WO2024011967A1 - 一种光学频率梳产生装置 - Google Patents

一种光学频率梳产生装置 Download PDF

Info

Publication number
WO2024011967A1
WO2024011967A1 PCT/CN2023/086496 CN2023086496W WO2024011967A1 WO 2024011967 A1 WO2024011967 A1 WO 2024011967A1 CN 2023086496 W CN2023086496 W CN 2023086496W WO 2024011967 A1 WO2024011967 A1 WO 2024011967A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
optical frequency
frequency comb
coupling
reflective
Prior art date
Application number
PCT/CN2023/086496
Other languages
English (en)
French (fr)
Inventor
玄洪文
张津
张志韬
衡小波
Original Assignee
广东大湾区空天信息研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东大湾区空天信息研究院 filed Critical 广东大湾区空天信息研究院
Publication of WO2024011967A1 publication Critical patent/WO2024011967A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1307Stabilisation of the phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/56Frequency comb synthesizer

Definitions

  • the present application relates to the field of optical technology, for example, to an optical frequency comb generating device.
  • Optical frequency comb is a special femtosecond pulsed light. In the time domain, it is a series of ultrashort pulses with pulse widths on the order of femtoseconds. In the frequency domain, it is a series of equally spaced monochromatic pulses with a wide spectral range. spectral lines. Because it has the characteristics of narrow linewidth and wide spectrum, it has broad application prospects in many fields such as laser frequency measurement, time frequency transfer, ultra-stable microwave source generation, astronomical observation, high-precision spectroscopy and absolute distance measurement.
  • the repetition frequency is typically detected by a high-speed photodetector and controlled by a piezoelectric ceramic within the cavity of the optical frequency comb generator, while the carrier envelope bias frequency is typically detected by an f-2f self-referencing interferometer and pumped within the optical frequency comb generator.
  • Driving current source control of the Pu laser is typically limited by the resonance frequency of piezoelectric ceramics, the linewidth of a single comb tooth of an optical frequency comb is usually in the order of hundreds of kHz, and the bandwidth of the optical frequency comb is difficult to increase.
  • the embodiment of the present application provides an optical frequency comb generating device, which introduces a new type of piezoelectric ceramic to generate a high locking bandwidth optical frequency comb.
  • the new piezoelectric ceramic is based on lead magnesium niobate and lead titanate, which has high transparency, high voltage electric effect and high electro-optical effect.
  • lead magnesium niobate and lead titanate as the base to directly coat a high-reflection film as one of the cavity mirrors of the resonant cavity, the piezoelectric ceramics can be unloaded, effectively increasing the resonant frequency of the piezoelectric ceramics, thereby improving the locking of the femtosecond frequency comb bandwidth.
  • an optical frequency comb generating device including a pump source, a gain medium, a coupling input mirror, a coupling output mirror, at least a first reflective cavity mirror, a second reflective cavity mirror, and a beam splitter. , photodetectors, self-referencing interferometers and phase-locked loops;
  • the coupling-in mirror, the first reflective cavity mirror, the second reflective cavity mirror and the coupling-out mirror form a resonant cavity, and the gain medium is located in the resonant cavity;
  • the beam splitter is located at the output end of the resonant cavity, the photodetector is located at the first output end of the beam splitter, and the self-reference interferometer is located at the second output end of the beam splitter;
  • the photodetector and the second reflective cavity mirror are connected through the phase-locked loop, and the self-reference interferometer and the pump source are connected through the phase-locked loop;
  • the second reflective cavity mirror includes a lead magnesium niobate titanate substrate and a reflective layer located on one side of the lead magnesium niobate titanate substrate.
  • Figure 1 is a schematic structural diagram of an optical frequency comb generating device provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another optical frequency comb generating device provided by an embodiment of the present application.
  • the resonance frequency formula of piezoelectric ceramics is: Among them, k T is the piezoelectric ceramic hardness, and m eff is the piezoelectric ceramic payload. When unloaded, the payload of a piezoelectric ceramic is one-third of its own weight. When loaded, the effective load of a piezoelectric ceramic is one-third of its own weight plus the weight of the load. Obviously, reducing the load on the piezoelectric ceramic can increase its resonant frequency.
  • the main methods to improve the resonant frequency of piezoelectric ceramics include: reducing the weight of piezoelectric ceramics, reducing the weight of the load (lens), using adhesive with a larger elastic modulus, and sticking the back of the piezoelectric ceramics to lead-filled copper. block or aluminum-iron alloy.
  • solutions in related technologies have limited effects and are difficult to provide highly stable and high-bandwidth optical frequency combs.
