WO2024012108A1 - 一种太阳能电池和太阳能组件 - Google Patents

一种太阳能电池和太阳能组件 Download PDF

Info

Publication number
WO2024012108A1
WO2024012108A1 PCT/CN2023/099162 CN2023099162W WO2024012108A1 WO 2024012108 A1 WO2024012108 A1 WO 2024012108A1 CN 2023099162 W CN2023099162 W CN 2023099162W WO 2024012108 A1 WO2024012108 A1 WO 2024012108A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
auxiliary
main
main grid
grids
Prior art date
Application number
PCT/CN2023/099162
Other languages
English (en)
French (fr)
Inventor
张良
李明明
冯春暖
余永林
翟卫鑫
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2024012108A1 publication Critical patent/WO2024012108A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the technical field of solar cells, and in particular to a solar cell and a solar module.
  • a solar cell is a semiconductor device that converts light energy into electrical energy. Specifically, when the solar cell is exposed to light, the semiconductor substrate included in the solar cell absorbs photons and generates electron and hole pairs. The electron and hole pairs are separated under the action of the built-in electric field of the PN junction, and are extracted through the emitter and back field of the solar cell respectively, and are finally collected by the electrode structure provided on the semiconductor substrate.
  • the above-mentioned electrode structure generally includes 5 to 12 main grids, and the distance between two adjacent main grids is 15 mm to 30 mm.
  • the spacing between the central axes of the two adjacent main grids is relatively large. Although the main grids can collect current in a wider range, the cell efficiency of the solar cell will be reduced.
  • the purpose of this application is to provide a solar cell and a solar module for improving the cell efficiency of the solar cell.
  • the present application provides a solar cell.
  • the solar cell includes a cell body and an electrode structure formed on the cell body.
  • the above-mentioned electrode structure includes 18 main grids extending along a first direction and spaced apart along a second direction. The first direction is different from the second direction, and the spacing between two adjacent main grids is 8 mm to 10 mm.
  • the electrode structure in this application includes 18 bus bars.
  • the solar cell provided by this application has a larger number of main grids.
  • the range of the area where each busbar collects carriers is reduced, thereby improving the busbar's ability to collect carriers generated in this area, thereby improving the busbar's ability to collect current.
  • the cell efficiency increases with the adjacent two The main grid spacing decreases with an increasing trend.
  • the distance between two adjacent main grids in this application is The cell efficiency of solar cells is higher when it is 8 mm to 10 mm. That is, using the solar cell provided by the present application improves cell efficiency.
  • the above-mentioned spacing between two adjacent main grids refers to the spacing between the central axes of the main grids in the two adjacent main grids, and the central axes of the main grids are parallel to the first direction. The same applies to the "spacing between two adjacent main grids" in the article.
  • the main grid will be connected to the welding ribbon.
  • the spacing between two adjacent main grids decreases, not only does the corresponding welding process need to be matched, but the diameter of the welding strip also needs to be reduced.
  • the welding process need to be more difficult, but the reduced diameter welding ribbon is easily bent during the welding process, affecting the transmission of current.
  • this application chooses the spacing between two adjacent main grids to be 8 mm to 10 mm.
  • the difficulty of the welding process not need to be greatly increased, but it can also ensure that the welding ribbon with a diameter that meets the requirements is not prone to bending during the welding process, thereby reducing the stress here and ensuring the yield of the solar cell.
  • each busbar includes a busbar connection line and a plurality of solder joints spaced along the first direction on the busbar connection line. At least one pair of adjacent two main grids includes solder joints that are staggered, and a plurality of solder joints included in the same main grid are spaced apart along the first direction.
  • the above-mentioned main grid connection lines can be used to collect the photocurrent generated by the entire cell body when receiving light. Based on this, while improving the cell efficiency of solar cells, the cell efficiency can also be tested. Moreover, since each main grid includes a plurality of solder joints arranged on the main grid connection lines at intervals along the first direction. At this time, compared with the situation where the soldering strip is welded to the main grid connection line through only one soldering point, the soldering strip corresponding to the corresponding main grid connecting line can be welded through the above multiple soldering spots, so that the soldering strip can be connected to the main grid.
  • the wire welding is stronger, thereby improving the welding quality of solar cells during series welding and ensuring the stability and safety of solar cells. Furthermore, since the solder joints of at least one pair of two adjacent main grids are staggered, multiple solder joints of the same main grid are spaced apart along the first direction. At this time, not only can the stress distribution during welding of the solder ribbon and the main grid connection line be more uniform, but damage to the solar cell structure can be reduced, and the safety of the solar cell can be ensured. At the same time, it can also ensure the ability to collect current and speed up the transmission speed of current to the welding strip.
  • the busbar in this application includes a busbar connection line and a plurality of solder joints disposed on the busbar connection line, when When the number of solder joints and the welding qualification rate are less than or equal to the actual required number and welding qualification rate, the main grid connection line where the solder joints are located can replace the solder joints and the welding ribbon connection to ensure the normal operation of the solar cell.
  • solder joints are integrally formed with the corresponding main grid connection lines.
  • the probability of misalignment between the solder joints and the corresponding main grid connection lines can be reduced or eliminated to ensure the quality of the solar cell. Moreover, the preparation efficiency can also be improved.
  • the length of each soldering point is greater than the width of the corresponding main grid connection line, and the length direction of the soldering point and the width direction of the main grid connecting line are both parallel to the second direction.
  • each solder joint has a shape that is wide in the middle and narrow at both ends.
  • the middle position of the soldering point can be used to completely cover the corresponding main grid connecting line in the width direction. At this time, the firmness of the connection between the soldering point and the corresponding main grid connecting line can be ensured.
  • the two ends of each solder joint are narrower than the middle position, the consumption of conductive materials when making the solder joints can be reduced, thereby reducing the manufacturing cost of solar cells.
  • each soldering point includes a middle region and two end regions, and the two end regions are respectively connected to two ends of the middle region.
  • the width of the end region gradually decreases along the direction away from the corresponding main grid, and the direction away from the corresponding main grid is parallel to the second direction.
  • the selectivity of the end area shape of the solder joint is increased, so that it can be selected according to the actual application scenario. Based on this, the mainbar can be applied to different application scenarios, expanding its scope of application.
  • each middle region is rectangular, and the upper surface of each end region is trapezoidal.
  • the above electrode structure further includes a plurality of auxiliary gates extending along the second direction and spaced apart along the first direction, and each main gate connection line intersects the plurality of auxiliary gates.
  • each of the above-mentioned sub-grids can collect carriers generated in a corresponding area of the cell body.
  • each main gate connection line intersects multiple auxiliary gates. At this time, the carriers collected by all the secondary gates can be collected through each main gate connection line. Based on this, the current collection path can be shortened to reduce the transmission resistance of carriers on the secondary gate to the main gate connection line.
  • the plurality of sub-gates include at least one continuous first sub-gate and at least one A non-continuous second sub-grid.
  • the first auxiliary gates and the second auxiliary gates are alternately arranged at intervals.
  • Each second auxiliary gate includes a plurality of auxiliary gate segments extending along the second direction and arranged in sequence, with a gap between two adjacent auxiliary gate segments.
  • At least one welding point is provided at each gap portion, and the auxiliary gate segments located on both sides of each gap portion are respectively overlapped with both ends of the corresponding welding point along the length direction.
  • the main grid connection line be electrically connected to the corresponding auxiliary grid through the solder joints provided in the gap, ensuring normal transmission of carriers. At the same time, it can also reduce or prevent excessive overlap between the solder joints and the auxiliary grid to ensure the flatness of the auxiliary grid. Furthermore, since the auxiliary grid is highly corrosive, during the process of setting the auxiliary grid, the auxiliary grid will destroy the insulating layer on the surface of the cell body, so that part of the auxiliary grid is directly printed in the cell body. Based on this, the cell body at the corresponding position of the sub-grid will be damaged, and the stress distribution on the cell body will be uneven.
  • the main grid connection line since the main grid connection line only needs to be electrically connected to the auxiliary grid, there is no need to destroy the insulation layer on the surface of the cell body. At this time, the main body of the cell at the corresponding position of the main grid connection line is not damaged, and its stress is distributed evenly. Moreover, when the auxiliary grid has a gap portion, the main body of the cell sheet at a position corresponding to the gap portion is not damaged, and its stress is evenly distributed.
  • the above-mentioned electrode structure further includes end welding points at both ends of each main grid and at least two end welding points connected to both ends of each end welding point and extending along the first direction toward the edge of the cell body.
  • Auxiliary grid, the end welding point and at least two auxiliary grids form a harpoon structure or U-shaped structure.
  • the above-mentioned end solder joints and auxiliary grids can replace the solder joints or the main grid connection lines to collect the carriers generated there by the main body of the cell sheet. Moreover, since the edges of solar cells are brittle, they are easily broken when heated. Based on this, in this application, the above-mentioned auxiliary grid does not need to be welded with the welding strip. At this time, the edge portion of the solar cell can be prevented from being broken due to the high temperature of the thermal welding process during the series welding process. Based on this, not only can the safety and stability of solar cells be improved, but the production yield of solar cells can also be improved.
  • the above electrode structure also includes end solder joints at both ends of each main grid.
  • the area and length of the upper surface of the end solder joints are respectively larger than the upper surface of the solder joints located between the end solder joints.
  • the area and length of the end solder joint and the length direction of the solder joint are both parallel to the second direction.
  • the firmness of the connecting wire connection can also prevent misalignment of the end solder joints and the corresponding main grid connecting wires. Furthermore, the firmness of the welding between the welding strip welded by the end welding point and the corresponding main grid connection line and the main grid connection line can be further ensured, thereby improving the welding quality of the solar cells during series welding. In addition, it is more conducive to welding the solder strip and the end solder joint together, improving the fault tolerance rate.
  • the main grids include 16 first main grids and 2 second main grids located outside the 16 first main grids.
  • the width of the first main gate is 20 microns to 50 microns, and the width of the second main gate is 31.5 microns to 78.9 microns.
  • the total width of the main grids in the electrode structure of the solar cell provided by the present application is The number is 18, with widths ranging from 20 microns to 50 microns and from 31.5 microns to 78.9 microns. It can be understood that compared with the increase in the total number of main gates, the width of the main gates in the present application is reduced to a greater extent than the width of the main gates in the prior art. Therefore, when manufacturing the electrode structure included in the solar cell provided by the present application, the consumption of conductive materials can be further reduced, thereby reducing the manufacturing cost of the solar cell.
  • the distance between two adjacent main grids in the prior art is 15 mm to 30 mm
  • the distance between two adjacent main grids in the electrode structure of the solar cell provided by this application is 8 mm to 10 mm.
  • the main grid and the auxiliary grid reduce the blocking of the main body of the cell, increase the light-receiving area of the main body of the cell, and improve the photoelectric conversion efficiency of the solar cell.
  • the second main grid is located outside the first main grid, in actual use, the area where the second main grid needs to collect current is generally greater than or equal to the area where the first main grid needs to collect current. Based on this, in this application, the width of the second main grid is greater than or equal to the width of the first main grid to ensure the current collection capability of the second main grid, thereby ensuring the photoelectric conversion efficiency of the solar cell.
  • the width of the first main grid is 30 microns, and the width of the second main grid is 47.4 microns.
  • the distance between the second main grid and the edge of the cell body is 10.5 microns to 12 microns. It should be understood that here it may mean that the distance between the left edge or the right edge of the second main grid (both parallel to the first direction) and the edge of the cell body is 10.5 microns to 12 microns, or it may mean that the second main grid has The distance between the central axis and the edge of the cell body is 10.5 microns to 12 microns. It can also refer to the distance between any axis of the second main grid other than the above-mentioned special position (the axis is parallel to the first direction) and the cell body. The edge distance is 10.5 microns to 12 microns. The specific conditions can be set according to actual needs and are not specifically limited here.
  • the above-mentioned electrode structure further includes a plurality of strips extending in the second direction and along the first There are auxiliary gates distributed at intervals in one direction, and each main gate connection line intersects multiple auxiliary gates.
  • auxiliary gates distributed at intervals in one direction, and each main gate connection line intersects multiple auxiliary gates.
  • the plurality of sub-gates include at least one continuous first sub-gate and at least one non-continuous second sub-gate.
  • the first auxiliary gates and the second auxiliary gates are alternately arranged at intervals.
  • Each second auxiliary gate includes a plurality of auxiliary gate segments extending along the second direction and arranged in sequence, with a gap between two adjacent auxiliary gate segments.
  • the ratio of the width of the main grid to the width of the auxiliary grid is (1-2.5):1, the width direction of the main grid is parallel to the second direction, and the width direction of the auxiliary grid is parallel to the first direction.
  • main gates and auxiliary gates of different widths can be set according to actual needs, which increases the selectivity of the main gate and auxiliary gate widths.
  • the electrode structure can be applied to different application scenarios and its scope of application is expanded.
  • the above-mentioned electrode structure further includes an overlapping point, and the main grid connection line and the auxiliary grid are connected through the overlapping point.
  • each overlapping point has a shape that is wide in the middle and narrow at both ends.
  • the above electrode structure is applied to the positive electrode and/or negative electrode of a solar cell.
  • the solar cell is a whole solar cell or a sliced solar cell.
  • this application also provides a solar cell.
  • the solar cell includes a cell body and an electrode structure formed on the cell body.
  • the electrode structure includes n main grids extending along a first direction and spaced apart along a second direction, where the first direction is different from the second direction.
  • the spacing between two adjacent main grids is 7 mm to 13 mm, where 13 ⁇ n ⁇ 25, and n is an integer. It should be understood that the above-mentioned spacing between two adjacent main grids refers to the spacing between the central axes of the main grids in the two adjacent main grids, and the central axes of the main grids are parallel to the first direction. The same applies to the "spacing between two adjacent main grids" in the article.
  • the electrode structure in this application includes 13 to 25 bus bars.
  • the solar cell provided by this application has a larger number of main grids.
  • the area in which each main gate collects carriers is reduced, which can increase the impact of the main gate on the area.
  • the collection ability of carriers to improve the current collection ability of the main grid it is known that for N-type solar cells and P-type solar cells, within a certain range, the cell efficiency tends to increase as the distance between two adjacent main grids decreases.
  • the distance between two adjacent main grids in this application is The cell efficiency of solar cells is higher when it is 7 mm to 13 mm. That is, using the solar cell provided by the present application improves cell efficiency.
  • the number of the above main grids can be selected according to actual needs, so that the solar cell can be applied to different application scenarios and expand its scope of application.
  • the main grid is connected to the welding strip.
  • the spacing between two adjacent main grids decreases, not only does the corresponding welding process need to be matched, but the diameter of the welding strip also needs to be reduced.
  • the welding process need to be more difficult, but the reduced diameter welding ribbon is easily bent during the welding process, affecting the transmission of current.
  • the spacing between two adjacent main grids is set to 7 mm to 13 mm. At this time, not only does the difficulty of the welding process not need to be greatly increased, but it can also ensure that the welding ribbon with a diameter that meets the requirements is not prone to bending during the welding process, thereby reducing the stress here and ensuring the yield of the solar cell.
  • each busbar includes a busbar connection line and a plurality of solder joints spaced along the first direction on the busbar connection line. At least one pair of adjacent two main grids includes solder joints that are staggered, and a plurality of solder joints included in the same main grid are spaced apart along the first direction.
  • the solder joints are integrally formed with the corresponding main grid connection lines. And/or, the length of each soldering point is greater than the width of the corresponding main grid connection line, and the length direction of the soldering point and the width direction of the main grid connecting line are both parallel to the second direction.
  • each solder joint has a shape that is wide in the middle and narrow at both ends.
  • each soldering point includes a middle region and two end regions, and the two end regions are respectively connected to two ends of the middle region.
  • the width of the end region gradually decreases; the direction away from the corresponding main grid is parallel to the second direction.
  • the electrode structure further includes a plurality of auxiliary gates extending along the second direction and spaced apart along the first direction, and each main gate connection line intersects the plurality of auxiliary gates.
  • the plurality of sub-gates include at least one continuous first sub-gate and at least one non-continuous second sub-gate.
  • the first auxiliary gates and the second auxiliary gates are alternately arranged at intervals.
  • Each second auxiliary gate includes a plurality of auxiliary gate segments extending along the second direction and arranged in sequence, with a gap between two adjacent auxiliary gate segments.
