WO2024011931A1 - 组织消融装置、电化学阻抗测量装置及方法 - Google Patents

组织消融装置、电化学阻抗测量装置及方法 Download PDF

Info

Publication number
WO2024011931A1
WO2024011931A1 PCT/CN2023/080596 CN2023080596W WO2024011931A1 WO 2024011931 A1 WO2024011931 A1 WO 2024011931A1 CN 2023080596 W CN2023080596 W CN 2023080596W WO 2024011931 A1 WO2024011931 A1 WO 2024011931A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
sampling
unit
module
current
Prior art date
Application number
PCT/CN2023/080596
Other languages
English (en)
French (fr)
Inventor
谭坚文
Original Assignee
深圳迈微医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈微医疗科技有限公司 filed Critical 深圳迈微医疗科技有限公司
Publication of WO2024011931A1 publication Critical patent/WO2024011931A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00613Irreversible electroporation

Definitions

  • the present application belongs to the technical field of tissue ablation, and in particular relates to a tissue ablation device, an electrochemical impedance measurement device and a method.
  • transvascular catheter ablation is widely recognized as an effective method for the treatment of cardiac arrhythmias.
  • the purpose of ablation is to destroy the underlying arrhythmic tissue, prevent the propagation of abnormal electrical signals, or disrupt the conduction of abnormal electrical signals in the heart tissue.
  • Pulsed electric field ablation is a new type of tissue ablation method that has emerged in recent years based on physical energy factors. It mainly uses the principle of irreversible electroporation to act on cells through high-voltage pulsed electric fields to cause irreversible perforation of the cell membrane, thereby causing the cells to gradually necrotic, and eventually To achieve the purpose of tissue ablation. Due to the different electrical properties of tissues, pulsed electric field ablation has better tissue selectivity. For example, myocardial tissue is more sensitive to high-voltage pulsed electric fields, while neural tissue has a higher tolerance to pulsed electric fields. Therefore, by rationally selecting the intensity of high-voltage pulsed electric fields, selective tissue ablation can be achieved, such as locations close to nerves and blood vessels. ablation of tumor tissue, etc.
  • the purpose of this application is to provide a tissue ablation device, electrochemical impedance measurement device and method, aiming to solve the problem of traditional pulsed electric field ablation being unable to monitor trace bubbles in real time.
  • a tissue ablation device including: a high-voltage pulse module configured to generate a corresponding high-voltage pulse signal according to the pulse control signal, and pass the first output of the high-voltage pulse module terminal and a second output terminal to apply the high-voltage pulse signal to the target tissue, the first output terminal is used to connect to the first electrode, and the second output terminal is used to connect to the second electrode;
  • the Faraday current detection module is configured Between the high-voltage pulse module and the first electrode and the second electrode, it is configured to generate a corresponding sampling signal based on the current flowing through the first electrode and the second electrode;
  • a differential sampling module Connected to the first output terminal and the second output terminal of the high-voltage pulse module, and configured to respectively generate and output a first feedback voltage and a second feedback voltage according to voltage changes of the first output terminal and the second output terminal.
  • Voltage processing module connected to the differential sampling module, configured to generate and output a voltage feedback signal according to the first feedback voltage and the second feedback voltage, the voltage feedback signal is connected to the first output terminal and Corresponding to the voltage difference between the second output terminals;
  • a high-frequency sampling module respectively connected to the voltage processing module and the Faraday current detection module, is configured to generate a signal based on the voltage feedback signal and the sampling signal. And output the corresponding digital feedback signal;
  • the main control module is connected to the high-voltage pulse module and the high-frequency sampling module respectively, and is configured to obtain the Faraday current and the first output terminal according to the received digital feedback signal.
  • the electrochemical impedance parameters are used to generate the corresponding pulse control signals, wherein the electrochemical impedance fitting function is simulated by electrical parameters obtained when performing pulsed electric field ablation simulation experiments based on the equivalent circuit model of the target tissue. Get together.
  • a second aspect of the embodiment of the present application provides an electrochemical impedance measurement device, which is applied to a tissue ablation device and used to obtain electrochemical impedance parameters of a target tissue.
  • the electrochemical impedance measurement device includes: an output unit for passing The electrode pair applies a high-voltage pulse signal to the target tissue; a detection unit is used to obtain the Faraday current and the voltage difference between the electrode pair on the opposite side of the electrode; the analysis unit is used to obtain the Faraday current and the voltage difference according to the Faraday current and the voltage difference.
  • electrochemical impedance fitting function to obtain the electrochemical impedance parameters corresponding to the target tissue; wherein the electrochemical impedance fitting function is obtained by performing a pulsed electric field ablation simulation experiment based on an equivalent circuit model of the target tissue.
  • the electrical parameters are fitted by fitting.
  • a third aspect of the embodiments of the present application provides an electrochemical impedance measurement method, which is applied to a tissue ablation device and used to obtain electrochemical impedance parameters of a target tissue.
  • the electrochemical impedance measurement method includes: using an electrode pair to Apply a high-voltage pulse signal to the target tissue; obtain the Faraday current and the voltage difference between the electrode pair on the opposite side of the electrode; obtain all the corresponding parameters of the target tissue according to the Faraday current, the voltage difference and the electrochemical impedance fitting function.
  • Describe electrochemical The electrochemical impedance fitting function is obtained by fitting the electrical parameters obtained during pulsed electric field ablation simulation experiments based on the equivalent circuit model of the target tissue.
  • the electrochemical impedance fitting function is obtained by fitting the electrical parameters obtained during pulsed electric field ablation simulation experiments based on the equivalent circuit model of the target tissue, including: establishing the equivalent circuit of the target tissue. Model; perform multiple pulsed electric field ablation simulation experiments through the equivalent circuit model, perform curve fitting on the Faraday current, the voltage difference obtained from the experiment, and the electrochemical impedance parameters of the equivalent circuit model to obtain the The electrochemical impedance fitting function is described.
  • Curve fitting to obtain the electrochemical impedance fitting function includes: obtaining multiple sets of corresponding digital feedback signals when applying different high-voltage pulse signals or setting different equivalent circuit models; according to each set The digital feedback signal obtains the corresponding Faraday current and the voltage difference; curve fitting is performed on each group of the Faraday current, the voltage difference and the corresponding electrochemical impedance parameters of the equivalent circuit model to obtain The electrochemical impedance fitting function.
  • the corresponding electrochemical properties of the target tissue can be obtained based on the electrochemical impedance fitting function.
  • Chemical impedance parameters, so that the amount of bubbles generated by the target tissue during the ablation process can be obtained based on the electrochemical impedance parameters of the target tissue, so as to facilitate feedback control of the output high-voltage pulse signal and timely control of the amount of bubbles generated.
  • This application can obtain the corresponding bubble precipitation conditions while outputting high-voltage pulse signals for tissue ablation without generating additional detection signals, and the work efficiency is high.
  • This application can also promptly stop the output of high-voltage pulse signals when the data in the electrochemical impedance parameters exceeds the safety threshold, that is, when excessive bubble precipitation occurs, to ensure patient safety.
  • Figure 1 is a schematic diagram of the principle of the tissue ablation device provided by the first embodiment of the present application.
  • Figure 2 is a schematic diagram of the principle of the Faraday current detection module provided by the first embodiment of the present application
  • Figure 3 is a schematic diagram of the current waveform provided by the first embodiment of the present application.
  • Figure 4 is a schematic diagram of the principle of a Faraday current detection module provided by another embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a coupling coil provided by another embodiment of the present application.
  • Figure 6 is a schematic equivalent circuit diagram of a current sampling probe provided by another embodiment of the present application.
  • Figure 7 is a schematic diagram of the principle of the differential sampling module and voltage processing module provided by the first embodiment of the present application.
  • Figure 8 is a schematic circuit diagram of a differential sampling module provided by the first embodiment of the present application.
  • Figure 9 is a schematic diagram of the principle of a protection unit provided by another embodiment of the present application.
  • Figure 10 is a schematic circuit diagram of a protection unit provided by another embodiment of the present application.
  • Figure 11 is a schematic circuit diagram of a differential amplification unit provided by the first embodiment of the present application.
  • Figure 12 is a schematic diagram of the principle of the high-frequency sampling module provided by the first embodiment of the present application.
  • Figure 13 is a flow chart of the electrochemical impedance measurement method provided by the second embodiment of the present application.
  • Figure 14 is a schematic diagram of an equivalent circuit model provided by the second embodiment of the present application.
  • Figure 15 is a specific flow chart for obtaining the electrochemical impedance fitting function provided by the second embodiment of the present application.
  • Figure 16 is a specific flow chart of step S220 in Figure 15;
  • Figure 17 is a flow chart of the bioimpedance measurement method provided by the third embodiment of the present application.
  • Figure 18 is a specific flow chart of step S500 in Figure 17;
  • Figure 19 is a schematic diagram of the hard threshold function and the soft threshold function
  • Figure 20 is a schematic diagram of the principle of an electrochemical impedance measurement device provided by the fourth embodiment of the present application.
  • Figure 21 is a schematic diagram of the principle of the analysis unit provided by the fourth embodiment of the present application.
  • Figure 22 is a schematic diagram of the principle of the second analysis module provided by the fourth embodiment of the present application.
  • 100-high voltage pulse module 110-first electrode; 120-second electrode; 200-differential sampling module; 210-first sampling branch; 211-first broadband voltage dividing unit; 212-first single-ended amplification unit; 220-the second sampling branch; 221-the second wideband voltage dividing unit; 222-the second single-ended amplification unit; 230-the first protection unit; 240-the second protection unit; 300-voltage processing module; 310-differential amplification Unit; 320-third protection unit; 400-Faraday current detection module; 410-first differential voltage sampling unit; 420-second differential voltage sampling unit; 430-first current sampling probe; 440-second current sampling probe; 451-coupling coil; 452-load unit; 500-high frequency sampling module; 510-filter shaping unit; 520-range selection unit; 530-AD conversion unit; 540-sampling processing unit; 550-fiber transmission module; 600-main Control module; 700-auxiliary power supply; 800-target tissue; 900-human-computer
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • FIG. 1 shows a schematic diagram of the principle of the tissue ablation device provided by the first embodiment of the present application. For convenience of explanation, only the parts related to this embodiment are shown. The details are as follows:
  • a tissue ablation device includes a high-voltage pulse module 100, a differential sampling module 200, a voltage processing module 300, a Faraday current detection module 400, a high-frequency sampling module 500 and a main control module 600.
  • the high-voltage pulse module 100 is configured to generate a corresponding high-voltage pulse signal according to the pulse control signal, and apply the high-voltage pulse signal to the target tissue 800 through the first output terminal V1 and the second output terminal V2 of the high-voltage pulse module 100, the first output terminal V1
  • the second output terminal V2 is used to connect to the first electrode 110
  • the second output terminal V2 is used to connect to the second electrode 120.
  • the target tissue 800 can be a biological tissue.
  • the amplitude range of the high-voltage pulse signal is 0.5V ⁇ 5kV, and the pulse width is 0.5us ⁇ 200us
  • the first electrode 110 and the second electrode 120 may be electrode needles.
  • the Faraday current detection module 400 is disposed between the high-voltage pulse module 100 and the first electrode 110 and the second electrode 120, and is configured to generate a corresponding sampling signal based on the current difference flowing through the first electrode 110 and the second electrode 120.
  • the current The difference corresponds to the Faradaic current IF involved in the electrochemical reaction of target tissue 800 .
  • the differential sampling module 200 is connected to the first output terminal V1 and the second output terminal V2 of the high-voltage pulse module 100, and is configured to respectively generate and output the first feedback voltage and the first feedback voltage according to the voltage changes of the first output terminal V1 and the second output terminal V2. Second feedback voltage.
  • the voltage processing module 300 is connected to the differential sampling module 200 and is configured to generate and output a voltage feedback signal according to the first feedback voltage and the second feedback voltage, the voltage feedback signal and the voltage between the first output terminal V1 and the second output terminal V2 The difference corresponds.
  • the high-frequency sampling module 500 is connected to the voltage processing module 300 and the Faraday current detection module 400 respectively, and is configured to generate and output a corresponding digital feedback signal according to the voltage feedback signal and the sampling signal.
  • the main control module 600 is connected to the high-voltage pulse module 100 and the high-frequency sampling module 500 respectively, and is configured to obtain the Faraday current IF and the voltage between the first output terminal V1 and the second output terminal V2 according to the received digital feedback signal.
  • the main control module 600 can be an industrial computer, a single-chip computer or a microcontroller.
  • the electrochemical impedance fitting function can be obtained by fitting the electrical parameters obtained during the pulsed electric field ablation simulation experiment based on the equivalent circuit model of the target tissue 800.
  • the electrode when a high-voltage pulse signal is applied to the target tissue 800, the electrode will discharge in the blood, and at the same time, a redox reaction will occur on the surface of the electrode, causing bubbles to precipitate and changing the electrochemical impedance parameters of the target tissue 800.
  • the electrochemical theory during the redox reaction process, the number of electrons passing through the electrode and the blood is related to the degree of the chemical reaction, and the consumption of reactants is related to the production of gas and other products.
  • the electrochemical impedance parameters obtained based on the Faraday current IF, the voltage difference between the first output terminal V1 and the second output terminal V2, and the electrochemical impedance fitting function can well reflect the amount of bubble precipitation, so that the amount of bubble precipitation can be well reflected in the electrochemical process.
  • the main control module 600 can generate a corresponding pulse control signal in real time, adjust the high-voltage pulse signal or stop outputting the high-voltage pulse signal.
  • an auxiliary power supply 700 is also included.
  • the auxiliary power supply 700 is connected to the voltage processing module 300, the Faraday current detection module 400, the high-frequency sampling module 500 and the main control module 600 respectively.
  • the auxiliary power supply 700 is configured In order to generate multi-level operating voltages, the voltage processing module 300, the Faraday current detection module 400, the high-frequency sampling module 500 and the main control module 600 can be powered.
