WO2024012169A1 - 抗干扰的微波探测方法和微波探测装置 - Google Patents

抗干扰的微波探测方法和微波探测装置 Download PDF

Info

Publication number
WO2024012169A1
WO2024012169A1 PCT/CN2023/101682 CN2023101682W WO2024012169A1 WO 2024012169 A1 WO2024012169 A1 WO 2024012169A1 CN 2023101682 W CN2023101682 W CN 2023101682W WO 2024012169 A1 WO2024012169 A1 WO 2024012169A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mos transistor
doppler
differential
intermediate frequency
Prior art date
Application number
PCT/CN2023/101682
Other languages
English (en)
French (fr)
Inventor
邹高迪
邹新
孙毅
Original Assignee
深圳迈睿智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210836152.XA external-priority patent/CN115236751A/zh
Application filed by 深圳迈睿智能科技有限公司 filed Critical 深圳迈睿智能科技有限公司
Priority to US18/284,190 priority Critical patent/US20240061070A1/en
Publication of WO2024012169A1 publication Critical patent/WO2024012169A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/505Systems of measurement based on relative movement of target using Doppler effect for determining closest range to a target or corresponding time, e.g. miss-distance indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5244Adaptive clutter cancellation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/534Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi based upon amplitude or phase shift resulting from movement of objects, with reference to the surrounding clutter echo signal, e.g. non coherent MTi, clutter referenced MTi, externally coherent MTi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/32Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks

Definitions

  • the invention relates to the field of Doppler microwave detection, and in particular to an anti-interference microwave detection method and a microwave detection device.
  • radio technology including microwave detection technology based on the principle of Doppler effect, serves as an important hub for the connection between people and things, and between things. It has unique advantages in behavior detection and presence detection technology, and it can be used without infringing on people's privacy. Under the circumstances, it can detect moving objects, such as human action characteristics, movement characteristics, and micro-motion characteristics, and even human heartbeat and breathing characteristic information, so it has a wide range of application prospects.
  • the circuit structure principle of the Doppler microwave detection device is schematically illustrated, in which the corresponding antenna body 10P of the Doppler microwave detection device for transmitting and/or receiving microwaves is mixed with a mixer 20P via a mixer 20P.
  • the vibration signal is fed to transmit a detection beam corresponding to the frequency of the local oscillation signal to form a corresponding detection space, and an echo formed by the reflection of the detection beam by objects in the detection space is received to generate a feedback signal,
  • the mixer 20P receives the feedback signal and outputs a Doppler intermediate frequency signal corresponding to the frequency difference between the local oscillator signal and the feedback signal in a mixing and detection manner, then based on Doppler Effect principle, the fluctuation in amplitude of the Doppler intermediate frequency signal theoretically corresponds to the movement of objects in the detection space.
  • the Doppler microwave detection device Based on the above working principle of the Doppler microwave detection device, on the one hand, it can be The environmental interference signal received by the antenna body 10P will be superimposed on the Doppler intermediate frequency signal to form the first type of interference signal in the Doppler intermediate frequency signal; on the other hand, the environmental interference signal that can be received by the antenna body 10P Among the environmental interference signals, signals that have any frequency relationship with the frequency of the local oscillator signal, such as the same frequency, adjacent frequency, or multiple frequency, will also be superimposed on the feedback signal to participate in the mixing and detection process to form a Doppler signal.
  • the second type of interference signal is the effective signal in the intermediate frequency signal mixed into one.
  • filtering is currently mainly used to filter out the first type of interference signal superimposed on the Doppler intermediate frequency signal in the corresponding frequency range, or at the same time, by narrowing the frequency band width of the antenna body 10P In this way, the frequency range of the antenna body 10P for receiving environmental interference signals is narrowed.
  • the Doppler intermediate frequency signal corresponds to the local oscillator
  • the state of the frequency difference between the signal and the feedback signal (superimposed with the environmental interference signal) when the Doppler intermediate frequency signal output by the mixer 20P is filtered by the corresponding filter circuit, on the one hand, the The accuracy and stability of the corresponding relationship between the parameter design of the filter circuit and the frequency range of the second type of interference signal are difficult to guarantee, so that the corresponding second type of interference signal is difficult to be separated from the Doppler intermediate frequency signal through filtering.
  • the parameter design of the filter circuit does not have a corresponding relationship with the frequency range of the first type of interference signal and is easy to influence each other and form multiple filtering processes for the Doppler intermediate frequency signal; in addition, Based on the two aspects of the aforementioned filtering method affecting the filtered output Doppler intermediate frequency signal, it will also cause the feedback of the filtered output Doppler intermediate frequency signal to the motion of the object in the detection space. Accuracy is difficult to guarantee. Therefore, for the suppression of the second type of interference signal, it is currently considered more reasonable to use frequency hopping/frequency conversion to reduce the long-term relationship between the local oscillator signal and the environmental interference signal in any frequency relationship of the same frequency, adjacent frequency, or multiple frequency. The probability. However, this method can only reduce the probability that the second type of interference signal exists in the Doppler intermediate frequency signal for a long time, and still cannot separate and filter out the second type of interference signal from the Doppler intermediate frequency signal.
  • using filtering to simultaneously filter the first type of interference signal and the second type of interference signal in the Doppler intermediate frequency signal is essentially to select the signal in the corresponding frequency range of the Doppler intermediate frequency signal.
  • the signal is subjected to integral smoothing processing, which cannot achieve true elimination processing, so multiple filtering processes are usually required; in addition, for the second type of interference signal, the parameter design of the filter circuit is related to the frequency range of the second type of interference signal.
  • the corresponding relationship is not stable and accurate, and there is no corresponding relationship with the frequency range of the first type of interference signal, so it is easy to influence each other and form multiple filtering processes on the Doppler intermediate frequency signal.
  • the feedback of the filtered output Doppler intermediate frequency signal on the motion of the object in the detection space is Accuracy is difficult to guarantee.
  • An object of the present invention is to provide an anti-interference microwave detection method and a microwave detection device, wherein the anti-interference microwave detection method can accurately eliminate the local oscillator signals in the environment that have the same frequency, adjacent frequency and multiple frequency as the microwave detection device.
  • the interference signal with any frequency relationship forms a second type of interference signal in the corresponding Doppler intermediate frequency signal, which is beneficial to improving the feedback accuracy of the Doppler intermediate frequency signal to the motion of the object in the corresponding detection space.
  • An object of the present invention is to provide an anti-interference microwave detection method and microwave detection device, in which Doppler intermediate frequency signals in the form of differential signals are formed based on the formation process of the first type of interference signal and the second type of interference signal.
  • the first type of interference signal and the second type of interference signal can be distinguished by corresponding to the Doppler intermediate frequency signal that exists in the form of a differential signal in the form of common mode interference and differential mode interference respectively, and can be based on different signal processing methods without affecting each other.
  • the accuracy of the feedback of the intermediate frequency signal to the movement of objects in the corresponding detection space is conducive to the realization of combined detection of action characteristics including human movement, micro-movement, breathing and heartbeat. Accordingly, the detection functions of the microwave detection device are rich and Intelligent detection applications for multifunctional needs.
  • An object of the present invention is to provide an anti-interference microwave detection method and a microwave detection device, in which the second type of interference signal is loaded on the Doppler intermediate frequency signal in the form of a differential signal in the form of differential mode interference, through cancellation
  • the method eliminates the second type of interference signal in the corresponding frequency range in the Doppler intermediate frequency signal in the form of a differential signal, thus helping to avoid the use of multiple filtering methods and ensuring the integrity and security of the Doppler intermediate frequency signal.
  • the corresponding relationship between the corresponding parameters of the Doppler intermediate frequency signal and the physical meaning further improves the feedback accuracy of the Doppler intermediate frequency signal to the movement of objects in the corresponding detection space.
  • An object of the present invention is to provide an anti-interference microwave detection method and a microwave detection device.
  • the local oscillator signal of the microwave detection device has any frequency relationship of the same frequency, adjacent frequency or multiple frequency.
  • the environmental interference signals are mainly wireless communication signals.
  • the second type of interference signal in the corresponding frequency range in the Doppler intermediate frequency signal in the form of a differential signal can be accurately eliminated in the corresponding frequency range based on frequency selective cancellation, so as to ensure that the microwave detection device is resistant to The ability to interfere with communications has great practical value and commercial significance.
  • An object of the present invention is to provide an anti-interference microwave detection method and a microwave detection device, wherein the anti-interference microwave detection method detects the first type of interference signal and the second type of interference signal in the Doppler intermediate frequency signal in the form of a differential signal.
  • the suppression or elimination processing of the interference-like signal can avoid the use of multiple filtering methods and avoid the signal delay caused by the filtering process. Then the immediacy of the Doppler intermediate frequency signal is guaranteed and is beneficial to the realization of human breathing and Real-time detection of heartbeat and other actions.
  • An object of the present invention is to provide an anti-interference microwave detection method and microwave detection device.
  • environmental interference that has the same frequency relationship with the local oscillator signal of the microwave detection device
  • the signal may also be a signal emitted by other microwave detection devices of the same frequency.
  • the first type of interference signal and the second type of interference signal formed accordingly exist in the form of glitches in the Doppler intermediate frequency signal in the form of a differential signal, where Before eliminating the second type of interference signal in the corresponding frequency range in the Doppler intermediate frequency signal in the form of a differential signal in a frequency selective cancellation manner, the microwave detection device optionally detects the interference signal in the Doppler intermediate frequency signal in the form of a differential signal.
  • the two poles of the intermediate frequency signal are connected to the ground capacitor with the same parameter settings to suppress the first type of interference signal and the second type of interference signal formed in the form of glitches in the Doppler intermediate frequency signal in the form of a differential signal.
  • Interference signals are used to ensure the anti-interference ability of the microwave detection device in the application scenario of multiple microwave detection devices.
  • An object of the present invention is to provide an anti-interference microwave detection method and microwave detection device, in which the first type of interference signal interferes with the Doppler intermediate frequency signal existing in the form of a differential signal in the form of a common mode, and is therefore suitable for detecting differential signals.
  • Differential amplification of the Doppler intermediate frequency signal in the form of a differential signal suppresses the first type of interference signal in the Doppler intermediate frequency signal in the form of a differential signal, and at the same time amplifies the Doppler intermediate frequency signal in the form of a differential signal, thereby suppressing environmental formed by environmental interference signals that can be received by the microwave detection device
  • the first type of interference signal interferes with the Doppler intermediate frequency signal, which is beneficial to improving the feedback accuracy of the Doppler intermediate frequency signal to the movement of objects in the corresponding detection space.
  • An object of the present invention is to provide an anti-interference microwave detection method and microwave detection device, in which the first type of interference signal interferes with the Doppler intermediate frequency signal existing in the differential signal form as a common mode, and is therefore suitable for use in differential signal forms.
  • the common mode interference is suppressed and eliminated by converting the Doppler intermediate frequency signal in the differential signal form into
  • the method of data identification and calculation of the Doppler intermediate frequency signal in the form of a single-ended signal suppresses and eliminates the first type of interference signal formed by the environmental interference signal that can be received by the microwave detection device on the Doppler Interference of the intermediate frequency signal, corresponding to the feedback accuracy of the Doppler intermediate frequency signal to the movement of the object is ensured.
  • An object of the present invention is to provide an anti-interference microwave detection method and microwave detection device, wherein by forming a Doppler intermediate frequency signal in the form of a differential signal, the external radiation of the Doppler intermediate frequency signal in the form of a differential signal can interact with each other. Offset, the interference of the Doppler intermediate frequency signal to the environment and corresponding lines can be suppressed, which is beneficial to improving the anti-interference ability of the microwave detection device.
  • An object of the present invention is to provide an anti-interference microwave detection method and microwave detection device, wherein by forming a Doppler intermediate frequency signal in the form of a differential signal, the first type of interference signal corresponds to the common mode interference existing in the form of a differential signal.
  • the Doppler intermediate frequency signal, the differential amplification processing of the Doppler intermediate frequency signal in the form of a differential signal and/or the conversion of the Doppler intermediate frequency signal into a single-ended signal form can ensure the Doppler intermediate frequency signal.
  • the complete state of the feedback of the Doppler intermediate frequency signal to the motion of the object in the corresponding detection space enables the amplification and anti-interference processing of the Doppler intermediate frequency signal, which is beneficial to the acquisition of information on the Doppler intermediate frequency signal, including the human body, based on the Doppler intermediate frequency signal.
  • Accurate and stable detection results of human activities such as movement, micro-movement, breathing and heartbeat.
  • An object of the present invention is to provide an anti-interference microwave detection method and microwave detection device, in which the Doppler intermediate frequency signal in the form of a differential signal is differentially amplified and/or the Doppler intermediate frequency signal in the form of a single-ended signal is processed.
  • the conversion of the intermediate frequency signal can greatly reduce or even avoid the use of capacitive elements in the transmission path of the Doppler intermediate frequency signal. Then the immediacy of the Doppler intermediate frequency signal is guaranteed and is beneficial to the realization of human breathing, including human breathing. and real-time detection of heartbeat and other actions.
  • An object of the present invention is to provide an anti-interference microwave detection method and microwave detection device, wherein the Doppler intermediate frequency signal is in the initial state of a single-ended signal form.
  • the conversion of the intermediate frequency signal forms the Doppler intermediate frequency signal in the form of a differential signal, which is beneficial to maintaining the
  • the initial intensity of the Doppler intermediate frequency signal in the form of a differential signal is blocked to ensure the feedback accuracy of the Doppler intermediate frequency signal to the motion of the object in the corresponding detection space.
  • the present invention provides an anti-interference microwave detection method.
  • the anti-interference microwave detection method includes the following steps:
  • a frequency selective cancellation circuit is used to perform frequency selective cancellation processing on the Doppler intermediate frequency signal in the form of a differential signal output in step (C). And output the Doppler intermediate frequency signal after frequency-selective cancellation processing, wherein the frequency-selective cancellation circuit includes a first equivalent resistance, a second equivalent resistance and an equivalent capacitor, wherein the third equivalent resistance is One end of an equivalent resistor is electrically connected to one end of the equivalent capacitor, and one end of the second equivalent resistor is electrically connected to the other end of the equivalent capacitor, corresponding to the frequency selection cancellation circuit.
  • the other end of the first equivalent resistance and the other end of the second equivalent resistance are two input terminals, and the two ends of the equivalent capacitance are two output terminals, so that the two input terminals are connected Input the Doppler intermediate frequency signal in the form of a differential signal output in step (C), and output the Doppler intermediate frequency signal processed by frequency-selective cancellation at the two output terminals.
  • the first equivalent resistance and the second equivalent resistance are set to a resistance value of 39 k ⁇ within an error range of 25%
  • the equivalent capacitance is set to a resistance value of 39 k ⁇ within an error range of 25%.
  • the capacitance within the error range tends to 47nF.
  • the equivalent capacitance is equivalently configured as two capacitors connected in series, and the frequency selective cancellation circuit is grounded between the two capacitors connected in series.
  • the two input terminals of the frequency selective cancellation circuit are electrically connected to a pair of ground capacitors respectively.
  • the anti-interference microwave detection method further includes steps (C) and Between said step (D), and/or after said step (D), it includes the steps:
  • the anti-interference microwave detection method further includes the step after step (D):
  • step (C) the multiplexed signal in the form of a differential signal corresponding to the frequency/phase difference between the local oscillator signal and the feedback signal is directly output in a mixing process. Puller IF signal.
  • step (C) includes the following steps:
  • Convert the single-ended signal form by inverting the Doppler intermediate frequency signal in the form of a single-ended signal and outputting a signal corresponding to the frequency/phase difference between the local oscillator signal and the feedback signal.
  • the Doppler intermediate frequency signal is in the form of a differential signal.
  • the present invention also provides a microwave detection device, and the microwave detection device includes:
  • An oscillation unit wherein the oscillation unit is configured to generate an oscillation signal
  • An antenna unit the antenna unit is feed-connected to the oscillation unit to emit a detection beam corresponding to the frequency of the local oscillator signal to form a corresponding detection space, and receives the detection beam to be detected in the detection space.
  • An echo formed by reflection from an object generates a feedback signal;
  • a Doppler differential output circuit wherein the Doppler differential output circuit is electrically connected to the antenna unit and the oscillation unit to output a Doppler intermediate frequency signal in the form of a differential signal, wherein the Doppler differential output circuit
  • the intermediate frequency signal is a signal corresponding to the frequency/phase difference between the local oscillator signal and the feedback signal;
  • At least one frequency selective cancellation circuit wherein the frequency selective cancellation circuit is electrically connected to the Doppler differential output circuit to eliminate the Doppler intermediate frequency signal in the form of a differential signal through frequency selective cancellation.
  • the differential signal in the corresponding frequency range corresponds to the environmental interference signal superimposed on the feedback signal, and corresponds to the The differential mode interference generated in the Doppler intermediate frequency signal by a wireless communication signal whose frequency has any frequency relationship of the same frequency, adjacent frequency and multiple frequency can be eliminated.
  • the frequency selection cancellation circuit includes a first equivalent resistor, a second equivalent resistor and an equivalent capacitor, wherein one end of the first equivalent resistor is electrically connected to One end of the equivalent capacitor, one end of the second equivalent resistor is electrically connected to the other end of the equivalent capacitor, corresponding to the frequency selection cancellation circuit, the other end of the first equivalent resistor and The other end of the second equivalent resistance is two input terminals, and the two ends of the equivalent capacitance are two output terminals, so that the differential output of the Doppler differential output circuit is connected from the two input terminals.
  • the Doppler intermediate frequency signal in the form of a signal, and the Doppler intermediate frequency signal processed by frequency-selective cancellation are output from the two output terminals.
  • the first equivalent resistance and the second equivalent resistance are set to a resistance value of 39 k ⁇ within an error range of 25%
  • the equivalent capacitance is set to a resistance value of 39 k ⁇ within an error range of 25%.
  • the capacitance within the error range tends to 47nF.
  • the equivalent capacitance is equivalently configured as two capacitors connected in series, wherein the two capacitors are configured to use the same type of capacitor, and the frequency selection cancellation circuit is configured between two capacitors connected in series. capacitors are connected to ground.
  • the two input terminals of the frequency selective cancellation circuit are electrically connected to a pair of ground capacitors respectively.
  • the Doppler differential output circuit is configured to directly output the Doppler in the form of a differential signal corresponding to the frequency/phase difference between the local oscillator signal and the feedback signal based on mixing processing. Le intermediate frequency signal.
  • the Doppler differential output circuit includes a first load and a second load formed in the form of equivalent resistance or equivalent inductance, a first MOS transistor, and a second MOS transistor, One end of the first load is electrically connected to one end of the second load, the other end of the first load is electrically connected to the drain of the first MOS transistor, and the second end of the second load is electrically connected to the drain of the first MOS transistor.
  • the other end is electrically connected to the drain of the second MOS transistor, wherein the source of the first MOS transistor is electrically connected to the source of the second MOS transistor, so that the two interconnected
  • the two ends of the first load and the second load are connected to the power supply, and the feedback signal is connected to the two sources of the first MOS transistor and the second MOS transistor connected to each other, and the feedback signal is connected to the first MOS transistor and the second MOS transistor.
  • the gate of a MOS transistor and the gate of the second MOS transistor are respectively connected to the state of the local oscillator signal in reverse phase, which can be connected to the drain of the first MOS transistor and the drain of the second MOS transistor.
  • the pole outputs the Doppler intermediate frequency signal in the form of a differential signal.
  • the Doppler differential output circuit includes a first MOS transistor, a second MOS transistor, a third MOS transistor and a fourth MOS transistor, wherein the drain of the first MOS transistor is electrically connected to the drain of the second MOS transistor, the drain of the third MOS transistor is electrically connected to the drain of the fourth MOS transistor, and the source of the first MOS transistor is electrically connected is electrically connected to the source of the third MOS transistor, and the source of the second MOS transistor is electrically connected to the source of the fourth MOS transistor, so that the first MOS transistor and the mutually connected Between the two drains of the second MOS transistor, and between the two drains of the interconnected third MOS transistor and the fourth MOS transistor, the inverted feedback signal is connected respectively, and The state of the four gates of the first MOS transistor, the second MOS transistor, the third MOS transistor and the fourth MOS transistor connected to the local oscillator signal in sequential inversion can be determined by the state of the local oscillator signal. Between the two sources of the first MOS transistor,
  • the Doppler differential output circuit includes a first load and a second load formed in the form of equivalent resistance or equivalent inductance, a first MOS transistor, a second MOS transistor, and a third MOS transistor, wherein one end of the first load is electrically connected to one end of the second load, and the other end of the first load is electrically connected to the drain of the first MOS transistor, The other end of the second load is electrically connected to the drain of the second MOS transistor, wherein the source of the first MOS transistor and the source of the second MOS transistor are electrically connected to the respective The drain of the third MOS transistor, wherein the source of the third MOS transistor is grounded, so that the two ends of the first load and the second load connected to each other are connected to the power supply, and the source of the third MOS transistor is connected to the ground.
  • the Doppler intermediate frequency signal in the form of a differential signal is output from the drain of the first MOS transistor and the drain of the second MOS transistor.
  • the Doppler differential output circuit includes a first load and a second load formed in the form of equivalent resistance or equivalent inductance, a first MOS tube, a second MOS tube, a A third MOS transistor, a fourth MOS transistor, a fifth MOS transistor, a sixth MOS transistor, and a current source, wherein one end of the first load is electrically connected to one end of the second load, so The other end of the first load is electrically connected to the drain of the first MOS transistor and the drain of the third MOS transistor respectively, and the other end of the second load is electrically connected to the third MOS transistor respectively.
  • the drain of the second MOS transistor and the drain of the fourth MOS transistor wherein the source of the first MOS transistor and the source of the second MOS transistor are respectively electrically connected to the fifth MOS transistor.
  • the drain, the source of the third MOS transistor and the source of the fourth MOS transistor are electrically connected to the drain of the sixth MOS transistor, wherein the source of the fifth MOS transistor and the source of the fourth MOS transistor are electrically connected to the drain of the sixth MOS transistor.
  • the sources of the sixth MOS tube are respectively is electrically connected to the current source, so that the inverted feedback signal is connected to the gate of the fifth MOS transistor and the gate of the sixth MOS transistor respectively, and the feedback signal of the first MOS transistor is connected to the gate of the first MOS transistor.
  • the gate electrode of the third MOS transistor and the gate electrode of the fourth MOS transistor are respectively connected to the inverted local oscillator signal.
  • the gate electrode of the third MOS transistor and the gate electrode of the fourth MOS transistor are respectively connected to the inverted local oscillator signal.
  • the local oscillator signal wherein the local oscillator signal connected to the gate of the second MOS transistor and the local oscillator signal connected to the gate of the third MOS transistor are in the same phase, and are connected to each other.
  • the Doppler differential output circuit includes a mixing circuit and a single-ended signal to differential signal circuit, wherein the mixing circuit is electrically connected to the antenna unit and the oscillation unit, so as to Access the feedback signal and the local oscillator signal and output the Doppler in the form of a single-ended signal corresponding to the frequency/phase difference between the feedback signal and the local oscillator signal in a mixing detection manner.
  • the single-ended to differential circuit is electrically connected to the mixing circuit to access the Doppler intermediate frequency signal in the form of a single-ended signal and convert the Doppler signal in the form of a single-ended signal
  • the Doppler intermediate frequency signal in the form of a single-ended signal is converted into the Doppler intermediate frequency signal in the form of a differential signal by inverting the phase of the intermediate frequency signal.
  • the microwave detection device further includes at least one differential amplifier circuit, wherein the differential amplifier circuit is disposed between the Doppler differential output circuit and the frequency selective cancellation circuit to detect The Doppler intermediate frequency signal in the form of a differential signal output by the Doppler differential output circuit undergoes differential amplification processing.
  • the microwave detection device further includes at least one differential amplification circuit, wherein the differential amplification circuit is provided at the two output terminals of the frequency selection cancellation circuit to adjust the frequency selection pair.
  • the Doppler intermediate frequency signal in the form of a differential signal output by the cancellation circuit is subjected to differential amplification processing.
  • the microwave detection device further includes a differential signal to single-ended signal conversion circuit to receive the Doppler intermediate frequency signal in the form of a differential signal after frequency selection cancellation processing, and convert the differential signal form The Doppler intermediate frequency signal is output in the form of a single-ended signal.
  • the present invention also provides a microwave detection device, and the microwave detection device includes:
  • An oscillation unit wherein the oscillation unit is configured to generate an oscillation signal
  • An antenna unit the antenna unit is feed-connected to the oscillation unit to emit a detection beam corresponding to the frequency of the local oscillator signal to form a corresponding detection space, and receives the detection beam to be detected in the detection space.
