starting time based on the LBT duration corresponding to the nth transmission requirement, without considering other factors.
  • the n-th starting time conforms to t 0 +T n .
  • T n conforms to the following formula:
  • t 0 is the time when the first terminal device has a transmission demand
  • t n LBT is the LBT duration corresponding to the nth transmission demand
  • t s is the length of the time unit used for scheduling data transmission resources
  • T offset is the offset value
  • t cpe is the duration of cyclic prefix expansion.
  • the time t 0 when the transmission requirement occurs on the first terminal device may be the time when the MAC layer of the first terminal device notifies the PHY layer of the occurrence of the transmission requirement.
  • the time unit used for scheduling data transmission resources may be a time slot, a half time slot, or a smaller time granularity, which is not limited in this application.
  • the value of t s can be specifically set according to the setting of the time unit.
  • the value of T offset can follow the value of the parameter (T offset ) in the first technical explanation. For example, t cpe generally does not exceed 1 symbol time.
  • this method can reduce the probability of the following situation: arriving at the n-th transmission When the corresponding resource is required, the LBT duration of the n-th transmission requirement has not yet ended, thereby improving the probability that the first terminal device can use the resource corresponding to the n-th transmission requirement to transmit data.
  • the first terminal device not only takes into account the LBT duration corresponding to the nth transmission requirement, but also considers that the first terminal device sends The duration of the CPE is t cpe , thereby ensuring that the position of the n-th starting time determined by the first terminal device is not earlier than the LBT duration corresponding to the n-th transmission requirement starting from t 0 and after the CPE is sent. position, that is (t 0 +T n ) ⁇ (t 0 +t n,LBT +t cpe ).
  • the first terminal device can perform LBT and send CPE. Since according to method 1, enough time is reserved for the first terminal device to perform LBT and send CPE before the nth starting time, this method can reduce the probability of the following situation occurring: arriving at the nth starting time When there are resources corresponding to n transmission requirements, the LBT duration of the n-th transmission requirement has not yet ended or the sending CPE has not ended, thereby improving the probability that the first terminal device can use the resources corresponding to the n-th transmission requirement to transmit data. .
  • Method 2 When determining the n-th starting time, the first terminal device may not only consider the LBT duration corresponding to the n-th transmission requirement, but may also consider the previous transmission of the n-th transmission requirement.
  • the resources corresponding to the demand that is, the time domain resources occupied by the resources corresponding to the previous transmission demand).
  • the first terminal device can perform step A1 through the following steps:
  • the first terminal device determines the nth starting time based on the LBT duration corresponding to the nth transmission requirement and the resources corresponding to the previous transmission requirement of the nth transmission requirement; wherein, the The previous transmission requirement of the n-th transmission requirement is a transmission requirement whose resource position is located before the n transmission requirements among the N transmission requirements. It should be noted that only when n is greater than 1, the n-th transmission demand will have a previous transmission demand. The first transmission requirement has no previous transmission requirement, so the starting time of the resource selection range of the first transmission requirement can be determined through the above method 1.
  • the N transmission requirements are sorted based on the sequential positions of the resources corresponding to the transmission requirements in the time domain. Therefore, the previous transmission requirements of the n-th transmission requirement are the 1st transmission requirement to the n-1th transmission requirement.
  • T n conforms to the following formula:
  • t 0 is the time when the first terminal device has a transmission demand
  • t n LBT is the LBT duration corresponding to the nth transmission demand
  • t s is the length of the time unit used for scheduling data transmission resources
  • T offset is the offset value
  • t cpe is the duration of cyclic prefix extension
  • ti,R is the duration of the resource corresponding to the i-th previous transmission requirement of the n-th transmission requirement, is the sum of the durations of the resources corresponding to the n-1 previous transmission requirements of the n-th transmission requirement
  • S i, R is the resource occupied by the resources corresponding to the i-th previous transmission requirement of the n-th transmission requirement the number of time units, It is the sum of the number of time units occupied by the resources corresponding to the n-1 previous transmission requirements of the n-th transmission requirement.
  • the actual LBT duration of the n-th transmission requirement may be extended. And relative to the LBT duration corresponding to the nth transmission requirement determined in S301, the actual LBT duration of the nth transmission requirement may be extended by the first delay duration.
  • the first delay duration is related to the total duration of resource occupation corresponding to the n-1 previous transmission requirements.
  • the position of the nth starting time determined by the first terminal device can be guaranteed In this way, between t 0 and the n-th starting time (ie t 0 +T n ), the first terminal device can perform LBT. Since according to method 2, sufficient time is reserved for the first terminal device to perform LBT before the n-th starting time, this method can reduce the probability of the following situation occurring: reaching the n-th transmission When the corresponding resource is required, the LBT duration of the n-th transmission requirement has not yet ended, thereby increasing the probability that the first terminal device can use the resource corresponding to the n-th transmission requirement to transmit data.
  • the first terminal device not only considers the LBT duration corresponding to the n-th transmission requirement, but also considers the duration t cpe of the CPE sent by the first terminal device, thereby ensuring that the first The position of the nth starting time determined by the terminal device In this way, between t 0 and the n-th starting time (ie t 0 +T n ), the first terminal device can perform LBT and send CPE.
  • this method can reduce the probability of the following situation occurring: arriving at the nth starting time
  • the LBT duration of the n-th transmission requirement has not ended or the sending CPE has not ended, thereby improving the probability that the first terminal device can use the resources corresponding to the n-th transmission requirement to transmit data.
  • Method 2 also takes into account the time domain resources occupied by the resources corresponding to the previous transmission requirements of the n-th transmission demand. Therefore, compared with Method 1, the n-th calculated by Method 2 A first delay duration is added to the starting time, and the first delay duration is greater than or equal to the total duration occupied by resources corresponding to previous transmission requirements of the n-th transmission requirement. Based on this, compared to Method 1, Method 2 can further reduce the probability of the following situation occurring: the LBT duration of the n-th transmission demand has not yet ended when the resource corresponding to the n-th transmission demand is reached.
  • the first terminal device may not only consider the LBT duration corresponding to the n-th transmission requirement, but may also consider the previous transmission of the n-th transmission requirement.
  • the resources corresponding to the demand i.e., the time domain resources occupied by the resources corresponding to the previous transmission demand
  • the resources corresponding to the previous response response of the nth transmission demand i.e., the resources corresponding to the previous response response
  • the first terminal device can perform step A1 through the following steps:
  • the first terminal device determines the LBT duration corresponding to the nth transmission requirement, the resources corresponding to the previous transmission requirement of the nth transmission requirement, and the resources corresponding to the previous response response of the nth transmission requirement. resource to determine the nth starting time.
  • the previous transmission requirement of the nth transmission requirement is a transmission requirement whose resource position is located before the n transmission requirements among the N transmission requirements;
  • the previous response response of the nth transmission requirement includes The response response that the first terminal device or other terminal devices should receive before the resource corresponding to the n-th transmission requirement. It should be noted that only when n is greater than 1, the nth transmission requirement Only then will there be a prior transmission requirement. The first transmission requirement has no prior transmission requirement, so it can be considered that the time domain resource occupied by the prior transmission requirement of the first transmission requirement is 0.
  • the response response that other terminal devices should receive in the previous response response of the nth transmission requirement can be determined through the following steps: after the first terminal device detects the transmission of other terminal devices, it is expected that the other terminal device The time position at which the device receives the response responses of these transmissions is after t 0 and before the resource corresponding to the n-th transmission requirement. Then, the first terminal device can determine that the response responses of these transmissions are the response of the n-th transmission. Prior acknowledgment responses for n transmission requests.
  • the N transmission requirements are sorted based on the sequential positions of the resources corresponding to the transmission requirements in the time domain. Therefore, the previous transmission requirements of the n-th transmission requirement are the 1st transmission requirement to the n-1th transmission requirement.
  • the previous response of the nth transmission requirement includes the response of the previous transmission requirement of the nth transmission requirement.
  • the previous response responses of the nth transmission request include response responses from the 1st transmission request to the n-1th transmission request.
  • the previous response response of the nth transmission requirement includes the response response of the previous transmission requirement of the nth transmission requirement, and the response response of at least one first transmission; wherein, the The first transmission is a transmission that the first terminal device monitors but does not receive an acknowledgment response, that is, a subsequent transmission in which an acknowledgment response may be received.
  • the previous response responses of the nth transmission request include response responses from the 1st transmission request to the n-1th transmission request, and the response response of the first transmission.
  • the previous response of the nth transmission requirement may include the response that the expected time domain position of the first terminal device is after t 0 and before the resource corresponding to the nth transmission requirement.
  • the first transmission may be a transmission that has occurred before t 0 but has not received an acknowledgment response by the first terminal device or other terminal devices.
  • the first terminal device may monitor the channel before t 0 ; if the first transmission is not monitored, the first terminal device may determine that the previous response response to the nth transmission requirement includes the The response of the previous transmission request of the nth transmission request (i.e., the first design mentioned above); if at least one first transmission is monitored, then the terminal device can determine the previous response of the nth transmission request. Including the response response of the previous transmission request of the n-th transmission request, and the response response of at least one first transmission (ie, the above-mentioned second design).
  • T n conforms to the following formula:
  • t 0 is the time when the first terminal device has a transmission demand
  • t n LBT is the LBT duration corresponding to the nth transmission demand
  • t s is the length of the time unit used for scheduling data transmission resources
  • T offset is the offset value
  • t cpe is the duration of cyclic prefix extension
  • ti,R is the duration of the resource corresponding to the i-th previous transmission requirement of the n-th transmission requirement, is the sum of the duration of resources corresponding to n-1 previous transmission requirements of the n-th transmission requirement
  • t n HARQ is the total duration of resources corresponding to the previous response responses of the n-th transmission requirement
  • S i, R is the number of time units occupied by the resources corresponding to the i-th previous transmission requirement of the n-th transmission requirement, is the sum of the number of time units occupied by the resources corresponding to the n-1 previous transmission requirements of the n-th transmission requirement
  • S n,HARQ is the number of time
  • the first terminal device When the first terminal device transmits data on the resource corresponding to the previous transmission requirement of the n-th transmission requirement, or some terminal devices (ie, the receiving end of the at least one first transmission) transmits data on the resource corresponding to the previous transmission requirement of the n-th transmission requirement, The response response is transmitted on the resource corresponding to the previous response response of the transmission requirement. Then, because the channel is occupied, according to the description of the LBT mechanism in the fourth technical description above, the first terminal device is not responding to the nth transmission. During the LBT process of the demand, the actual LBT duration of the nth transmission demand may be extended.
  • the actual LBT duration of the n-th transmission requirement may be extended by the second delay duration.
  • the second delay duration is related to the following content: the sum of the total duration of resource occupancy corresponding to the n-1 previous transmission requirements and the total duration of resource occupancy corresponding to the previous response response of the n-th transmission requirement .
  • the position of the nth starting time determined by the first terminal device can be guaranteed In this way, between t 0 and the n-th starting time (ie t 0 +T n ), the first terminal device can perform LBT. Since according to method 3, enough time is reserved for the first terminal device to perform LBT before the n-th starting time, this method can reduce the probability of the following situation: arriving at the n-th transmission When the corresponding resource is required, the LBT duration of the n-th transmission requirement has not yet ended, thereby increasing the probability that the first terminal device can use the resource corresponding to the n-th transmission requirement to transmit data.
  • the first terminal device not only considers the LBT duration corresponding to the n-th transmission requirement, but also considers the duration t cpe of the CPE sent by the first terminal device, thereby ensuring that the first The position of the nth starting time determined by the terminal device In this way, between t 0 and the n-th starting time (ie t 0 +T n ), the first terminal device can perform LBT and send CPE. Due to method 3, sufficient time is reserved for the first terminal device to perform LBT and send CPE before the nth starting time.
  • this method can reduce the probability of the following situation occurring: arriving at the nth When the resource corresponding to the n-th transmission requirement is used, the LBT duration of the n-th transmission requirement has not yet ended or the sending of CPE has not ended, thereby improving the probability that the first terminal device can use the resource corresponding to the n-th transmission requirement to transmit data.
  • method 3 also takes into account the time domain resources occupied by the resources corresponding to the previous response of the n-th transmission requirement. Therefore, compared with method 2, the n-th calculated by method 3 A second delay duration is added to the starting time, and the second delay duration is greater than or equal to the total duration occupied by resources corresponding to the previous response responses of the n-th transmission requirement. Based on this, compared with Method 2, Method 3 can further reduce the probability of the following situation occurring: the LBT duration of the n-th transmission demand has not yet ended when the resource corresponding to the n-th transmission demand is reached.
  • the first terminal device may, but is not limited to, perform step A2 in the following manner.
  • step A2 the first terminal device may, but is not limited to, perform step A2 in the following manner. The following continues to take the nth transmission requirement as an example for explanation.
  • Method 1 The first terminal device determines the resource selection range of the nth transmission requirement based on the nth starting time (that is, the starting time of the resource selection range of the nth transmission requirement); Then, the first terminal device determines the resource corresponding to the nth transmission requirement within the resource selection range of the nth transmission requirement.
  • the starting time of the resource selection range of the nth transmission requirement has been determined, and the end time of the resource selection range of the nth transmission requirement is determined by the data transmission delay PDB of the first terminal device.
  • the end time of the resource selection range is t 0 +T PDB .
  • t 0 is the time when the first terminal device has a transmission requirement
  • T PDB is determined according to the data transmission delay of the first terminal device.
  • T PDB can be less than or equal to the data transmission delay of the first terminal device. Transmission delay.
  • Method 2 The first terminal device determines the resource selection range of the nth transmission requirement based on the nth starting time (that is, the starting time of the resource selection range of the nth transmission requirement). The starting time unit; the first terminal device can also determine a candidate resource set; finally, the first terminal device selects a range starting time unit according to the resource candidate set of the nth transmission requirement. In the resource candidate set , determine the resources corresponding to the nth transmission requirement.
  • the resource corresponding to the nth transmission requirement is after the starting time unit of the resource selection range of the nth transmission requirement.
  • the candidate resource set may include candidate resources corresponding to the N transmission requirements.
  • the candidate resource set may be selected by the first terminal device.
  • the first terminal device may determine the candidate resource set in [t 0 +T offset , t 0 +T PDB ] according to the sensing result in the sensing window.
  • the time interval between any two candidate resources in the candidate resource set is greater than or equal to the minimum time interval.
  • Method 3 The first terminal device determines the candidate resource set for the nth transmission requirement according to the nth starting time (that is, the starting time of the resource selection range of the nth transmission requirement); Then, the first terminal device determines the resource corresponding to the nth transmission requirement in the candidate resource set of the nth transmission requirement.
  • the start time of the first candidate resource i.e., the candidate resource with the highest domain position
  • the end time of the second candidate resource is less than t 0 +T PDB .
  • each step in the above-mentioned methods one to three is executed by the first terminal device in parallel for the N transmission requirements, and after completing the previous step for the N transmission requirements , and then perform the following steps in parallel.
  • the resource configuration process may involve the PHY layer and MAC layer of the first terminal device, the resource configuration process of the above steps A1-A2 is exemplarily explained below from the perspective of the PHY layer and the MAC layer.
  • the PHY layer determines the nth starting time according to the LBT duration corresponding to the nth transmission requirement.
  • Embodiment 1 The first terminal device implements step A2 through the above-mentioned method 1.
  • the PHY layer and MAC layer of the first terminal device perform the following steps:
  • A2-1-1 The PHY layer sends the nth starting time to the MAC layer.
  • the MAC layer determines the resource selection range for the nth transmission requirement based on the nth starting time.
  • the MAC layer determines the resources corresponding to the n-th transmission requirement within the resource selection range of the n-th transmission requirement.
  • Embodiment 2 The first terminal device implements step A2 through the above-mentioned method 1.
  • the PHY layer and MAC layer of the first terminal device perform the following steps:
  • the PHY layer determines the resource selection range for the nth transmission requirement based on the nth starting time.
  • the PHY layer sends the resource selection range of the nth transmission requirement to the MAC layer.
  • the MAC layer determines the resources corresponding to the n-th transmission requirement within the resource selection range of the n-th transmission requirement.
  • Embodiment 3 The first terminal device implements step A2 through the above-mentioned method 2.
  • the PHY layer and MAC layer of the first terminal device perform the following steps:
  • the PHY layer determines the starting time unit of the resource selection range of the nth transmission requirement based on the nth starting time.
  • the PHY layer sends the starting time unit of the resource selection range of the nth transmission requirement and the candidate resource set to the MAC layer.
  • the candidate resource set is a set suitable for the N transmission requirements. That is, the MAC layer can select the resource corresponding to each of the N transmission requirements among the candidate resources.
  • the MAC layer determines the resource corresponding to the nth transmission requirement in the resource candidate set according to the resource selection range starting time unit of the nth transmission requirement.
  • Embodiment 4 The first terminal device implements step A2 through the above-mentioned method 3.
  • the PHY layer and MAC layer of the first terminal device perform the following steps:
  • the PHY layer determines the candidate resource set for the nth transmission requirement based on the nth starting time.
  • the PHY layer sends the candidate resource set of the nth transmission requirement to the MAC layer.
  • the MAC layer determines the resource corresponding to the n-th transmission requirement in the candidate resource set of the n-th transmission requirement.
  • each step in the above-mentioned Embodiment 1 to Embodiment 4 is executed by the first terminal device in parallel for the N transmission requirements, and the previous step is executed for the N transmission requirements. After the steps are completed, perform the following steps in parallel.
  • the first terminal device/MAC layer can first determine the resources corresponding to the Nth transmission requirement in order from back to front in the time domain position; and then determine the Nth transmission requirement under the requirement of meeting the minimum time interval. Resources corresponding to N-1 transmission requirements; it ends after the resources corresponding to the first transmission requirement are determined.
  • the first terminal device/MAC layer can first determine the resources corresponding to the transmission requirements with the smallest resource selection range in order from small to large resource selection ranges; and then determine the resources corresponding to the minimum time interval when the minimum time interval is met. Determine the next smallest resource selection range The resource corresponding to the transmission demand; it ends until the resource corresponding to the transmission demand with the largest resource selection range is determined.
  • the first terminal device/MAC layer may first select the candidate resource set with the smallest time domain range in order of the time domain range of the candidate resource set from small to large. A resource; then, subject to meeting the requirements of the minimum time interval, the next resource is selected from the candidate resource set with the second smallest time domain range; it ends when a resource is selected from the candidate resource set with the largest time domain range.
  • the first terminal device may start LBT for the N transmission requirements at the same time.
  • the first terminal device may, but is not limited to, start LBT in the following ways:
  • Method a When the first terminal device has a transmission requirement (that is, at time t 0 ), start LBT.
  • Method b During the process of determining the N resources, start LBT.
  • the first terminal device may start LBT after determining the resource selection range of the N transmission requirements.
  • the first terminal device may determine the starting time unit of the resource selection range of the N transmission requirements, Or start LBT after determining the candidate resource set.
  • the first terminal device may start performing LBT after determining the N candidate resource sets for transmission requirements.
  • Method c After determining the N resources, start LBT.
  • the first terminal device determines the N resources through the above-mentioned Embodiment 1 to Embodiment 4, after the MAC layer determines the N resources, when the MAC layer notifies When the PHY layer has the N resources, LBT starts.
  • the first terminal device can transmit data to the second terminal device on the N resources, that is, respectively Data is transmitted on each resource, where the second terminal device is the receiving end of the N transmission requirements.
  • the first terminal device transmitting data on the N resources it may happen that the resource corresponding to a certain transmission requirement is reached, and the LBT for the transmission requirement has not yet ended (that is, the resource corresponding to the transmission requirement has not yet ended).
  • the LBT duration has not ended), at this time, the first terminal device can also reselect resources for this transmission requirement.
  • the following continues to take the nth transmission requirement as an example for explanation.
  • the first terminal device determines that the LBT duration corresponding to the n-th transmission requirement has not ended.
  • the first terminal device determines that the LBT duration corresponding to the n-th transmission requirement has not ended, including at least one of the following:
  • the first time is located before the starting time of the resource corresponding to the n-th transmission requirement, or the first time is the starting time of the resource corresponding to the n-th transmission requirement; the first time
  • the duration is the duration between the first time and the start time of the resource corresponding to the n-th transmission requirement. For example, when the first time is the starting time of the resource corresponding to the n-th transmission requirement, the value of the first duration is 0.
  • the first terminal device determines that the remaining random number R n,left corresponding to the n-th transmission requirement is greater than 0 at the first time (hereinafter referred to as t 1 ), and then the first terminal device determines that the remaining random number R n,left is greater than 0.
  • the LBT duration corresponding to n transmission requirements has not ended.
  • the first terminal device determines at t 1 that the remaining random number R n,left corresponding to the n-th transmission requirement is equal to 0, but is determined by
  • the LBT duration corresponding to the nth transmission demand also includes the defer duration. At this time, it can also be determined that the LBT duration corresponding to the nth transmission demand has not ended; and at this time, the LBT corresponding to the nth transmission demand remains. The duration can be equal to the defer duration.
  • the first terminal device re-determines the nth starting time based on the remaining LBT duration corresponding to the nth transmission requirement.
  • the first terminal device may follow the idea in the above step A1 and re-determine the nth starting time based on the remaining LBT duration corresponding to the nth transmission requirement.
  • the method of re-determining the n-th start time will be described below based on the method of the first terminal device determining the n-th start time in step A1.
  • Method 1-1 The first terminal device uses method 1 to perform step A1. In this case, when re-determining the n-th start time, the first terminal device may consider the remaining LBT duration corresponding to the n-th transmission requirement without considering other factors.
  • T n ′ conforms to the following formula:
  • t 1 is the time when it is determined that the LBT duration corresponding to the n-th transmission requirement has not ended, that is, the first time.
  • Method 2-1 The first terminal device uses method 2 to perform step A1.
  • the first terminal device may not only consider the remaining LBT duration corresponding to the n-th transmission requirement, but also consider the n-th transmission requirement.
  • the resources corresponding to the target's previous transmission requirements that is, the time domain resources occupied by the resources corresponding to the target's previous transmission requirements).
  • the target prior transmission requirement is that the resource position is located before the nth transmission requirement among the N transmission requirements, and the first terminal device is not in the corresponding resource between t 0 and t 1 Transmission requirements for data transmission.
  • the number of target prior transmission requirements of the n-th transmission requirement is H, that is, among the N transmission requirements, from the n-H-th transmission requirement to the n-1-th transmission requirement.
  • H is a positive integer.
  • T n ′ conforms to the following formula:
  • t 1 is the time when it is determined that the LBT duration corresponding to the n-th transmission requirement has not ended, that is, the first time.
  • t i,R is the duration of the resource corresponding to the i-th transmission requirement, is the sum of the duration of resources corresponding to the H target previous transmission requirements of the n-th transmission requirement;
  • S i,R is the number of time units occupied by the resources corresponding to the i-th transmission requirement, It is the sum of the number of time units occupied by the resources corresponding to the H target previous transmission requirements of the n-th transmission requirement.
  • Mode 3-1 The first terminal device uses mode 3 to perform step A1.
  • the first terminal device when the first terminal device redetermines the nth starting time, it may not only consider the nth
  • the remaining LBT duration corresponding to the transmission demand may also consider the resources corresponding to the target previous transmission demand of the nth transmission demand (that is, the time domain resources occupied by the resources corresponding to the target previous transmission demand), and the said nth transmission demand.
  • the resources corresponding to the target previous response of n transmission requirements that is, the time domain resources occupied by the resources corresponding to the previous response).
  • the target prior transmission requirement is that the resource position is located before the nth transmission requirement among the N transmission requirements, and the first terminal device is not in the corresponding resource between t 0 and t 1 Transmission requirements for data transmission.
  • the target prior response of the nth transmission requirement includes a response that should be received by the first terminal device or other terminal devices after t 1 and before the resource corresponding to the nth transmission requirement.
  • the target previous response response includes a response response of the target previous transmission requirement of the nth transmission requirement, and may also include a response response of at least one second transmission.
  • the second transmission is a transmission that the first terminal device monitors before t 1 and does not receive a response response.
  • the response response that other terminal devices should receive in this method 3-1 is also the time position at which the other terminal device is expected to receive the response responses of these transmissions after the first terminal device detects the transmissions of other terminal devices at t 0 After that, and before the resource corresponding to the n-th transmission requirement is determined.
  • the number of target prior transmission requirements of the n-th transmission requirement is H, that is, among the N transmission requirements, from the n-H-th transmission requirement to the n-1-th transmission requirement.
  • H is a positive integer.
  • T n ′ conforms to the following formula:
  • t 1 is the time when it is determined that the LBT duration corresponding to the n-th transmission requirement has not ended, that is, the first time.
  • t i,R is the duration of the resource corresponding to the i-th transmission requirement, is the sum of the duration of the resources corresponding to the H target previous transmission requirements of the n-th transmission requirement;
  • S i,R is the number of time units occupied by the resources corresponding to the i-th transmission requirement, is the sum of the number of time units occupied by the resources corresponding to the H target previous transmission requirements of the nth transmission requirement;
  • t′ n, HARQ is the target previous response response corresponding to the nth transmission requirement The total duration of the resources; S′ n,HARQ is the total number of time units occupied by the resources corresponding to the target prior response response of the n-th transmission requirement.
  • the first terminal device re-determines the resources corresponding to the n-th transmission requirement according to the re-determined n-th starting time.
  • step A2 For the implementation of the first terminal device performing S3, reference may be made to the detailed description of step A2 above, which will not be described again here.
  • the resources corresponding to the n-th transmission requirement can be re-determined.
  • the time between any two resources may result.
  • the interval does not meet the conditions of the minimum time interval, or the LBT duration corresponding to the subsequent transmission requirement has not ended when the starting time of the subsequent transmission requirement is reached.
  • the embodiment of the present application also adopts the following two implementation methods to re-determine the resources corresponding to the subsequent transmission requirements.
  • a first implementation mode after the first terminal device determines through S1 that the LBT duration corresponding to the n-th transmission requirement has not ended, it directly re-determines the subsequent transmission requirement of the n-th transmission requirement through the following steps. corresponding resources.
  • the following description will be given as an example, taking the subsequent transmission requirement of the n-th transmission requirement as the k-th transmission requirement.
  • the first terminal device re-determines the kth starting time based on the remaining LBT duration corresponding to the kth transmission requirement; or based on the remaining LBT duration corresponding to the nth transmission requirement, and the minimum time interval, redetermine the kth starting time.
  • k is a positive integer, and n ⁇ k ⁇ N; the k-th starting time is the starting time of the resource selection range of the k-th transmission requirement;
  • the first terminal device may re-determine the kth starting time based on the remaining LBT duration corresponding to the kth transmission requirement.
  • the specific process please refer to the descriptions in Method 1-1, Method 2-1, and Method 3-1 in S2 above, which will not be described again here.
  • the first terminal device may re-determine the k-th starting time based on the remaining LBT duration corresponding to the n-th transmission requirement and the minimum time interval.
  • Method 1-2 The redetermined n-th starting time is consistent with t 0 +T k ′.
  • T k ′ conforms to the following formula:
  • t mingap is the length of the minimum time interval.
  • Method 2-2 The redetermined k-th starting time is consistent with t 0 +T k ′.
  • T n ′ conforms to the following formula:
  • the number of target previous transmission requirements of the k-th transmission requirement is J, that is, among the N transmission requirements, from the kJ-th transmission requirement to the k-1th transmission requirement.
  • Method 3-2 The redetermined k-th starting time is consistent with t 0 +T k ′.
  • T n ′ conforms to the following formula:
  • the number of target previous transmission requirements of the k-th transmission requirement is J, that is, among the N transmission requirements, from the kJ-th transmission requirement to the k-1th transmission requirement.
  • the sum of the durations of resources corresponding to the J target previous transmission requirements of the k-th transmission requirement is the sum of the number of time units occupied by the resources corresponding to the J target previous transmission needs of the kth transmission demand;
  • t′ k,HARQ is the target previous response response corresponding to the kth transmission demand
  • the total duration of the resources; S′ k,HARQ is the total number of time units occupied by the resources corresponding to the target prior response response of the k-th transmission requirement.
  • enough time can be reserved for the remaining LBT duration corresponding to the k-th transmission requirement of the first terminal device before the redetermined k-th starting time, which can reduce the following situations:
  • the probability of the resource transmitting data can also consider that the redetermined time interval between any two resources is greater than or equal to the minimum time interval, and sufficient time is reserved for the time interval between any two resources.
  • the first terminal device re-determines the resources corresponding to the k-th transmission requirement according to the re-determined k-th starting time; wherein, between the n-th transmission requirement and the n-th Among the subsequent transmission requirements, the time interval between any two redetermined resources is greater than or equal to the minimum time interval.
