WO2024011746A1 - 基于滚动载荷作用下变形速度的弯沉盆检测方法及装置 - Google Patents

基于滚动载荷作用下变形速度的弯沉盆检测方法及装置 Download PDF

Info

Publication number
WO2024011746A1
WO2024011746A1 PCT/CN2022/118738 CN2022118738W WO2024011746A1 WO 2024011746 A1 WO2024011746 A1 WO 2024011746A1 CN 2022118738 W CN2022118738 W CN 2022118738W WO 2024011746 A1 WO2024011746 A1 WO 2024011746A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
vertical deformation
road surface
speed
target position
Prior art date
Application number
PCT/CN2022/118738
Other languages
English (en)
French (fr)
Inventor
李清泉
林红
曹民
王新林
周会鸿
韦仕仕
Original Assignee
武汉光谷卓越科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210814910.8A external-priority patent/CN115217018B/zh
Application filed by 武汉光谷卓越科技股份有限公司 filed Critical 武汉光谷卓越科技股份有限公司
Priority to AU2022454784A priority Critical patent/AU2022454784A1/en
Priority to CA3238408A priority patent/CA3238408A1/en
Publication of WO2024011746A1 publication Critical patent/WO2024011746A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs

Definitions

  • This application relates to the technical field of highway pavement and airport pavement detection, and in particular to a deflection basin detection method and device based on deformation speed under rolling load.
  • Highway pavement/airport pavement deflection detection is the basis for evaluating the bearing capacity of the pavement and is crucial for the control and inspection of project quality.
  • Traditional deflection measurement methods are based on direct displacement measurement methods, that is, directly measuring the displacement of the road surface under the action of force. Representative methods include Beckmann beam and FWD (Falling Weight Deflectometer). These methods all use the measurement method of dynamic driving combined with static measurement. The measurement efficiency is low, the impact on traffic is great, and there are huge safety hazards. They cannot meet the requirements of road preventive maintenance (preventive maintenance) and perform dynamic bending of the road network in a short period of time. sink measurement requirements.
  • the representative technologies include TSD (Traffic Speed Deflectometer, traffic speed deflectometer), HSD (High Speed Deflectograph, high-speed curve Shen detection equipment) and LDD (Laser Dynamic Deflectometer, laser dynamic deflectometer), etc.
  • TSD Traffic Speed Deflectometer, traffic speed deflectometer
  • HSD High Speed Deflectograph, high-speed curve Shen detection equipment
  • LDD Laser Dynamic Deflectometer, laser dynamic deflectometer
  • This type of measurement system consists of multiple Doppler vibrometers, one of which is used to measure the data of the vertical deformation velocity of the road outside the deflection basin (for example, 3.6 meters) without reference, and the other Doppler vibrometers are used To measure the vertical deformation speed of the road surface in the deflection basin under the 50KN load wheel.
  • This type of equipment can normally measure the maximum deflection value of the load center of the actual road network at 20-90km/h.
  • the load-bearing performance of a structural layer can be reflected by the maximum deflection value of the load center, the load-bearing performance of a certain structural layer cannot be characterized.
  • the deflection of load centers with similar bearing capacity may differ greatly.
  • the deflection of a single point on the road surface cannot well reflect the actual load-bearing capacity of the pavement structure, and it is obviously unreasonable to use it to make pavement reinforcement design or maintenance decisions.
  • This application provides a method and device for detecting deflection basins based on deformation speed under rolling load, to solve the problem in the prior art that it is difficult to detect deflection basins quickly, and to achieve continuous and rapid detection of deflection basins.
  • This application provides a deflection basin detection method based on deformation speed under rolling load, including:
  • each response time interval corresponding to each target position duration Based on each measurement time corresponding to each target position, the road vertical deformation speed at each measurement time corresponding to each target position, and the road surface vertical deformation speed knowledge base model, obtain each response time interval corresponding to each target position duration;
  • Each response time interval represents the vertical deformation speed of the road surface
  • each of the target positions includes a first measurement point and at least three second measurement points; the first measurement point is the location of the measurement point corresponding to the load center position in the target deflection basin, and the second measurement point is the position of the remaining measuring points in the target deflection basin except the load center position; the measurement time corresponding to each target position is determined by the load moving speed and the speedometer in the deflection basin detection system. The horizontal installation position is calculated.