  • a human-computer interaction module 900 is also included.
  • the human-computer interaction module 900 is connected to the main control module 600 .
  • the human-computer interaction module 900 may be a touch screen, physical buttons, or other equipment, and is used to input relevant parameters into the main control module 600 and display the tissue ablation device of the main control module 600 and the obtained electrochemical impedance parameters of the target tissue 800 .
  • the Faraday current detection module 400 includes a first sampling resistor CSR1, a second sampling resistor CSR2, a first differential voltage sampling unit 410 and a second differential voltage sampling unit 420.
  • the first sampling resistor CSR1 is connected in series between the first output terminal V1 and the first electrode 110
  • the second sampling resistor CSR2 is connected in series between the second output terminal V2 and the second electrode 120
  • the first differential voltage sampling unit 410 is connected to the first differential voltage sampling unit 410 respectively.
  • Two ends of a sampling resistor CSR1 are connected to the high-frequency sampling module 500.
  • a second differential voltage sampling unit 420 is connected to both ends of the second sampling resistor CSR2 and the high-frequency sampling module 500.
  • the first differential voltage sampling unit 410 is used for sampling.
  • the first voltage difference across the first sampling resistor CSR1 and the second differential voltage sampling unit 420 is used to collect the second voltage difference across the second sampling resistor CSR2.
  • both the first differential voltage sampling unit 410 and the second differential voltage sampling unit 420 are differential amplification circuits using operational amplifiers.
  • the high-frequency sampling module 500 is configured to generate and output a corresponding digital feedback signal based on the first voltage difference and the second voltage difference
  • the main control module 600 is configured to generate and output a corresponding digital feedback signal based on the digital feedback signal and the first sampling resistor.
  • the resistance of CSR1 and the resistance of the second sampling resistor CSR2 obtain the Faradaic current IF involved in the electrochemical reaction of the target tissue 800 .
  • the main control module 600 can obtain the first voltage difference and the second voltage difference from the digital feedback signal.
  • the resistance values of the first sampling resistor CSR1 and the second sampling resistor CSR2 are known parameters, it can be calculated.
  • the first current I1 and the second current I2 respectively flow through the first sampling resistor CSR1 and the second sampling resistor CSR2.
  • the first current I1 is equal to the current flowing through the first electrode 110
  • the second current I2 is equal to the current flowing through the second electrode 120.
  • the waveforms of the first current I1, the second current I2 and the Faraday current IF are as shown in Figure 3.
  • the first current I1 and the second current IF are I2 is subtracted to obtain the corresponding Faraday current IF.
  • the Faraday current detection module 400 includes a first current sampling probe 430 and a second current sampling probe 440.
  • the first current sampling probe 430 is disposed between the first output terminal V1 and the first electrode 110.
  • the second current sampling probe 440 is disposed on the conductive line between the second output terminal V2 and the second electrode 120 and is electrically connected to the high-frequency sampling module 500 .
  • the first current sampling probe 430 is configured to generate and output a corresponding first current feedback signal to the high-frequency sampling module 500 based on the current flowing through the wire between the first output terminal V1 and the first electrode 110
  • the second current sampling The probe 440 is configured to generate and output a corresponding second current feedback signal to the high-frequency sampling module 500 based on the current flowing through the wire between the second output terminal V2 and the second electrode 120 , where the sampling signal includes the first current feedback signal and the second current feedback signal. 2. Current feedback signal.
  • the high-frequency sampling module 500 is configured to generate and output a corresponding digital feedback signal based on the first current feedback signal and the second current feedback signal
  • the main control module 600 is configured to obtain the current on the two wires based on the digital feedback signal, so that The Faradaic current involved in the electrochemical reaction of the target tissue is obtained.
  • the impact on relevant sampling electrical parameters and circuits can be reduced without affecting the normal operation of the tissue ablation device.
  • the first current sampling probe 430 and the second current sampling probe 440 have the same structure, and both include a coupling coil 451 and a load unit 452.
  • the coupling coil 451 can be set at the first output end V1 or On the wire of the second output terminal V2, the output end of the coupling coil 451 is connected to the load unit 452.
  • the load unit 452 is also connected to the high-frequency sampling module 500.
  • the coupling coil 451 is configured to generate a corresponding induced current according to the current of the wire, and the load
  • the unit 452 is configured to generate and output a corresponding current feedback signal according to the induced current, that is, the load unit 452 of the first current sampling probe 430 outputs the first current feedback signal, and the load unit 452 of the second current sampling probe 440 outputs the second current feedback signal. Signal.
  • the coupling coil 451 can be a self-integrating Rogowski coil.
  • the coupling coil 451 includes equivalent circuits connected in series.
  • Power source M equivalent inductance L1 and equivalent resistance RC
  • the load unit 452 may be a load resistor R16.
  • Coupling coil 451 can The two induced current output ends of the coupling coil 451 (one end of the equivalent power source M and one end of the equivalent resistor RC) are set on the corresponding wires and connected to both ends of the load unit 452 respectively, so as to output the induced current to the load unit. 452, both ends of the load unit 452 are connected to the high-frequency sampling module 500. When the induced current flows through the load unit 452, the high-frequency sampling module 500 can sample the voltage (current feedback signal) at both ends of the load unit 452 to obtain The corresponding current feedback signal is generated and outputted according to the current feedback signal.
  • the differential sampling module 200 includes a first sampling branch 210 and a second sampling branch 220.
  • the first sampling branch 210 is connected between the first output terminal V1 and the voltage processing module 300.
  • the second sampling branch 220 is connected between the second output terminal V2 and the voltage processing module 300; the first sampling branch 210 is configured to generate a first feedback voltage, and the second sampling branch 220 is configured to generate a second feedback voltage. Voltage.
  • the differential sampling module 200 can perform differential sampling on bipolar high-voltage pulse signals, and simultaneously sample the voltages of the first output terminal V1 and the second output terminal V2 through two independent sampling branches, which can avoid V1 and the second output terminal V2 interact with each other, and relatively accurate corresponding first feedback voltage and second feedback voltage can be obtained.
  • the first sampling branch 210 includes a first wideband voltage dividing unit 211 and a first single-ended amplifying unit 212; the first wideband voltage dividing unit 211 is connected to the first output terminal V1 and the first single-ended amplifying unit 212 respectively.
  • the first single-ended amplifying unit 212 is also connected to the voltage processing module 300 .
  • the first single-ended amplifying unit 212 is configured to generate a first feedback voltage according to the voltage divided by the first wideband voltage dividing unit 211 .
  • the second sampling branch 220 includes a second wideband voltage dividing unit 221 and a second single-ended amplifying unit 222; the second wideband voltage dividing unit 221 is connected to the first output terminal V1 and the second single-ended amplifying unit 222 respectively.
  • the end amplification unit 222 is also connected to the voltage processing module 300 , and the second single-end amplification unit 222 is configured to generate a second feedback voltage according to the voltage divided by the second wideband voltage dividing unit 221 .
  • the first wideband voltage dividing unit 211 and the second wideband voltage dividing unit 221 need to divide it, and at the same time, in order to obtain the third voltage without distortion.
  • the voltage signals of the first output terminal V1 and the second output terminal V2, the first wideband voltage dividing unit 211 and the second wideband voltage dividing unit 221 have relatively high bandwidths, and both high-frequency signals and low-frequency signals can pass through the first wideband voltage dividing unit 211 Or the second wideband voltage dividing unit 221 transmits it to the first single-ended amplification unit 212 or the second single-ended amplification unit 222 .
  • the first single-ended amplification unit 212 and the second single-ended amplification unit 222 can respectively amplify the divided voltages of the first output terminal V1 and the second output terminal V2 by a certain multiple to obtain the first feedback voltage and the second feedback voltage. feedback voltage.
  • the amplification factors of the first single-ended amplification unit 212 and the second single-ended amplification unit 222 can be configured according to actual conditions, and are not limited in this embodiment.
  • the first single-ended amplification unit 212 and the second single-ended amplification unit 222 can achieve a gain-bandwidth product (GBWP) of 70MHz, and can obtain a slew rate of 200V/ ⁇ s and a slew rate of 6.3nV/ ⁇ Hz low noise voltage.
  • GWP gain-bandwidth product
  • the first wideband voltage dividing unit 211 includes a first low-frequency impedance voltage dividing unit and a first high-frequency impedance voltage dividing unit.
  • the first low-frequency impedance voltage dividing unit is connected to the first output terminal V1 and the first single-ended amplification unit 212 respectively.
  • the first high-frequency impedance voltage dividing unit and the first low-frequency impedance voltage dividing unit are connected in parallel.
  • the second wideband voltage dividing unit 221 includes a second low-frequency impedance voltage dividing unit and a second high-frequency impedance voltage dividing unit.
  • the second low-frequency impedance voltage dividing unit is connected to the first output terminal V1 and the second single-ended amplification unit 222 respectively.
  • the two high-frequency impedance voltage dividing units are connected in parallel with the second low-frequency impedance voltage dividing unit.
  • the first low-frequency impedance voltage dividing unit is used to divide the low-frequency signal at the first output terminal V1
  • the second low-frequency impedance voltage-dividing unit is used to divide the low-frequency signal at the second output terminal V2
  • the first high-frequency impedance dividing unit is used to divide the low-frequency signal at the second output terminal V2.
  • the voltage unit is used to divide the high-frequency signal at the first output terminal V1
  • the second high-frequency impedance voltage dividing unit is used to divide the high-frequency signal at the second output terminal V2.
  • the first low-frequency impedance voltage dividing unit includes a resistor R1, a resistor R2, a resistor R3 and a resistor R4 connected in series in sequence.
  • the resistor R1 is connected to the first output terminal V1, and the resistor R4 is connected to the first unit.
  • the terminal amplification unit 212 is connected.
  • the first high-frequency impedance voltage dividing unit includes capacitors C1, C2, C3 and C4 connected in series.
  • the capacitors C1, C2, C3 and C4 are connected to the resistors R1, R2, R3 and R4 respectively. corresponding and parallel to each other.
  • Resistors R1, R2, R3 and R4 are all high-frequency non-inductive resistors, and capacitors C1, C2, C3 and C4 are all capacitors with low equivalent inductance.
  • the first single-ended amplification unit 212 and the second single-ended amplification unit 222 are both non-inverting amplifier circuits.
  • the first single-ended amplification unit 212 includes a first operational amplifier U1, a first feedback resistor R9 and a second feedback resistor R10.
  • the non-inverting input terminal of the first operational amplifier U1 is connected to the first feedback resistor R10.
  • the broadband voltage dividing unit 211 is connected, the output end of the first operational amplifier U1 is connected to the voltage processing module 300, the first end of the first feedback resistor R9 is connected to the output end of the first operational amplifier U1, and the second end of the first feedback resistor R9
  • the first terminal of the second feedback resistor R10 is connected to the inverting input terminal of the first operational amplifier U1
  • the first terminal of the second feedback resistor R10 is connected to the inverting input terminal of the first operational amplifier U1
  • the second terminal of the second feedback resistor R10 is connected to the ground terminal.
  • the second single-ended amplification unit 222 includes a second operational amplifier U2, a third feedback resistor R11 and a fourth feedback resistor R12.
  • the non-inverting input terminal of the second operational amplifier U2 is connected to the second wideband voltage dividing unit 221.
  • the second operational amplifier The output end of U2 is connected to the voltage processing module 300 , the first end of the third feedback resistor R11 is connected to the output end of the second operational amplifier U2 , and the second end of the third feedback resistor R11 is connected to the inverting input of the second operational amplifier U2 terminal is connected, the first terminal of the fourth feedback resistor R12 is connected to the inverting input terminal of the second operational amplifier U2, and the second terminal of the fourth feedback resistor R12 is connected to the ground terminal.
  • the first sampling branch 210 further includes a first protection unit 230
  • the second sampling branch 220 further includes a second protection unit 240
  • the first protection unit 230 is connected to the first broadband Voltage dividing unit 211 and the Between a single-ended amplification unit 212
  • the second protection unit 240 is connected between the second wideband voltage dividing unit 221 and the second single-ended amplification unit 222.
  • the first protection unit 230 and the second protection unit 240 are configured to limit the amplitude of the voltage transmitted to the first single-ended amplification unit 212 and the second single-ended amplification unit 222, respectively.
  • the first protection unit 230 and the second protection unit 240 have the same circuit structure.
  • the first protection unit 230 includes a voltage dividing resistor R17 and a breakdown diode VT1.
  • the first end of the voltage dividing resistor R17 is connected to the first broadband voltage dividing unit 211.
  • the voltage dividing resistor R17 has The second end is connected to the first single-ended amplification unit 212, the cathode of the breakdown diode VT1 is connected to the second end of the voltage dividing resistor R17, and the anode of the breakdown diode VT1 is connected to the ground.
  • the breakdown diode VT1 When the amplitude of the voltage output by the first broadband voltage dividing unit 211 is too high and is greater than the breakdown voltage of the breakdown diode VT1, the breakdown diode VT1 is broken down, causing the second end of the voltage dividing resistor R17 to be grounded to release the voltage. Voltage.
  • the voltage processing module 300 includes a differential amplification unit 310.
  • the differential amplification unit 310 is connected to the differential sampling module 200 and the high-frequency sampling module 500 respectively.
  • the differential amplification unit 310 is configured to operate according to the first feedback voltage and the second feedback voltage. Generate voltage feedback signal.
  • the differential amplification unit 310 may be a differential amplification circuit, and may amplify the voltage difference between the first feedback voltage and the second feedback voltage by a certain multiple to generate a corresponding voltage feedback signal.
  • the differential amplification unit 310 includes a third operational amplifier U3 and a fifth feedback resistor R15 .
  • the non-inverting input terminal of the third operational amplifier U3 is connected to the first single-ended amplification unit 212 .
  • the inverting input terminal of the operational amplifier U3 is connected to the second single-ended amplification unit 222, the first terminal of the fifth feedback resistor R15 is connected to the output terminal of the third operational amplifier U3, and the second terminal of the fifth feedback resistor R15 is connected to the third terminal of the operational amplifier U3.
  • the inverting input of operational amplifier U3 is connected.