  • An echo formed by reflection from an object generates a feedback signal;
  • a Doppler differential output circuit wherein the Doppler differential output circuit is electrically connected to the antenna unit and the oscillation unit, and is configured to directly output a Doppler signal in the form of a differential signal based on mixing processing.
  • Doppler intermediate frequency signal wherein the Doppler intermediate frequency signal is a signal corresponding to the frequency/phase difference between the local oscillator signal and the feedback signal.
  • the Doppler differential output circuit includes a first load and a second load formed in the form of equivalent resistance or equivalent inductance, a first MOS transistor, and a second MOS transistor, One end of the first load is electrically connected to one end of the second load, the other end of the first load is electrically connected to the drain of the first MOS transistor, and the second end of the second load is electrically connected to the drain of the first MOS transistor.
  • the other end is electrically connected to the drain of the second MOS transistor, wherein the source of the first MOS transistor is electrically connected to the source of the second MOS transistor, so that the two interconnected
  • the two ends of the first load and the second load are connected to the power supply, and the feedback signal is connected to the two sources of the first MOS transistor and the second MOS transistor connected to each other, and the feedback signal is connected to the first MOS transistor and the second MOS transistor.
  • the gate of a MOS transistor and the gate of the second MOS transistor are respectively connected to the state of the local oscillator signal in reverse phase, which can be connected to the drain of the first MOS transistor and the drain of the second MOS transistor.
  • the pole outputs the Doppler intermediate frequency signal in the form of a differential signal.
  • the Doppler differential output circuit includes a first MOS transistor, a second MOS transistor, a third MOS transistor and a fourth MOS transistor, wherein the drain of the first MOS transistor is electrically connected to the drain of the second MOS transistor, the drain of the third MOS transistor is electrically connected to the drain of the fourth MOS transistor, and the source of the first MOS transistor is electrically connected is electrically connected to the source of the third MOS transistor, and the source of the second MOS transistor is electrically connected to the source of the fourth MOS transistor, so that the first MOS transistor and the mutually connected Between the two drains of the second MOS transistor, and between the two drains of the interconnected third MOS transistor and the fourth MOS transistor, the inverted feedback signal is connected respectively, and The state of the four gates of the first MOS transistor, the second MOS transistor, the third MOS transistor and the fourth MOS transistor connected to the local oscillator signal in sequential inversion can be determined by the state of the local oscillator signal. Between the two sources of the first MOS transistor,
  • the Doppler differential output circuit includes a first load and a second load formed in the form of equivalent resistance or equivalent inductance, a first MOS transistor, a second MOS transistor, and a third MOS transistor, wherein one end of the first load is electrically connected to one end of the second load, and the other end of the first load is electrically connected to the drain of the first MOS transistor, The other end of the second load is electrically connected to the drain of the second MOS transistor, wherein the source of the first MOS transistor and the second MOS transistor The sources are respectively electrically connected to the drains of the third MOS transistors, wherein the sources of the third MOS transistors are grounded, so that the first load and the second load are connected to each other.
  • the power supply is connected to both ends, the feedback signal is connected to the gate of the third MOS transistor, and the inverting signal is connected to the gate of the first MOS transistor and the gate of the second MOS transistor respectively.
  • the Doppler intermediate frequency signal in the form of a differential signal can be output to the drain of the first MOS transistor and the drain of the second MOS transistor.
  • the Doppler differential output circuit includes a first load and a second load formed in the form of equivalent resistance or equivalent inductance, a first MOS tube, a second MOS tube, a A third MOS transistor, a fourth MOS transistor, a fifth MOS transistor, a sixth MOS transistor, and a current source, wherein one end of the first load is electrically connected to one end of the second load, so The other end of the first load is electrically connected to the drain of the first MOS transistor and the drain of the third MOS transistor respectively, and the other end of the second load is electrically connected to the third MOS transistor respectively.
  • the drain of the second MOS transistor and the drain of the fourth MOS transistor wherein the source of the first MOS transistor and the source of the second MOS transistor are respectively electrically connected to the fifth MOS transistor.
  • the drain, the source of the third MOS transistor and the source of the fourth MOS transistor are electrically connected to the drain of the sixth MOS transistor, wherein the source of the fifth MOS transistor and the source of the fourth MOS transistor are electrically connected to the drain of the sixth MOS transistor.
  • the sources of the sixth MOS transistor are respectively electrically connected to the current source, so that the gates of the fifth MOS transistor and the gates of the sixth MOS transistor are respectively connected to the feedback in reverse phase.
  • the inverted local oscillator signal is connected to the gate of the first MOS transistor and the gate of the second MOS transistor respectively, and the inverted local oscillator signal is connected to the gate of the third MOS transistor and the fourth MOS transistor.
  • the gates of the tubes are respectively connected to the inverted local oscillator signals, wherein the local oscillator signals connected to the gates of the second MOS tube and the local oscillator signals connected to the gates of the third MOS tube are connected.
  • Figure 1 is a schematic diagram of the circuit structure principle of an existing Doppler microwave detection device.
  • Figure 2 is a schematic comparison diagram of the Doppler intermediate frequency signal output by the existing Doppler microwave detection device before and after being filtered.
  • FIG. 3 is a schematic structural diagram of a microwave detection device according to an embodiment of the present invention.
  • 4A is a schematic comparison diagram of the Doppler intermediate frequency signal output by the microwave detection device according to the above embodiment of the present invention before and after frequency-selected destructive processing.
  • 4B is a schematic comparison diagram of the Doppler intermediate frequency signal output by the microwave detection device according to the above embodiment of the present invention before and after frequency-selected destructive processing.
  • FIG. 5A is a schematic structural principle diagram of the microwave detection device according to a modified embodiment of the above-mentioned embodiment of the present invention.
  • FIG. 5B is a schematic structural principle diagram of a further deformation of the microwave detection device according to the above deformation embodiment of the present invention.
  • FIG. 6A is a schematic structural principle diagram of the microwave detection device according to another modified embodiment of the above-mentioned embodiment of the present invention.
  • 6B is a schematic comparison diagram of Doppler intermediate frequency signals output by the microwave detection device at different positions according to the above-mentioned modified embodiment of the present invention.
  • FIG. 7A is a schematic diagram of the series structure of the frequency-selective cancellation circuit of the microwave detection device according to the above embodiment of the present invention.
  • FIG. 7A is a schematic diagram of the parallel structure of the frequency-selective cancellation circuit of the microwave detection device according to the above embodiment of the present invention.
  • 8A to 8D are schematic diagrams of different circuit structures of the Doppler differential output circuit of the microwave detection device according to the above-mentioned embodiments of the present invention.
  • FIG. 9 is a schematic diagram of a circuit structure principle of the Doppler differential output circuit of the microwave detection device according to the above-mentioned embodiments of the present invention.
  • FIG. 10A is a schematic diagram of the circuit structure of the Doppler differential output circuit of the microwave detection device according to the above-mentioned embodiments of the present invention.
  • FIG. 10A is another schematic diagram of the circuit structure of the Doppler differential output circuit of the microwave detection device according to the above-mentioned embodiments of the present invention.
  • 11A to 11D are schematic diagrams of different circuit structures based on the above-mentioned circuit structure principles of the Doppler differential output circuit of the microwave detection device according to the above-mentioned embodiments of the present invention.
  • 12A to 12C are schematic diagrams of different circuit structures based on the above-mentioned circuit structure principles of the Doppler differential output circuit of the microwave detection device according to the above-mentioned embodiments of the present invention.
  • Figure 13A shows the Doppler differential output of the microwave detection device according to the above-mentioned embodiments of the present invention. Another circuit structure schematic diagram of the above circuit structure principle of the circuit.
  • FIG. 13B is another schematic diagram of the circuit structure of the Doppler differential output circuit of the microwave detection device according to the above-mentioned embodiments of the present invention.
  • FIG. 14A is a schematic diagram of a partial circuit structure of the microwave detection device according to another embodiment of the present invention.
  • FIG. 14B is a schematic diagram of a partial circuit structure of the microwave detection device according to another embodiment of the present invention.
  • FIG. 15A is a schematic diagram of a circuit structure principle in which the microwave detection device according to the above-mentioned embodiments of the present invention is further equipped with a differential amplifier circuit.
  • FIG. 15B is a schematic diagram of another circuit structure principle in which the microwave detection device according to the above-mentioned embodiments of the present invention is further equipped with a differential amplifier circuit.
  • FIG. 16 is a schematic circuit structure diagram of the differential amplifier circuit of the microwave detection device according to the above-mentioned embodiments of the present invention.
  • FIG. 17A is a schematic diagram of a circuit structure in which the microwave detection device according to the above-mentioned embodiments of the present invention is further equipped with a differential signal to single-ended signal circuit.
  • FIG. 17B is a schematic diagram of another circuit structure principle in which the microwave detection device according to the above-mentioned embodiments of the present invention is further equipped with a differential signal to single-ended signal circuit.
  • FIG. 18 is a schematic circuit structure diagram of a differential signal to single-ended signal circuit of the microwave detection device according to the above-mentioned embodiments of the present invention.
  • the term “a” should be understood as “at least one” or “one or more”, that is, in In one embodiment, the number of an element may be one, and in other embodiments, the number of the element may be multiple, and the term “a” shall not be understood as a limitation on the number.
  • the present invention provides an anti-interference microwave detection method and microwave detection device.
  • the microwave detection device includes an antenna unit 10, an oscillation unit 20, a Doppler differential output circuit 30 and at least one frequency selective cancellation circuit 40, wherein the oscillation unit 20 is configured to generate an oscillation signal, wherein the The antenna unit 10 is fed and connected to the oscillation unit 20 to emit a detection beam corresponding to the frequency of the local oscillator signal to form a corresponding detection space, and receive the detection beam to be reflected by objects in the detection space.
  • An echo generates a feedback signal
  • the Doppler differential output circuit 30 is electrically connected to the antenna unit 10 and the oscillation unit 20 to output a Doppler intermediate frequency signal in the form of a differential signal
  • the Doppler intermediate frequency signal is a signal corresponding to the frequency/phase difference between the local oscillator signal and the feedback signal
  • the frequency selective cancellation circuit 40 is electrically connected to the Doppler differential signal.
  • the output circuit 30 eliminates the differential signal in the corresponding frequency range of the Doppler intermediate frequency signal in the form of a differential signal through frequency selective cancellation.
  • the antenna unit 10 is configured to use the same antenna body as a transmitting antenna and a receiving antenna and is simultaneously connected to the oscillation unit 20 for feed and to the Doppler differential
  • the output circuit 30 is electrically connected.
  • the antenna unit 10 is configured to use different antenna bodies as transmitting antennas that are fed and connected to the oscillation unit 20 and are electrically connected to all the transmitting antennas.
  • the invention does not limit the receiving antenna of the Doppler differential output circuit 30, and the number and shape of the corresponding antenna bodies do not constitute a limitation on the invention.
  • the antenna unit 10 is connected to the oscillation unit 20 .
  • the connection lines between the units 20 and the connection lines between the Doppler differential output circuit 30 and the oscillation unit 20 are not limited to the same, that is, the local oscillation signal provided by the oscillation unit 20 to the antenna unit 10 and the The local oscillator signals to the Doppler differential output circuit 30 are from the same source (both are provided by the oscillation unit 20) but are not limited to the same path.
  • the oscillation unit 20 is configured based on the corresponding circuit. The present invention is not limited to amplifying and outputting the local oscillator signal to the antenna unit 10 .
  • the environmental interference signal that can be received by the antenna unit 10 will be superimposed on the Doppler intermediate frequency signal in the form of a differential signal.
  • Form the first type of interference signal in the Doppler intermediate frequency signal on the other hand, it can be Among the environmental interference signals received by the antenna unit 10, signals that have any frequency relationship with the frequency of the local oscillator signal, such as the same frequency, adjacent frequency, or multiple frequency, will also be superimposed on the feedback signal to participate in the mixing detection process.
  • a second type of interference signal mixed with the effective signal in the Doppler intermediate frequency signal is formed.
  • the first type of interference signal and the second type of interference signal respectively correspond to the Doppler that exists in the form of differential signals in the form of common mode interference and differential mode interference.
  • the intermediate frequency signals can be distinguished, and then the first type of interference signal and the second type of interference signal in the Doppler intermediate frequency signal in the form of differential signals can be suppressed or eliminated based on different signal processing methods without affecting each other, so as to have It is beneficial to ensure the integrity of the Doppler intermediate frequency signal and the accuracy of the feedback of the Doppler intermediate frequency signal to the movement of objects in the corresponding detection space, which is beneficial to the realization of human body movement, micro-movement, breathing and heartbeat.
  • the microwave detection device has rich detection functions and is suitable for intelligent detection applications with multi-functional requirements.
  • the frequency selective cancellation circuit 40 is used to eliminate the second type of interference signal in the corresponding frequency range in the Doppler intermediate frequency signal in the form of a differential signal through frequency selective cancellation.
  • the frequency selection cancellation circuit 40 includes a first equivalent resistor 401, a second equivalent resistor 402 and an equivalent capacitor 403, wherein one end of the first equivalent resistor 401 is electrically connected to One end of the equivalent capacitor 403 and one end of the second equivalent resistor 402 are electrically connected to the other end of the equivalent capacitor 403.
  • the first equivalent resistor The other end of 401 and the other end of the second equivalent resistance 402 are two input terminals 41, and the two ends of the equivalent capacitance 403 are two output terminals 42, wherein the frequency selection cancellation circuit 40
  • the input terminal 41 is electrically connected to the Doppler differential output circuit 30, so that the two poles of the Doppler intermediate frequency signal in the form of differential signals are connected from the two input terminals 41, and the two output terminals 41 are connected to the Doppler intermediate frequency signal.
  • Terminal 42 outputs the Doppler intermediate frequency signal processed by frequency-selective cancellation.
  • the equivalent resistance is a resistance that satisfies the corresponding resistance requirements and is equivalently formed by a single or multiple resistive elements based on any connection method such as series connection, parallel connection, or series-parallel combination.
  • the equivalent capacitance 403 is a capacitance requirement that is equivalently formed by a single or multiple capacitive elements based on any connection method of series connection, parallel connection, and series-parallel combination. Capacitance does not constitute a restriction on the shape, quantity and connection method of the corresponding capacitive components.
  • environmental interference signals that have any frequency relationship with the local oscillator signal of the microwave detection device at the same frequency, adjacent frequency, or multiple frequency are mainly wireless communication signals.
  • the rate of frequency change produced by the Doppler effect principle corresponds to the second type of interference signal existing in the form of differential mode interference in the form of high-frequency peaks in the Doppler intermediate frequency signal in the form of a differential signal. Therefore, it can be based on frequency selection in the corresponding frequency range.
  • the cancellation method accurately eliminates the second type of interference signal in the corresponding frequency range in the Doppler intermediate frequency signal in the form of a differential signal. This ensures the ability of the microwave detection device to resist communication interference and has great practical value and commercial significance. .
  • the frequency selection cancellation circuit 40 is The upper and lower arrangement of the Doppler intermediate frequency signal (unipolar to ground form of the differential signal) sampled and acquired by one of the input terminals 41 and one of the output terminals 42 is compared and illustrated, relative to Figure 2
  • the filtering method shown is used.
  • the frequency selective cancellation method can accurately eliminate the second type of interference signal in the corresponding frequency range in the Doppler intermediate frequency signal in the form of a differential signal. It is obviously different from the integral smoothing process of the filtering method.
  • the frequency-selective cancellation method can accurately eliminate the second type of interference signal in the corresponding frequency range in the Doppler intermediate frequency signal in the form of a differential signal, the use of multiple filtering methods can be avoided and the filtering process can be avoided.
  • the immediacy of the Doppler intermediate frequency signal is ensured, which is beneficial to the real-time detection of actions including human breathing and heartbeat.
  • the first equivalent resistance 401 and The resistance value of the second equivalent resistor 402 is set to be the same within an error range of 25%.
  • the first equivalent resistance 401 and the second equivalent resistance 402 are preferably set to be within an error range of 25%.
  • the corresponding equivalent capacitance 403 is set to a capacitance of 47nF within an error range of 25%, such as a capacitor model of 473, so that the frequency selection cancellation circuit 40 can
  • the range can correspond to the frequency of the second type of interference signal generated by the existing wireless communication signal in the Doppler intermediate frequency signal in the form of a differential signal, thereby accurately eliminating the corresponding frequency in the Doppler intermediate frequency signal in the form of a differential signal.
  • the corresponding relationship between the corresponding parameters of the intermediate frequency signal and the physical meaning can significantly improve the feedback accuracy of the Doppler intermediate frequency signal to the movement of objects in the corresponding detection space compared to the method of multiple filtering.
  • the equivalent capacitance 403 is equivalently set as two capacitances 4031 connected in series, in order to maintain the output of the two output terminals 42 of the frequency selection cancellation circuit 40
  • the Doppler intermediate frequency signal is in the form of a differential signal
  • the two capacitors 4031 are preferably set to use the same type of capacitor, so that the capacitances of the two capacitors 4031 tend to be the same.
  • the first equivalent resistance 401 and the second equivalent resistance 402 are preferably set to be within an error range of 25%.
  • the equivalent capacitor 403 is set to a capacitance of 47nF within an error range of 25%.
  • the two capacitors 4031 using the same model are both set to a capacitance of 47nF within an error range of 25%.
  • the frequency selection cancellation circuit 40 optionally further includes two capacitors connected in series with each other. 4031 are grounded to form a balanced ground consumption of signals in the corresponding frequency range of the Doppler intermediate frequency signal in the form of a differential signal, thereby ensuring the output of the two output terminals 42 of the frequency selective cancellation circuit 40
  • the Doppler intermediate frequency signal is in the form of a differential signal.
  • the environmental interference signal that has the same frequency relationship with the local oscillator signal of the microwave detection device may also be the signal emitted by other microwave detection devices of the same frequency, or the detection signal emitted by the microwave detection device.
  • the beam forms a co-frequency interference signal based on multiple reflections in a small space and/or a strong reflection environment.
  • the first type of interference signal and the second type of interference signal formed correspond to glitches in the Doppler intermediate frequency signal in the form of a differential signal.
  • the microwave detection device optionally corresponds to FIG. 6A before eliminating the second type of interference signal in the corresponding frequency range in the Doppler intermediate frequency signal in the form of a differential signal in a frequency selective cancellation manner.
  • the two input terminals 41 of the frequency selection cancellation circuit 40 are electrically connected to a pair of ground capacitors 43 respectively, so that based on the settings of the two ground capacitors 43, the same frequency interference in the form of fixed frequency is suppressed in the form of differential signals.
  • the first type of interference signal and the second type of interference signal formed in the form of burrs in the Doppler intermediate frequency signal ensure the anti-interference ability of the microwave detection device in the application scenario of multiple microwave detection devices, and in small Anti-self-excited interference capability in space and/or strongly reflective environments.
  • the two ground capacitors 43 are set to use the same type of capacitor, so that the two ground capacitors 43 are configured to use the same type of capacitor.
  • the capacitance of the ground capacitor 43 tends to be the same.
  • the first type of interference signal and the second type of interference signal formed in the form of burrs in the Doppler intermediate frequency signal in the form of a differential signal due to co-frequency interference in the form of a fixed frequency can be based on the setting of the ground capacitor 43 be suppressed, thus preventing the noise floor of the Doppler intermediate frequency signal output by the frequency selective cancellation circuit 40 from being too high, thus helping to further ensure the anti-interference ability of the microwave detection device in different application scenarios.
  • the number of frequency selection cancellation circuits 40 is set to multiple forms.
  • the electrical connection relationship between the plurality of frequency selective cancellation circuits 40 is not limited to series or parallel connection, and may also be an electrical connection relationship formed based on a combination of series connection and parallel connection.
  • the series structure between the two frequency selection cancellation circuits 40 is illustrated. Specifically, the two output terminals 42 of one of the frequency selection cancellation circuits 40 are respectively electrically connected to the other.
  • a frequency selection The two input terminals 41 of the cancellation circuit 40 form a series structure between the two frequency selection cancellation circuits 40, so that the two input terminals 41 of the frequency selection cancellation circuit 40 of the previous stage are
  • the Doppler intermediate frequency signal is connected in the form of a differential signal, and the two output terminals 42 of the frequency selective cancellation circuit 40 at the subsequent stage output the Doppler processed by multi-stage frequency selective cancellation. IF signal.
  • the parallel structure between the two frequency selection cancellation circuits 40 is illustrated. Specifically, the two input terminals 41 of one of the frequency selection cancellation circuits 40 are respectively electrically connected to the other. The two input terminals 41 of one of the frequency selective cancellation circuits 40 form a parallel structure between the two frequency selective cancellation circuits 40, so as to separate the two input terminals of each of the frequency selective cancellation circuits 40.
  • the output terminal 42 outputs the Doppler intermediate frequency signal after frequency-selective cancellation processing to implement multi-channel frequency-selective cancellation processing.
  • the anti-interference microwave detection method of the present invention includes the following steps:
  • the oscillator unit 20 is used to provide the local oscillator signal
  • the antenna unit 10 is used to transmit the detection beam and receive the echo
  • the Doppler differential output circuit 30 is used to access the local oscillator signal. and the state of the feedback signal, inverting and outputting a signal corresponding to the frequency/phase difference between the local oscillator signal and the feedback signal to form an output of the Doppler intermediate frequency signal in the form of a differential signal
  • the frequency selective cancellation circuit 40 performs frequency selective cancellation processing on the Doppler intermediate frequency signal in the form of a differential signal and outputs the Doppler intermediate frequency signal after frequency selective cancellation processing, wherein the The frequency selection cancellation circuit 40 includes the first equivalent resistor 401, the second equivalent resistor 402 and the equivalent capacitor 403, wherein one end of the first equivalent resistor 401 is electrically connected to the One end of the equivalent capacitor 403 and one end of the second equivalent resistor 402 are electrically connected to the other end of the equivalent capacitor 403.
  • the first equivalent resistor 401 The other end of the second equivalent resistor 402 and the other end of the second equivalent resistor 402 are two input terminals 41, and the two ends of the equivalent capacitor 403 are two output terminals 42, wherein the frequency selection cancellation circuit 40 is located at two
  • the input terminal 41 is electrically connected to the Doppler differential output circuit 30, so that the two poles of the Doppler intermediate frequency signal in the form of a differential signal are received from the two input terminals 41, and the sum of the two poles is
  • the output terminal 42 outputs the Doppler intermediate frequency signal processed by frequency-selective cancellation.
  • a signal corresponding to the frequency/phase difference between the local oscillator signal and the feedback signal is directly output.
  • the Doppler IF signal in differential signal form.
  • a corresponding mixing circuit capable of directly outputting the Doppler intermediate frequency signal in the form of a differential signal based on mixing processing is provided.
  • the Doppler differential output circuit 30 includes a first load 301 and a second load 302 formed in the form of equivalent resistance or equivalent inductance, a first MOS transistor 303, and a second MOS tube 304, wherein one end of the first load 301 is electrically connected to one end of the second load 302, and the other end of the first load 301 is electrically connected to the drain of the first MOS tube 303 , the other end of the second load 302 is electrically connected to the drain of the second MOS transistor 304, wherein the source of the first MOS transistor 303 is electrically connected to the second MOS transistor 304.
  • the source electrode is connected to the power source at both ends of the first load 301 and the second load 302 connected to each other, and at the first MOS transistor 303 and the second MOS transistor 304 connected to each other.
  • the feedback signal is connected to the two sources, and the inverted local oscillator signal is connected to the gate of the first MOS transistor 303 and the gate of the second MOS transistor 304 respectively.
  • the drain of the first MOS transistor 303 and the drain of the second MOS transistor 304 output the Doppler intermediate frequency signal in the form of a differential signal.
  • the Doppler differential output circuit 30 includes a first MOS transistor 301, a second MOS transistor 302, a third MOS transistor 303 and a fourth MOS transistor 304, wherein the first MOS transistor
  • the drain of 301 is electrically connected to the drain of the second MOS transistor 302
  • the drain of the third MOS transistor 303 is electrically connected to the drain of the fourth MOS transistor 304
  • the first The source of the MOS transistor 301 is electrically connected to the source of the third MOS transistor 303
  • the source of the second MOS transistor 302 is electrically connected to the source of the fourth MOS transistor 304.