  • At least one solder point is provided at each gap portion, and is located in each gap
  • the auxiliary gate segments on both sides of the base are respectively overlapped at both ends of the corresponding solder joints along the length direction.
  • the electrode structure further includes end welding points at both ends of each main grid and at least two auxiliary welding points connected to both ends of each end welding point and extending along the first direction toward the edge of the battery sheet body.
  • the end welding point and at least two auxiliary grids form a harpoon structure or U-shaped structure.
  • the electrode structure further includes end solder joints at both ends of each main grid.
  • the area and length of the upper surface of the end solder joints are respectively greater than the area and length of the upper surface of the solder joints located between the end solder joints, and the length direction of the end solder joints and the length direction of the solder joints are both parallel to the second direction. .
  • the main gates include n-2 first main gates and 2 second main gates located outside the n-2 first main gates.
  • the width of the first main gate is 20 microns to 50 microns, and the width of the second main gate is 31.5 microns to 78.9 microns.
  • the width of the first busbar is 30 microns and the width of the second busbar is 47.4 microns. And/or, along the second direction, the distance between the second main grid and the edge of the cell body is 10.5 microns to 12 microns.
  • the ratio of the width of the main grid to the width of the auxiliary grid is (1-2.5):1; the width direction of the main grid is parallel to the second direction, and the width direction of the auxiliary grid is parallel to the first direction.
  • the electrode structure further includes an overlapping point, and the main grid connection line and the auxiliary grid are connected through the overlapping point.
  • each overlapping point has a shape that is wide in the middle and narrow at both ends.
  • the electrode structure is applied to the positive electrode and/or the negative electrode of the solar cell; and/or the solar cell is a whole solar cell or a sliced solar cell.
  • this application also provides a solar component, including the solar cell described in the first aspect and/or the second aspect.
  • the beneficial effects of the solar module provided by the present application are the same as those of the solar cells described in the first aspect and/or the second aspect, and will not be described again here.
  • Figure 1 is a schematic diagram of the first partial structure of a solar cell in an embodiment of the present application
  • Figure 2 is a schematic diagram of the second partial structure of the solar cell in the embodiment of the present application.
  • Figure 3 is a schematic diagram of the relationship between main grid spacing and battery efficiency in the embodiment of the present application.
  • Figure 4 is an enlarged schematic diagram of a partial structure of a solar cell in an embodiment of the present application.
  • Figure 5 is a first connection schematic diagram of the main gate connecting line, the auxiliary gate and the solder joint in the embodiment of the present application;
  • Figure 6 is a second connection schematic diagram of the main gate connecting line, the auxiliary gate and the solder joint in the embodiment of the present application;
  • Figure 7 is a third connection schematic diagram of the main gate connecting line, the auxiliary gate and the solder joint in the embodiment of the present application;
  • Figure 8 is a schematic diagram of the connection of the auxiliary gate, the auxiliary gate and the overlapping point in the embodiment of the present application.
  • the length and width of existing solar cells are generally 150 mm to 230 mm, and the electrode structure includes 5 to 13 main grids, and the spacing between two adjacent main grids is generally 15 mm to 30 mm.
  • the spacing between the central axes of the two adjacent main grids is relatively large. Although the main grids can collect current in a wider range, the cell efficiency of the solar cell will be reduced.
  • the width of each main grid needs to be set to a larger value, such as 40 microns to 300 microns.
  • electrode structures of conductive materials such as silver or aluminum are usually formed on the semiconductor substrate through processes such as screen printing. It is conceivable that the larger the effective area of the electrode pattern corresponding to the electrode structure, the more conductive material needs to be consumed to manufacture the electrode structure. Based on this, when the width of each main grid included in the electrode structure is larger, the effective area of the electrode pattern corresponding to the electrode structure is larger, resulting in a larger consumption of conductive materials and increasing the manufacturing cost of the solar cell.
  • both solar cells can be back-contact solar cells.
  • the solar cell includes a positive electrode and a negative electrode respectively located on opposite sides of the solar cell.
  • the two types of solar cells can be whole solar cells or sliced solar cells.
  • the division multiple can be set according to actual needs. For example: Referring to Figures 1 and 2, the solar cell can be a half-cut solar cell.
  • the solar cell may include a cell body 1 and an electrode structure 2 formed on the cell body 1 .
  • the above-mentioned electrode structure 2 includes 18 main grids 20 extending along the first direction A and spaced apart along the second direction B.
  • the first direction A is different from the second direction B.
  • the spacing between two adjacent main grids 20 is 8mm to 10mm.
  • the spacing can be 8 mm, 8.5 mm, 8.9 mm, 9.2 mm, 10 mm, etc.
  • the distance between the two adjacent main grids 20 refers to the distance between the central axes of the two adjacent main grids 20, and the main The central axis of the grid 20 is parallel to the first direction, and the "spacing between two adjacent main grids 20" below is the same.
  • the structure, specifications, etc. of the above-mentioned battery sheet body can be set according to the actual situation, and are not specifically limited here.
  • the above electrode structure may be applied only to the positive electrode included in the solar cell, or may be applied only to the negative electrode included in the solar cell, or may be applied to both the positive electrode and the negative electrode included in the solar cell.
  • the above-mentioned first direction and the second direction may be any two directions that are parallel to the surface of the main body of the battery sheet and are different from each other.
  • the above-mentioned first direction A and second direction B are orthogonal.
  • the plurality of main grids can be arranged at intervals along the row direction and extend along the column direction, that is, evenly distributed on the cell body 1 in an array.
  • the electrode structure 2 in the embodiment of the present application includes 18 bus bars. .
  • the solar cell provided by the embodiment of the present application has a larger number of main grids 20 .
  • the range of the area where each main grid 20 collects carriers is reduced, thereby improving the main grid 20's ability to collect carriers generated in this area, thereby improving the main grid's 20 ability to collect current.
  • the cell efficiency increases with the The decrease in gate spacing shows an increasing trend. It can be seen from this that for battery cell bodies of the same size, compared with the situation in the prior art where the distance between two adjacent main grids 20 is 15 mm to 30 mm, the distance between two adjacent main grids 20 in the embodiment of the present application is The cell efficiency of solar cells is higher when the spacing between them is 8 mm to 10 mm. That is, the solar cell provided by the embodiment of the present application improves the cell efficiency.
  • N-type solar cells with small sheet resistance for example, generally 100 ⁇ / ⁇ to 130 ⁇ / ⁇
  • N the cell efficiency of solar cells has reached its limit.
  • the spacing between the two adjacent main grids is 8.5 mm, which corresponds to the 182-sized 20BB solar cell.
  • P-type solar cells with large sheet resistance for example, generally 180 ⁇ / ⁇ to 200 ⁇ / ⁇
  • the cell efficiency of the P-type solar cell reaches the limit value.
  • the spacing between the two adjacent main grids is 7.9 mm, which corresponds to the 22BB solar cell with 182 specifications.
  • the embodiment of the present application selects the spacing between two adjacent main grids to be 8 mm to 10 mm.
  • the spacing between the adjacent main grids is 8.5 mm to 9.5 mm.
  • the welding strip can be welded with a diameter of 0.23 mm to 0.25 mm. In this case, it can not only meet the needs of mass production, but also save the manufacturing cost of solar cells. For example, when the spacing between adjacent main grids is 9.5 mm, it corresponds to an 18BB solar cell.
  • the above-mentioned main grids 20 may include 16 first main grids 200 and 2 second main grids 201 located outside the 16 first main grids 200 .
  • the width of the first main grid 200 is 20 microns to 50 microns, for example, it can be 20 microns, 30 microns, 35 microns, 40 microns or 50 microns.
  • the width of the second main grid 201 is 31.5 microns to 78.9 microns, for example, it can be 31.5 microns, 33 microns, 35 microns, 40 microns, 50 microns or 78.9 microns.
  • the width of the main grid included in the 5BB to 12BB solar cells in the prior art is 40 microns to 300 microns
  • the solar cells provided in the embodiments of the present application The total number of main grids 20 in the included electrode structure 2 is 18, and their widths are respectively 20 microns to 50 microns and 31.5 microns to 78.9 microns. It can be understood that compared with the increase in the total number of main grids 20 , the width of the main grids 20 in the embodiment of the present application is reduced to a greater extent than the width of the main grids in the prior art.
  • the consumption of conductive materials can be further reduced, thereby reducing the manufacturing cost of the solar cell.
  • the distance between two adjacent main grids 20 in the prior art is 15 mm to 30 mm
  • the distance between two adjacent main grids 20 in the electrode structure 2 of the solar cell provided in the embodiment of the present application is The spacing is 8mm to 10mm. At this time, the shielding of the cell body 1 by the main grid 20 is reduced, the light-receiving area of the cell body 1 is increased, and the photoelectric conversion efficiency of the solar cell is improved.
  • the second main grid 201 is located outside the first main grid 200, in actual use, the area where the second main grid 201 needs to collect current will generally be greater than or equal to the area where the first main grid 200 needs to collect current. .
  • the width of the second main grid 201 is greater than or equal to the width of the first main grid 200 to ensure the current collection capability of the second main grid 201 and thereby ensure the photoelectric conversion efficiency of the solar cell.
  • the area where the second busbar 201 needs to collect current is generally larger than or equal to the area where the first busbar 200 needs to collect current.
  • the width of the second main grid 201 can be based on The width of the current collecting area increases proportionally. For example, for an 18BB battery with a specification of 182mm*182mm, the spacing between adjacent main grids is 9.5 mm. When the width of the first main grid 200 is 30 microns and along the second direction B, the second main grid 201 When the distance from the edge of the cell body 1 is 15 mm, the width of the second main grid 201 is 47.4 microns.
  • the welding strips welded to the main grid 20 can also have different widths according to different welding positions.
  • the width of the welding strip welded to the first main grid 200 is smaller than the width of the welding strip welded to the second main grid 201 .
  • the distance between the second main grid and the edge of the cell body may be 10.5 microns to 12 microns.
  • it can be 10.5 microns, 11 microns, 11.5 microns, 11.8 microns or 12 microns, etc.
  • the distance between the left edge or the right edge of the second main grid (both parallel to the first direction) and the edge of the cell body is 10.5 microns to 12 microns, or it may mean that the second main grid has The distance between the central axis and the edge of the cell body is 10.5 microns to 12 microns.
  • the edge distance is 10.5 microns to 12 microns.
  • the specific conditions can be set according to actual needs and are not specifically limited here.
  • each main gate 20 may include a main gate connection line 202 and a plurality of welding pads spaced apart along the first direction A on the main gate connection line 202 .
  • At least one pair of adjacent two main grids includes welding spots 203 that are distributed in a staggered manner, and a plurality of welding spots 203 included in the same main gate are spaced apart along the first direction A.
  • each main gate includes a plurality of welding spots 203 spaced apart along the first direction A on the main gate connection line 202 .
  • the soldering ribbon corresponding to the corresponding main grid connecting line 202 can be welded through the above-mentioned multiple soldering points 203, so that the soldering ribbon can be welded
  • the welding with the main grid connecting wire 202 is more solid, thereby improving the welding quality of the solar cells during series welding and ensuring the stability and safety of the solar cells.
  • at least one pair of welding spots 203 of two adjacent main gates are staggeredly distributed, multiple welding spots 203 of the same main gate are spaced apart along the first direction A.
  • the stress distribution during welding of the solder ribbon and the main grid connection line 202 can be more uniform, but damage to the solar cell structure can be reduced, and the safety of the solar cell can be ensured. At the same time, it can also ensure the ability to collect current and speed up the transmission speed of current to the welding strip. Furthermore, compared with the prior art where there are no busbar connecting lines and only solder joints, since the busbars in the embodiment of the present application include busbar connections, Line and multiple solder joints 203 arranged on the main grid connection line.
  • the main grid connection line 202 where the solder joints 203 are located can The replacement solder joint 203 is connected with the solder ribbon to ensure the normal operation of the solar cell.
  • solder joints of at least one pair of adjacent two main grids are staggered, and multiple solder joints of the same main grid are spaced apart along the first direction.
  • the two possible expressions are as follows: It should be understood that the following description is only for understanding and not for specific limitation.
  • Example 1 Refer to Figure 1. All main grids 20 are numbered in sequence from left to right. Starting from the left edge of the cell body 1, the solder joints 203 on all odd-numbered main grids 20 have the same distribution pattern. All numbers are The solder points 203 on the even-numbered main grids 20 have the same distribution pattern, but the solder points 203 on two adjacent main grids are staggered.
  • Example 2 see Figure 2.
  • the solder joints 203 on two adjacent main grids located in the middle of the cell body 1 are symmetrically distributed. With the central axis between the two adjacent main grids (i.e., the dotted line in Figure 2 ) is the axis of symmetry.
  • the distribution patterns of the solder points 203 on the two symmetrical main grids are the same, but the solder points 203 on the two adjacent main grids are staggered.
  • the number of welding points included in each main grid can be set according to the actual application scenario, as long as it can be applied to the solar cell provided in the embodiment of the present application.
  • solder joints can be connected to the corresponding main grid connection lines in various ways.
  • they can be integrally formed, or they can be individually set solder joints on the main grid connection lines after the main grid connection lines are set.
  • the above-mentioned solder joints are integrally formed with the corresponding main grid connection lines. At this time, the probability of misalignment between the solder joints and the corresponding main grid connection lines can be reduced or eliminated to ensure the quality of the solar cells. Moreover, the preparation efficiency can also be improved.
  • the length of each welding point 203 is greater than the width of the corresponding main gate connection line 202 , and the length direction of the welding point 203 and the width direction of the main gate connection line 202 are parallel to each other. Second direction. At this time, it can not only ensure that the solder point 203 completely covers the corresponding main grid connection line 202 in the width direction to ensure the firmness of the connection between the solder point 203 and the corresponding main grid connection line 202, but also avoid the connection between the solder point 203 and the corresponding main grid.
  • the connecting wire 202 is misplaced.
  • the firmness of the welding between the welding strip welded by the welding point 203 and the corresponding main grid connection line 202 and the main grid connection line 202 can also be ensured, thereby improving the welding quality of the solar cells during series welding.
  • each solder joint 203 has a shape that is wide in the middle and narrow at both ends.
  • the middle of the solder point 203 is used The position can completely cover the corresponding main grid connection line 202 in the width direction. At this time, the firmness of the connection between the solder point 203 and the corresponding main grid connection line 202 can be ensured.
  • the two ends of each solder joint 203 are narrower than the middle position, the consumption of conductive materials when making the solder joints 203 can be reduced, thereby reducing the manufacturing cost of solar cells.
  • each solder joint 203 includes a middle region 2030 and two end regions 2031.
  • the two end regions 2031 are respectively connected with the middle region 2030. Connect both ends.
  • the width of the end region 2031 gradually decreases along the direction away from the corresponding main grid, and the direction away from the corresponding main grid is parallel to the second direction.
  • the selectivity of the shape of the end region 2031 of the solder joint 203 is increased, so that it can be selected according to the actual application scenario. Based on this, the mainbar can be applied to different application scenarios, expanding its scope of application.
  • the above-mentioned end area is an axially symmetrical figure.
  • the upper surfaces of the above-mentioned middle region and the two end regions have various shapes, and the above-mentioned “upper surface” refers to the surface of the solder joint when looking down at the solar cell. Two possible shapes are taken as examples for description below. It should be understood that the following description is only for understanding and not for specific limitation.
  • each middle region 2030 is rectangular, and the upper surface of each end region 2031 is trapezoidal.
  • the above-mentioned trapezoid may be a right-angled trapezoid, an isosceles trapezoid or other trapezoids.
  • the length of the above-mentioned rectangular middle region may be 0.4 mm to 1.2 mm, for example, it may be 0.4 mm, 0.6 mm, 1 mm or 1.2 mm.
  • the width of the rectangular middle area may be 0.09 mm to 1.2 mm, for example, it may be 0.09 mm, 0.12 mm, 0.15 mm, 0.4 mm, 0.6 mm, 1 mm or 1.2 mm, etc.
  • the length of the above-mentioned rectangular middle area is 0.6 mm and the width is 0.15 mm.
  • the length of the upper base of the trapezoidal end region is less than or equal to the length of the lower base.
  • the length of the upper base of the trapezoidal end region may be 0.09 mm to 1.2 mm, for example, it may be 0.09 mm, 0.12 mm, 0.15 mm, 0.4 mm, 0.6 mm, 1 mm or 1.2 mm, etc.
  • the length of the lower base of the trapezoidal end region may be 0.09 mm to 1.2 mm, for example, it may be 0.09 mm, 0.12 mm, 0.15 mm, 0.4 mm, 0.6 mm, 1 mm or 1.2 mm, etc.
  • the height of the trapezoidal end region may be 0.02 mm to 0.05 mm, for example, it may be 0.02 mm, 0.03 mm, 0.04 mm or 0.05 mm, etc.
  • the above-mentioned trapezoidal end region is an isosceles trapezoidal end region, and the length of the upper base of the above-mentioned isosceles trapezoidal end region is 0.09 mm, the length of the lower base is 0.15 mm, and the height is 0.03 mm.
  • each middle area 2030 is a long Square
  • the upper surface of each end area 2031 is a gradient shape.
  • the above gradient shape may be a shape enclosed by straight lines and curves.
  • the specifications of the gradient-shaped end area 2031 there is no specific limit here, as long as it meets actual needs.
  • the above electrode structure may also include a plurality of auxiliary gates 21 extending along the second direction and spaced apart along the first direction.
  • Each main gate connection line 202 is connected to a plurality of auxiliary gates 21 . 21 intersect.