  • FIG. 1 is a schematic structural diagram of an optical frequency comb generating device provided by an embodiment of the present application.
  • the optical frequency comb generation device provided in this embodiment includes a pump source 1, a gain medium 2, a coupling input mirror 3, a coupling output mirror 4, at least a first reflective cavity mirror 5, a second reflective cavity mirror 6, Beam splitter 7, photodetector 8, self-reference interferometer 9 and phase locked loop 10; coupling input mirror 3, first reflective cavity mirror 5, second reflective cavity mirror 6 and coupling output mirror 4 form a resonant cavity, gain medium 2 is located in the resonant cavity; the beam splitter 7 is located at the output end of the resonant cavity, the photodetector 8 is located at the first output end of the beam splitter 7, and the self-reference interferometer 9 is located at the second output end of the beam splitter 7; photoelectric detection The detector 8 and the second reflective cavity mirror 6 are connected through a phase-locked loop 10, and the
  • the working process of the optical frequency comb generating device is as follows: the pump light output by the pump source 1 is transmitted through the coupling input mirror 3 and then transmitted to the gain medium 2; it is transmitted by the coupling input mirror 3 and the first reflection
  • the resonant cavity composed of the cavity mirror 5, the second reflecting cavity mirror 6 and the coupling output mirror 4 generates a femtosecond pulse beam, which is output by the coupling output mirror 4 and then incident on the beam splitter 7, which is divided into a first beam a and a second beam b.
  • the first beam a is incident on the photodetector 8, and the second beam b is incident on the self-reference interferometer 9;
  • the photodetector 8 measures the repetition frequency of the first beam a, and feeds it back to the second reflective cavity mirror through the phase locked loop 10 6 to adjust the cavity length of the resonant cavity;
  • the self-reference interferometer 9 measures the carrier envelope bias frequency of the second beam b, and feeds it back to the pump source 1 through the phase-locked loop 10 to adjust the pump current, so that the resonant cavity outputs optical Frequency Comb.
  • first reflective cavity mirror 5 is used as an example in Figure 1, which is not a limitation to the embodiment of the present application.
  • the coupling input mirror 3, the first reflective cavity mirror 5, the second reflective cavity mirror 6 and The coupling-out mirror 4 forms a butterfly-shaped resonant cavity.
  • the number of cavity mirrors in the resonant cavity can be more than four.
  • a total of six cavity mirrors three first reflecting cavity mirrors and one coupling-in mirror
  • Pump source 1 is set to provide pump light.
  • pump source 1 includes a single-mode semiconductor laser or fiber laser, the output power of which is greater than 50 mW, and the wavelength of the output light matches the absorption peak of gain medium 2.
  • Gain medium 2 includes but is not limited to commonly used laser crystals such as titanium-doped sapphire and ytterbium-doped yttrium aluminum garnet.
  • the thickness of the laser crystal is greater than or equal to 1 mm and less than or equal to 1 cm.
  • the coupling-in mirror 3 is a dichroic mirror, and the coupling-in mirror 3 is configured to transmit the pump light and reflect the pulse beam generated by the gain medium 2 .
  • the coupling output mirror 4 reflects part of the pulse beam and outputs part of the pulse beam.
  • the reflectivity and transmittance can be selected according to the actual situation.
  • the first reflective cavity mirror 5 is a high reflectivity reflective mirror, and the first reflective cavity mirror 5 is configured to reflect the pulse beam.
  • the second reflective cavity mirror 6 is formed by coating a lead magnesium niobate and lead titanate base with a high-reflection film (ie, a reflective layer, the reflective layer is located on the side close to the coupling output mirror 4).
  • the working wavelength of the high-reflection film is consistent with the gain medium 2
  • the emission wavelength is matched, the incident angle is 0°, and the dispersion within the working wavelength range is less than 20fs 2 .
  • Lead magnesium niobate and lead titanate are a new type of piezoelectric material with high transparency, high voltage electric effect and high electro-optical effect.
  • Lead magnesium niobate and lead titanate are used as the substrate to coat with a high-reflective film and used directly as the cavity mirror of the resonant cavity, which can make the piezoelectric ceramics load-free and greatly increase the resonant frequency of the piezoelectric ceramics. Therefore, it can effectively improve the performance of the optical frequency comb. Locking the bandwidth enables the generated optical frequency comb to have the advantages of narrow comb tooth line width, good stability, and good integration. It can be used for laser frequency measurement, time-frequency transfer, ultra-stable microwave source generation, astronomical observation, etc.