  • a deflection basin detection method based on deformation speed under rolling load is provided, which is suitable for detection of deflection basins on highway pavements or airport pavements;
  • the detection results of the target deflection basin are corrected.
  • the vertical deformation of the road surface based on each measurement time corresponding to each target position and each measurement time corresponding to each target position is Speed and road surface vertical deformation speed knowledge base model to obtain the duration of each response time interval corresponding to each target position, including:
  • each first duration is the time difference between two adjacent measurement moments corresponding to any of the target positions;
  • the deformation velocity of the second measurement point under the action of the load is obtained. response start time;
  • the duration of each response time interval of the second measurement point is obtained.
  • the representative road vertical deformation speed based on each response time interval corresponding to each target position and the corresponding corresponding target position includes:
  • For each target position obtain the cumulative vertical deformation amount of the target position based on the representative road vertical deformation speed of each response time interval corresponding to the target position and the duration of the response time interval;
  • Obtaining the cumulative vertical deformation amount of the target position based on the representative road vertical deformation speed of each response time interval corresponding to the target position and the duration of the response time interval includes:
  • the sum of each product is obtained as the cumulative vertical deformation of the target position.
  • the vertical deformation speed of the road surface at each measurement time corresponding to each target position, each response corresponding to each target position, The duration of the time interval and the road surface vertical deformation speed knowledge base model are used to obtain the representative road surface vertical deformation speed of each response time interval corresponding to each target position, including:
  • the speed knowledge base model obtains the representative road vertical deformation speed of each response time interval corresponding to each target position.
  • the detection results of the target deflection basin include the cumulative vertical deformation amount of each target position
  • the method of correcting the detection results of the target deflection basin based on the measurement environment information of the target deflection basin and the deflection basin correction knowledge base model includes:
  • the accumulated vertical deformation of the target position is corrected based on the correction coefficient of the target position.
  • the vertical deformation speed of the road surface at each measurement time corresponding to the first measurement point and the The road surface vertical deformation speed knowledge base model is used to obtain the response start time and response end time of the first measurement point under the load, including:
  • the road surface vertical deformation speed and the road surface vertical deformation speed of multiple measurement moments corresponding to the first measurement point that are close to the response start time of the first measurement point under the load Based on the first duration, the road surface vertical deformation speed and the road surface vertical deformation speed of multiple measurement moments corresponding to the first measurement point that are close to the response start time of the first measurement point under the load.
  • Deformation speed knowledge base model to obtain the response start time of the first measurement point under the action of the load;
  • the road surface vertical deformation speed and the road surface vertical deformation speed of multiple measurement moments corresponding to the first measurement point that are close to the response end time of the first measurement point under the load Based on the first duration, the road surface vertical deformation speed and the road surface vertical deformation speed of multiple measurement moments corresponding to the first measurement point that are close to the response end time of the first measurement point under the load.
  • the deformation speed knowledge base model, as well as the moving position information of the load and the moving speed information of the load obtain the response end time of the first measurement point under the action of the load.
  • obtaining the response start time of the first measurement point under the load includes:
  • the obtaining the response start time of the second measurement point under the load includes:
  • Obtaining the response end time of the first measurement point under the load includes:
  • the response end time of the first measurement point under the load is obtained.
  • This application also provides a deflection basin detection device based on the road surface deformation speed under rolling load, including:
  • the original velocity acquisition module is used to obtain the vertical deformation velocity of the road surface at each measurement moment corresponding to each target position in the target deflection basin during the load movement;
  • a duration acquisition module configured to obtain each target position based on each measurement time corresponding to each target position, the road vertical deformation speed at each measurement time corresponding to each target position, and the road surface vertical deformation speed knowledge base model. The corresponding length of each response time interval;
  • a deflection basin detection module configured to obtain the target deflection basin based on the representative road vertical deformation speed of each response time interval corresponding to each target position and the duration of each response time interval corresponding to each target position. Test results;
  • each of the target positions includes a first measurement point and at least three second measurement points; the first measurement point is the location of the measurement point corresponding to the load center position in the target deflection basin, and the second measurement point is the position of the remaining measuring points in the target deflection basin except the load center position; the measurement time corresponding to each target position is determined by the load moving speed and the speedometer in the deflection basin detection system. The horizontal installation position is calculated.