  • each of the above-mentioned sub-grids 21 can collect carriers generated in a corresponding area of the cell body. Moreover, since each main gate connection line 202 intersects multiple auxiliary gates 21 . At this time, the carriers collected by all the sub-gates 21 can be collected through each main gate connection line 202 . Based on this, the current collection path can be shortened to reduce the transmission resistance of carriers on the auxiliary gate 21 to the main gate connection line 202 . It should be understood that the number and specifications of the sub-grids 21 included in the electrode structure 2 and the spacing between two adjacent sub-grids 21 can be set according to actual needs, and are not specifically limited here.
  • the plurality of auxiliary gates may include at least one continuous first auxiliary gate 210 and at least one discontinuous second auxiliary gate 211 .
  • the first auxiliary gates 210 and the second auxiliary gates 211 are alternately arranged at intervals.
  • Each second auxiliary gate 211 includes a plurality of auxiliary gate segments 2110 extending along the second direction and arranged in sequence. There is a gap between two adjacent auxiliary gate segments 2110 . At this time, the consumption of conductive materials when making the second sub-grid 211 can be reduced, thereby reducing the total consumption of conductive materials when making the sub-grid, thereby reducing the manufacturing cost of the solar cell.
  • the width of the above-mentioned sub-gate may be 10 microns to 40 microns, for example, it may be 10 microns, 15 microns, 20 microns, 30 microns or 40 microns.
  • the spacing between the first auxiliary grid and the second auxiliary grid may be 0.8 mm to 1.8 mm, for example, it may be 0.8 mm, 1 mm, 1.2 mm, 1.5 mm or 1.8 mm.
  • the size of the gap is not specifically limited here.
  • At least one solder point (not shown in Figure 7) is provided at each gap portion (not shown in Figure 7), and the auxiliary gates located on both sides of each gap portion
  • the segments 2110 are respectively overlapped at both ends of the corresponding solder joints along the length direction.
  • the main gate connection line 202 can be electrically connected to the corresponding auxiliary gate through the solder joints provided in the gap, thereby ensuring normal transmission of carriers.
  • it can also reduce or prevent excessive overlap between the solder joints and the auxiliary grid to ensure the flatness of the auxiliary grid.
  • the auxiliary grid is highly corrosive, during the process of setting the auxiliary grid, the auxiliary grid will destroy the insulating layer on the surface of the cell body, so that part of the auxiliary grid is directly printed in the cell body. Based on this, the cell body at the corresponding position of the sub-grid will be damaged, and the stress distribution on the cell body will be uneven. And since the main grid connection line 202 only needs to be electrically connected to the auxiliary grid, there is no need to damage the main grid of the cell. Insulating layer on the body surface. At this time, the cell body at the position corresponding to the main grid connection line 202 is not damaged, and its stress is distributed evenly.
  • the auxiliary grid has a gap portion
  • the main body of the cell sheet at a position corresponding to the gap portion is not damaged, and its stress is evenly distributed.
  • the solder strip is welded to the solder spot disposed in the gap and the solder strip is welded to the solder spot located on the main grid connection line 202, since the stress distribution of the cell body at the corresponding position of the solder spot is uniform, it can be Prevent cracks in the welding joint to ensure the normal operation of the solar cell.
  • the above-mentioned electrode structure may also include other structures disposed on the main grid. Two possible situations will be described below as examples. It should be understood that the following description is only for understanding and is not intended for specific limitation.
  • the above-mentioned electrode structure 2 can also include end welding points 22 at both ends of each main grid.
  • the area and length of the upper surface of the end welding points 22 are respectively larger than those located at the two main grids.
  • the area and length of the upper surface of the welding point 203 between the end welding points 22, the length direction of the end welding point 22 and the length direction of the welding point 203 are all parallel to the second direction B.
  • the above-mentioned electrode structure 2 can also include end welding points 22 at both ends of each main grid, and electrodes connected to both ends of each end welding point 22 and along the third At least two auxiliary grids 23 extend in one direction A toward the edge of the cell body.
  • the end welding points 22 and the at least two auxiliary grids 23 form a harpoon structure or a U-shaped structure.
  • the above-mentioned end solder joints 22 and auxiliary grids 23 can replace the solder joints 203 or the main grid connection lines 202 to collect the carriers generated there by the cell body 1. Moreover, since the edges of solar cells are brittle, they are easily broken when heated. Based on this, in the embodiment of the present application, the above-mentioned auxiliary grid 23 does not need to be welded with the soldering strip. At this time, the edge portion of the solar cell can be prevented from being broken due to the high temperature of the thermal welding process during the series welding process. Based on this, not only can the safety and stability of solar cells be improved, but the production yield of solar cells can also be improved.
  • the number of auxiliary gates 23 included in the above electrode structure can be set according to actual needs.
  • the electrode structure may include three auxiliary gates 23 , wherein the three auxiliary gates 23 all extend along the first direction and are spaced apart along the second direction.
  • the upper part of the above-mentioned end solder joint 22 The area and length of the surface can also be both larger than the area and length of the upper surface of the solder joints 203 located between the end solder joints 22, and the length directions of the end solder joints 22 and the length directions of the solder joints 203 are both parallel to the second direction. .
  • the above-mentioned electrode structure includes two auxiliary gates 23.
  • the distance between the two auxiliary gates 23 is 40 microns to 80 microns, for example, it can be 40 microns, 50 microns, 55 microns, or 60 microns. Micron or 80 micron etc. In the embodiment of the present application, the distance between the two auxiliary gates 23 is 60 microns. Since the two auxiliary grids 23 are respectively connected to both ends of the end solder joint 22, at this time, along the second direction, the length of the end solder joint 22 may also be 40 micrometers to 80 micrometers. For example, it can be 40 microns, 50 microns, 55 microns, 60 microns or 80 microns.
  • the above-mentioned electrode structure 2 can also include a plurality of auxiliary gates 21 extending along the second direction B and spaced apart along the first direction A.
  • the gate connection line 202 intersects the plurality of sub-gates 21 .
  • the plurality of auxiliary gates 21 may include at least one continuous first auxiliary gate 210 and at least one discontinuous second auxiliary gate 211 .
  • the first auxiliary gates 210 and the second auxiliary gates 211 are alternately arranged at intervals.
  • Each second auxiliary gate 211 may include a plurality of auxiliary gate segments 2110 extending along the second direction B and arranged in sequence, with a gap between two adjacent auxiliary gate segments 2110 .
  • the ratio of the width of the main grid to the width of the auxiliary grid is (1-2.5):1, for example, it can be 1:1, 1.5:1, 1.7:1, 2:1 or 2.5 :1 etc.
  • the width direction of the main grid is parallel to the second direction, and the width direction of the auxiliary grid is parallel to the first direction.
  • main gates and auxiliary gates of different widths can be set according to actual needs, which increases the selectivity of the main gate and auxiliary gate widths.
  • the electrode structure can be applied to different application scenarios and its scope of application is expanded.
  • the width of the main grid can be set in advance, and then the width of the auxiliary grid can be selected using the ratio of the width of the main grid and the width of the auxiliary grid set in advance.
  • the main grid connection lines and the auxiliary grids may have a three-dimensional trapezoidal structure.
  • the aspect ratio of the main gate connection line may be 1:(6-8), such as 1:6, 1:7, 1:7.5, 1:8, etc.
  • the aspect ratio of the sub-gate can be 1: (1-5), such as 1:1, 1:1.7, 1:2, 1:3, 1:4 or 1:5, etc.
  • the above-mentioned electrode structure may further include an overlapping point, and the main grid connection line and the auxiliary grid are connected through the overlapping point.
  • each overlapping point has a shape that is wide in the middle and narrow at both ends.
  • the main grid connection line and the auxiliary grid are connected through overlapping points, compared with the direct contact between the main grid connection line and the auxiliary grid in the prior art, the main grid connection caused by low printing accuracy can be reduced or eliminated.
  • the two ends of each overlapping point are narrower than the middle position, the consumption of conductive materials when making the overlapping points can be reduced, thereby reducing the manufacturing cost of solar cells. It should be understood that the length of the end of the overlapping point is greater than or equal to the width of the auxiliary grid to ensure that the auxiliary grid is connected to the main grid connection line.
  • each overlapping point 24 has a shape that is wide in the middle and narrow at both ends.
  • a welding point 203 is provided at a certain position of the main grid connection line 202, and the welding point 203 is used to connect with the welding strip.
  • the auxiliary grid 21 intersects the main grid connection line 202 at the same position.
  • the auxiliary grid 21 can be connected to the main grid connection line 202 by using the welding point 203, and there is no need to repeatedly set the overlapping point 24. In this case, it can be considered that the overlap point 24 coincides with a partial area of the welding point 203 .
  • the upper surfaces of the above-mentioned overlapping points have various shapes, and the above-mentioned “upper surface” refers to the surface of the overlapping points seen when looking down at the solar cell. Two possible shapes are taken as examples for description below. It should be understood that the following description is only for understanding and not for specific limitation.
  • the upper surface of the above-mentioned overlapping point 24 is a trapezoid, such as a right-angled trapezoid, an isosceles trapezoid, or other trapezoids.
  • the length of the upper base of the trapezoid may be 10 microns to 40 microns, for example, it may be 10 microns, 12 microns, 15 microns, 20 microns, 26 microns, 30 microns or 40 microns.
  • the length of the lower base of the trapezoid can be 40 microns to 100 microns, for example, it can be 40 microns, 45 microns, 50 microns, 60 microns, 70 microns, 80 microns or 100 microns.
  • the length of the upper bottom side of the trapezoid is greater than or equal to the width of the auxiliary gate to ensure that the auxiliary gate is connected to the main gate connection line or the auxiliary gate.
  • the upper surface of the above-mentioned overlapping point is an isosceles trapezoid.
  • Example 2 The upper surface of the overlapping point has a gradient shape, and the gradient shape may be a shape enclosed by straight lines and curves.
  • the specifications of the gradually-shaped overlap points there are no specific restrictions here, as long as they meet actual needs.
  • the conductive material used to make the main grid and the auxiliary grid may be metal, for example, silver paste, aluminum paste, silver-aluminum paste, or copper.
  • the above-mentioned main grid and auxiliary grid may be formed by printing and sintering, laser transfer, or electroplating.
  • the solar cell may include a cell body 1 and an electrode structure 2 formed on the cell body 1 .
  • the electrode structure 2 includes n main grids 20 extending along a first direction A and spaced apart along a second direction B.
  • the first direction A is different from the second direction B.
  • the spacing between two adjacent main grids 20 is 7 mm to 13 mm.
  • the spacing can be 6 mm. mm, 8mm, 8.5mm, 8.9mm, 9.2mm, 10mm, 13mm, etc.
  • 13 ⁇ n ⁇ 25, and n is an integer.
  • n can be 13, 15, 16, 18, 20 or 25, etc.
  • the distance between two adjacent main grids 20 refers to the distance between the central axes of the two adjacent main grids 20, and the central axis of the main grids 20 is parallel to the first direction, The same applies to the "spacing between two adjacent main grids 20" below.
  • the structure, specifications, etc. of the above-mentioned battery sheet body can be set according to the actual situation, and are not specifically limited here.
  • the above electrode structure may be applied only to the positive electrode included in the solar cell, or may be applied only to the negative electrode included in the solar cell, or may be applied to both the positive electrode and the negative electrode included in the solar cell.
  • the above-mentioned first direction and second direction may be any two directions that are parallel to the surface of the main body of the battery sheet and are different from each other.
  • the above-mentioned first direction A and second direction B are orthogonal.
  • the plurality of main grids 20 can be arranged at intervals along the row direction and extend along the column direction, that is, evenly distributed on the cell body 1 in an array.
  • the electrode structure 2 in the embodiment of the present application when the size of the cell body 1 is the same, compared with the existing 5BB (Bus bar) to 12BB solar cells, the electrode structure 2 in the embodiment of the present application includes 13 to 25 strips. main grid. Obviously, the solar cell provided by the embodiment of the present application has a larger number of main grids 20 . At this time, the range of the area where each main grid 20 collects carriers is reduced, thereby improving the main grid 20's ability to collect carriers generated in this area, thereby improving the main grid's 20 ability to collect current.
  • the cell efficiency tends to increase as the distance between two adjacent main grids decreases (for details, please refer to the previous description here). (do not elaborate). It can be seen from this that for cell bodies of the same size, compared with the prior art where the distance between two adjacent main grids is 15 mm to 30 mm, the distance between two adjacent main grids in the embodiment of the present application is The cell efficiency of solar cells is higher when the spacing is 7 mm to 13 mm. That is, the solar cell provided by the embodiment of the present application improves the cell efficiency.
  • the number of the above main grids can be selected according to actual needs, so that the solar cell can be applied to different application scenarios and expand its scope of application.
  • the main grid is connected to the welding strip.
  • the spacing between two adjacent main grids decreases, not only does the corresponding welding process need to be matched, but the diameter of the welding strip also needs to be reduced.
  • the welding process need to be more difficult, but the reduced diameter welding ribbon is easily bent during the welding process, affecting the transmission of current.
  • the spacing between two adjacent main grids is set to 7 mm to 13 mm. At this time, not only does it not need to significantly increase the difficulty of the welding process, but it can also ensure that the diameter of the welding ribbon meets the requirements. It is not easy to bend during the welding process, which can reduce the stress here and ensure the yield of solar cells.
  • the above electrode structure includes 16 main grids extending along a first direction and spaced apart along a second direction, where the first direction is different from the second direction.
  • the spacing between two adjacent main grids is 10.7 mm.
  • the cell efficiency of the solar cell is also greater than that between two adjacent main grids in the prior art. Cell efficiency at pitches from 15 mm to 30 mm. Moreover, since the spacing between two adjacent main grids is 10.7 mm, this not only further reduces the difficulty of the welding process, but also ensures that the welding strip with a diameter that meets the requirements is less likely to bend during the welding process, thereby reducing the Minimize the stress here to ensure the yield of solar cells. It should be understood that, except for the special limitations on the number of main grids and the spacing between two adjacent main grids, other characteristics of the solar cell can be referred to the solar cell provided in the first aspect, and their detailed description and analysis will not be repeated here. .
  • each busbar 20 includes a busbar connection line 202 and a plurality of welding spots 203 spaced along the first direction A on the busbar connection line 202 .
  • At least one pair of adjacent two main grids includes welding spots 203 that are distributed in a staggered manner, and a plurality of welding spots 203 included in the same main gate are spaced apart along the first direction A.
  • the solder joints 203 are integrally formed with the corresponding main grid connection lines 202 . And/or, the length of each welding point 203 is greater than the width of the corresponding main grid connection line 202, and the length direction of the welding point 203 and the width direction of the main grid connection line 202 are both parallel to the second direction B.
  • each solder joint 203 has a shape that is wide in the middle and narrow at both ends.
  • each solder joint 203 includes a middle region 2030 and two end regions 2031 , and the two end regions 2031 are respectively connected with the middle region 2030 connected at both ends.
  • the width of the end region 2031 gradually decreases; the direction away from the corresponding main grid is parallel to the second direction B.
  • the electrode structure 2 further includes a plurality of auxiliary gates 21 extending along the second direction B and spaced apart along the first direction A.
  • Each main gate connection line 202 is connected to A plurality of auxiliary grids 21 intersect.
  • the plurality of auxiliary gates 21 include at least one continuous first auxiliary gate 210 and at least one discontinuous second auxiliary gate 211 .
  • the first The auxiliary gates 210 and the second auxiliary gates 211 are alternately arranged at intervals.
  • Each second auxiliary gate 211 includes a plurality of auxiliary gate segments 2110 extending along the second direction B and arranged in sequence. There is a gap between two adjacent auxiliary gate segments 2110 .
  • At least one welding point is provided at each gap portion, and the auxiliary gate segments located on both sides of each gap portion are respectively overlapped with two sides of the corresponding welding point along the length direction. end.
  • the electrode structure 2 also includes end welding points 22 at both ends of each main grid and connected to both ends of each end welding point 22 and along the first direction.
  • At least two auxiliary grids 23 extending toward the edge of the cell body, the end welding points 22 and the at least two auxiliary grids 23 form a harpoon structure or a U-shaped structure.
  • the electrode structure 2 further includes end welding points 22 at both ends of each main grid.
  • the area and length of the upper surface of the end solder joints 22 are respectively larger than the area and length of the upper surface of the solder joints 203 located between the end solder joints 22.
  • the length directions of the end solder joints 22 and the length directions of the solder joints 203 are both equal. Parallel to the second direction B.
  • the main grid 20 includes n-2 first main grids 200 and two second main grids 201 located outside the n-2 first main grids 200 .
  • the width of the first main grid 200 is 20 microns to 50 microns, and the width of the second main grid 201 is 31.5 microns to 78.9 microns.
  • the width of the first main grid 200 is 30 microns
  • the width of the second main grid 201 is 47.4 microns.
  • the distance between the second main grid 201 and the edge of the cell body 1 is 10.5 microns to 12 microns.
  • the ratio of the width of the main grid 20 to the width of the auxiliary grid 21 is (1-2.5):1; the width direction of the main grid 20 is parallel to the second direction B, The width direction of the sub-gate 21 is parallel to the first direction A.
  • the electrode structure further includes an overlapping point, and the main grid connection line and the auxiliary grid are connected through the overlapping point.
  • each of the overlapping points has a shape that is wide in the middle and narrow at both ends.
  • each overlapping point 24 has a shape that is wide in the middle and narrow at both ends.
  • the electrode structure is applied to the positive electrode and/or the negative electrode of the solar cell; and/or the solar cell is a whole solar cell or a sliced solar cell.
  • embodiments of the present application further provide a solar component, including the solar cell described in the first aspect and/or the second aspect.
  • beneficial effects of the solar modules provided by the embodiments of the present application are the same as the beneficial effects of the solar cells described in the first aspect and/or the second aspect, and will not be described again here.