  • step A2 For the implementation of the first terminal device performing F2, reference may be made to the above detailed description of step A2, which will not be described again here.
  • the second implementation mode after the first terminal device determines through S1 that the LBT duration corresponding to the n-th transmission requirement has not ended, it can also determine whether it is necessary to re-determine the n-th transmission requirement through at least one of the following judgment conditions: The resources corresponding to the subsequent transmission requirements of each transmission requirement. The following continues to explain by taking the subsequent transmission requirement of the n-th transmission requirement as the k-th transmission requirement as an example.
  • Condition 1 It is determined that the second duration is less than the remaining LBT duration corresponding to the k-th transmission requirement
  • Condition 2 It is determined that the second time after the second duration from the first time is later than the starting time of the resource corresponding to the k-th transmission requirement;
  • the second duration is the sum of the remaining LBT duration corresponding to the nth transmission requirement and (kn) minimum time intervals; the first time is determined to be the remaining LBT duration corresponding to the nth transmission requirement.
  • the end time i.e. t 1 ).
  • condition 3 the time interval between the resource corresponding to the redetermined k-1th transmission requirement and the resource corresponding to the kth transmission requirement is less than the minimum time interval.
  • condition 3 can also derive the following conditions: the resource corresponding to the redetermined kjth transmission demand and the kth transmission demand The time interval between corresponding resources is less than the total duration of j minimum time intervals.
  • the first terminal device may re-determine the resource corresponding to the k-th transmission requirement.
  • the specific process please refer to the above steps. F1-F2 will not be described again here.
  • embodiments of the present application provide a resource configuration method, through which the first terminal device can reserve N resources according to the LBT duration corresponding to the N transmission requirements. Taking the LBT duration into account can reduce the situation where the LBT duration of a certain transmission requirement has not ended when the resource corresponding to the transmission requirement is reached, thereby improving the probability that the first terminal device can use the resource corresponding to the transmission requirement to transmit data. This ensures the communication efficiency of the terminal equipment.
  • embodiments of this application also provide the following implementations one to four. Each embodiment is described separately below.
  • the first terminal device determines N resources according to the LBT duration corresponding to the N transmission requirements, as shown in Figure 4.
  • the N resources correspond to the N transmission requirements one-to-one, and when N is an integer greater than 1, the N resources must meet the minimum time interval requirement.
  • LBT duration 1, LBT duration 2, and LBT duration 3 are respectively the LBT duration corresponding to the first transmission requirement, the LBT duration corresponding to the second transmission requirement, and the LBT duration corresponding to the third transmission requirement;
  • resources 1, Resource 2, and Resource 3 are the resources corresponding to the first transmission requirement, the resources corresponding to the second transmission requirement, and the resources corresponding to the third transmission requirement respectively.
  • the resource selection range in Figure 4 (original) is the resource selection range in the traditional resource allocation scheme that does not consider the LBT duration. For details, please refer to the first technical description above, or refer to the resource selection range shown in Figure 1.
  • the minimum time interval may be configured by the network device through RRC signaling or specified by the communication standard, which is not limited in the embodiments of this application.
  • the first terminal device may start to determine the N resources when a transmission requirement occurs (that is, t 0 ).
  • the first terminal device can determine the LBT duration corresponding to each transmission requirement in the following manner:
  • the first terminal device can generate a corresponding random number for each transmission requirement respectively; and then the first terminal device can determine the LBT duration corresponding to each transmission requirement based on the random number corresponding to each transmission requirement.
  • the random number corresponding to the nth transmission requirement generated by the first terminal device is recorded as R n
  • the first terminal device can determine the nth transmission requirement based on the random number R n corresponding to the nth transmission requirement.
  • LBT duration corresponding to n transmission requirements is equal to t sensing *R n , or t sensing *R n + defer duration.
  • n is a positive integer
  • t sensing is the duration of the sensing time slot.
  • the first terminal device can determine the resources corresponding to each transmission requirement based on the LBT duration corresponding to the transmission requirement, as shown in Figure 5 .
  • the first terminal device can determine the starting time of the resource selection range of the nth transmission requirement based on the LBT duration corresponding to the nth transmission requirement; and then determine the starting time of the resource selection range of the nth transmission requirement based on the starting time of the resource selection range of the nth transmission requirement.
  • the resource corresponding to the nth transmission requirement can be determined the resources corresponding to each transmission requirement based on the LBT duration corresponding to the transmission requirement.
  • start time 1, start time 2, and start time 3 are respectively the start time of the resource selection range of the first transmission requirement and the start time of the resource selection range of the second transmission requirement;
  • Resource selection range 1, resource selection range 2, and resource selection range 3 are respectively the resource selection range of the first transmission requirement, the resource selection range of the second transmission requirement, and the resource selection range of the third transmission requirement.
  • the first terminal device can determine the starting time of the resource selection range of the n-th transmission requirement through method 1 of step A1 in the embodiment shown in Figure 3.
  • T 1 , T 2 , and T 3 in FIG. 5 respectively comply with the formula about T n in this method 1.
  • the first terminal device has three transmission requirements at time t 0 . Then the first terminal device generates a corresponding random number for each transmission requirement. Based on the random number and the duration of the sensing time slot, the LBT duration corresponding to the three transmission requirements is determined to be 1ms, 4ms, and 7ms respectively. Then, the first terminal device can respectively reserve resources for each transmission requirement according to the order of LBT duration from small to large or from large to small.
  • the first terminal device determines the resources corresponding to each transmission requirement according to the starting time of the resource selection range of each transmission requirement. For the specific process, refer to any of the methods one to three in step A2 of the embodiment shown in Figure 3. One way, or through any one of the first to fourth embodiments in step A2.
  • the resources corresponding to the three transmission requirements are shown in Figure 4.
  • LBT duration 1, LBT duration 2, and LBT duration 3 are respectively the LBT duration corresponding to the first transmission requirement, the LBT duration corresponding to the second transmission requirement, and the LBT duration corresponding to the third transmission requirement; starting from Start time 1, start time 2, and start time 3 are the first transmission respectively.
  • the starting time of the resource selection range of the transmission requirement, the starting time of the resource selection range of the second transmission requirement, and the starting time of the resource selection range of the third transmission requirement; Resource 1, Resource 2, and Resource 3 are respectively The resources corresponding to the first transmission requirement, the resources corresponding to the second transmission requirement, and the resources corresponding to the third transmission requirement.
  • the following is a step-by-step description based on the PHY layer and MAC layer of the first terminal device.
  • the PHY layer determines the starting time of the resource selection range for each transmission requirement based on the LBT duration corresponding to each of the three transmission requirements.
  • the PHY layer sends the starting time of the resource selection range for each of the three transmission requirements to the MAC layer; the MAC layer selects the resources according to each of the three transmission requirements.
  • the starting time of the range determines the resource selection range for each transmission requirement; the MAC layer determines the resources corresponding to each transmission requirement within the resource selection range of each transmission requirement.
  • the PHY layer determines the resource selection range for each transmission requirement based on the starting time of the resource selection range for each transmission requirement among the three transmission requirements; the PHY layer sends each transmission requirement to the MAC layer. The required resource selection range; the MAC layer determines the resources corresponding to each transmission requirement within the resource selection range of each transmission requirement.
  • the MAC layer can first determine the resources corresponding to the third transmission requirement in order from back to front in the time domain; and then meet the minimum time interval requirements Next, the resources corresponding to the second transmission requirement are determined; finally, the resources corresponding to the first transmission requirement are determined under the requirement of meeting the minimum time interval.
  • the MAC layer can first determine the resources corresponding to the transmission requirements with the smallest resource selection range in order from small to large resource selection ranges; and then determine the resources corresponding to the transmission requirements with the next smallest resource selection range while meeting the minimum time interval requirements. resources; it ends until the resources corresponding to the transmission requirements with the largest resource selection range are determined.
  • the PHY layer determines the starting time unit of the resource selection range of each transmission requirement based on the starting time of the resource selection range of each of the three transmission requirements.
  • the PHY layer sends the starting time unit of the resource selection range for each transmission requirement and the candidate resource set (denoted as SA) to the MAC layer.
  • the MAC layer determines the resources corresponding to each transmission requirement in the resource candidate set SA according to the starting time unit of the resource selection range of each transmission requirement.
  • the MAC layer may, but is not limited to, determine the resources corresponding to each transmission requirement in the SA in the following manner.
  • Method a The MAC layer selects a resource combination (3 resources) in the SA, determines if the resource combination does not meet the requirements, and then selects again until a combination that meets the requirements is selected.
  • the requirement is: the resource corresponding to the first transmission requirement (denoted as resource 1) is not earlier than the starting time unit of the resource selection range of the first transmission requirement; the resource corresponding to the second transmission requirement (denoted as resource 2) Not earlier than the starting time unit of the resource selection range of the second transmission requirement; the resource corresponding to the third transmission requirement (recorded as resource 3) is not earlier than the starting time of the resource selection range of the third transmission requirement unit; and a minimum time interval is guaranteed between resource 1 and resource 2, and a minimum time interval is guaranteed between resource 2 and resource 3.
  • the above three resources required for transmission are sorted according to the order of time domain position, that is, resource 1 is earlier than resource 2, and resource 2 is earlier than resource 3.
  • Method b The MAC layer selects three resources in order from back to front in the time domain, or starts with the resource with the smallest time domain range. As shown in Figure 6, the MAC layer can select resource 3 in the SA that is no earlier than the starting time unit of the resource selection range of the third transmission requirement; after selecting resource 3, provided that the minimum time interval requirements are met, Select resource 2 in SA that is no earlier than the starting time unit of the resource selection range of the second transmission requirement; finally, when the minimum time interval requirement is met, select resource selection in SA that is no earlier than the first transmission requirement. Resource 1 of the range's starting time unit.
  • the MAC layer subtracts the minimum time interval from the determined time domain position of resource 3 to obtain the selection range of resource 2.
  • the starting time of the selection range is the starting time unit of the resource selection range of the second transmission requirement.
  • the end time is the time domain position of resource 3 minus the time domain position of the minimum time interval; and select resource 2 in SA within this selection range; then continue to obtain the selection range of resource 1 according to the above method, and within this selection range Select resource 1 within.
  • the PHY layer determines the candidate resource set for each transmission requirement based on the starting time of the resource selection range of each of the three transmission requirements. Among them, the candidate resource set for the first transmission requirement is marked as SA1, the candidate resource set for the second transmission requirement is marked as SA2, and the candidate resource set for the third transmission requirement is marked as SA3.
  • the PHY layer sends the candidate resource set ⁇ SA1, SA2, SA3, ⁇ for each transmission requirement to the MAC layer.
  • the MAC layer determines the resources corresponding to each transmission requirement in the candidate resource set of each transmission requirement.
  • the MAC layer can select resource 1 on SA1, resource 2 on SA2, and resource 3 on SA3, and a minimum time interval is guaranteed between resource 1 and resource 2, and between resource 2 and resource 3 Minimum time interval is guaranteed.
  • the MAC layer can select resource 3 in SA3; when the minimum time interval is met, filter SA2 that satisfies the The interval between resource 3 and resource 3 is at least guaranteed to be the minimum time interval, and resource 2 is selected from the candidate resources filtered out from SA2; continue to select the candidate resources in SA1 that meet the interval between resource 2 and at least the minimum time interval when the minimum time interval is met. interval candidate resources, and select resource 1 from the candidate resources filtered out from SA1.
  • the first terminal device determines the resources corresponding to the transmission requirement based on the LBT duration corresponding to each transmission requirement and the resources corresponding to the previous transmission requirements of the transmission requirement, as shown in Figure 7 shown. Among them, the minimum time interval requirement must be met between any two resources.
  • the first terminal device may start to determine the N resources when a transmission requirement occurs (that is, t 0 ).
  • the resource selection range of each transmission requirement may be determined based on the LBT duration corresponding to the transmission requirement and the resources occupied by previous transmission requirements of the transmission requirement.
  • the previous transmission requirement may be the same transport block (TB) as the current resource, and/or resources occupied by other TB transmissions.
  • the prior transmission requirements of the third transmission requirement are the first transmission requirement and the second transmission requirement.
  • the first terminal device can determine the starting time of the resource selection range of the n-th transmission requirement based on the LBT duration corresponding to the n-th transmission requirement and the resources corresponding to the previous transmission requirements of the n-th transmission requirement; Then, according to the starting time of the resource selection range of the n-th transmission requirement, the resource corresponding to the n-th transmission requirement is determined.
  • the first terminal device can determine the starting time of the resource selection range of the n-th transmission requirement through method 2 of step A1 in the embodiment shown in Figure 3.
  • T 1 , T 2 , and T 3 in Figure 7 respectively comply with the formula about T n in method 2.
  • the resource selection range for each transmission requirement can be as shown in Figure 8.
  • the first terminal device determines the resources corresponding to each transmission requirement according to the starting time of the resource selection range of each transmission requirement.
  • Method 1 to Method 3 in step A2 of the embodiment shown in Figure 3 Any one of the above methods, or any one of the first to fourth embodiments in step A2.
  • the first terminal device determines the transmission requirements based on the LBT duration corresponding to each transmission requirement and the resources corresponding to the previous transmission requirements of the transmission requirement.
  • the resource corresponding to the previous HARQ is determined to determine the resource corresponding to the transmission requirement, as shown in Figure 9. Among them, any two resources must meet the minimum time interval requirements.
  • the first terminal device may start to determine the N resources when a transmission requirement occurs (that is, t 0 ).
  • the resource selection range of each transmission requirement can be determined based on the LBT duration corresponding to the transmission requirement, the resources occupied by the previous transmission requirement of the transmission requirement, and the resources occupied by the previous HARQ of the transmission requirement.
  • the previous transmission requirement may be the same transport block (TB) as the current resource, and/or resources occupied by other TB transmissions.
  • the prior transmission requirements of the third transmission requirement are the first transmission requirement and the second transmission requirement.
  • the previous HARQ of each transmission requirement includes the response of the previous transmission requirement of the transmission requirement, and may also include the response of at least one first transmission; wherein the first transmission is an unreceived transmission that is monitored by the first terminal device. Transmission of acknowledgment responses.
  • the previous HARQ of the first transmission requirement may include the HARQ of the first transmission of other terminal devices
  • the previous HARQ of the second transmission requirement may include the HARQ of the first transmission requirement, as well as the HARQ of other terminal devices.
  • HARQ for the first transmission Therefore, the previous response responses of the n-th transmission request include response responses from the 1st transmission request to the n-1th transmission request, and the response response of the first transmission.
  • the first terminal device can determine the LBT time corresponding to the nth transmission requirement. long, the resources corresponding to the previous transmission requirement of the nth transmission requirement, and the resources corresponding to the previous HARQ of the nth transmission requirement, determine the starting time of the resource selection range of the nth transmission requirement; and then based on the nth transmission requirement The starting time of the resource selection range of the transmission requirement determines the resource corresponding to the nth transmission requirement.
  • the first terminal device can determine the starting time of the resource selection range of the n-th transmission requirement through method 3 of step A1 in the embodiment shown in Figure 3.
  • the first terminal device can determine the starting time of the resource selection range of the n-th transmission requirement through method 3 of step A1 in the embodiment shown in Figure 3.
  • T 1 , T 2 , and T 3 in Figure 9 respectively comply with the formula about T n in method 3.
  • the resource selection range for each transmission requirement can be as shown in Figure 10.
  • the resource selection range of the first transmission requirement (corresponding to resource 1) (i.e., resource selection range 1 in Figure 10) excludes LBT duration 1 and the previous HARQ occupation of the first transmission requirement (i.e., the first The additional delay caused by the resources of the transmitted HARQ), the starting time of resource selection range 1 is starting time 1; the resource selection range of the second transmission requirement (corresponding to resource 2) (i.e.
  • the starting time of resource selection range 2 is starting time 2 ;
  • the resource selection range of the third transmission requirement (corresponding to resource 3) (i.e., resource selection range 3 in Figure 10) excludes LBT duration 3, resources occupied by resource 1, resources occupied by HARQ of resource 1, and resources occupied by resource 2
  • the resources and the resources occupied by the HARQ of resource 2 and the resources occupied by the HARQ of the first transmission bring additional delay.
  • the starting time of the resource selection range 3 is the starting time 3.
  • the first terminal device determines the resources corresponding to each transmission requirement according to the starting time of the resource selection range of each transmission requirement.
  • Method 1 to Method 3 in step A2 of the embodiment shown in Figure 3 Any one of the above methods, or any one of the first to fourth embodiments in step A2.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the first terminal device After the first terminal device determines N resources through the above Embodiment 1 to Embodiment 3, the first terminal device can transmit requirements on the N resources. When it is determined at the first time (i.e. t 1 ) that the LBT duration corresponding to the n-th transmission requirement has not ended, or it is determined that the first duration is less than the remaining LBT duration corresponding to the n-th transmission requirement, a re-determination of the LBT duration corresponding to the n-th transmission requirement is triggered. resource.
  • the first time is before the starting time of the resource corresponding to the n-th transmission requirement, or the first time is the starting time of the resource corresponding to the n-th transmission requirement;
  • the first duration is the time between the first time t 1 and the n-th The duration between the start times of the resources corresponding to the transmission requirements.
  • the first terminal device when the first terminal device or other terminal devices have a first transmission before the resource 1 corresponding to the first transmission requirement arrives, because the first transmission occupies the channel, resource 1 may not be started. Before the start time, the LBT duration corresponding to the first transmission request has not ended.
  • the first terminal device can re-determine the resources corresponding to the n-th transmission requirement based on the remaining LBT duration corresponding to the n-th transmission requirement, as shown in Figure 11.
  • the first terminal device can re-determine the starting time of the resource selection range for the n-th transmission requirement based on the remaining LBT duration corresponding to the n-th transmission requirement, and further can determine the starting time of the resource selection range for the n-th transmission requirement based on the re-determined resources for the n-th transmission requirement. Select the starting time of the range and re-determine the resources corresponding to the nth transmission requirement, as shown in Figure 12.
  • the first terminal device can determine the starting time of the resource selection range for the nth transmission requirement through any of the methods recorded in step S2 in the embodiment shown in Figure 3.
  • the specific process please refer to the above steps.
  • the description of S2 will not be repeated here. Therefore, T 1 ′ in FIG. 12 conforms to the formula for T n ′ in step S2.
  • the first terminal device re-determines the resources corresponding to the n-th transmission requirement based on the re-determined starting time of the resource selection range of the n-th transmission requirement.
  • step A2 of the embodiment shown in Figure 3 Any one of the first to three embodiments, or any one of the first to fourth embodiments in step A2.
  • the terminal device determines multiple resources, and one of the resources is redetermined, it may cause the problem that the time interval between any two resources is smaller than the minimum time interval. Therefore, in one implementation, after the first terminal device triggers re-determination of resources corresponding to the n-th transmission requirement, the resources corresponding to subsequent transmission requirements of the n-th transmission requirement may also be re-determined.
  • the first terminal device can trigger the reselection of resource 2.
  • resource 2 does not need to be reselected.
  • the first terminal device can calculate the remaining LBT duration corresponding to the first transmission requirement (recorded as LBT remaining duration 1). and the time interval between the reselected resource 1 and resource 2 is greater than or equal to the minimum time interval, re-determine the resource selection range 1 of the first transmission requirement, and re-determine resource 1 in the re-determined resource selection range 1. If LBT remaining duration 1 is considered, the time interval between resource 1 and resource 2 after reselection is greater than or equal to the minimum time interval, making the redetermined resource selection range empty, that is, the current time plus LBT remaining duration 1 and the minimum time The time obtained after the interval is later than the starting time of resource 2, then at this time, the first terminal device needs to reselect resource 1 and resource 2.
  • the first terminal device can use the remaining LBT duration 1 (optionally, it can also include the remaining LBT duration corresponding to the second transmission requirement (recorded as LBT remaining duration 2)) to re-determine resource 1 and resource 2, To ensure that the minimum time interval between resource 1 and resource 2 is met.
  • the first terminal device when the first terminal device is triggered to re-determine the resources corresponding to the n-th transmission requirement, the first terminal device (PHY layer) can also determine whether it is necessary to re-determine the subsequent transmission requirements corresponding to the n-th transmission requirement. resources. For this judgment condition, reference can be made to Condition 1 and Condition 2 recorded in the embodiment shown in Figure 3, which will not be described again here.
  • the process of the first terminal device re-determining the resources corresponding to the subsequent transmission requirements of the n-th transmission requirement may refer to the description of steps F1-F2 in the embodiment shown in FIG. 3, which will not be described again here.
  • T 1 ′ conforms to the formula about T n ′ in step S2
  • T 2 ′ conforms to the formula about T n ′ in step S2 or conforms to the formula about T k ′ in step F1.
  • this application Based on the resource configuration method provided by the embodiment shown in FIG. 3 and the methods provided by the above-mentioned Embodiment 1 to Embodiment 4, this application also provides a resource configuration method.
  • the first terminal device when a transmission requirement occurs (that is, t 0 ), the first terminal device can determine the starting time of the resource selection range of N transmission requirements through the method provided in the above embodiment. If the starting time of the resource selection range of each transmission requirement does not exceed the third time (denoted as t 3 ), then the first terminal device can continue to determine the resource selection range based on the starting time of the N transmission requirements. Resources corresponding to N transmission requirements.
  • the process by which the first terminal device determines the resources corresponding to the N transmission requirements may refer to the corresponding descriptions in the above embodiments, and will not be described again here.
  • T PDB may be equal to the data transmission delay, or may be less than the data transmission delay.
  • the starting time of the resource selection range for each transmission requirement does not exceed the third time t 3 . In this way, when the first terminal device transmits data on the determined N resources, the data delay can be guaranteed to be within the first terminal device. within the data transmission delay range.
  • the first terminal device may terminate the resource configuration process in the above embodiment. , select other resource configuration methods.
  • the first terminal device may, but is not limited to, implement data transmission through the following resource configuration method.
  • g is a positive integer, and 1 ⁇ g ⁇ N.
  • the starting time g in Figure 15 is the starting time of the resource selection range of the g-th transmission requirement.
  • the first terminal device may send a first resource request to the second terminal device; and then, receive the first resource configuration information from the second terminal device.
  • the first resource configuration information is used to indicate the resources allocated by the second terminal device to the first terminal device, and the transmission resources occupied by the first resource request are between the first terminal device and the third terminal device.
  • the first resource request may be carried in a short control message.
  • the second terminal device can share the remaining COT with the first terminal device after seizing the COT.
  • the first terminal device may send a second resource request to the network device; and then, receive the second resource configuration information from the network device.
  • the second resource configuration information is used to indicate resources allocated by the network device to the first terminal device.
  • the second resource request may be a scheduling request (scheduling request, SR) or a buffer status report (buffer status report, BSR).
  • SR scheduling request
  • BSR buffer status report
  • Resource configuration method three The first terminal device can monitor the channel, and when the second terminal device sends data, it actively uses the resources where the remaining COT of the second terminal device is located to send data.
  • the second terminal device is the receiving end of N transmission requirements of the first terminal device.
  • first end The end device may continue to determine the resources corresponding to the W transmission requirements based on the starting time of the resource selection range of the W transmission requirements.
  • the process by which the first terminal device determines the resources corresponding to the W transmission requirements may refer to the corresponding descriptions in the above embodiments, and will not be described again here.
  • W is a positive integer less than N.
  • the starting time w in Figure 16 is the starting time of the resource selection range of any one of the W transmission requirements; the starting time g is any one of the N transmission requirements except the W transmission requirements. The starting time of the resource selection range.
  • the first terminal device After the first terminal device transmits data on the resources corresponding to the W transmission requirements, it determines whether the data is on the resource where the remaining COT of the second terminal device or network device is located based on the transmission results indicated by the response responses of the W transmission requirements. Continue sending data. When the transmission results indicated by the response responses to the W transmission requirements indicate successful data transmission, the first terminal device does not need to seek other resource configuration methods; and when the transmission results indicated by the response responses to the W transmission requirements indicate data transmission failure, , the first terminal device can continue to transmit data using any of the above resource configuration methods.
  • embodiments of the present application provide a communication method.
  • the communication device can implement resource mapping between two frequency bands with different bandwidths.
  • This method can solve the problem of RB number alignment under different bandwidths and facilitate resource mapping in the frequency domain.
  • This method can be applied to SL-U scenarios. The method provided by the application embodiment will be described below with reference to the flow chart shown in FIG. 17 .
  • the terminal device selects the first resource in the first frequency band.
  • S1702 The terminal device transmits target data on the second resource of the second frequency band.
  • the bandwidth of the first frequency band is greater than the bandwidth of the second frequency band, or the bandwidth of the first frequency band is less than the bandwidth of the second frequency band; the frequency domain position of the first resource is consistent with the bandwidth of the second resource.
  • the terminal device can use the above Method to map the first resource to the second frequency
  • the second resource is obtained in the band, so that the target data can be transmitted in the preempted channel.
  • the terminal device may select the second resource in the second frequency band according to the resource mapping relationship and the frequency domain location of the first resource.
  • the first resource includes a first RB
  • the second resource includes a second RB.
  • the frequency domain location of the first resource includes the RB number of the first RB in the first frequency band; the frequency domain location of the second resource includes the RB of the second RB in the second frequency band. serial number.
  • the resource mapping relationship is used to represent the mapping relationship between the RB number in the first frequency band and the RB number in the second frequency band.
  • the resource mapping relationship is described by taking the bandwidth of the second frequency band being greater than the bandwidth of the first frequency band as an example.
  • the second frequency band includes X sub-bands, the bandwidth of each sub-band is B1, and the first frequency band is located in the y-th sub-band in the X, y are integers.
  • the RB number a in the first frequency band corresponds to the RB number (y-1)*L1+C+a in the second frequency band; where a is an integer, 0 ⁇ a ⁇ L1 , C is a constant; or
  • the RB number L1-b in the first frequency band corresponds to the RB number y*L1+D-b in the second frequency band; where b is an integer, 0 ⁇ b ⁇ L1, and D is a constant .
  • the resource mapping relationship is explained by taking the bandwidth of the first frequency band to be greater than the bandwidth of the second frequency band as an example.
  • the first frequency band includes X sub-bands
  • the bandwidth of each sub-band is B2
  • the second frequency band is located in the y-th sub-band in the X, y are integers.
  • the RB number a in the second frequency band corresponds to the RB number (y-1)*L2+C+a in the first frequency band; where a is an integer, 0 ⁇ a ⁇ L2 , C is a constant; or
  • the RB number L2-b in the second frequency band corresponds to the RB number y*L2+D-b in the first frequency band; where b is an integer, 0 ⁇ b ⁇ L2, and D is a constant .
  • C and D are related to the bandwidth of the first frequency band and the bandwidth of the second frequency band. It can be seen from Table 1 and Table 2 that the number of RBs contained in frequency bands of different bandwidths and the distribution of guard bands are fixed. Therefore, for two fixed bandwidth frequency bands, the above resource mapping relationship is also determined. C and D The specific value is related to the number of RBs included in the two frequency bands and the distribution of the guard bands.
  • the terminal device in order to transmit target data, the terminal device may also perform the following steps:
  • P1 Determine the first target sub-channel among the plurality of first sub-channels corresponding to the first frequency band according to the frequency domain position of the first resource;
  • P2 Determine the second target sub-channel among the plurality of second sub-channels corresponding to the second frequency band according to the frequency domain position of the second resource;
  • P3 When the number of RBs occupied by the second target subchannel is greater than the number of RBs occupied by the first target subchannel, perform rate matching on the encoded signal according to the number of RBs occupied by the second target subchannel, and obtain Target signal; or when the number of RBs occupied by the second target subchannel is less than the number of RBs occupied by the first target subchannel, puncturing the encoded signal according to the number of RBs occupied by the second target subchannel. , get the target signal;
  • the encoded signal is obtained by encoding the target data according to the number of RBs occupied by the first target sub-channel.
  • the terminal device can also implement mapping of sub-channels corresponding to different frequency bands.
  • the terminal device can send the target signal on the second target sub-channel, thereby realizing the transmission of the target data.
  • the terminal device can also map the resources selected by other terminal devices to the frequency band accessed by the terminal device when selecting resources, thereby avoiding the selection of the resource and avoiding the interaction between the terminal device and other terminal devices. Transmissions interfere with each other.
  • the first terminal equipment uses the first frequency band with a bandwidth of 20 MHz to access and reserves 10 RBs of RB 0 to 9.
  • the second terminal device uses the second frequency band of 40MHz bandwidth to access and select resources, it can use the first frequency band and the second frequency band to The resource mapping relationship between the two terminals determines the RB numbers selected by the first terminal device among the RBs occupied by the second frequency band, and avoids selecting RBs with these RB numbers.