  • This application also provides a deflection basin detection system based on the deformation speed of the road surface under the action of rolling load, a continuous deflection speed measurement subsystem and any one of the above described deflection basin detection devices based on the deformation speed of the road surface under the action of rolling load;
  • the continuous deflection velocity measurement subsystem includes: a traction device and a carrier;
  • the carrier is used to move on the road surface under the traction of the traction device and apply a load to the road surface during the movement;
  • a cross beam is provided on the carrier; a speed measurement device, an attitude measurement unit and an auxiliary measurement unit are provided on the cross beam;
  • the speed measurement unit includes a second speed sensor and at least three first speed sensors; the first speed sensor is used to measure the vertical deformation speed of the road surface in the target deflection basin; the second speed sensor is installed on The outside of the deflection basin is used to eliminate the speed noise measured by the first speed sensor in the deflection basin;
  • the attitude measurement unit is used to measure the attitude angular velocity of the beam
  • the auxiliary measurement unit includes a positioning subunit; the positioning subunit is used to obtain the position of the load and the traveling speed of the carrier on the road surface.
  • the deflection basin detection method and device based on the deformation speed under the action of rolling load provided by this application can realize the rapid detection of continuous deflection basin by detecting the deflection basin based on the vertical deformation speed of the road surface under the action of rolling load, and can solve the problem of traditional Deflection measurement has problems such as low efficiency, strong subjectivity, high risk and time-consuming and labor-intensive. It can improve the efficiency and safety of deflection basin detection, obtain the deflection value of the entire deflection basin, and solve the problem of laser dynamic bending.
  • the sinking measurement system can only measure the maximum deflection value of the load center but cannot characterize the load-bearing performance of a certain structural layer. The test results are less affected by the environment and are not affected by the road surface texture. The deflection basin test results The accuracy is higher.
  • Figure 1 is one of the flow diagrams of the deflection basin detection method based on deformation speed under rolling load provided by this application;
  • Figure 2 is the second schematic flow chart of the deflection basin detection method based on deformation speed under rolling load provided by this application;
  • Figure 3 is a schematic structural diagram of a deflection basin detection device based on deformation speed under rolling load provided by this application;
  • Figure 4 is a schematic structural diagram of the deflection basin detection system based on deformation speed under rolling load provided by this application.
  • Figure 1 is one of the flow diagrams of the deflection basin detection method provided by this application.
  • the execution subject of the deflection basin detection method provided by the embodiment of the present application may be a deflection basin detection device.
  • the method includes step 101 , step 102 , step 103 and step 104 .
  • Step 101 Obtain the vertical deformation speed of the road surface at each measurement moment corresponding to each target position in the target deflection basin during the load movement process; wherein each target position includes a first measurement point and at least 3 second measurement points; The first measuring point is the position of the measuring point corresponding to the load center position in the target deflection basin, and the second measuring point is the position of the other measuring points except the load center position in the target deflection basin; each measurement time corresponding to each target position is , is obtained by calculating the load moving speed and the horizontal installation position of the speedometer in the deflection basin detection system.
  • the vertical deformation velocity of the road surface at each measurement moment corresponding to each target position in the target deflection basin during the movement of the load can be obtained.
  • the continuous deflection velocity measurement subsystem may include a traction device and a carrier.
  • the traction device may be a machine with traction capability such as a tractor truck.
  • the carrier is used to move on the road surface under the traction of the traction device and apply load to the road surface during the movement.
  • the carrier may be a mobile unpowered machine such as a trailer.
  • the trailer's rear axle can exert a load of at least 10 tons.
  • the carrier Under the traction of the traction device, the carrier can move on the road surface and apply load to the road surface during the movement, forming a rolling load acting on the road surface.
  • a crossbeam is provided on the carrier; a speed measurement device, an attitude measurement unit and an auxiliary measurement unit are provided on the crossbeam.
  • a shelter can be provided on the carrier. Shelters can be set up in an integrated manner.
  • the shelter is used to install all measurement equipment and the supporting environment required for measurement.
  • All measurement equipment may include but are not limited to speed measurement devices, attitude measurement units, auxiliary measurement units, etc.
  • the beams can be specially made rigid beams located inside the shelter.
  • the speed measurement unit includes a second speed sensor and at least three first speed sensors; the first speed sensor is used to measure the vertical deformation speed of the road surface in the target deflection basin; the second speed sensor is installed outside the deflection basin. To eliminate the speed noise measured by the first speed sensor in the deflection basin.
  • the speed measurement unit may include at least 3 first speed sensors and 1 second speed sensor. Both the first speed sensor and the second speed sensor can be any speed sensor used to measure the deformation speed of the road surface (i.e., "speed meter").