  • the thickness of the lead magnesium niobate and lead titanate substrate can be 0.5mm to 5mm, such as 0.5mm, 1mm, 2mm or 5mm, and its cross-sectional size can be 8mm ⁇ 8mm, in which lead magnesium niobate and lead titanate can be It's an arbitrary ratio.
  • the beam splitter 7 divides the beam output from the coupling output mirror 4 into two beams, and one beam is transmitted to the photodetector 8.
  • the working wavelength of the photodetector 8 matches the emission wavelength of the gain medium 2, and the response bandwidth is higher than that of the optical frequency comb.
  • the repetition frequency can be selected according to the actual situation during specific implementation.
  • the other beam is transmitted to the self-reference interferometer 9, which includes f-2f self-reference interference based on photonic crystal fiber Instrument, photonic crystal fiber realizes spectrum broadening, the high frequency part and the low frequency double frequency part in the octave spectrum achieve beat frequency in the interferometer, and the obtained beat frequency signal is the carrier envelope bias frequency signal of the optical frequency comb .
  • the phase-locked loop 10 includes a repetition frequency locking circuit 101 of the optical frequency comb and a carrier envelope bias frequency locking circuit 102; the photodetector 8 and the second reflective cavity mirror 6 are connected through the repetition frequency locking circuit 101, and the repetition frequency locking circuit 101 is based on The signal collected by the photodetector 8 generates a first feedback signal.
  • the first feedback signal is applied to the electrode of the lead magnesium niobate titanate base in the form of a DC bias voltage to adjust the cavity length of the resonant cavity, that is, in the magnesium niobate
  • the two sides of the lead titanate substrate are welded with electrodes. After a voltage is applied, the lead magnesium niobate titanate substrate can expand and contract in the direction perpendicular to the applied voltage, thereby adjusting the cavity length of the resonant cavity; self-reference interferometer 9 and pump Source 1 is connected through a carrier envelope bias frequency locking circuit 102.
  • the carrier envelope bias frequency locking circuit 102 generates a second feedback signal based on the signal collected from the reference interferometer 9.
  • the second feedback signal is used to adjust the pump source 1.
  • the pump current during specific implementation, the circuit structures of the repetition frequency locking circuit 101 and the carrier envelope bias frequency locking circuit 102 can be designed according to the actual situation, and the embodiments of the present application do not limit this.
  • the technical solution of the embodiment of the present application provides pump light through a pump source, forms a resonant cavity through a coupling input mirror, a first reflective cavity mirror, a second reflective cavity mirror and a coupling output mirror, and outputs a stable output through the feedback of the phase-locked loop.
  • Optical frequency comb This device uses lead magnesium niobate and lead titanate as the base and is directly coated with a high-reflective film as one of the cavity mirrors of the resonator. It can realize no load on the piezoelectric ceramics, effectively improve the resonance frequency of the piezoelectric ceramics, and thereby improve the femtosecond frequency comb. locked bandwidth.
  • FIG. 2 is a schematic structural diagram of another optical frequency comb generating device provided by an embodiment of the present application.
  • the optical frequency comb generation device provided in this embodiment also includes a lead-filled copper block 11.
  • the lead-filled copper block 11 is located on the side of the second reflective cavity mirror 6 away from the resonant cavity.
  • the second reflective cavity mirror 6 is attached to the surface of lead-filled copper block 11.
  • the lead-filled copper block 11 is filled with lead inside the copper shell.
  • the upper part of the lead-filled copper block 11 is a circular cone, and the lower part is a cylinder.
  • the top of the lead is a right-angled cone, 7.5mm long, and the tip is 1mm away from the outer wall of the top of the copper shell.
  • the bottom of the lead is a cylinder, 15mm in diameter and 16.5mm long.
  • the diameter of the top of the copper shell i.e. the top of the circular cone
  • the wall thickness of the bottom of the copper shell is 2.5mm.
  • the lead and copper shell need to be closely connected, and there should be no bubbles or impurities in the middle.
  • the coupling lens group 12 of an optical frequency comb generating device is also included.
  • the coupling lens group 12 includes at least one lens located between the pump source 1 and the coupling input mirror 3 .
  • FIG. 2 schematically shows that the coupling lens group 12 includes a convex lens.
  • the coupling lens group 12 is configured to converge the pump light to the gain medium 2.
  • other numbers of lenses can also be provided.
  • the application examples do not limit this.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本申请实施例公开了一种光学频率梳产生装置。该光学频率梳产生装置包括泵浦源、增益介质、耦合输入镜、耦合输出镜、至少一个第一反射腔镜、第二反射腔镜、分束镜、光电探测器、自参考干涉仪以及锁相环;耦合输入镜、至少一个第一反射腔镜、第二反射腔镜和耦合输出镜形成谐振腔,增益介质位于谐振腔内;分束镜位于谐振腔的输出端,光电探测器位于分束镜的第一输出端,自参考干涉仪位于分束镜的第二输出端;第二反射腔镜包括铌镁酸铅钛酸铅基底以及位于铌镁酸铅钛酸铅基底一侧的反射层。