Abstract

本申请公开了一种太阳能电池和太阳能组件,涉及太阳能电池技术领域,以解决太阳能电池的电池效率低的问题。该太阳能电池包括电池片主体以及形成在电池片主体上的电极结构。上述电极结构包括18条沿第一方向延伸、且沿第二方向间隔分布的主栅,第一方向不同于第二方向,相邻两条主栅的间距为8毫米至10毫米。本申请还提供了另外一种太阳能电池。该太阳能电池包括电池片主体以及形成在电池片主体上的电极结构。该电极结构包括n条沿第一方向延伸、且沿第二方向间隔分布的主栅,第一方向不同于第二方向。相邻两条主栅之间的间距为7毫米至13毫米,其中,13≤n≤25。本申请还提供了一种太阳能组件,包括上述技术方案所述的太阳能电池。

Description

一种太阳能电池和太阳能组件
本申请要求在2022年7月12日提交中国专利局、申请号为202221808190.6、申请名称为“一种太阳能电池和太阳能组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能电池技术领域,尤其涉及一种太阳能电池和太阳能组件。
背景技术
太阳能电池是一种可以将光能转化为电能的半导体器件。具体的,当太阳能电池受到光照时,太阳能电池包括的半导体基底吸收光子并产生电子和空穴对。该电子和空穴对在PN结内建电场的作用下分离,并分别通过太阳能电池的发射极和背场引出,最终被设置在半导体基底上的电极结构所收集。
上述电极结构一般包括5至12条主栅,且相邻两条主栅之间的间距为15毫米至30毫米。上述相邻两条主栅所具有的中心轴线之间的间距较大,此时虽然可以使主栅收集较宽范围内的电流,但是,会降低太阳能电池的电池效率。
申请内容
本申请的目的在于提供一种太阳能电池和太阳能组件,用于提高太阳能电池的电池效率。
为了实现上述目的,第一方面,本申请提供了一种太阳能电池。该太阳能电池包括电池片主体以及形成在电池片主体上的电极结构。上述电极结构包括18条沿第一方向延伸、且沿第二方向间隔分布的主栅,第一方向不同于第二方向,相邻两条主栅之间的间距为8毫米至10毫米。
采用上述技术方案的情况下,当电池片主体的尺寸相同时,与现有的5BB(主栅,Bus bar)至12BB的太阳能电池相比,本申请中电极结构包括18条主栅。显然,本申请提供的太阳能电池的主栅数量更多。此时,每一主栅汇集载流子的区域范围减小,进而可以提高主栅对该区域内产生的载流子的汇集能力,以提高主栅对电流的收集能力。并且,根据现有技术可知,对于N型太阳能电池和P型太阳能电池,在一定范围内电池效率随着相邻两条 主栅间距的减小呈增大趋势。由此可知,对于相同尺寸的电池片主体相比于现有技术中相邻两条主栅之间的间距为15毫米至30毫米的情况,本申请中相邻两条主栅之间的间距为8毫米至10毫米时的太阳能电池的电池效率更高。即,利用本申请提供的太阳能电池提高了电池效率。应理解,上述相邻两条主栅之间的间距是指相邻两条主栅中主栅所具有的中心轴线之间的间距,且主栅所具有的中心轴线平行于第一方向,下文中的“相邻两条主栅之间的间距”同理。
进一步地,在实际使用过程中,由于主栅会与焊带连接。随着相邻两条主栅之间的间距减小,不仅需要匹配相应的焊接工艺,同时焊带的直径也需要减小。此时,不仅需要增加焊接工艺的难度,同时直径减小的焊带在焊接过程中极易发生弯曲,影响电流的传输。基于此,本申请选择相邻两条主栅之间的间距为8毫米至10毫米。此时,不仅不用大幅度增加焊接工艺的难度,同时还可以确保直径符合要求的焊带在焊接过程中不易发生弯曲,进而可以减小此处的应力,确保太阳能电池的良率。
在一种实现方式中,每条主栅包括主栅连接线、以及沿第一方向间隔设置在主栅连接线上的多个焊点。至少一对相邻两条主栅包括的焊点交错分布,同一主栅包括的多个焊点沿第一方向间隔分布。
采用上述技术方案的情况下,上述主栅连接线可以用于收集整个电池片主体在受光时产生的光电流。基于此,在提高太阳能电池的电池效率的同时,还可以对其进行电池效率的测试。并且,由于每条主栅包括沿第一方向间隔设置在主栅连接线上的多个焊点。此时,相比于焊带仅通过一个焊点与主栅连接线焊接的情况,与相应的主栅连接线对应的焊带可以通过上述多个焊点焊接,可以使焊带与主栅连接线焊接的更加牢固,进而提高太阳能电池在串联焊接时的焊接质量,确保太阳能电池的稳定性和安全性。进一步地,由于至少一对相邻两条主栅的焊点交错分布,同一主栅的多个焊点沿第一方向间隔分布。此时,不仅可以使焊带与主栅连接线焊接时的应力分布更加均匀,减小对太阳能电池结构的损坏,确保太阳能电池的安全性。同时,还可以确保对电流的收集能力,加快电流向焊带的传输速度。再进一步地,相较于现有技术中无主栅连接线仅有焊点的情况,由于本申请中的主栅包括主栅连接线和设置在主栅连接线上的多个焊点,当焊点的数量和焊接合格率小于或等于实际需要的数量和焊接合格率时,焊点所在的主栅连接线可以替代焊点与焊带连接,以确保太阳能电池正常工作。
在一种实现方式中,上述焊点与相应的主栅连接线一体成型。
采用上述技术方案的情况下,可以降低或消除焊点与相应的主栅连接线之间错位情况发生的概率,以确保太阳能电池的质量。并且,还可以提高制备效率。
在一种实现方式中,每一焊点的长度大于相应主栅连接线的宽度,焊点的长度方向与主栅连接线的宽度方向均平行于第二方向。
采用上述技术方案的情况下,不仅可以确保焊点完全覆盖宽度方向上的相应主栅连接线,以确保焊点与相应主栅连接线连接的牢固性,同时还可以避免焊点与相应主栅连接线错位。进一步地,还可以确保通过该焊点与相应主栅连接线焊接的焊带与该主栅连接线焊接的牢固性,提高太阳能电池在串联焊接时的焊接质量。此外,更有利于将焊带与焊点焊接在一起,提高了容错率。
在一种实现方式中,沿着第二方向,每一焊点均呈中间宽两端窄的形状。
采用上述技术方案的情况下,利用焊点的中间位置可以完全覆盖宽度方向上的相应主栅连接线,此时可以确保焊点与相应主栅连接线连接的牢固性。并且,由于每一焊点的两端相对于中间位置窄,因此可以降低制作焊点时导电材料的消耗量,进而可以降低太阳能电池的制造成本。
在一种实现方式中,沿第二方向,每一焊点均包括中间区域和两个端部区域,两个端部区域分别与中间区域的两端连接。沿着远离相应主栅的方向,端部区域的宽度逐渐减小,远离相应主栅的方向平行于第二方向。此时,增加了焊点的端部区域形状的选择性,使其可以根据实际应用场景进行选择。基于此,使主栅可以适用于不同的应用场景,扩大了其适用范围。
在一种实现方式中,每一中间区域的上表面均为长方形,每一端部区域的上表面均为梯形。
在一种实现方式中,上述电极结构还包括多条沿第二方向延伸、且沿第一方向间隔分布的副栅,每条主栅连接线与多条副栅相交。
采用上述技术方案的情况下,由于电极结构还包括多条副栅,上述每条副栅可以对电池片主体相应区域内产生的载流子进行收集。并且,由于每条主栅连接线与多条副栅相交。此时,可以通过每条主栅连接线对所有副栅收集的载流子进行汇集。基于此,可以缩短电流的汇集路径,以减小副栅上的载流子传输至主栅连接线的传输电阻。
在一种实现方式中,多条副栅包括至少一条连续的第一副栅以及至少一 条非连续的第二副栅。沿第一方向,第一副栅与第二副栅交替间隔设置。每条第二副栅包括沿第二方向延伸且依次排布多个副栅段,相邻两副栅段之间具有间隙部。此时,可以降低制作第二副栅时导电材料的消耗量,以降低制作副栅时导电材料的总消耗量,进而可以降低太阳能电池的制造成本。
在一种实现方式中,每个间隙部处设置有至少一个焊点,位于每个间隙部两侧的副栅段分别搭接在相应焊点沿长度方向的两端。
采用上述技术方案的情况下,不仅可以通过设置在间隙部的焊点将主栅连接线与相应的副栅电连接,确保载流子的正常传输。同时还可以减少或防止焊点与副栅过多的重叠,确保副栅的平整度。进一步地,由于副栅的腐蚀性较强,因此在设置副栅的过程中,副栅会破坏电池片主体表面的绝缘层,以使部分副栅直接印制在电池片主体内。基于此,会导致副栅对应位置处的电池片主体被损坏,电池片主体此处的应力分布不均匀。又由于主栅连接线仅与副栅电连接即可,不需要破坏电池片主体表面的绝缘层。此时,主栅连接线对应位置处的电池片主体未损坏,其应力分布均匀。并且,当副栅具有间隙部时,间隙部对应位置处的电池片主体也未损坏,其应力也分布均匀。基于此,当焊带与设置在间隙部的焊点焊接以及焊带与位于主栅连接线上的焊点焊接时,由于焊点对应位置处的电池片主体的应力分布均匀,此时可以防止焊接处出现隐裂的情况,以确保太阳能电池正常工作。
在一种实现方式中,上述电极结构还包括在每条主栅两端的端部焊点以及连接于每个端部焊点两端且沿着第一方向朝向电池片本体边缘延伸的至少两个辅栅,端部焊点与至少两个辅栅构成鱼叉结构或U型结构。
采用上述技术方案的情况下,上述端部焊点和辅栅可以替代焊点或主栅连接线收集电池片主体在该处所产生的载流子。并且,由于太阳电池的边缘部分具有一定的脆性,其受热后容易破碎。基于此,由于在本申请中,上述辅栅无须与焊带焊接。此时,可以防止太阳能电池的边缘部分在串联焊接过程中因热焊接工艺的温度较高而发生破碎。基于此,不仅可以提高太阳能电池的安全性和稳定性,同时还可以提高太阳能电池的生产良率。
在一种实现方式中,上述电极结构还包括在每条主栅两端的端部焊点,端部焊点的上表面的面积和长度分别大于位于端部焊点之间的焊点的上表面的面积和长度,端部焊点的长度方向和焊点的长度方向均平行于第二方向。
采用上述技术方案的情况下,不仅可以进一步加强端部焊点与相应主栅 连接线连接的牢固性,同时还可以避免端部焊点与相应主栅连接线错位。进一步地,还可以进一步确保通过该端部焊点与相应主栅连接线焊接的焊带与该主栅连接线焊接的牢固性,提高太阳能电池在串联焊接时的焊接质量。此外,更有利于将焊带与端部焊点焊接在一起,提高了容错率。
在一种实现方式中,上述主栅包括16条第一主栅以及位于16条第一主栅外侧的2条第二主栅。第一主栅的宽度为20微米至50微米,第二主栅的宽度为31.5微米至78.9微米。
采用上述技术方案的情况下,因现有技术中的5BB至12BB的太阳能电池所包括的主栅的宽度为40微米至300微米,而本申请提供的太阳能电池包括的电极结构中主栅的总数量为18条,其宽度分别为20微米至50微米和31.5微米至78.9微米。可以理解的是,相比于主栅总数量的增长倍数,本申请中主栅的宽度比现有技术中主栅的宽度的减小程度更大。因此,在制造本申请提供的太阳能电池包括的电极结构时,可以进一步降低导电材料的消耗量,进而降低太阳能电池的制造成本。
此外,由于现有技术中相邻两条主栅之间的间距为15毫米至30毫米,而本申请提供的太阳能电池包括的电极结构中相邻两条主栅的间距为8毫米至10毫米。此时,减少了主栅和副栅对电池片主体的遮挡,增加电池片主体的受光面积,提高了太阳能电池的光电转换效率。进一步地,由于第二主栅位于第一主栅的外侧,因此,在实际使用过程中第二主栅需要收集电流的区域一般会大于或等于第一主栅需要收集电流的区域。基于此,在本申请中第二主栅的宽度大于或等于第一主栅的宽度,以确保第二主栅的电流收集能力,进而确保太阳能电池的光电转换效率。
在一种实现方式中,上述第一主栅的宽度为30微米,第二主栅的宽度为47.4微米。
在一种实现方式中,沿第二方向,第二主栅距离电池片主体的边缘距离为10.5微米至12微米。应理解,此处可以是指第二主栅的左边缘或右边缘(均平行于第一方向)距离电池片主体的边缘距离为10.5微米至12微米,也可以是指第二主栅所具有的中心轴线距离电池片主体的边缘距离为10.5微米至12微米,还可以是指第二主栅所具有的除上述特殊位置以外的任意一条轴线(该轴线平行于第一方向)距离电池片主体的边缘距离为10.5微米至12微米,其具体情况可以根据实际需要进行设置,在此不做具体限定。
在一种实现方式中,上述电极结构还包括多条沿第二方向延伸、且沿第 一方向间隔分布的副栅,每条主栅连接线与多条副栅相交。此处所具有的有益效果可以参考前文描述,在此不再赘述。
在一种实现方式中,多条副栅包括至少一条连续的第一副栅以及至少一条非连续的第二副栅。沿第一方向,第一副栅与第二副栅交替间隔设置。每条第二副栅包括沿第二方向延伸且依次排布多个副栅段,相邻两副栅段之间具有间隙部。此处所具有的有益效果可以参考前文描述,在此不再赘述。
在一种实现方式中,上述主栅的宽度与副栅的宽度之比为(1-2.5):1,主栅的宽度方向平行于第二方向,副栅的宽度方向平行于第一方向。
采用上述技术方案的情况下,可以根据实际需要设置不同宽度的主栅和副栅,增加了主栅和副栅宽度的选择性。此时,使电极结构可以适用于不同的应用场景,扩大了其适用范围。