  • SCS 30 kHz.
  • Figure 18 for a schematic diagram of the distribution of four 20MHz frequency bands, two 40MHz frequency bands, and two 60MHz frequency bands within the 80MHz frequency band.
  • Example 1 In each 20MHz frequency band, 51 RBs are numbered from 0 to 50 according to frequency from low to high. Within each 40MHz frequency band, 106 RBs are numbered from 0 to 105 according to frequency from low to high.
  • the resource mapping relationship between the 106 RBs in 40MHz frequency band 5, the 51 RBs in 20MHz frequency band 1, and the 51 RBs in 20MHz frequency band 2 is as follows:
  • RB0 in band 5 corresponds to RB0 in band 1 (that is, the lowest numbered RB is aligned); RB1 in band 5 corresponds to RB1 in band 1; and so on, until RB50 in band 5 corresponds to RB50 in band 1 ;
  • RB55 in band 5 corresponds to RB0 in band 2; RB56 in band 5 corresponds to RB1 in band 2; and so on, until RB105 in band 5 corresponds to RB50 in band 2 (that is, the highest numbered RB is aligned) .
  • Example 2 In each 20MHz frequency band, 51 RBs are numbered from 0 to 50 according to frequency from low to high. Within each 60MHz frequency band, 162 RBs are numbered from 0 to 161 according to frequency from low to high.
  • the resource mapping relationship between the RB in frequency band 7 and the RB in frequency band 1, the RB in frequency band 2, and the RB in frequency band 3 is similar, that is:
  • RB0 in band 7 corresponds to RB0 in band 1 (that is, the lowest numbered RB is aligned); RB1 in band 7 corresponds to RB1 in band 1; and so on, until RB50 in band 7 corresponds to RB50 in band 1 ;
  • RB55 in frequency band 7 corresponds to RB0 in frequency band 2; RB56 in frequency band 7 corresponds to RB1 in frequency band 2; and so on, until RB105 in frequency band 7 corresponds to RB50 in frequency band 1;
  • RB111 in band 7 corresponds to RB0 in band 3; RB112 in band 7 corresponds to RB1 in band 3; and so on, until RB161 in band 7 corresponds to RB50 in band 3 (that is, the highest numbered RB is aligned) .
  • Example 3 In each 20MHz frequency band, 51 RBs are numbered from 0 to 50 according to frequency from low to high. In the 80MHz frequency band, the 217 RBs are numbered from 0 to 216 according to the frequency from low to high.
  • the resource mapping relationship between RBs in frequency band 9 is similar to RBs in frequency band 1, RBs in frequency band 2, RBs in frequency band 3, and RBs in frequency band 4, that is:
  • RB0 in band 9 corresponds to RB0 in band 1 (that is, the lowest numbered RB is aligned); RB1 in band 9 corresponds to RB1 in band 1; and so on, until RB50 in band 9 corresponds to RB50 in band 1 ;
  • RB55 in frequency band 9 corresponds to RB0 in frequency band 2; RB56 in frequency band 9 corresponds to RB1 in frequency band 2; and so on, until RB105 in frequency band 5 corresponds to RB50 in frequency band 1;
  • RB111 in frequency band 9 corresponds to RB0 in frequency band 3;
  • RB112 in frequency band 9 corresponds to RB1 in frequency band 3; and so on, until RB161 in frequency band 9 corresponds to RB50 in frequency band 3;
  • RB165 in band 9 corresponds to RB0 in band 4; RB166 in band 9 corresponds to RB1 in band 4; and so on, until RB216 in band 9 corresponds to RB50 in band 4 (that is, the highest numbered RB is aligned) .
  • RB0-RB50 in frequency band 9 corresponds to RB0-RB50 in frequency band 1, one RB after RB50 in frequency band 9, There is no correspondence between 2 RBs, 3 RBs, 4 RBs, 5 RBs, or 6 RBs; starting from RB52, RB53, RB54, RB55, RB56, or RB57 of band 9, continue with the RBs in band 2 Correspondence; similarly, after 51 consecutive RBs in band 9 correspond to 51 RBs in band 2, 1 RB, 2 RBs, and 3 RBs after the RB corresponding to RB50 in band 2 in band 9 There is no correspondence between , 4 RBs, 5 RBs, or 6 RBs.
  • the terminal device after the terminal device performs resource mapping according to the resource mapping relationship, it also needs to map the transmission corresponding relationship. For example, taking 10 RBs in the frequency band as a sub-channel, then 51 RBs in the 20MHz frequency band can form 5 sub-channels, occupying RB0 ⁇ RB9, RB10 ⁇ RB19, RB20 ⁇ RB29, RB30 ⁇ RB39, and RB40 ⁇ RB50 respectively. .
  • the resources included in the above 20MHz frequency band can correspond to the following five sub-channels in the 40MHz/60MHz/80MHz frequency band: occupied RB0 ⁇ RB9, RB10 ⁇ RB19, RB20 ⁇ RB29, RB30 ⁇ RB39, RB40 ⁇ RB55 or RB50 ⁇ RB53 (occupied by a certain sub-channel
  • the number of RBs can be greater than 11).
  • the number of RBs in the 40Mhz frequency band is greater than the sum of the number of RBs contained in the two 20Mhz frequency bands, the number of RBs occupied by the fifth sub-channel in the 40Mhz frequency band is different from that of the fifth sub-channel in the 20Mhz frequency band. Therefore, when the terminal device maps the fifth sub-channel in the 40 Mhz frequency band to the fifth sub-channel in the 20 Mhz frequency band, it needs to consider the problems caused by the different number of RBs.
  • Example 1 Taking the mapping of the fifth sub-channel of the 20 MHz frequency band (hereinafter referred to as the first sub-channel) to the fifth sub-channel of the 40 MHz frequency band (hereinafter referred to as the second sub-channel) as an example.
  • the terminal device encodes the target data to be transmitted according to the number of RBs occupied by the first subchannel to obtain a coded signal. Since the number of RBs occupied by the second subchannel is greater than the number of RBs occupied by the first subchannel, the terminal device occupies more resources for transmission. Therefore, it is necessary to rate match the coded signal according to the number of RBs occupied by the second subchannel to obtain the target Signal. Finally, the terminal device sends the target signal on the second sub-channel.
  • Example 2 Taking the mapping of the fifth sub-channel of the 80 MHz frequency band (hereinafter referred to as the first sub-channel) to the fifth sub-channel of the 20 MHz frequency band (hereinafter referred to as the second sub-channel) as an example.
  • the number of RBs occupied by the first subchannel may be 14, 16, or other numbers greater than 11.
  • the number of RBs occupied by the second sub-channel is 11.
  • the terminal device encodes the target data to be transmitted according to the number of RBs occupied by the first subchannel to obtain a coded signal.
  • the terminal device Since the number of RBs occupied by the second subchannel is smaller than the number of RBs occupied by the first subchannel, the terminal device needs to puncture the encoded signal according to the number of RBs occupied by the second subchannel and discard part of the signal to obtain the target signal. Finally, the terminal device sends the target signal on the second sub-channel.
  • each step involved in the above embodiments can be executed by the corresponding device, or by components such as chips, processors, or chip systems in the device.
  • the embodiments of this application do not limit it. .
  • Each of the above embodiments is only explained by taking execution by the corresponding device as an example.
  • the specific implementations or examples in the above embodiments do not limit the solutions provided by the embodiments of the present application.
  • each device involved in the above embodiments includes a corresponding hardware structure and/or software module to perform each function.
  • Those skilled in the art should easily realize that the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • steps in the embodiments of the present application are only illustrative, and are used to better understand the embodiments. They do not constitute a substantial limitation on the implementation of the solution of the present application.
  • the “steps” It can also be understood as “features”.
  • this step does not constitute any restriction on the execution order of the solution of the present application. Any changes in the sequence of steps, merging of steps, or splitting of steps made on this basis that do not affect the implementation of the overall solution will also result in a new technical solution.
  • the scope disclosed in this application are only illustrative, and are used to better understand the embodiments. They do not constitute a substantial limitation on the implementation of the solution of the present application.
  • the “steps” It can also be understood as “features”.
  • this step does not constitute any restriction on the execution order of the solution of the present application. Any changes in the sequence of steps, merging of steps, or splitting of steps made on this basis that do not affect the implementation of the overall solution will also result in a new technical solution.
  • this application also provides a communication device, which can be applied to terminal equipment in the SL-U system.
  • the communication device is used to implement the methods provided in the above embodiments.
  • the communication device 1900 includes a communication unit 1901 and a processing unit 1902.
  • the communication unit 1901 is used to receive and send signals.
  • the communication unit 1901 may include a transceiver.
  • the communication device 1900 is applied to the first terminal device in the embodiment shown in FIG. 3 or any one of Embodiment 1 to Embodiment 4.
  • the processing unit 1902 is used to perform the following steps:
  • N is an integer greater than or equal to 1;
  • N resources are determined; wherein, the N resources correspond to the N transmission requirements one-to-one, and when N is an integer greater than 1, the distance between any two resources
  • the time interval is greater than or equal to the minimum time interval.
  • processing unit 1902 is specifically used for:
  • the nth starting time is a positive integer, and 1 ⁇ n ⁇ N; the nth starting time is the length of the nth transmission requirement The starting time of the resource selection range;
  • nth starting time resources corresponding to the nth transmission requirement are determined.
  • the processing unit 1902 may include, but is not limited to, a PHY layer processing unit and a MAC layer processing unit.
  • the PHY layer processing unit is specifically configured to determine the nth starting time according to the LBT duration corresponding to the nth transmission requirement.
  • the PHY layer processing unit is also configured to send the nth starting time to the MAC layer processing unit;
  • the MAC layer processing unit is specifically configured to determine the resource selection range of the nth transmission requirement according to the nth starting time; and determine the resource selection range of the nth transmission requirement within the resource selection range of the nth transmission requirement.
  • the resources corresponding to the nth transmission requirement are described above.
  • the PHY layer processing unit is further configured to determine the resource selection range of the nth transmission requirement according to the nth starting time; and send the nth transmission request to the MAC layer processing unit.
  • the MAC layer processing unit is specifically configured to determine the resources corresponding to the nth transmission requirement within the resource selection range of the nth transmission requirement.
  • the PHY layer processing unit is also configured to determine the starting time unit of the resource selection range of the nth transmission requirement based on the nth starting time; and provide the MAC layer processing unit with Send the starting time unit of the resource selection range of the nth transmission requirement and the candidate resource set;
  • the MAC layer processing unit is specifically configured to determine the resource corresponding to the nth transmission requirement in the resource candidate set according to the resource selection range starting time unit of the nth transmission requirement.
  • the PHY layer processing unit is further configured to determine a candidate resource set for the nth transmission requirement based on the nth starting time; and send the nth transmission requirement to the MAC layer processing unit.
  • the MAC layer processing unit is specifically configured to determine the resource corresponding to the nth transmission requirement in the candidate resource set of the nth transmission requirement.
  • any candidate resource set contains at least one candidate resource.
  • the nth starting time conforms to t 0 +T n ; wherein, T n conforms to the following formula:
  • t 0 is the time when the first terminal device has a transmission demand
  • t n LBT is the LBT duration corresponding to the nth transmission demand
  • t s is the length of the time unit used for scheduling data transmission resources
  • T offset is the offset value
  • t cpe is the duration of cyclic prefix expansion.
  • processing unit 1902 is specifically used for:
  • the nth starting time is determined according to the LBT duration corresponding to the nth transmission demand and the resources corresponding to the previous transmission demand of the nth transmission demand; wherein, the nth transmission demand
  • the previous transmission requirement is the transmission requirement whose resource position is located before the n transmission requirements among the N transmission requirements.
  • the nth starting time conforms to t 0 +T n ; where, T n conforms to the following formula:
  • t 0 is the time when the first terminal device has a transmission demand
  • t n LBT is the LBT duration corresponding to the nth transmission demand
  • t s is the length of the time unit used for scheduling data transmission resources
  • T offset is the offset value
  • t cpe is the duration of cyclic prefix extension
  • ti,R is the duration of the resource corresponding to the i-th previous transmission requirement of the n-th transmission requirement, is the sum of the durations of the resources corresponding to the n-1 previous transmission requirements of the n-th transmission requirement
  • S i, R is the resource occupied by the resources corresponding to the i-th previous transmission requirement of the n-th transmission requirement the number of time units, It is the sum of the number of time units occupied by the resources corresponding to the n-1 previous transmission requirements of the n-th transmission requirement.
  • processing unit 1902 is specifically used for:
  • the previous transmission requirement of the nth transmission requirement is a transmission requirement whose resource position is located before the n transmission requirements among the N transmission requirements;
  • the previous response response of the nth transmission requirement includes The response response that the first terminal device or other terminal devices should receive before the resource corresponding to the n-th transmission requirement.
  • the previous response response of the nth transmission requirement includes the response response of the previous transmission requirement of the nth transmission requirement;
  • the previous response of the nth transmission requirement includes the response of the previous transmission requirement of the nth transmission requirement, and the response of at least one first transmission; wherein the first transmission is the first transmission A transmission monitored by an end device for which no acknowledgment response was received.
  • the nth starting time conforms to t 0 +T n ; wherein, T n conforms to the following formula:
  • t 0 is the time when the first terminal device has a transmission demand
  • t n LBT is the LBT duration corresponding to the nth transmission demand
  • t s is the length of the time unit used for scheduling data transmission resources
  • T offset is the offset value
  • t cpe is the duration of cyclic prefix extension
  • ti,R is the duration of the resource corresponding to the i-th previous transmission requirement of the n-th transmission requirement, is the sum of the duration of resources corresponding to n-1 previous transmission requirements of the n-th transmission requirement
  • t n HARQ is the total duration of resources corresponding to the previous response responses of the n-th transmission requirement
  • S i,R is the number of time units occupied by the resources corresponding to the i-th previous transmission requirement of the n-th transmission requirement, is the sum of the number of time units occupied by the resources corresponding to the n-1 previous transmission requirements of the n-th transmission requirement
  • S n,HARQ is the number of time
  • processing unit 1902 is also used to:
  • resources corresponding to the nth transmission requirement are redetermined.
  • determine that the LBT duration corresponding to the n-th transmission requirement has not ended including at least one of the following:
  • the first time is located before the starting time of the resource corresponding to the n-th transmission requirement, or the first time is the starting time of the resource corresponding to the n-th transmission requirement; the first time The duration is the duration between the first time and the start time of the resource corresponding to the n-th transmission requirement.
  • processing unit 1902 is also used to:
  • the k-th starting time is determined according to the LBT duration corresponding to the k-th transmission requirement; wherein the k-th transmission requirement is the For the subsequent transmission requirements of n transmission requirements, k is a positive integer, and n ⁇ k ⁇ N; the k-th starting time is the starting time of the resource selection range of the k-th transmission requirement; according to the At the kth starting time, determine the resources corresponding to the kth transmission requirement;
  • the remaining LBT corresponding to the kth transmission demand is duration, re-determine the k-th start time; or re-determine the k-th start time based on the remaining LBT duration corresponding to the n-th transmission requirement and the minimum time interval;
  • the resource corresponding to the kth transmission requirement is redetermined; wherein the time interval between any two redetermined resources is greater than or equal to the minimum time interval.
  • processing unit 1902 is also used to:
  • the k-th starting time is determined according to the LBT duration corresponding to the k-th transmission requirement; wherein the k-th transmission requirement is the For the subsequent transmission requirements of n transmission requirements, k is a positive integer, and n ⁇ k ⁇ N; the k-th starting time is the starting time of the resource selection range of the k-th transmission requirement; according to the At the kth starting time, determine the resources corresponding to the kth transmission requirement;
  • the second duration is later than the starting time of the resource corresponding to the k-th transmission requirement; wherein the second duration is the sum of the remaining LBT duration corresponding to the n-th transmission requirement and (k-n) minimum time intervals. ;
  • the first time is the time when it is determined that the LBT duration corresponding to the n-th transmission requirement has not ended;
  • the resource corresponding to the kth transmission requirement is redetermined; wherein the time interval between any two redetermined resources is greater than or equal to the minimum time interval.
  • processing unit 1902 is specifically used for:
  • N start times are determined; wherein, the j-th start time among the N start times is the resource of the j-th transmission requirement among the N transmission requirements.
  • the third time is the time after a third duration from the time when the first terminal device has a transmission requirement, and the value of the third duration is based on the data transmission delay of the first terminal device. definite.
  • processing unit 1902 is also used to:
  • the gth starting time exceeds the third time, send a first resource request to the second terminal device through the communication unit 1901; receive the first resource from the second terminal device through the communication unit 1901 Configuration information; wherein the first resource configuration information is used to indicate the resources allocated by the second terminal device to the first terminal device, and the second terminal device is the receiving end of the N transmission requirements, so
  • the transmission resources occupied by the first resource request are pre-negotiated or agreed upon by the first terminal device and the second terminal device; or
  • g is a positive integer, and 1 ⁇ g ⁇ N.
  • processing unit 1902 is specifically used for:
  • the M transmission requirements include the N transmission requirements; M is an integer greater than N;
  • M start times are determined; wherein, the m-th start time among the M start times is the resource of the m-th transmission requirement among the M transmission requirements. Select the starting time of the range; m is a positive integer, and 1 ⁇ m ⁇ M;
  • the starting time of the resource selection range of the N transmission requirements does not exceed the third time, and the starting time of the resource selection range of other transmission requirements except the N transmission requirements
  • the time exceeds the third time;
  • the third time is the time after a third period of time starting from the time when the first terminal device has a transmission requirement, and the value of the third period of time is based on the first terminal device.
  • the data transmission delay of the device is determined;
  • the processing unit 1902 is also used to:
  • the transmission result determines whether to continue sending data on the resource where the remaining COT of the second terminal device or network device is located; wherein the second terminal device is the receiving end of the N transmission requirements.
  • processing unit 1902 is also used to:
  • LBT is started.
  • the PHY layer processing unit is also used for:
  • LBT starts.
  • the communication device 1900 is applied to the terminal device in the embodiment shown in FIG. 17 .
  • the processing unit 1902 is used to perform the following steps:
  • the bandwidth of the first frequency band is greater than the bandwidth of the second frequency band, or the bandwidth of the first frequency band is less than the bandwidth of the second frequency band; the frequency domain position of the first resource is consistent with the bandwidth of the second resource.
  • processing unit 1902 is also used to:
  • the first resource includes a first resource block RB
  • the second resource includes a second RB
  • the frequency domain location of the first resource includes the RB number of the first RB in the first frequency band; the frequency domain location of the second resource includes the RB of the second RB in the second frequency band. serial number;
  • the resource mapping relationship is used to represent the mapping relationship between the RB number in the first frequency band and the RB number in the second frequency band.
  • the second frequency band includes
  • the RB number a in the first frequency band corresponds to the RB number (y-1)*L1+C+a in the second frequency band; where a is an integer, 0 ⁇ a ⁇ L1 , C is a constant; or
  • the RB number L1-b in the first frequency band corresponds to the RB number y*L1+D-b in the second frequency band; where b is an integer, 0 ⁇ b ⁇ L1, and D is a constant .
  • the first frequency band includes
  • the RB number a in the second frequency band corresponds to the RB number (y-1)*L2+C+a in the first frequency band; where a is an integer, 0 ⁇ a ⁇ L2 , C is a constant; or
  • the RB number L2-b in the second frequency band corresponds to the RB number y*L2+D-b in the first frequency band; where b is an integer, 0 ⁇ b ⁇ L2, and D is a constant .
  • processing unit 1902 is also used to:
  • rate matching is performed on the encoded signal according to the number of RBs occupied by the second target subchannel to obtain a target signal ;
  • the encoded signal is punctured according to the number of RBs occupied by the second target subchannel to obtain a target signal ;
  • the encoded signal is obtained by encoding the target data according to the number of RBs occupied by the first target sub-channel;
  • the processing unit 1902 is specifically used for:
  • the target signal is sent on the second target sub-channel through the communication unit 1901.
  • the terminal device 2000 includes: a transceiver 2001 , at least one processor 2002 , and a memory 2003 .
  • the transceiver 2001, the processor 2002 and the memory 2003 are connected to each other.
  • the transceiver 2001, the at least one processor 2002 and the memory 2003 are connected to each other through a bus 2004.
  • the bus 2004 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 20, but it does not mean that there is only one bus or one type of bus.
  • the transceiver 2001 is used to receive and send signals to implement communication with other terminal devices or network devices.
  • the transceiver 2001 can be implemented by a radio frequency device and an antenna.
  • the at least one processor 2002 at least includes an RRC layer processing unit and a MAC layer processing unit.
  • the RRC layer processing order is used to execute the steps of the RRC layer and realize the functions of the RRC layer.
  • the MAC layer processing unit is used to execute the steps of the MAC layer and realize the functions of the MAC layer.
  • processor 2002 as well as the specific functions of the RRC layer processing unit and the MAC layer processing unit can refer to the descriptions in the above embodiments, and will not be described again here.
  • the processor 2002 can be a central processing unit (CPU), a network processor (network processor, NP) or a combination of CPU and NP, etc.
  • the processor 2002 may further include hardware chips.
  • the above-mentioned hardware chip can be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general array logic
  • the memory 2003 is used to store program instructions, etc.
  • program instructions may include program code including computer operating instructions.
  • the memory 2003 may include random access memory (RAM), and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 2002 executes the program instructions stored in the memory 2003 to implement the above functions, thereby implementing the method provided by the above embodiments.
  • embodiments of the present application also provide a computer program, which when the computer program is run on a computer, causes the computer to execute the method provided in the above embodiments.
  • embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program When the computer program is executed by a computer, it causes the computer to execute the method provided in the above embodiments. .
  • the above computer may include, but is not limited to, a terminal device.
  • the storage medium may be any available medium that can be accessed by the computer. Taking this as an example but not limited to: computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures. Any other medium that contains the desired program code and is capable of being accessed by a computer.
  • embodiments of the present application also provide a chip, which is used to read the computer program stored in the memory and implement the method provided in the above embodiments.
  • the chip may include a processor and a memory, and the processor is coupled to the memory and used to read the computer program stored in the memory to implement the method provided in the above embodiments.
  • the chip system includes a processor and is used to support the computer device to implement the functions involved in the terminal device in the above embodiments.
  • the chip system further includes a memory, and the memory is used to store necessary programs and data of the computer device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the embodiments of this application provide a resource configuration method and device.