Description

一种光学频率梳产生装置
本申请要求在2022年7月13日提交中国专利局、申请号为202210827245.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,例如涉及一种光学频率梳产生装置。
背景技术
光学频率梳是一种特殊的飞秒脉冲光,它在时域上是一系列脉冲宽度在飞秒量级的超短脉冲,在频域上是一系列等间隔且具有宽光谱范围的单色谱线。由于其兼备了窄线宽和宽光谱的特性,因此其在激光频率测量、时间频率传递、超稳微波源产生、天文观测、高精密光谱学和绝对距离测量等诸多领域具有广阔的应用前景。
为了得到一系列频率稳定的频率梳齿,需要对光学频率梳的重复频率和载波包络偏置频率进行精确锁定。重复频率通常由高速光电探测器探测并由光学频率梳产生装置腔内的压电陶瓷控制,而载波包络偏置频率通常由f-2f自参考干涉仪探测并由光学频率梳产生装置内泵浦激光器的驱动电流源控制。但是受到压电陶瓷的共振频率的限制,光学频率梳单根梳齿的线宽通常在百kHz量级,且光学频率梳的带宽难以提高。
发明内容
本申请实施例提供了一种光学频率梳产生装置,该装置引入一种新型压电陶瓷以产生高锁定带宽光学频率梳。该新型压电陶瓷基于铌镁酸铅钛酸铅形成,它具有高透明度、高压电效应以及高电光效应特性。以铌镁酸铅钛酸铅为基底直接镀高反膜作为谐振腔的腔镜之一,可实现压电陶瓷无负载,有效提升了压电陶瓷的共振频率,进而提高飞秒频率梳的锁定带宽。
根据本申请的一方面,提供了一种光学频率梳产生装置,包括泵浦源、增益介质、耦合输入镜、耦合输出镜、至少一个第一反射腔镜、第二反射腔镜、分束镜、光电探测器、自参考干涉仪以及锁相环;
所述耦合输入镜、所述第一反射腔镜、所述第二反射腔镜和所述耦合输出镜形成谐振腔,所述增益介质位于所述谐振腔内;
所述分束镜位于所述谐振腔的输出端,所述光电探测器位于所述分束镜的第一输出端,所述自参考干涉仪位于所述分束镜的第二输出端;
所述光电探测器和所述第二反射腔镜通过所述锁相环连接,所述自参考干涉仪和所述泵浦源通过所述锁相环连接;
所述第二反射腔镜包括铌镁酸铅钛酸铅基底以及位于所述铌镁酸铅钛酸铅基底一侧的反射层。
附图说明
图1为本申请实施例提供的一种光学频率梳产生装置的结构示意图;
图2为本申请实施例提供的另一种光学频率梳产生装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有 的其它步骤或单元。
压电陶瓷的共振频率公式为:其中,kT为压电陶瓷硬度,meff为压电陶瓷有效载荷。无负载时,压电陶瓷的有效载荷为其自身重量的三分之一。有负载时,压电陶瓷的有效载荷为其自身重量的三分之一加上负载的重量。显然,降低压电陶瓷的载荷能够提升其共振频率。目前提高压电陶瓷的共振频率的主要方法有:减小压电陶瓷的重量、减小负载(镜片)重量、选用弹性模量更大的粘合胶以及将压电陶瓷背面粘在灌铅铜块或铝铁合金上。但相关技术中的方案作用有限,难以提供高稳定、高带宽的光学频率梳。