  • Each first speed sensor and second speed sensor can be installed in line along the moving direction of the carrier.
  • the first speed sensor is a speed sensor in the deflection basin, which is used to measure the vertical deformation speed of the road surface at different positions from the load center.
  • the second speed sensor is a speed sensor outside the deflection basin. It serves as a reference speed sensor and is used to compensate for the speed noise measured by the speed sensor inside the deflection basin (ie, the first speed sensor). This velocity noise is the component velocity noise in the direction of load movement.
  • the speed noise measured by the first speed sensor refers to the noise contained in the result of the speed measurement by the first speed sensor.
  • Attitude measurement unit is used to measure the attitude angular velocity of the beam.
  • the attitude measurement unit may include a plurality of gyroscopes.
  • the gyroscope can be any type of gyroscope.
  • Attitude angular velocity can include pitch angular velocity, roll angular velocity and heading angular velocity.
  • the attitude measurement unit may include three fiber optic gyroscopes.
  • the auxiliary measurement unit includes a positioning subunit; the positioning subunit is used to obtain the position of the load and the traveling speed of the carrier on the road surface.
  • the positioning subunit can be used for positioning based on at least one global navigation satellite system (Global Navigation Satellite System, GNSS), or any type of distance measuring instrument (Distance Measuring Instrument, DMI), or a global satellite navigation system and measuring instrument.
  • GNSS Global Navigation Satellite System
  • DMI Distance Measuring Instrument
  • the distance meter is combined to position the load, and the traveling speed of the carrier on the road can be obtained by measuring the change in distance between the carrier and a fixed target within a preset time period.
  • the global satellite navigation system may be Beidou, Galileo, GLONASS or Global Positioning System (GPS).
  • GPS Global Positioning System
  • Positioning subunits can also be used for timing.
  • the second speed sensor installed outside the deflection basin, the installation angle of the second speed sensor, the rotation speed of the carrier, the movement speed of the carrier along the driving direction, and the measurement of the first speed sensor. value and the installation angle of the first speed sensor to obtain the vertical deformation speed of the road surface at corresponding measuring points (i.e., target positions) of multiple first speed sensors in the deflection basin.
  • the measured value of the first speed sensor can be regarded as the total speed (that is, the total speed of the road surface deformation speed, rotation speed, vibration speed, etc.). Therefore, the measured value of the first speed sensor and the second speed sensor can be combined. On the basis of the measured values, based on the installation angle of the second speed sensor, the installation angle of the first speed sensor, the rotation speed of the carrier and the movement speed of the carrier along the driving direction, etc., the non-vertical component speed of the road deformation speed is removed. Noise, thereby obtaining the vertical deformation speed of the road surface.
  • the rotation speed of the carrier can be obtained through the attitude measurement unit.
  • the moving speed of the carrier along the driving direction that is, the traveling speed of the carrier on the road surface, can be obtained through the positioning subunit.
  • the carrier can move on the road surface under the traction of the traction device and apply load to the road surface during the movement. Therefore, the vertical deformation speed of the road surface at each target position can be obtained at different times based on the continuous deflection velocity measurement subsystem. .
  • At least 4 target positions can be preset in the target deflection basin.
  • the position corresponding to the measuring point corresponding to the load center position in the target deflection basin is the first measuring point
  • the position of other measuring points except the load center position is the second measuring point.
  • Measuring point refers to the point that needs to be measured.
  • the position of the load center (i.e. the first measurement point) is x m
  • the vertical deformation velocity of the road surface at multiple locations in the target deflection basin at that time is obtained through the continuous deflection velocity measurement subsystem, recorded for in
  • n is the target The number of second measurement points in the deflection basin
  • Li represents the horizontal distance between the i-th second measurement point in the target deflection basin and the load center measurement point. Normally, the number of second measurement points in the deflection basin is equal to the number of first speed sensors.
  • the vertical deformation speed of the road surface obtained by different first speed sensors at the same first measurement point (x m ) at different times is matched, recorded for Among them, ti is the time when the i -th speed sensor in the deflection basin measures the current measurement point (x m ).
  • the position information of the second measurement point can be determined based on the installation position and installation angle of the first speed measurement sensor in the continuous deflection speed measurement subsystem.
  • the moving position information of the load may include the position information of the load at each measurement time corresponding to each target position during the movement of the load.