  • the first terminal device can reserve N resources according to the LBT duration corresponding to the N transmission requirements. Taking the LBT duration into consideration can reduce the situation where the LBT duration of a certain transmission requirement has not ended when the resource corresponding to the transmission requirement is reached, thereby improving the probability that the first terminal device can use the resource corresponding to the transmission requirement to transmit data. This ensures the communication efficiency of the terminal equipment.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种资源配置方法及设备。通过该方法,第一终端设备可以根据N个传输需求对应的先听后说LBT时长,预约N个资源。由于考虑到LBT时长,可以减少出现到达某个传输需求对应的资源时该传输需求的LBT时长还未结束的情况,从而可以提高第一终端设备能够使用该传输需求对应的资源传输数据的概率,从而保证终端设备的通信效率。

Description

一种资源配置方法及设备
相关申请的交叉引用
本申请要求在2022年07月13日提交中国专利局、申请号为202210824434.8、申请名称为“一种侧行链路传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年08月11日提交中国专利局、申请号为202210963173.8、申请名称为“一种资源配置方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种资源配置方法及设备。
背景技术
随着通信技术的发展和演进,自第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)版本(release)12开始,第四代(4th generation,4G)通信系统(即长期演进(Long Term Evolution,LTE)系统)可以支持设备和设备之间的通信。这种通信方式可以称为设备到设备(Device to Device,D2D)通信,又称为侧行连接(sidelink,SL)通信。
例如,3GPP在Release 14和15期间,在LTE系统中引入了对车到车(vehicle to vehicle,V2V)和车到万物(vehicle to everything,V2X)服务的支持,以便将3GPP平台扩展到汽车行业。在Release16期间,研究了新无线(new radio,NR)V2X的相关设计。
在sidelink系统中,终端设备可以在一次传输中,为后续的传输预约多个不连续的资源,并在上述资源上进行传输。例如,终端设备在存在数据传输需求的情况下,针对待传输数据的重传,预约多个不连续的资源。其中,各个资源之间需要一定时间间隔,任意两个资源之间的时间间隔最小值称为最小时间间隔(minimum gap)。终端设备在该时间间隔内,可以接收在先传输对应的应答响应和针对该应答响应的处理时延。因此,该最小时间间隔应大于或等于传输对应的应答响应的时延和终端设备对该应答响应的处理时延。
例如,在终端设备使用第一资源传输数据之后,若在第一资源与相邻的第二资源的时间间隔内,终端设备接收到成功应答,那么终端设备可以终止使用该第一资源之后的第二资源重传该数据,或者使用该第二资源传输其他数据,以避免资源浪费。
然而,上述资源配置方案未考虑到信道情况,因此通过上述资源配置方案进行数据传输,可能会影响终端设备的通信效率。
发明内容
本申请提供一种资源配置方法及设备,用于保证终端设备的通信效率。
第一方面,本申请实施例提供了一种资源配置方法,该方法可以应用于SL-U系统中的第一终端设备。该方法包括以下步骤:
获取N个传输需求对应的先听后说LBT时长;其中,N为大于或等于1的整数;根据所述N个传输需求对应的LBT时长,确定N个资源;其中,所述N个资源与所述N个传输需求一一对应,且当N为大于1的整数时任意两个资源之间的时间间隔大于或等于最小时间间隔。
通过该方法,所述第一终端设备可以根据所述N个传输需求对应的LBT时长,预约资源。由于考虑到LBT时长,可以减少出现到达某个传输需求对应的资源时该传输需求的LBT时长还未结束的情况,从而可以提高第一终端设备能够使用该传输需求对应的资源传输数据的概率,从而保证终端设备的通信效率。
在一种可能的设计中,所述第一终端设备可以通过以下步骤,根据所述N个传输需求对应的LBT时长,确定N个资源:
根据第n个传输需求对应的LBT时长,确定第n个起始时间;其中,n为正整数,且1≤n≤N;所述第n个起始时间为所述第n个传输需求的资源选择范围的起始时间;根据所述第n个起始时间,确定所述第n个传输需求对应的资源。
通过该设计,所述第一终端设备可以根据每个传输需求对应的LBT时长,确定每个传输需求的资 源选择范围的起始时间,进而可以根据每个传输需求的资源选择范围的起始时间,确定每个传输需求对应的资源。当然,任一传输需求对应的资源不早于该传输需求的资源选择范围的起始时间。由于每个传输需求的资源选择范围的起始时间是根据该传输需求对应的LBT时长确定的,因此该设计可以减少出现到达某个传输需求对应的资源时该传输需求的LBT时长还未结束的情况。
在一种可能的设计中,所述第一终端设备包括物理PHY层和介质访问控制MAC层。
在一种可能的设计中,所述PHY层可以根据所述第n个传输需求对应的LBT时长,确定所述第n个起始时间。
在一种可能的设计中,所述第一终端设备可以通过以下步骤,确定所述第n个传输需求对应的资源:
方式一:所述PHY层向所述MAC层发送所述第n个起始时间;所述MAC层根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围;所述MAC层在所述第n个传输需求的资源选择范围内,确定所述第n个传输需求对应的资源;
方式二:所述PHY层根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围;所述PHY层向所述MAC层发送所述第n个传输需求的资源选择范围;所述MAC层在所述第n个传输需求的资源选择范围内,确定所述第n个传输需求对应的资源;
方式三:所述PHY层根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围的起始时间单元;所述PHY层向所述MAC层发送所述第n个传输需求的资源选择范围的起始时间单元以及候选资源集合;所述MAC层根据所述第n个传输需求的资源选择范围起始时间单元,在所述资源候选集合中,确定所述第n个传输需求对应的资源;
方式四:所述PHY层根据所述第n个起始时间,确定所述第n个传输需求的候选资源集合;所述PHY层向所述MAC层发送所述第n个传输需求的候选资源集合;所述MAC层在所述第n个传输需求的候选资源集合中,确定所述第n个传输需求对应的资源;
其中,任一候选资源集合中包含至少一个候选资源。
通过该设计,所述第一终端设备可以通过多种方式确定所述第n个传输需求对应的资源。
在一种可能的设计中,所述第一终端设备在并行确定所述N个传输需求中每个传输需求对应的资源时,需要确保确定的任意两个资源之间的时间间隔大于或等于所述最小时间间隔。
在一种可能的设计中,所述第一终端设备/MAC层可以按照时域位置从后到前的顺序,先确定第N个传输需求对应的资源;然后在满足最小时间间隔的要求下确定第N-1个传输需求对应的资源;直至确定第1个传输需求对应的资源后结束。
在一种可能的设计中,所述第一终端设备/MAC层可以按照资源选择范围从小到大的顺序,先确定资源选择范围最小的传输需求对应的资源;然后在满足最小时间间隔的要求下确定资源选择范围次小的传输需求对应的资源;直至确定资源选择范围最大的传输需求对应的资源后结束。
在一种可能的设计中,所述第一终端设备/MAC层可以按照待选资源集合的时域范围从小到大的顺序,先在时域范围最小的待选资源集合中选择出一个资源;然后在满足最小时间间隔的要求下,在时域范围次小的待选资源集合中选择出下一个资源;直至在时域范围最大的待选资源集合中选择出一个资源后结束。
通过上述几种设计,可以保证所述第一终端设备确定的N个资源中,任意两个资源之间的时间间隔大于或等于所述最小时间间隔。
在一种可能的设计中,所述第n个起始时间符合t0+Tn;其中,Tn符合以下公式:
或者
其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长。
通过该设计,在所述第n个起始时间之前为所述第一终端设备进行LBT预留了足够的时间,因此,该设计可以降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
在一种可能的设计中,所述第一终端设备可以通过以下步骤,根据所述第n个传输需求对应的LBT时长,确定所述第n个起始时间:
根据所述第n个传输需求对应的LBT时长,以及所述第n个传输需求的在先传输需求对应的资源,确定所述第n个起始时间;其中,所述第n个传输需求的在先传输需求为在所述N个传输需求中资源位置位于所述n个传输需求之前的传输需求。
由于第一终端设备在对所述第n个传输需求进行LBT的过程中,在所述第n个传输需求对应的资源到达前,第一终端设备会在第n个传输需求的在先传输需求对应的资源上传输数据,因此,在这些在先传输需求对应的资源的位置上信道会被占用,这就导致第一终端设备对所述第n个传输需求的实际LBT时长可能会延长。基于此,第一终端设备在确定所述第n个传输需求的资源选择范围的起始时间时,不仅考虑第n个传输需求对应的LBT时长,还需要考虑所述第n个传输需求的在先传输需求对应的资源。通过该设计,在所述第n个起始时间之前为所述第一终端设备进行LBT预留了足够的时间,因此,该设计可以降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
在一种可能的设计中,所述第n个起始时间符合t0+Tn;其中,Tn符合以下公式:
或者
或者
或者
其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长;ti,R为所述第n个传输需求的第i个在先传输需求对应的资源的时长,为所述第n个传输需求的n-1个在先传输需求对应的资源的时长之和;Si,R为所述第n个传输需求的第i个在先传输需求对应的资源所占用的时间单元的个数,为所述第n个传输需求的n-1个在先传输需求对应的资源所占用的时间单元的个数之和。
通过该设计,在所述第n个起始时间之前为所述第一终端设备进行LBT预留了足够的时间,因此,该设计可以降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
在一种可能的设计中,所述第一终端设备可以通过以下步骤,根据所述第n个传输需求对应的LBT时长,确定所述第n个起始时间:
根据所述第n个传输需求对应的LBT时长,所述第n个传输需求的在先传输需求对应的资源,以及所述第n个传输需求的在先应答响应对应的资源,确定所述第n个起始时间;其中,所述第n个传输需求的在先传输需求为在所述N个传输需求中资源位置位于所述n个传输需求之前的传输需求;所述第n个传输需求的在先应答响应包括在所述第n个传输需求对应的资源之前所述第一终端设备或其它终端设备应接收的应答响应。
由于第一终端设备在对所述第n个传输需求进行LBT的过程中,在所述第n个传输需求对应的资源到达前,第一终端设备会在第n个传输需求的在先传输需求对应的资源上传输数据,第一终端设备或其他终端设备会在该在先应答响应对应的资源上接收应答响应,因此,在这些在先传输需求对应的资源以及在先应答响应对应的资源的位置上信道会被占用,这就导致第一终端设备对所述第n个传输需求的实际LBT时长可能会延长。基于此,第一终端设备在确定所述第n个传输需求的资源选择范围的起始时间时,不仅考虑第n个传输需求对应的LBT时长,还需要考虑所述第n个传输需求的在先传输需求对应的资源,以及在先应答响应对应的资源。通过该设计,在所述第n个起始时间之前为所述第一终端设备进行LBT预留了足够的时间,因此,该设计可以降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
在一种可能的设计中,所述第n个传输需求的在先应答响应包括所述第n个传输需求的在先传输需求的应答响应;或者所述第n个传输需求的在先应答响应包括所述第n个传输需求的在先传输需求的应答响应,以及至少一个第一传输的应答响应;其中,所述第一传输为所述第一终端设备监听到的未接收到应答响应的传输。
在一种可能的设计中,所述第n个起始时间符合t0+Tn;其中,Tn符合以下公式:
或者
或者
或者
其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长;ti,R为所述第n个传输需求的第i个在先传输需求对应的资源的时长,为所述第n个传输需求的n-1个在先传输需求对应的资源的时长之和;tn,HARQ为所述第n个传输需求的在先应答响应对应的资源的总时长;Si,R为所述第n个传输需求的第i个在先传输需求对应的资源所占用的时间单元的个数,为所述第n个传输需求的n-1个在先传输需求对应的资源所占用的时间单元的个数之和;Sn,HARQ为所述第n个传输需求的在先应答响应对应的资源所占用的时间单元的总个数。
通过该设计,在所述第n个起始时间之前为所述第一终端设备进行LBT预留了足够的时间,因此,该设计可以降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
在一种可能的设计中,所述第一终端设备还可以执行以下步骤:
在所述N个资源上传输数据的过程中,确定所述第n个传输需求对应的LBT时长未结束;根据所述第n个传输需求对应的LBT剩余时长,重新确定第n个起始时间;根据重新确定的所述第n个起始时间,重新确定所述第n个传输需求对应的资源。
由于在所述第一终端设备在所述N个资源上传输数据的过程中,可能会发生到达某个传输需求对应的资源时,针对该传输需求进行的LBT还未结束(即该传输需求对应的LBT时长未结束),此时,所述第一终端设备还可以为该传输需求重选资源,以保证数据传输可靠性。
在一种可能的设计中,确定第n个传输需求对应的LBT时长未结束,包括以下至少一项:在第一时间确定所述第n个传输需求对应的LBT时长未结束;或者确定第一时长小于所述第n个传输需求对应的LBT剩余时长;其中,所述第一时间位于所述第n个传输需求对应的资源的起始时间之前,或所述第一时间为所述第n个传输需求对应的资源的起始时间;所述第一时长为所述第一时间与所述第n个传输需求对应的资源的起始时间之间的时长。
在一种可能的设计中,所述第一终端设备在所述N个资源上传输数据之前,还可以根据第k个传输需求对应的LBT时长,确定第k个起始时间;其中,所述第k个传输需求为所述第n个传输需求的在后传输需求,k为正整数,且n<k≤N;所述第k个起始时间为所述第k个传输需求的资源选择范围的起始时间;根据所述第k个起始时间,确定所述第k个传输需求对应的资源;所述第一终端设备在确定所述第n个传输需求对应的LBT时长未结束之后,还可以根据所述第k个传输需求对应的LBT剩余时长,重新确定第k个起始时间;或者根据所述第n个传输需求对应的LBT剩余时长,以及所述最小时间间隔,重新确定第k个起始时间;根据重新确定的所述第k个起始时间,重新确定所述第k个传输需求对应的资源;其中,重新确定的任意两个资源之间的时间间隔大于或等于所述最小时间间隔。
当所述N个传输需求中所述第n个传输需求还存在在后传输需求时,由于所述第n个传输需求对应的资源发生变化,可能导致任意两个资源之间的时间间隔不满足最小时间间隔的条件,或者出现到达该在后传输需求的起始时间该在后传输需求对应的LBT时长未结束的情况。因此,为了保证在后传输需求对应的资源的可用性,所述第一终端设备还可以重新确定该在后传输需求对应的资源。
在一种可能的设计中,所述第一终端设备在所述N个资源上传输数据之前,还可以根据第k个传输 需求对应的LBT时长,确定第k个起始时间;其中,所述第k个传输需求为所述第n个传输需求的在后传输需求,k为正整数,且n<k≤N;所述第k个起始时间为所述第k个传输需求的资源选择范围的起始时间;根据所述第k个起始时间,确定所述第k个传输需求对应的资源;所述第一终端设备在确定所述第n个传输需求对应的LBT时长未结束之后,确定第二时长小于所述第k个传输需求对应的LBT剩余时长;或者确定从第一时间开始经历所述第二时长后的第二时间晚于所述第k个传输需求对应的资源的起始时间;其中,所述第二时长为所述第n个传输需求对应的LBT剩余时长与(k-n)个最小时间间隔之和;所述第一时间为确定所述第n个传输需求对应的LBT时长未结束的时间;根据所述第k个传输需求对应的LBT剩余时长,重新确定第k个起始时间;或者根据所述第n个传输需求对应的LBT剩余时长,以及所述最小时间间隔,重新确定第k个起始时间;根据重新确定的所述第k个起始时间,重新确定所述第k个传输需求对应的资源;其中,重新确定的任意两个资源之间的时间间隔大于或等于所述最小时间间隔。
当所述N个传输需求中所述第n个传输需求还存在在后传输需求时,由于所述第n个传输需求对应的资源发生变化,可能导致任意两个资源之间的时间间隔不满足最小时间间隔的条件,或者出现到达该在后传输需求的起始时间该在后传输需求对应的LBT时长未结束的情况。因此,为了保证在后传输需求对应的资源的可用性,所述第一终端设备还可以对在后传输需求对应的资源进行判断,只对存在不可用风险的在后传输需求对应的资源进行重新确定。
在一种可能的设计中,所述第一终端设备可以根据所述N个传输需求对应的LBT时长,确定N个起始时间;其中,所述N个起始时间中第j个起始时间为所述N个传输需求中第j个传输需求的资源选择范围的起始时间;当所述N个起始时间均未超过第三时间时,根据所述第n个起始时间,确定所述第n个传输需求对应的资源;其中,所述第三时间为从所述第一终端设备出现传输需求的时间开始经历第三时长后的时间,所述第三时长的取值是根据所述第一终端设备的数据传输时延确定的。
通过该设计,由于每个传输需求的资源选择范围的起始时间均未超过第三时间,这样,当第一终端设备在确定的N个资源上传输数据时,可以保证数据的时延在第一终端设备的数据传输时延范围内。
在一种可能的设计中,当第g个起始时间超过所述第三时间(其中,g为正整数,且1≤g≤N)时,所述第一终端设备还可以通过以下方式实现资源配置:
方式一:向第二终端设备发送第一资源请求;接收来自所述第二终端设备的第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二终端设备为所述第一终端设备分配的资源,所述第二终端设备为所述N个传输需求的接收端,所述第一资源请求所占用的传输资源为所述第一终端设备与所述第二终端设备预先协商的或协议约定的;
方式二:向网络设备发送第二资源请求;接收来自所述网络设备的第二资源配置信息;其中,所述第二资源配置信息用于指示所述网络设备为所述第一终端设备分配的资源;
方式三:使用第二终端设备的剩余传输时间COT所在的资源发送数据;其中,所述第二终端设备为所述N个传输需求的接收端。
由于某些传输需求的资源选择范围的起始时间超过第三时间,这样,即使第一终端设备确定N个传输需求对应的N个资源,也可能无法保证数据的时延在第一终端设备的数据传输时延范围内。基于此,所述第一终端设备可以在第二终端设备或网络设备的剩余COT所在的资源上继续发送数据,从而保证数据传输时延。
在一种可能的设计中,所述第一终端设备可以获取M个传输需求对应的LBT时长;其中,所述M个传输需求中包含所述N个传输需求;M为大于N的整数;根据所述M个传输需求对应的LBT时长,确定M个起始时间;其中,所述M个起始时间中第m个起始时间为所述M个传输需求中第m个传输需求的资源选择范围的起始时间;m为正整数,且1≤m≤M;其中,在所述M个传输需求中,所述N个传输需求的资源选择范围的起始时间未超过第三时间,除所述N个传输需求以外的其他传输需求的资源选择范围的起始时间超过所述第三时间;所述第三时间为从所述第一终端设备出现传输需求的时间开始经历第三时长后的时间,所述第三时长的取值是根据所述第一终端设备的数据传输时延确定的;所述第一终端设备确定所述N个传输需求对应的资源,不确定所述M个传输需求中除所述N个传输需求以外的其他传输需求对应的资源;在上述情况下,在所述第一终端设备在所述N个资源上传输数据后,所述第一终端设备可以根据所述N个资源的应答响应所指示的传输结果,判断是否在第二终端设备或网络设备的剩余COT所在的资源上继续发送数据;其中,所述第二终端设备为所述N个传输需求的接 收端。
当M个传输需求中仅部分传输需求(即所述N个传输需求)的资源选择范围的起始时间超过第三时间,所述第一终端设备可以仅确定这部分传输需求对应的资源。这样,第一终端设备在所述N个传输需求对应的资源上传输数据后,根据所述N个传输需求的应答响应所指示的传输结果,判断是否在第二终端设备或网络设备的剩余COT所在的资源上继续发送数据。当该N个传输需求的应答响应所指示的传输结果表示数据传输成功时,第一终端设备无需在寻求其他资源配置方式;而当N个传输需求的应答响应所指示的传输结果表示数据传输失败时,第一终端设备可以采用上一设计中的资源配置方式继续传输数据。
可选的,当所述第一终端设备出现传输需求时,开始进行LBT;或者在确定所述N个资源过程中,开始进行LBT;或者在确定出所述N个资源后,开始进行LBT。
可选的,当所述PHY层向所述MAC层发送所述第n个起始时间时,开始进行LBT;或者当所述PHY层向所述MAC层发送所述第n个传输需求的资源选择范围时,开始进行LBT;或者当所述PHY层向所述MAC层发送所述第n个传输需求的资源选择范围的起始时间单元以及候选资源集合时,开始进行LBT;或者当所述PHY层向所述MAC层发送所述第n个传输需求的候选资源集合时,开始进行LBT;或者当所述MAC层通知所述PHY层所述第n个传输需求对应的资源时,开始进行LBT。
第二方面,本申请实施例提供了一种通信方法,该方法可以应用于SL-U系统中的终端设备。所述方法包括:
在第一频带中选择第一资源;在第二频带的第二资源上传输目标数据;其中,所述第一频带的带宽大于所述第二频带的带宽,或者所述第一频带的带宽小于所述第二频带的带宽;所述第一资源的频域位置与所述第二资源的频域位置之间存在资源映射关系;所述资源映射关系用于将所述第一资源映射到所述第二资源。
通过该方法,终端设备可以实现两个不同带宽的频带之间的资源映射。例如,若终端设备为了传输目标数据在第一频带中预约第一资源,后续通过LBT抢占了第二频带的信道,那么此时,所述终端设备可以通过上述方法,将第一资源映射到第二频带中得到第二资源,从而可以在抢占的信道中传输目标数据。
在一种可能的设计中,所述终端设备可以根据所述资源映射关系以及所述第一资源的频域位置,在所述第二频带中选择所述第二资源;其中,所述第一资源包括第一资源块RB,所述第二资源包括第二RB;所述第一资源的频域位置包括所述第一RB在所述第一频带中的RB编号;所述第二资源的频域位置包括所述第二RB在所述第二频带中的RB编号;所述资源映射关系用于表示所述第一频带中的RB编号与所述第二频带中的RB编号之间的映射关系。
通过该设计,所述终端设备可以通过所述资源映射关系,实现两个不同带宽的频带之间的资源映射。
在一种可能的设计中,所述第一频带中包括L1个RB,其中,L1为正整数;所述第一频带的带宽为B1,所述第二频带的带宽为B2,B2=X*B1,X>1;所述第二频带包含X个子频带,每个子频带的带宽为B1,所述第一频带位于所述X个子频带中第y个子频带中,1≤y≤X,y为整数;在所述资源映射关系中,所述第一频带中RB编号a与所述第二频带中RB编号(y-1)*L1+C+a对应;其中,a为整数,0≤a<L1,C为常数;或者在所述资源映射关系中,所述第一频带中RB编号L1-b与所述第二频带中RB编号y*L1+D-b对应;其中,b为整数,0<b≤L1,D为常数。
在一种可能的设计中,所述第二频带中包括L2个RB,其中,L2为正整数;所述第一频带的带宽为B1,所述第二频带的带宽为B2,B1=X*B2,X>1;所述第一频带包含X个子频带,每个子频带的带宽为B2,所述第二频带位于所述X个子频带中第y个子频带中,1≤y≤X,y为整数;在所述资源映射关系中,所述第二频带中RB编号a与所述第一频带中RB编号(y-1)*L2+C+a对应;其中,a为整数,0≤a<L2,C为常数;或者在所述资源映射关系中,所述第二频带中RB编号L2-b与所述第一频带中RB编号y*L2+D-b对应;其中,b为整数,0<b≤L2,D为常数。
在一种可能的设计中,所述终端设备还可以根据所述第一资源的频域位置在所述第一频带对应的多个第一子信道中确定第一目标子信道;根据所述第二资源的频域位置在所述第二频带对应的多个第二子信道中确定第二目标子信道;当所述第二目标子信道占用的RB数量大于所述第一目标子信道占用的RB数量时,根据所述第二目标子信道占用的RB数量对编码后的信号进行速率匹配,得到目标信号;或者当所述第二目标子信道占用的RB数量小于所述第一目标子信道占用的RB数量时,根据所述第二 目标子信道占用的RB数量对编码后的信号进行打孔,得到目标信号;其中,所述编码后的信号是根据所述第一目标子信道占用的RB数量对所述目标数据编码得到的;这样,所述终端设备可以在所述第二目标子信道上发送所述目标信号。
通过该设计,终端设备还可以实现不同频带对应的子信道的映射。
第三方面,本申请实施例提供了一种通信装置,包括用于执行以上第一方面至第七方面中各个步骤的单元。
第四方面,本申请实施例提供了一种终端设备,包括处理器,存储器和处理器;其中,所述收发器,用于接收和发送信号;所述存储器,用于存储程序指令和数据;所述处理器,用于读取所述存储器中的程序指令和数据,实现以上第一方面或第二方面提供的方法。
第五方面,本申请实施例提供了一种终端设备,包括至少一个处理元件和至少一个存储元件,其中该至少一个存储元件用于存储程序和数据,该至少一个处理元件用于执行本申请以上第一方面或第二方面中提供的方法。
第六方面,本申请实施例还提供了一种计算机程序,当计算机程序在计算机上运行时,使得计算机执行上述任一方面提供的方法。可选的,所述计算机可以为终端设备。
第七方面,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当计算机程序被计算机执行时,使得计算机执行上述任一方面提供的方法。可选的,所述计算机可以为终端设备。
第八方面,本申请实施例还提供了一种芯片,芯片用于读取存储器中存储的计算机程序,执行上述任一方面提供的方法。可选的,所述芯片中可以包括处理器和存储器,所述处理器与所述存储器耦合,用于读取所述存储器中存储的计算机程序,实现以上实施例提供的方法。
第九方面,本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现上述任一方面提供的方法。在一种可能的设计中,芯片系统还包括存储器,存储器用于保存该计算机装置必要的程序和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1为本申请实施例提供的一种sidelink场景中预约资源的示意图;
图2为本申请实施例提供的一种通信场景示意图;
图3为本申请实施例提供的一种资源配置方法的流程图;
图4为本申请实施例提供的一种资源配置实例示意图;
图5为本申请实施例提供的一种资源配置实例示意图;
图6为本申请实施例提供的一种资源配置实例示意图;
图7为本申请实施例提供的一种资源配置实例示意图;
图8为本申请实施例提供的一种资源配置实例示意图;
图9为本申请实施例提供的一种资源配置实例示意图;
图10为本申请实施例提供的一种资源配置实例示意图;
图11为本申请实施例提供的一种资源配置实例示意图;
图12为本申请实施例提供的一种资源配置实例示意图;
图13为本申请实施例提供的一种资源配置实例示意图;
图14为本申请实施例提供的一种资源配置实例示意图;
图15为本申请实施例提供的一种资源配置场景示意图;
图16为本申请实施例提供的一种资源配置场景示意图;
图17为本申请实施例提供的一种通信方法的流程图;
图18为本申请实施例提供的一种不同带宽的频带之间的分布示意图;
图19为本申请实施例提供的一种通信装置的结构图;
图20为本申请实施例提供的一种终端设备的结构图。
具体实施方式
本申请提供一种资源配置方法及设备,用于保证终端设备的通信效率。其中,方法和设备是基于同 一技术构思的,由于方法及设备解决问题的原理相似,因此设备与方法的实施可以相互参见,重复之处不再赘述。
以下对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)网络设备,是通信系统中将终端设备接入到无线网络的设备。所述网络设备作为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。
目前,一些网络设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、接入点(access point,AP)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB),或基带单元(base band unit,BBU)等。
另外,在一种网络结构中,所述网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
2)终端设备,是一种向用户提供语音和/或数据连通性的设备。终端设备又可以称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。
例如,终端设备可以为具有无线连接功能的手持式设备、各种车载设备、路侧单元等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、智能销售终端(point of sale,POS)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、各类智能仪表(智能水表、智能电表、智能燃气表)、eLTE-DSA UE、具有接入回传一体化(integrated access and backhaul,IAB)能力的设备、车载电子控制单元(electronic control unit,ECU)等、车载电脑、车载巡航系统、远程信息处理器(telematics box,T-BOX)等。
3)通信设备,为支持无线通信技术,能够与其他设备进行通信的设备。在本申请实施例中,不限定通信设备的具体表现形态,例如,通信设备可以为终端设备、网络设备等。
4)频带,为一段连续的频率资源,作为通信设备进行数据传输过程中的载波。在本申请实施例中,频带具有两个特征,频点和带宽。频点和带宽可以决定频带的频率范围,包括频点的最小频率边界(还可以称为起始频率)和最大频率边界(还可以称为结束频率)。