  • the voltage processing module 300 further includes a third protection unit 320, which is connected between the differential amplification unit 310 and the high-frequency sampling module 500; the third protection unit 320 is connected between the differential amplifier unit 310 and the high-frequency sampling module 500.
  • Unit 320 is configured to limit the voltage amplitude transmitted to high frequency sampling module 500 .
  • the third protection unit 320 is used to limit the voltage feedback signal.
  • the first protection unit 230, the second protection unit 240 and the third protection unit 320 have the same structure.
  • the high-frequency sampling module 500 includes a filter and shaping unit 510, a range selection unit 520, an AD conversion unit 530 and a sampling processing unit 540 which are connected in sequence.
  • the filtering and shaping unit 510 is connected to the voltage processing module 300 respectively.
  • the sampling processing unit 540 is connected to the main control module 600 and the range selection unit 520; the sampling processing unit 540 is configured to generate a corresponding digital feedback signal according to the digital signal output by the AD conversion unit 530 and according to the digital The feedback signal configures the range of the range selection unit 520 .
  • the filtering and shaping unit 510 is used to filter and shape the voltage feedback signal and sampling signal to obtain a voltage feedback signal and sampling signal with less distortion.
  • the range selection unit 520 selects the voltage feedback signal and the The sampled signal is converted and an analog signal corresponding to the input range of the AD conversion unit 530 is output.
  • the AD conversion unit 530 is configured to sample the analog signal according to a preset frequency for converting the analog signal into a digital signal.
  • the sampling processing unit 540 is used to obtain a corresponding digital feedback signal according to the digital signal, and configure the measurement range set by the measurement range selection unit 520 according to the digital feedback signal to further improve accuracy.
  • the sampling processing unit 540 may be a field programmable gate array (Field Programmable Gate Array; FPGA) or a digital signal processing (Digital Signal Processing; DSP) unit.
  • the digital feedback signal includes a voltage digital signal and a sampling digital signal.
  • the voltage digital signal corresponds to the voltage value between the first output terminal V1 and the second output terminal V2 (that is, between the two ends of the target tissue 800), and the sampling digital signal corresponds to the voltage value between the first output terminal V1 and the second output terminal V2 (ie, between the two ends of the target tissue 800).
  • the high-frequency sampling module 500 is also wrapped with a shielding shell for shielding external electromagnetic signals.
  • the high-frequency sampling module 500 also includes an optical fiber transmission module 550 connected to the sampling processing unit 540.
  • the optical fiber transmission module 550 is used to communicate with the main control module 600, that is, the sampling processing unit 540 and The main control modules 600 are communicated with each other through the optical fiber transmission module 550.
  • FIG. 13 shows a flow chart of the electrochemical impedance measurement method provided by the second embodiment of the present application. For convenience of explanation, only the parts related to this embodiment are shown. The details are as follows:
  • An electrochemical impedance measurement method can be applied to the tissue ablation device of any of the above embodiments to obtain the electrochemical impedance parameters of the target tissue 800 .
  • the electrochemical impedance measurement method includes steps S100 to S300:
  • the electrochemical impedance fitting function is obtained by fitting the electrical parameters obtained during the pulsed electric field ablation simulation experiment based on the equivalent circuit model of the target tissue 800.
  • the equivalent circuit model is shown in Figure 14.
  • the equivalent The electrochemical impedance parameters in the circuit model include tissue and solution resistance R ⁇ , Faradaic impedance Zf, double layer capacitance Cd, parasitic capacitance Cp and parasitic inductance Ls.
  • Faraday impedance Zf represents the nonlinear impedance in the electrochemical reaction system, and its parameters are related to the frequency of the high-voltage pulse signal;
  • double-layer capacitance Cd represents the equivalent capacitance of the ablation electrode in the blood;
  • parasitic capacitance Cp and parasitic inductance Ls represents the parasitic capacitance and parasitic inductance of the entire loop respectively.
  • the electrochemical impedance model of the target tissue 800 is relatively complex and contains many parameters and is difficult to detect directly, in order to obtain the electrochemical impedance parameters of the target tissue 800 in real time, this embodiment obtains them through curve fitting.
  • the electrochemical impedance fitting function only needs to collect the easily detectable Faraday current IF and the voltage difference between the electrode pairs.
  • the voltage difference between the electrode pairs can be used between the first output terminal V1 and the second output terminal V2. Instead of the voltage difference between them, real-time electrochemical impedance parameters can be obtained, and then the bubble precipitation situation can be judged based on the real-time electrochemical impedance parameters.
  • steps S210 to S220 are specifically included:
  • Steps S210 to S220 are used to obtain the electrochemical impedance fitting function based on the equivalent circuit model of the target tissue 800 .
  • the parameters can be accurately adjusted to obtain more sets of different data and improve the accuracy of the electrochemical impedance fitting function.
  • step S220 specifically includes steps S221 to S223:
  • the curve fitting method used is to first set the target multivariate function, then optimize the target multivariate function through a search algorithm or an iterative algorithm, and obtain the electrochemical impedance fitting function.
  • the iterative algorithms that can be used include Newton’s method, Levenberg-Marquardt method and variable scale method.
  • the electrochemical impedance model of the target tissue 800 describes a complex model, the real and imaginary parts of each impedance need to be fitted simultaneously, which will further increase the complexity of the iterative algorithm for solving nonlinear equations.
  • the multidimensional descending simplex method (Nelder-Mead method) is used to iterate the target multivariate function to obtain the electrochemical impedance fitting function.
  • FIG. 17 shows a flow chart of the bioimpedance measurement method provided by the third embodiment of the present application. For convenience of explanation, only the parts related to this embodiment are shown. The details are as follows:
  • the bioimpedance measurement method can be applied to the tissue ablation device of any of the above embodiments, and the obtained bioimpedance can be used to determine bubble precipitation.
  • the bioimpedance measurement method specifically includes steps S400 to S600:
  • the high-voltage pulse module 100 When the high-voltage pulse module 100 outputs a high-voltage pulse signal, obtain the digital feedback signal provided by the high-frequency sampling module 500.
  • the digital feedback signal includes a voltage digital signal and a current digital signal.
  • the voltage digital signal corresponds to the voltage value between the positive output terminal V1 and the negative output terminal V2 (ie, between the two ends of the target tissue 800), and the current digital signal corresponds to the voltage value flowing through the positive electrode.
  • the current value of the output terminal V1 or the negative output terminal V2 that is, flowing through the target tissue 800).
  • the reconstructed signal includes a voltage reconstructed signal corresponding to the voltage digital signal and a current reconstructed signal corresponding to the current digital signal.
  • S600 Perform fast Fourier transform on the reconstructed signal to obtain the bioelectrical impedance of the target tissue 800.
  • bioimpedance measurement method the influence of the excessive voltage of the high-voltage pulse signal can be avoided, and real-time bioelectrical impedance Z( ⁇ ) can be obtained.
  • the formula of fast Fourier transform is:
  • F ⁇ u(t) ⁇ is the voltage reconstruction signal
  • F ⁇ i(t) ⁇ is the voltage reconstruction signal
  • the high-voltage pulse module 100, the differential sampling module 200, the voltage processing module 300, the Faraday current detection module 400 and the high-frequency sampling module 500 can be used to implement step S400, and the main control module 600 can be used to implement step S500 and step S600.
  • step S500 specifically includes steps S510 to S530:
  • step S520 the global threshold ⁇ or the scale-related threshold ⁇ j needs to be calculated first.
  • I is a natural number and can be set according to the actual situation.
  • the calculation formula of global threshold ⁇ is: In the formula, n is the global signal length; the calculation formula of the scale-related threshold ⁇ j is: In the formula, nj is the signal length of the wavelet coefficients of each layer.
  • the global threshold ⁇ used in this embodiment, whether the global threshold ⁇ or the scale-related threshold ⁇ j is used can be determined according to actual needs.
  • the threshold function includes a hard threshold function and a soft threshold function.
  • the schematic diagrams of the hard threshold function and the soft threshold function are as shown in Figure 18.
  • the hard threshold function only retains the wavelet coefficients whose absolute value is greater than the global threshold ⁇ , and is retained The wavelet coefficients are the same as the original coefficients, while smaller wavelet coefficients are set to zero.
  • the hard threshold function is specifically:
  • the soft threshold function also takes zero for wavelet coefficient values whose absolute value is less than the global threshold ⁇ . Wavelet coefficient values whose absolute value is greater than the global threshold ⁇ are shrunk by ⁇ .
  • the soft threshold function is specifically:
  • the threshold function is discontinuous at the global threshold ⁇ , which will cause a large variance and cause additional oscillations in the reconstructed signal, which does not have the same smoothness as the original signal, that is, when executing After step S530, a reconstructed signal closer to the waveform of the digital feedback signal can be obtained.
  • the soft threshold function usually makes the denoised signal smoother, but it also loses some features of the signal, affecting the degree of approximation of the reconstructed signal and the original signal. That is, when performing step S520, After S530, a reconstructed signal smoother than the waveform of the digital feedback signal can be obtained.
  • sequence number of each step in the above embodiment does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • FIG. 20 shows a schematic diagram of the principle of the electrochemical impedance measurement device provided by the fourth embodiment of the present application. For convenience of explanation, only the parts related to this embodiment are shown. The details are as follows:
  • the electrochemical impedance measurement device 1000 can be applied to the tissue ablation device of any of the above embodiments, and perform the bioimpedance measurement method of any of the above embodiments to obtain the electrochemical impedance of the target tissue 800 Parameters, the electrochemical impedance measurement device 1000 includes: an output unit 1100, a detection unit 1200 and an analysis unit 1300.
  • the output unit 1100 is used to apply a high-voltage pulse signal to the target tissue 800 through the electrode pair; the detection unit 1200 is used to obtain the Faradaic current on the opposite side of the electrode and the voltage difference between the electrode pair; the analysis unit 1300 is used to obtain the Faraday current and voltage according to the Faraday current and voltage.
  • the difference and the electrochemical impedance fitting function are used to obtain the electrochemical impedance parameters corresponding to the target tissue 800; among them, the electrochemical impedance fitting function is used to fit the electrical parameters obtained during the pulsed electric field ablation simulation experiment based on the equivalent circuit model of the target tissue 800 get.
  • the electrochemical impedance fitting function is obtained by fitting the electrical parameters obtained during the pulsed electric field ablation simulation experiment based on the equivalent circuit model of the target tissue 800.
  • the equivalent circuit model is shown in Figure 14.
  • the equivalent The electrochemical impedance parameters in the circuit model include tissue and solution resistance R ⁇ , Faradaic impedance Zf, double layer capacitance Cd, parasitic capacitance Cp and parasitic inductance Ls.
  • Faraday impedance Zf represents the nonlinear impedance in the electrochemical reaction system, and its parameters are related to the frequency of the high-voltage pulse signal;
  • double-layer capacitance Cd represents the equivalent capacitance of the ablation electrode in the blood;
  • parasitic capacitance Cp and parasitic inductance Ls represents the parasitic capacitance and parasitic inductance of the entire loop respectively.
  • the electrochemical impedance model of the target tissue 800 is relatively complex and contains many parameters and is difficult to detect directly, in order to obtain the electrochemical impedance parameters of the target tissue 800 in real time, this embodiment obtains them through curve fitting.
  • the electrochemical impedance fitting function only needs to collect the easily detectable Faraday current IF and the voltage difference between the electrode pairs.
  • the voltage difference between the electrode pairs can be used between the first output terminal V1 and the second output terminal V2. Instead of the voltage difference between them, real-time electrochemical impedance parameters can be obtained, and then the bubble precipitation situation can be judged based on the real-time electrochemical impedance parameters.
  • the analysis unit 1300 includes: a first analysis module 1310 and a second analysis module 1320.
  • the first analysis module 1310 is used to establish an equivalent circuit model of the target tissue 800; the second analysis module 1320 is used to conduct multiple pulsed electric field ablation simulation experiments through the equivalent circuit model, and combine the experimentally obtained Faraday current, voltage difference and equivalent
  • the electrochemical impedance parameters of the circuit model are curve-fitted to obtain the electrochemical impedance fitting function.
  • the first analysis module 1310 and the second analysis module 1320 are used to obtain the electrochemical impedance fitting function based on the equivalent circuit model of the target tissue 800 .
  • the parameters can be accurately adjusted to obtain more sets of different data and improve the accuracy of the electrochemical impedance fitting function.
  • the second analysis module 1320 includes: a first calculation module 1321 and a second calculation module 1322.
  • the first calculation module 1321 is used to obtain multiple sets of corresponding digital feedback signals when different high-voltage pulse signals are applied or different equivalent circuit models are set; the second calculation module 1322 is used to obtain corresponding sets of digital feedback signals based on each set of digital feedback signals. the Faraday current and voltage difference; the second calculation module 1322 is also used to perform curve fitting on each set of Faraday current, voltage difference and electrochemical impedance parameters of the corresponding equivalent circuit model to obtain an electrochemical impedance fitting function.
  • the curve fitting method used by the second calculation module 1322 is to first set the target multivariate function, optimize the target multivariate function through a search algorithm or an iterative algorithm, and obtain the electrochemical impedance fitting function.
  • the iterative algorithms that can be used include Newton's method, Levenberg-Marquardt method, variable scale method, etc.
  • the electrochemical impedance model of the target tissue 800 describes a complex model, the real and imaginary parts of each impedance need to be fitted simultaneously, which will further increase the complexity of the iterative algorithm for solving nonlinear equations.
  • the multidimensional descending simplex method (Nelder-Mead method) is used to iterate the target multivariate function to obtain the electrochemical impedance fitting function.
  • Module completion means dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above.
  • Each functional unit and module in the embodiment can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be hardware-based. It can also be implemented in the form of software functional units.
  • the specific names of each functional unit and module are only for the convenience of distinguishing each other and are not used to limit the scope of protection of the present application.
  • For the specific working processes of the units and modules in the above system please refer to the corresponding processes in the foregoing method embodiments, and will not be described again here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Otolaryngology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgical Instruments (AREA)