  • the inverted feedback signal is respectively connected to the four gates of the first MOS transistor 301, the second MOS transistor 302, the third MOS transistor 303 and the fourth MOS transistor 304.
  • the state of the local oscillator signal in which the poles are connected in sequential inversion can be between the two sources of the first MOS transistor 301 and the third MOS transistor 303, and between the second MOS transistor 302 and The fourth MOS transistor 304 between the two sources, the Doppler intermediate frequency signal in the form of a differential signal is output.
  • the Doppler differential output circuit 30 includes a first load 301 and a second load 302 formed in the form of equivalent resistance or equivalent inductance, a first MOS transistor 303, and a second MOS transistor. 304, and a third MOS transistor 305, wherein one end of the first load 301 is electrically connected to one end of the second load 302, and the other end of the first load 301 is electrically connected to the third The drain of a MOS transistor 303, the other end of the second load 302 is electrically connected to the drain of the second MOS transistor 304, wherein the source of the first MOS transistor 303 is connected to the second MOS transistor 304.
  • the sources of the tubes 304 are electrically connected to the drains of the third MOS tubes 305 respectively, wherein the sources of the third MOS tubes 305 are grounded, so that the first load 301 and the first load 301 are connected to each other.
  • the two ends of the second load 302 are connected to the power supply, and the feedback signal is connected to the gate of the third MOS transistor 305, and the gate of the first MOS transistor 303 and the second MOS transistor are connected.
  • the gates of 304 are respectively connected to the state of the inverted local oscillator signal, and the DOP in the form of a differential signal can be output to the drain of the first MOS transistor 303 and the drain of the second MOS transistor 304. Le intermediate frequency signal.
  • the Doppler differential output circuit 30 includes a first load 301 and a second load 302 formed in the form of equivalent resistance or equivalent inductance, a first MOS transistor 303, and a second MOS transistor. 304, a third MOS transistor 305, a fourth MOS transistor 306, a fifth MOS transistor 307, a sixth MOS transistor 308, and a current source 309, wherein one end of the first load 301 is electrically connected to One end of the second load 302 and the other end of the first load 301 are electrically connected to the drain of the first MOS transistor 303 and the drain of the third MOS transistor 305 respectively.
  • the other end of the load 302 is electrically connected to the drain of the second MOS transistor 304 and the drain of the fourth MOS transistor 306, respectively, where the source of the first MOS transistor 303 and the second MOS transistor 306 are electrically connected to each other.
  • the source of the transistor 304 is electrically connected to the drain of the fifth MOS transistor 307, and the source of the third MOS transistor 305 and the source of the fourth MOS transistor 306 are electrically connected to the source of the transistor 304.
  • the inverted local oscillator signal is connected to the gate electrode of the third MOS transistor 305 and the fourth MOS transistor 306 respectively.
  • the local oscillator signal connected to the gate of the second MOS transistor 304 and the local oscillator signal connected to the gate of the third MOS transistor 305 are in the same phase, and the first load 301 connected to each other is in phase. and the state in which both ends of the second load 302 are connected to power, the first load 301 can
  • the other end of the second load 302 and the other end of the second load 302 output the Doppler intermediate frequency signal in the form of a
  • the above-mentioned structural principles of the different Doppler differential output circuits 30 are only examples and are applicable to the microwave detection devices of the different embodiments.
  • the circuit structures of the Doppler differential output circuit 30 are diverse. Although they cannot be listed one by one, they are not limited to the independent form of discrete component form or integrated circuit form, and can be implemented as a combination form of discrete component form and integrated circuit form, and the present invention is not limited to this.
  • the Doppler differential output circuit 30 and the oscillation unit 20 are provided in the form of an integrated circuit and integrated into a microwave chip.
  • the first equivalent resistance 401 and the second equivalent resistance 402 of the frequency selection cancellation circuit 40 are integrated into the microwave chip.
  • the step (C) of the anti-interference microwave detection method includes the following steps:
  • Convert the single-ended signal form by inverting the Doppler intermediate frequency signal in the form of a single-ended signal and outputting a signal corresponding to the frequency/phase difference between the local oscillator signal and the feedback signal.
  • the Doppler intermediate frequency signal is in the form of a differential signal.
  • step (C2) since only one signal corresponding to the frequency/phase difference between the local oscillator signal and the feedback signal is derived, the single signal output in step (C2) is The initial strength of the Doppler intermediate frequency signal in the terminal signal form can be guaranteed, which is beneficial to ensuring the initial strength of the Doppler intermediate frequency signal based on the differential signal form output in step (C3), which is beneficial to ensuring that the The feedback accuracy of the Doppler intermediate frequency signal in the form of a differential signal output in the form of frequency selective cancellation in step (D) to the movement of the object in the corresponding detection space.
  • the Doppler differential output circuit 30 includes a mixing circuit 31 and a single-ended signal to differential signal conversion circuit 32, wherein the mixing circuit 31 is electrically connected to the antenna.
  • the line unit 10 and the oscillation unit 20 are configured to access the feedback signal and the local oscillator signal and output a frequency/phase difference corresponding to the feedback signal and the local oscillator signal in a mixing detection manner.
  • the Doppler intermediate frequency signal in the form of a single-ended signal wherein the single-ended to differential circuit 32 is electrically connected to the mixing circuit 31 to access the Doppler intermediate frequency signal in the form of a single-ended signal. And converting the Doppler intermediate frequency signal in the single-ended signal form into the Doppler intermediate frequency signal in the differential signal form by inverting the Doppler intermediate frequency signal in the single-ended signal form.
  • FIGS. 10A and 10B of the accompanying drawings of the present invention a structural principle of the single-ended signal to differential signal circuit 32 and different basic circuit structures of the single-ended signal to differential signal circuit 32 are shown. were signaled respectively.
  • the single-ended signal to differential signal circuit 32 includes a triode 321, a first resistor 322, a second resistor 323, a third resistor 324, a fourth resistor 325 and a capacitor 326.
  • the emitter of the transistor 321 is grounded through the first resistor 322, the collector of the transistor 321 is connected to the power supply through the second resistor 323, and the base of the transistor 321 is connected to the third resistor 324.
  • the power supply is connected, and the fourth resistor 325 is connected to ground, and the Doppler intermediate frequency signal in the form of a single-ended signal is connected via the capacitor 326 to be output between the collector and the emitter of the transistor 321
  • the Doppler IF signal in differential signal form is provided.
  • the single-ended signal to differential signal circuit 32 includes an operational amplifier 321 , a first resistor 322 and a second resistor 323 , wherein the operational amplifier 321 is connected to the reference voltage at the non-inverting input terminal, and is connected to the inverting input terminal.
  • the phase input end is electrically connected to the output end of the operational amplifier 321 through the first resistor 322, and the Doppler intermediate frequency signal in the form of a single-ended signal is connected through the second resistor 323, so that The Doppler intermediate frequency signal in the form of a differential signal is output between one end of the second resistor 323 connected to the Doppler intermediate frequency signal in the form of a single-ended signal and the output end of the operational amplifier 321 .
  • the single-ended signal to differential signal conversion circuit 32 includes a first operational amplifier circuit 321 and a second operational amplifier circuit 322, wherein the first operational amplifier circuit 321 receives a Doppler intermediate frequency signal in the form of a single-ended signal at the input end. , and the output terminal is electrically connected to the input terminal of the second operational amplifier circuit 322, and a difference is output between the output terminal of the first operational amplifier circuit 321 and the output terminal of the second operational amplifier circuit 322.
  • Signal form of the Doppler IF signal is
  • the first operational amplifier circuit 321 includes a first operational amplifier 3211, and The non-inverting input terminal of the first operational amplifier 3211 is used as the input terminal to receive the Doppler intermediate frequency signal in the form of a single-ended signal, and the output terminal of the first operational amplifier 3211 is used as the output terminal.
  • the operational amplifier circuit 322 includes a second operational amplifier 3221, a first resistor 3222 and a second resistor 3223, and uses the inverting input terminal of the second operational amplifier 3221 as an input terminal and the second operational amplifier 3221
  • the output terminal is the output terminal, wherein the non-inverting input terminal of the second operational amplifier 3221 is connected to the reference voltage, and the inverting input terminal is electrically connected to the output of the second operational amplifier 3221 through the second resistor 3223 terminal, wherein the output terminal of the first operational amplifier 3211 is electrically connected to the inverting input terminal of the second operational amplifier 3221 via the first resistor 3222, and the inverting input terminal of the first operational amplifier 3211 is connected to the output terminal.
  • the terminals are electrically connected, so that the Doppler intermediate frequency signal in the form of a differential signal is output between the output terminal of the first operational amplifier 3211 and the output terminal of the second operational amplifier 3221 .
  • the first operational amplifier circuit 321 includes a first operational amplifier 3211, a first resistor 3212, and a second resistor 3213, and uses the inverting input end of the first operational amplifier 3211 as an input.
  • the Doppler intermediate frequency signal in the form of a single-ended signal is connected to one end, and the output end of the first operational amplifier 3211 is used as the output end, wherein the first operational amplifier 3211 passes through the first inverting input end.
  • the resistor 3212 is connected to the Doppler intermediate frequency signal in the form of a single-ended signal, and the non-inverting input terminal is connected to the reference voltage, wherein the inverting input terminal and the output terminal of the first operational amplifier 3211 are connected through the second resistor.
  • the second operational amplifier circuit 322 includes a second operational amplifier 3221, a third resistor 3222 and a fourth resistor 3223, and uses the inverting input end of the second operational amplifier 3221 as an input.
  • terminal and the output terminal of the second operational amplifier 3221 is the output terminal, wherein the output terminal of the first operational amplifier 3211 is electrically connected to the inverting input of the second operational amplifier 3221 through the third resistor 3222 terminal, the inverting input terminal and the output terminal of the second operational amplifier 3221 are electrically connected through the fourth resistor 3223, so that the output terminal of the first operational amplifier 3211 and the second operational amplifier 3221
  • the Doppler intermediate frequency signal in the form of a differential signal is output between the output terminals.
  • the first operational amplifier circuit 321 includes a first operational amplifier 3211, a first resistor 3212, a second resistor 3213, a first capacitor 3214, a second capacitor 3215 and a third capacitor. 3216, and use the inverting input end of the first operational amplifier 3211 as the input end to access the Doppler intermediate frequency signal in the form of a single-ended signal, and use the output end of the first operational amplifier 3211 as the output end,
  • the first operational amplifier 3211 is electrically connected from its inverting input end to its output end through the third capacitor 3216, and is electrically connected sequentially through the first resistor 3212 and the second resistor 3213.
  • the Doppler intermediate frequency signal in the form of a single-ended signal is connected sequentially through the first resistor 3212 and the first capacitor 3214, and sequentially through the first resistor 3212 and the second
  • the capacitor 3215 is connected to ground.
  • the second operational amplifier circuit 322 includes a second operational amplifier 3221, a third resistor 3222 and a fourth resistor 3223, and uses the inverting input terminal of the second operational amplifier 3221 as an input terminal.
  • the output end of the first operational amplifier 3211 is electrically connected to the inverting input end of the second operational amplifier 3221 through the third resistor 3222 , the inverting input terminal and the output terminal of the second operational amplifier 3221 are electrically connected through the fourth resistor 3223, so that the output terminal of the first operational amplifier 3211 and the output terminal of the second operational amplifier 3221
  • the Doppler intermediate frequency signal in the form of a differential signal is output between the terminals.
  • the single-ended signal to differential signal conversion circuit 32 includes a first operational amplifier circuit 321 and a second operational amplifier circuit 322, wherein the first operational amplifier circuit 321 is connected between the input end and the second operational amplifier circuit 322.
  • the input end is electrically connected and connected to the Doppler intermediate frequency signal in the form of a single-ended signal, and a differential signal form is output between the output end of the first operational amplifier circuit 321 and the output end of the second operational amplifier circuit 322 of the Doppler IF signal.
  • the first operational amplifier circuit 321 includes a first operational amplifier 3211, a first resistor 3212, a second resistor 3213 and a first capacitor 3214, and uses the non-inverting phase of the first operational amplifier 3211.
  • the input terminal is connected to the Doppler intermediate frequency signal in the form of a single-ended signal
  • the output terminal of the first operational amplifier 3211 is the output terminal
  • the first operational amplifier 3211 is connected from its inverting input terminal is electrically connected to its output end through the first resistor 3212, and is sequentially connected to ground through the second resistor 3213 and the first capacitor 3214
  • the second operational amplifier circuit 322 includes a second operational amplifier 3221, A third resistor 3222 and a fourth resistor 3223, with the inverting input terminal of the second operational amplifier 3221 as the input terminal and the output terminal of the second operational amplifier 3221 as the output terminal, wherein the first The non-inverting input terminal of the operational amplifier 3211 is electrically connected to the inverting input terminal of the second operational amplifier 3221 through the third resistor 3222.
  • the inverting input terminal and the output terminal of the second operational amplifier 3221 are connected through the third resistor 3222.
  • Four resistors 3223 are electrically connected, wherein the second operational amplifier 3221 is connected to a reference voltage at the non-inverting input terminal, so that there is a gap between the output terminal of the first operational amplifier 3211 and the output terminal of the second operational amplifier 3221
  • the Doppler intermediate frequency signal in the form of a differential signal is output.
  • the first operational amplifier circuit 321 includes a first operational amplifier 3211, a A first resistor 3212, a second resistor 3213, a third resistor 3214 and a fourth resistor 3215, and the non-inverting input end of the first operational amplifier 3211 is used as the input end to connect to the DOP in the form of a single-ended signal.
  • the second operational amplifier circuit 322 includes a second operational amplifier 3221, a fifth resistor 3222 and a sixth resistor 3223, and uses the inverting input terminal of the second operational amplifier 3221 as an input terminal.
  • the output terminal of the second operational amplifier 3221 is the output terminal, wherein the first operational amplifier 3211 is electrically connected to the second operational amplifier through the first resistor 3222 and the fifth resistor 3222 sequentially from the non-inverting input terminal.
  • the inverting input terminal of the amplifier 3221, the inverting input terminal and the output terminal of the second operational amplifier 3221 are electrically connected through the sixth resistor 3223, wherein the non-inverting input terminal of the second operational amplifier 3221 is connected to a reference voltage. , so that the Doppler intermediate frequency signal in the form of a differential signal is output between the output terminal of the first operational amplifier 3211 and the output terminal of the second operational amplifier 3221 .
  • FIGS. 13A and 13B of the accompanying drawings of the present invention different basic circuit structures of the single-ended signal to differential signal circuit 32 based on another structural principle are respectively schematically illustrated.
  • the single-ended signal to differential signal circuit 32 includes a first operational amplifier 321, a second operational amplifier 322, a first resistor 323, a second resistor 324, a third resistor 325 and a third resistor.
  • Four resistors 326 wherein the first operational amplifier 321 is connected to the reference voltage at its non-inverting input end, and the Doppler intermediate frequency signal in the form of a single-ended signal is connected from its inverting input end through the first resistor 323.
  • the single-ended signal to differential signal circuit 32 includes a first operational amplifier 321, a second operational amplifier 322, a first resistor 323, a second resistor 324, a third resistor 325 and and a fourth resistor 326, wherein the first operational amplifier 321 has a reference voltage connected to its non-inverting input terminal, and its inverting input terminal is electrically connected to the inverting input terminal of the second operational amplifier 322, and Its output terminal is electrically connected to the non-inverting input terminal of the second operational amplifier 322 through the fourth resistor 326, wherein the inverting input terminal and the output terminal of the first operational amplifier 321 are connected through the third resistor 325.
  • the second operational amplifier 322 is connected to the Doppler intermediate frequency signal in the form of a single-ended signal from its non-inverting input terminal through the first resistor 323, wherein the inverting terminal of the second operational amplifier 322 The input end and the output end are electrically connected through the second resistor 324, so that the multiplexed signal in the form of a differential signal is output between the output end of the first operational amplifier 321 and the output end of the second operational amplifier 322. Puller IF signal.
  • the above-mentioned different structures of the single-ended signal to differential signal conversion circuit 32 are only examples, and the corresponding Doppler differential output circuit 30 is suitable for the microwave detection devices of the different embodiments.
  • a partial circuit structure is schematically shown when the single-ended signal to differential signal conversion circuit 32 shown in FIG. 11D is applied to FIG. 6A .
  • a partial circuit structure is schematically shown when the single-ended signal to differential signal conversion circuit 32 shown in FIG. 13A is applied to FIG. 6A .
  • the single-ended signal to differential signal conversion circuit 32 has various circuit structures and cannot be listed one by one. Its main structural feature is that it adopts a single-ended input and a double-ended output structure.
  • the Doppler intermediate frequency signal in the form of a single-ended signal is inverted to convert the input Doppler intermediate frequency signal in the form of a single-ended signal into an inverted signal, thereby forming the Doppler intermediate frequency signal in the form of a single-ended signal.
  • the conversion of the Doppler intermediate frequency signal into a differential signal form is not limited to the independent form of discrete component form or integrated circuit form, and can be implemented as a combination form of discrete component form and integrated circuit form. This invention The invention is not limited in this regard.
  • the oscillation unit 20 and the Doppler differential output circuit 30 are provided in the form of an integrated circuit and integrated into a microwave chip.
  • the first equivalent resistance 401 and the second equivalent resistance 402 of the frequency selection cancellation circuit 40 are integrated into the microwave chip.
  • the oscillation unit 20 and the mixing circuit 31 of the Doppler differential output circuit 30 are provided in the form of an integrated circuit and integrated into a microwave chip, and the The single-ended signal conversion circuit 32 of the Doppler differential output circuit 30 is externally installed on the microwave chip.
  • the oscillation unit 20 is different from the single-ended signal.
  • the first operational amplifier circuit corresponding to FIGS. 11A to 12C or the first operational amplifier corresponding to FIGS. 13A and 13B of the sub-signal circuit 32 is provided in the form of an integrated circuit and integrated into a microwave chip, and
  • the second operational amplifier circuit corresponding to FIGS. 11A to 12C or the second operational amplifier corresponding to FIGS. 13A and 13B of the single-ended signal to differential signal circuit 32 is externally placed on the microwave chip,
  • the mixing circuit 31 of the Doppler differential output circuit 30 is externally placed on the microwave chip, or is built into the microwave chip to form an existing Doppler intermediate frequency signal output in the form of a single-ended signal. Microwave chip.
  • the anti-interference microwave detection method further includes the steps:
  • step (E) is performed between step (C) and step (D), and/or is performed after step (D), and the present invention is not limited thereto. .
  • the microwave detection device further includes at least one differential amplifier circuit 50, wherein the differential amplifier circuit 50 is disposed on the Doppler differential output between the circuit 30 and the frequency selective cancellation circuit 40, and/or is provided at the two output terminals 42 of the frequency selective cancellation circuit 40, to differentially output the Doppler differential output circuit 30
  • the Doppler intermediate frequency signal in the form of a signal is subjected to differential amplification processing, and/or the Doppler intermediate frequency signal in the form of a differential signal output by the frequency selective cancellation circuit 40 is subjected to differential amplification processing, so that based on the differential signal
  • the ground capacitors 43 can be disposed between the differential amplifier circuit 50 and the Doppler differential output circuit 30. electrically connected to the corresponding input terminal 41 of the frequency selection cancellation circuit 40, or disposed between the differential amplifier circuit 50 and the frequency selection cancellation circuit 40 in a state corresponding to the input terminal 41 Electrically connected.
  • the differential amplifier circuit 50 is further disposed between the two frequency selection cancellation circuits 40 connected in series, so as to When using multi-stage frequency selection cancellation processing to realize the cancellation processing of differential signals in different frequency bands, based on the arrangement of the differential amplification circuit 50 between the two frequency selection cancellation circuits 40 connected in series, a The isolation between the two frequency selection cancellation circuits 40 connected in series ensures the independence of the two frequency selection cancellation circuits 40 connected in series.
  • the two frequency selection cancellation circuits 40 connected in series are opposite to each other. The cancellation processing of the differential signals in the corresponding frequency bands can ensure the multi-level frequency-selective cancellation effect without affecting each other.
  • the structural principle of the differential amplifier circuit 50 is schematically illustrated. It can be understood that based on the power supply mode (dual power supply) to the differential amplifier circuit 50 power supply or single power supply) and the corresponding parameters and optimized design.
  • the circuit structures of the differential amplifier circuit 50 are diverse and cannot be listed one by one, and are not limited to independent forms of discrete component forms or integrated circuit forms. It can also be implemented as a combination of discrete components and integrated circuits.
  • the main structural feature of the differential amplifier circuit 50 is that it adopts a double-terminal input and a double-terminal output method, and is connected between the bases of the two transistors and the ground.
  • the Doppler intermediate frequency signal in the form of a differential signal is input, and the Doppler intermediate frequency signal in the form of a differential signal after differential amplification is output between the collectors of the two transistors.
  • the anti-interference microwave detection method further includes the steps after step (D):
  • the anti-interference microwave detection method includes the step (E) after the step (D), the step (F) is performed after the step (E).
  • the microwave detection device further includes a differential signal to single-ended signal circuit 60, wherein the differential signal to single-ended signal circuit 60 is configured to After receiving the Doppler intermediate frequency signal in the form of a differential signal after frequency selection cancellation processing, and corresponding to the step (F), converting the Doppler intermediate frequency signal in the form of a differential signal into a signal based on the antenna unit 10
  • the Doppler intermediate frequency signal in the form of a single-ended signal with the reference ground being ground is output, in the process of converting the Doppler intermediate frequency signal in the form of a differential signal to the Doppler intermediate frequency signal in the form of a single-ended signal. Suppressing and eliminating common mode interference, suppressing and eliminating the first type of interference signal in the Doppler intermediate frequency signal output in the form of a single-ended signal.
  • the structural principle of the differential signal to single-ended signal conversion circuit 60 is schematically illustrated, in which the input signal is converted based on the corresponding operational operational amplifier.
  • the inverted superposition of the Doppler intermediate frequency signal in the form of a differential signal forms a conversion of the Doppler intermediate frequency signal in the form of a differential signal to the Doppler intermediate frequency signal in the single-ended signal form, and in the conversion process , since the common mode interference is canceled out by each other during the inverse superposition process of the Doppler intermediate frequency signal in the form of a differential signal, the suppression and elimination of the common mode interference is formed, corresponding to the suppression and elimination of the single-ended signal.
  • the first type of interference signal in the Doppler intermediate frequency signal outputted in the form.
  • the circuit structures of the differential signal to single-ended signal circuit 60 are too diverse to be listed one by one. They are not limited to independent forms in the form of discrete components or integrated circuits. They can also be implemented in the form of discrete components and integrated circuits. The present invention is not limited to the combination form.
  • the Doppler intermediate frequency signal in the form of a differential signal by performing A/D conversion on the two poles of the Doppler intermediate frequency signal in the form of a differential signal, subsequent data-based quantification identification and calculation can also be implemented.
  • the suppression and elimination of common-mode interference is equivalent to realizing the purpose of anti-common-mode interference by converting the Doppler intermediate frequency signal in the form of a differential signal into a single-ended signal form.
  • the external radiation of the Doppler intermediate frequency signal in the form of a differential signal can cancel each other out, and the Doppler intermediate frequency signal has a negative impact on the environment and the corresponding The interference of the line can be suppressed, which is beneficial to improving the anti-interference ability of the microwave detection device.
  • the differential amplification processing of the Doppler intermediate frequency signal in the form of a differential signal and/or the conversion of the Doppler intermediate frequency signal in the form of a single-ended signal can significantly reduce or even avoid the use of capacitive elements in the said Doppler intermediate frequency signal compared to the filtering method.
  • the structural principle of the microwave detection device provided with the differential signal to single-ended signal circuit 60 is only an example.
  • the microwave detection device based on the setting of the frequency selection cancellation circuit 40 to select a frequency
  • the Doppler intermediate frequency signal in the form of a differential signal output by the frequency selective cancellation circuit 40 corresponds to The feedback accuracy of the movement of objects in the detection space can be guaranteed, so any pole signal in the Doppler intermediate frequency signal in the form of a differential signal output by frequency selective cancellation can be obtained without converting the differential signal to a single-ended step.
  • the single-ended signal formed between the reference ground is used for data identification and calculation, and accurate and stable detection results of human activities including human movement, micro-movement, breathing and heartbeat can still be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Power Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供一抗干扰的微波探测方法和微波探测装置,其中所述抗干扰的微波探测方法能够避免采用多次滤波的方式准确消除环境中与所述微波探测装置的本振信号具有同频、邻频以及倍频之任一频率关系的干扰信号于相应多普勒中频信号中形成的干扰信号,因而能够保障所述多普勒中频信号的完整性而保障所述多普勒中频信号对相应探测空间内的物体的运动的反馈的准确性,对应有利于实现包括人体移动、微动、呼吸以及心跳等动作特征的组合探测,相应所述微波探测装置的探测功能丰富而适用于多功能需求的智能探测应用。