根据子载波间隔(sub-carrier space,SCS)以及频带的带宽,频带中可以划分为多个子载波。示例性的,SCS的取值可以为15kHz、30kHz、60kHz等。
在频域上,一个资源块(resource block,RB)可以包含固定数量个子载波,因此,一个频带中可以包括多个RB。例如,在频域上的12个子载波可以组成一个RB。
5)资源,即用于通信设备传输数据的时频资源,又称为物理资源。资源是在两个维度上的概念,包括时域和频域。
6)本申请实施例中涉及的时间,可以通过秒、毫秒、微秒等传统意义上的时间单位计数,还可以通过通信领域中针对时域资源定义的时间单元来计数。示例性的,通信领域中的时间单元可以但不限于包括:子帧(subframe)、时隙(slot)、符号(symbol)等,本申请对此不作限定。
7)时间单元,为用于调度时域资源的单位或时间粒度。示例性的,用于调度数据传输资源的时间单元可以为一个时隙、半个时隙,或几个符号等,本申请对此不作限定。
8)应答响应,用于指示数据是否发送成功。数据的接收端根据数据的传输情况发送,从而通知发送端数据的传输情况,以使所述发送端根据该应答响应指示的数据传输结果判断是否需要重传该数据。
在一种实施方式中,在支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)技术的通信系统中,在发送端的一次传输后,接收端可以针对该次传输的传输情况向发送端反馈应答响应。该应答响应又可以称为混合自动重传请求应答确认(HARQ-acknowledgment,HARQ-ACK),或者HARQ应答,或HARQ响应,简称为HARQ。
通常,应答响应中包括两类:确认应答(Acknowledgement,ACK)和否定应答(Negative Acknowledgement,NACK)。其中,ACK表示数据传输成功;NACK表示数据传输失败。
9)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
需要说明的是,本申请中所涉及的多个,是指两个或两个以上。至少一个,是指一个或多个。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在介绍本申请实施例之前,先对本申请实施例涉及的一些技术进行说明。
一、sidelink场景中的一种资源配置方式
在sidelink场景中,终端设备在需要传输目标数据时,为该目标数据的传输(例如初传以及重传)预约多个不连续的资源,之后终端设备可以在预约的资源上传输该目标数据。本申请实施例不限定预约的资源数量N,其可以为4、5、10、20、24、36等大于或等于1的正整数。可选的,终端设备可以根据预约资源的数量阈值,确定本次需要预约的资源数量N。
示例性的,终端设备可以根据目标数据的可靠性需求,确定重复传输所述目标数据所需的预约资源数量N。其中,目标数据的可靠性要求高越高,重复传输的次数越多,需要预约的资源的数量N就越大;目标数据的可靠性要求越低,重复传输的次数越少,需要预约的资源的数量N也越小。
在一种实施方式中,当终端设备的介质访问控制(medium access control,MAC)层确定出现传输需求时(即t0),可以通知物理(Physical,PHY)层;此时PHY层可以在资源选择范围[t0+Toffset,t0+TPDB]内选择一些候选资源(后续可以称为候选资源集合),并将候选资源集合上报给MAC层。MAC层可以在该候选资源集合中选择出N个资源。其中,一个资源对应一个传输需求,每个传输需求用于进行一次传输(一次目标数据的重传)。资源选择范围又可以称为资源选择窗口。
其中,Toffset为资源选择范围的起始时间与终端设备出现传输需求的时间t0之间的偏移值;TPDB为根据终端设备的数据传输时延(例如数据包时延余量(packet delay budget,PDB))确定的,可选的,TPDB可以等于该数据传输时延,也可以小于该数据传输时延。Toffset和TPDB的具体取值由终端设备设置,其中,终端设备可以根据Toffset的取值范围确定Toffset的取值。示例性的,标准TS 38.214中限定Toffset的取值范围为 为与SCS有关,具体可以参考通信标准中的相关定义说明,此处不再赘述。
需要说明的是,终端设备预约的N个资源中,任意两个资源之间的时间间隔小于或等于最小时间间隔(minimum gap)。其中,最小时间间隔为网络设备通过无线资源控制(radio resource control,RRC)信令配置的,或者通信标准规定的。这样,终端设备在该时间间隔内,可以接收在先资源对应的应答响应和针对该应答响应的处理时延。因此,该最小时间间隔应大于或等于在先资源对应的应答响应的时延、该应答响应对应的资源的时长,以及终端设备对该应答响应的处理时延之和。
示例性的,参阅图1所示,终端设备的物理(Physical,PHY)层可以在感知窗口内感知信道情况,在t0时终端设备的MAC层通知该PHY层出现传输需求,PHY层根据感知窗口的感知结果,在资源选择范围[t0+Toffset,t0+TPDB]内选择候选资源集合,并将候选资源集合上报至MAC层;MAC层根据最小时间间隔,在候选资源集合中选择如图1中所示的3个资源,并将该3个资源通知PHY层,以使PHY层可以在该3个资源上发送数据。示例性的,在本申请中,资源和传输需求按照时间的先后顺序排序。
其中,感知窗口为终端设备出现传输需求t0之前的一段时间,用于终端设备感知,可以表示为 为终端设备的处理时延,Tp与感知窗口内的时隙数据有关。感知窗口与可以参考通信标准中的相关定义说明,此处不再赘述。
如图1中终端设备预约的3个资源所示,任意两个资源之间的时间间隔大于或等于最小时间间隔。这样,如果终端设备在资源1上传输数据后,接收到的资源1的应答响应为ACK,那么终端设备可以终止在资源2和资源3上传输数据,或者在资源2和资源3中传输其他数据,从而避免资源浪费。
二、sidelink场景中的资源配置
在新无线(new radio,NR)中,sidelink传输的资源是基于资源池的。所谓资源池,是一个逻辑上 的概念,一个资源池包括多个资源。其中,任意一个资源用于传输数据。终端设备进行数据传输时,都需要从资源池中选择一个资源进行传输。终端设备的资源选择过程,有两种情况:
情况一:终端设备使用的资源是网络设备的配置的。终端设备可以根据网络设备的指示信息,从资源池中选择资源进行数据传输。这种资源配置方式又称作模式1(Mode 1)。
情况二:终端设备自主从资源池中选择资源进行数据传输。这种资源配置方式称为模式2(Mode 2)。
可选的,每个资源池占用的频域资源包括至少一个子信道(subchannel)。根据目前的进展,在一个资源池内,各子信道占用的频域资源(RB数量)是相同的,在属于不同资源池的子信道中,各自占用的频域资源可能不同。
三、侧行连接-非授权频谱(sidelink-unlicense,SL-U)的接入机制
SL-U是目前通信标准讨论的一个重要课题,主要内容是在非授权频谱(unlicense)中进行sidelink传输。由于使用的频域资源是非授权频谱,因此通信标准引入两种接入机制:Type 1和Type 2。
Type 1适用于终端设备抢占信道的场景,需要终端设备进行先听后说(listen before talk,LBT)。即终端设备在传输之前需要监听信道,在监听到信道空闲后抢占信道使用该信道传输。
Type 2适用于分享其他终端设备通过Type 1抢到的资源。例如,终端设备1通过Type 1抢到了一段时间内的传输机会(标准称为信道占用时间(channel occupancy time,COT)),终端设备可以在该COT内进行数据传输外,还可以指示其他终端设备采用Type 2接入所占用的终端设备1的剩余COT。这种共享COT给其他终端设备(以终端设备2为例说明)的行为,称为COT共享(COT-sharing)。可选的,在一些情况下,进行COT-sharing的终端设备之间需要有关联,比如具有收发关系或者位于同一终端设备组等。
在一些实施例中,Type 2还可以进一步分为几种情况,下面以Type 2A和Type 2B为例进行说明。Type 2A为终端设备2在其他终端设备结束传输后的25μs内检测到信道空闲,则占用信道,即在感知其他终端结束传输后信道25μs内未被占用,则终端设备2占用该信道。Type 2B为终端设备2在其他终端设备结束传输后的16μs内检测到信道空闲,则占用信道。Type 2B与Type 2A的差别在于COT的时长额外增加了9μs,即一个感知时隙的时长。
其中,感知时隙(sensing slot)为在非授权频谱中用于终端设备感知信道是否繁忙的时间单元。一个感知时隙对应的时长可以为9μs。在本申请的一些实施例中,感知时隙与感知窗口无关。
在本申请的一些实施例中,终端设备的COT的时长可以与终端设备的信道接收优先级(channel access priority class,CAPC)有关。示例性的,当终端设备的CAPC为1时,COT的时长最大为2ms;当终端设备的CAPC为2时,COT的时长最大为4ms;当终端设备的CAPC为3或4时,COT的时长最大为6ms或10ms。
四、LBT机制
由于非授权频谱资源的共享性,容易造成同一资源被不同的通信设备(后续以终端设备为例进行说明)同时使用,因此,需要一种合理的资源竞争机制,保证使用同一非授权频段上的不同的通信设备之间公平共存的进行资源竞争。该资源竞争机制即LBT机制。
LBT机制要求终端设备在使用非授权频谱资源发送数据之前,先监听信道进行空闲信道评估(clear channel assessment,CCA)检测(后续称为信道检测),在确保信道空闲的情况下才能进行数据传输。
LBT的主要思想为:当终端设备需要发送数据前,终端设备可以生成一个随机数R。该随机数R用于表示数据发送前需检测到信道空闲的次数。终端设备可以通过一个计数器维护该随机数R,例如,该计数器的初始值为该随机数R。终端设备在生成随机数R后的每个感知时隙内进行信道检测,当在某个感知时隙内检测到信道空闲时,更新计数器使计数值减1;若终端设备在某个感知时隙内检测到信道忙,则停止更新计数器,并在后续的每个感知时隙内继续进行信道检测,直至检测到信道空闲后,启动该计数器的计数。终端设备通过上述方式持续进行信道检测并更新计数器,直至该计数器的计数为0时,开始占用信道并传输数据。
需要说明的是,终端设备在进行不同次LBT时分别生成的随机数可以不同。其中,终端设备可以在随机数取值范围内中产生随机数。该随机数取值范围可以与终端设备的CAPC有关。示例性的,当终端设备的CAPC为1时,随机数取值范围为[3,7];当终端设备的CAPC为2时,随机数取值范围为[7,15]; 当终端设备的CAPC为3或4时,随机数取值范围为[15,1023]。
在LBT机制中,终端设备生成的随机数R用于表示数据发送前需检测到信道空闲的次数,换句话说,该随机数R用于确定信道检测的感知时隙的个数。
因此,基于该随机数R可以确定终端设备的LBT时长,例如,LBT时长等于tsensing*R,或者等于tsensing*R+defer时长。而在终端设备进行LBT过程中,根据剩余随机数Rleft,确定终端设备的LBT剩余时长。示例性的,LBT剩余时长可以等于tsensing*Rleft,又或者等于tsensing*Rleft+defer时长。其中,tsensing为感知时隙的时长,defer时长=16μs+mp*9μs。mp与终端设备的CAPC有关,具体可以参考通信标准中的相关定义说明,此处不再赘述。
该LBT时长又可以称为退避时间窗(contention window,CW),该随机数R又可以称为退避随机数。
五、循环前缀扩展(cyclic prefix extension,CPE)
与无线保真(wireless fidelity,WiFi)系统不同,SL-U作为一个同步系统,只能在指定的时域位置进行接入。因此,为了更好的占用信道,终端设备在接入信道之前,还可以发送CPE来抢占信道。示例性的,终端设备具体抢占信道的时间长度可以与终端设备的CAPC有关,也可以是标准规定的,还可以终端设备内部设置的。
终端设备发送的CPE的时长可以记为tcpe。示例性的,tcpe一般不超过1个符号的时间。
六、新无线-非授权频谱(new radio-unlicense,NR-U)的资源配置方式
在NR-U场景中,网络设备与终端设备在非授权频谱上进行通信。网络设备可以调度多个终端设备在一个时隙内向网络设备发送数据。由于每个终端设备的传输要么在一个时隙上承载,要么在连续多个时隙上承载,因此,终端设备可以在网络设备的COT内发送数据,或者在网络设备调度的位置上进行LBT抢占信道,即可完成传输需求。
下面结合附图对本申请实施例做进行具体说明。
图2示出了本申请实施例提供的方法适用的通信场景。参阅图2所示,在该通信场景中可以包括:网络设备,以及多个终端设备(如图2中的终端设备a和终端设备b)。
网络设备,是网络侧能够接收和发射无线信号的实体,负责为在其管理的小区内的终端设备提供无线接入有关的服务,实现物理层功能、资源调度和无线资源管理、服务质量(Quality of Service,QoS)管理、无线接入控制以及移动性管理功能。
终端设备,为用户侧能够接收和发射无线信号的实体,需要通过网络设备接入网络。
其中,图2所示的通信场景,终端设备支持sidelink通信。sidelink通信技术是一种终端设备之间能够直连的近场通信技术,又称为近距离服务(proximity services,ProSe)通信技术,或D2D通信技术。基于此,所处地理位置较近、且支持sidelink通信的多个终端设备可以组成一个sidelink系统,如图2中的终端设备a和终端设备b组成的sidelink系统所示。在该sidelink系统中,终端设备之间可以进行sidelink通信。
基于图2所示的通信场景中,网络设备与终端设备之间可以通过空中接口(即Uu接口)连接,从而实现终端设备与网络设备之间的通信(这种通信可以简称Uu通信,或者蜂窝网通信)。邻近的终端设备之间可以通过Pc5接口,建立sidelink连接进行通信。
在图2所示的通信场景中,sidelink系统中的终端设备可以使用非授权频谱进行数据传输。因此,该sidelink系统又称为SL-U系统。
还需要说明的是,如图2所示的通信场景作为一个示例,并不对本申请实施例提供的方法适用的通信场景构成限定。例如,网络设备与终端设备之间可以采用各种制式的通信技术,例如第五代(The 5th Generation,5G)通信技术(即NR技术)、4G通信技术、第六代(The 6th Generation,6G)通信技术,以及基于上述技术演进的通信技术。另外,sidelink-U系统可以适用于V2X、长期演进-车联网(LTE-vehicle,LTE-V)、V2V、车联网、机器类通信(Machine Type Communications,MTC)、物联网(internet of things,IoT)、长期演进-机器到机器(LTE-machine to machine,LTE-M)、机器到机器(machine to machine,M2M)、等具体场景中,本申请对此不予限定。
通过以上第一点关于sidelink场景中的资源预约技术的相关描述可知,SL-U系统与NR-U系统的资源配置方式不同,即在SL-U系统中终端设备可以为传输目标数据预约至少一个资源,以保证该目标数据的传输可靠性。然而,上述第一点提供的资源预约方案中未考虑到信道情况,SL-U系统使用的是非授权频谱,不考虑信道情况,很可能会导致多个终端设备使用同一资源进行传输,影响终端设备的通信效率。
进一步的,通过上述第三点对SL-U的接入机制、以及第四点对LBT机制的描述可知,终端设备在非授权频谱中抢占信道时,需要通过LBT监听信道。由于上述第一点提供的资源预约方案不考虑LBT时长,因此,在SL-U中使用该方案,可以会出现以下情况:时域上到达了预约的资源的起始时间,但是终端设备的LBT还未结束,这就导致预约的该资源不可用,进而影响终端设备的通信效率。
为了解决以上问题,保证SL-U系统中终端设备的通信效率,本申请实施例提供了一种资源配置方法。该方法可以适用于如图2所示的通信场景中。下面参阅图3所示的流程图,以第一终端设备和第二终端设备为例,对本申请实施例提供的方法进行详细说明。
S301:第一终端设备获取N个传输需求对应的先听后说LBT时长。其中,N为大于或等于1的整数。
可选的,每个传输需求为所述第一终端设备传输目标数据的需求,其中,第1个传输需求用于初传所述目标数据,后续其他传输需求用于重传所述目标数据。可选的,在所述第一终端设备出现传输需求时(记为t0),所述第一终端设备的MAC层可以通知所述第一终端设备的PHY层,由该PHY层执行S301。在一种实施方式中,所述第一终端设备的PHY层可以确定传输需求的数量N(即重传目标数据的最大次数N)。
可选的,所述第一终端设备出现传输需求可以但不限于包括:所述第一终端设备生成或接收到需要传输的目标数据时。由于在所述第一终端设备出现传输需求时,所述MAC层向所述PHY层通知出现传输需求。因此,所述第一终端设备出现传输需求的时间,可以限定为所述MAC层向所述PHY层通知出现传输需求的时间。
在一种实施方式中,所述第一终端设备的PHY层可以针对所述N个传输需求,生成随机数R;然后所述PHY层可以根据该随机数R,确定所述N个传输需求对应的LBT时长,例如,所述N个传输需求对应的LBT时长等于tsensing*R,或者等于tsensing*R+defer时长。在本实施方式中,所述N个传输需求对应的LBT时长相同。
在另一种实施方式中,所述第一终端设备的PHY层可以分别针对每个传输需求,生成对应的随机数;然后所述PHY层可以根据每个传输需求对应的随机数,分别确定每个传输需求对应的LBT时长。以第n个传输需求为例,所述PHY层生成的所述第n个传输需求对应的随机数记为Rn,那么所述PHY层可以根据所述第n个传输需求对应的随机数Rn,确定所述第n个传输需求对应的LBT时长。例如所述第n个传输需求对应的LBT时长等于tsensing*Rn,或者tsensing*Rn+defer时长。其中,n为正整数,且1≤n≤N。在本实施例方式中,不同传输需求对应的LBT时长可以不同。
其中,tsensing为感知时隙的时长。
S302:所述第一终端设备根据所述N个传输需求对应的LBT时长,确定N个资源。其中,所述N个资源与所述N个传输需求一一对应,且当N为大于1的整数时任意两个资源之间的时间间隔大于或等于最小时间间隔。
通过该步骤,所述第一终端设备可以根据所述N个传输需求对应的LBT时长,预约资源。由于考虑到LBT时长,可以减少出现到达某个传输需求对应的资源时该传输需求的LBT时长还未结束的情况,从而可以提高第一终端设备能够使用该传输需求对应的资源传输数据的概率,从而保证终端设备的通信效率。
另外,当传输需求的数量为多个时,所述第一终端设备还需要考虑任意两个资源之间的时间间隔大于或等于最小时间间隔,以保证所述第一终端设备可以在该时间间隔内,可以接收在先资源对应的应答响应,以及针对该应答响应指示的结果进行后续处理。
可选的,在S302中,所述第一终端设备可以根据每个传输需求对应的LBT时长,确定每个传输需求对应的资源。下面以第n个传输需求为例进行说明,所述第一终端设备可以通过以下步骤,确定所述第n个传输需求对应的资源:
A1:所述第一终端设备根据第n个传输需求对应的LBT时长,确定第n个起始时间。其中,n为正 整数,且1≤n≤N;所述第n个起始时间为所述第n个传输需求的资源选择范围的起始时间。
A2:所述第一终端设备根据所述第n个起始时间,确定所述第n个传输需求对应的资源。
需要说明的是,所述第一终端设备可以通过A1,确定N个传输需求的资源选择范围的起始时间后,再执行A2,以使在确定N个资源时能够所述第一终端设备可以保证任意两个资源之间的时间间隔大于或等于最小时间间隔。
可选的,在本申请实施例中,所述第一终端设备可以但不限于通过以下方式1至方式3中任一方式,执行上述步骤A1,确定所述第n个起始时间。
方式1:所述第一终端设备根据第n个传输需求对应的LBT时长,确定第n个起始时间,不考虑其他因素。
基于该方式1,所述第n个起始时间符合t0+Tn。其中,Tn符合以下公式:
或者
其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长。
示例性的,所述第一终端设备出现传输需求的时间t0可以为所述第一终端设备的MAC层向PHY层通知出现传输需求的时间。可选的,用于调度数据传输资源的时间单元可以时隙、半个时隙或者更小的时间粒度,本申请对此不作限定。ts的取值可以根据时间单元的设置进行具体设置。Toffset的取值可以沿用第一点技术说明中的参数(Toffset)的取值。示例性的,tcpe一般不超过1个符号的时间。
通过方式1,可以保证所述第一终端设备确定的所述第n个起始时间的位置不早于从t0开始经历第n个传输需求对应的LBT时长后的位置,即(t0+Tn)≥(t0+tn,LBT)。这样,在t0与所述第n个起始时间(即t0+Tn)之间,所述第一终端设备可以进行LBT。由于根据方式1,在所述第n个起始时间之前为所述第一终端设备进行LBT预留了足够的时间,因此,该方式可以降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
进一步的,在所述第一终端设备在接入信道前发送CPE的场景中,所述第一终端设备不仅考虑到第n个传输需求对应的LBT时长,还考虑到所述第一终端设备发送CPE的时长tcpe,从而可以保证所述第一终端设备确定的所述第n个起始时间的位置不早于从t0开始经历第n个传输需求对应的LBT时长并经历发送CPE后的位置,即(t0+Tn)≥(t0+tn,LBT+tcpe)。这样,在t0与所述第n个起始时间(即t0+Tn)之间,所述第一终端设备可以进行LBT,以及发送CPE。由于根据方式1,在所述第n个起始时间之前为所述第一终端设备进行LBT和发送CPE预留了足够的时间,因此,该方式可以降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束或发送CPE未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
方式2:所述第一终端设备在确定所述第n个起始时间时,可以不仅考虑所述第n个传输需求对应的LBT时长,还可以考虑所述第n个传输需求的在先传输需求对应的资源(即该在先传输需求对应的资源所占用的时域资源)。
因此,在方式2中,所述第一终端设备可以通过以下步骤执行步骤A1:
所述第一终端设备根据所述第n个传输需求对应的LBT时长,以及所述第n个传输需求的在先传输需求对应的资源,确定所述第n个起始时间;其中,所述第n个传输需求的在先传输需求为在所述N个传输需求中资源位置位于所述n个传输需求之前的传输需求。应注意,只有在n大于1时,所述第n个传输需求才会有在先传输需求。而第1个传输需求没有在先传输需求,因此第1个传输需求的资源选择范围的起始时间可以通过上述方式1来确定。
示例性的,在本申请实施例中,以传输需求对应的资源在时域上的先后位置对所述N个传输需求进行排序。因此,所述第n个传输需求的在先传输需求为第1个传输需求至第n-1个传输需求。
基于方式2,所述第n个起始时间符合t0+Tn。其中,Tn符合以下公式:
或者
或者
或者
其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长;ti,R为所述第n个传输需求的第i个在先传输需求对应的资源的时长,为所述第n个传输需求的n-1个在先传输需求对应的资源的时长之和;Si,R为所述第n个传输需求的第i个在先传输需求对应的资源所占用的时间单元的个数,为所述第n个传输需求的n-1个在先传输需求对应的资源所占用的时间单元的个数之和。
关于t0、时间单元、ts、Toffset,以及tcpe的描述,可以参考以上方式1中的描述,此处不再赘述。
若所述第一终端设备在所述第n个传输需求的在先传输需求对应的资源上传输数据,那么由于信道被占用,根据上述第四点技术说明中对LBT机制的描述可知,所述第一终端设备在针对所述第n个传输需求进行LBT过程中,所述第n个传输需求的实际LBT时长可能会延长。并且相对于在S301中确定所述第n个传输需求对应的LBT时长,所述第n个传输需求的实际LBT时长可能会延长第一延迟时长。所述第一延迟时长与所述n-1个在先传输需求对应的资源占用的总时长相关。
通过方式2,可以保证所述第一终端设备确定的所述第n个起始时间的位置 这样,在t0与所述第n个起始时间(即t0+Tn)之间,所述第一终端设备可以进行LBT。由于根据方式2,在所述第n个起始时间之前为所述第一终端设备进行LBT预留了足够的时间,因此,该方式可以降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
进一步的,在方式2中,所述第一终端设备不仅考虑到第n个传输需求对应的LBT时长,还考虑到所述第一终端设备发送CPE的时长tcpe,从而可以保证所述第一终端设备确定的所述第n个起始时间的位置这样,在t0与所述第n个起始时间(即t0+Tn)之间,所述第一终端设备可以进行LBT,以及发送CPE。由于根据方式2,在所述第n个起始时间之前为所述第一终端设备进行LBT和发送CPE预留了足够的时间,因此,该方式可以降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束或发送CPE未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
相对于方式1,方式2还考虑到了所述第n个传输需求的在先传输需求对应的资源所占用的时域资源,因此,相对于方式1,通过方式2计算得到的所述第n个起始时间中增加了第一延迟时长,该第一延迟时长大于或等于所述第n个传输需求的在先传输需求对应的资源所占用的时长总和。基于此,相对于方式1,通过方式2可以进一步降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束。
方式3:所述第一终端设备在确定所述第n个起始时间时,可以不仅考虑所述第n个传输需求对应的LBT时长,还可以考虑所述第n个传输需求的在先传输需求对应的资源(即该在先传输需求对应的资源所占用的时域资源),以及所述第n个传输需求的在先应答响应对应的资源(即该在先应答响应对应的资源所占用的时域资源)。
因此,在方式3中,所述第一终端设备可以通过以下步骤执行步骤A1:
所述第一终端设备根据所述第n个传输需求对应的LBT时长,所述第n个传输需求的在先传输需求对应的资源,以及所述第n个传输需求的在先应答响应对应的资源,确定所述第n个起始时间。
其中,所述第n个传输需求的在先传输需求为在所述N个传输需求中资源位置位于所述n个传输需求之前的传输需求;所述第n个传输需求的在先应答响应包括在所述第n个传输需求对应的资源之前所述第一终端设备或其它终端设备应接收的应答响应。应注意,只有在n大于1时,所述第n个传输需求 才会有在先传输需求。而第1个传输需求没有在先传输需求,可以认为第1个传输需求的在先传输需求占用的时域资源为0。
还应注意,所述第n个传输需求的在先应答响应中其他终端设备应接收的应答响应可以通过如下步骤确定:所述第一终端设备检测到其他终端设备的传输后,预期该其他终端设备接收这些传输的应答响应所在的时间位置位于在t0之后,且在所述第n个传输需求对应的资源之前,那么,所述第一终端设备可以确定这些传输的应答响应为所述第n个传输需求的在先应答响应。
示例性的,在本申请实施例中,以传输需求对应的资源在时域上的先后位置对所述N个传输需求进行排序。因此,所述第n个传输需求的在先传输需求为第1个传输需求至第n-1个传输需求。
在第一种设计中,所述第n个传输需求的在先应答响应包括所述第n个传输需求的在先传输需求的应答响应。在本设计中,所述第n个传输需求的在先应答响应包括第1个传输需求至第n-1个传输需求的应答响应。
在第二种设计中,所述第n个传输需求的在先应答响应包括所述第n个传输需求的在先传输需求的应答响应,以及至少一个第一传输的应答响应;其中,所述第一传输为所述第一终端设备监听到的未接收到应答响应的传输,即后续可能会接收到应答响应的传输。在本设计中,所述第n个传输需求的在先应答响应包括第1个传输需求至第n-1个传输需求的应答响应,以及第一传输的应答响应。总之,所述第n个传输需求的在先应答响应可以包括所述第一终端设备预期的时域位置在t0之后,在第n个传输需求对应的资源之前的应答响应。
可选的,所述第一传输可以为所述第一终端设备或其他终端设备在t0前已发生、但未接收到应答响应的传输。
可选的,所述第一终端设备可以在t0前监听信道;若未监听到第一传输,那么所述第一终端设备可以确定所述第n个传输需求的在先应答响应包括所述第n个传输需求的在先传输需求的应答响应(即上述第一种设计);若监听到至少一个第一传输,那么所述终端设备可以确定所述第n个传输需求的在先应答响应包括所述第n个传输需求的在先传输需求的应答响应,以及至少一个第一传输的应答响应(即上述第二种设计)。
基于方式3,所述第n个起始时间符合t0+Tn。其中,Tn符合以下公式:
或者
或者
或者
其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长;ti,R为所述第n个传输需求的第i个在先传输需求对应的资源的时长,为所述第n个传输需求的n-1个在先传输需求对应的资源的时长之和;tn,HARQ为所述第n个传输需求的在先应答响应对应的资源的总时长;Si,R为所述第n个传输需求的第i个在先传输需求对应的资源所占用的时间单元的个数,为所述第n个传输需求的n-1个在先传输需求对应的资源所占用的时间单元的个数之和;Sn,HARQ为所述第n个传输需求的在先应答响应对应的资源所占用的时间单元的总个数。
关于t0、时间单元、ts、Toffset,以及tcpe的描述,可以参考以上方式1中的描述,此处不再赘述。
当所述第一终端设备在所述第n个传输需求的在先传输需求对应的资源上传输数据,或者一些终端设备(即所述至少一个第一传输的接收端)在所述第n个传输需求的在先应答响应对应的资源上传输应答响应,那么由于信道被占用,根据上述第四点技术说明中对LBT机制的描述可知,所述第一终端设备在针对所述第n个传输需求进行LBT过程中,所述第n个传输需求的实际LBT时长可能会延长。并且相对于在S301中确定所述第n个传输需求对应的LBT时长,所述第n个传输需求的实际LBT时长可能会延长第二延迟时长。所述第二延迟时长与以下内容相关:所述n-1个在先传输需求对应的资源占用的总时长与所述第n个传输需求的在先应答响应对应的资源占用的总时长之和。
通过方式3,可以保证所述第一终端设备确定的所述第n个起始时间的位置 这样,在t0与所述第n个起始时间(即t0+Tn)之间,所述第一终端设备可以进行LBT。由于根据方式3,在所述第n个起始时间之前为所述第一终端设备进行LBT预留了足够的时间,因此,该方式可以降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
进一步的,在方式3中,所述第一终端设备不仅考虑到第n个传输需求对应的LBT时长,还考虑到所述第一终端设备发送CPE的时长tcpe,从而可以保证所述第一终端设备确定的所述第n个起始时间的位置这样,在t0与所述第n个起始时间(即t0+Tn)之间,所述第一终端设备可以进行LBT,以及发送CPE。由于方式3,在所述第n个起始时间之前为所述第一终端设备进行LBT和发送CPE预留了足够的时间,因此,该方式可以降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束或发送CPE未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