在一种实现方式中,上述电极结构还包括搭接点,主栅连接线和副栅通过搭接点连接。沿着第二方向,每一搭接点均呈中间宽两端窄的形状。
采用上述技术方案的情况下,由于主栅连接线和副栅通过搭接点连接,相比于现有技术中主栅连接线和副栅直接接触的方式,可以降低或消除因印刷精度不高导致主栅连接线和副栅搭接不上的情况发生的概率,以确保太阳能电池正常工作。并且,由于每一搭接点的两端相对于中间位置窄,因此可以降低制作搭接点时导电材料的消耗量,进而可以降低太阳能电池的制造成本。
在一种实现方式中,上述电极结构应用于太阳能电池的正电极和/或负电极。和/或,太阳能电池为整片太阳能电池或分片太阳能电池。
第二方面,本申请还提供了一种太阳能电池。该太阳能电池包括电池片主体以及形成在电池片主体上的电极结构。所述电极结构包括n条沿第一方向延伸、且沿第二方向间隔分布的主栅,第一方向不同于第二方向。相邻两条主栅之间的间距为7毫米至13毫米,其中,13≤n≤25,且n为整数。应理解,上述相邻两条主栅之间的间距是指相邻两条主栅中主栅所具有的中心轴线之间的间距,且主栅所具有的中心轴线平行于第一方向,下文中的“相邻两条主栅之间的间距”同理。
采用上述技术方案的情况下,当电池片主体的尺寸相同时,与现有的5BB(主栅,Bus bar)至12BB的太阳能电池相比,本申请中电极结构包括13条至25条主栅。显然,本申请提供的太阳能电池的主栅数量更多。此时,每一主栅汇集载流子的区域范围减小,进而可以提高主栅对该区域内产生的 载流子的汇集能力,以提高主栅对电流的收集能力。并且,根据现有技术可知,对于N型太阳能电池和P型太阳能电池,在一定范围内电池效率随着相邻两条主栅间距的减小呈增大趋势。由此可知,对于相同尺寸的电池片主体相比于现有技术中相邻两条主栅之间的间距为15毫米至30毫米的情况,本申请中相邻两条主栅之间的间距为7毫米至13毫米时的太阳能电池的电池效率更高。即,利用本申请提供的太阳能电池提高了电池效率。此外,上述主栅的数量可以根据实际需要进行选择,使太阳能电池可以适用于不同的应用场景,扩大了其适用范围。
进一步地,在实际使用过程中,由于主栅与焊带连接。但是,随着相邻两条主栅之间的间距减小,不仅需要匹配相应的焊接工艺,同时焊带的直径也需要减小。此时,不仅需要增加焊接工艺的难度,同时直径减小的焊带在焊接过程中极易发生弯曲,影响电流的传输。基于此,在本申请中,将相邻两条主栅之间的间距设置为7毫米至13毫米。此时,不仅不用大幅度增加焊接工艺的难度,同时还可以确保直径符合要求的焊带在焊接过程中不易发生弯曲,进而可以减小此处的应力,确保太阳能电池的良率。
在一种实现方式中,每条主栅包括主栅连接线、以及沿第一方向间隔设置在主栅连接线上的多个焊点。至少一对相邻两条主栅包括的焊点交错分布,同一主栅包括的多个焊点沿第一方向间隔分布。
在一种实现方式中,焊点与相应的主栅连接线一体成型。和/或,每一焊点的长度大于相应主栅连接线的宽度,焊点的长度方向与主栅连接线的宽度方向均平行于第二方向。
在一种实现方式中,沿着第二方向,每一焊点均呈中间宽两端窄的形状。
在一种实现方式中,沿第二方向,每一焊点均包括中间区域和两个端部区域,两个端部区域分别与中间区域的两端连接。沿着远离相应主栅的方向,端部区域的宽度逐渐减小;远离相应主栅的方向平行于第二方向。
在一种实现方式中,电极结构还包括多条沿第二方向延伸、且沿第一方向间隔分布的副栅,每条主栅连接线与多条副栅相交。
在一种实现方式中,多条副栅包括至少一条连续的第一副栅以及至少一条非连续的第二副栅。沿第一方向,第一副栅与第二副栅交替间隔设置。每条第二副栅包括沿第二方向延伸且依次排布多个副栅段,相邻两副栅段之间具有间隙部。
在一种实现方式中,每个间隙部处设置有至少一个焊点,位于每个间隙 部两侧的副栅段分别搭接在相应焊点沿长度方向的两端。
在一种实现方式中,电极结构还包括在每条主栅两端的端部焊点以及连接于每个端部焊点两端且沿着第一方向朝向电池片本体边缘延伸的至少两个辅栅,端部焊点与至少两个辅栅构成鱼叉结构或U型结构。
在一种实现方式中,电极结构还包括在每条主栅两端的端部焊点。端部焊点的上表面的面积和长度分别大于位于端部焊点之间的焊点的上表面的面积和长度,端部焊点的长度方向和焊点的长度方向均平行于第二方向。
在一种实现方式中,主栅包括n-2条第一主栅以及位于n-2条第一主栅外侧的2条第二主栅。第一主栅的宽度为20微米至50微米,第二主栅的宽度为31.5微米至78.9微米。
在一种实现方式中,第一主栅的宽度为30微米,第二主栅的宽度为47.4微米。和/或,沿第二方向,第二主栅距离电池片主体的边缘距离为10.5微米至12微米。
在一种实现方式中,主栅的宽度与副栅的宽度之比为(1-2.5):1;主栅的宽度方向平行于第二方向,副栅的宽度方向平行于第一方向。
在一种实现方式中,电极结构还包括搭接点,主栅连接线和副栅通过搭接点连接。沿着第二方向,每一搭接点均呈中间宽两端窄的形状。
在一种实现方式中,电极结构应用于太阳能电池的正电极和/或负电极;和/或,太阳能电池为整片太阳能电池或分片太阳能电池。
第三方面,本申请还提供一种太阳能组件,包括第一方面和/或第二方面所述的太阳能电池。
与现有技术相比,本申请提供的太阳能组件的有益效果与第一方面和/或第二方面所述的太阳能电池的有益效果相同,此处不做赘述。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部 分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例中太阳能电池的第一种部分结构示意图;
图2为本申请实施例中太阳能电池的第二种部分结构示意图;
图3为本申请实施例中主栅间距与电池效率的关系示意图;
图4为本申请实施例中太阳能电池的部分结构放大示意图;
图5为本申请实施例中主栅连接线、副栅和焊点的第一种连接示意图;
图6为本申请实施例中主栅连接线、副栅和焊点的第二种连接示意图;
图7为本申请实施例中主栅连接线、副栅和焊点的第三种连接示意图;
图8为本申请实施例中辅栅、副栅和搭接点的连接示意图。
附图标记:
1-电池片主体,       2-电极结构,          20-主栅,
200-第一主栅,       201-第二主栅,        202-主栅连接线,
203-焊点,           2030-中间区域,       2031-端部区域,
21-副栅,            210-第一副栅,        211-第二副栅,
2110-副栅段,        22-端部焊点,         23-辅栅,
24-搭接点,          A-第一方向,          B-第二方向。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆 盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合具体的实施例对本申请的技术方案进行详细说明。下面这些具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
现有的太阳能电池的长度和宽度一般为150毫米至230毫米,其包括的电极结构具有5至13条主栅,且相邻两条主栅之间的间距一般为15毫米至30毫米。上述相邻两条主栅所具有的中心轴线之间的间距较大,此时虽然可以使主栅收集较宽范围内的电流,但是,会降低太阳能电池的电池效率。
此外,为了保证每条主栅均具有一定的电流收集能力,则需要将每条主栅的宽度设置为较大数值,例如40微米至300微米。但是,在制造上述太阳能电池的过程中,通常会通过丝网印刷等工艺在半导体基底上形成银或铝等导电材料的电极结构。可以想到的是,与电极结构对应的电极图案的有效面积越大,则需要消耗越多的导电材料来制造电极结构。基于此,当电极结构包括的每条主栅的宽度较大时,与电极结构对应的电极图案的有效面积越大,从而导致导电材料的消耗量较大,增加了太阳能电池的制造成本。
本申请实施例提供了两种太阳能电池。从结构方面来讲,两种太阳能电池可以为背接触太阳能电池。或者,太阳能电池包括的正电极和负电极分别位于太阳能电池相对的两面。从划分方面来讲,两种太阳能电池可以是整片太阳能电池,也可以是分片太阳能电池。其中,当太阳能电池为分片太阳能电池时,划分的倍数可以根据实际需求进行设置。例如:参见图1和图2,太阳能电池可以为二分之一分片太阳能电池。
第一方面,参见图1和图2,该太阳能电池可以包括电池片主体1以及形成在电池片主体1上的电极结构2。上述电极结构2包括18条沿第一方向A延伸、且沿第二方向B间隔分布的主栅20,第一方向A不同于第二方向B,相邻两条主栅20之间的间距为8毫米至10毫米。例如,间距可以是8毫米、8.5毫米、8.9毫米、9.2毫米、10毫米等。上述相邻两条主栅20之间的间距是指相邻两条主栅20中主栅20所具有的中心轴线之间的间距,且主 栅20所具有的中心轴线平行于第一方向,下文中的“相邻两条主栅20之间的间距”同理。
上述电池片主体的结构、规格等可以根据实际情况进行设置,在此不做具体限定。上述电极结构可以仅应用于太阳能电池包括的正电极,也可以仅应用于太阳能电池包括的负电极,还可以同时应用于太阳能电池包括的正电极和负电极。
上述第一方向和第二方向,二者可以为平行于电池片主体表面、且互不相同的任意两个方向。优选的,参见图1和图2,上述第一方向A和第二方向B正交。此时,多条主栅可以沿着行的方向间隔排布、且沿着列的方向延伸,即呈阵列式均匀分布在电池片主体1上。
参见图1和图2,当电池片主体1的尺寸相同时,与现有的5BB(主栅,Bus bar)至12BB的太阳能电池相比,本申请实施例中电极结构2包括18条主栅。显然,本申请实施例提供的太阳能电池的主栅20数量更多。此时,每一主栅20汇集载流子的区域范围减小,进而可以提高主栅20对该区域内产生的载流子的汇集能力,以提高主栅20对电流的收集能力。并且,根据现有技术可知,对于N型太阳能电池和P型太阳能电池,在一定范围内(例如相邻主栅20之间的间距为8.5毫米至18.2毫米)电池效率随着相邻两条主栅间距的减小呈增大趋势。由此可知,对于相同尺寸的电池片主体相比于现有技术中相邻两条主栅20之间的间距为15毫米至30毫米的情况,本申请实施例中相邻两条主栅20之间的间距为8毫米至10毫米时的太阳能电池的电池效率更高。即,利用本申请实施例提供的太阳能电池提高了电池效率。
具体的,参见图3可知,理论上对于方块电阻较小(例如一般为100Ω/□至130Ω/□)的N型太阳能电池,当相邻两条主栅之间的间距为8.5毫米时,N型太阳能电池的电池效率达到极限值。上述相邻两条主栅之间的间距为8.5毫米对应于182规格的20BB太阳能电池。对于方块电阻较大(例如一般为180Ω/□至200Ω/□)的P型太阳能电池,当相邻两条主栅之间的间距为7.9毫米时,P型太阳能电池的电池效率达到极限值。上述相邻两条主栅之间的间距为7.9毫米对应于182规格的22BB太阳能电池。
但是,在实际使用过程中,由于主栅与焊带连接。随着相邻两条主栅之间的间距减小,不仅需要匹配相应的焊接工艺,同时焊带的直径也需要减小。此时,不仅需要增加焊接工艺的难度,同时直径减小的焊带在焊接 过程中极易发生弯曲,影响电流的传输。基于此,本申请实施例选择相邻两条主栅之间的间距为8毫米至10毫米。此时,不仅不用大幅度增加焊接工艺的难度,同时还可以确保直径符合要求的焊带在焊接过程中不易发生弯曲,进而可以减小此处的应力,确保太阳能电池的良率。优选的,上述相邻主栅之间的间距为8.5毫米至9.5毫米,此时可以与直径为0.23毫米至0.25毫米的焊带进行焊接。在此情况下,不仅可以满足量产的需要,同时还可以节约太阳能电池的制造成本。示例性的,当相邻主栅之间的间距为9.5毫米时,对应18BB太阳能电池。
作为一种可能的实现方式,参见图1和图2,上述主栅20可以包括16条第一主栅200以及位于16条第一主栅200外侧的2条第二主栅201。第一主栅200的宽度为20微米至50微米,例如,可以是20微米、30微米、35微米、40微米或50微米等。第二主栅201的宽度为31.5微米至78.9微米,例如,可以是31.5微米、33微米、35微米、40微米、50微米或78.9微米等。