本申请实施例提供一种光学频率梳产生装置。图1为本申请实施例提供的一种光学频率梳产生装置的结构示意图。参考图1,本实施例提供的光学频率梳产生装置包括泵浦源1、增益介质2、耦合输入镜3、耦合输出镜4、至少一个第一反射腔镜5、第二反射腔镜6、分束镜7、光电探测器8、自参考干涉仪9以及锁相环10;耦合输入镜3、第一反射腔镜5、第二反射腔镜6和耦合输出镜4形成谐振腔,增益介质2位于谐振腔内;分束镜7位于谐振腔的输出端,光电探测器8位于分束镜7的第一输出端,自参考干涉仪9位于分束镜7的第二输出端;光电探测器8和第二反射腔镜6通过锁相环10连接,自参考干涉仪9和泵浦源1通过锁相环10连接;第二反射腔镜6包括铌镁酸铅钛酸铅基底以及位于铌镁酸铅钛酸铅基底一侧的反射层(图1中未示出)。
可选的,本实施例提供的光学频率梳产生装置的工作过程为:泵浦源1输出的泵浦光经过耦合输入镜3透射后传输至增益介质2;由耦合输入镜3、第一反射腔镜5、第二反射腔镜6、耦合输出镜4组成的谐振腔产生飞秒脉冲光束,经耦合输出镜4输出后入射至分束镜7,分为第一光束a和第二光束b,第一光束a入射至光电探测器8,第二光束b入射至自参考干涉仪9;光电探测器8测量第一光束a的重复频率,并通过锁相环10反馈至第二反射腔镜6以调节谐振腔的腔长;自参考干涉仪9测量第二光束b的载波包络偏置频率,并通过锁相环10反馈至泵浦源1以调节泵浦电流,使谐振腔输出光学频率梳。
其中,图1中仅以一个第一反射腔镜5为例,并不是对本申请实施例的限定,本实施例中,耦合输入镜3、第一反射腔镜5、第二反射腔镜6和耦合输出镜4形成一个蝶形的谐振腔,在其他实施例中,谐振腔的腔镜数量可以为四个以上,例如总共设置六个腔镜(三个第一反射腔镜、一个耦合输入镜、一个耦合输出镜以及一个第二反射腔镜)形成蝶形腔,具体实施时可以根据实际情况设计。泵浦源1设置为提供泵浦光,可选的,泵浦源1包括单模半导体激光器或光纤激光器,其输出功率大于50mW,输出光波长与增益介质2的吸收峰匹配。增益介质2包括但不限于掺钛蓝宝石、掺镱钇铝石榴石等常用激光晶体,可选的,激光晶体的厚度大于或等于1mm,小于或等于1cm。耦合输入镜3为二向色镜,耦合输入镜3设置为透射泵浦光和反射增益介质2产生的脉冲光束。耦合输出镜4将一部分脉冲光束反射,一部分脉冲光束输出,反射率和透射率可以根据实际情况选择。第一反射腔镜5为高反射率反射镜,第一反射腔镜5设置为反射脉冲光束。第二反射腔镜6为以铌镁酸铅钛酸铅基底镀高反膜(即反射层,反射层位于靠近耦合输出镜4的一侧)形成,高反膜的工作波长与增益介质2的发射波长匹配,入射角为0°,工作波长范围内色散小于20fs2。铌镁酸铅钛酸铅是一种新型压电材料,具有高透明度、高压电效应以及高电光效应特性。以铌镁酸铅钛酸铅为基底镀高反膜,直接用作谐振腔的腔镜,可使得压电陶瓷无负载,大幅提升了压电陶瓷的谐振频率,因此可以有效提高光学频率梳的锁定带宽,使产生的光学频率梳具有梳齿线宽窄、稳定性好、集成性好等优点,可用于激光频率测量、时间频率传递、超稳微波源产生、天文观测等方面。