  • the moment when each corresponding first speed sensor passes the target position can be calculated as the target position based on the load movement speed and the horizontal installation position of the speedometer in the deflection basin detection system. Corresponding measurement time.
  • Step 102 Obtain the duration of each response time interval corresponding to each target position based on each measurement time corresponding to each target position, the road vertical deformation speed at each measurement time corresponding to each target position, and the road surface vertical deformation speed knowledge base model.
  • the pavement vertical deformation speed knowledge base model can be used to characterize the relationship between the pavement vertical deformation speed, the moving speed of the load, the weight of the load, etc.
  • step 102 it may also include: obtaining the pavement vertical deformation speed knowledge base model.
  • the pavement vertical deformation velocity knowledge base model can be obtained in any of the following ways, but is not limited to the following ways:
  • Method 1 Select a variety of typical road sections, collect the vertical deformation speed of the road at different driving speeds through embedded accelerometers and continuous deflection speed measurement subsystems, and then use statistical analysis methods or artificial intelligence methods to establish the acceleration system to obtain The relationship model between the vertical deformation speed of the road surface and the vertical deformation speed of the road surface obtained by the continuous deflection velocity measurement subsystem is used to obtain the knowledge base model of the vertical deformation speed of the road surface;
  • Method 3 For various typical road sections, through comparative analysis of the relationship between the deflection basin measured by FWD and the deflection basin measured by the continuous deflection speed measurement subsystem, establish and improve the vertical deformation velocity model of the road surface, and obtain the vertical deformation of the road surface Velocity knowledge base model.
  • the response time period of the current first measurement point under the action of rolling load can be estimated.
  • the response time period of the current first measurement point under the action of rolling load can be divided into multiple response time intervals, thereby obtaining the duration of each response time interval corresponding to each target position.
  • the set of response time intervals corresponding to each target position can be recorded as ET i (ET i ⁇ VT j
  • ET 0 is the load center (first measurement point ) response time interval set.
  • i 1,2,L,n-1 ⁇ .
  • Step 103 Obtain each response time interval corresponding to each target position based on the vertical deformation speed of the road surface at each measurement time corresponding to each target position, the length of each response time interval corresponding to each target position, and the road vertical deformation speed knowledge base model. represents the vertical deformation speed of the road surface.
  • the representative road vertical deformation speed of the response time interval corresponding to the target position can be regarded as the average road vertical deformation speed within the response time interval corresponding to the target position. Deformation speed.
  • the road surface vertical deformation speed corresponding to the target position can be obtained based on the vertical deformation speed of the road surface at each measurement moment, the length of each response time interval corresponding to the target position, and the vertical deformation speed knowledge base model of the road surface.
  • Each response time interval represents the vertical deformation speed of the road surface.
  • Step 104 Obtain the detection result of the target deflection basin based on the representative road vertical deformation speed of each response time interval corresponding to each target position and the duration of each response time interval corresponding to each target position.
  • the deflection basin means that the load center is at the first measurement point, and different second measurement points have different amounts of deformation, forming a shape similar to a basin.
  • the deflection value of each target position in the target deflection basin can be obtained, thereby obtaining the target deflection The shape of the basin.
  • the embodiment of the present application detects the deflection basin based on the vertical deformation speed of the road surface under the action of rolling load, which can realize the rapid detection of continuous deflection basin and solve the problems of low efficiency, strong subjectivity and high risk of traditional deflection measurement. It can improve the efficiency and safety of deflection basin detection, obtain the deflection value of the entire deflection basin, and solve the problem that the laser dynamic deflection measurement system can only measure the maximum deflection value of the load center but cannot measure a certain deflection value. To characterize the load-bearing performance of each structural layer, the detection results are less affected by the environment, the detection results are not affected by the road surface texture, and the deflection basin detection results are more accurate.
  • the detection method is suitable for detection of deflection basins on highway pavements or airport pavements.
  • each response time interval corresponding to each target position Based on the representative road vertical deformation speed of each response time interval corresponding to each target position and the length of each response time interval corresponding to each target position, after obtaining the detection results of the target deflection basin, it also includes: measurement based on the target deflection basin Environmental information and deflection basin correction knowledge base model are used to correct the detection results of the target deflection basin.
  • the measured environmental information may include road surface temperature, load moving speed, load weight, etc.
  • the deflection basin correction knowledge base model can be used to characterize the relationship between road surface temperature, load movement speed and load weight, etc., and the detection results of the deflection basin.