采用上述技术方案的情况下,参见图1和图2,因现有技术中的5BB至12BB的太阳能电池所包括的主栅的宽度为40微米至300微米,而本申请实施例提供的太阳能电池包括的电极结构2中主栅20的总数量为18条,其宽度分别为20微米至50微米和31.5微米至78.9微米。可以理解的是,相比于主栅20总数量的增长倍数,本申请实施例中主栅20的宽度比现有技术中主栅的宽度的减小程度更大。因此,在制造本申请实施例提供的太阳能电池包括的电极结构2时,可以进一步降低导电材料的消耗量,进而降低太阳能电池的制造成本。此外,由于现有技术中相邻两条主栅20之间的间距为15毫米至30毫米,而本申请实施例提供的太阳能电池包括的电极结构2中相邻两条主栅20之间的间距为8毫米至10毫米。此时,减少了主栅20对电池片主体1的遮挡,增加电池片主体1的受光面积,提高了太阳能电池的光电转换效率。进一步地,由于第二主栅201位于第一主栅200的外侧,因此,在实际使用过程中第二主栅201需要收集电流的区域一般会大于或等于第一主栅200需要收集电流的区域。基于此,在本申请实施例中第二主栅201的宽度大于或等于第一主栅200的宽度,以确保第二主栅201的电流收集能力,进而确保太阳能电池的光电转换效率。
参见图1和图2,由于第二主栅201需要收集电流的区域一般会大于或等于第一主栅200需要收集电流的区域。此时,第二主栅201的宽度可以根 据收集电流区域的宽度等比例增加。示例性的,对于规格为182mm*182mm的18BB电池,相邻主栅之间的间距为9.5毫米,当第一主栅200的宽度为30微米,且沿第二方向B,第二主栅201距离电池片主体1的边缘距离为15毫米时,第二主栅201的宽度为47.4微米。应理解,与主栅20焊接的焊带也可以根据焊接位置的不同,设置不同的宽度。例如,与第一主栅200焊接的焊带的宽度小于与第二主栅201焊接的焊带的宽度。
在一种可选方式中,沿第二方向,第二主栅距离电池片主体的边缘距离可以为10.5微米至12微米。例如,可以是10.5微米、11微米、11.5微米、11.8微米或12微米等。应理解,此处可以是指第二主栅的左边缘或右边缘(均平行于第一方向)距离电池片主体的边缘距离为10.5微米至12微米,也可以是指第二主栅所具有的中心轴线距离电池片主体的边缘距离为10.5微米至12微米,还可以是指第二主栅所具有的除上述特殊位置以外的任意一条轴线(该轴线平行于第一方向)距离电池片主体的边缘距离为10.5微米至12微米,其具体情况可以根据实际需要进行设置,在此不做具体限定。
作为一种可能的实现方式,参见图1、图2和图4,每条主栅20可以包括主栅连接线202、以及沿第一方向A间隔设置在主栅连接线202上的多个焊点203。至少一对相邻两条主栅包括的焊点203交错分布,同一主栅包括的多个焊点203沿第一方向A间隔分布。
参见图1、图2和图4,上述主栅连接线202可以用于收集整个电池片主体1在受光时产生的光电流。基于此,在提高太阳能电池的电池效率的同时,还可以对其进行电池效率的测试。并且,由于每条主栅包括沿第一方向A间隔设置在主栅连接线202上的多个焊点203。此时,相比于焊带仅通过一个焊点203与主栅连接线202焊接的情况,与相应的主栅连接线202对应的焊带可以通过上述多个焊点203焊接,可以使焊带与主栅连接线202焊接的更加牢固,进而提高太阳能电池在串联焊接时的焊接质量,确保太阳能电池的稳定性和安全性。进一步地,由于至少一对相邻两条主栅的焊点203交错分布,同一主栅的多个焊点203沿第一方向A间隔分布。此时,不仅可以使焊带与主栅连接线202焊接时的应力分布更加均匀,减小对太阳能电池结构的损坏,确保太阳能电池的安全性。同时,还可以确保对电流的收集能力,加快电流向焊带的传输速度。再进一步地,相较于现有技术中无主栅连接线仅有焊点的情况,由于本申请实施例中的主栅包括主栅连接 线和设置在主栅连接线上的多个焊点203,当焊点203的数量和焊接合格率小于或等于实际需要的数量和焊接合格率时,焊点203所在的主栅连接线202可以替代焊点203与焊带连接,以确保太阳能电池正常工作。
上述“至少一对相邻两条主栅的焊点交错分布,同一主栅的多个焊点沿第一方向间隔分布”有两种可能的表现形式,下面以这两种可能的表现形式为例进行描述,应理解,以下描述仅用于理解,不用于具体限定。
示例一,参见图1,将所有主栅20从左至右依次编号,从电池片主体1的左边缘位置开始,所有编号为奇数的主栅20上的焊点203分布规律相同,所有编号为偶数的主栅20上的焊点203分布规律相同,但相邻两条主栅上的焊点203交错分布。
示例二,参见图2,位于电池片主体1中间位置的相邻两条主栅上的焊点203呈对称分布,以上述相邻两条主栅之间的中心轴线(即图2中的虚线)为对称轴,左右对称的两条主栅上的焊点203分布规律相同,但相邻两条主栅上的焊点203交错分布。
上述每一主栅所包括的焊接点的数量可以根据实际应用场景设置,只要能够应用至本申请实施例提供的太阳能电池中均可。
此外,上述焊点与相应的主栅连接线的连接方式多种多样,例如可以是一体成型,可以是在主栅连接线设置好后,在主栅连接线上单独设置的焊点。
在一种可选方式中,上述焊点与相应的主栅连接线一体成型。此时,可以降低或消除焊点与相应的主栅连接线之间错位情况发生的概率,以确保太阳能电池的质量。并且,还可以提高制备效率。
在一种可选方式中,参见图5和图6,每一焊点203的长度大于相应主栅连接线202的宽度,焊点203的长度方向与主栅连接线202的宽度方向均平行于第二方向。此时,不仅可以确保焊点203完全覆盖宽度方向上的相应主栅连接线202,以确保焊点203与相应主栅连接线202连接的牢固性,同时还可以避免焊点203与相应主栅连接线202错位。进一步地,还可以确保通过该焊点203与相应主栅连接线202焊接的焊带与该主栅连接线202焊接的牢固性,提高太阳能电池在串联焊接时的焊接质量。此外,更有利于将焊带与焊点203焊接在一起,提高了容错率。
在一种可选方式中,参见图5和图6,沿着第二方向,每一焊点203均呈中间宽两端窄的形状。采用上述技术方案的情况下,利用焊点203的中间 位置可以完全覆盖宽度方向上的相应主栅连接线202,此时可以确保焊点203与相应主栅连接线202连接的牢固性。并且,由于每一焊点203的两端相对于中间位置窄,因此可以降低制作焊点203时导电材料的消耗量,进而可以降低太阳能电池的制造成本。
在一种可选方式中,参见图5和图6,沿第二方向,每一焊点203均包括中间区域2030和两个端部区域2031,两个端部区域2031分别与中间区域2030的两端连接。沿着远离相应主栅的方向,端部区域2031的宽度逐渐减小,远离相应主栅的方向平行于第二方向。此时,增加了焊点203的端部区域2031形状的选择性,使其可以根据实际应用场景进行选择。基于此,使主栅可以适用于不同的应用场景,扩大了其适用范围。
在一种可选方式中,沿第二方向,上述端部区域为轴对称图形。
上述中间区域和两个端部区域的上表面的形状多种多样,上述“上表面”指代的是俯视太阳能电池时所看到的焊点的表面。下面以两种可能的形状为例进行描述,应理解,以下描述仅用于理解,不用于具体限定。
在第一种可选方式中,参见图5,每一中间区域2030的上表面均为长方形,每一端部区域2031的上表面均为梯形。上述梯形可以是直角梯形、等腰梯形或其他梯形。
示例性的,上述长方形中间区域的长度可以是0.4毫米至1.2毫米,例如可以是0.4毫米、0.6毫米、1毫米或1.2毫米等。长方形中间区域的宽度可以是0.09毫米至1.2毫米,例如可以是0.09毫米、0.12毫米、0.15毫米、0.4毫米、0.6毫米、1毫米或1.2毫米等。优选的,上述长方形中间区域的长度为0.6毫米,宽度为0.15毫米。
上述梯形端部区域的上底边长度小于或等于下底边长度。示例性的,上述梯形端部区域的上底边长度可以是0.09毫米至1.2毫米,例如可以是0.09毫米、0.12毫米、0.15毫米、0.4毫米、0.6毫米、1毫米或1.2毫米等。梯形端部区域的下底边长度可以是0.09毫米至1.2毫米,例如可以是0.09毫米、0.12毫米、0.15毫米、0.4毫米、0.6毫米、1毫米或1.2毫米等。梯形端部区域的高度可以是0.02毫米至0.05毫米,例如可以是0.02毫米、0.03毫米、0.04毫米或0.05毫米等。优选的,上述梯形端部区域为等腰梯形端部区域,上述等腰梯形端部区域的上底边长度为0.09毫米,下底边长度为0.15毫米,高度为0.03毫米。
在第二种可选方式中,参见图6,每一中间区域2030的上表面均为长 方形,每一端部区域2031的上表面均为渐变形状。上述渐变形状可以是由直线和曲线围合形成的形状。至于渐变形状的端部区域2031的规格在此不做具体限定,只要符合实际需要即可。
在一种可选方式中,参见图4,上述电极结构还可以包括多条沿第二方向延伸、且沿第一方向间隔分布的副栅21,每条主栅连接线202与多条副栅21相交。
参见图4,由于电极结构还包括多条副栅21,上述每条副栅21可以对电池片主体相应区域内产生的载流子进行收集。并且,由于每条主栅连接线202与多条副栅21相交。此时,可以通过每条主栅连接线202对所有副栅21收集的载流子进行汇集。基于此,可以缩短电流的汇集路径,以减小副栅21上的载流子传输至主栅连接线202的传输电阻。应理解,电极结构2所包括的副栅21的数量、规格、以及相邻两条副栅21之间的间距,可以根据实际需求进行设置,此处不做具体限定。
在一种可选方式中,参见图7,多条副栅可以包括至少一条连续的第一副栅210以及至少一条非连续的第二副栅211。沿第一方向,第一副栅210与第二副栅211交替间隔设置。每条第二副栅211包括沿第二方向延伸且依次排布多个副栅段2110,相邻两副栅段2110之间具有间隙部。此时,可以降低制作第二副栅211时导电材料的消耗量,以降低制作副栅时导电材料的总消耗量,进而可以降低太阳能电池的制造成本。
示例性的,上述副栅的宽度可以是10微米至40微米,例如可以是10微米、15微米、20微米、30微米或40微米等。第一副栅与第二副栅之间的间距可以是0.8毫米至1.8毫米,例如可以是0.8毫米、1毫米、1.2毫米、1.5毫米或1.8毫米等。至于间隙部的尺寸在此不做具体限定。
在一种可选方式中,参见图7,每个间隙部(图7中未示出)处设置有至少一个焊点(图7中未示出),位于每个间隙部两侧的副栅段2110分别搭接在相应焊点沿长度方向的两端。此时,不仅可以通过设置在间隙部的焊点将主栅连接线202与相应的副栅电连接,确保载流子的正常传输。同时还可以减少或防止焊点与副栅过多的重叠,确保副栅的平整度。进一步地,由于副栅的腐蚀性较强,因此在设置副栅的过程中,副栅会破坏电池片主体表面的绝缘层,以使部分副栅直接印制在电池片主体内。基于此,会导致副栅对应位置处的电池片主体被损坏,电池片主体此处的应力分布不均匀。又由于主栅连接线202仅与副栅电连接即可,不需要破坏电池片主 体表面的绝缘层。此时,主栅连接线202对应位置处的电池片主体未损坏,其应力分布均匀。并且,当副栅具有间隙部时,间隙部对应位置处的电池片主体也未损坏,其应力也分布均匀。基于此,当焊带与设置在间隙部的焊点焊接以及焊带与位于主栅连接线202上的焊点焊接时,由于焊点对应位置处的电池片主体的应力分布均匀,此时可以防止焊接处出现隐裂的情况,以确保太阳能电池正常工作。
上述电极结构还可以包括设置在主栅上的其他结构,下面以两种可能的情况为例进行描述,应理解,以下描述仅用于理解,不用于具体限定。
第一种可能的实现方式,参见图2和图4,上述电极结构2还可以包括在每条主栅两端的端部焊点22,端部焊点22的上表面的面积和长度分别大于位于端部焊点22之间的焊点203的上表面的面积和长度,端部焊点22的长度方向和焊点203的长度方向均平行于第二方向B。
参见图2和图4,此时,不仅可以进一步加强端部焊点22与相应主栅连接线202连接的牢固性,同时还可以避免端部焊点22与相应主栅连接线202错位。进一步地,还可以进一步确保通过该端部焊点22与相应主栅连接线202焊接的焊带与该主栅连接线202焊接的牢固性,提高太阳能电池在串联焊接时的焊接质量。此外,更有利于将焊带与端部焊点22焊接在一起,提高了容错率。
第二种可能的实现方式,参见图2和图4,上述电极结构2还可以包括在每条主栅两端的端部焊点22以及连接于每个端部焊点22两端且沿着第一方向A朝向电池片本体边缘延伸的至少两个辅栅23,端部焊点22与至少两个辅栅23构成鱼叉结构或U型结构。