具体实施时,铌镁酸铅钛酸铅基底的厚度可以为0.5mm~5mm,例如0.5mm、1mm、2mm或5mm,其截面尺寸可以为8mm×8mm,其中铌镁酸铅和钛酸铅可以是任意比例。分束镜7将耦合输出镜4输出的光束分为两束,一束传输至光电探测器8,光电探测器8的工作波长与增益介质2的发射波长匹配,响应带宽要高于光学频率梳的重复频率,具体实施时可以根据实际情况选择。另一束传输至自参考干涉仪9,自参考干涉仪9包括基于光子晶体光纤的f-2f自参考干涉 仪,光子晶体光纤实现光谱展宽,倍频程光谱中的高频部分与低频的二倍频部分在干涉仪中实现拍频,得到的拍频信号即光学频率梳的载波包络偏置频率信号。锁相环10包括光学频率梳的重复频率锁定电路101以及载波包络偏置频率锁定电路102;光电探测器8和第二反射腔镜6通过重复频率锁定电路101连接,重复频率锁定电路101根据光电探测器8采集的信号生成第一反馈信号,第一反馈信号以直流偏置电压的方式加在铌镁酸铅钛酸铅基底的电极上从而调节谐振腔的腔长,即在铌镁酸铅钛酸铅基底的两个侧面焊接电极,施加电压后,在垂直于施加电压方向铌镁酸铅钛酸铅基底可实现伸缩,进而调节谐振腔的腔长;自参考干涉仪9和泵浦源1通过载波包络偏置频率锁定电路102连接,载波包络偏置频率锁定电路102根据自参考干涉仪9采集的信号生成第二反馈信号,第二反馈信号用于调节泵浦源1的泵浦电流,具体实施时,重复频率锁定电路101和载波包络偏置频率锁定电路102的电路结构可以根据实际情况设计,本申请实施例对此不作限定。
本申请实施例的技术方案,通过泵浦源提供泵浦光,通过耦合输入镜、第一反射腔镜、第二反射腔镜和耦合输出镜形成谐振腔,通过锁相环的反馈输出稳定的光学频率梳。该装置以铌镁酸铅钛酸铅为基底直接镀高反膜作为谐振器的腔镜之一,可实现压电陶瓷无负载,有效提升了压电陶瓷的共振频率,进而提高飞秒频率梳的锁定带宽。
图2为本申请实施例提供的另一种光学频率梳产生装置的结构示意图。参考图2,可选的,本实施例提供的光学频率梳产生装置还包括灌铅铜块11,灌铅铜块11位于第二反射腔镜6远离谐振腔的一侧,第二反射腔镜6贴附于灌铅铜块11表面。
通过设置灌铅铜块11,可以吸收第二反射腔镜6的低频振动,提升光学频率梳产生装置的稳定性。具体实施时,灌铅铜块11为铜壳内部灌铅。灌铅铜块11的上半部分为圆台,下半部分为圆柱体。铅的顶部为直角圆锥体,长7.5mm,尖端处距离铜壳顶部的外壁1mm,铅的底部为圆柱体,直径为15mm,长16.5mm。 铜壳顶部(即圆台的顶部)的直径为8mm,铜壳底部的壁厚为2.5mm。铅与铜壳需紧密相连,中间不能有气泡或杂质。
继续参考图2,可选的,该还包括光学频率梳产生装置耦合透镜组12,耦合透镜组12包括位于泵浦源1和耦合输入镜3之间的至少一片透镜。
示例性的,图2中示意性示出耦合透镜组12包括一片凸透镜,耦合透镜组12设置为将泵浦光汇聚至增益介质2,在其他实施例中,还可以设置其他数量的透镜,本申请实施例对此不作限定。