  • the detection results of the target deflection basin can be corrected based on the measurement environment information of the target deflection basin and the deflection basin correction knowledge base model to obtain more accurate deflection basin detection results. .
  • the method further includes: obtaining the measurement environment information of the target deflection basin.
  • the road surface temperature can be obtained through a thermometer included in the auxiliary measurement unit.
  • the thermometer can be any kind of thermometer, such as an infrared thermometer.
  • the target deflection basin correction knowledge base model before correcting the detection results of the target deflection basin, it also includes: establishing a deflection basin correction knowledge base model.
  • the deflection basin correction knowledge base model can be obtained in the following ways, but is not limited to:
  • the embodiment of the present application can further improve the accuracy of the detection results of the deflection basin by correcting the detection results of the target deflection basin based on the measurement environment information of the target deflection basin and the deflection basin correction knowledge base model.
  • each target position corresponding to each target position is obtained.
  • the duration of the response time interval includes: obtaining each first duration based on each measurement moment corresponding to any target position; the first duration is the time difference between two adjacent measurement moments corresponding to any target position.
  • the first duration is the time difference between two adjacent measurement moments corresponding to any target position, that is, the time difference between two adjacent first speed sensors passing the same target position.
  • i 1,2,L,n-1 ⁇ .
  • the response start time and response end time of the first measurement point under load are obtained.
  • the vertical deformation of the road surface is obtained.
  • the first change rate of the deformation speed based on the first change rate and the road surface vertical deformation speed knowledge base model, obtain the response start time of the first measurement point under the action of the load.
  • the vertical deformation of the road surface is obtained.
  • the first change rate of the deformation speed based on the first change rate and the road surface vertical deformation speed knowledge base model, obtain the response end time of the first measurement point under the action of the load.
  • the duration of each response time interval corresponding to the first measurement point is obtained.
  • the response start time and response end time of the first measurement point under the action of rolling load can define the response time period of the first measurement point under the action of rolling load. According to each measurement moment corresponding to the first measurement point, the response time period of the first measurement point under the action of rolling load can be divided into multiple response time intervals, thereby obtaining the duration of each response time interval corresponding to the first measurement point.
  • the response start time of the second measurement point under load is obtained.
  • one or more corresponding start times of the first time duration and the second measurement point are close to the response start time of the second measurement point under the action of the load.
  • the duration of each response time interval of the second measurement point is obtained.
  • the response start time and response end time of the second measurement point under the action of rolling load can define the response time period of the second measurement point under the action of rolling load.
  • the response time period of the second measurement point under the action of rolling load can be divided into multiple response time intervals, thereby obtaining the duration of each response time interval corresponding to the second measurement point.
  • the embodiment of the present application obtains the corresponding target position by using the measurement time corresponding to each target position, the vertical deformation speed of the road surface at each measurement time corresponding to each target position, the moving position information of the load, and the vertical deformation speed knowledge base model of the road surface.
  • the length of each response time interval can be used to obtain more accurate deflection basin detection results based on the length of each response time interval corresponding to each target position.
  • the detection results of the target deflection basin are obtained, including: For each target position, the accumulated vertical deformation amount of the target position is obtained based on the representative road vertical deformation speed of each response time interval corresponding to the target position and the duration of the response time interval.
  • the accumulated vertical deformation of the target position can reflect the shape of the target position in the target deflection basin.
  • DEF 0 represents the accumulated vertical deformation of the first measurement point.
  • the cumulative vertical deformation at each target position is determined as the detection result of the target deflection basin.
  • the detection results of the target deflection basin may include the cumulative vertical deformation of each target position.
  • the embodiment of the present application obtains the accumulated vertical deformation amount of the target position based on the representative road vertical deformation speed of each response time interval corresponding to the target position and the duration of the response time interval, and can obtain more accurate deflection basin detection results.
  • obtaining the cumulative vertical deformation amount of the target position includes: obtaining each response time interval corresponding to the target position.
  • a response time interval represents the product of the vertical deformation speed of the road surface and the duration of each response time interval; the sum of each product is obtained as the cumulative vertical deformation amount at the target position.
  • the position of the first measurement point is x m
  • the vertical direction of each target position in the target deflection basin is calculated.
  • the embodiment of the present application obtains the sum of the products of the representative road vertical deformation speed of each response time interval corresponding to the target position and the duration of each response time interval, as the cumulative vertical deformation amount of the target position, to obtain a more accurate Deflection basin test results.