参见图2和图4,采用上述技术方案的情况下,上述端部焊点22和辅栅23可以替代焊点203或主栅连接线202收集电池片主体1在该处所产生的载流子。并且,由于太阳电池的边缘部分具有一定的脆性,其受热后容易破碎。基于此,由于在本申请实施例中,上述辅栅23无须与焊带焊接。此时,可以防止太阳能电池的边缘部分在串联焊接过程中因热焊接工艺的温度较高而发生破碎。基于此,不仅可以提高太阳能电池的安全性和稳定性,同时还可以提高太阳能电池的生产良率。
示例性的,参见图4,上述电极结构包括的辅栅23的数量可以根据实际需要进行设置。例如,电极结构可以包括三个辅栅23,其中三个辅栅23均沿第一方向延伸,且沿第二方向间隔分布。此外,上述端部焊点22的上 表面的面积和长度也可以均大于位于端部焊点22之间的焊点203的上表面的面积和长度,端部焊点22的长度方向和焊点203的长度方向均平行于第二方向。
在本申请实施例中,参见图4,上述电极结构包括两个辅栅23,两个辅栅23之间的距离为40微米至80微米,例如可以是40微米、50微米、55微米、60微米或80微米等。在本申请实施例中,上述两个辅栅23之间的距离为60微米。由于两个辅栅23分别连接于端部焊点22的两端,此时,沿第二方向,端部焊点22的长度也可以是40微米至80微米。例如可以是40微米、50微米、55微米、60微米或80微米等。
作为一种可能的实现方式,参见图2、图4和图7,上述电极结构2还可以包括多条沿第二方向B延伸、且沿第一方向A间隔分布的副栅21,每条主栅连接线202与多条副栅21相交。多条副栅21可以包括至少一条连续的第一副栅210以及至少一条非连续的第二副栅211。沿第一方向A,第一副栅210与第二副栅211交替间隔设置。每条第二副栅211可以包括沿第二方向B延伸且依次排布多个副栅段2110,相邻两副栅段2110之间具有间隙部。此处所具有的有益效果可以参考前文描述,在此不再赘述。
在一种可选方式中,上述主栅的宽度与副栅的宽度之比为(1-2.5):1,例如,可以是1:1、1.5:1、1.7:1、2:1或2.5:1等。主栅的宽度方向平行于第二方向,副栅的宽度方向平行于第一方向。采用上述技术方案的情况下,可以根据实际需要设置不同宽度的主栅和副栅,增加了主栅和副栅宽度的选择性。此时,使电极结构可以适用于不同的应用场景,扩大了其适用范围。在实际使用过程中,可以预先设置好主栅的宽度,之后利用提前设置好的主栅宽度与副栅宽度的比值,选择副栅的宽度。
在一种可选方式中,上述主栅连接线和副栅可以为立体的梯形结构。此时,主栅连接线的高宽比可以是1:(6-8),例如1:6、1:7、1:7.5、1:8等。副栅的高宽比可以是1:(1-5),例如1:1、1:1.7、1:2、1:3、1:4或1:5等。
在一种可选方式中,上述电极结构还可以包括搭接点,主栅连接线和副栅通过搭接点连接。沿着第二方向,每一搭接点均呈中间宽两端窄的形状。
由于主栅连接线和副栅通过搭接点连接,相比于现有技术中主栅连接线和副栅直接接触的方式,可以降低或消除因印刷精度不高导致主栅连接 线和副栅搭接不上的情况发生的概率,以确保太阳能电池正常工作。并且,由于每一搭接点的两端相对于中间位置窄,因此可以降低制作搭接点时导电材料的消耗量,进而可以降低太阳能电池的制造成本。应理解,搭接点末端的长度大于或等于副栅的宽度,以确保副栅与主栅连接线连接。
在一种可选方式中,参见图8,上述辅栅23和副栅21也通过搭接点24连接。沿着第二方向,每一搭接点24均呈中间宽两端窄的形状。
参见图1至图8,应理解,上述焊点203和搭接点24可以重合。例如,在主栅连接线202的某个位置设置有焊点203,该焊点203用于与焊带连接,同时在相同的位置副栅21与主栅连接线202相交。此时,副栅21可以利用该焊点203与主栅连接线202连接,不必在重复设置搭接点24。在此种情况下,可以认为搭接点24与焊点203的部分区域重合。
上述搭接点的上表面形状多种多样,上述“上表面”指代的是俯视太阳能电池时所看到的搭接点的表面。下面以两种可能的形状为例进行描述,应理解,以下描述仅用于理解,不用于具体限定。
示例一,参见图8,上述搭接点24的上表面为梯形,例如直角梯形、等腰梯形或其他梯形等。上述梯形的上底边长度可以是10微米至40微米,例如可以是10微米、12微米、15微米、20微米、26微米、30微米或40微米等。梯形的下底边长度可以是40微米至100微米,例如可以是40微米、45微米、50微米、60微米、70微米、80微米或100微米等。并且,梯形的上底边长度大于或等于副栅的宽度,以确保副栅与主栅连接线或辅栅连接。优选的,上述搭接点的上表面为等腰梯形。
示例二,上述搭接点的上表面为渐变形状,上述渐变形状可以是由直线和曲线围合形成的形状。至于渐变形状的搭接点的规格在此不做具体限定,只要符合实际需要即可。
作为一种可能的实现方式,上述用于制作主栅和副栅的导电材料可以是金属,例如,银浆、铝浆、银铝浆或铜等。
作为一种可能的实现方式,上述主栅和副栅的形成方法可以是印刷烧结、激光转印或电镀等。
第二方面,参见图1和图2,该太阳能电池可以包括电池片主体1以及形成在电池片主体1上的电极结构2。所述电极结构2包括n条沿第一方向A延伸、且沿第二方向B间隔分布的主栅20,第一方向A不同于第二方向B。相邻两条主栅20之间的间距为7毫米至13毫米,例如,间距可以是6 毫米、8毫米、8.5毫米、8.9毫米、9.2毫米、10毫米、13毫米等。其中,13≤n≤25,且n为整数。例如,n可以是13、15、16、18、20或25等。上述相邻两条主栅20之间的间距是指相邻两条主栅20中主栅20所具有的中心轴线之间的间距,且主栅20所具有的中心轴线平行于第一方向,下文中的“相邻两条主栅20之间的间距”同理。
上述电池片主体的结构、规格等可以根据实际情况进行设置,在此不做具体限定。上述电极结构可以仅应用于太阳能电池包括的正电极,也可以仅应用于太阳能电池包括的负电极,还可以同时应用于太阳能电池包括的正电极和负电极。
上述第一方向和第二方向,二者可以为平行于电池片主体表面、且互不相同的任意两个方向。优选的,参见图1和图2,上述第一方向A和第二方向B正交。此时,多条主栅20可以沿着行的方向间隔排布、且沿着列的方向延伸,即呈阵列式均匀分布在电池片主体1上。
参见图1和图2,当电池片主体1的尺寸相同时,与现有的5BB(主栅,Bus bar)至12BB的太阳能电池相比,本申请实施例中电极结构2包括13条至25条主栅。显然,本申请实施例提供的太阳能电池的主栅20数量更多。此时,每一主栅20汇集载流子的区域范围减小,进而可以提高主栅20对该区域内产生的载流子的汇集能力,以提高主栅20对电流的收集能力。并且,根据现有技术可知,对于N型太阳能电池和P型太阳能电池,在一定范围内电池效率随着相邻两条主栅间距的减小呈增大趋势(具体可以参见前文描述在此不做赘述)。由此可知,对于相同尺寸的电池片主体相比于现有技术中相邻两条主栅之间的间距为15毫米至30毫米的情况,本申请实施例中相邻两条主栅之间的间距为7毫米至13毫米时的太阳能电池的电池效率更高。即,利用本申请实施例提供的太阳能电池提高了电池效率。此外,上述主栅的数量可以根据实际需要进行选择,使太阳能电池可以适用于不同的应用场景,扩大了其适用范围。
进一步地,在实际使用过程中,由于主栅与焊带连接。但是,随着相邻两条主栅之间的间距减小,不仅需要匹配相应的焊接工艺,同时焊带的直径也需要减小。此时,不仅需要增加焊接工艺的难度,同时直径减小的焊带在焊接过程中极易发生弯曲,影响电流的传输。基于此,在本申请实施例中,将相邻两条主栅之间的间距设置为7毫米至13毫米。此时,不仅不用大幅度增加焊接工艺的难度,同时还可以确保直径符合要求的焊带在 焊接过程中不易发生弯曲,进而可以减小此处的应力,确保太阳能电池的良率。
在一种可选方式中,上述电极结构包括16条沿第一方向延伸、且沿第二方向间隔分布的主栅,第一方向不同于第二方向。相邻两条主栅之间的间距为10.7毫米。
由图3可知,当电极结构包括16条主栅,且相邻两条主栅之间的间距为10.7毫米时,太阳能电池的电池效率也大于现有技术中相邻两条主栅之间的间距为15毫米至30毫米情况下的电池效率。并且,由于邻两条主栅之间的间距为10.7毫米,此时,不仅可以进一步降低焊接工艺的难度,同时还可以确保直径符合要求的焊带在焊接过程中更不易发生弯曲,进而可以减小此处的应力,确保太阳能电池的良率。应理解,除了对主栅数量和相邻两条主栅之间间距的特殊限定以外,该太阳能电池的其他特征均可以参见第一方面提供的太阳能电池,其具体描述和分析在此不再赘述。
在一种可选方式中,参见图1至图8,每条主栅20包括主栅连接线202、以及沿第一方向A间隔设置在主栅连接线202上的多个焊点203。至少一对相邻两条主栅包括的焊点203交错分布,同一主栅包括的多个焊点203沿第一方向A间隔分布。
在一种可选方式中,参见图1至图8,焊点203与相应的主栅连接线202一体成型。和/或,每一焊点203的长度大于相应主栅连接线202的宽度,焊点203的长度方向与主栅连接线202的宽度方向均平行于第二方向B。
在一种可选方式中,参见图1至图8,沿着第二方向B,每一焊点203均呈中间宽两端窄的形状。
在一种可选方式中,参见图1至图8,沿第二方向B,每一焊点203均包括中间区域2030和两个端部区域2031,两个端部区域2031分别与中间区域2030的两端连接。沿着远离相应主栅的方向,端部区域2031的宽度逐渐减小;远离相应主栅的方向平行于第二方向B。
在一种可选方式中,参见图1至图8,电极结构2还包括多条沿第二方向B延伸、且沿第一方向A间隔分布的副栅21,每条主栅连接线202与多条副栅21相交。
在一种可选方式中,参见图1至图8,多条副栅21包括至少一条连续的第一副栅210以及至少一条非连续的第二副栅211。沿第一方向A,第一 副栅210与第二副栅211交替间隔设置。每条第二副栅211包括沿第二方向B延伸且依次排布多个副栅段2110,相邻两副栅段2110之间具有间隙部。
在一种可选方式中,参见图1至图8,每个间隙部处设置有至少一个焊点,位于每个间隙部两侧的副栅段分别搭接在相应焊点沿长度方向的两端。
在一种可选方式中,参见图1至图8,电极结构2还包括在每条主栅两端的端部焊点22以及连接于每个端部焊点22两端且沿着第一方向A朝向电池片本体边缘延伸的至少两个辅栅23,端部焊点22与至少两个辅栅23构成鱼叉结构或U型结构。
在一种可选方式中,参见图1至图8,电极结构2还包括在每条主栅两端的端部焊点22。端部焊点22的上表面的面积和长度分别大于位于端部焊点22之间的焊点203的上表面的面积和长度,端部焊点22的长度方向和焊点203的长度方向均平行于第二方向B。
在一种可选方式中,参见图1至图8,主栅20包括n-2条第一主栅200以及位于n-2条第一主栅200外侧的2条第二主栅201。第一主栅200的宽度为20微米至50微米,第二主栅201的宽度为31.5微米至78.9微米。
在一种可选方式中,参见图1至图8,第一主栅200的宽度为30微米,第二主栅201的宽度为47.4微米。和/或,沿第二方向B,第二主栅201距离电池片主体1的边缘距离为10.5微米至12微米。
在一种可选方式中,参见图1至图8,主栅20的宽度与副栅21的宽度之比为(1-2.5):1;主栅20的宽度方向平行于第二方向B,副栅21的宽度方向平行于第一方向A。
在一种可选方式中,电极结构还包括搭接点,主栅连接线和副栅通过搭接点连接。沿着第二方向,每一所述搭接点均呈中间宽两端窄的形状。
在一种可选方式中,参见图8,上述辅栅23和副栅21也通过搭接点24连接。沿着第二方向,每一搭接点24均呈中间宽两端窄的形状。
在一种可选方式中,电极结构应用于太阳能电池的正电极和/或负电极;和/或,太阳能电池为整片太阳能电池或分片太阳能电池。
上述内容的具体分析可以参见第一方面提供的太阳能电池的相关描述,在此不再赘述。
第三方面,本申请实施例还提供了一种太阳能组件,包括第一方面和/或第二方面所述的太阳能电池。
本申请实施例提供的太阳能组件的有益效果与第一方面和/或第二方面所述的太阳能电池的有益效果相同,此处不做赘述。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定都是本申请实施例所必须的。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本申请的保护之内。