Description

抗干扰的微波探测方法和微波探测装置 技术领域
本发明涉及多普勒微波探测领域,尤其涉及抗干扰的微波探测方法和微波探测装置。
背景技术
随着物联网技术的发展,人工智能、智能家居、以及智能安防技术对于环境探测,特别是对于人的存在、移动以及微动的动作特征的探测准确性的需求越来越高,只有获取即时稳定的探测结果,才能够为智能终端设备提供准确的判断依据。其中无线电技术,包括基于多普勒效应原理的微波探测技术作为人与物,物与物之间相联的重要枢纽在行为探测和存在探测技术中具有独特的优势,其能够在不侵犯人隐私的情况下,探测出活动物体,比如人的动作特征、移动特征、以及微动特征,甚至是人的心跳和呼吸特征信息,因而具有广泛的应用前景。
对应图1,所述多普勒微波探测装置的电路结构原理被示意,其中所述多普勒微波探测装置用以发射和/或接收微波的相应天线体10P经一混频器20P被一本振信号馈电而发射对应于所述本振信号频率的一探测波束以形成相应探测空间,和接收所述探测波束被所述探测空间内的物体反射形成的一回波而产生一回馈信号,其中所述混频器20P接收所述回馈信号并以混频检波的方式输出对应于所述本振信号和所述回馈信号之间的频率差异的一多普勒中频信号,则基于多普勒效应原理,所述多普勒中频信号在幅度上的波动理论上对应于所述探测空间内的物体的运动,其中基于所述多普勒微波探测装置的上述工作原理,一方面,能够被所述天线体10P接收的环境干扰信号会被叠加于所述多普勒中频信号而形成所述多普勒中频信号中的第一类干扰信号;另一方面,能够被所述天线体10P接收的环境干扰信号中与所述本振信号的频率具有同频、邻频以及倍频之任一频率关系的信号同时还会叠加于所述回馈信号参与混频检波过程而形成与所述多普勒中频信号中的有效信号混为一体的第二类干扰信号。
对于第一类干扰信号,目前主要采用滤波的方式滤除被叠加于所述多普勒中频信号中的相应频率范围的第一类干扰信号,或同时通过缩窄所述天线体10P的频带宽度的方式缩窄所述天线体10P对环境干扰信号的接收频率范围。然而,基 于滤波的工作原理,采用滤波的方式一方面会同时滤除所述多普勒中频信号中相应频率的有效信号而破坏滤波输出的所述多普勒中频信号的完整性;另一方面还会形成对所述多普勒中频信号中相应频率的有效信号的积分处理而难以保障滤波输出的所述多普勒中频信号的相应参数与物理意义的对应关系;此外,参考本发明说明书附图之图2所示,在所述探测空间不存在物体活动的状态,当以相应滤波电路对所述混频器20P输出的多普勒中频信号进行滤波处理时,在所述滤波电路的输入端和输出端采样获取的所述多普勒中频信号以上下排布的方式被对比示意,其中由于目前对于多普勒中频信号的滤波处理本质上是选择多普勒中频信号中相应频率范围的信号进行积分平滑处理,其并不能实现真正意义上的消除处理,尤其是在该频率范围的信号强度较高时,因而通常需要进行多次滤波处理,如此以基于前述采用滤波的方式对滤波输出的所述多普勒中频信号的两个方面的多次影响,造成滤波输出的所述多普勒中频信号对所述探测空间内的物体的运动的反馈的准确性难以保障,尤其是对所述探测空间内的微动作的反馈的准确性。
对于第二类干扰信号,即便在知道干扰源所产生的环境干扰信号的频率范围的状态,由于干扰源的频率变化速率的不确定性,在所述多普勒中频信号对应于所述本振信号和所述回馈信号(叠加有环境干扰信号)之间的频率差异的状态,当以相应滤波电路对所述混频器20P输出的多普勒中频信号进行滤波处理时,一方面,所述滤波电路的参数设计与第二类干扰信号的频率范围的对应关系的准确性和稳定性难以保障,以致于相应第二类干扰信号难以通过滤波的方式自所述多普勒中频信号中被分离滤除;另一方面,所述滤波电路的参数设计不存在与第一类干扰信号的频率范围的对应关系而易相互影响和形成对所述多普勒中频信号的多次滤波处理;此外,基于前述采用滤波的方式对滤波输出的所述多普勒中频信号的两个方面的影响,同样会造成滤波输出的所述多普勒中频信号对所述探测空间内的物体的运动的反馈的准确性难以保障。因此,对于第二类干扰信号的抑制,目前认为比较合理的是通过跳/变频的方式,降低所述本振信号长时间与环境干扰信号形成同频、邻频以及倍频之任一频率关系的概率。但这种方式仅能够降低所述多普勒中频信号中长时间存在第二类干扰信号的概率,仍旧无法自所述多普勒中频信号中将第二类干扰信号分离滤除。
综上所述,采用滤波的方式同时对所述多普勒中频信号中第一类干扰信号和第二类干扰信号的滤波处理,本质上是选择多普勒中频信号中相应频率范围的信 号进行积分平滑处理,其并不能实现真正意义上的消除处理,因而通常需要进行多次滤波处理;此外,对于第二类干扰信号,滤波电路的参数设计与第二类干扰信号的频率范围的对应关系并不稳定和准确,且不存在与第一类干扰信号的频率范围的对应关系而易相互影响和形成对所述多普勒中频信号的多次滤波处理。则基于前述采用滤波的方式对滤波输出的所述多普勒中频信号的两个方面的多次影响,滤波输出的所述多普勒中频信号对所述探测空间内的物体的运动的反馈的准确性难以保障。
发明内容
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中所述抗干扰的微波探测方法能够准确消除环境中与微波探测装置的本振信号具有同频、邻频以及倍频之任一频率关系的干扰信号于相应多普勒中频信号中形成的第二类干扰信号,因而有利于提高所述多普勒中频信号对相应探测空间内的物体的运动的反馈精度。
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中通过形成差分信号形态的多普勒中频信号的方式,基于第一类干扰信号和第二类干扰信号的形成过程,第一类干扰信号和第二类干扰信号分别对应以共模干扰和差模干扰存在于差分信号形态的所述多普勒中频信号而能够被区分,进而能够互不影响地基于不同信号处理方式分别抑制或消除差分信号形态的所述多普勒中频信号中的第一类干扰信号和第二类干扰信号,如此以有利于保障所述多普勒中频信号的完整性而保障所述多普勒中频信号对相应探测空间内的物体的运动的反馈的准确性,对应有利于实现包括人体移动、微动、呼吸以及心跳等动作特征的组合探测,相应所述微波探测装置的探测功能丰富而适用于多功能需求的智能探测应用。
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中在第二类干扰信号以差模干扰被加载于差分信号形态的所述多普勒中频信号的状态,通过对消的方式消除差分信号形态的所述多普勒中频信号中相应频率范围的第二类干扰信号,因而有利于避免采用多次滤波的方式而能够保障所述多普勒中频信号的完整性和保障所述多普勒中频信号的相应参数与物理意义的对应关系,进而提高所述多普勒中频信号对相应探测空间内的物体的运动的反馈精度。
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中由于在实际应用中,与所述微波探测装置的本振信号具有同频、邻频以及倍频之任一频率关系的环境干扰信号主要为无线通信信号,通过对无线通信的原理探索和对不同产品的实际测试发现:基于调频的工作原理而以频率的变化表达通信信息的无线通信信号中,信号的频率变化速率远高于与正常运动的物体相对应回馈信号基于多普勒效应原理产生频率变化的速率,对应第二类干扰信号在差分信号形态的所述多普勒中频信号中以高频尖峰形态的差模干扰存在,因而能够在相应频率范围基于选频对消的方式准确消除差分信号形态的所述多普勒中频信号中相应频率范围的第二类干扰信号,如此以保障所述微波探测装置抗通信干扰的能力而具有重大的实用价值和商业意义。
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中所述抗干扰的微波探测方法对差分信号形态的所述多普勒中频信号中的第一类干扰信号和第二类干扰信号的抑制或消除处理均能够避免采用多次滤波的方式而能够避免由滤波处理造成的信号延时,则所述多普勒中频信号的即时性得以保障而有利于实现包括人体呼吸以及心跳等动作的实时探测。
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中由于在多微波探测装置的应用场景中,与所述微波探测装置的本振信号具有同频的频率关系的环境干扰信号还有可能为同频的其它微波探测装置所发射的信号,对应形成的第一类干扰信号和第二类干扰信号在差分信号形态的所述多普勒中频信号中以毛刺形态存在,其中所述微波探测装置在以选频对消的方式消除差分信号形态的所述多普勒中频信号中相应频率范围的第二类干扰信号之前,可选地于差分信号形态的所述多普勒中频信号的两极接入相同参数设置的对地电容,以抑制定频形态的同频干扰在差分信号形态的所述多普勒中频信号中以毛刺形态形成的第一类干扰信号和第二类干扰信号,如此以保障所述微波探测装置于多微波探测装置的应用场景下的抗干扰的能力。
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中第一类干扰信号以共模干扰存在于差分信号形态的所述多普勒中频信号,因而适于通过对差分信号形态的所述多普勒中频信号的差分放大,抑制差分信号形态的所述多普勒中频信号中的第一类干扰信号,同时放大差分信号形态的所述多普勒中频信号,从而抑制环境中能够被所述微波探测装置接收的环境干扰信号所形成的 第一类干扰信号对所述多普勒中频信号的干扰,进而有利于提高所述多普勒中频信号对相应探测空间内的物体的运动的反馈精度。
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中第一类干扰信号以共模干扰存在于差分信号形态的所述多普勒中频信号,因而适于基于差分信号形态的所述多普勒中频信号向单端信号形态的所述多普勒中频信号转换的过程中对共模干扰的抑制和消除作用,通过将差分信号形态的所述多普勒中频信号转换为单端信号形态的所述多普勒中频信号进行数据的识别与运算的方式,抑制和消除能够被所述微波探测装置接收的环境干扰信号所形成的第一类干扰信号对所述多普勒中频信号的干扰,相应所述多普勒中频信号对物体的运动的反馈精度得以保障。
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中通过形成差分信号形态的多普勒中频信号的方式,差分信号形态的所述多普勒中频信号的对外辐射能够相互抵消,则所述多普勒中频信号对环境和相应线路的干扰能够被抑制,对应有利于提高所述微波探测装置的抗干扰能力。
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中通过形成差分信号形态的多普勒中频信号的方式,第一类干扰信号对应以共模干扰存在于差分信号形态的所述多普勒中频信号,则对差分信号形态的所述多普勒中频信号的差分放大处理和/或向单端信号形态的所述多普勒中频信号的转换能够在保障所述多普勒中频信号对相应探测空间内的物体的运动的反馈的完整性的状态实现对所述多普勒中频信号的放大和抗干扰处理,因而有利于基于所述多普勒中频信号获取对包括人体移动、微动、呼吸以及心跳等人体活动的准确稳定的探测结果。
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中对差分信号形态的所述多普勒中频信号的差分放大处理和/或向单端信号形态的所述多普勒中频信号的转换相对于滤波方式能够大幅减少甚至避免电容元件在所述多普勒中频信号的传输路径中的使用,则所述多普勒中频信号的即时性得以保障而有利于实现包括人体呼吸以及心跳等动作的实时探测。
本发明的一目的在于提供一抗干扰的微波探测方法和微波探测装置,其中在初始的所述多普勒中频信号为单端信号形态的状态,通过对单端信号形态的所述多普勒中频信号的转换形成差分信号形态的所述多普勒中频信号,对应有利于保 障差分信号形态的所述多普勒中频信号的初始强度而保障所述多普勒中频信号对相应探测空间内的物体的运动的反馈精度。
根据本发明的一个方面,本发明提供一种抗干扰的微波探测方法,所述抗干扰的微波探测方法包括以下步骤:
(A)发射对应于一本振信号频率的一探测波束以形成相应探测空间;
(B)接收所述探测波束被所述探测空间内的物体反射形成的回波而产生一回馈信号;
(C)输出差分信号形态的一多普勒中频信号,其中所述多普勒中频信号为对应于所述本振信号和所述回馈信号之间频率/相位差异的信号;以及
(D)以选频对消的方式消除差分信号形态的所述多普勒中频信号中相应频率范围的差分信号,以使得叠加于所述回馈信号的环境干扰信号中,与所述本振信号的频率具有同频、邻频以及倍频之任一频率关系的无线通信信号于所述多普勒中频信号中产生的差模干扰能够被消除。
在一实施例中,其中在所述步骤(D)中,以一选频对消电路对所述步骤(C)中输出的差分信号形态的所述多普勒中频信号进行选频对消处理而输出被选频对消处理后的所述多普勒中频信号,其中所述选频对消电路包括一第一等效电阻,一第二等效电阻以及一等效电容,其中所述第一等效电阻的一端被电性连接于所述等效电容的一端,所述第二等效电阻的一端被电性连接于所述等效电容的另一端,对应所述选频对消电路以所述第一等效电阻的另一端和所述第二等效电阻的另一端为两输入端,和以所述等效电容的两端为两输出端,以自两所述输入端接入所述步骤(C)中输出的差分信号形态的所述多普勒中频信号,和于两所述输出端输出被选频对消处理的所述多普勒中频信号。
在一实施例中,其中所述第一等效电阻和所述第二等效电阻被设置分别在25%的误差范围内趋于39kΩ的阻值,所述等效电容被设置在25%的误差范围内趋于47nF的电容量。
在一实施例中,其中所述等效电容以相互串联的两电容被等效设置,其中所述选频对消电路于相互串联的两所述电容之间被接地。
在一实施例中,其中所述选频对消电路的两所述输入端分别电性连接有一对地电容。
在一实施例中,其中所述抗干扰的微波探测方法进一步在所述步骤(C)和 所述步骤(D)之间,和/或在所述步骤(D)之后包括步骤:
(E)对差分信号形态的所述多普勒中频信号进行差分放大处理。
在一实施例中,其中所述抗干扰的微波探测方法在所述步骤(D)之后还包括步骤:
F、转换差分信号形态的所述多普勒中频信号为单端信号形态的所述多普勒中频信号。
在一实施例中,其中在所述步骤(C)中,以混频处理的方式直接输出对应于所述本振信号和所述回馈信号之间频率/相位差异的差分信号形态的所述多普勒中频信号。
在一实施例中,其中在所述步骤(C)中包括以下步骤:
C1、混频处理所述本振信号和所述回馈信号,以使得对应于所述本振信号和所述回馈信号之间频率/相位差异的信号能够被引出;
C2、引出一路对应于所述本振信号和所述回馈信号之间频率/相位差异的信号而输出单端信号形态的所述多普勒中频信号;以及
C3、通过将单端信号形态的所述多普勒中频信号反相的方式反相输出对应所述本振信号和所述回馈信号之间频率/相位差异的信号,以转换单端信号形态的所述多普勒中频信号为差分信号形态的所述多普勒中频信号。
根据本发明的另一个方面,本发明还提供一微波探测装置,所述微波探测装置包括:
一振荡单元,其中所述振荡单元被设置用于产生一本振信号;
一天线单元,所述天线单元被馈电连接于所述振荡单元以发射对应于所述本振信号频率的一探测波束而形成相应探测空间,和接收所述探测波束被所述探测空间内的物体反射形成的一回波而产生一回馈信号;
一多普勒差分输出电路,其中所述多普勒差分输出电路被电性连接于所述天线单元和所述振荡单元,以输出差分信号形态的一多普勒中频信号,其中所述多普勒中频信号为对应于所述本振信号和所述回馈信号之间频率/相位差异的信号;以及
至少一选频对消电路,其中所述选频对消电路被电性连接于所述多普勒差分输出电路,以通过选频对消的方式消除差分信号形态的所述多普勒中频信号中相应频率范围的差分信号,对应使得叠加于所述回馈信号的环境干扰信号中,与所 述本振信号的频率具有同频、邻频以及倍频之任一频率关系的无线通信信号于所述多普勒中频信号中产生的差模干扰能够被消除。
在一实施例中,其中所述选频对消电路包括一第一等效电阻,一第二等效电阻以及一等效电容,其中所述第一等效电阻的一端被电性连接于所述等效电容的一端,所述第二等效电阻的一端被电性连接于所述等效电容的另一端,对应所述选频对消电路以所述第一等效电阻的另一端和所述第二等效电阻的另一端为两输入端,和以所述等效电容的两端为两输出端,以自两所述输入端接入所述多普勒差分输出电路输出的差分信号形态的所述多普勒中频信号,和于两所述输出端输出被选频对消处理的所述多普勒中频信号。
在一实施例中,其中所述第一等效电阻和所述第二等效电阻被设置分别在25%的误差范围内趋于39kΩ的阻值,所述等效电容被设置在25%的误差范围内趋于47nF的电容量。
在一实施例中,其中所述等效电容以相互串联的两电容被等效设置,其中两所述电容被设置采用相同型号的电容,其中所述选频对消电路于相互串联的两所述电容之间被接地。
在一实施例中,其中所述选频对消电路的两所述输入端分别电性连接有一对地电容。
在一实施例中,其中多普勒差分输出电路被设置基于混频处理的方式直接输出对应于所述本振信号和所述回馈信号之间频率/相位差异的差分信号形态的所述多普勒中频信号。
在一实施例中,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,以及一第二MOS管,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被电性连接于所述第一MOS管的漏极,所述第二负载的另一端被电性连接于所述第二MOS管的漏极,其中所述第一MOS管的源极被电性连接与所述第二MOS管的源极,如此以在于相互连接的所述第一负载和所述第二负载的两端接入电源,和于相互连接的所述第一MOS管和所述第二MOS管的两源极接入所述回馈信号,以及于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号的状态,能够于所述第一MOS管的漏极和所述第二MOS管的漏极输出差分信号形态的所述多普勒中频信号。
在一实施例中,其中所述多普勒差分输出电路包括一第一MOS管,一第二MOS管,一第三MOS管以及一第四MOS管,其中所述第一MOS管的漏极被电性连接于所述第二MOS管的漏极,所述第三MOS管的漏极被电性连接于所述第四MOS管的漏极,所述第一MOS管的源极被电性连接于所述第三MOS管的源极,所述第二MOS管的源极被电性连接于所述第四MOS管的源极,如此以在于相互连接的所述第一MOS管和所述第二MOS管的两漏极之间,和相互连接的所述第三MOS管和所述第四MOS管的两漏极之间,分别接入反相的所述回馈信号,和于所述第一MOS管,所述第二MOS管,所述第三MOS管以及所述第四MOS管的四个栅极接入顺序反相的所述本振信号的状态,能够于所述第一MOS管和所述第三MOS管的两所述源极之间,和所述第二MOS管和所述第四MOS管的两所述源极之间,输出差分信号形态的所述多普勒中频信号。
在一实施例中,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,一第二MOS管,以及一第三MOS管,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被电性连接于所述第一MOS管的漏极,所述第二负载的另一端被电性连接于所述第二MOS管的漏极,其中所述第一MOS管的源极与所述第二MOS管的源极分别被电性连接于所述第三MOS管的漏极,其中所述第三MOS管的源极被接地,如此以在于相互连接的所述第一负载和所述第二负载的两端接入电源,和于所述第三MOS管的栅极接入所述回馈信号,以及于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号的状态,能够于所述第一MOS管的漏极和所述第二MOS管的漏极输出差分信号形态的所述多普勒中频信号。
在一实施例中,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,一第二MOS管,一第三MOS管,一第四MOS管,一第五MOS管,一第六MOS管,以及一电流源,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被分别电性连接于所述第一MOS管的漏极和所述第三MOS管的漏极,所述第二负载的另一端被分别电性连接于所述第二MOS管的漏极和所述第四MOS管的漏极,其中所述第一MOS管的源极和所述第二MOS管的源极分别被电性连接于所述第五MOS管的漏极,所述第三MOS管的源极和所述第四MOS管的源极分别被电性连接于所述第六MOS管的漏极,其中所述第五MOS管的源极和所述第六MOS管的源极分别被 电性连接于所述电流源,如此以在于所述第五MOS管的栅极和所述第六MOS管的栅极分别接入反相的所述回馈信号,于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号,于所述第三MOS管的栅极和所述第四MOS管的栅极分别接入反相的所述本振信号,其中所述第二MOS管的栅极接入的所述本振信号与所述第三MOS管的栅极接入的所述本振信号同相,以及于所述相互连接的所述第一负载和所述第二负载的两端接入电源的状态,能够于所述第一负载的另一端和所述第二负载的另一端输出差分信号形态的所述多普勒中频信号。
在一实施例中,其中多普勒差分输出电路包括一混频电路和一单端信号转差分信号电路,其中所述混频电路被电性连接于所述天线单元和所述振荡单元,以接入所述回馈信号和所述本振信号并以混频检波的方式输出对应于所述回馈信号和所述本振信号之间的频率/相位差异的单端信号形态的所述多普勒中频信号,其中所述单端转差分电路被电性连接于所述混频电路,以接入单端信号形态的所述多普勒中频信号并通过将单端信号形态的所述多普勒中频信号反相的方式转换单端信号形态的所述多普勒中频信号为差分信号形态的所述多普勒中频信号。
在一实施例中,其中所述微波探测装置还包括至少一差分放大电路,其中所述差分放大电路被设置于所述多普勒差分输出电路和所述选频对消电路之间,以对所述多普勒差分输出电路输出的差分信号形态的所述多普勒中频信号进行差分放大处理。
在一实施例中,其中所述微波探测装置还包括至少一差分放大电路,其中所述差分放大电路被设置于所述选频对消电路的两所述输出端,以对所述选频对消电路输出的差分信号形态的所述多普勒中频信号进行差分放大处理。
在一实施例中,其中所述微波探测装置还包括一差分信号转单端信号电路,以接入选频对消处理后的差分信号形态的所述多普勒中频信号,并转换差分信号形态的所述多普勒中频信号为单端信号形态的所述多普勒中频信号进行输出。
根据本发明的另一个方面,本发明还提供一微波探测装置,所述微波探测装置包括:
一振荡单元,其中所述振荡单元被设置用于产生一本振信号;
一天线单元,所述天线单元被馈电连接于所述振荡单元以发射对应于所述本振信号频率的一探测波束而形成相应探测空间,和接收所述探测波束被所述探测空间内的物体反射形成的一回波而产生一回馈信号;以及
一多普勒差分输出电路,其中所述多普勒差分输出电路被电性连接于所述天线单元和所述振荡单元,并被设置基于混频处理的方式直接输出差分信号形态的一多普勒中频信号,其中所述多普勒中频信号为对应于所述本振信号和所述回馈信号之间频率/相位差异的信号。
在一实施例中,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,以及一第二MOS管,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被电性连接于所述第一MOS管的漏极,所述第二负载的另一端被电性连接于所述第二MOS管的漏极,其中所述第一MOS管的源极被电性连接与所述第二MOS管的源极,如此以在于相互连接的所述第一负载和所述第二负载的两端接入电源,和于相互连接的所述第一MOS管和所述第二MOS管的两源极接入所述回馈信号,以及于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号的状态,能够于所述第一MOS管的漏极和所述第二MOS管的漏极输出差分信号形态的所述多普勒中频信号。
在一实施例中,其中所述多普勒差分输出电路包括一第一MOS管,一第二MOS管,一第三MOS管以及一第四MOS管,其中所述第一MOS管的漏极被电性连接于所述第二MOS管的漏极,所述第三MOS管的漏极被电性连接于所述第四MOS管的漏极,所述第一MOS管的源极被电性连接于所述第三MOS管的源极,所述第二MOS管的源极被电性连接于所述第四MOS管的源极,如此以在于相互连接的所述第一MOS管和所述第二MOS管的两漏极之间,和相互连接的所述第三MOS管和所述第四MOS管的两漏极之间,分别接入反相的所述回馈信号,和于所述第一MOS管,所述第二MOS管,所述第三MOS管以及所述第四MOS管的四个栅极接入顺序反相的所述本振信号的状态,能够于所述第一MOS管和所述第三MOS管的两所述源极之间,和所述第二MOS管和所述第四MOS管的两所述源极之间,输出差分信号形态的所述多普勒中频信号。
在一实施例中,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,一第二MOS管,以及一第三MOS管,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被电性连接于所述第一MOS管的漏极,所述第二负载的另一端被电性连接于所述第二MOS管的漏极,其中所述第一MOS管的源极与所述第二MOS管 的源极分别被电性连接于所述第三MOS管的漏极,其中所述第三MOS管的源极被接地,如此以在于相互连接的所述第一负载和所述第二负载的两端接入电源,和于所述第三MOS管的栅极接入所述回馈信号,以及于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号的状态,能够于所述第一MOS管的漏极和所述第二MOS管的漏极输出差分信号形态的所述多普勒中频信号。
在一实施例中,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,一第二MOS管,一第三MOS管,一第四MOS管,一第五MOS管,一第六MOS管,以及一电流源,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被分别电性连接于所述第一MOS管的漏极和所述第三MOS管的漏极,所述第二负载的另一端被分别电性连接于所述第二MOS管的漏极和所述第四MOS管的漏极,其中所述第一MOS管的源极和所述第二MOS管的源极分别被电性连接于所述第五MOS管的漏极,所述第三MOS管的源极和所述第四MOS管的源极分别被电性连接于所述第六MOS管的漏极,其中所述第五MOS管的源极和所述第六MOS管的源极分别被电性连接于所述电流源,如此以在于所述第五MOS管的栅极和所述第六MOS管的栅极分别接入反相的所述回馈信号,于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号,于所述第三MOS管的栅极和所述第四MOS管的栅极分别接入反相的所述本振信号,其中所述第二MOS管的栅极接入的所述本振信号与所述第三MOS管的栅极接入的所述本振信号同相,以及于所述相互连接的所述第一负载和所述第二负载的两端接入电源的状态,能够于所述第一负载的另一端和所述第二负载的另一端输出差分信号形态的所述多普勒中频信号。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1为现有的多普勒微波探测装置的电路结构原理示意图。
图2为现有的多普勒微波探测装置输出的多普勒中频信号在被滤波处理前后的对比示意图。
图3为依本发明的一实施例的一微波探测装置的结构原理示意图。
图4A为依本发明的上述实施例的所述微波探测装置输出的多普勒中频信号在被选频相消处理前后的对比示意图。
图4B为依本发明的上述实施例的所述微波探测装置输出的多普勒中频信号在被选频相消处理前后的对比示意图。
图5A为依本发明的上述实施例的一变形实施例的所述微波探测装置的结构原理示意图。
图5B为依本发明的上述变形实施例的所述微波探测装置的进一步变形结构原理示意图。
图6A为依本发明的上述实施例的另一变形实施例的所述微波探测装置的结构原理示意图。
图6B为依本发明的上述变形实施例的所述微波探测装置于不同位置输出的多普勒中频信号的对比示意图。
图7A为依本发明的上述实施例的所述微波探测装置的选频对消电路的串联结构示意图。
图7A为依本发明的上述实施例的所述微波探测装置的选频对消电路的并联结构示意图。
图8A至图8D为依本发明的上述这些实施例的所述微波探测装置的多普勒差分输出电路的不同电路结构原理示意图。
图9为依本发明的上述这些实施例的所述微波探测装置的多普勒差分输出电路的一种电路结构原理示意图。
图10A为依本发明的上述这些实施例的所述微波探测装置的多普勒差分输出电路的上述电路结构原理的一种电路结构示意图。
图10A为依本发明的上述这些实施例的所述微波探测装置的多普勒差分输出电路的上述电路结构原理的另一种电路结构示意图。
图11A至11D为依本发明的上述这些实施例的所述微波探测装置的多普勒差分输出电路的上述电路结构原理的不同电路结构示意图。
图12A至12C为依本发明的上述这些实施例的所述微波探测装置的多普勒差分输出电路的上述电路结构原理的不同电路结构示意图。
图13A为依本发明的上述这些实施例的所述微波探测装置的多普勒差分输出 电路的上述电路结构原理的另一种电路结构示意图。
图13B为依本发明的上述这些实施例的所述微波探测装置的多普勒差分输出电路的上述电路结构原理的另一种电路结构示意图。
图14A为依本发明的另一实施例的所述微波探测装置的部分电路结构示意图。
图14B为依本发明的另一实施例的所述微波探测装置的部分电路结构示意图。
图15A为依本发明上述这些实施例的所述微波探测装置进一步设置有差分放大电路的一种电路结构原理示意图。
图15B为依本发明上述这些实施例的所述微波探测装置进一步设置有差分放大电路的另一种电路结构原理示意图。
图16为依本发明上述这些实施例的所述微波探测装置的差分放大电路的一种电路结构示意图。
图17A为依本发明上述这些实施例的所述微波探测装置进一步设置有差分信号转单端信号电路的一种电路结构原理示意图。
图17B为依本发明上述这些实施例的所述微波探测装置进一步设置有差分信号转单端信号电路的另一种电路结构原理示意图。
图18为依本发明上述这些实施例的所述微波探测装置的差分信号转单端信号电路的一种电路结构示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一 个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
本发明提供一抗干扰的微波探测方法和微波探测装置,参考本发明的说明书附图之图3所示,依本发明的一实施例的所述微波探测装置的结构原理被示意,其中所述微波探测装置包括一天线单元10,一振荡单元20,一多普勒差分输出电路30以及至少一选频对消电路40,其中所述振荡单元20被设置用于产生一本振信号,其中所述天线单元10被馈电连接于所述振荡单元20以发射对应于所述本振信号频率的一探测波束而形成相应探测空间,和接收所述探测波束被所述探测空间内的物体反射形成的一回波而产生一回馈信号,其中所述多普勒差分输出电路30被电性连接于所述天线单元10和所述振荡单元20,以输出差分信号形态的一多普勒中频信号,其中所述多普勒中频信号为对应于所述本振信号和所述回馈信号之间频率/相位差异的信号,其中所述选频对消电路40被电性连接于所述多普勒差分输出电路30,以通过选频对消的方式消除差分信号形态的所述多普勒中频信号中相应频率范围的差分信号。
值得一提的是,在本发明的一些实施例中,所述天线单元10被设置以同一天线体作为发射天线和接收天线同时与所述振荡单元20馈电连接和与所述多普勒差分输出电路30电性相连,而在本发明的另一些实施例中,所述天线单元10被设置以不同天线体分别作为被馈电连接于所述振荡单元20发射天线和被电性连接于所述多普勒差分输出电路30的接收天线,本发明对此并不限制,相应天线体的数量和形态也并不构成对本发明的限制。
还值得一提的是,在所述振荡单元20被馈电连接于所述天线单元10和被电性连接于所述多普勒差分输出电路30的状态,所述天线单元10与所述振荡单元20之间的连接线路和所述多普勒差分输出电路30与振荡单元20之间的连接线路并不限制相同,即所述振荡单元20提供给所述天线单元10的本振信号和提供给所述多普勒差分输出电路30的本振信号同源(均由所述振荡单元20提供)但不限制同路,在本发明的一些实施例中,所述振荡单元20基于相应电路设置放大输出所述本振信号至所述天线单元10,本发明对此并不限制。
可以理解的是,基于所述多普勒微波探测装置的上述工作原理,一方面,能够被所述天线单元10接收的环境干扰信号会被叠加于差分信号形态的所述多普勒中频信号而形成所述多普勒中频信号中的第一类干扰信号;另一方面,能够被 所述天线单元10接收的环境干扰信号中与所述本振信号的频率具有同频、邻频以及倍频之任一频率关系的信号同时还会叠加于所述回馈信号参与混频检波过程而形成与所述多普勒中频信号中的有效信号混为一体的第二类干扰信号。
则基于第一类干扰信号和第二类干扰信号的上述形成过程,第一类干扰信号和第二类干扰信号分别对应以共模干扰和差模干扰存在于差分信号形态的所述多普勒中频信号而能够被区分,进而能够互不影响地基于不同信号处理方式分别抑制或消除差分信号形态的所述多普勒中频信号中的第一类干扰信号和第二类干扰信号,如此以有利于保障所述多普勒中频信号的完整性而保障所述多普勒中频信号对相应探测空间内的物体的运动的反馈的准确性,对应有利于实现包括人体移动、微动、呼吸以及心跳等动作特征的组合探测,相应所述微波探测装置的探测功能丰富而适用于多功能需求的智能探测应用。
具体地,在本发明的这个实施例中,采用所述选频对消电路40通过选频对消的方式消除差分信号形态的所述多普勒中频信号中相应频率范围的第二类干扰信号,其中所述选频对消电路40包括一第一等效电阻401,一第二等效电阻402以及一等效电容403,其中所述第一等效电阻401的一端被电性连接于所述等效电容403的一端,所述第二等效电阻402的一端被电性连接于所述等效电容403的另一端,对应所述选频对消电路40以所述第一等效电阻401的另一端和所述第二等效电阻402的另一端为两输入端41,和以所述等效电容403的两端为两输出端42,其中所述选频对消电路40于两所述输入端41被电性连接于所述多普勒差分输出电路30,以自两所述输入端41接入差分信号形态的所述多普勒中频信号的两极,和于两所述输出端42输出被选频对消处理的所述多普勒中频信号。
可以理解的是,所述等效电阻为单个或多个阻性元件基于串联、并联以及串并联组合之任一连接方式等效形成的满足相应阻值要求的电阻而不构成对相应阻性元件的形态、数量以及连接方式的限制;同样地,所述等效电容403为单个或多个容性元件基于串联、并联以及串并联组合之任一连接方式等效形成的满足相应电容量要求的电容而不构成对相应容性元件的形态、数量以及连接方式的限制。
值得一提的是,在实际应用中,与所述微波探测装置的本振信号具有同频、邻频以及倍频之任一频率关系的环境干扰信号主要为无线通信信号,通过对无线 通信的原理探索和对不同产品的实际测试发现:基于调频的工作原理而以频率的变化表达通信信息的无线通信信号中,信号的频率变化速率远高于与正常运动的物体相对应回馈信号基于多普勒效应原理产生频率变化的速率,对应第二类干扰信号在差分信号形态的所述多普勒中频信号中以高频尖峰形态的差模干扰存在,因而能够在相应频率范围基于选频对消的方式准确消除差分信号形态的所述多普勒中频信号中相应频率范围的第二类干扰信号,如此以保障所述微波探测装置抗通信干扰的能力而具有重大的实用价值和商业意义。