Claims (10)

  1. 一种光学频率梳产生装置,包括泵浦源、增益介质、耦合输入镜、耦合输出镜、至少一个第一反射腔镜、第二反射腔镜、分束镜、光电探测器、自参考干涉仪以及锁相环;
    所述耦合输入镜、所述至少一个第一反射腔镜、所述第二反射腔镜和所述耦合输出镜形成谐振腔,所述增益介质位于所述谐振腔内;
    所述分束镜位于所述谐振腔的输出端,所述光电探测器位于所述分束镜的第一输出端,所述自参考干涉仪位于所述分束镜的第二输出端;
    所述光电探测器和所述第二反射腔镜通过所述锁相环连接,所述自参考干涉仪和所述泵浦源通过所述锁相环连接;
    所述第二反射腔镜包括铌镁酸铅钛酸铅基底以及位于所述铌镁酸铅钛酸铅基底一侧的反射层。
  2. 根据权利要求1所述的光学频率梳产生装置,其中,所述泵浦源输出的泵浦光经过所述耦合输入镜透射后传输至所述增益介质,由所述耦合输入镜、所述至少一个第一反射腔镜、所述第二反射腔镜、所述耦合输出镜组成的谐振腔产生飞秒脉冲光束,经所述耦合输出镜输出后入射至所述分束镜,分为第一光束和第二光束,所述第一光束入射至所述光电探测器,所述第二光束入射至所述自参考干涉仪;
    所述光电探测器测量所述第一光束的重复频率,并通过所述锁相环反馈至所述第二反射腔镜以调节所述谐振腔的腔长;
    所述自参考干涉仪测量所述第二光束的载波包络偏置频率,并通过所述锁相环反馈至所述泵浦源以调节泵浦电流,使所述谐振腔输出光学频率梳。
  3. 根据权利要求2所述的光学频率梳产生装置,其中,所述锁相环包括光学频率梳的重复频率锁定电路以及载波包络偏置频率锁定电路;
    所述光电探测器和所述第二反射腔镜通过所述重复频率锁定电路连接,所述重复频率锁定电路根据所述光电探测器采集的信号生成第一反馈信号,所述第一反馈信号以直流偏置电压的方式加在所述铌镁酸铅钛酸铅基底的电极上从 而调节所述谐振腔的腔长;
    所述自参考干涉仪和所述泵浦源通过所述载波包络偏置频率锁定电路连接,所述载波包络偏置频率锁定电路根据所述自参考干涉仪采集的信号生成第二反馈信号,所述第二反馈信号用于调节所述泵浦源的泵浦电流。
  4. 根据权利要求1所述的光学频率梳产生装置,还包括灌铅铜块,所述灌铅铜块位于所述第二反射腔镜远离所述谐振腔的一侧,所述第二反射腔镜贴附于所述灌铅铜块表面。
  5. 根据权利要求1所述的光学频率梳产生装置,还包括耦合透镜组,所述耦合透镜组包括位于所述泵浦源和所述耦合输入镜之间的至少一片透镜。
  6. 根据权利要求1所述的光学频率梳产生装置,其中,所述铌镁酸铅钛酸铅基底的厚度为0.5mm~5mm。
  7. 根据权利要求1所述的光学频率梳产生装置,其中,所述反射层包括高反膜,所述高反膜的色散小于20fs2
  8. 根据权利要求1所述的光学频率梳产生装置,其中,所述增益介质包括激光晶体,所述激光晶体的厚度大于或等于1mm,小于或等于1cm。
  9. 根据权利要求1所述的光学频率梳产生装置,其中,所述泵浦源包括单模半导体激光器或光纤激光器。
  10. 根据权利要求1所述的光学频率梳产生装置,其中,所述自参考干涉仪包括基于光子晶体光纤的f-2f自参考干涉仪。
PCT/CN2023/086496 2022-07-13 2023-04-06 一种光学频率梳产生装置 WO2024011967A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210827245.6 2022-07-13
CN202210827245.6A CN115224579A (zh) 2022-07-13 2022-07-13 一种光学频率梳产生装置

Publications (1)

Publication Number Publication Date
WO2024011967A1 true WO2024011967A1 (zh) 2024-01-18

Family

ID=83612601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086496 WO2024011967A1 (zh) 2022-07-13 2023-04-06 一种光学频率梳产生装置

Country Status (2)