Abstract

本申请提供一种组织消融装置、电化学阻抗测量装置及方法,本申请通过对参与目标组织(800)的电化学反应的法拉第电流以及高压脉冲模块(100)的第一输出端与第二输出端之间的电压差进行实时检测,可以根据电化学阻抗拟合函数得到相应的目标组织的电化学阻抗参数,从而可以根据目标组织的电化学阻抗参数得到目标组织在消融过程中产生的气泡量,以便于对输出的高压脉冲信号进行反馈控制,及时控制产生的气泡量。本申请可以在输出高压脉冲信号以进行组织消融的同时,就能够得到对应的气泡析出情况,无需生成额外的检测信号,工作效率较高。

Description

组织消融装置、电化学阻抗测量装置及方法
本申请要求于2022年07月12日在中华人民共和国国家知识产权局专利局提交的、申请号为202210816533.1、申请名称为“组织消融装置以及电化学阻抗测量装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于组织消融技术领域,尤其涉及一种组织消融装置、电化学阻抗测量装置及方法。
背景技术
目前,经血管导管消融作为一种用于治疗心律失常的有效方法,得到广泛的认可。消融的目的是破坏潜在的心律失常组织,阻止异常电信号传播或破坏心脏组织的异常电信号传导。
脉冲电场消融是近年来兴起的一种基于物理能量因子的新型组织消融手段,其主要利用不可逆电穿孔原理,通过高压脉冲电场作用于细胞,使细胞膜产生不可逆的穿孔,从而使细胞逐渐坏死,最终实现组织消融的目的。由于组织电特性不同,因而脉冲电场消融具有较好的组织选择性。如心肌组织对高压脉冲电场较为敏感,而神经组织则对脉冲电场耐受度较高,因此,通过合理地选择高压脉冲电场的强度,则可实现选择性的组织消融,如靠近神经和血管位置的肿瘤组织消融等。
但实际上,脉冲电场消融在产生不可逆电穿孔的过程中,电极与组织间仍然存在一定的发热甚至是火花放电,特别是不可逆电穿孔的脉冲参数(主要是脉冲电压、脉冲宽度和脉冲间隔时间等)直接影响着电极和组织的发热与温升。在脉冲电场房颤消融治疗中,电极所产生的热量可能导致血液中气泡的产生,从而带来严重的患者中风风险。除电极发热的因素外,血液放电时气泡析出更为主要的原因还在于电极与血液(作为电解液)间所产生的电化学反应,在电极与血液界面发生电化学反应时,将产生氢气或氧气的析出。
同时,脉冲电场消融过程中产生气泡的影响因素较多,不仅与脉冲能量和脉冲参数有关,还与血液微量成分、血液流速等相关,因而要控制脉冲电场消融过程中的气泡,最关键的并不是放电能量或脉冲参数的调节,而是气泡产生的脉冲能量阈值监测,或微量气泡的实时在线监测。只要能监测出微量气泡的产生,就可以很方便地对脉冲能量和脉冲参数进行调节,以控制气泡的进一步产生,防止对患者的生命安全造成影响,但目前还没有一 种可以对脉冲电场消融过程中的血液微量气泡产生进行实时监测的方法。
技术问题
本申请的目的在于提供一种组织消融装置、电化学阻抗测量装置及方法,旨在解决传统的脉冲电场消融存在的无法对微量气泡实时监测的问题。
技术解决方案
为实现上述目的,本申请采用的技术方案是:一种组织消融装置,包括:高压脉冲模块,被配置为根据脉冲控制信号生成相应的高压脉冲信号,并通过所述高压脉冲模块的第一输出端和第二输出端向目标组织施加所述高压脉冲信号,所述第一输出端用于与第一电极连接,所述第二输出端用于与第二电极连接;法拉第电流检测模块,设置在所述高压脉冲模块与所述第一电极和所述第二电极之间,被配置为基于流经所述第一电极和所述第二电极的电流,生成对应采样信号;差分采样模块,与所述高压脉冲模块的第一输出端和第二输出端连接,被配置为根据所述第一输出端和所述第二输出端的电压变化分别生成并输出第一反馈电压和第二反馈电压;电压处理模块,与所述差分采样模块连接,被配置为根据所述第一反馈电压和所述第二反馈电压生成并输出电压反馈信号,所述电压反馈信号与所述第一输出端与所述第二输出端之间的电压差相对应;高频采样模块,分别与所述电压处理模块和所述法拉第电流检测模块连接,被配置为根据所述电压反馈信号和所述采样信号生成并输出对应的数字反馈信号;主控模块,分别与所述高压脉冲模块和所述高频采样模块连接,被配置为根据接收到的所述数字反馈信号得到法拉第电流和所述第一输出端与所述第二输出端之间的电压差,并根据所述法拉第电流和所述第一输出端与所述第二输出端之间的电压差以及电化学阻抗拟合函数得到所述目标组织的电化学阻抗参数以用于生成对应的所述脉冲控制信号,其中,所述电化学阻抗拟合函数通过基于所述目标组织的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到。
本申请实施例的第二方面提供了一种电化学阻抗测量装置,应用于组织消融装置,用于获取目标组织的电化学阻抗参数,所述电化学阻抗测量装置包括:输出单元,用于通过电极对对所述目标组织施加高压脉冲信号;检测单元,用于在该电极对侧获取法拉第电流和该电极对之间的电压差;分析单元,用于根据所述法拉第电流、所述电压差以及电化学阻抗拟合函数得到所述目标组织对应的所述电化学阻抗参数;其中,所述电化学阻抗拟合函数通过基于所述目标组织的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到。
本申请实施例的第三方面提供了一种电化学阻抗测量方法,应用于组织消融装置,用于获取目标组织的电化学阻抗参数,所述电化学阻抗测量方法包括:通过电极对对所述目标组织施加高压脉冲信号;在该电极对侧获取法拉第电流和该电极对之间的电压差;根据所述法拉第电流、所述电压差以及电化学阻抗拟合函数得到所述目标组织对应的所述电化 学阻抗参数;其中,所述电化学阻抗拟合函数通过基于所述目标组织的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到。
其中一实施例中,所述电化学阻抗拟合函数通过基于所述目标组织的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到包括:建立所述目标组织的等效电路模型;通过所述等效电路模型进行多次脉冲电场消融模拟实验,将实验得到的所述法拉第电流、所述电压差以及所述等效电路模型的电化学阻抗参数进行曲线拟合,得到所述电化学阻抗拟合函数。
其中一实施例中,所述通过所述等效电路模型进行多次脉冲电场消融模拟实验,将实验得到的所述法拉第电流、所述电压差以及所述等效电路模型的电化学阻抗参数进行曲线拟合,得到所述电化学阻抗拟合函数包括:在施加不同的所述高压脉冲信号或设置不同的所述等效电路模型的情况下,获取多组对应的数字反馈信号;根据各组所述数字反馈信号得到对应的所述法拉第电流和所述电压差;将各组所述法拉第电流、所述电压差以及对应的所述等效电路模型的电化学阻抗参数进行曲线拟合,得到所述电化学阻抗拟合函数。
有益效果
本申请提供的有益效果在于:
通过对参与目标组织的电化学反应的法拉第电流以及高压脉冲模块的第一输出端与第二输出端之间的电压差进行实时检测,可以根据电化学阻抗拟合函数得到相应的目标组织的电化学阻抗参数,从而可以根据目标组织的电化学阻抗参数得到目标组织在消融过程中产生的气泡量,以便于对输出的高压脉冲信号进行反馈控制,及时控制产生的气泡量。本申请可以在输出高压脉冲信号以进行组织消融的同时,就能够得到对应的气泡析出情况,无需生成额外的检测信号,工作效率较高。本申请还可以在电化学阻抗参数中的数据超过安全阈值时,即气泡析出过量时,及时停止高压脉冲信号的输出,保障病人安全。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施例提供的组织消融装置的原理示意图;
图2为本申请第一实施例提供的法拉第电流检测模块的原理示意图;
图3为本申请第一实施例提供的电流波形示意图;
图4为本申请另一实施例提供的法拉第电流检测模块的原理示意图;
图5为本申请另一实施例提供的耦合线圈的结构示意图;
图6为本申请另一实施例提供的电流采样探头的等效电路示意图;
图7为本申请第一实施例提供的差分采样模块及电压处理模块的原理示意图;
图8为本申请第一实施例提供的差分采样模块的电路示意图;
图9为本申请另一实施例提供的保护单元的原理示意图;
图10为本申请另一实施例提供的保护单元的电路示意图;
图11为本申请第一实施例提供的差分放大单元的电路示意图;
图12为本申请第一实施例提供的高频采样模块的原理示意图;
图13为本申请第二实施例提供的电化学阻抗测量方法的流程图;
图14为本申请第二实施例提供的等效电路模型的示意图;
图15为本申请第二实施例提供的获取电化学阻抗拟合函数的具体流程图;
图16为图15中步骤S220的具体流程图;
图17为本申请第三实施例提供的生物阻抗测量方法的流程图;
图18为图17中步骤S500的具体流程图;
图19为硬阈值函数和软阈值函数的示意图;
图20为本申请第四实施例提供的电化学阻抗测量装置的原理示意图;
图21为本申请第四实施例提供的分析单元的原理示意图;
图22为本申请第四实施例提供的第二分析模块的原理示意图。
附图标号说明:
100-高压脉冲模块;110-第一电极;120-第二电极;200-差分采样模块;210-第一采样
支路;211-第一宽带分压单元;212-第一单端放大单元;220-第二采样支路;221-第二宽带分压单元;222-第二单端放大单元;230-第一保护单元;240-第二保护单元;300-电压处理模块;310-差分放大单元;320-第三保护单元;400-法拉第电流检测模块;410-第一差分电压采样单元;420-第二差分电压采样单元;430-第一电流采样探头;440-第二电流采样探头;451-耦合线圈;452-负载单元;500-高频采样模块;510-滤波整形单元;520-量程选择单元;530-AD转换单元;540-采样处理单元;550-光纤传输模块;600-主控模块;700-辅助电源;800-目标组织;900-人机交互模块;1000-电化学阻抗测量装置;1100-输出单元;1200-检测单元;1300-分析单元;1310-第一分析模块;1320-第二分析模块;1321-第一计算模块;1322-第二计算模块。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
图1示出了本申请第一实施例提供的组织消融装置的原理示意图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
一种组织消融装置,包括高压脉冲模块100、差分采样模块200、电压处理模块300、法拉第电流检测模块400、高频采样模块500和主控模块600。
高压脉冲模块100被配置为根据脉冲控制信号生成相应的高压脉冲信号,并通过高压脉冲模块100的第一输出端V1和第二输出端V2向目标组织800施加高压脉冲信号,第一输出端V1用于与第一电极110连接,第二输出端V2用于与第二电极120连接,目标组织800可以是生物组织,高压脉冲信号的幅值范围为0.5V~5kV,脉冲宽度为0.5us~200us,第一电极110和第二电极120可以是电极针。法拉第电流检测模块400设置在高压脉冲模块100与第一电极110和第二电极120之间,被配置为基于流经第一电极110和第二电极120的电流差值,生成对应采样信号,电流差值与参与目标组织800的电化学反应的法拉第电流IF相对应。差分采样模块200与高压脉冲模块100的第一输出端V1和第二输出端V2连接,被配置为根据第一输出端V1和第二输出端V2的电压变化分别生成并输出第一反馈电压和第二反馈电压。电压处理模块300与差分采样模块200连接,被配置为根据第一反馈电压和第二反馈电压生成并输出电压反馈信号,电压反馈信号与第一输出端V1与第二输出端V2之间的电压差相对应。高频采样模块500分别与电压处理模块300和法拉第电流检测模块400连接,被配置为根据电压反馈信号和采样信号生成并输出对应的数字反馈信号。主控模块600分别与高压脉冲模块100和高频采样模块500连接,被配置为根据接收到的数字反馈信号得到法拉第电流IF和第一输出端V1与第二输出端V2之间的电 压差,并根据法拉第电流IF和第一输出端V1与第二输出端V2之间的电压差以及电化学阻抗拟合函数得到目标组织800的电化学阻抗参数以用于生成对应的脉冲控制信号。主控模块600可以是工控机、单片机或微控制器。其中,电化学阻抗拟合函数可以通过基于目标组织800的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到。