具体地,参考本发明的说明书附图之图4A,对应于图3所示例的所述微波探测装置,在所述探测空间不存在物体活动的状态,对所述选频对消电路40的其中一所述输入端41和其中一所述输出端42分别采样获取的所述多普勒中频信号(差分信号的单极对地形态)的以上下排布的方式被对比示意,相对于图2所示意的采用滤波的方式,选频对消的方式能够准确消除差分信号形态的所述多普勒中频信号中相应频率范围的第二类干扰信号,明显区别于滤波方式的积分平滑过程,因而能够避免采用多次滤波的方式而有利于保障所述多普勒中频信号的完整性和保障所述多普勒中频信号的相应参数与物理意义的对应关系,进而提高所述多普勒中频信号对相应探测空间内的物体的运动的反馈精度。
进一步地,参考本发明的说明书附图之图4B,对应于图3所示例的所述微波探测装置,在所述探测空间存在人体活动的状态,对所述选频对消电路40的两所述输入端41和两所述输出端42分别采样获取的所述多普勒中频信号(差分信号的完整形态)的以上下排布的方式被对比示意,同样明显可见的,选频对消的方式能够准确消除差分信号形态的所述多普勒中频信号中相应频率范围的第二类干扰信号,因而能够避免采用多次滤波的方式而有利于保障所述多普勒中频信号的完整性和保障所述多普勒中频信号的相应参数与物理意义的对应关系,进而提高所述多普勒中频信号对相应探测空间内的物体的运动的反馈精度。
此外,由于采用选频对消的方式能够在准确消除差分信号形态的所述多普勒中频信号中相应频率范围的第二类干扰信号,避免了采用多次滤波的方式而能够避免由滤波处理造成的信号延时,则所述多普勒中频信号的即时性得以保障而有利于实现包括人体呼吸以及心跳等动作的实时探测。
特别地,为维持所述选频对消电路40的两所述输出端42输出的所述多普勒中频信号呈差分信号形态,在本发明的这个实施例中,所述第一等效电阻401和 所述第二等效电阻402的阻值被设置在25%的误差范围内趋于相同。示例地,在所述微波探测装置被设置工作于5.8GHz的ISM频段时,所述第一等效电阻401和所述第二等效电阻402优选地被设置分别在25%的误差范围内趋于39kΩ的阻值,对应所述等效电容403被设置在25%的误差范围内趋于47nF的电容量,如型号为473的电容,如此以使得所述选频对消电路40的选频范围能够与现有无线通信信号于差分信号形态的所述多普勒中频信号中产生的第二类干扰信号的频率相对应,从而准确消除差分信号形态的所述多普勒中频信号中相应频率范围的第二类干扰信号,并以趋于无损的状态输出被选频对消处理的所述多普勒中频信号,进而保障所述多普勒中频信号的完整性和保障所述多普勒中频信号的相应参数与物理意义的对应关系,因而相对于采用多次滤波的方式能够明显提高所述多普勒中频信号对相应探测空间内的物体的运动的反馈精度。
进一步参考本发明的说明书附图之图5A所示,在图3所示例的所述微波探测装置的结构基础上,基于等效形成所述等效电容403的相应容性元件的数量和连接方式的变形,依本发明的上述实施例的一变形实施例的所述微波探测装置的结构框图被示意。在本发明的这个变形实施例中,所述等效电容403以相互串联的两电容4031被等效设置,其中为维持所述选频对消电路40的两所述输出端42输出的所述多普勒中频信号呈差分信号形态,两所述电容4031优选地被设置采用相同型号的电容,以使得两所述电容4031的电容量趋于相同。示例地,在所述微波探测装置被设置工作于5.8GHz的ISM频段时,所述第一等效电阻401和所述第二等效电阻402优选地被设置分别在25%的误差范围内趋于39kΩ的阻值,所述等效电容403被设置在25%的误差范围内趋于47nF的电容量,对应采用相同型号的两所述电容4031均被设置在25%的误差范围内趋于100nF的电容量,如采用型号为104的电容。
进一步参考本发明的说明书附图之图5B所示,在图5A所示例的所述微波探测装置的结构基础上,所述选频对消电路40可选地进一步于相互串联的两所述电容4031之间被接地,以形成对差分信号形态的所述多普勒中频信号中相应频率范围的信号的平衡对地消耗,进而保障所述选频对消电路40的两所述输出端42输出的所述多普勒中频信号呈差分信号形态。
进一步参考本发明的说明书附图之图6A所示,依本发明的上述这些实施例的所述微波探测装置的进一步改进结构被示意。由于在微波探测装置的应用场景 中,与所述微波探测装置的本振信号具有同频的频率关系的环境干扰信号还有可能为同频的其它微波探测装置所发射的信号,或为所述微波探测装置发射的所述探测波束在小空间和/或强反射环境基于多次反射形成的同频干扰信号,对应形成的第一类干扰信号和第二类干扰信号在差分信号形态的所述多普勒中频信号中以毛刺形态存在,其中所述微波探测装置在以选频对消的方式消除差分信号形态的所述多普勒中频信号中相应频率范围的第二类干扰信号之前可选地对应于图6A于至少一所述选频对消电路40的两所述输入端41分别电性连接有一对地电容43,以基于两所述对地电容43的设置,抑制定频形态的同频干扰在差分信号形态的所述多普勒中频信号中以毛刺形态形成的第一类干扰信号和第二类干扰信号,从而保障所述微波探测装置于多微波探测装置的应用场景下的抗干扰的能力,和在小空间和/或强反射环境的抗自激干扰能力。其中为维持所述选频对消电路40的两所述输出端42输出的所述多普勒中频信号呈差分信号形态,两所述对地电容43被设置采用相同型号的电容,以使得两所述对地电容43的电容量趋于相同。
基于相应有益效果的展示,参考本发明的说明书附图之图6B所述,在所述探测空间不存在物体活动的状态,以工作于同一频率的另一所述微波探测装置作为所述微波探测装置的干扰源,在图6A所示意的所述微波探测装置中,对所述选频对消电路40的其中一所述输入端41的连接有所述对地电容43的前端和其中一所述输出端42分别采样获取的所述多普勒中频信号(差分信号的单极对地形态)的以上下排布的方式被对比示意。明显可见的,定频形态的同频干扰在差分信号形态的所述多普勒中频信号中以毛刺形态形成的第一类干扰信号和第二类干扰信号能够基于所述对地电容43的设置被抑制,如此以避免所述选频对消电路40输出的所述多普勒中频信号的底噪过高,因而有利于进一步保障所述微波探测装置于不同应用场景下的抗干扰的能力。
进一步参考本发明的说明书附图之图7A和图7B所示,基于多级和/或多路选频对消处理的需求而将所述选频对消电路40的数量设置为多个的形态,多个所述选频对消电路40之间不限制于串联或并联的电性连接关系,还可以是基于串联和并联的组合形成的电性连接关系。
对应于图7A,两个所述选频对消电路40之间的串联结构被示意,具体地,其中一所述选频对消电路40的两所述输出端42分别被电性连接于另一所述选频 对消电路40的两所述输入端41,从而形成两个所述选频对消电路40之间的串联结构,以于前级的所述选频对消电路40的两所述输入端41接入差分信号形态的所述多普勒中频信号,和于后级的所述选频对消电路40的两所述输出端42输出被多级选频对消处理后的所述多普勒中频信号。
对应于图7B,两个所述选频对消电路40之间的并联结构被示意,具体地,其中一所述选频对消电路40的两所述输入端41分别被电性连接于另一所述选频对消电路40的两所述输入端41,从而形成两个所述选频对消电路40之间的并联结构,以分别于各所述选频对消电路40的两所述输出端42输出被选频对消处理后的所述多普勒中频信号实现多路选频对消处理。
对应于上述这些实施例的所述微波探测装置的结构,本发明的所述抗干扰的微波探测方法包括以下步骤:
A、发射对应于所述本振信号频率的所述探测波束以形成相应探测空间;
B、接收所述探测波束被所述探测空间内的物体反射形成的所述回波而产生所述回馈信号;
C、输出差分信号形态的一多普勒中频信号,其中所述多普勒中频信号为对应于所述本振信号和所述回馈信号之间频率/相位差异的信号;以及
D、以选频对消的方式输出被选频对消处理后的所述多普勒中频信号;
其中以所述振荡单元20提供所述本振信号,以所述天线单元10发射所述探测波束和接收所述回波,以所述多普勒差分输出电路30在接入所述本振信号和所述回馈信号的状态,反相输出对应所述本振信号和所述回馈信号之间的频率/相位差异的信号而形成对差分信号形态的所述多普勒中频信号的输出,和以所述选频对消电路40对接入的差分信号形态的所述多普勒中频信号进行选频对消处理而输出被选频对消处理后的所述多普勒中频信号,其中所述选频对消电路40包括所述第一等效电阻401,所述第二等效电阻402以及所述等效电容403,其中所述第一等效电阻401的一端被电性连接于所述等效电容403的一端,所述第二等效电阻402的一端被电性连接于所述等效电容403的另一端,对应所述选频对消电路40以所述第一等效电阻401的另一端和所述第二等效电阻402的另一端为两输入端41,和以所述等效电容403的两端为两输出端42,其中所述选频对消电路40于两所述输入端41被电性连接于所述多普勒差分输出电路30,以自两所述输入端41接入差分信号形态的所述多普勒中频信号的两极,和于两所 述输出端42输出被选频对消处理的所述多普勒中频信号。
进一步地,在本发明的一些实施例中,其中在所述步骤(C)中,基于混频处理的方式,直接输出对应于所述本振信号和所述回馈信号之间频率/相位差异的差分信号形态的所述多普勒中频信号。对应所述多普勒差分输出电路30以能够基于混频处理的方式直接输出差分信号形态的所述多普勒中频信号的相应混频电路被设置。
示例地,参考本发明的说明书附图之图8A至图8D所示,相应所述多普勒差分输出电路30的不同电路结构原理分别被示意。
对应于图8A,所述多普勒差分输出电路30包括以等效电阻或等效电感形态形成的一第一负载301和一第二负载302,一第一MOS管303,以及一第二MOS管304,其中所述第一负载301的一端被电性连接于所述第二负载302的一端,所述第一负载301的另一端被电性连接于所述第一MOS管303的漏极,所述第二负载302的另一端被电性连接于所述第二MOS管304的漏极,其中所述第一MOS管303的源极被电性连接与所述第二MOS管304的源极,如此以在于相互连接的所述第一负载301和所述第二负载302的两端接入电源,和于相互连接的所述第一MOS管303和所述第二MOS管304的两源极接入所述回馈信号,以及于所述第一MOS管303的栅极和所述第二MOS管304的栅极分别接入反相的所述本振信号的状态,能够于所述第一MOS管303的漏极和所述第二MOS管304的漏极输出差分信号形态的所述多普勒中频信号。
对应于图8B,所述多普勒差分输出电路30包括一第一MOS管301,一第二MOS管302,一第三MOS管303以及一第四MOS管304,其中所述第一MOS管301的漏极被电性连接于所述第二MOS管302的漏极,所述第三MOS管303的漏极被电性连接于所述第四MOS管304的漏极,所述第一MOS管301的源极被电性连接于所述第三MOS管303的源极,所述第二MOS管302的源极被电性连接于所述第四MOS管304的源极,如此以在于相互连接的所述第一MOS管301和所述第二MOS管302的两漏极之间,和相互连接的所述第三MOS管303和所述第四MOS管304的两漏极之间,分别接入反相的所述回馈信号,和于所述第一MOS管301,所述第二MOS管302,所述第三MOS管303以及所述第四MOS管304的四个栅极接入顺序反相的所述本振信号的状态,能够于所述第一MOS管301和所述第三MOS管303的两所述源极之间,和所述第二MOS管302和所述第四MOS管304的 两所述源极之间,输出差分信号形态的所述多普勒中频信号。
对应于图8C,所述多普勒差分输出电路30包括以等效电阻或等效电感形态形成的一第一负载301和一第二负载302,一第一MOS管303,一第二MOS管304,以及一第三MOS管305,其中所述第一负载301的一端被电性连接于所述第二负载302的一端,所述第一负载301的另一端被电性连接于所述第一MOS管303的漏极,所述第二负载302的另一端被电性连接于所述第二MOS管304的漏极,其中所述第一MOS管303的源极与所述第二MOS管304的源极分别被电性连接于所述第三MOS管305的漏极,其中所述第三MOS管305的源极被接地,如此以在于相互连接的所述第一负载301和所述第二负载302的两端接入电源,和于所述第三MOS管305的栅极接入所述回馈信号,以及于所述第一MOS管303的栅极和所述第二MOS管304的栅极分别接入反相的所述本振信号的状态,能够于所述第一MOS管303的漏极和所述第二MOS管304的漏极输出差分信号形态的所述多普勒中频信号。
对应于图8D,所述多普勒差分输出电路30包括以等效电阻或等效电感形态形成的一第一负载301和一第二负载302,一第一MOS管303,一第二MOS管304,一第三MOS管305,一第四MOS管306,一第五MOS管307,一第六MOS管308,以及一电流源309,其中所述第一负载301的一端被电性连接于所述第二负载302的一端,所述第一负载301的另一端被分别电性连接于所述第一MOS管303的漏极和所述第三MOS管305的漏极,所述第二负载302的另一端被分别电性连接于所述第二MOS管304的漏极和所述第四MOS管306的漏极,其中所述第一MOS管303的源极和所述第二MOS管304的源极分别被电性连接于所述第五MOS管307的漏极,所述第三MOS管305的源极和所述第四MOS管306的源极分别被电性连接于所述第六MOS管308的漏极,其中所述第五MOS管307的源极和所述第六MOS管308的源极分别被电性连接于所述电流源309,如此以在于所述第五MOS管307的栅极和所述第六MOS管308的栅极分别接入反相的所述回馈信号,于所述第一MOS管303的栅极和所述第二MOS管304的栅极分别接入反相的所述本振信号,于所述第三MOS管305的栅极和所述第四MOS管306的栅极分别接入反相的所述本振信号,其中所述第二MOS管304的栅极接入的所述本振信号与所述第三MOS管305的栅极接入的所述本振信号同相,以及于所述相互连接的所述第一负载301和所述第二负载302的两端接入电源的状态,能够于所述第一负载301 的另一端和所述第二负载302的另一端输出差分信号形态的所述多普勒中频信号。
可以理解的是,上述不同所述多普勒差分输出电路30的结构原理仅为举例,并适用于前述不同实施例的所述微波探测装置,所述多普勒差分输出电路30的电路结构多样而无法一一列出,其不限制于分立元器件形态或集成电路形态的独立形态,并可以被实施为分立元器件形态与集成电路形态的组合形态,本发明对此并不限制。
例如,在本发明的一些实施例中,所述多普勒差分输出电路30与所述振荡单元20以集成电路形态被设置并一体集成于一微波芯片,在本发明的另一些实施例中,所述选频对消电路40的所述第一等效电阻401和所述第二等效电阻402被一体集成于该所述微波芯片。
特别地,在本发明的一些实施例中,所述抗干扰的微波探测方法的所述步骤(C)包括以下步骤:
C1、混频处理所述本振信号和所述回馈信号,以使得对应于所述本振信号和所述回馈信号之间频率/相位差异的信号能够被引出;
C2、以所述天线单元10的参考地为地引出一路对应于所述本振信号和所述回馈信号之间频率/相位差异的信号而输出单端信号形态的所述多普勒中频信号;以及
C3、通过将单端信号形态的所述多普勒中频信号反相的方式反相输出对应所述本振信号和所述回馈信号之间频率/相位差异的信号,以转换单端信号形态的所述多普勒中频信号为差分信号形态的所述多普勒中频信号。
值得一提的是,在所述步骤(C2)中,由于仅引出一路对应于所述本振信号和所述回馈信号之间频率/相位差异的信号,所述步骤(C2)中输出的单端信号形态的所述多普勒中频信号的初始强度能够被保障而有利于保障基于所述步骤(C3)输出的差分信号形态的所述多普勒中频信号的初始强度,对应有利于保障基于所述步骤(D)中以选频对消的方式输出的差分信号形态的所述多普勒中频信号对相应探测空间内的物体的运动的反馈精度。
对应地,参考本发明的说明书附图之图9所示,所述多普勒差分输出电路30的一种电路结构原理被示意,其中所述多普勒差分输出电路30包括一混频电路31和一单端信号转差分信号电路32,其中所述混频电路31被电性连接于所述天 线单元10和所述振荡单元20,以接入所述回馈信号和所述本振信号并以混频检波的方式输出对应于所述回馈信号和所述本振信号之间的频率/相位差异的单端信号形态的所述多普勒中频信号,其中所述单端转差分电路32被电性连接于所述混频电路31,以接入单端信号形态的所述多普勒中频信号并通过将单端信号形态的所述多普勒中频信号反相的方式转换单端信号形态的所述多普勒中频信号为差分信号形态的所述多普勒中频信号。
示例地,参考本发明的说明书附图之图10A和图10B所示,所述单端信号转差分信号电路32的一种结构原理的所述单端信号转差分信号电路32的不同基础电路结构分别被示意。
对应于图10A,所述单端信号转差分信号电路32包括一三级管321,一第一电阻322,一第二电阻323,一第三电阻324,一第四电阻325以及一电容326,其中所述三极管321的发射极经所述第一电阻322被接地,所述三极管321的集电极经所述第二电阻323接入电源,所述三极管321的基极经所述第三电阻324接入电源,和经所述第四电阻325接地,以及经所述电容326接入单端信号形态的所述多普勒中频信号,以于所述三极管321的集电极和发射极之间输出差分信号形态的所述多普勒中频信号。
对应于图10B,所述单端信号转差分信号电路32包括一运算放大器321,一第一电阻322以及一第二电阻323,其中所述运算放大器321于同相输入端接基准电压,和于反相输入端经所述第一电阻322电性连接于所述运算放大器321的输出端,和经所述第二电阻323接入单端信号形态的所述多普勒中频信号,如此以于所述第二电阻323的接入单端信号形态的所述多普勒中频信号的一端和所述运算放大器321的所述输出端之间输出差分信号形态的所述多普勒中频信号。
示例地,参考本发明的说明书附图之图11A至图11D所示,所述单端信号转差分信号电路32的一种结构原理和对应该结构原理的不同基础电路结构分别被示意,其中所述单端信号转差分信号电路32包括一第一运算放大电路321和一第二运算放大电路322,其中所述第一运算放大电路321于输入端接入单端信号形态的多普勒中频信号,和于输出端电性连接于所述第二运算放大电路322的输入端,并于所述第一运算放大电路321的输出端和所述第二运算放大电路322的输出端之间输出差分信号形态的所述多普勒中频信号。
对应于图11B,所述第一运算放大电路321包括一第一运算放大器3211,并 以所述第一运算放大器3211的同相输入端为输入端接入单端信号形态的所述多普勒中频信号,和以所述第一运算放大器3211的输出端为输出端,所述第二运算放大电路322包括一第二运算放大器3221,一第一电阻3222以及一第二电阻3223,并以所述第二运算放大器3221的反相输入端为输入端和以所述第二运算放大器3221的输出端为输出端,其中所述第二运算放大器3221于同相输入端接入基准电压,和于反相输入端经所述第二电阻3223电性连接于所述第二运算放大器3221的输出端,其中所述第一运算放大器3211的输出端经所述第一电阻3222电性连接于所述第二运算放大器3221的反相输入端,所述第一运算放大器3211反相输入端与输出端电性相连,如此以于所述第一运算放大器3211的输出端和所述第二运算放大器3221的输出端之间输出差分信号形态的所述多普勒中频信号。
对应于图11C,所述第一运算放大电路321包括一第一运算放大器3211,一第一电阻3212,以及一第二电阻3213,并以所述第一运算放大器3211的反相输入端为输入端接入单端信号形态的所述多普勒中频信号,和以所述第一运算放大器3211的输出端为输出端,其中所述第一运算放大器3211于反相输入端经所述第一电阻3212接入单端信号形态的所述多普勒中频信号,和于正相输入端接入基准电压,其中所述第一运算放大器3211的反相输入端和输出端经所述第二电阻3213电性相连,其中所述第二运算放大电路322包括一第二运算放大器3221,一第三电阻3222以及一第四电阻3223,并以所述第二运算放大器3221的反相输入端为输入端和以所述第二运算放大器3221的输出端为输出端,其中所述第一运算放大器3211于输出端经所述第三电阻3222电性连接于所述第二运算放大器3221的反相输入端,所述第二运算放大器3221的反相输入端和输出端经所述第四电阻3223电性相连,如此以于所述第一运算放大器3211的输出端和所述第二运算放大器3221的输出端之间输出差分信号形态的所述多普勒中频信号。
对应于图11D,其中所述第一运算放大电路321包括一第一运算放大器3211,一第一电阻3212,一第二电阻3213,一第一电容3214,一第二电容3215以及一第三电容3216,并以所述第一运算放大器3211的反相输入端为输入端接入单端信号形态的所述多普勒中频信号,和以所述第一运算放大器3211的输出端为输出端,其中所述第一运算放大器3211自其反相输入端经所述第三电容3216电性连接于其输出端,和顺序经所述第一电阻3212和所述第二电阻3213电性连接 于其输出端,和顺序经所述第一电阻3212和所述第一电容3214接入单端信号形态的所述多普勒中频信号,以及顺序经所述第一电阻3212和所述第二电容3215接地,其中所述第二运算放大电路322包括一第二运算放大器3221,一第三电阻3222以及一第四电阻3223,并以所述第二运算放大器3221的反相输入端为输入端和以所述第二运算放大器3221的输出端为输出端,其中所述第一运算放大器3211于输出端经所述第三电阻3222电性连接于所述第二运算放大器3221的反相输入端,所述第二运算放大器3221的反相输入端和输出端经所述第四电阻3223电性相连,如此以于所述第一运算放大器3211的输出端和所述第二运算放大器3221的输出端之间输出差分信号形态的所述多普勒中频信号。
进一步示例地,参考本发明的说明书附图之图12A至图12C所示,所述单端信号转差分信号电路32的另一种结构原理和对应该结构原理的不同基础电路结构分别被示意,其中所述单端信号转差分信号电路32包括一第一运算放大电路321和一第二运算放大电路322,其中所述第一运算放大电路321于输入端和所述第二运算放大电路322的输入端电性相连并接入单端信号形态的多普勒中频信号,并于所述第一运算放大电路321的输出端和所述第二运算放大电路322的输出端之间输出差分信号形态的所述多普勒中频信号。
对应于图12B,所述第一运算放大电路321包括一第一运算放大器3211,一第一电阻3212,一第二电阻3213以及一第一电容3214,并以所述第一运算放大器3211的同相输入端为输入端接入单端信号形态的所述多普勒中频信号,和以所述第一运算放大器3211的输出端为输出端,其中所述第一运算放大器3211自其反相输入端经所述第一电阻3212电性连接于其输出端,并顺序经所述第二电阻3213和所述第一电容3214接地,其中所述第二运算放大电路322包括一第二运算放大器3221,一第三电阻3222以及一第四电阻3223,并以所述第二运算放大器3221的反相输入端为输入端和以所述第二运算放大器3221的输出端为输出端,其中所述第一运算放大器3211于同相输入端经所述第三电阻3222电性连接于所述第二运算放大器3221的反相输入端,所述第二运算放大器3221的反相输入端和输出端经所述第四电阻3223电性相连,其中所述第二运算放大器3221于同相输入端接入基准电压,如此以于所述第一运算放大器3211的输出端和所述第二运算放大器3221的输出端之间输出差分信号形态的所述多普勒中频信号。
对应于图12C,所述第一运算放大电路321包括一第一运算放大器3211,一 第一电阻3212,一第二电阻3213,一第三电阻3214以及一第四电阻3215,并以所述第一运算放大器3211的同相输入端为输入端接入单端信号形态的所述多普勒中频信号,和以所述第一运算放大器3211的输出端为输出端,其中所述第一运算放大器3211自其反相输入端经所述第四电阻3215电性连接于其输出端,并经所述第三电阻3214接地,其中所述第一运算放大器3211自其同相输入端经所述第一电阻3212接入单端信号形态的所述多普勒中频信号,和经所述第二电阻3213接地,其中所述第二运算放大电路322包括一第二运算放大器3221,一第五电阻3222以及一第六电阻3223,并以所述第二运算放大器3221的反相输入端为输入端和以所述第二运算放大器3221的输出端为输出端,其中所述第一运算放大器3211自同相输入端顺序经所述第一电阻3222和第五电阻3222电性连接于所述第二运算放大器3221的反相输入端,所述第二运算放大器3221的反相输入端和输出端经所述第六电阻3223电性相连,其中所述第二运算放大器3221于同相输入端接入基准电压,如此以于所述第一运算放大器3211的输出端和所述第二运算放大器3221的输出端之间输出差分信号形态的所述多普勒中频信号。
进一步示例地,参考本发明的说明书附图之图13A和图13B所示,基于另一结构原理的所述单端信号转差分信号电路32的不同基础电路结构分别被示意。
对应于图13A,所述单端信号转差分信号电路32包括一第一运算放大器321,一第二运算放大器322,一第一电阻323,一第二电阻324,一第三电阻325以及一第四电阻326,其中所述第一运算放大器321于其同相输入端接入基准电压,和自其反相输入端经所述第一电阻323接入单端信号形态的所述多普勒中频信号,以及自其输出端顺序经所述第三电阻325和所述第四电阻326与所述第二运算放大器322的输出端电性相连,其中所述第一运算放大器321的反相输入端和输出端经所述第二电阻324电性相连,所述第二运算放大器322的反相输入端和输出端经所述第四电阻326电性相连,所述第二运算放大器322的同相输入端被电性连接于所述第一运算放大器321的反相输入端,如此以于所述第一运算放大器321的输出端和所述第二运算放大器322的输出端之间输出差分信号形态的所述多普勒中频信号。
对应于图13B,所述单端信号转差分信号电路32包括一第一运算放大器321,一第二运算放大器322,一第一电阻323,一第二电阻324,一第三电阻325以 及一第四电阻326,其中所述第一运算放大器321于其同相输入端接入基准电压,和于其反相输入端与所述第二运算放大器322的反相输入端电性相连,以及自其输出端经所述第四电阻326与所述第二运算放大器322的同相输入端电性相连,其中所述第一运算放大器321的反相输入端和输出端经所述第三电阻325电性相连,其中所述第二运算放大器322自其同相输入端经所述第一电阻323接入单端信号形态的所述多普勒中频信号,其中所述第二运算放大器322的反相输入端和输出端经所述第二电阻324电性相连,如此以于所述第一运算放大器321的输出端和所述第二运算放大器322的输出端之间输出差分信号形态的所述多普勒中频信号。
同样可以理解的是,上述不同所述单端信号转差分信号电路32的结构仅为举例,相应所述多普勒差分输出电路30适用于前述不同实施例的所述微波探测装置。示例地,对应于图14A,图11D所示意的所述单端信号转差分信号电路32被应用于图6A时的部分电路结构被示意。对应于图14B,图13A所示意的所述单端信号转差分信号电路32被应用于图6A时的部分电路结构被示意。
值得一提的是,所述单端信号转差分信号电路32的电路结构多样而无法一一列出,其主要结构特征在于采用单端输入和双端输出的结构,通过将单端输入的单端信号形态的所述多普勒中频信号反相而将输入的一路单端信号形态的所述多普勒中频信号转换为反相的信号,从而形成单端信号形态的所述多普勒中频信号向差分信号形态的所述多普勒中频信号的转换,其不限制于分立元器件形态或集成电路形态的独立形态,并可以被实施为分立元器件形态与集成电路形态的组合形态,本发明对此并不限制。
例如,在本发明的一些实施例中,所述振荡单元20与所述多普勒差分输出电路30以集成电路形态被设置并一体集成于一微波芯片,在本发明的另一些实施例中,所述选频对消电路40的所述第一等效电阻401和所述第二等效电阻402被一体集成于该所述微波芯片。
又例如,在本发明的一些实施例中,所述振荡单元20与所述多普勒差分输出电路30的所述混频电路31以集成电路形态被设置并一体集成于一微波芯片,而所述多普勒差分输出电路30的所述单端信号转差分信号电路32被外置于所述微波芯片。
又例如,在本发明的一些实施例中,所述振荡单元20与所述单端信号转差 分信号电路32的对应于图11A至图12C的所述第一运算放大电路或对应于图13A和图13B的所述第一运算放大器以集成电路形态被设置并一体集成于一微波芯片,而所述单端信号转差分信号电路32的对应于图11A至图12C的所述第二运算放大电路或对应于图13A和图13B的所述第二运算放大器被外置于所述微波芯片,其中所述多普勒差分输出电路30的所述混频电路31被外置于所述微波芯片,或被内置于所述微波芯片以形成现有以单端信号形态输出多普勒中频信号的微波芯片。
特别地,在本发明的一些实施例中,所述抗干扰的微波探测方法进一步包括步骤:
E、对差分信号形态的所述多普勒中频信号进行差分放大处理。
可以理解的,所述步骤(E)在所述步骤(C)和所述步骤(D)之间被执行,和/或在所述步骤(D)之后被执行,本发明对此并不限制。
对应地,参考本发明的说明书附图之图15A和图15B所示,所述微波探测装置还包括至少一差分放大电路50,其中所述差分放大电路50被设置于所述多普勒差分输出电路30和所述选频对消电路40之间,和/或被设置于所述选频对消电路40的两所述输出端42,以对所述多普勒差分输出电路30输出的差分信号形态的所述多普勒中频信号进行差分放大处理,和/或对所述选频对消电路40输出的差分信号形态的所述多普勒中频信号进行差分放大处理,从而基于对差分信号形态的所述多普勒中频信号的差分放大处理过程的共模抑制特性,在抑制差分信号形态的所述多普勒中频信号中的第一类干扰信号被放大的状态,放大差分信号形态的所述多普勒中频信号。
值得一提的是,在所述差分放大电路50被设置于所述多普勒差分输出电路30和所述选频对消电路40之间的状态,当所述选频对消电路40的两所述输入端41分别电性连接有所述对地电容43时,相应所述对地电容43能够以被设置于所述差分放大电路50和所述多普勒差分输出电路30之间的状态与所述选频对消电路40的相应所述输入端41电性相连,或被设置于所述差分放大电路50和所述选频对消电路40之间的状态与相应所述输入端41电性相连。
此外,还值得一提的是,基于多级选频对消处理的需求,当所述选频对消电路40的数量为多个并对应于图7A采用串联结构时,在本发明的一些实施例中,相互串联的两所述选频对消电路40之间进一步设置有所述差分放大电路50,以 在采用多级选频对消处理的方式实现对不同频段的差分信号的对消处理时,基于所述差分放大电路50于相互串联的两所述选频对消电路40之间的设置,形成对相互串联的两所述选频对消电路40之间的隔离而保障相互串联的两所述选频对消电路40的独立性,对应使得相互串联的两所述选频对消电路40对相应频段的差分信号的对消消除处理能够互不影响而保障多级选频对消效果。
为进一步描述本发明,参考本发明的说明书附图之图16所示,所述差分放大电路50的结构原理被示意,可以理解的是,基于对所述差分放大电路50的供电方式(双电源供电或单电源供电)的选择和相应的参数及优化设计,所述差分放大电路50的电路结构多样而无法一一列出,并不限制于分立元器件形态或集成电路形态的独立形态,其也可以被实施为分立元器件形态与集成电路形态的组合形态,其中所述差分放大电路50主要结构特征在于采用双端输入和双端输出的方式,于两个晶体管的基极与地之间接入差分信号形态的所述多普勒中频信号,和于两所述晶体管的集电极之间输出差分放大后的差分信号形态的所述多普勒中频信号。
进一步地,在本发明的一些实施例中,所述抗干扰的微波探测方法在所述步骤(D)之后还包括步骤:
F、转换差分信号形态的所述多普勒中频信号为单端信号形态的所述多普勒中频信号。
可以理解的是,当所述抗干扰的微波探测方法在所述步骤(D)之后包括所述步骤(E)时,所述步骤(F)在所述步骤(E)之后被执行。
对应地,参考本发明的说明书附图之图17A和图17B所示,所述微波探测装置还包括一差分信号转单端信号电路60,其中所述差分信号转单端信号电路60被设置用于接入选频对消处理后的差分信号形态的所述多普勒中频信号,并对应所述步骤(F)转换差分信号形态的所述多普勒中频信号为以所述天线单元10的参考地为地的单端信号形态的所述多普勒中频信号进行输出,以基于差分信号形态的所述多普勒中频信号向单端信号形态的所述多普勒中频信号转换的过程中对共模干扰的抑制和消除作用,抑制和消除以单端信号形态输出的所述多普勒中频信号中的第一类干扰信号。
为进一步描述本发明,参考本发明的说明书附图之图18所示,所述差分信号转单端信号电路60的结构原理被示意,其中基于相应的运算运算放大器对输 入的差分信号形态的所述多普勒中频信号的反相叠加而形成差分信号形态的所述多普勒中频信号向单端信号形态的所述多普勒中频信号的转换,并在转换过程中,由于共模干扰在差分信号形态的所述多普勒中频信号的反相叠加过程中被相互抵消而形成对共模干扰的抑制和消除作用,对应抑制和消除抑制和消除以单端信号形态输出的所述多普勒中频信号中的第一类干扰信号。
同样可以理解的是,在上述结构原理的基础上,基于对所述差分信号转单端信号电路60的供电方式(双电源供电或单电源供电)的选择和相应的参数及优化设计,所述差分信号转单端信号电路60的电路结构多样而无法一一列出,并不限制于分立元器件形态或集成电路形态的独立形态,其还可以被实施为分立元器件形态与集成电路形态的组合形态,本发明对此并不限制。
可选地,在本发明的一些实施例中,通过对差分信号形态的所述多普勒中频信号的两极的分别进行A/D转换的方式,同样能够在后继基于数据的量化识别与运算实现对共模干扰的抑制和消除而等效于实现转换差分信号形态的所述多普勒中频信号为单端信号形态的抗共模干扰目的。
值得一提的是,通过形成差分信号形态的多普勒中频信号的方式,差分信号形态的所述多普勒中频信号的对外辐射能够相互抵消,则所述多普勒中频信号对环境和相应线路的干扰能够被抑制,对应有利于提高所述微波探测装置的抗干扰能力。此外,对差分信号形态的所述多普勒中频信号的差分放大处理和/或向单端信号形态的所述多普勒中频信号的转换相对于滤波方式能够大幅减少甚至避免电容元件在所述多普勒中频信号的传输路径中的使用,则所述多普勒中频信号的即时性得以保障而有利于实现包括人体呼吸以及心跳等动作的实时探测。
可以理解的是,设置有所述差分信号转单端信号电路60的所述微波探测装置的结构原理仅为举例,在所述微波探测装置基于所述选频对消电路40的设置以选频对消的方式准确消除差分信号形态的所述多普勒中频信号中相应频率范围的第二类干扰信号后,选频对消电路40输出的差分信号形态的所述多普勒中频信号对相应探测空间内的物体的运动的反馈精度即可得到保障,因而能够不经差分信号转单端步骤地取选频对消输出的差分信号形态的所述多普勒中频信号中任一极信号与参考地之间形成的单端信号进行数据的识别与运算,仍能够获取对包括人体移动、微动、呼吸以及心跳等人体活动的准确稳定的探测结果。
本领域的技术人员可以理解的是,以上实施例仅为举例,其中不同实施例的 特征可以相互组合,以得到根据本发明揭露的内容很容易想到但是在附图中没有明确指出的实施方式,本发明对此并不限制。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (28)