相对于方式2,方式3还考虑到了所述第n个传输需求的在先应答响应对应的资源所占用的时域资源,因此,相对于方式2,通过方式3计算得到的所述第n个起始时间中增加了第二延迟时长,该第二延迟时长大于或等于所述第n个传输需求的在先应答响应对应的资源所占用的时长总和。基于此,相对于方式2,通过方式3可以进一步降低出现以下情况的概率:到达所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束。
可选的,在本申请实施例中,所述第一终端设备可以但不限于通过以下方式,执行步骤A2。下面继续以第n个传输需求为例进行说明。
方式一:所述第一终端设备根据所述第n个起始时间(即所述第n个传输需求的资源选择范围的起始时间),确定所述第n个传输需求的资源选择范围;然后,所述第一终端设备在所述第n个传输需求的资源选择范围内,确定所述第n个传输需求对应的资源。
可选的,所述第n个传输需求的资源选择范围的起始时间已确定,所述n个传输需求的资源选择范围的结束时间由所述第一终端设备的数据传输时延PDB确定。例如,该资源选择范围的结束时间为t0+TPDB。其中,t0为所述第一终端设备出现传输需求的时间,TPDB为根据所述第一终端设备的数据传输时延确定的,例如TPDB可以小于或等于所述第一终端设备的数据传输时延。
方式二:所述第一终端设备根据所述第n个起始时间(即所述第n个传输需求的资源选择范围的起始时间),确定所述第n个传输需求的资源选择范围的起始时间单元;所述第一终端设备还可以确定候选资源集合;最后,所述第一终端设备根据所述第n个传输需求的资源选择范围起始时间单元,在所述资源候选集合中,确定所述第n个传输需求对应的资源。
可选的,所述第n个传输需求对应的资源在所述第n个传输需求的资源选择范围起始时间单元之后。
可选的,所述候选资源集合中可以包括所述N个传输需求对应的候选资源。其中,所述候选资源集合可以为所述第一终端设备选择的,具体过程可以参考第一点技术说明中的描述,此处不再赘述。示例性的,所述第一终端设备可以根据在感知窗口中的感知结果,在[t0+Toffset,t0+TPDB]中确定的所述候选资源集合。
可选的,所述候选资源集合中的任意两个候选资源之间的时间间隔大于或等于所述最小时间间隔。
方式三:所述第一终端设备根据所述第n个起始时间(即所述第n个传输需求的资源选择范围的起始时间),确定所述第n个传输需求的候选资源集合;然后,所述第一终端设备在所述第n个传输需求的候选资源集合中,确定所述第n个传输需求对应的资源。
可选的,在所述候选资源集合中,第一候选资源(即时域位置最前的候选资源)的起始时间等于或大于所述第n个起始时间。可选的,第二候选资源(即时域位置最后的候选资源)的结束时间小于t0+TPDB
还应说明的是,上述方式一至方式三是为了描述清楚的目的,以第n个传输需求为例进行说明的。然而,在实际场景中,上述方式一至方式三中的每个步骤均为所述第一终端设备针对所述N个传输需求并行执行的,且针对所述N个传输需求执行完前一步骤后,再并行执行下面的步骤。
由于资源配置过程可能涉及到第一终端设备的PHY层和MAC层,因此下面以PHY层和MAC层的角度来示例性的说明上述步骤A1-A2的资源配置过程。
其中,在A1中,所述PHY层根据所述第n个传输需求对应的LBT时长,确定所述第n个起始时间。
实施方式一:所述第一终端设备通过上述方式一,实现步骤A2的情况。所述第一终端设备的PHY层和MAC层执行以下步骤:
A2-1-1:所述PHY层向所述MAC层发送所述第n个起始时间。
A2-1-2:所述MAC层根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围。
A2-1-3:所述MAC层在所述第n个传输需求的资源选择范围内,确定所述第n个传输需求对应的资源。
其中,所述资源选择范围可以参考以上对方式一的描述,此处不再赘述。
实施方式二:所述第一终端设备通过上述方式一,实现步骤A2的情况。所述第一终端设备的PHY层和MAC层执行以下步骤:
A2-2-1:所述PHY层根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围。
A2-2-2:所述PHY层向所述MAC层发送所述第n个传输需求的资源选择范围。
A2-2-3:所述MAC层在所述第n个传输需求的资源选择范围内,确定所述第n个传输需求对应的资源。
其中,在实施方式一和实施方式二中的所述资源选择范围可以参考以上对方式一中对资源选择范围的描述,此处不再赘述。
实施方式三:所述第一终端设备通过上述方式二,实现步骤A2的情况。所述第一终端设备的PHY层和MAC层执行以下步骤:
A2-3-1:所述PHY层根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围的起始时间单元。
A2-3-2:所述PHY层向所述MAC层发送所述第n个传输需求的资源选择范围的起始时间单元以及候选资源集合。
应注意,该候选资源集合为一个集合,适用于所述N个传输需求。即MAC层可以在该候选资源中选择出N个传输需求中每个传输需求对应的资源。
A2-3-3:所述MAC层根据所述第n个传输需求的资源选择范围起始时间单元,在所述资源候选集合中,确定所述第n个传输需求对应的资源。
在本实施例三中的所述候选资源集合可以参考以上方式二中对候选资源集合的描述,此处不再赘述。
实施方式四:所述第一终端设备通过上述方式三,实现步骤A2的情况。所述第一终端设备的PHY层和MAC层执行以下步骤:
A2-4-1:所述PHY层根据所述第n个起始时间,确定所述第n个传输需求的候选资源集合。
A2-4-2:所述PHY层向所述MAC层发送所述第n个传输需求的候选资源集合。
A2-4-3:所述MAC层在所述第n个传输需求的候选资源集合中,确定所述第n个传输需求对应的资源。
在本实施例四中的所述候选资源集合可以参考以上方式三中对候选资源集合的描述,此处不再赘述。
需要说明的是,上述实施方式一至实施方式四是为了描述清楚的目的,以第n个传输需求为例进行说明的。然而,在实际场景中,上述实施方式一至实施方式四中的每个步骤均为所述第一终端设备针对所述N个传输需求并行执行的,且针对所述N个传输需求执行完前一步骤后,再并行执行下面的步骤。
应注意,在上述方式一至方式三中,所述第一终端设备在并行确定所述N个传输需求中每个传输需求对应的资源时,需要确保确定的任意两个资源之间的时间间隔大于或等于所述最小时间间隔。同样的,在上述实施方式一至实施方式四中,所述第一终端设备的MAC层在并行确定所述N个传输需求中每个传输需求对应的资源时,也需要确保确定的任意两个资源之间的时间间隔大于或等于所述最小时间间隔。
在一种实施方式中,所述第一终端设备/MAC层可以按照时域位置从后到前的顺序,先确定第N个传输需求对应的资源;然后在满足最小时间间隔的要求下确定第N-1个传输需求对应的资源;直至确定第1个传输需求对应的资源后结束。
在另一种实施方式中,所述第一终端设备/MAC层可以按照资源选择范围从小到大的顺序,先确定资源选择范围最小的传输需求对应的资源;然后在满足最小时间间隔的要求下确定资源选择范围次小的 传输需求对应的资源;直至确定资源选择范围最大的传输需求对应的资源后结束。
类似的,在又一种实施方式中,所述第一终端设备/MAC层可以按照待选资源集合的时域范围从小到大的顺序,先在时域范围最小的待选资源集合中选择出一个资源;然后在满足最小时间间隔的要求下,在时域范围次小的待选资源集合中选择出下一个资源;直至在时域范围最大的待选资源集合中选择出一个资源后结束。
需要说明的是,所述第一终端设备可以同时对所述N个传输需求开始LBT。可选的,所述第一终端设备可以但不限于通过以下方式,开始进行LBT:
方式a:当所述第一终端设备出现传输需求时(即在t0时),开始进行LBT。
方式b:在确定所述N个资源过程中,开始进行LBT。
示例性的,在所述第一终端设备通过上述方式一确定所述N个资源过程中,所述第一终端设备可以在确定出所述N个传输需求的资源选择范围后,开始进行LBT。
示例性的,在所述第一终端设备通过上述方式二确定所述N个资源过程中,所述第一终端设备可以在确定出所述N个传输需求的资源选择范围的起始时间单元,或者在确定出候选资源集合后,开始进行LBT。
示例性的,在所述第一终端设备通过上述方式三确定所述N个资源过程中,所述第一终端设备可以在确定出所述N个传输需求的候选资源集合后,开始进行LBT。
示例性的,在所述第一终端设备通过上述实施方式一确定所述N个资源过程中,当所述PHY层向所述MAC层发送所述N个传输需求中每个传输需求的资源选择范围的起始时间时,开始进行LBT。
示例性的,在所述第一终端设备通过上述实施方式二确定所述N个资源过程中,当所述PHY层向所述MAC层发送所述N个传输需求中每个传输需求的资源选择范围时,开始进行LBT。
示例性的,在所述第一终端设备通过上述实施方式三确定所述N个资源过程中,当所述PHY层向所述MAC层发送所述N个传输需求中每个传输需求的资源选择范围的起始时间单元,以及候选资源集合时,开始进行LBT。
示例性的,在所述第一终端设备通过上述实施方式四确定所述N个资源过程中,当所述PHY层向所述MAC层发送所述N个传输需求中每个传输需求的候选资源集合时,开始进行LBT。
方式c:在确定出所述N个资源后,开始进行LBT。
示例性的,在所述第一终端设备通过上述实施例一至实施例四,确定所述N个资源的情况下,当所述MAC层确定出所述N个资源后,当所述MAC层通知所述PHY层所述N个资源时,开始进行LBT。
如图3所示,当所述第一终端设备通过上述S301-S302确定所述N个资源后,所述第一终端设备可以在所述N个资源上向第二终端设备传输数据,即分别在每个资源上传输数据,其中,第二终端设备为所述N个传输需求的接收端。在所述第一终端设备在所述N个资源上传输数据的过程中,可能会发生到达某个传输需求对应的资源上,针对该传输需求进行的LBT还未结束(即该传输需求对应的LBT时长未结束),此时,所述第一终端设备还可以为该传输需求重选资源。下面继续以第n个传输需求为例进行说明。
S1:所述第一终端设备在所述N个资源上传输数据的过程中,确定所述第n个传输需求对应的LBT时长未结束。
可选的,所述第一终端设备确定所述第n个传输需求对应的LBT时长未结束,包括以下至少一项:
在第一时间确定所述第n个传输需求对应的LBT时长未结束;或者
确定第一时长小于所述第n个传输需求对应的LBT剩余时长;
其中,所述第一时间位于所述第n个传输需求对应的资源的起始时间之前,或所述第一时间为所述第n个传输需求对应的资源的起始时间;所述第一时长为所述第一时间与所述第n个传输需求对应的资源的起始时间之间的时长。示例性的,当所述第一时间为所述第n个传输需求对应的资源的起始时间时,所述第一时长的取值为0。
示例性的,所述第一终端设备在所述第一时间(后续记为t1),确定所述第n个传输需求对应的剩余随机数Rn,left大于0,即可确定所述第n个传输需求对应的LBT时长未结束。
又示例性的,所述第一终端设备在t1确定所述第n个传输需求对应的剩余随机数Rn,left等于0,但由 于所述第n个传输需求对应的LBT时长还包括defer时长,此时也可以确定所述第n个传输需求对应的LBT时长未结束;且此时所述第n个传输需求对应的LBT剩余时长可以等于defer时长。
S2:所述第一终端设备根据所述第n个传输需求对应的LBT剩余时长,重新确定第n个起始时间。
可选的,所述第一终端设备可以根据剩余随机数Rn,left确定所述第n个传输需求对应的LBT剩余时长tn,LBT,left,即tn,LBT,left=tsensing*Rn,left,或者tn,LBT,left=tsensing*Rn,left+defer时长。
可选的,所述第一终端设备可以沿用上述步骤A1中的思想,根据所述第n个传输需求对应的LBT剩余时长,重新确定第n个起始时间。下面根据所述第一终端设备在步骤A1中确定第n个起始时间的方式,对重新确定第n个起始时间的方式进行说明。
方式1-1:所述第一终端设备采用方式1执行步骤A1。在该情况下,所述第一终端设备在重新确定第n个起始时间时,可以考虑所述第n个传输需求对应的LBT剩余时长,不考虑其他因素。
基于方式1-1,重新确定的所述第n个起始时间符合t0+Tn′。其中,Tn′符合以下公式:
或者
其中,t1为确定所述第n个传输需求对应的LBT时长未结束的时间,即所述第一时间。公式中的其他参数可以参考上述方式1中的描述,此处不再赘述。
方式2-1:所述第一终端设备采用方式2执行步骤A1。在该情况下,所述第一终端设备在重新确定所述第n个起始时间时,可以不仅考虑所述第n个传输需求对应的LBT剩余时长,还可以考虑所述第n个传输需求的目标在先传输需求对应的资源(即该目标在先传输需求对应的资源所占用的时域资源)。其中,所述目标在先传输需求为在所述N个传输需求中资源位置位于所述第n个传输需求之前,且在t0至t1之间所述第一终端设备未在对应的资源上传输数据的传输需求。
下面以所述第n个传输需求的目标在先传输需求的数量为H个,即所述N个传输需求中,从第n-H个传输需求到第n-1个传输需求。H为正整数。
基于方式2-1,重新确定的所述第n个起始时间符合t0+Tn′。其中,Tn′符合以下公式:
或者
或者
或者
其中,t1为确定所述第n个传输需求对应的LBT时长未结束的时间,即所述第一时间。ti,R为第i个传输需求对应的资源的时长,为所述第n个传输需求的H个目标在先传输需求对应的资源的时长之和;Si,R为第i个传输需求对应的资源所占用的时间单元的个数,为所述第n个传输需求的H个目标在先传输需求对应的资源所占用的时间单元的个数之和。公式中的其他参数可以参考上述方式2中的描述,此处不再赘述。
方式3-1:所述第一终端设备采用方式3执行步骤A1.在该情况下,所述第一终端设备在重新确定所述第n个起始时间时,可以不仅考虑所述第n个传输需求对应的LBT剩余时长,还可以考虑所述第n个传输需求的目标在先传输需求对应的资源(即该目标在先传输需求对应的资源所占用的时域资源),以及所述第n个传输需求的目标在先应答响应对应的资源(即该在先应答响应对应的资源所占用的时域资源)。其中,所述目标在先传输需求为在所述N个传输需求中资源位置位于所述第n个传输需求之前,且在t0至t1之间所述第一终端设备未在对应的资源上传输数据的传输需求。
所述第n个传输需求的目标在先应答响应包括在t1之后、所述第n个传输需求对应的资源之前,所述第一终端设备或其它终端设备应接收的应答响应。可选的,所述目标在先应答响应包括所述第n个传输需求的目标在先传输需求的应答响应,还可以包括至少一个第二传输的应答响应。其中,所述第二传输为所述第一终端设备在t1之前监听到的未接收到应答响应的传输。
同上述方式3中“所述第n个传输需求的在先应答响应中其他终端设备应接收的应答响应”类似的, 本方式3-1中的其他终端设备应接收的应答响应也是所述第一终端设备检测到其他终端设备的传输后,预期该其他终端设备接收这些传输的应答响应所在的时间位置位于在t0之后,且在所述第n个传输需求对应的资源之前确定的。
下面以所述第n个传输需求的目标在先传输需求的数量为H个,即所述N个传输需求中,从第n-H个传输需求到第n-1个传输需求。H为正整数。
基于方式3-1,重新确定的所述第n个起始时间符合t0+Tn′。其中,Tn′符合以下公式:
或者
或者
或者
其中,t1为确定所述第n个传输需求对应的LBT时长未结束的时间,即所述第一时间。ti,R为第i个传输需求对应的资源的时长,为所述第n个传输需求的H个目标在先传输需求对应的资源的时长之和;Si,R为第i个传输需求对应的资源所占用的时间单元的个数,为所述第n个传输需求的H个目标在先传输需求对应的资源所占用的时间单元的个数之和;t′n,HARQ为所述第n个传输需求的目标在先应答响应对应的资源的总时长;S′n,HARQ为所述第n个传输需求的目标在先应答响应对应的资源所占用的时间单元的总个数。
公式中的其他参数可以参考上述方式2中的描述,此处不再赘述。
通过以上方式,可以在重新确定的所述第n个起始时间之前为所述第一终端设备对所述第n个传输需求对应的LBT剩余时长预留足够的时间,可以降低出现以下情况下的概率:到达重新确定的所述第n个传输需求对应的资源时所述第n个传输需求的LBT时长还未结束,从而可以提高所述第一终端设备能够使用第n个传输需求对应的资源传输数据的概率。
S3:所述第一终端设备根据重新确定的所述第n个起始时间,重新确定所述第n个传输需求对应的资源。
所述第一终端设备执行S3的实现方式可以参考以上对步骤A2的具体描述,此处不再赘述。
通过以上S1-S3,可以重新确定所述第n个传输需求对应的资源。然而,当所述N个传输需求中还存在所述第n个传输需求的在后传输需求时,由于所述第n个传输需求对应的资源发生变化,可能导致任意两个资源之间的时间间隔不满足最小时间间隔的条件,或者出现到达该在后传输需求的起始时间该在后传输需求对应的LBT时长未结束的情况。基于此,本申请实施例还通过了以下两种实施方式,重新确定该在后传输需求对应的资源。
第一种实施方式:所述第一终端设备在通过S1确定所述第n个传输需求对应的LBT时长未结束后,直接通过以下步骤,重新确定所述第n个传输需求的在后传输需求对应的资源。下面以所述第n个传输需求的在后传输需求为第k个传输需求为例进行说明。
F1:所述第一终端设备根据所述第k个传输需求对应的LBT剩余时长,重新确定第k个起始时间;或者根据所述第n个传输需求对应的LBT剩余时长,以及所述最小时间间隔,重新确定第k个起始时间。其中,k为正整数,且n<k≤N;第k个起始时间为所述第k个传输需求的资源选择范围的起始时间;
在一种实现方式中,所述第一终端设备可以根据所述第k个传输需求对应的LBT剩余时长,重新确定第k个起始时间。具体过程可以参考以上S2中的方式1-1、方式2-1,以及方式3-1中的描述,此处不再赘述。
在另一种实现方式中,所述第一终端设备可以根据所述第n个传输需求对应的LBT剩余时长,以及所述最小时间间隔,重新确定第k个起始时间。具体过程也可以参考以上S2中的方式1-1、方式2-1,以及方式3-1中的描述,此处不再赘述。下面进行具体说明。
方式1-2:重新确定的所述第n个起始时间符合t0+Tk′。其中,Tk′符合以下公式:
或者
其中,tmingap为最小时间间隔的时长。
方式2-2:重新确定的所述第k个起始时间符合t0+Tk′。其中,Tn′符合以下公式:
或者
或者
或者
其中,所述第k个传输需求的目标在先传输需求的数量为J个,即所述N个传输需求中,从第k-J个传输需求到第k-1个传输需求。所述第k个传输需求的J个目标在先传输需求对应的资源的时长之和;为所述第k个传输需求的J个目标在先传输需求对应的资源所占用的时间单元的个数之和。
方式3-2:重新确定的所述第k个起始时间符合t0+Tk′。其中,Tn′符合以下公式:
或者
或者
或者
其中,所述第k个传输需求的目标在先传输需求的数量为J个,即所述N个传输需求中,从第k-J个传输需求到第k-1个传输需求。所述第k个传输需求的J个目标在先传输需求对应的资源的时长之和;为所述第k个传输需求的J个目标在先传输需求对应的资源所占用的时间单元的个数之和;t′k,HARQ为所述第k个传输需求的目标在先应答响应对应的资源的总时长;S′k,HARQ为所述第k个传输需求的目标在先应答响应对应的资源所占用的时间单元的总个数。
通过以上方式,可以在重新确定的所述第k个起始时间之前为所述第一终端设备对所述第k个传输需求对应的LBT剩余时长预留足够的时间,可以降低出现以下情况下的概率:到达重新确定的所述第k个传输需求对应的资源时所述第k个传输需求的LBT时长还未结束,从而可以提高所述第一终端设备能够使用第k个传输需求对应的资源传输数据的概率。另外,该方式还可以考虑到重新确定的任意两个资源之间的时间间隔大于或等于所述最小时间间隔,为任意两个资源之间的时间间隔预留足够的时间。
F2:所述第一终端设备根据重新确定的所述第k个起始时间,重新确定所述第k个传输需求对应的资源;其中,在所述第n个传输需求和所述第n个传输需求的在后传输需求中,重新确定的任意两个资源之间的时间间隔大于或等于所述最小时间间隔。
所述第一终端设备执行F2的实现方式可以参考以上对步骤A2的具体描述,此处不再赘述。
第二种实施方式:所述第一终端设备在通过S1确定所述第n个传输需求对应的LBT时长未结束后,还可以通过以下至少一项判断条件,判断是否需要重新确定所述第n个传输需求的在后传输需求对应的资源。下面继续以所述第n个传输需求的在后传输需求为第k个传输需求为例进行说明。
条件一:确定第二时长小于所述第k个传输需求对应的LBT剩余时长;
条件二:确定从第一时间开始经历所述第二时长后的第二时间晚于所述第k个传输需求对应的资源的起始时间;
其中,所述第二时长为所述第n个传输需求对应的LBT剩余时长与(k-n)个最小时间间隔之和;所述第一时间为确定所述第n个传输需求对应的LBT时长未结束的时间(即t1)。
可选的,上述判断条件还可以包含条件三:重新确定的第k-1个传输需求对应的资源与第k个传输需求对应的资源之间的时间间隔小于最小时间间隔。当然,基于任意两个资源之间的时间间隔小于最小时间间隔,条件三还可以衍生出以下条件:重新确定的第k-j个传输需求对应的资源与第k个传输需求 对应的资源之间的时间间隔小于j个最小时间间隔的总时长。
可选的,当上述至少一项条件满足时,可能会出现到达所述第k个传输需求的起始时间时所述第k个传输需求对应的LBT时长未结束的情况,这就会导致所述第k个传输需求对应的资源不可用。为了提高所述第一终端设备能够使用第k个传输需求对应的资源传输数据的概率,所述第一终端设备可以为重新确定所述第k个传输需求对应的资源,具体过程可以参考以上步骤F1-F2,此处不再赘述。
综上,本申请实施例提供了一种资源配置方法,通过该方法,第一终端设备可以根据N个传输需求对应的LBT时长,预约N个资源。由于考虑到LBT时长,可以减少出现到达某个传输需求对应的资源时该传输需求的LBT时长还未结束的情况,从而可以提高第一终端设备能够使用该传输需求对应的资源传输数据的概率,从而保证终端设备的通信效率。
基于图3所示的实施例提供的资源配置方法,本申请实施例还提供了以下实施一至实施例四。下面分别对每个实施例进行说明。
实施例一:
第一终端设备根据N个传输需求对应的LBT时长,确定N个资源,参阅图4所示。其中,所述N个资源与所述N个传输需求一一对应,且当N为大于1的整数时,所述N个资源间要满足最小时间间隔的要求。在图4中,LBT时长1、LBT时长2、LBT时长3,分别为第1个传输需求对应的LBT时长、第2个传输需求对应的LBT时长,第3个传输需求对应的LBT时长;资源1,资源2,资源3,分别为第1个传输需求对应的资源,第2个传输需求对应的资源,第3个传输需求对应的资源。图4中的资源选择范围(原)为传统的不考虑LBT时长进行资源配置方案中的资源选择范围,具体可以参考上述第一点技术说明,或者参考图1所示的资源选择范围。
可选的,最小时间间隔可以为网络设备通过RRC信令配置的,或者通信标准规定的,本申请实施例对此不作限定。
可选的,第一终端设备可以在出现传输需求时(即t0),开始确定该N个资源。
可选的,第一终端设备可以通过以下方式,确定每个传输需求对应的LBT时长:
第一终端设备可以分别针对每个传输需求,生成对应的随机数;然后第一终端设备可以根据每个传输需求对应的随机数,分别确定每个传输需求对应的LBT时长。以第n个传输需求为例,第一终端设备生成的第n个传输需求对应的随机数记为Rn,那么第一终端设备可以根据第n个传输需求对应的随机数Rn,确定第n个传输需求对应的LBT时长。例如所述第n个传输需求对应的LBT时长等于tsensing*Rn,或者tsensing*Rn+defer时长。其中,n为正整数,且1≤n≤N,tsensing为感知时隙的时长。
第一终端设备可以分别根据每个传输需求对应的LBT时长,确定该传输需求对应的资源,参阅图5所示。继续以第n个传输需求为例。第一终端设备可以根据第n个传输需求对应的LBT时长,确定第n个传输需求的资源选择范围的起始时间;然后根据第n个传输需求的资源选择范围的起始时间,确定所述第n个传输需求对应的资源。在图5中,起始时间1、起始时间2、起始时间3,分别为第1个传输需求的资源选择范围的起始时间、第2个传输需求的资源选择范围的起始时间;资源选择范围1、资源选择范围2、资源选择范围3,分别为第1个传输需求的资源选择范围、第2个传输需求的资源选择范围、第3个传输需求的资源选择范围。
可选的,第一终端设备可以通过图3所示的实施例中步骤A1的方式1,确定第n个传输需求的资源选择范围的起始时间,具体过程可以参考以上对该方式1的描述,此处不再赘述。因此,在图5中的T1、T2、T3分别符合该方式1中的关于Tn的公式。
示例性的,假设第一终端设备在t0时出现3个传输需求。那么第一终端设备针对每个传输需求生成对应的随机数。根据该随机数,以及感知时隙的时长,确定3个传输需求对应的LBT时长分别为1ms,4ms,7ms。那么,第一终端设备可以根据LBT时长从小到大或从大到小的顺序,分别为每个传输需求预约资源。
第一终端设备分别根据每个传输需求的资源选择范围的起始时间,确定每个传输需求对应的资源,具体过程可以参考图3所示的实施例的步骤A2中的方式一至方式三中任一方式,或者通过步骤A2中的实施方式一至实施方式四中任一实施方式实现。3个传输需求对应的资源如图4所示。在图4中,LBT时长1、LBT时长2、LBT时长3,分别为第1个传输需求对应的LBT时长、第2个传输需求对应的LBT时长,第3个传输需求对应的LBT时长;起始时间1、起始时间2、起始时间3,分别为第1个传 输需求的资源选择范围的起始时间、第2个传输需求的资源选择范围的起始时间,第3个传输需求的资源选择范围的起始时间;资源1,资源2,资源3,分别为第1个传输需求对应的资源,第2个传输需求对应的资源,第3个传输需求对应的资源。
下面按照第一终端设备的PHY层和MAC层分步骤说明。
PHY层分别根据3个传输需求中每个传输需求对应的LBT时长,确定每个传输需求的资源选择范围的起始时间。
在第一种实现方式中,PHY层向MAC层发送该3个传输需求中每个传输需求的资源选择范围的起始时间;MAC层分别根据该3个传输需求中每个传输需求的资源选择范围的起始时间,确定每个传输需求的资源选择范围;MAC层分别在每个传输需求的资源选择范围内,确定每个传输需求对应的资源。
在第二种实现方式中,PHY层分别根据该3个传输需求中每个传输需求的资源选择范围的起始时间,确定每个传输需求的资源选择范围;PHY层向MAC层发送每个传输需求的资源选择范围;MAC层分别在每个传输需求的资源选择范围内,确定每个传输需求对应的资源。
可选的,第一种实现方式和第二种实现方式中,MAC层可以按照时域位置从后到前的顺序,先确定第3个传输需求对应的资源;然后在满足最小时间间隔的要求下确定第2个传输需求对应的资源;最后,在满足最小时间间隔的要求下确定第1个传输需求对应的资源。
可选的,MAC层可以按照资源选择范围从小到大的顺序,先确定资源选择范围最小的传输需求对应的资源;然后在满足最小时间间隔的要求下确定资源选择范围次小的传输需求对应的资源;直至确定资源选择范围最大的传输需求对应的资源后结束。
在第三种实现方式中,PHY层分别根据该3个传输需求中每个传输需求的资源选择范围的起始时间,确定每个传输需求的资源选择范围的起始时间单元。PHY层向MAC层发送每个传输需求的资源选择范围的起始时间单元以及候选资源集合(记为SA)。MAC层分别根据每个传输需求的资源选择范围起始时间单元,在资源候选集合SA中,确定每个传输需求对应的资源。
可选的,MAC层可以但不限于通过以下方式在SA中,确定每个传输需求对应的资源。
方式a:MAC层在SA中选择一种资源组合(3个资源),判断如果该资源组合不满足要求,则重新选择,直到选出满足要求的组合。其中,该要求为:第1个传输需求对应的资源(记为资源1)不早于第1个传输需求的资源选择范围的起始时间单元;第2个传输需求对应的资源(记为资源2)不早于第2个传输需求的资源选择范围的起始时间单元;第3个传输需求对应的资源(记为资源3)不早于第3个传输需求的资源选择范围的起始时间单元;且资源1和资源2之间保证最小时间间隔,且资源2和资源3之间保证最小时间间隔。上述3个传输需求的资源是按照时域位置的先后顺序排序的,即资源1早于资源2,资源2早于资源3。
方式b:MAC层按照时域位置从后到前的顺序依次选择3个资源,或者从时域范围最小的资源开始选择。如图6所示,MAC层可以在SA中选择不早于第3个传输需求的资源选择范围的起始时间单元的资源3;选出资源3之后,在满足最小时间间隔要求情况下,在SA中选择不早于第2个传输需求的资源选择范围的起始时间单元的资源2;最后,在满足最小时间间隔要求情况下,在SA中选择不早于第1个传输需求的资源选择范围的起始时间单元的资源1。
换句话说,MAC层根据确定的资源3的时域位置减去最小时间间隔,得到资源2的选择范围,该选择范围起始时间为第2个传输需求的资源选择范围的起始时间单元,结束时间为资源3的时域位置减去最小时间间隔的时域位置;并在该选择范围内在SA中选出资源2;然后继续根据上述方式得到资源1的选择范围内,并在该选择范围内选出资源1。
在第四种实现方式中,PHY层分别根据该3个传输需求中每个传输需求的资源选择范围的起始时间,确定每个传输需求的候选资源集合。其中,第1个传输需求的候选资源集合记为SA1,第2个传输需求的候选资源集合记为SA2,第3个传输需求的候选资源集合记为SA3。PHY层向MAC层发送每个传输需求的候选资源集合{SA1、SA2、SA3,}。MAC层分别在每个传输需求的候选资源集合中,确定每个传输需求对应的资源。
在本实现方式中,MAC层可以在SA1选出资源1,在SA2选出资源2,在SA3选出资源3,且资源1和资源2之间保证最小时间间隔,且资源2和资源3之间保证最小时间间隔。
换句话说,MAC层可以在SA3中选出资源3;在满足最小时间间隔的情况下,筛选SA2中满足与 资源3间隔至少保证最小时间间隔的候选资源,并在从SA2中筛选出的候选资源中选出资源2;继续在满足最小时间间隔的情况下,筛选SA1中满足与资源2间隔至少保证最小时间间隔的候选资源,并在从SA1中筛选出的候选资源中选出资源1。
实施例二:
第一终端设备在确定N个传输需求对应的资源过程中,分别根据每个传输需求对应的LBT时长,以及该传输需求的在先传输需求对应的资源,确定该传输需求对应的资源,如图7所示。其中,任意两个资源间要满足最小时间间隔的要求。
可选的,第一终端设备可以在出现传输需求时(即t0),开始确定该N个资源。
其中,每个传输需求的资源选择范围可以根据该传输需求对应的LBT时长和该传输需求的在先传输需求占用的资源确定。该在先传输需求可以是和当前资源相同的传输块(transport block,TB),和/或其他TB的传输占用资源。示例性的,第3个传输需求的在先传输需求为第1个传输需求和第2个传输需求。
下面对实施二提供的原理进行说明:在资源1到达时,由于资源1对应的LBT时长未结束,第一终端设备因信道繁忙而未在资源1上传输;另一种可能是在资源1到达之前,资源1对应的LBT时长结束,第一终端设备在资源1上传输。在第二种可能中,由于资源1上有数据传输,因此信道繁忙,那么针对资源2的LBT的计数器因为信道被占用不会继续下降。综上,对于第一终端设备针对资源2和资源3进行LBT过程来说,资源1这部分时域资源都是信道繁忙状态,因此,终端设备在确定第2个传输需求和第3个传输需求的资源选择范围时,需要排除资源1占用的时域位置。同理,资源2占用的时域位置也会影响第3个传输需求的资源选择范围。