Claims (36)

  1. 一种太阳能电池,所述太阳能电池包括电池片主体以及形成在所述电池片主体上的电极结构;所述电极结构包括18条沿第一方向延伸、且沿第二方向间隔分布的主栅;所述第一方向不同于所述第二方向;相邻两条所述主栅之间的间距为8毫米至10毫米。
  2. 根据权利要求1所述的太阳能电池,其中,每条所述主栅包括主栅连接线、以及沿所述第一方向间隔设置在所述主栅连接线上的多个焊点;
    至少一对相邻两条所述主栅包括的所述焊点交错分布,同一所述主栅包括的多个焊点沿第一方向间隔分布。
  3. 根据权利要求2所述的太阳能电池,其中,所述焊点与相应的所述主栅连接线一体成型。
  4. 根据权利要求2所述的太阳能电池,其中,每一所述焊点的长度大于相应所述主栅连接线的宽度;所述焊点的长度方向与所述主栅连接线的宽度方向均平行于所述第二方向。
  5. 根据权利要求4所述的太阳能电池,其中,沿着第二方向,每一所述焊点均呈中间宽两端窄的形状。
  6. 根据权利要求5所述的太阳能电池,其中,沿第二方向,每一所述焊点均包括中间区域和两个端部区域;两个所述端部区域分别与所述中间区域的两端连接;沿着远离相应主栅的方向,所述端部区域的宽度逐渐减小;所述远离相应主栅的方向平行于所述第二方向。
  7. 根据权利要求6所述的太阳能电池,其中,每一所述中间区域的上表面均为长方形,每一所述端部区域的上表面均为梯形。
  8. 根据权利要求2所述的太阳能电池,其中,所述电极结构还包括多条沿所述第二方向延伸、且沿所述第一方向间隔分布的副栅;每条所述主栅连接线与所述多条副栅相交。
  9. 根据权利要求8所述的太阳能电池,其中,多条所述副栅包括至少一条连续的第一副栅以及至少一条非连续的第二副栅;
    沿所述第一方向,所述第一副栅与所述第二副栅交替间隔设置;
    每条所述第二副栅包括沿所述第二方向延伸且依次排布多个副栅段,相邻两副栅段之间具有间隙部。
  10. 根据权利要求9所述的太阳能电池,其中,每个所述间隙部处设置有至少一个所述焊点;位于每个所述间隙部两侧的副栅段分别搭接在相应所 述焊点沿长度方向的两端。
  11. 根据权利要求1或2所述的太阳能电池,其中,所述电极结构还包括在每条所述主栅两端的端部焊点以及连接于每个所述端部焊点两端且沿着第一方向朝向电池片本体边缘延伸的至少两个辅栅,所述端部焊点与所述至少两个辅栅构成鱼叉结构或U型结构。
  12. 根据权利要求2所述的太阳能电池,其中,所述电极结构还包括在每条所述主栅两端的端部焊点;
    所述端部焊点的上表面的面积和长度分别大于位于所述端部焊点之间的所述焊点的上表面的面积和长度;所述端部焊点的长度方向和所述焊点的长度方向均平行于所述第二方向。
  13. 根据权利要求1所述的太阳能电池,其中,所述主栅包括16条第一主栅以及位于所述16条第一主栅外侧的2条第二主栅;
    所述第一主栅的宽度为20微米至50微米,所述第二主栅的宽度为31.5微米至78.9微米。
  14. 根据权利要求13所述的太阳能电池,其中,所述第一主栅的宽度为30微米,所述第二主栅的宽度为47.4微米。
  15. 根据权利要求13所述的太阳能电池,其中,沿第二方向,所述第二主栅距离所述电池片主体的边缘距离为10.5微米至12微米。
  16. 根据权利要求1所述的太阳能电池,其中,所述电极结构还包括多条沿所述第二方向延伸、且沿所述第一方向间隔分布的副栅;每条所述主栅连接线与所述多条副栅相交。
  17. 根据权利要求16所述的太阳能电池,其中,多条所述副栅包括至少一条连续的第一副栅以及至少一条非连续的第二副栅;
    沿所述第一方向,所述第一副栅与所述第二副栅交替间隔设置;
    每条所述第二副栅包括沿所述第二方向延伸且依次排布多个副栅段,相邻两副栅段之间具有间隙部。
  18. 根据权利要求16所述的太阳能电池,其中,所述主栅的宽度与所述副栅的宽度之比为(1-2.5):1;所述主栅的宽度方向平行于所述第二方向,所述副栅的宽度方向平行于所述第一方向。
  19. 根据权利要求16所述的太阳能电池,其中,所述电极结构还包括搭接点;所述主栅连接线和所述副栅通过所述搭接点连接;沿着第二方向,每一所述搭接点均呈中间宽两端窄的形状。
  20. 根据权利要求1所述的太阳能电池,其中,所述电极结构应用于所述太阳能电池的正电极和/或负电极;和/或,
    所述太阳能电池为整片太阳能电池或分片太阳能电池。
  21. 一种太阳能电池,所述太阳能电池包括电池片主体以及形成在所述电池片主体上的电极结构;所述电极结构包括n条沿第一方向延伸、且沿第二方向间隔分布的主栅,所述第一方向不同于所述第二方向;相邻两条所述主栅之间的间距为7毫米至13毫米,其中,13≤n≤25,且n为整数。
  22. 根据权利要求21所述的太阳能电池,其中,每条所述主栅包括主栅连接线、以及沿所述第一方向间隔设置在所述主栅连接线上的多个焊点;
    至少一对相邻两条所述主栅包括的所述焊点交错分布,同一所述主栅包括的多个焊点沿第一方向间隔分布。
  23. 根据权利要求22所述的太阳能电池,其中,所述焊点与相应的所述主栅连接线一体成型;和/或,
    每一所述焊点的长度大于相应所述主栅连接线的宽度;所述焊点的长度方向与所述主栅连接线的宽度方向均平行于所述第二方向。
  24. 根据权利要求23所述的太阳能电池,其中,沿着第二方向,每一所述焊点均呈中间宽两端窄的形状。
  25. 根据权利要求24所述的太阳能电池,其中,沿第二方向,每一所述焊点均包括中间区域和两个端部区域;两个所述端部区域分别与所述中间区域的两端连接;沿着远离相应主栅的方向,所述端部区域的宽度逐渐减小;所述远离相应主栅的方向平行于所述第二方向。
  26. 根据权利要求22所述的太阳能电池,其中,所述电极结构还包括多条沿所述第二方向延伸、且沿所述第一方向间隔分布的副栅;每条所述主栅连接线与所述多条副栅相交。
  27. 根据权利要求26所述的太阳能电池,其中,多条所述副栅包括至少一条连续的第一副栅以及至少一条非连续的第二副栅;
    沿所述第一方向,所述第一副栅与所述第二副栅交替间隔设置;
    每条所述第二副栅包括沿所述第二方向延伸且依次排布多个副栅段,相邻两副栅段之间具有间隙部。
  28. 根据权利要求27所述的太阳能电池,其中,每个所述间隙部处设置有至少一个所述焊点;位于每个所述间隙部两侧的副栅段分别搭接在相应所述焊点沿长度方向的两端。
  29. 根据权利要求21或22所述的太阳能电池,其中,所述电极结构还包括在每条所述主栅两端的端部焊点以及连接于每个所述端部焊点两端且沿着第一方向朝向电池片本体边缘延伸的至少两个辅栅,所述端部焊点与所述至少两个辅栅构成鱼叉结构或U型结构。
  30. 根据权利要求22所述的太阳能电池,其中,所述电极结构还包括在每条所述主栅两端的端部焊点;
    所述端部焊点的上表面的面积和长度分别大于位于所述端部焊点之间的所述焊点的上表面的面积和长度;所述端部焊点的长度方向和所述焊点的长度方向均平行于所述第二方向。
  31. 根据权利要求21所述的太阳能电池,其中,所述主栅包括n-2条第一主栅以及位于所述n-2条第一主栅外侧的2条第二主栅;
    所述第一主栅的宽度为20微米至50微米,所述第二主栅的宽度为31.5微米至78.9微米。
  32. 根据权利要求31所述的太阳能电池,其中,所述第一主栅的宽度为30微米,所述第二主栅的宽度为47.4微米;和/或,
    沿第二方向,所述第二主栅距离所述电池片主体的边缘距离为10.5微米至12微米。
  33. 根据权利要求26所述的太阳能电池,其中,所述主栅的宽度与所述副栅的宽度之比为(1-2.5):1;所述主栅的宽度方向平行于所述第二方向,所述副栅的宽度方向平行于所述第一方向。
  34. 根据权利要求26所述的太阳能电池,其中,所述电极结构还包括搭接点;所述主栅连接线和所述副栅通过所述搭接点连接;沿着第二方向,每一所述搭接点均呈中间宽两端窄的形状。
  35. 根据权利要求21所述的太阳能电池,其中,所述电极结构应用于所述太阳能电池的正电极和/或负电极;和/或,
    所述太阳能电池为整片太阳能电池或分片太阳能电池。
  36. 一种太阳能组件,包括如权利要求1-35任一项所述的太阳能电池。
PCT/CN2023/099162 2022-07-12 2023-06-08 一种太阳能电池和太阳能组件 WO2024012108A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221808190.6U CN218447927U (zh) 2022-07-12 2022-07-12 一种太阳能电池和太阳能组件
CN202221808190.6 2022-07-12

Publications (1)

Publication Number Publication Date
WO2024012108A1 true WO2024012108A1 (zh) 2024-01-18

Family

ID=85088659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099162 WO2024012108A1 (zh) 2022-07-12 2023-06-08 一种太阳能电池和太阳能组件

Country Status (2)

Country Link
CN (1) CN218447927U (zh)
WO (1) WO2024012108A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218447927U (zh) * 2022-07-12 2023-02-03 隆基绿能科技股份有限公司 一种太阳能电池和太阳能组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221613A1 (en) * 2004-04-06 2005-10-06 Sharp Kabushiki Kaisha Electrode formation method, electrode and solar battery
CN109037367A (zh) * 2018-08-15 2018-12-18 友达光电股份有限公司 一种多主栅太阳能电池
CN110246912A (zh) * 2019-06-19 2019-09-17 晶科能源有限公司 一种双面太阳能电池及光伏组件
CN209435183U (zh) * 2019-01-07 2019-09-24 浙江正泰太阳能科技有限公司 一种太阳能电池组件
CN111146297A (zh) * 2019-12-24 2020-05-12 广东爱旭科技有限公司 一种高效太阳电池的电极分步印刷方法
CN218447927U (zh) * 2022-07-12 2023-02-03 隆基绿能科技股份有限公司 一种太阳能电池和太阳能组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221613A1 (en) * 2004-04-06 2005-10-06 Sharp Kabushiki Kaisha Electrode formation method, electrode and solar battery
CN109037367A (zh) * 2018-08-15 2018-12-18 友达光电股份有限公司 一种多主栅太阳能电池
CN209435183U (zh) * 2019-01-07 2019-09-24 浙江正泰太阳能科技有限公司 一种太阳能电池组件
CN110246912A (zh) * 2019-06-19 2019-09-17 晶科能源有限公司 一种双面太阳能电池及光伏组件
CN111146297A (zh) * 2019-12-24 2020-05-12 广东爱旭科技有限公司 一种高效太阳电池的电极分步印刷方法
CN218447927U (zh) * 2022-07-12 2023-02-03 隆基绿能科技股份有限公司 一种太阳能电池和太阳能组件

Also Published As

Publication number Publication date
CN218447927U (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
JP3223120U (ja) 太陽電池モジュール
US11715806B2 (en) Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module
CN114242810B (zh) 背接触电池的电极结构、电池、组件以及电池系统
EP3525246B1 (en) Solar cell module
WO2024012108A1 (zh) 一种太阳能电池和太阳能组件
KR20170063663A (ko) 특정 전방 표면 전극 디자인을 갖는 태양 전지
US10672942B2 (en) Solar cell module and method for producing same
CN218677162U (zh) 一种太阳能电池串和光伏组件
WO2024027342A1 (zh) 一种太阳能电池和太阳能组件
CN215183994U (zh) 一种背接触太阳能电池及其电极、光伏组件
TWM539701U (zh) 太陽能電池
WO2024021930A1 (zh) 太阳能电池及太阳能电池模块
CN218333813U (zh) 一种太阳能电池片
CN218677159U (zh) 背接触电池、背接触电池分片、光伏电池结构及光伏组件
CN215988784U (zh) 一种太阳能电池及光伏组件
CN115810679B (zh) 一种背接触电池及其电极结构
CN219203169U (zh) 背接触电池片
CN215988782U (zh) 一种太阳能电池及光伏组件
CN116825858A (zh) 一种太阳能电池及太阳能电池串
JPWO2016117180A1 (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法、太陽電池モジュールの製造方法
JP2013062308A (ja) 太陽電池とその製造方法および太陽電池モジュール
CN116230795A (zh) 光伏电池片组及其制备方法、光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838602

Country of ref document: EP

Kind code of ref document: A1