需要说明的是,在高压脉冲信号施加到目标组织800上时,电极会在血液中放电,同时在电极的表面会发生氧化还原反应,从使气泡析出,改变目标组织800的电化学阻抗参数。根据电化学理论,在氧化还原反应过程中,穿过电极与血液的电子数与化学反应的程度有关,其反应物的消耗和气体等产物的生成量有关,若目标组织800发生了电化学反应,例如氧化还原反应,则会使得流经第一电极110的电流与流经第二电极120的电流之间存在差值,该电流差值即为参与目标组织800的电化学反应的法拉第电流IF。因此,根据法拉第电流IF、第一输出端V1和第二输出端V2之间的电压差以及电化学阻抗拟合函数得到的电化学阻抗参数能够很好地反应出气泡析出量,从而可以在电化学阻抗参数中的部分数据超出预设阈值时,主控模块600可以实时生成相应的脉冲控制信号,对高压脉冲信号进行调节或停止输出高压脉冲信号。
本实施例中,如图1所示,还包括辅助电源700,辅助电源700分别与电压处理模块300、法拉第电流检测模块400、高频采样模块500和主控模块600连接,辅助电源700被配置为生成多级工作电压,可以为电压处理模块300、法拉第电流检测模块400、高频采样模块500和主控模块600供电。
本实施例中,如图1所示,还包括人机交互模块900,人机交互模块900与主控模块600连接。人机交互模块900可以是触控屏、实体按键等设备,用于向主控模块600录入相关参数以及显示主控模块600的组织消融装置和得到的目标组织800的电化学阻抗参数。
本实施例中,如图2所示,法拉第电流检测模块400包括第一采样电阻CSR1、第二采样电阻CSR2、第一差分电压采样单元410和第二差分电压采样单元420。第一采样电阻CSR1串联在第一输出端V1与第一电极110之间,第二采样电阻CSR2串联在第二输出端V2与第二电极120之间,第一差分电压采样单元410分别与第一采样电阻CSR1的两端以及高频采样模块500连接,第二差分电压采样单元420分别与第二采样电阻CSR2的两端以及高频采样模块500连接,第一差分电压采样单元410用于采集第一采样电阻CSR1两端的第一电压差,第二差分电压采样单元420用于采集第二采样电阻CSR2两端的第二电压差。在一示例中,第一差分电压采样单元410和第二差分电压采样单元420均为采用运算放大器的差分放大电路。高频采样模块500被配置为基于第一电压差和第二电压差生成并输出对应的数字反馈信号,主控模块600被配置为基于数字反馈信号以及第一采样电阻 CSR1的阻值和第二采样电阻CSR2的阻值得到参与目标组织800的电化学反应的法拉第电流IF。
具体地,主控模块600可以从数字反馈信号中得到第一电压差和第二电压差,在第一采样电阻CSR1和第二采样电阻CSR2的阻值为已知参数的情况下,可以计算出分别流经第一采样电阻CSR1和第二采样电阻CSR2的第一电流I1和第二电流I2,第一电流I1等于流经第一电极110的电流,第二电流I2等于流经第二电极120。例如,当第一电流I1为输出电流,第二电流I2为输入电流时,第一电流I1、第二电流I2和法拉第电流IF的波形如图3所示,将第一电流I1和第二电流I2相减,可得到相应的法拉第电流IF。
另一实施例中,如图4所示,法拉第电流检测模块400包括第一电流采样探头430和第二电流采样探头440,第一电流采样探头430设置在第一输出端V1与第一电极110之间导线上并与高频采样模块500电连接,第二电流采样探头440设置在第二输出端V2与第二电极120之间导线上并与高频采样模块500电连接。
其中,第一电流采样探头430被配置为基于流经第一输出端V1与第一电极110之间导线的电流生成并向高频采样模块500输出对应的第一电流反馈信号,第二电流采样探头440被配置为基于流经第二输出端V2与第二电极120之间导线的电流生成并向高频采样模块500输出对应的第二电流反馈信号,采样信号包括第一电流反馈信号和第二电流反馈信号。高频采样模块500被配置为基于第一电流反馈信号和第二电流反馈信号生成并输出对应的数字反馈信号,主控模块600被配置为基于数字反馈信号得到两条导线上的电流,从而可以得到参与目标组织的电化学反应的法拉第电流。
通过采用第一电流采样探头430和第二电流采样探头440与导线进行耦合的方式对电流进行检测,可以减少对相关采样电参数、电路的影响,不影响组织消融装置的正常工作。
在一示例中,如图5所示,第一电流采样探头430和第二电流采样探头440结构相同,均包括耦合线圈451和负载单元452,耦合线圈451可以套设在第一输出端V1或第二输出端V2的导线上,耦合线圈451的输出端与负载单元452连接,负载单元452还与高频采样模块500连接,耦合线圈451被配置为根据导线的电流生成相应的感应电流,负载单元452被配置为根据感应电流生成并输出对应的电流反馈信号,即第一电流采样探头430的负载单元452输出第一电流反馈信号,第二电流采样探头440的负载单元452输出第二电流反馈信号。
具体地,耦合线圈451和负载单元452的等效电路图如图6所示,耦合线圈451具体可以是自积分式罗可夫斯基线圈,在等效电路图中耦合线圈451包括依次串联的等效电源M、等效电感L1和等效电阻RC,负载单元452可以是负载电阻R16。耦合线圈451可以 套设在对应导线上且耦合线圈451的两个感应电流输出端(等效电源M的一端和等效电阻RC的一端)分别与负载单元452的两端连接,以将感应电流输出至负载单元452,负载单元452的两端均与高频采样模块500连接,当感应电流流经负载单元452时,高频采样模块500可以对负载单元452两端的电压(电流反馈信号)进行采样,以得到对应的电流反馈信号,并根据电流反馈信号生成并输出对应的数字反馈信号。
本实施例中,如图7所示,差分采样模块200包括第一采样支路210和第二采样支路220,第一采样支路210连接在第一输出端V1与电压处理模块300之间,第二采样支路220连接在第二输出端V2与电压处理模块300之间;第一采样支路210被配置为生成第一反馈电压,第二采样支路220被配置为生成第二反馈电压。
差分采样模块200可以对双极性的高压脉冲信号进行差分采样,同时通过两个独立的采样支路分别对第一输出端V1和第二输出端V2的电压进行采样,可以避免第一输出端V1和第二输出端V2之间相互影响,可以获得较为准确的相应的第一反馈电压和第二反馈电压。
本实施例中,第一采样支路210包括第一宽带分压单元211和第一单端放大单元212;第一宽带分压单元211分别与第一输出端V1和第一单端放大单元212连接,第一单端放大单元212还与电压处理模块300连接,第一单端放大单元212被配置为根据第一宽带分压单元211分压得到的电压生成第一反馈电压。第二采样支路220包括第二宽带分压单元221和第二单端放大单元222;第二宽带分压单元221分别与第一输出端V1和第二单端放大单元222连接,第二单端放大单元222还与电压处理模块300连接,第二单端放大单元222被配置为根据第二宽带分压单元221分压得到的电压生成第二反馈电压。
需要说明的是,由于高压脉冲信号的电压幅值过高,因此需要第一宽带分压单元211和第二宽带分压单元221对其进行分压,同时为了能够在不失真的情况下地获取第一输出端V1和第二输出端V2的电压信号,第一宽带分压单元211和第二宽带分压单元221的带宽较高,高频信号和低频信号均可以通过第一宽带分压单元211或第二宽带分压单元221传输至第一单端放大单元212或第二单端放大单元222。第一单端放大单元212和第二单端放大单元222可以分别将经过分压后的第一输出端V1和第二输出端V2的电压以一定倍数进行放大,得到第一反馈电压和第二反馈电压。第一单端放大单元212和第二单端放大单元222的放大倍数可根据实际情况进行配置,本实施例不对其进行限制。本实施例中,第一单端放大单元212和第二单端放大单元222可达到70MHz的增益带宽积(Gain-Bandwidth Product;GBWP),可以得到200V/μs的压摆率和6.3nV/√Hz的低噪声电压。
其中,第一宽带分压单元211包括第一低频阻抗分压单元和第一高频阻抗分压单元,第一低频阻抗分压单元分别与第一输出端V1和第一单端放大单元212连接,第一高频阻抗分压单元与第一低频阻抗分压单元并联。第二宽带分压单元221包括第二低频阻抗分压单元和第二高频阻抗分压单元,第二低频阻抗分压单元分别与第一输出端V1和第二单端放大单元222连接,第二高频阻抗分压单元与第二低频阻抗分压单元并联。第一低频阻抗分压单元用于对第一输出端V1的低频信号进行分压,第二低频阻抗分压单元用于对第二输出端V2的低频信号进行分压,第一高频阻抗分压单元用于对第一输出端V1的高频信号进行分压,第二高频阻抗分压单元用于对第二输出端V2的高频信号进行分压。本实施例中,即使高压脉冲信号的电压幅值为5kV,通过第一宽带分压单元211和第二宽带分压单元221的分压,最终分压得到的最大电压仍不超过5V,同时还能保留第一输出端V1和第二输出端V2的电压变化情况。
在一示例中,如图8所示,第一低频阻抗分压单元包括依次串联的电阻R1、电阻R2、电阻R3和电阻R4,电阻R1与第一输出端V1连接,电阻R4与第一单端放大单元212连接。第一高频阻抗分压单元包括依次串联的电容C1、电容C2、电容C3和电容C4,电容C1、电容C2、电容C3和电容C4分别与电阻R1、电阻R2、电阻R3和电阻R4一一对应且相互并联。电阻R1、电阻R2、电阻R3和电阻R4均为高频无感电阻,电容C1、电容C2、电容C3和电容C4均为低等效电感的电容。
具体地,第一单端放大单元212和第二单端放大单元222均为同相放大器电路。在一示例中,如图8所示,第一单端放大单元212包括第一运算放大器U1、第一反馈电阻R9和第二反馈电阻R10,第一运算放大器U1的正相输入端与第一宽带分压单元211连接,第一运算放大器U1的输出端与电压处理模块300连接,第一反馈电阻R9的第一端与第一运算放大器U1的输出端连接,第一反馈电阻R9的第二端与第一运算放大器U1的反相输入端连接,第二反馈电阻R10的第一端与第一运算放大器U1的反相输入端连接,第二反馈电阻R10的第二端与地端连接。第二单端放大单元222包括第二运算放大器U2、第三反馈电阻R11和第四反馈电阻R12,第二运算放大器U2的正相输入端与第二宽带分压单元221连接,第二运算放大器U2的输出端与电压处理模块300连接,第三反馈电阻R11的第一端与第二运算放大器U2的输出端连接,第三反馈电阻R11的第二端与第二运算放大器U2的反相输入端连接,第四反馈电阻R12的第一端与第二运算放大器U2的反相输入端连接,第四反馈电阻R12的第二端与地端连接。
另一实施例中,如图9所示,第一采样支路210还包括第一保护单元230,第二采样支路220还包括第二保护单元240,第一保护单元230连接在第一宽带分压单元211和第 一单端放大单元212之间,第二保护单元240连接在第二宽带分压单元221和第二单端放大单元222之间。第一保护单元230和第二保护单元240被配置为分别限制传输至第一单端放大单元212和第二单端放大单元222的电压的幅值。本实施例中,第一保护单元230和第二保护单元240电路结构相同。
在一示例中,如图10所示,第一保护单元230包括分压电阻R17和击穿二极管VT1,分压电阻R17的第一端与第一宽带分压单元211连接,分压电阻R17的第二端与第一单端放大单元212连接,击穿二极管VT1的负极与分压电阻R17的第二端连接,击穿二极管VT1的正极与地端连接。当第一宽带分压单元211输出的电压的幅值过高时并大于击穿二极管VT1的击穿电压时,击穿二极管VT1被击穿,使得分压电阻R17的第二端接地,以释放电压。
本实施例中,电压处理模块300包括差分放大单元310,差分放大单元310分别与差分采样模块200和高频采样模块500连接,差分放大单元310被配置为根据第一反馈电压和第二反馈电压生成电压反馈信号。
需要说明的是,差分放大单元310可以是差分放大电路,可以根据将第一反馈电压和第二反馈电压之间的电压差以一定倍数放大,从而生成对应的电压反馈信号。
在一示例中,如图11所示,差分放大单元310包括第三运算放大器U3和第五反馈电阻R15,第三运算放大器U3的正相输入端与第一单端放大单元212连接,第三运算放大器U3的反相输入端与第二单端放大单元222连接,第五反馈电阻R15的第一端与第三运算放大器U3的输出端连接,第五反馈电阻R15的第二端与第三运算放大器U3的反相输入端连接。