继续以第n个传输需求为例。基于上述原理,第一终端设备可以根据第n个传输需求对应的LBT时长,以及第n个传输需求的在先传输需求对应的资源,确定第n个传输需求的资源选择范围的起始时间;然后根据第n个传输需求的资源选择范围的起始时间,确定所述第n个传输需求对应的资源。
可选的,第一终端设备可以通过图3所示的实施例中步骤A1的方式2,确定第n个传输需求的资源选择范围的起始时间,具体过程可以参考以上对该方式2的描述,此处不再赘述。继续以3个传输需求为例,在图7中的T1、T2、T3分别符合该方式2中的关于Tn的公式。每个传输需求的资源选择范围可以如图8中所示。
另外,第一终端设备分别根据每个传输需求的资源选择范围的起始时间,确定每个传输需求对应的资源,具体过程可以参考图3所示的实施例的步骤A2中的方式一至方式三中任一方式,或者通过步骤A2中的实施方式一至实施方式四中任一实施方式实现。该过程还可以参考实施一中的描述,此处不再赘述。
实施例三:
在实施二的基础上,第一终端设备在确定N个传输需求对应的资源过程中,分别根据每个传输需求对应的LBT时长,以及该传输需求的在先传输需求对应的资源,该传输需求的在先HARQ对应的资源,确定该传输需求对应的资源,如图9所示。其中,任意两个资源间要满足最小时间间隔的要求。
可选的,第一终端设备可以在出现传输需求时(即t0),开始确定该N个资源。
其中,每个传输需求的资源选择范围可以根据该传输需求对应的LBT时长,该传输需求的在先传输需求占用的资源,以及该传输需求的在先HARQ占用的资源确定。该在先传输需求可以是和当前资源相同的传输块(transport block,TB),和/或其他TB的传输占用资源。示例性的,第3个传输需求的在先传输需求为第1个传输需求和第2个传输需求。
每个传输需求的在先HARQ包括该传输需求的在先传输需求的应答响应,还可以包括至少一个第一传输的应答响应;其中,所述第一传输为第一终端设备监听到的未接收到应答响应的传输。如图9所示,第1个传输需求的在先HARQ可以包括其他终端设备的第一传输的HARQ,第2个传输需求的在先HARQ包括第1个传输需求的HARQ,以及其他终端设备的第一传输的HARQ。因此,所述第n个传输需求的在先应答响应包括第1个传输需求至第n-1个传输需求的应答响应,以及第一传输的应答响应。
继续以第n个传输需求为例。基于上述原理,第一终端设备可以根据第n个传输需求对应的LBT时 长,第n个传输需求的在先传输需求对应的资源,以及第n个传输需求的在先HARQ对应的资源,确定第n个传输需求的资源选择范围的起始时间;然后根据第n个传输需求的资源选择范围的起始时间,确定所述第n个传输需求对应的资源。
可选的,第一终端设备可以通过图3所示的实施例中步骤A1的方式3,确定第n个传输需求的资源选择范围的起始时间,具体过程可以参考以上对该方式3的描述,此处不再赘述。继续以3个传输需求为例,在图9中的T1、T2、T3分别符合该方式3中的关于Tn的公式。每个传输需求的资源选择范围可以如图10中所示。
如图10所示,第1个传输需求(对应资源1)的资源选择范围(即图10中的资源选择范围1)排除了LBT时长1和第1传输需求的在先HARQ占用(即第一传输的HARQ)的资源带来的额外时延,资源选择范围1的起始时间为起始时间1;第2个传输需求(对应资源2)的资源选择范围(即图10中的资源选择范围2)排除了LBT时长2、资源1占用的资源和资源1的HARQ占用的资源、第一传输的HARQ占用的资源带来的额外时延,资源选择范围2的起始时间为起始时间2;第3个传输需求(对应资源3)的资源选择范围(即图10中的资源选择范围3)排除了LBT时长3、资源1占用的资源和资源1的HARQ占用的资源、资源2占用的资源和资源2的HARQ占用的资源、第一传输的HARQ占用的资源带来的额外时延,资源选择范围3的起始时间为起始时间3。
另外,第一终端设备分别根据每个传输需求的资源选择范围的起始时间,确定每个传输需求对应的资源,具体过程可以参考图3所示的实施例的步骤A2中的方式一至方式三中任一方式,或者通过步骤A2中的实施方式一至实施方式四中任一实施方式实现。该过程还可以参考实施一中的描述,此处不再赘述。
实施例四:
在第一终端设备通过以上实施例一至实施例三确定N个资源后,第一终端设备可以在该N个资源上传输需求。在第一时间(即t1)确定第n个传输需求对应的LBT时长未结束,或者确定第一时长小于第n个传输需求对应的LBT剩余时长时,触发重新确定第n个传输需求对应的资源。其中,第一时间位于第n个传输需求对应的资源的起始时间之前,或第一时间为第n个传输需求对应的资源的起始时间;第一时长为第一时间t1与第n个传输需求对应的资源的起始时间之间的时长。
如图11所示,当在第1个传输需求对应的资源1到达之前第一终端设备或其他终端设备发生第一传输的情况下,由于第一传输占用信道,可能会导致在资源1的起始时间之前,第1个传输需求对应的LBT时长未结束。在本实施例四中,第一终端设备可以根据第n个传输需求对应的LBT剩余时长,重新确定第n个传输需求对应的资源,参阅图11所示。
可选的,第一终端设备可以根据第n个传输需求对应的LBT剩余时长,重新确定第n个传输需求的资源选择范围的起始时间,进而可以根据重新确定的第n个传输需求的资源选择范围的起始时间,重新确定第n个传输需求对应的资源,参阅图12所示。
可选的,第一终端设备可以通过图3所示的实施例中步骤S2中记载的任一种方式,确定第n个传输需求的资源选择范围的起始时间,具体过程可以参考以上对步骤S2的描述,此处不再赘述。因此,在图12中的T1′符合步骤S2中的关于Tn′的公式。
另外,第一终端设备根据重新确定的第n个传输需求的资源选择范围的起始时间,重新确定第n个传输需求对应的资源,具体过程可以参考图3所示的实施例的步骤A2中的方式一至方式三中任一方式,或者通过步骤A2中的实施方式一至实施方式四中任一实施方式实现。该过程还可以参考实施一中的描述,此处不再赘述。
考虑到在终端设备确定多个资源后,其中某个资源重新确定后,可能会引发任意两个资源之间的时间间隔小于最小时间间隔的问题。因此,在一种实施方式中,当第一终端设备触发重新确定第n个传输需求对应资源后,还可以重新确定所述第n个传输需求的在后传输需求对应的资源。
参阅图13所示,可选的,当重选后的资源1与在后传输需求对应的资源2之间的时间间隔小于最小时间间隔时,第一终端设备可以触发资源2的重选。换句话说,当重选后的资源1与资源2之间的时间间隔仍满足最小时间间隔的要求时,资源2可以无需进行重选。
可选的,第一终端设备可以根据第1个传输需求对应的LBT剩余时长(记为LBT剩余时长1),以 及重选后的资源1与资源2之间的时间间隔大于或等于最小时间间隔,重新确定第1个传输需求的资源选择范围1,并在重新确定的资源选择范围1中重新确定资源1。若考虑LBT剩余时长1,重选后的资源1与资源2之间的时间间隔大于或等于最小时间间隔,使得该重新确定的资源选择范围为空,即当前时刻加LBT剩余时长1与最小时间间隔之后得到的时刻晚于资源2的起始时间,那么此时,第一终端设备需要重新选择资源1和资源2。可选的,第一终端设备可以采用LBT剩余时长1(可选的,还可以包括第2个传输需求对应的LBT剩余时长(记为LBT剩余时长2)),重新确定资源1和资源2,以保证资源1和资源2之间满足最小时间间隔的要求。
可选的,第一终端设备在触发重新确定第n个传输需求对应的资源的情况下,第一终端设备(PHY层)还可以判断是否需要重新确定第n个传输需求的在后传输需求对应的资源,该判断条件可以参考图3所示的实施例中记载的条件一和条件二,此处不再赘述。
在本实施例中,第一终端设备重新确定第n个传输需求的在后传输需求对应的资源的过程可以参考图3所示的实施例中步骤F1-F2的描述,此处不再赘述。在图14中,T1′符合步骤S2中的关于Tn′的公式,T2′符合步骤S2中的关于Tn′的公式或符合步骤F1中关于Tk′的公式。
基于图3所示的实施例提供的资源配置方法,以及上述实施一至实施例四提供的方法,本申请还提供了一种资源配置方法。
在该方法中,第一终端设备可以在出现传输需求时(即t0),通过以上实施例中提供的方法,确定N个传输需求的资源选择范围的起始时间。若每个传输需求的资源选择范围的起始时间均未超过第三时间(记为t3),那么第一终端设备可以继续根据该N个传输需求的资源选择范围的起始时间,确定该N个传输需求对应的资源。其中,第一终端设备确定N个传输需求对应的资源的过程可以参考以上实施例中的相应描述,此处不再赘述。
其中,第三时间t3为从所述第一终端设备出现传输需求的时间t0开始经历第三时长后的时间,所述第三时长的取值是根据所述第一终端设备的数据传输时延确定的,所述第三时长可以记为TPDB。因此t3=t0+TPDB。示例性的,TPDB可以等于该数据传输时延,也可以小于该数据传输时延。
每个传输需求的资源选择范围的起始时间均未超过第三时间t3,这样,当第一终端设备在确定的N个资源上传输数据时,可以保证数据的时延在第一终端设备的数据传输时延范围内。
在一种实施方式中,当在N个传输需求中,存在资源选择范围的起始时间超过第三时间t3的至少一个传输需求时,第一终端设备可以终止上述实施例中的资源配置过程,选择其他资源配置方式。
下面以N个传输需求中的第g个传输需求为例进行说明。如图15所示,当第g个传输需求的资源选择范围的起始时间超过第三时间t3,所述第一终端设备可以但不限于通过以下资源配置方式,实现数据传输。其中,g为正整数,且1≤g≤N。图15中的起始时间g为第g个传输需求的资源选择范围的起始时间。
资源配置方式一:第一终端设备可以向第二终端设备发送第一资源请求;然后,接收来自所述第二终端设备的第一资源配置信息。其中,所述第一资源配置信息用于指示所述第二终端设备为所述第一终端设备分配的资源所述第一资源请求所占用的传输资源为所述第一终端设备与所述第二终端设备预先协商的或协议约定的。
示例性的,所述第一资源请求可以携带在短控制消息(short control message)中。通过该方式,第二终端设备可以在抢占COT后,将剩余COT共享给所述第一终端设备。
资源配置方式二:第一终端设备可以向网络设备发送第二资源请求;然后,接收来自所述网络设备的第二资源配置信息。其中,所述第二资源配置信息用于指示所述网络设备为所述第一终端设备分配的资源。
可选的,所述第二资源请求可以为调度请求(scheduling request,SR)或缓存状态报告(buffer status report,BSR)。通过该方式,网络设备可以在抢占COT后,将剩余COT共享给所述第一终端设备。
资源配置方式三:第一终端设备可以监听信道,在第二终端设备发送数据时,主动使用第二终端设备的剩余COT所在的资源发送数据。
其中,第二终端设备为第一终端设备的N个传输需求的接收端。
在另一种实施方式中,当在N个传输需求中,存在W个传输需求的资源选择范围的起始时间未超过第三时间,其余传输需求的资源选择范围的起始时间超过第三时间,如图16所示。可选的,第一终 端设备可以继续根据该W个传输需求的资源选择范围的起始时间,确定该W个传输需求对应的资源。其中,第一终端设备确定W个传输需求对应的资源的过程可以参考以上实施例中的相应描述,此处不再赘述。其中W为小于N的正整数。
图16中的起始时间w为该W个传输需求中任一传输需求的资源选择范围的起始时间;起始时间g为N个传输需求中除该W个传输需求以外的任一个传输需求的资源选择范围的起始时间。
在第一终端设备在该W个传输需求对应的资源上传输数据后,根据W个传输需求的应答响应所指示的传输结果,判断是否在第二终端设备或网络设备的剩余COT所在的资源上继续发送数据。当该W个传输需求的应答响应所指示的传输结果表示数据传输成功时,第一终端设备无需在寻求其他资源配置方式;而当W个传输需求的应答响应所指示的传输结果表示数据传输失败时,第一终端设备可以采用上述任一种资源配置方式继续传输数据。
还需要说明的是,上述图4-图16中的相同或相似的用语/参数之间可以相互参考,在相应描述时不再单独说明。
在通信领域,不同带宽的频带占用的RB个数不同,如表1所示。
表1不同带宽的频带占用的RB数量配置
常用的非授权频谱的带宽包括20MHz、40MHz、60MHz和80MHz。如表1所示,在SCS=30kHz时,上述带宽的频带占用的RB数量分别为51、106、162、217。显然,尽管40MHz的带宽是20MHz的带宽的两倍,但是40MHz占用的RB数量是106,超过20MHz的带宽占用的RB数量的两倍(即51*2的102)。因此,40MHz带宽的频带中的RB不能直接当成2个20MHz带宽的频带中的RB调用。
另外,在非授权频谱中,10MHz和20MHz的传输无需保护频带(guard band),而更大带宽的传输则需要提供保护带宽。目前标准中提供了一种不同带宽的频带中的保护频带设置方案,如表2所示。
表2
为了解决不同带宽的频带RB数量不对齐问题,本申请实施例提供了一种通信方法。通过该方法,通信设备可以实现两个不同带宽的频带之间的资源映射。该方法可以解决不同带宽下的RB编号对齐问题,方便实现在频域上的资源映射。该方法可以适用于SL-U场景。下面参阅图17所示的流程图,对申请实施例提供的方法进行说明。
S1701:终端设备在第一频带中选择第一资源。
S1702:所述终端设备在第二频带的第二资源上传输目标数据。
其中,所述第一频带的带宽大于所述第二频带的带宽,或者所述第一频带的带宽小于所述第二频带的带宽;所述第一资源的频域位置与所述第二资源的频域位置之间存在资源映射关系;所述资源映射关系用于将所述第一资源映射到所述第二资源。
可选的,在SL-U系统中,若终端设备为了传输目标数据在第一频带中预约第一资源,后续通过LBT抢占了第二频带的信道,那么此时,所述终端设备可以通过上述方法,将第一资源映射到第二频 带中得到第二资源,从而可以在抢占的信道中传输目标数据。
应注意,所述第一频带的频率范围与所述第二频带的频率范围之间存在交集。
在S1702之前,所述终端设备可以根据所述资源映射关系以及所述第一资源的频域位置,在所述第二频带中选择所述第二资源。
其中,所述第一资源包括第一RB,所述第二资源包括第二RB。所述第一资源的频域位置包括所述第一RB在所述第一频带中的RB编号;所述第二资源的频域位置包括所述第二RB在所述第二频带中的RB编号。所述资源映射关系用于表示所述第一频带中的RB编号与所述第二频带中的RB编号之间的映射关系。
在一种实施方式中,以第二频带的带宽大于第一频带的带宽为例,对该资源映射关系进行说明。所述第一频带中包括L1个RB,其中,L1为正整数;所述第一频带的带宽为B1,所述第二频带的带宽为B2,B2=X*B1,X>1。
可选的,当X为整数时,所述第二频带包含X个子频带,每个子频带的带宽为B1,所述第一频带位于所述X个子频带中第y个子频带中,1≤y≤X,y为整数。
在所述资源映射关系中,所述第一频带中RB编号a与所述第二频带中RB编号(y-1)*L1+C+a对应;其中,a为整数,0≤a<L1,C为常数;或者
在所述资源映射关系中,所述第一频带中RB编号L1-b与所述第二频带中RB编号y*L1+D-b对应;其中,b为整数,0<b≤L1,D为常数。
在另一种实施方式中,以第一频带的带宽大于第二频带的带宽为例,对该资源映射关系进行说明。所述第二频带中包括L2个RB,其中,L2为正整数;所述第一频带的带宽为B1,所述第二频带的带宽为B2,B1=X*B2,X>1。
可选的,当X为整数时,所述第一频带包含X个子频带,每个子频带的带宽为B2,所述第二频带位于所述X个子频带中第y个子频带中,1≤y≤X,y为整数。
在所述资源映射关系中,所述第二频带中RB编号a与所述第一频带中RB编号(y-1)*L2+C+a对应;其中,a为整数,0≤a<L2,C为常数;或者
在所述资源映射关系中,所述第二频带中RB编号L2-b与所述第一频带中RB编号y*L2+D-b对应;其中,b为整数,0<b≤L2,D为常数。
需要说明的是,在上述两个实施方式中,C和D的取值与第一频带的带宽、第二频带的带宽有关。通过表1和表2可知,不同带宽的频带中包含的RB的数量,以及保护频带的分布是固定的,因此,针对两个固定带宽的频带,上述资源映射关系也是确定的,C和D的具体取值与该两个频带包含的RB数量,以及保护频带的分布有关。
在本申请实施例中,为了传输目标数据,终端设备还可以执行以下步骤:
P1:根据所述第一资源的频域位置在所述第一频带对应的多个第一子信道中确定第一目标子信道;
P2:根据所述第二资源的频域位置在所述第二频带对应的多个第二子信道中确定第二目标子信道;
P3:当所述第二目标子信道占用的RB数量大于所述第一目标子信道占用的RB数量时,根据所述第二目标子信道占用的RB数量对编码后的信号进行速率匹配,得到目标信号;或者当所述第二目标子信道占用的RB数量小于所述第一目标子信道占用的RB数量时,根据所述第二目标子信道占用的RB数量对编码后的信号进行打孔,得到目标信号;
其中,所述编码后的信号是根据所述第一目标子信道占用的RB数量对所述目标数据编码得到的。
通过上述步骤,终端设备还可以实现不同频带对应的子信道的映射。
基于终端设备通过上述P1-P3得到的目标数据,所述终端设备可以在所述第二目标子信道上发送所述目标信号,从而实现所述目标数据的传输。
此外,通过上述资源映射关系,终端设备还可以在选择资源时将其他终端设备选择的资源映射到该终端设备接入的频带内,从而可以避免选择该资源,避免该终端设备与其他终端设备的传输相互干扰。
例如,在SL-U系统中,第一终端设备采用20MHz带宽的第一频带接入并预约了RB 0~9的10个RB。在第二终端设备采用40MHz带宽的第二频带接入并选择资源时,可以通过该第一频带与第二频带 之间的资源映射关系,在第二频带占用的RB中确定第一终端设备选择的RB编号,并避免选择这些RB编号的RB。
下面以SCS=30kHz,对20MHz带宽的频带、40MHz带宽的频带、60MHz带宽的频带,以及80MHz带宽的频带之间资源映射关系进行示例性的说明。参阅图18为在80MHz的频带内,4个20MHz的频带、2个40MHz的频带,两种60MHz的频带的分布示意图。
例1:在每个20MHz的频带内,按照频率从低到高,将51个RB从0到50编号。每个40MHz的频带内,按照频率从低到高,将106个RB从0到105编号。
40MHz的频带5中的106个RB与20MHz的频带1中的51个RB、20MHz的频带2中的51个RB之间的资源映射关系如下:
频带5中的RB0与频带1中的RB0对应(即最低编号的RB对齐);频带5中的RB1与频带1中的RB1对应;依次类推,直到频带5中的RB50与频带1中的RB50对应;
频带5中RB50之后的4个RB(RB51-RB54)不存在对应关系;
频带5中的RB55与频带2中的RB0对应;频带5中的RB56与频带2中的RB1对应;依次类推,直到频带5中的RB105与频带2中的RB50对应(即最高编号的RB对齐)。
例2:在每个20MHz的频带内,按照频率从低到高,将51个RB从0到50编号。每个60MHz的频带内,按照频率从低到高,将162个RB从0到161编号。
频带7中的RB与频带1中的RB、频带2中的RB、频带3中的RB之间的资源映射关系类似,即:
频带7中的RB0与频带1中的RB0对应(即最低编号的RB对齐);频带7中的RB1与频带1中的RB1对应;依次类推,直到频带7中的RB50与频带1中的RB50对应;
频带7中RB50之后的4个RB(RB51-RB54)不存在对应关系;
频带7中的RB55与频带2中的RB0对应;频带7中的RB56与频带2中的RB1对应;依次类推,直到频带7中的RB105与频带1中的RB50对应;
频带7中RB105之后的5个RB(RB106-RB110)不存在对应关系;
频带7中的RB111与频带3中的RB0对应;频带7中的RB112与频带3中的RB1对应;依次类推,直到频带7中的RB161与频带3中的RB50对应(即最高编号的RB对齐)。
例3:在每个20MHz的频带内,按照频率从低到高,将51个RB从0到50编号。80MHz的频带内,按照频率从低到高,将217个RB从0到216编号。
频带9中的RB与频带1中的RB、频带2中的RB、频带3中的RB、频带4中的RB之间的资源映射关系类似,即:
频带9中的RB0与频带1中的RB0对应(即最低编号的RB对齐);频带9中的RB1与频带1中的RB1对应;依次类推,直到频带9中的RB50与频带1中的RB50对应;
频带9中RB50之后的4个RB(RB51-RB54)不存在对应关系;
频带9中的RB55与频带2中的RB0对应;频带9中的RB56与频带2中的RB1对应;依次类推,直到频带5中的RB105与频带1中的RB50对应;
频带9中RB105之后的5个RB(RB106-RB110)不存在对应关系;
频带9中的RB111与频带3中的RB0对应;频带9中的RB112与频带3中的RB1对应;依次类推,直到频带9中的RB161与频带3中的RB50对应;
频带9中RB161之后的4个RB(RB162-RB164)不存在对应关系;
频带9中的RB165与频带4中的RB0对应;频带9中的RB166与频带4中的RB1对应;依次类推,直到频带9中的RB216与频带4中的RB50对应(即最高编号的RB对齐)。
还需要说明的是,在图18所示的频带1至频带9中,不同频带中的RB之间的资源映射关系均可以参考以上示例。
应注意,以上例1-例3作为示例,并不对本申请实施例提供的资源映射关系构成任何限定。另外,上述示例也不对带宽较大的频带中某处不存在对应关系连续多个RB的个数进行限定。例如在第一资源映射关系中,频带9中的RB0-RB50与频带1中的RB0-RB50对应后,频带9中RB50之后的1个RB、 2个RB、3个RB、4个RB、5个RB,或6个RB不存在对应关系;从频带9的RB52、RB53、RB54、RB55、RB56,或RB57开始,继续与频带2中的RB对应;类似的,在频带9中连续51个RB与频带2中的51个RB一一对应之后,频带9中与频带2的RB50对应的RB之后的1个RB、2个RB、3个RB、4个RB、5个RB,或6个RB不存在对应关系。
另外,终端设备在根据资源映射关系进行资源映射后,还需要将传输的对应关系也需要映射。例如以频带中10个RB作为一个子信道为例,那么20MHz频带中的51个RB可以构成5个子信道,分别占用RB0~RB9,RB10~RB19,RB20~RB29,RB30~RB39,以及RB40~RB50。上述20MHz频带包含资源可以对应于40MHz/60MHz/80MHz频带中的以下5个子信道:占用RB0~RB9,RB10~RB19,RB20~RB29,RB30~RB39,RB40~RB55或RB50~RB53(某个子信道占用的RB数量可以大于11)。
显然,由于40Mhz频带中的RB数量大于2个20Mhz频带包含的RB数量之和,因此,40Mhz频带中的第5个子信道与20Mhz频带中的第5个子信道占用的RB数量不同。因此,终端设备在对40Mhz频带中的第5个子信道与20Mhz频带中的第5个子信道之间进行映射时,需要考虑RB数量不同引起的问题。
实例1:以将20MHz频带的第5个子信道(后续简称为第一子信道)映射到40MHz频带的第5个子信道(后续简称为第二子信道)为例进行说明。终端设备根据第一子信道占用的RB数量对待传输目标数据进行编码,得到编码信号。由于第二子信道占用的RB数量大于第一子信道占用的RB数量,终端设备占用的更多的资源传输,因此需要根据第二子信道占用的RB数量对该编码信号进行速率匹配,得到目标信号。最后终端设备在第二子信道上发送该目标信号。
实例2:以将80MHz频带的第5个子信道(后续简称为第一子信道)映射到20MHz频带的第5个子信道(后续简称为第二子信道)为例进行说明。第一子信道占用的RB数量可以是14、16,或者其他大于11的数。而第二子信道占用的RB数量为11。终端设备根据第一子信道占用的RB数量对待传输目标数据进行编码,得到编码信号。由于第二子信道占用的RB数量小于第一子信道占用的RB数量,因此需要终端设备根据第二子信道占用的RB数量对该编码信号进行打孔,丢弃部分信号得到目标信号。最后终端设备在第二子信道上发送该目标信号。
还需要说明的是,以上各个实施例中涉及的每个步骤可以为相应的设备执行,也可以是该设备内的芯片、处理器或芯片系统等部件执行,本申请实施例并不对其构成限定。以上各实施例仅以由相应设备执行为例进行说明。此外,以上各个实施例中的具体实现方式或示例也不对本申请实施例提供的方案构成限定。
需要说明的是,在以上各个实施例中,可以选择部分步骤进行实施,还可以调整图示中步骤的顺序进行实施,本申请对此不做限定。应理解,执行图示中的部分步骤、调整步骤的顺序或相互结合进行具体实施,均落在本申请的保护范围内。
可以理解的是,为了实现上述实施例中功能,上述实施例中涉及的各个设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
可以理解的是,本申请实施例描述的上述网络架构以及应用场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
应注意:本申请实施例中的“步骤”仅是个示意,是为了更好的理解实施例所采用的一种表现方法,不对本申请的方案的执行构成实质性限定,例如:该“步骤”还可以理解成“特征”。此外,该步骤不对本申请方案的执行顺序构成任何限定,任何在此基础上做出的不影响整体方案实现的步骤顺序改变或步骤合并或步骤拆分等操作,所形成的新的技术方案也在本申请公开的范围之内。
基于相同的技术构思,本申请还提供了一种通信装置,所述通信装置可以应用于SL-U系统中的终端设备。所述通信装置用于实现以上各个实施例提供的方法。参阅图19所示,通信装置1900中包含通信单元1901和处理单元1902。
所述通信单元1901,用于接收和发送信号。可选的,所述通信单元1901中可以包含收发器。
在一种实施方式中,所述通信装置1900应用于如图3所示的实施例,或实施例一至实施例四中任一种实施例中的第一终端设备。所述处理单元1902,用于执行以下步骤:
获取N个传输需求对应的先听后说LBT时长;其中,N为大于或等于1的整数;
根据所述N个传输需求对应的LBT时长,确定N个资源;其中,所述N个资源与所述N个传输需求一一对应,且当N为大于1的整数时任意两个资源之间的时间间隔大于或等于最小时间间隔。
可选的,所述处理单元1902,具体用于:
根据第n个传输需求对应的LBT时长,确定第n个起始时间;其中,n为正整数,且1≤n≤N;所述第n个起始时间为所述第n个传输需求的资源选择范围的起始时间;
根据所述第n个起始时间,确定所述第n个传输需求对应的资源。
可选的,所述处理单元1902中可以但不限于包括PHY层处理单元和MAC层处理单元。
可选的,所述PHY层处理单元,具体用于根据所述第n个传输需求对应的LBT时长,确定所述第n个起始时间。
可选的,所述PHY层处理单元,还用于向所述MAC层处理单元发送所述第n个起始时间;
所述MAC层处理单元,具体用于根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围;以及在所述第n个传输需求的资源选择范围内,确定所述第n个传输需求对应的资源。
可选的,所述PHY层处理单元,还用于根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围;以及向所述MAC层处理单元发送所述第n个传输需求的资源选择范围;
所述MAC层处理单元,具体用于在所述第n个传输需求的资源选择范围内,确定所述第n个传输需求对应的资源。
可选的,所述PHY层处理单元,还用于根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围的起始时间单元;以及向所述MAC层处理单元发送所述第n个传输需求的资源选择范围的起始时间单元以及候选资源集合;
所述MAC层处理单元,具体用于根据所述第n个传输需求的资源选择范围起始时间单元,在所述资源候选集合中,确定所述第n个传输需求对应的资源。
可选的,所述PHY层处理单元,还用于根据所述第n个起始时间,确定所述第n个传输需求的候选资源集合;以及向所述MAC层处理单元发送所述第n个传输需求的候选资源集合;
所述MAC层处理单元,具体用于在所述第n个传输需求的候选资源集合中,确定所述第n个传输需求对应的资源。
其中,任一候选资源集合中包含至少一个候选资源。
可选的,所述第n个起始时间符合t0+Tn;其中,Tn符合以下公式:
或者
其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长。
可选的,所述处理单元1902,具体用于:
根据所述第n个传输需求对应的LBT时长,以及所述第n个传输需求的在先传输需求对应的资源,确定所述第n个起始时间;其中,所述第n个传输需求的在先传输需求为在所述N个传输需求中资源位置位于所述n个传输需求之前的传输需求。
可选的,所述第n个起始时间符合t0+Tn;其中,Tn符合以下公式:
或者
或者
或者
其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长;ti,R为所述第n个传输需求的第i个在先传输需求对应的资源的时长,为所述第n个传输需求的n-1个在先传输需求对应的资源的时长之和;Si,R为所述第n个传输需求的第i个在先传输需求对应的资源所占用的时间单元的个数,为所述第n个传输需求的n-1个在先传输需求对应的资源所占用的时间单元的个数之和。
可选的,所述处理单元1902,具体用于:
根据所述第n个传输需求对应的LBT时长,所述第n个传输需求的在先传输需求对应的资源,以及所述第n个传输需求的在先应答响应对应的资源,确定所述第n个起始时间;
其中,所述第n个传输需求的在先传输需求为在所述N个传输需求中资源位置位于所述n个传输需求之前的传输需求;所述第n个传输需求的在先应答响应包括在所述第n个传输需求对应的资源之前所述第一终端设备或其它终端设备应接收的应答响应。
可选的,所述第n个传输需求的在先应答响应包括所述第n个传输需求的在先传输需求的应答响应;或者
所述第n个传输需求的在先应答响应包括所述第n个传输需求的在先传输需求的应答响应,以及至少一个第一传输的应答响应;其中,所述第一传输为所述第一终端设备监听到的未接收到应答响应的传输。
可选的,所述第n个起始时间符合t0+Tn;其中,Tn符合以下公式:
或者
或者
或者
其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长;ti,R为所述第n个传输需求的第i个在先传输需求对应的资源的时长,为所述第n个传输需求的n-1个在先传输需求对应的资源的时长之和;tn,HARQ为所述第n个传输需求的在先应答响应对应的资源的总时长;Si,R为所述第n个传输需求的第i个在先传输需求对应的资源所占用的时间单元的个数,为所述第n个传输需求的n-1个在先传输需求对应的资源所占用的时间单元的个数之和;Sn,HARQ为所述第n个传输需求的在先应答响应对应的资源所占用的时间单元的总个数。
可选的,所述处理单元1902,还用于:
在通过所述通信单元1901在所述N个资源上传输数据的过程中,确定所述第n个传输需求对应的LBT时长未结束;
根据所述第n个传输需求对应的LBT剩余时长,重新确定第n个起始时间;
根据重新确定的所述第n个起始时间,重新确定所述第n个传输需求对应的资源。
可选的,确定第n个传输需求对应的LBT时长未结束,包括以下至少一项:
在第一时间确定所述第n个传输需求对应的LBT时长未结束;或者
确定第一时长小于所述第n个传输需求对应的LBT剩余时长;
其中,所述第一时间位于所述第n个传输需求对应的资源的起始时间之前,或所述第一时间为所述第n个传输需求对应的资源的起始时间;所述第一时长为所述第一时间与所述第n个传输需求对应的资源的起始时间之间的时长。
可选的,所述处理单元1902,还用于:
在通过所述通信单元1901在所述N个资源上传输数据之前,根据第k个传输需求对应的LBT时长,确定第k个起始时间;其中,所述第k个传输需求为所述第n个传输需求的在后传输需求,k为正整数,且n<k≤N;所述第k个起始时间为所述第k个传输需求的资源选择范围的起始时间;根据所述第k个起始时间,确定所述第k个传输需求对应的资源;
在确定所述第n个传输需求对应的LBT时长未结束之后,根据所述第k个传输需求对应的LBT剩余 时长,重新确定第k个起始时间;或者根据所述第n个传输需求对应的LBT剩余时长,以及所述最小时间间隔,重新确定第k个起始时间;
根据重新确定的所述第k个起始时间,重新确定所述第k个传输需求对应的资源;其中,重新确定的任意两个资源之间的时间间隔大于或等于所述最小时间间隔。
可选的,所述处理单元1902,还用于:
在通过所述通信单元1901在所述N个资源上传输数据之前,根据第k个传输需求对应的LBT时长,确定第k个起始时间;其中,所述第k个传输需求为所述第n个传输需求的在后传输需求,k为正整数,且n<k≤N;所述第k个起始时间为所述第k个传输需求的资源选择范围的起始时间;根据所述第k个起始时间,确定所述第k个传输需求对应的资源;
在确定所述第n个传输需求对应的LBT时长未结束之后,确定第二时长小于所述第k个传输需求对应的LBT剩余时长;或者确定从第一时间开始经历所述第二时长后的第二时间晚于所述第k个传输需求对应的资源的起始时间;其中,所述第二时长为所述第n个传输需求对应的LBT剩余时长与(k-n)个最小时间间隔之和;所述第一时间为确定所述第n个传输需求对应的LBT时长未结束的时间;
根据所述第k个传输需求对应的LBT剩余时长,重新确定第k个起始时间;或者根据所述第n个传输需求对应的LBT剩余时长,以及所述最小时间间隔,重新确定第k个起始时间;
根据重新确定的所述第k个起始时间,重新确定所述第k个传输需求对应的资源;其中,重新确定的任意两个资源之间的时间间隔大于或等于所述最小时间间隔。
可选的,所述处理单元1902,具体用于:
根据所述N个传输需求对应的LBT时长,确定N个起始时间;其中,所述N个起始时间中第j个起始时间为所述N个传输需求中第j个传输需求的资源选择范围的起始时间;
当所述N个起始时间均未超过第三时间时,根据所述第n个起始时间,确定所述第n个传输需求对应的资源;
其中,所述第三时间为从所述第一终端设备出现传输需求的时间开始经历第三时长后的时间,所述第三时长的取值是根据所述第一终端设备的数据传输时延确定的。
可选的,所述处理单元1902,还用于:
当第g个起始时间超过所述第三时间时,通过所述通信单元1901向第二终端设备发送第一资源请求;通过所述通信单元1901接收来自所述第二终端设备的第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二终端设备为所述第一终端设备分配的资源,所述第二终端设备为所述N个传输需求的接收端,所述第一资源请求所占用的传输资源为所述第一终端设备与所述第二终端设备预先协商的或协议约定的;或者
当第g个起始时间超过所述第三时间时,通过所述通信单元1901向网络设备发送第二资源请求;通过所述通信单元1901接收来自所述网络设备的第二资源配置信息;其中,所述第二资源配置信息用于指示所述网络设备为所述第一终端设备分配的资源;或者
当第g个起始时间超过所述第三时间时,使用第二终端设备的剩余传输时间COT所在的资源发送数据;其中,所述第二终端设备为所述N个传输需求的接收端;
其中,g为正整数,且1≤g≤N。
可选的,所述处理单元1902,具体用于:
获取M个传输需求对应的LBT时长;其中,所述M个传输需求中包含所述N个传输需求;M为大于N的整数;
根据所述M个传输需求对应的LBT时长,确定M个起始时间;其中,所述M个起始时间中第m个起始时间为所述M个传输需求中第m个传输需求的资源选择范围的起始时间;m为正整数,且1≤m≤M;
其中,在所述M个传输需求中,所述N个传输需求的资源选择范围的起始时间未超过第三时间,除所述N个传输需求以外的其他传输需求的资源选择范围的起始时间超过所述第三时间;所述第三时间为从所述第一终端设备出现传输需求的时间开始经历第三时长后的时间,所述第三时长的取值是根据所述第一终端设备的数据传输时延确定的;
所述处理单元1902,还用于:
在通过所述通信单元1901在所述N个资源上传输数据后,根据所述N个资源的应答响应所指示的 传输结果,判断是否在第二终端设备或网络设备的剩余COT所在的资源上继续发送数据;其中,所述第二终端设备为所述N个传输需求的接收端。
可选的,所述处理单元1902,还用于:
当所述第一终端设备出现传输需求时,开始进行LBT;或者
在确定所述N个资源过程中,开始进行LBT;或者
在确定出所述N个资源后,开始进行LBT。
可选的,所述PHY层处理单元,还用于:
当所述PHY层处理单元向所述MAC层处理单元发送所述第n个起始时间时,开始进行LBT;或者
当所述PHY层处理单元向所述MAC层处理单元发送所述第n个传输需求的资源选择范围时,开始进行LBT;或者
当所述PHY层处理单元向所述MAC层处理单元发送所述第n个传输需求的资源选择范围的起始时间单元以及候选资源集合时,开始进行LBT;或者
当所述PHY层处理单元向所述MAC层处理单元发送所述第n个传输需求的候选资源集合时,开始进行LBT;或者
当所述MAC层处理单元通知所述PHY层处理单元所述第n个传输需求对应的资源时,开始进行LBT。
在一种实施方式中,所述通信装置1900应用于图17所示实施例中的终端设备。所述处理单元1902,用于执行以下步骤:
在第一频带中选择第一资源;
通过所述通信单元1901在第二频带的第二资源上传输目标数据;
其中,所述第一频带的带宽大于所述第二频带的带宽,或者所述第一频带的带宽小于所述第二频带的带宽;所述第一资源的频域位置与所述第二资源的频域位置之间存在资源映射关系;所述资源映射关系用于将所述第一资源映射到所述第二资源。
可选的,所述处理单元1902,还用于:
根据所述资源映射关系以及所述第一资源的频域位置,在所述第二频带中选择所述第二资源;
其中,所述第一资源包括第一资源块RB,所述第二资源包括第二RB;
所述第一资源的频域位置包括所述第一RB在所述第一频带中的RB编号;所述第二资源的频域位置包括所述第二RB在所述第二频带中的RB编号;
所述资源映射关系用于表示所述第一频带中的RB编号与所述第二频带中的RB编号之间的映射关系。
可选的,所述第一频带中包括L1个RB,其中,L1为正整数;所述第一频带的带宽为B1,所述第二频带的带宽为B2,B2=X*B1,X>1;
所述第二频带包含X个子频带,每个子频带的带宽为B1,所述第一频带位于所述X个子频带中第y个子频带中,1≤y≤X,y为整数;
在所述资源映射关系中,所述第一频带中RB编号a与所述第二频带中RB编号(y-1)*L1+C+a对应;其中,a为整数,0≤a<L1,C为常数;或者
在所述资源映射关系中,所述第一频带中RB编号L1-b与所述第二频带中RB编号y*L1+D-b对应;其中,b为整数,0<b≤L1,D为常数。
可选的,所述第二频带中包括L2个RB,其中,L2为正整数;所述第一频带的带宽为B1,所述第二频带的带宽为B2,B1=X*B2,X>1;
所述第一频带包含X个子频带,每个子频带的带宽为B2,所述第二频带位于所述X个子频带中第y个子频带中,1≤y≤X,y为整数;
在所述资源映射关系中,所述第二频带中RB编号a与所述第一频带中RB编号(y-1)*L2+C+a对应;其中,a为整数,0≤a<L2,C为常数;或者
在所述资源映射关系中,所述第二频带中RB编号L2-b与所述第一频带中RB编号y*L2+D-b对应;其中,b为整数,0<b≤L2,D为常数。
可选的,所述处理单元1902,还用于:
根据所述第一资源的频域位置在所述第一频带对应的多个第一子信道中确定第一目标子信道;
根据所述第二资源的频域位置在所述第二频带对应的多个第二子信道中确定第二目标子信道;
当所述第二目标子信道占用的RB数量大于所述第一目标子信道占用的RB数量时,根据所述第二目标子信道占用的RB数量对编码后的信号进行速率匹配,得到目标信号;或者
当所述第二目标子信道占用的RB数量小于所述第一目标子信道占用的RB数量时,根据所述第二目标子信道占用的RB数量对编码后的信号进行打孔,得到目标信号;
其中,所述编码后的信号是根据所述第一目标子信道占用的RB数量对所述目标数据编码得到的;
所述处理单元1902,具体用于:
通过所述通信单元1901在所述第二目标子信道上发送所述目标信号。
基于以上实施例,本申请实施例还提供了一种终端设备,所述终端设备可以应用于SL-U系统中,并可以实现以上各个实施例中的方法,具有通信装置1900的功能。参阅图20所示,所述终端设备2000包括:收发器2001、至少一个处理器2002,以及存储器2003。其中,所述收发器2001、所述处理器2002以及所述存储器2003之间相互连接。
可选的,所述收发器2001、所述至少一个处理器2002以及所述存储器2003之间通过总线2004相互连接。所述总线2004可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图20中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述收发器2001,用于接收和发送信号,实现与其他终端设备或网络设备之间的通信。可选的,所述收发器2001可以通过射频装置和天线实现。
所述至少一个处理器2002中至少包含RRC层处理单元和MAC层处理单元。其中,所述RRC层处理单用于执行RRC层的步骤,实现RRC层的功能。而MAC层处理单元用于执行MAC层的步骤,实现MAC层的功能。
所述处理器2002的功能,以及所述RRC层处理单元和所述MAC层处理单元的具体功能可以参照以上实施例中的描述,此处不再赘述。
其中,处理器2002可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合等等。处理器2002还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器2002在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
所述存储器2003,用于存放程序指令等。具体地,程序指令可以包括程序代码,该程序代码包括计算机操作指令。存储器2003可能包含随机存取存储器(random access memory,RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器2002执行存储器2003所存放的程序指令,实现上述功能,从而实现上述实施例提供的方法。
基于以上实施例,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行以上实施例提供的方法。
基于以上实施例,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,所述计算机程序被计算机执行时,使得计算机执行以上实施例提供的方法。
可选的,上述计算机可以但不限于包括终端设备。
其中,存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
基于以上实施例,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,实现以上实施例提供的方法。可选的,所述芯片中可以包括处理器和存储器,所述处理器与所述存储器耦合,用于读取所述存储器中存储的计算机程序,实现以上实施例提供的方法。
基于以上实施例,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现以上实施例中终端设备所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
综上,本申请实施例提供了一种资源配置方法及设备。通过该方法,第一终端设备可以根据N个传输需求对应的LBT时长,预约N个资源。由于考虑到LBT时长,可以减少出现到达某个传输需求对应的资源时该传输需求的LBT时长还未结束的情况,从而可以提高第一终端设备能够使用该传输需求对应的资源传输数据的概率,从而保证终端设备的通信效率。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种资源配置方法,应用于第一终端设备,其特征在于,所述方法包括:
    获取N个传输需求对应的先听后说LBT时长;其中,N为大于或等于1的整数;
    根据所述N个传输需求对应的LBT时长,确定N个资源;其中,所述N个资源与所述N个传输需求一一对应,且当N为大于1的整数时任意两个资源之间的时间间隔大于或等于最小时间间隔。
  2. 如权利要求1所述的方法,其特征在于,根据所述N个传输需求对应的LBT时长,确定N个资源,包括:
    根据第n个传输需求对应的LBT时长,确定第n个起始时间;其中,n为正整数,且1≤n≤N;所述第n个起始时间为所述第n个传输需求的资源选择范围的起始时间;
    根据所述第n个起始时间,确定所述第n个传输需求对应的资源。
  3. 如权利要求2所述的方法,其特征在于,所述第一终端设备包括物理PHY层和介质访问控制MAC层;
    根据第n个传输需求对应的LBT时长,确定第n个起始时间,包括:
    所述PHY层根据所述第n个传输需求对应的LBT时长,确定所述第n个起始时间;
    根据所述第n个起始时间,确定所述第n个传输需求对应的资源,包括:
    所述PHY层向所述MAC层发送所述第n个起始时间;所述MAC层根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围;所述MAC层在所述第n个传输需求的资源选择范围内,确定所述第n个传输需求对应的资源;或者
    所述PHY层根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围;所述PHY层向所述MAC层发送所述第n个传输需求的资源选择范围;所述MAC层在所述第n个传输需求的资源选择范围内,确定所述第n个传输需求对应的资源;或者
    所述PHY层根据所述第n个起始时间,确定所述第n个传输需求的资源选择范围的起始时间单元;所述PHY层向所述MAC层发送所述第n个传输需求的资源选择范围的起始时间单元以及候选资源集合;所述MAC层根据所述第n个传输需求的资源选择范围起始时间单元,在所述资源候选集合中,确定所述第n个传输需求对应的资源;或者
    所述PHY层根据所述第n个起始时间,确定所述第n个传输需求的候选资源集合;所述PHY层向所述MAC层发送所述第n个传输需求的候选资源集合;所述MAC层在所述第n个传输需求的候选资源集合中,确定所述第n个传输需求对应的资源;
    其中,任一候选资源集合中包含至少一个候选资源。
  4. 如权利要求2或3所述的方法,其特征在于,所述第n个起始时间符合t0+Tn;其中,Tn符合以下公式:
    或者
    其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长。
  5. 如权利要求2或3所述的方法,其特征在于,根据所述第n个传输需求对应的LBT时长,确定所述第n个起始时间,包括:
    根据所述第n个传输需求对应的LBT时长,以及所述第n个传输需求的在先传输需求对应的资源,确定所述第n个起始时间;其中,所述第n个传输需求的在先传输需求为在所述N个传输需求中资源位置位于所述n个传输需求之前的传输需求。
  6. 如权利要求5所述的方法,其特征在于,所述第n个起始时间符合t0+Tn;其中,Tn符合以下公式:
    或者
    或者
    或者
    其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长;ti,R为所述第n个传输需求的第i个在先传输需求对应的资源的时长,为所述第n个传输需求的n-1个在先传输需求对应的资源的时长之和;Si,R为所述第n个传输需求的第i个在先传输需求对应的资源所占用的时间单元的个数,为所述第n个传输需求的n-1个在先传输需求对应的资源所占用的时间单元的个数之和。
  7. 如权利要求2或3所述的方法,其特征在于,根据所述第n个传输需求对应的LBT时长,确定所述第n个起始时间,包括:
    根据所述第n个传输需求对应的LBT时长,所述第n个传输需求的在先传输需求对应的资源,以及所述第n个传输需求的在先应答响应对应的资源,确定所述第n个起始时间;
    其中,所述第n个传输需求的在先传输需求为在所述N个传输需求中资源位置位于所述n个传输需求之前的传输需求;所述第n个传输需求的在先应答响应包括在所述第n个传输需求对应的资源之前所述第一终端设备或其它终端设备应接收的应答响应。
  8. 如权利要求7所述的方法,其特征在于,
    所述第n个传输需求的在先应答响应包括所述第n个传输需求的在先传输需求的应答响应;或者
    所述第n个传输需求的在先应答响应包括所述第n个传输需求的在先传输需求的应答响应,以及至少一个第一传输的应答响应;其中,所述第一传输为所述第一终端设备监听到的未接收到应答响应的传输。
  9. 如权利要求7或8所述的方法,其特征在于,所述第n个起始时间符合t0+Tn;其中,Tn符合以下公式:
    或者
    或者
    或者
    其中,t0为所述第一终端设备出现传输需求的时间;tn,LBT为所述第n个传输需求对应的LBT时长;ts为用于调度数据传输资源的时间单元的长度;Toffset为偏移值;tcpe为循环前缀扩展的时长;ti,R为所述第n个传输需求的第i个在先传输需求对应的资源的时长,为所述第n个传输需求的n-1个在先传输需求对应的资源的时长之和;tn,HARQ为所述第n个传输需求的在先应答响应对应的资源的总时长;Si,R为所述第n个传输需求的第i个在先传输需求对应的资源所占用的时间单元的个数,为所述第n个传输需求的n-1个在先传输需求对应的资源所占用的时间单元的个数之和;Sn,HARQ为所述第n个传输需求的在先应答响应对应的资源所占用的时间单元的总个数。
  10. 如权利要求2-9任一项所述的方法,其特征在于,所述方法还包括:
    在所述N个资源上传输数据的过程中,确定所述第n个传输需求对应的LBT时长未结束;
    根据所述第n个传输需求对应的LBT剩余时长,重新确定第n个起始时间;
    根据重新确定的所述第n个起始时间,重新确定所述第n个传输需求对应的资源。
  11. 如权利要求10所述的方法,其特征在于,确定第n个传输需求对应的LBT时长未结束,包括以下至少一项:
    在第一时间确定所述第n个传输需求对应的LBT时长未结束;或者
    确定第一时长小于所述第n个传输需求对应的LBT剩余时长;
    其中,所述第一时间位于所述第n个传输需求对应的资源的起始时间之前,或所述第一时间为所述第n个传输需求对应的资源的起始时间;所述第一时长为所述第一时间与所述第n个传输需求对应的资源的起始时间之间的时长。
  12. 如权利要求10或11所述的方法,其特征在于,
    在所述N个资源上传输数据之前,所述方法还包括:
    根据第k个传输需求对应的LBT时长,确定第k个起始时间;其中,所述第k个传输需求为所述第n个传输需求的在后传输需求,k为正整数,且n<k≤N;所述第k个起始时间为所述第k个传输需求的资源选择范围的起始时间;
    根据所述第k个起始时间,确定所述第k个传输需求对应的资源;
    在确定所述第n个传输需求对应的LBT时长未结束之后,所述方法还包括:
    根据所述第k个传输需求对应的LBT剩余时长,重新确定第k个起始时间;或者根据所述第n个传输需求对应的LBT剩余时长,以及所述最小时间间隔,重新确定第k个起始时间;
    根据重新确定的所述第k个起始时间,重新确定所述第k个传输需求对应的资源;其中,重新确定的任意两个资源之间的时间间隔大于或等于所述最小时间间隔。
  13. 如权利要求10或11所述的方法,其特征在于,
    在所述N个资源上传输数据之前,所述方法还包括:
    根据第k个传输需求对应的LBT时长,确定第k个起始时间;其中,所述第k个传输需求为所述第n个传输需求的在后传输需求,k为正整数,且n<k≤N;所述第k个起始时间为所述第k个传输需求的资源选择范围的起始时间;
    根据所述第k个起始时间,确定所述第k个传输需求对应的资源;
    在确定所述第n个传输需求对应的LBT时长未结束之后,所述方法还包括:
    确定第二时长小于所述第k个传输需求对应的LBT剩余时长;或者确定从第一时间开始经历所述第二时长后的第二时间晚于所述第k个传输需求对应的资源的起始时间;其中,所述第二时长为所述第n个传输需求对应的LBT剩余时长与(k-n)个最小时间间隔之和;所述第一时间为确定所述第n个传输需求对应的LBT时长未结束的时间;
    根据所述第k个传输需求对应的LBT剩余时长,重新确定第k个起始时间;或者根据所述第n个传输需求对应的LBT剩余时长,以及所述最小时间间隔,重新确定第k个起始时间;
    根据重新确定的所述第k个起始时间,重新确定所述第k个传输需求对应的资源;其中,重新确定的任意两个资源之间的时间间隔大于或等于所述最小时间间隔。
  14. 如权利要求2-13任一项所述的方法,其特征在于,
    根据第n个传输需求对应的LBT时长,确定第n个起始时间,包括:
    根据所述N个传输需求对应的LBT时长,确定N个起始时间;其中,所述N个起始时间中第j个起始时间为所述N个传输需求中第j个传输需求的资源选择范围的起始时间;
    根据所述第n个起始时间,确定所述第n个传输需求对应的资源,包括:
    当所述N个起始时间均未超过第三时间时,根据所述第n个起始时间,确定所述第n个传输需求对应的资源;
    其中,所述第三时间为从所述第一终端设备出现传输需求的时间开始经历第三时长后的时间,所述第三时长的取值是根据所述第一终端设备的数据传输时延确定的。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    当第g个起始时间超过所述第三时间时,向第二终端设备发送第一资源请求;接收来自所述第二终端设备的第一资源配置信息;其中,所述第一资源配置信息用于指示所述第二终端设备为所述第一终端设备分配的资源,所述第二终端设备为所述N个传输需求的接收端,所述第一资源请求所占用的传输资源为所述第一终端设备与所述第二终端设备预先协商的或协议约定的;或者
    当第g个起始时间超过所述第三时间时,向网络设备发送第二资源请求;接收来自所述网络设备的第二资源配置信息;其中,所述第二资源配置信息用于指示所述网络设备为所述第一终端设备分配的资源;或者
    当第g个起始时间超过所述第三时间时,使用第二终端设备的剩余传输时间COT所在的资源发送数据;其中,所述第二终端设备为所述N个传输需求的接收端;
    其中,g为正整数,且1≤g≤N。
  16. 如权利要求2所述的方法,其特征在于,获取N个传输需求对应的LBT时长,包括:
    获取M个传输需求对应的LBT时长;其中,所述M个传输需求中包含所述N个传输需求;M为 大于N的整数;
    根据第n个传输需求对应的LBT时长,确定第n个起始时间,包括:
    根据所述M个传输需求对应的LBT时长,确定M个起始时间;其中,所述M个起始时间中第m个起始时间为所述M个传输需求中第m个传输需求的资源选择范围的起始时间;m为正整数,且1≤m≤M;
    其中,在所述M个传输需求中,所述N个传输需求的资源选择范围的起始时间未超过第三时间,除所述N个传输需求以外的其他传输需求的资源选择范围的起始时间超过所述第三时间;所述第三时间为从所述第一终端设备出现传输需求的时间开始经历第三时长后的时间,所述第三时长的取值是根据所述第一终端设备的数据传输时延确定的;
    所述方法还包括:
    在所述N个资源上传输数据后,根据所述N个资源的应答响应所指示的传输结果,判断是否在第二终端设备或网络设备的剩余COT所在的资源上继续发送数据;其中,所述第二终端设备为所述N个传输需求的接收端。
  17. 如权利要求1-16任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一终端设备出现传输需求时,开始进行LBT;或者
    在确定所述N个资源过程中,开始进行LBT;或者
    在确定出所述N个资源后,开始进行LBT。
  18. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    当所述PHY层向所述MAC层发送所述第n个起始时间时,开始进行LBT;或者
    当所述PHY层向所述MAC层发送所述第n个传输需求的资源选择范围时,开始进行LBT;或者
    当所述PHY层向所述MAC层发送所述第n个传输需求的资源选择范围的起始时间单元以及候选资源集合时,开始进行LBT;或者
    当所述PHY层向所述MAC层发送所述第n个传输需求的候选资源集合时,开始进行LBT;或者
    当所述MAC层通知所述PHY层所述第n个传输需求对应的资源时,开始进行LBT。
  19. 一种通信装置,其特征在于,包括:
    通信单元,用于接收和发送信号;
    处理单元,用于执行如权利要求1-18任一项所述的方法。
  20. 一种终端设备,其特征在于,包括:
    收发器,用于接收和发送信号;
    存储器,用于存储程序指令和数据;
    处理器,用于读取所述存储器中的程序指令和数据,实现权利要求1-18任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1-18任一项所述的方法。
  22. 一种芯片,其特征在于,所述芯片包括处理器和存储器;所述处理器与所述存储器耦合,用于读取所述存储器中存储的计算机程序,执行权利要求1-18任一项所述的方法。
PCT/CN2023/106363 2022-07-13 2023-07-07 一种资源配置方法及设备 WO2024012374A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210824434 2022-07-13
CN202210824434.8 2022-07-13
CN202210963173.8A CN117460050A (zh) 2022-07-13 2022-08-11 一种资源配置方法及设备
CN202210963173.8 2022-08-11

Publications (1)

Publication Number Publication Date
WO2024012374A1 true WO2024012374A1 (zh) 2024-01-18

Family

ID=89535596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106363 WO2024012374A1 (zh) 2022-07-13 2023-07-07 一种资源配置方法及设备

Country Status (1)

Country Link
WO (1) WO2024012374A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324910A (zh) * 2018-03-30 2019-10-11 华为技术有限公司 通信方法和通信设备
WO2021126402A1 (en) * 2019-12-19 2021-06-24 Qualcomm Incorporated Autonomous sidelink over unlicensed band
WO2021217438A1 (zh) * 2020-04-28 2021-11-04 Oppo广东移动通信有限公司 资源预留方法、装置、设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324910A (zh) * 2018-03-30 2019-10-11 华为技术有限公司 通信方法和通信设备
WO2021126402A1 (en) * 2019-12-19 2021-06-24 Qualcomm Incorporated Autonomous sidelink over unlicensed band
WO2021217438A1 (zh) * 2020-04-28 2021-11-04 Oppo广东移动通信有限公司 资源预留方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "SL channel access in unlicensed spectrum", 3GPP DRAFT; R1-2203645, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153090 *

Similar Documents

Publication Publication Date Title
WO2016119454A1 (zh) 非授权载波资源的使用方法及装置
WO2016070672A1 (zh) 一种实现数据传输的方法及装置
WO2021031043A1 (zh) 一种通信方法及装置
WO2024036671A1 (zh) 侧行通信的方法及装置
WO2020156180A1 (zh) 通信方法及终端设备、接入网设备
EP4224969A1 (en) Communication method and apparatus
WO2022011699A1 (zh) 一种通信方法及侧行设备
US20230217493A1 (en) Systems and techniques for sidelink communication
WO2021088092A1 (zh) 信息传输方法及相关产品
WO2023273743A1 (zh) 一种侧行通信方法及装置
WO2024012374A1 (zh) 一种资源配置方法及设备
WO2022077877A1 (zh) 侧行传输方法和通信装置
WO2021056209A1 (zh) 无线通信的方法和设备
WO2020125708A1 (zh) 上行控制信息的上报方法及装置、存储介质、用户终端
WO2023165468A1 (zh) 一种资源确定方法及装置
US11997699B2 (en) Sidelink communication method and apparatus
WO2024061131A1 (zh) 一种资源确定方法及通信装置
WO2024092784A1 (en) Method for resource allocation on shared spectrum and device thereof
WO2024032324A1 (zh) 通信方法和通信装置
WO2024067017A1 (zh) 一种通信方法、装置和系统
CN117460050A (zh) 一种资源配置方法及设备
CN113647182B (zh) 无线通信的方法和设备
WO2024012129A1 (zh) 指示信息发送方法、装置及系统
WO2023178675A1 (zh) 通信方法及通信装置
WO2024032418A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838866

Country of ref document: EP

Kind code of ref document: A1