  1. 抗干扰的微波探测方法,其特征在于,包括以下步骤:
    (A)发射对应于一本振信号频率的一探测波束以形成相应探测空间;
    (B)接收所述探测波束被所述探测空间内的物体反射形成的回波而产生一回馈信号;
    (C)输出差分信号形态的一多普勒中频信号,其中所述多普勒中频信号为对应于所述本振信号和所述回馈信号之间频率/相位差异的信号;以及
    (D)以选频对消的方式消除差分信号形态的所述多普勒中频信号中相应频率范围的差分信号,以使得叠加于所述回馈信号的环境干扰信号中,与所述本振信号的频率具有同频、邻频以及倍频之任一频率关系的无线通信信号于所述多普勒中频信号中产生的差模干扰能够被消除。
  2. 根据权利要求1所述的抗干扰的微波探测方法,其中在所述步骤(D)中,以一选频对消电路对所述步骤(C)中输出的差分信号形态的所述多普勒中频信号进行选频对消处理而输出被选频对消处理后的所述多普勒中频信号,其中所述选频对消电路包括一第一等效电阻,一第二等效电阻以及一等效电容,其中所述第一等效电阻的一端被电性连接于所述等效电容的一端,所述第二等效电阻的一端被电性连接于所述等效电容的另一端,对应所述选频对消电路以所述第一等效电阻的另一端和所述第二等效电阻的另一端为两输入端,和以所述等效电容的两端为两输出端,以自两所述输入端接入所述步骤(C)中输出的差分信号形态的所述多普勒中频信号,和于两所述输出端输出被选频对消处理的所述多普勒中频信号。
  3. 根据权利要求2所述的抗干扰的微波探测方法,其中所述第一等效电阻和所述第二等效电阻被设置分别在25%的误差范围内趋于39kΩ的阻值,所述等效电容被设置在25%的误差范围内趋于47nF的电容量。
  4. 根据权利要求2所述的抗干扰的微波探测方法,其中所述等效电容以相互串联的两电容被等效设置,其中所述选频对消电路于相互串联的两所述电容之间被 接地。
  5. 根据权利要求2所述的抗干扰的微波探测方法,其中所述选频对消电路的两所述输入端分别电性连接有一对地电容。
  6. 根据权利要求1所述的抗干扰的微波探测方法,其中所述抗干扰的微波探测方法进一步在所述步骤(C)和所述步骤(D)之间,和/或在所述步骤(D)之后包括步骤:
    (E)对差分信号形态的所述多普勒中频信号进行差分放大处理。
  7. 根据权利要求6所述的抗干扰的微波探测方法,其中所述抗干扰的微波探测方法在所述步骤(D)之后还包括步骤:
    F、转换差分信号形态的所述多普勒中频信号为单端信号形态的所述多普勒中频信号。
  8. 根据权利要求1所述的抗干扰的微波探测方法,其中在所述步骤(C)中,以混频处理的方式直接输出对应于所述本振信号和所述回馈信号之间频率/相位差异的差分信号形态的所述多普勒中频信号。
  9. 根据权利要求1所述的抗干扰的微波探测方法,其中在所述步骤(C)中包括以下步骤:
    C1、混频处理所述本振信号和所述回馈信号,以使得对应于所述本振信号和所述回馈信号之间频率/相位差异的信号能够被引出;
    C2、引出一路对应于所述本振信号和所述回馈信号之间频率/相位差异的信号而输出单端信号形态的所述多普勒中频信号;以及
    C3、通过将单端信号形态的所述多普勒中频信号反相的方式反相输出对应所述本振信号和所述回馈信号之间频率/相位差异的信号,以转换单端信号形态的所述多普勒中频信号为差分信号形态的所述多普勒中频信号。
  10. 微波探测装置,其特征在于,包括:
    一振荡单元,其中所述振荡单元被设置用于产生一本振信号;
    一天线单元,所述天线单元被馈电连接于所述振荡单元以发射对应于所述本振信号频率的一探测波束而形成相应探测空间,和接收所述探测波束被所述探测空间内的物体反射形成的一回波而产生一回馈信号;
    一多普勒差分输出电路,其中所述多普勒差分输出电路被电性连接于所述天线单元和所述振荡单元,以输出差分信号形态的一多普勒中频信号,其中所述多普勒中频信号为对应于所述本振信号和所述回馈信号之间频率/相位差异的信号;以及
    至少一选频对消电路,其中所述选频对消电路被电性连接于所述多普勒差分输出电路,以通过选频对消的方式消除差分信号形态的所述多普勒中频信号中相应频率范围的差分信号,对应使得叠加于所述回馈信号的环境干扰信号中,与所述本振信号的频率具有同频、邻频以及倍频之任一频率关系的无线通信信号于所述多普勒中频信号中产生的差模干扰能够被消除。
  11. 根据权利要求10所述的微波探测装置,其中所述选频对消电路包括一第一等效电阻,一第二等效电阻以及一等效电容,其中所述第一等效电阻的一端被电性连接于所述等效电容的一端,所述第二等效电阻的一端被电性连接于所述等效电容的另一端,对应所述选频对消电路以所述第一等效电阻的另一端和所述第二等效电阻的另一端为两输入端,和以所述等效电容的两端为两输出端,以自两所述输入端接入所述多普勒差分输出电路输出的差分信号形态的所述多普勒中频信号,和于两所述输出端输出被选频对消处理的所述多普勒中频信号。
  12. 根据权利要求11所述的微波探测装置,其中所述第一等效电阻和所述第二等效电阻被设置分别在25%的误差范围内趋于39kΩ的阻值,所述等效电容被设置在25%的误差范围内趋于47nF的电容量。
  13. 根据权利要求11所述的微波探测装置,其中所述等效电容以相互串联的两电容被等效设置,其中所述选频对消电路于相互串联的两所述电容之间被接地。
  14. 根据权利要求11所述的微波探测装置,其中所述选频对消电路的两所述输 入端分别电性连接有一对地电容。
  15. 根据权利要求10所述的微波探测装置,其中多普勒差分输出电路被设置基于混频处理的方式直接输出对应于所述本振信号和所述回馈信号之间频率/相位差异的差分信号形态的所述多普勒中频信号。
  16. 根据权利要求15所述的微波探测装置,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,以及一第二MOS管,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被电性连接于所述第一MOS管的漏极,所述第二负载的另一端被电性连接于所述第二MOS管的漏极,其中所述第一MOS管的源极被电性连接与所述第二MOS管的源极,如此以在于相互连接的所述第一负载和所述第二负载的两端接入电源,和于相互连接的所述第一MOS管和所述第二MOS管的两源极接入所述回馈信号,以及于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号的状态,能够于所述第一MOS管的漏极和所述第二MOS管的漏极输出差分信号形态的所述多普勒中频信号。
  17. 根据权利要求15所述的微波探测装置,其中所述多普勒差分输出电路包括一第一MOS管,一第二MOS管,一第三MOS管以及一第四MOS管,其中所述第一MOS管的漏极被电性连接于所述第二MOS管的漏极,所述第三MOS管的漏极被电性连接于所述第四MOS管的漏极,所述第一MOS管的源极被电性连接于所述第三MOS管的源极,所述第二MOS管的源极被电性连接于所述第四MOS管的源极,如此以在于相互连接的所述第一MOS管和所述第二MOS管的两漏极之间,和相互连接的所述第三MOS管和所述第四MOS管的两漏极之间,分别接入反相的所述回馈信号,和于所述第一MOS管,所述第二MOS管,所述第三MOS管以及所述第四MOS管的四个栅极接入顺序反相的所述本振信号的状态,能够于所述第一MOS管和所述第三MOS管的两所述源极之间,和所述第二MOS管和所述第四MOS管的两所述源极之间,输出差分信号形态的所述多普勒中频信号。
  18. 根据权利要求15所述的微波探测装置,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,一 第二MOS管,以及一第三MOS管,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被电性连接于所述第一MOS管的漏极,所述第二负载的另一端被电性连接于所述第二MOS管的漏极,其中所述第一MOS管的源极与所述第二MOS管的源极分别被电性连接于所述第三MOS管的漏极,其中所述第三MOS管的源极被接地,如此以在于相互连接的所述第一负载和所述第二负载的两端接入电源,和于所述第三MOS管的栅极接入所述回馈信号,以及于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号的状态,能够于所述第一MOS管的漏极和所述第二MOS管的漏极输出差分信号形态的所述多普勒中频信号。
  19. 根据权利要求15所述的微波探测装置,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,一第二MOS管,一第三MOS管,一第四MOS管,一第五MOS管,一第六MOS管,以及一电流源,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被分别电性连接于所述第一MOS管的漏极和所述第三MOS管的漏极,所述第二负载的另一端被分别电性连接于所述第二MOS管的漏极和所述第四MOS管的漏极,其中所述第一MOS管的源极和所述第二MOS管的源极分别被电性连接于所述第五MOS管的漏极,所述第三MOS管的源极和所述第四MOS管的源极分别被电性连接于所述第六MOS管的漏极,其中所述第五MOS管的源极和所述第六MOS管的源极分别被电性连接于所述电流源,如此以在于所述第五MOS管的栅极和所述第六MOS管的栅极分别接入反相的所述回馈信号,于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号,于所述第三MOS管的栅极和所述第四MOS管的栅极分别接入反相的所述本振信号,其中所述第二MOS管的栅极接入的所述本振信号与所述第三MOS管的栅极接入的所述本振信号同相,以及于所述相互连接的所述第一负载和所述第二负载的两端接入电源的状态,能够于所述第一负载的另一端和所述第二负载的另一端输出差分信号形态的所述多普勒中频信号。
  20. 根据权利要求10所述的微波探测装置,其中多普勒差分输出电路包括一混频电路和一单端信号转差分信号电路,其中所述混频电路被电性连接于所述天线 单元和所述振荡单元,以接入所述回馈信号和所述本振信号并以混频检波的方式输出对应于所述回馈信号和所述本振信号之间的频率/相位差异的单端信号形态的所述多普勒中频信号,其中所述单端转差分电路被电性连接于所述混频电路,以接入单端信号形态的所述多普勒中频信号并通过将单端信号形态的所述多普勒中频信号反相的方式转换单端信号形态的所述多普勒中频信号为差分信号形态的所述多普勒中频信号。
  21. 根据权利要求10所述的微波探测装置,其中所述微波探测装置还包括至少一差分放大电路,其中所述差分放大电路被设置于所述多普勒差分输出电路和所述选频对消电路之间,以对所述多普勒差分输出电路输出的差分信号形态的所述多普勒中频信号进行差分放大处理。
  22. 根据权利要求10所述的微波探测装置,其中所述微波探测装置还包括至少一差分放大电路,其中所述差分放大电路被设置于所述选频对消电路的两所述输出端,以对所述选频对消电路输出的差分信号形态的所述多普勒中频信号进行差分放大处理。
  23. 根据权利要求10所述的微波探测装置,其中所述微波探测装置还包括一差分信号转单端信号电路,以接入选频对消处理后的差分信号形态的所述多普勒中频信号,并转换差分信号形态的所述多普勒中频信号为单端信号形态的所述多普勒中频信号进行输出。
  24. 微波探测装置,其特征在于,包括:
    一振荡单元,其中所述振荡单元被设置用于产生一本振信号;
    一天线单元,所述天线单元被馈电连接于所述振荡单元以发射对应于所述本振信号频率的一探测波束而形成相应探测空间,和接收所述探测波束被所述探测空间内的物体反射形成的一回波而产生一回馈信号;以及
    一多普勒差分输出电路,其中所述多普勒差分输出电路被电性连接于所述天线单元和所述振荡单元,并被设置基于混频处理的方式直接输出差分信号形态的一多普勒中频信号,其中所述多普勒中频信号为对应于所述本振信号和所述回馈信号之间频率/相位差异的信号。
  25. 根据权利要求24所述的微波探测装置,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,以及一第二MOS管,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被电性连接于所述第一MOS管的漏极,所述第二负载的另一端被电性连接于所述第二MOS管的漏极,其中所述第一MOS管的源极被电性连接与所述第二MOS管的源极,如此以在于相互连接的所述第一负载和所述第二负载的两端接入电源,和于相互连接的所述第一MOS管和所述第二MOS管的两源极接入所述回馈信号,以及于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号的状态,能够于所述第一MOS管的漏极和所述第二MOS管的漏极输出差分信号形态的所述多普勒中频信号。
  26. 根据权利要求24所述的微波探测装置,其中所述多普勒差分输出电路包括一第一MOS管,一第二MOS管,一第三MOS管以及一第四MOS管,其中所述第一MOS管的漏极被电性连接于所述第二MOS管的漏极,所述第三MOS管的漏极被电性连接于所述第四MOS管的漏极,所述第一MOS管的源极被电性连接于所述第三MOS管的源极,所述第二MOS管的源极被电性连接于所述第四MOS管的源极,如此以在于相互连接的所述第一MOS管和所述第二MOS管的两漏极之间,和相互连接的所述第三MOS管和所述第四MOS管的两漏极之间,分别接入反相的所述回馈信号,和于所述第一MOS管,所述第二MOS管,所述第三MOS管以及所述第四MOS管的四个栅极接入顺序反相的所述本振信号的状态,能够于所述第一MOS管和所述第三MOS管的两所述源极之间,和所述第二MOS管和所述第四MOS管的两所述源极之间,输出差分信号形态的所述多普勒中频信号。
  27. 根据权利要求24所述的微波探测装置,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,一第二MOS管,以及一第三MOS管,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被电性连接于所述第一MOS管的漏极,所述第二负载的另一端被电性连接于所述第二MOS管的漏极,其中所述第一MOS管的源极与所述第二MOS管的源极分别被电性连接于所述第三MOS管的漏极,其 中所述第三MOS管的源极被接地,如此以在于相互连接的所述第一负载和所述第二负载的两端接入电源,和于所述第三MOS管的栅极接入所述回馈信号,以及于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号的状态,能够于所述第一MOS管的漏极和所述第二MOS管的漏极输出差分信号形态的所述多普勒中频信号。
  28. 根据权利要求24所述的微波探测装置,其中所述多普勒差分输出电路包括以等效电阻或等效电感形态形成的一第一负载和一第二负载,一第一MOS管,一第二MOS管,一第三MOS管,一第四MOS管,一第五MOS管,一第六MOS管,以及一电流源,其中所述第一负载的一端被电性连接于所述第二负载的一端,所述第一负载的另一端被分别电性连接于所述第一MOS管的漏极和所述第三MOS管的漏极,所述第二负载的另一端被分别电性连接于所述第二MOS管的漏极和所述第四MOS管的漏极,其中所述第一MOS管的源极和所述第二MOS管的源极分别被电性连接于所述第五MOS管的漏极,所述第三MOS管的源极和所述第四MOS管的源极分别被电性连接于所述第六MOS管的漏极,其中所述第五MOS管的源极和所述第六MOS管的源极分别被电性连接于所述电流源,如此以在于所述第五MOS管的栅极和所述第六MOS管的栅极分别接入反相的所述回馈信号,于所述第一MOS管的栅极和所述第二MOS管的栅极分别接入反相的所述本振信号,于所述第三MOS管的栅极和所述第四MOS管的栅极分别接入反相的所述本振信号,其中所述第二MOS管的栅极接入的所述本振信号与所述第三MOS管的栅极接入的所述本振信号同相,以及于所述相互连接的所述第一负载和所述第二负载的两端接入电源的状态,能够于所述第一负载的另一端和所述第二负载的另一端输出差分信号形态的所述多普勒中频信号。
PCT/CN2023/101682 2022-07-15 2023-06-21 抗干扰的微波探测方法和微波探测装置 WO2024012169A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/284,190 US20240061070A1 (en) 2022-07-15 2023-06-21 Interference-Resistant Microwave Detection Method and Microwave Detection Device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210836152.X 2022-07-15
CN202210836152.XA CN115236751A (zh) 2021-07-21 2022-07-15 实时响应的多普勒信号抗干扰处理方法和微波探测装置
CN202310456090 2023-04-16
CN202310456090.4 2023-04-16