另一实施例中,如图9、图10所示,电压处理模块300还包括第三保护单元320,第三保护单元320连接在差分放大单元310与高频采样模块500之间;第三保护单元320被配置为限制传输至高频采样模块500的电压幅值。第三保护单元320用于对电压反馈信号进行限幅。第一保护单元230、第二保护单元240和第三保护单元320结构相同。
本实施例中,如图12所示,高频采样模块500包括依次连接的滤波整形单元510、量程选择单元520、AD转换单元530和采样处理单元540,滤波整形单元510分别与电压处理模块300和法拉第电流检测模块400连接,采样处理单元540与主控模块600连接以及量程选择单元520连接;采样处理单元540被配置为根据AD转换单元530输出的数字信号生成相应的数字反馈信号并根据数字反馈信号配置量程选择单元520的量程。
其中,滤波整形单元510用于对电压反馈信号和采样信号进行滤波、整形,以得到畸变较小的电压反馈信号和采样信号。量程选择单元520根据设定的量程对电压反馈信号和 采样信号进行变换并输出与AD转换单元530的输入量程对应的模拟信号。AD转换单元530被配置为根据预设频率对模拟信号进行采样,以用于将模拟信号转换至数字信号。采样处理单元540用于根据数字信号得到对应的数字反馈信号,并根据数字反馈信号对量程选择单元520设定的量程进行配置,以进一步提高精确度。采样处理单元540可以是现场可编程逻辑门阵列(Field Programmable Gate Array;FPGA)或数字信号处理(Digital Signal Processing;DSP)单元。
其中,数字反馈信号包括电压数字信号和采样数字信号,电压数字信号对应第一输出端V1和第二输出端V2之间(即目标组织800两端之间)的电压值,采样数字信号对应第一电流I1和第二电流I2。
本实施例中,高频采样模块500外还包裹有屏蔽壳体,用于屏蔽外部的电磁电信号。
本实施例中,如图12所示,高频采样模块500还包括与采样处理单元540连接的光纤传输模块550,光纤传输模块550用于与主控模块600通信连接,即采样处理单元540与主控模块600之间通过光纤传输模块550通信连接。
图13示出了本申请第二实施例提供的电化学阻抗测量方法的流程图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
一种电化学阻抗测量方法,可应用于如上述任一实施例的组织消融装置,用于获取目标组织800的电化学阻抗参数。电化学阻抗测量方法包括步骤S100~S300:
S100、通过电极对对目标组织800施加高压脉冲信号。
S200、在该电极对侧获取法拉第电流IF和该电极对之间的电压差。
S300、根据法拉第电流IF、电压差以及电化学阻抗拟合函数得到目标组织800对应的电化学阻抗参数。
其中,电化学阻抗拟合函数通过基于目标组织800的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到,等效电路模型如图14所示,本实施例中,等效电路模型中的电化学阻抗参数包括组织和溶液电阻RΩ、法拉第阻抗Zf、双电层电容Cd、寄生电容Cp以及寄生电感Ls。其中,法拉第阻抗Zf代表了电化学反应体系中的非线性阻抗,其参数与高压脉冲信号的频率相关;双电层电容Cd代表了消融电极在血液中的等效电容;寄生电容Cp和寄生电感Ls分别代表了整个回路的寄生电容和寄生电感。
需要说明的是,由于目标组织800的电化学阻抗模型较为复杂,包含的参数较多且难以直接进行检测,因此为了能够实时获取目标组织800的电化学阻抗参数,本实施例通过曲线拟合获取电化学阻抗拟合函数的方式,可以仅需要采集容易检测的法拉第电流IF以及电极对之间的电压差,其中,电极对之间的电压差可用第一输出端V1和第二输出端V2之 间的电压差代替,就可以得到实时的电化学阻抗参数,进而根据实时的电化学阻抗参数判断气泡析出的情况。
本实施例中,如图15所示,步骤S300之前,具体还包括步骤S210~S220:
S210、建立目标组织800的等效电路模型。
S220、通过等效电路模型进行多次脉冲电场消融模拟实验,将实验得到的法拉第电流IF、电压差以及等效电路模型的电化学阻抗参数进行曲线拟合,得到电化学阻抗拟合函数。
步骤S210~S220用于基于目标组织800的等效电路模型获取电化学阻抗拟合函数。通过建立等效电路模型,可以准确地对其中的参数进行调整,以获得更多组不同的数据,提高电化学阻抗拟合函数准确性。
本实施例中,如图16所示,步骤S220具体包括步骤S221~S223:
S221、在施加不同的高压脉冲信号或设置不同的等效电路模型的情况下,获取多组对应的数字反馈信号。
S222、根据各组数字反馈信号得到对应的法拉第电流IF和电压差。
S223、将各组法拉第电流IF、电压差以及对应的等效电路模型的电化学阻抗参数进行曲线拟合,得到电化学阻抗拟合函数。
具体地,步骤S223中,所采用的曲线拟合方式为,先设定目标多元函数,通过搜索算法或迭代算法实现目标多元函数的优化,得到电化学阻抗拟合函数。其中,可采用的迭代算法包括牛顿迭代法(Newton’s method)、麦夸特法(Levenberg-Marquardt method)和变尺度法等。此外,由于目标组织800的电化学阻抗模型所描述的为复数模型,需同时对各阻抗的实部和虚部进行拟合,将进一步增加迭代算法求解非线性方程的复杂度。本实施例采用多维下降单纯形法(Nelder-Mead method)进行目标多元函数的迭代,以得到电化学阻抗拟合函数。
图17示出了本申请第三实施例提供的生物阻抗测量方法的流程图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
本实施例中,生物阻抗测量方法可以应用于如上述任一实施例的组织消融装置,得到的生物阻抗可用于气泡析出的判断。
如图17所示,生物阻抗测量方法具体包括步骤S400~S600:
S400、在高压脉冲模块100输出高压脉冲信号的情况下,获取高频采样模块500提供的数字反馈信号。其中,数字反馈信号包括电压数字信号和电流数字信号,电压数字信号对应正极输出端V1和负极输出端V2之间(即目标组织800两端之间)的电压值,电流数字信号对应流经正极输出端V1或负极输出端V2(即流经目标组织800)的电流值。
S500、将数字反馈信号进行小波去噪滤波处理,得到重构信号。其中,重构信号包括与电压数字信号对应的电压重构信号以及与电流数字信号对应的电流重构信号。
S600、将重构信号进行快速傅里叶变换,得到目标组织800的生物电阻抗。
通过如上述生物阻抗测量方法可以避免高压脉冲信号过高的电压的影响,获得实时的生物电阻抗Z(ω)。
具体地,快速傅里叶变换的公式为:式中,F{u(t)}为电压重构信号,F{i(t)}为电压重构信号。
本实施例中,高压脉冲模块100、差分采样模块200、电压处理模块300、法拉第电流检测模块400和高频采样模块500可用于实现步骤S400,主控模块600可用于实现步骤S500和步骤S600。
如图18所示,步骤S500具体包括步骤S510~S530:
S510、将数字反馈信号进行离散小波变换,得到各层小波系数Cj,k。其中,k为第j层小波空间的小波系数阶数。其中,j=1,2,…,J。J为自然数,可根据实际情况进行设置。
S520、将各个小波系数Cj,k代入阈值函数以进行阈值函数处理。
S530、将阈值函数处理后的小波系数Cj,k进行离散小波反变换得到重构信号。
具体地,步骤S520中,需要先计算全局阈值λ或尺度相关阈值λj。I为自然数,可根据实际情况进行设置。全局阈值λ的计算公式为:式中,n为全局信号长度;尺度相关阈值λj的计算公式为:式中,nj为各层小波系数的信号长度,系数σj可根据经验确定,也可由下式确定:σj=MAD(|Cj,k|,0≤k≤2j-1-1)/q,式中,MAD()表示对括号中的数值取中值,MAD(|Cj,k|,0≤k≤2j-1-1)为小波系数序列中的中值,系数q可根据经验在0.4~1之间选取,进一步的,可以将q值取为0.6~0.8之间。本实施例采用的全局阈值λ,具体采用全局阈值λ还是尺度相关阈值λj可根据实际需求决定。
步骤S520中,阈值函数包括硬阈值函数和软阈值函数,硬阈值函数和软阈值函数的示意图如图18所示,硬阈值函数仅保留绝对值大于全局阈值λ的小波系数,并且被保留的 小波系数与原始系数相同,而较小的小波系数则置零,硬阈值函数具体为:
软阈值函数对绝对值小于全局阈值λ的小波系数值同样取零,绝对值大于全局阈值λ的小波系数数值则用λ来收缩,软阈值函数具体为:
当步骤S520中采用硬阈值函数时,阈值函数在全局阈值λ处不连续,会造成较大的方差,使重构信号产生附加的振荡,不具有同原始信号一样的光滑性,即则在执行步骤S530之后可以获得与数字反馈信号的波形更接近的重构信号。当步骤S520中采用软阈值函数时,软阈值函数通常会使去噪后的信号更平滑,但也会丢失信号的某些特征,影响重构信号与原始信号的逼近程度,即则在执行步骤S530之后可以获得比数字反馈信号的波形更平滑的重构信号。其中,离散小波反变换公式为:f(t)=Σj,kcj,kψj,k(t),式中,ψj,k(t)为各小波系数Cj,k对应的尺度函数。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图20示出了本申请第四实施例提供的电化学阻抗测量装置的原理示意图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
如图20所示,电化学阻抗测量装置1000可以应用于上述任一项实施例的组织消融装置,以及执行上述任一项实施例的生物阻抗测量方法,用于获取目标组织800的电化学阻抗参数,电化学阻抗测量装置1000包括:输出单元1100、检测单元1200和分析单元1300。
输出单元1100用于通过电极对对目标组织800施加高压脉冲信号;检测单元1200用于在该电极对侧获取法拉第电流和该电极对之间的电压差;分析单元1300用于根据法拉第电流、电压差以及电化学阻抗拟合函数得到目标组织800对应的电化学阻抗参数;其中,电化学阻抗拟合函数通过基于目标组织800的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到。
其中,电化学阻抗拟合函数通过基于目标组织800的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到,等效电路模型如图14所示,本实施例中,等效电路模型中的电化学阻抗参数包括组织和溶液电阻RΩ、法拉第阻抗Zf、双电层电容Cd、寄生电容Cp以及寄生电感Ls。其中,法拉第阻抗Zf代表了电化学反应体系中的非线性阻抗,其参数与高压脉冲信号的频率相关;双电层电容Cd代表了消融电极在血液中的等效电容;寄生电容Cp和寄生电感Ls分别代表了整个回路的寄生电容和寄生电感。
需要说明的是,由于目标组织800的电化学阻抗模型较为复杂,包含的参数较多且难以直接进行检测,因此为了能够实时获取目标组织800的电化学阻抗参数,本实施例通过曲线拟合获取电化学阻抗拟合函数的方式,可以仅需要采集容易检测的法拉第电流IF以及电极对之间的电压差,其中,电极对之间的电压差可用第一输出端V1和第二输出端V2之间的电压差代替,就可以得到实时的电化学阻抗参数,进而根据实时的电化学阻抗参数判断气泡析出的情况。
如图21所示,在一实施例中,分析单元1300包括:第一分析模块1310和第二分析模块1320。
第一分析模块1310用于建立目标组织800的等效电路模型;第二分析模块1320用于通过等效电路模型进行多次脉冲电场消融模拟实验,将实验得到的法拉第电流、电压差以及等效电路模型的电化学阻抗参数进行曲线拟合,得到电化学阻抗拟合函数。
第一分析模块1310和第二分析模块1320用于基于目标组织800的等效电路模型获取电化学阻抗拟合函数。通过建立等效电路模型,可以准确地对其中的参数进行调整,以获得更多组不同的数据,提高电化学阻抗拟合函数准确性。
如图22所示,在一实施例中,第二分析模块1320包括:第一计算模块1321和第二计算模块1322。
第一计算模块1321用于在施加不同的高压脉冲信号或设置不同的等效电路模型的情况下,获取多组对应的数字反馈信号;第二计算模块1322用于根据各组数字反馈信号得到对应的法拉第电流和电压差;第二计算模块1322还用于将各组法拉第电流、电压差以及对应的等效电路模型的电化学阻抗参数进行曲线拟合,得到电化学阻抗拟合函数。