Country Link
CN (1) CN115224579A (zh)
WO (1) WO2024011967A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115224579A (zh) * 2022-07-13 2022-10-21 广东大湾区空天信息研究院 一种光学频率梳产生装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116718A (zh) * 1993-09-28 1996-02-14 大宇电子株式会社 制造电位移致动反射镜阵列的方法
WO2005108939A1 (en) * 2004-05-12 2005-11-17 Macquarie University Cavity ringdown spectroscopy with swept-frequency laser
CN1921165A (zh) * 2005-08-22 2007-02-28 中国科学院上海硅酸盐研究所 一种基于铌镁酸铅-钛酸铅单晶的压电驱动器
CN102879969A (zh) * 2012-09-27 2013-01-16 中国科学院物理研究所 基于光谱整形自差频技术的光学频率梳
CN107219378A (zh) * 2017-05-26 2017-09-29 浙江大学 基于双波长干涉的大量程高精度加速度测量系统与测量方法
CN109270825A (zh) * 2018-10-12 2019-01-25 北京大学 一种基于二次锁腔技术的双波长好坏腔主动光钟及其实现方法
US20200142277A1 (en) * 2017-04-28 2020-05-07 Institució Catalana De Recerca I Estudis Avançats Optical parametric oscillator for generating an optical frequency comb
CN112038881A (zh) * 2020-09-02 2020-12-04 山西大学 泵浦光腔增强双共振光学参量振荡器及高效转化方法
CN114122875A (zh) * 2021-11-25 2022-03-01 河北工业大学 一种基于波导形增益介质的空间运转布里渊激光器
CN115224579A (zh) * 2022-07-13 2022-10-21 广东大湾区空天信息研究院 一种光学频率梳产生装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116718A (zh) * 1993-09-28 1996-02-14 大宇电子株式会社 制造电位移致动反射镜阵列的方法
WO2005108939A1 (en) * 2004-05-12 2005-11-17 Macquarie University Cavity ringdown spectroscopy with swept-frequency laser
CN1921165A (zh) * 2005-08-22 2007-02-28 中国科学院上海硅酸盐研究所 一种基于铌镁酸铅-钛酸铅单晶的压电驱动器
CN102879969A (zh) * 2012-09-27 2013-01-16 中国科学院物理研究所 基于光谱整形自差频技术的光学频率梳
US20200142277A1 (en) * 2017-04-28 2020-05-07 Institució Catalana De Recerca I Estudis Avançats Optical parametric oscillator for generating an optical frequency comb
CN107219378A (zh) * 2017-05-26 2017-09-29 浙江大学 基于双波长干涉的大量程高精度加速度测量系统与测量方法
CN109270825A (zh) * 2018-10-12 2019-01-25 北京大学 一种基于二次锁腔技术的双波长好坏腔主动光钟及其实现方法
CN112038881A (zh) * 2020-09-02 2020-12-04 山西大学 泵浦光腔增强双共振光学参量振荡器及高效转化方法
CN114122875A (zh) * 2021-11-25 2022-03-01 河北工业大学 一种基于波导形增益介质的空间运转布里渊激光器
CN115224579A (zh) * 2022-07-13 2022-10-21 广东大湾区空天信息研究院 一种光学频率梳产生装置

Also Published As

Publication number Publication date
CN115224579A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
US8792525B2 (en) Compact optical frequency comb systems
Kärtner et al. Few-Cycle-Pulse Generation and its Applications
US20170187161A1 (en) Low carrier phase noise fiber oscillators
JP4718547B2 (ja) 周波数を安定化した放射の生成
CN105244744B (zh) 一种利用电光晶体实现宽带载波包络偏频控制的光梳系统
WO2024011967A1 (zh) 一种光学频率梳产生装置
JPH0484485A (ja) 光パルス発生装置
CN109462139A (zh) 一种2.9微米中红外锁模激光器
US9680287B2 (en) Opto-optical modulation of a saturable absorber for high bandwidth CEO stabilization of a femtosecond laser frequency comb
WO2022228263A1 (zh) 一种基于片上回音壁模式光学微腔的相干伊辛机
CN104953457B (zh) 交替输出双波长调q脉冲激光的装置
EP3091620B1 (en) Method and laser pulse source apparatus for generating fs laser pulses
CN107658687A (zh) 同步泵浦的自启动飞秒钛宝石激光振荡器
KR100863199B1 (ko) 고조파 빔 발생용 레이저 장치 및 방법
KR20190139946A (ko) 다결정 매질에서의 무작위 위상 정합에 기초한 광학 파라메트릭 장치
EP1869524B1 (fr) Dispositif de generation d'une lumiere polychromatique a spectre continu par excitation a une longueur d'onde
CN210108679U (zh) 载波-包络偏移频率测量系统
Cheng et al. Monolithic dual-polarization self-mode-locked Nd: YAG 946-nm lasers: controlling beat frequency and observation of temporal chaos
CN211700924U (zh) 一种光学频率梳
CN108493762B (zh) 基于非线性效应的半导体激光器强度噪声抑制装置及抑制方法
CN207518049U (zh) 光纤激光器
CN113794092B (zh) 一种高能量超连续谱激光器
Yan et al. High stability and low noise laser-diode end-pumped Nd: YAG ceramic passively 𝑄-switched laser at 1123 nm based on a Ti3C2T𝑥-PVA saturable absorber
Buchman et al. Vibrating mirror as a repetitive Q switch
Kärtner et al. Carrier-envelope phase controlled ultrashort light pulses for nonlinear optics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838469

Country of ref document: EP

Kind code of ref document: A1