Publications (1)

Publication Number Publication Date
WO2024012169A1 true WO2024012169A1 (zh) 2024-01-18

Family

ID=88033483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101682 WO2024012169A1 (zh) 2022-07-15 2023-06-21 抗干扰的微波探测方法和微波探测装置

Country Status (3)

Country Link
US (1) US20240061070A1 (zh)
CN (7) CN220121002U (zh)
WO (1) WO2024012169A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201509191U (zh) * 2009-09-01 2010-06-16 中兴通讯股份有限公司 用于无线通信系统的发射机
JP2011002338A (ja) * 2009-06-18 2011-01-06 Panasonic Electric Works Co Ltd 移動物体検出装置
CN106264501A (zh) * 2016-10-13 2017-01-04 杭州电子科技大学 一种基于连续波多普勒雷达的生理信号检测系统
CN110398781A (zh) * 2019-08-05 2019-11-01 深圳迈睿智能科技有限公司 抗干扰微波探测模块及抗干扰方法
CN114624696A (zh) * 2022-01-25 2022-06-14 深圳迈睿智能科技有限公司 微波探测方法和装置
CN114650014A (zh) * 2020-12-18 2022-06-21 杭州地芯科技有限公司 信号混频电路装置以及接收机
CN115236751A (zh) * 2021-07-21 2022-10-25 深圳迈睿智能科技有限公司 实时响应的多普勒信号抗干扰处理方法和微波探测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002338A (ja) * 2009-06-18 2011-01-06 Panasonic Electric Works Co Ltd 移動物体検出装置
CN201509191U (zh) * 2009-09-01 2010-06-16 中兴通讯股份有限公司 用于无线通信系统的发射机
CN106264501A (zh) * 2016-10-13 2017-01-04 杭州电子科技大学 一种基于连续波多普勒雷达的生理信号检测系统
CN110398781A (zh) * 2019-08-05 2019-11-01 深圳迈睿智能科技有限公司 抗干扰微波探测模块及抗干扰方法
CN114650014A (zh) * 2020-12-18 2022-06-21 杭州地芯科技有限公司 信号混频电路装置以及接收机
CN115236751A (zh) * 2021-07-21 2022-10-25 深圳迈睿智能科技有限公司 实时响应的多普勒信号抗干扰处理方法和微波探测装置
CN114624696A (zh) * 2022-01-25 2022-06-14 深圳迈睿智能科技有限公司 微波探测方法和装置

Also Published As

Publication number Publication date
CN219957881U (zh) 2023-11-03
CN220137410U (zh) 2023-12-05
CN116794607A (zh) 2023-09-22
CN117388817A (zh) 2024-01-12
CN220381302U (zh) 2024-01-23
CN220795469U (zh) 2024-04-16
US20240061070A1 (en) 2024-02-22
CN220121002U (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2021022644A1 (zh) 抗干扰微波探测模块及抗干扰方法
US11984859B2 (en) Chopper amplifying circuit employing negative impedance compensation technique
CN102571227B (zh) 带直流失调消除功能的幅度检测电路
CN103384149A (zh) 信号处理电路
CN104617889A (zh) 用于ExG信号采集系统的低功耗低噪声CMOS放大器
RU2008128884A (ru) Схема смесителя и способ
CN217766842U (zh) 微波探测装置
US20180269722A1 (en) Peak voltage detection in a differentially driven wireless resonant transmitter
Maruf An Input Amplifier for Body-Channel Communication
WO2024012169A1 (zh) 抗干扰的微波探测方法和微波探测装置
CN103457623B (zh) 一种零中频直流对消的电路及方法
CN201491012U (zh) 基于人体信道的通信芯片
CN102291343B (zh) 模拟基带电路
CN115236751A (zh) 实时响应的多普勒信号抗干扰处理方法和微波探测装置
CN111866837B (zh) 一种新型蓝牙模块
WO2013032443A1 (en) Method and apparatus for converting single-ended signals into differential signals
EP3443367A1 (en) Remote sensing using sensor resonator with sensor inductor coupled to resonator capacitor over shielded cable
CN214707655U (zh) 遥控拷贝用无线解调电路
CN204156822U (zh) 失真度低的低噪声放大器电路
CN220671929U (zh) 一种脑电控制系统
CN215641369U (zh) 基于差模滤波的gis超声波局放检测系统
CN113131877A (zh) 遥控拷贝用无线解调电路
CN115032702A (zh) 一种单晶体管窄频带微波运动探测传感器
WO2022140957A1 (zh) 一种nfc设备
CN104579194A (zh) 一种高增益计算机网络信号放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838663

Country of ref document: EP

Kind code of ref document: A1