具体地,第二计算模块1322所采用的曲线拟合方式为,先设定目标多元函数,通过搜索算法或迭代算法实现目标多元函数的优化,得到电化学阻抗拟合函数。其中,可采用的迭代算法包括牛顿迭代法(Newton’s method)、麦夸特法(Levenberg-Marquardt method)和变尺度法等。此外,由于目标组织800的电化学阻抗模型所描述的为复数模型,需同时对各阻抗的实部和虚部进行拟合,将进一步增加迭代算法求解非线性方程的复杂度。本实施例采用多维下降单纯形法(Nelder-Mead method)进行目标多元函数的迭代,以得到电化学阻抗拟合函数。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种组织消融装置,其特征在于,包括:
    高压脉冲模块(100),被配置为根据脉冲控制信号生成相应的高压脉冲信号,并通过所述高压脉冲模块(100)的第一输出端和第二输出端向目标组织(800)施加所述高压脉冲信号,所述第一输出端用于与第一电极(110)连接,所述第二输出端用于与第二电极(120)连接;
    法拉第电流检测模块(400),设置在所述高压脉冲模块(100)与所述第一电极(110)和所述第二电极(120)之间,被配置为基于流经所述第一电极(110)和所述第二电极(120)的电流,生成对应采样信号;
    差分采样模块(200),与所述高压脉冲模块(100)的第一输出端和第二输出端连接,被配置为根据所述第一输出端和所述第二输出端的电压变化分别生成并输出第一反馈电压和第二反馈电压;
    电压处理模块(300),与所述差分采样模块(200)连接,被配置为根据所述第一反馈电压和所述第二反馈电压生成并输出电压反馈信号,所述电压反馈信号与所述第一输出端与所述第二输出端之间的电压差相对应;
    高频采样模块(500),分别与所述电压处理模块(300)和所述法拉第电流检测模块(400)连接,被配置为根据所述电压反馈信号和所述采样信号生成并输出对应的数字反馈信号;
    主控模块(600),分别与所述高压脉冲模块(100)和所述高频采样模块(500)连接,被配置为根据接收到的所述数字反馈信号得到法拉第电流和所述第一输出端与所述第二输出端之间的电压差,并根据所述法拉第电流和所述第一输出端与所述第二输出端之间的电压差以及电化学阻抗拟合函数得到所述目标组织(800)的电化学阻抗参数以用于生成对应的所述脉冲控制信号,其中,所述电化学阻抗拟合函数通过基于所述目标组织(800)的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到。
  2. 如权利要求1所述的组织消融装置,其特征在于,所述法拉第电流检测模块(400)包括第一采样电阻、第二采样电阻、第一差分电压采样单元(410)和第二差分电压采样单元(420);
    所述第一采样电阻串联在所述第一输出端与所述第一电极(110)之间,所述第二采样电阻串联在所述第二输出端与所述第二电极(120)之间,所述第一差分电压采样单元(410)分别与所述第一采样电阻的两端以及所述高频采样模块(500)连接,所述第二差分电压采样单元(420)分别与所述第二采样电阻的两端以及所述高频采样模块(500)连接,所述第一差分电压采样单元(410)用于采集所述第一采样电阻两端的第一电压差,所述第二差分电压采样单元(420)用于采集所述第二采样电阻两端的第二电压差,所述采样信号包括所述第一电压差和所述第二电压差;
    所述高频采样模块(500)被配置为基于所述第一电压差和所述第二电压差生成并输出 对应的所述数字反馈信号,所述主控模块(600)被配置为基于所述数字反馈信号以及所述第一采样电阻的阻值和所述第二采样电阻的阻值得到参与所述目标组织(800)的电化学反应的法拉第电流。
  3. 如权利要求1所述的组织消融装置,其特征在于,所述法拉第电流检测模块(400)包括第一电流采样探头(430)和第二电流采样探头(440),所述第一电流采样探头(430)设置在所述第一输出端与所述第一电极(110)之间导线上并与所述高频采样模块(500)电连接,所述第二电流采样探头(440)设置在所述第二输出端与所述第二电极(120)之间导线上并与所述高频采样模块(500)电连接;
    所述第一电流采样探头(430)被配置为基于流经所述第一输出端与所述第一电极(110)之间导线的电流生成并向所述高频采样模块(500)输出第一电流反馈信号,所述第二电流采样探头(440)被配置为基于流经所述第二输出端与所述第二电极(120)之间导线的电流生成并向所述高频采样模块(500)输出第二电流反馈信号,所述采样信号包括所述第一电流反馈信号和所述第二电流反馈信号;
    所述高频采样模块(500)被配置为基于所述第一电流反馈信号和所述第二电流反馈信号生成并输出对应的数字反馈信号,所述主控模块(600)被配置为基于所述数字反馈信号得到参与所述目标组织(800)的电化学反应的法拉第电流。
  4. 如权利要求1所述的组织消融装置,其特征在于,所述差分采样模块(200)包括第一采样支路(210)和第二采样支路(220),所述第一采样支路(210)连接在所述第一输出端与所述电压处理模块(300)之间,所述第二采样支路(220)连接在所述第二输出端与所述电压处理模块(300)之间;所述第一采样支路(210)被配置为生成所述第一反馈电压,所述第二采样支路(220)被配置为生成所述第二反馈电压。
  5. 如权利要求4所述的组织消融装置,其特征在于,所述第一采样支路(210)包括第一宽带分压单元(211)和第一单端放大单元(212);所述第一宽带分压单元(211)分别与所述第一输出端和所述第一单端放大单元(212)连接,所述第一单端放大单元(212)还与所述电压处理模块(300)连接,所述第一单端放大单元(212)被配置为根据所述第一宽带分压单元(211)分压得到的电压生成所述第一反馈电压。
  6. 如权利要求5所述的组织消融装置,其特征在于,所述第二采样支路(220)包括第二宽带分压单元(221)和第二单端放大单元(222);所述第二宽带分压单元(221)分别与所述第一输出端和所述第二单端放大单元(222)连接,所述第二单端放大单元(222)还与所述电压处理模块(300)连接,所述第二单端放大单元(222)被配置为根据所述第二宽带分压单元(221)分压得到的电压生成所述第二反馈电压。
  7. 如权利要求6所述的组织消融装置,其特征在于,所述第一采样支路(210)还包括第一保护单元(230),所述第二采样支路(220)还包括第二保护单元(240),所述第一保护单元(230)连接在所述第一宽带分压单元(211)和所述第一单端放大单元(212)之间,所述第二保护单元(240)连接在所述第二宽带分压单元(221)和所述第二单端放大单 元(222)之间;
    所述第一保护单元(230)和所述第二保护单元(240)被配置为分别限制传输至所述第一单端放大单元(212)和所述第二单端放大单元(222)的电压的幅值。
  8. 如权利要求1所述的组织消融装置,其特征在于,所述电压处理模块(300)包括相互连接的差分放大单元(310)和第三保护单元(320),所述差分放大单元(310)还与所述差分采样模块(200)连接,所述差分放大单元(310)被配置为根据所述第一反馈电压和所述第二反馈电压生成所述电压反馈信号,所述第三保护单元(320)还与所述高频采样模块(500)连接,所述第三保护单元(320)被配置为限制传输至所述高频采样模块(500)的电压的幅值。
  9. 如权利要求1至8任一项所述的组织消融装置,其特征在于,所述高频采样模块(500)包括依次连接的滤波整形单元(510)、量程选择单元(520)、AD转换单元(530)和采样处理单元(540),所述滤波整形单元(510)分别与所述电压处理模块(300)和所述法拉第电流检测模块(400)连接,所述采样处理单元(540)与所述主控模块(600)连接以及所述量程选择单元(520)连接;所述滤波整形单元(510)被配置为将接收到的所述电压反馈信号和所述采样信号按照设定的量程进行转换得到对应的模拟信号,所述AD转换单元(530)被配置为根据预设频率对所述模拟信号进行采样得到数字信号;所述采样处理单元(540)被配置为根据所述AD转换单元(530)输出的所述数字信号生成相应的数字反馈信号并根据所述数字反馈信号配置所述量程选择单元(520)的量程。
  10. 一种电化学阻抗测量装置,其特征在于,应用于组织消融装置,用于获取目标组织(800)的电化学阻抗参数,所述电化学阻抗测量装置包括:
    输出单元,用于通过电极对对所述目标组织(800)施加高压脉冲信号;
    检测单元,用于在该电极对侧获取法拉第电流和该电极对之间的电压差;
    分析单元,用于根据所述法拉第电流、所述电压差以及电化学阻抗拟合函数得到所述目标组织(800)对应的所述电化学阻抗参数;
    其中,所述电化学阻抗拟合函数通过基于所述目标组织(800)的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到。
  11. 如权利要求10所述的电化学阻抗测量装置,其特征在于,所述分析单元包括:
    第一分析模块,用于建立所述目标组织(800)的等效电路模型;
    第二分析模块,用于通过所述等效电路模型进行多次脉冲电场消融模拟实验,将实验得到的所述法拉第电流、所述电压差以及所述等效电路模型的电化学阻抗参数进行曲线拟合,得到所述电化学阻抗拟合函数。
  12. 如权利要求11所述的电化学阻抗测量装置,其特征在于,所述第二分析模块包括:
    第一计算模块,用于在施加不同的所述高压脉冲信号或设置不同的所述等效电路模型的情况下,获取多组对应的数字反馈信号;
    第二计算模块,用于根据各组所述数字反馈信号得到对应的所述法拉第电流和所述电 压差;所述第二计算模块还用于将各组所述法拉第电流、所述电压差以及对应的所述等效电路模型的电化学阻抗参数进行曲线拟合,得到所述电化学阻抗拟合函数。
  13. 一种电化学阻抗测量方法,其特征在于,应用于组织消融装置,用于获取目标组织(800)的电化学阻抗参数,所述电化学阻抗测量方法包括:
    通过电极对对所述目标组织(800)施加高压脉冲信号;
    在该电极对侧获取法拉第电流和该电极对之间的电压差;
    根据所述法拉第电流、所述电压差以及电化学阻抗拟合函数得到所述目标组织(800)对应的所述电化学阻抗参数;
    其中,所述电化学阻抗拟合函数通过基于所述目标组织(800)的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到。
  14. 如权利要求13所述的电化学阻抗测量方法,其特征在于,所述电化学阻抗拟合函数通过基于所述目标组织(800)的等效电路模型进行脉冲电场消融模拟实验时得到的电参数拟合得到包括:
    建立所述目标组织(800)的等效电路模型;
    通过所述等效电路模型进行多次脉冲电场消融模拟实验,将实验得到的所述法拉第电流、所述电压差以及所述等效电路模型的电化学阻抗参数进行曲线拟合,得到所述电化学阻抗拟合函数。
  15. 如权利要求14所述的电化学阻抗测量方法,其特征在于,所述通过所述等效电路模型进行多次脉冲电场消融模拟实验,将实验得到的所述法拉第电流、所述电压差以及所述等效电路模型的电化学阻抗参数进行曲线拟合,得到所述电化学阻抗拟合函数包括:
    在施加不同的所述高压脉冲信号或设置不同的所述等效电路模型的情况下,获取多组对应的数字反馈信号;
    根据各组所述数字反馈信号得到对应的所述法拉第电流和所述电压差;
    将各组所述法拉第电流、所述电压差以及对应的所述等效电路模型的电化学阻抗参数进行曲线拟合,得到所述电化学阻抗拟合函数。
PCT/CN2023/080596 2022-07-12 2023-03-09 组织消融装置、电化学阻抗测量装置及方法 WO2024011931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210816533.1A CN114983551B (zh) 2022-07-12 2022-07-12 组织消融装置以及电化学阻抗测量装置
CN202210816533.1 2022-07-12

Publications (1)

Publication Number Publication Date
WO2024011931A1 true WO2024011931A1 (zh) 2024-01-18

Family

ID=83019137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080596 WO2024011931A1 (zh) 2022-07-12 2023-03-09 组织消融装置、电化学阻抗测量装置及方法

Country Status (2)

Country Link
CN (1) CN114983551B (zh)
WO (1) WO2024011931A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114983551B (zh) * 2022-07-12 2022-10-25 深圳迈微医疗科技有限公司 组织消融装置以及电化学阻抗测量装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105943045A (zh) * 2016-05-18 2016-09-21 上海交通大学 用于人体成分分析的高精度生物电阻抗测量系统及方法
CN107872982A (zh) * 2015-03-31 2018-04-03 昂科赛克医疗公司 用于改进的基于组织感测的电穿孔的系统和方法
DE102019000763A1 (de) * 2019-02-02 2020-08-06 Wolfgang Krautschneider Anordnung zur elektrischen Charakterisierung von biologischem Material
CN112236192A (zh) * 2018-05-02 2021-01-15 安克塞克医疗公司 电穿孔系统、方法和设备
CN114983551A (zh) * 2022-07-12 2022-09-02 深圳迈微医疗科技有限公司 组织消融装置以及电化学阻抗测量方法
CN115177357A (zh) * 2022-07-12 2022-10-14 深圳迈微医疗科技有限公司 双模态组织消融装置
CN115192182A (zh) * 2022-07-12 2022-10-18 深圳迈微医疗科技有限公司 不可逆电穿孔治疗设备及生物阻抗测量方法
CN217907965U (zh) * 2022-07-12 2022-11-29 深圳迈微医疗科技有限公司 不可逆电穿孔治疗设备
CN217907966U (zh) * 2022-07-12 2022-11-29 深圳迈微医疗科技有限公司 双模态组织消融装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194836B (zh) * 2006-12-05 2011-09-14 重庆博恩富克医疗设备有限公司 一种生物电阻抗测量中消除干扰的方法和装置
AU2015253300A1 (en) * 2014-04-29 2016-11-10 The Regents Of The University Of California Bio-impedance measurement method using bi-phasic current stimulus excitation for implantable stimulator
US10548665B2 (en) * 2016-02-29 2020-02-04 Pulse Biosciences, Inc. High-voltage analog circuit pulser with feedback control
CN109157280A (zh) * 2018-08-10 2019-01-08 重庆大学 不可逆电穿孔组织消融效果动态实时评估设备
US10556102B1 (en) * 2018-08-13 2020-02-11 Biosense Webster (Israel) Ltd. Automatic adjustment of electrode surface impedances in multi-electrode catheters
BR102019004205A2 (pt) * 2019-02-28 2020-10-06 Mario Fernandes Chammas Junior Dispositivo para tratamento de aumento prostático através do uso de campo eletromagnético pulsado
WO2020215007A1 (en) * 2019-04-18 2020-10-22 Galary, Inc. Devices, systems and methods for the treatment of abnormal tissue
SG11202111518WA (en) * 2019-05-09 2021-11-29 Gyrus Acmi Inc D/B/A Olympus Surgical Technologies America Electrosurgical systems and methods
US20210023362A1 (en) * 2019-07-24 2021-01-28 Virginia Tech Intellectual Properties, Inc. Fourier analysis spectroscopy for monitoring tissue impedance changes and treatment outcome during electroporation-based-therapies
GB2590424A (en) * 2019-12-17 2021-06-30 Creo Medical Ltd Electrosurgical instrument and apparatus
CN112022331B (zh) * 2020-08-31 2021-06-18 天津市鹰泰利安康医疗科技有限责任公司 不可逆电穿孔消融系统
CN113842200A (zh) * 2020-11-30 2021-12-28 杭州德诺电生理医疗科技有限公司 一种脉冲消融仪及其控制方法
CN113397689A (zh) * 2021-06-25 2021-09-17 浙江伽奈维医疗科技有限公司 一种复合射频及不可逆电穿孔的切换装置
CN113648053A (zh) * 2021-09-01 2021-11-16 杭州维纳安可医疗科技有限责任公司 用于脉冲消融治疗的脉冲监控方法、装置及设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872982A (zh) * 2015-03-31 2018-04-03 昂科赛克医疗公司 用于改进的基于组织感测的电穿孔的系统和方法
CN105943045A (zh) * 2016-05-18 2016-09-21 上海交通大学 用于人体成分分析的高精度生物电阻抗测量系统及方法
CN112236192A (zh) * 2018-05-02 2021-01-15 安克塞克医疗公司 电穿孔系统、方法和设备
DE102019000763A1 (de) * 2019-02-02 2020-08-06 Wolfgang Krautschneider Anordnung zur elektrischen Charakterisierung von biologischem Material
CN114983551A (zh) * 2022-07-12 2022-09-02 深圳迈微医疗科技有限公司 组织消融装置以及电化学阻抗测量方法
CN115177357A (zh) * 2022-07-12 2022-10-14 深圳迈微医疗科技有限公司 双模态组织消融装置
CN115192182A (zh) * 2022-07-12 2022-10-18 深圳迈微医疗科技有限公司 不可逆电穿孔治疗设备及生物阻抗测量方法
CN217907965U (zh) * 2022-07-12 2022-11-29 深圳迈微医疗科技有限公司 不可逆电穿孔治疗设备
CN217907966U (zh) * 2022-07-12 2022-11-29 深圳迈微医疗科技有限公司 双模态组织消融装置

Also Published As

Publication number Publication date
CN114983551B (zh) 2022-10-25
CN114983551A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN109875678A (zh) 不可逆电穿孔组织消融效果动态实时评估设备及评估方法
WO2024011931A1 (zh) 组织消融装置、电化学阻抗测量装置及方法
CN102551875B (zh) 不同频率下的多通道消融
CN103110416A (zh) 远程心电智能监护系统
Kappel et al. Study of impedance spectra for dry and wet EarEEG electrodes
Onaral et al. Electrical properties of bioelectrodes
CN111632273B (zh) 一种表面肌电评估诊断及生物反馈电刺激治疗方法
CN113558744A (zh) 一种融合阻抗谱实时测量的不可逆电穿孔设备
US10383537B2 (en) Physiological signal measuring method and physiological signal measuring device
CN217907965U (zh) 不可逆电穿孔治疗设备
CN101138495B (zh) 一种电刺激噪声消除仪
CN115192182A (zh) 不可逆电穿孔治疗设备及生物阻抗测量方法
CN103417208B (zh) 房颤检测装置
CN103445772B (zh) 便携式房颤检测装置
CN114711958B (zh) 一种脉冲电场多极消融装置
CN200966842Y (zh) 临时起搏分析仪
EP2579775A1 (en) Systems and methods for measurements of anatomical parameters
CN115568931A (zh) 一种生物组织焊接系统
Tseng et al. Evaluation and verification of channel transmission characteristics of human body for optimizing data transmission rate in electrostatic-coupling intra body communication system: A comparative analysis
CN115089874A (zh) 一种基于脑电波反馈的自适应微电流电疗系统
CN108542381A (zh) 一种数据处理方法和装置
Haberman et al. Capacitive driven–right–leg circuit design
Jiang et al. Design of ECG Signal Generator Based on Motion Scene
Li et al. A Wearable EEG Real-time Measure and Analysis Platform for Home Applications
US10492850B2 (en) Systems and methods for calculating tissue impedance in electrosurgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838433

Country of ref document: EP

Kind code of ref document: A1