  • each target position is obtained based on the vertical deformation speed of the road surface at each measurement time corresponding to each target position, the length of each response time interval corresponding to each target position, and the vertical deformation speed knowledge base model of the road surface.
  • the representative road vertical deformation speed of each corresponding response time interval includes: for any one of the target positions, the vertical deformation speed of the road surface at different measurement times corresponding to the target position, and each response time corresponding to each target position.
  • the duration of the interval and the road surface vertical deformation speed knowledge base model are used to obtain the representative road surface vertical deformation speed of each response time interval corresponding to each target position.
  • the vertical deformation speed of the road surface at each measurement moment corresponding to the target position can be fitted to obtain the rolling load.
  • the curve or equation showing the change of the vertical deformation speed of the road surface at the target position with time during the response time period of the current first measurement point under the action; based on the curve or equation obtained by fitting, the response time intervals corresponding to the target position can be obtained. Represents the vertical deformation speed of the road surface.
  • each value corresponding to the target position can be obtained based on the vertical deformation speed of the road surface at each measurement moment corresponding to the target position, the duration of each response time interval corresponding to the target position, and the vertical deformation speed knowledge base model of the road surface.
  • the vertical deformation speed of the road surface at the target position changes with time; based on this rule, the representative vertical deformation speed of the road surface in each response time interval corresponding to the target position can be obtained.
  • the embodiment of the present application can realize faster deflection basin detection based on the representative road surface vertical deformation speed.
  • the detection results of the target deflection basin include the cumulative vertical deformation of each target position.
  • the detection results of the target deflection basin are corrected, including: based on the measurement environment information of the target deflection basin and the deflection basin correction knowledge base model, obtain Correction coefficient for each target position.
  • This correction coefficient is used to correct the error caused by the cumulative vertical deformation of the target position caused by the measurement environment information.
  • the accumulated vertical deformation of the target position is corrected based on the correction coefficient of the target position.
  • the detection results of the deflection basin at each measuring point can be corrected based on the correction coefficient ⁇ F i
  • i 0,1,2,...,n ⁇ of each target position in the deflection basin.
  • the formula for correction is
  • DEF i ′ represents the corrected cumulative vertical deformation of the second measurement point corresponding to the i-th first speed sensor in the target deflection basin.
  • the embodiment of the present application obtains the correction coefficient of each target position based on the measurement environment information of the target deflection basin and the deflection basin correction knowledge base model. For each target position, the cumulative vertical position of the target position is calculated based on the correction coefficient of the target position. Correcting the deflection amount can further improve the accuracy of the deflection basin detection results.
  • the data under the action of the load is obtained.
  • the response start time and response end time of the first measurement point include: the vertical deformation of the road surface based on multiple measurement moments corresponding to the first duration and the first measurement point that are close to the response start time of the first measurement point under load.
  • Speed and pavement vertical deformation speed knowledge base model obtains the response start time of the first measurement point under load; based on each first duration and first measurement point, the response end time of the first measurement point under load is close to
  • u can is an integer greater than or equal to 2) the vertical deformation speed of the road surface at the measurement time, and the response start time of the first measurement point under the load is estimated.
  • the response end time of the first measuring point under the action of load can be the time corresponding to the load moving to the first measuring point, or the time corresponding to a certain moment after the load leaves the first measuring point (there is a lag in the response of the measuring point at this time Phenomenon).
  • the first change rate of speed based on the first change rate and the road surface vertical deformation speed knowledge base model, obtain the response end time of the first measurement point under the action of the load, recorded as t 0 .
  • the embodiment of the present application uses the road surface vertical deformation speed and road surface vertical deformation speed knowledge base model based on multiple measurement moments corresponding to each first duration and first measurement point that are close to the response start time of the first measurement point under load. , obtain the response start time of the first measurement point under the action of the load, and obtain the response end time of the first measurement point under the action of the load based on the moving position information of the load and the moving speed information of the load, and obtain a more accurate corresponding position of each target
  • the length of each response time interval of each target position can be used to obtain more accurate deflection basin detection results based on the length of each response time interval corresponding to each target position.
  • obtaining the response start time of the first measurement point under load includes: based on each first duration and the first measurement point corresponding to the response start time of the first measurement point under load.
  • the vertical deformation speed of the road surface at multiple measurement moments is used to obtain the first change rate of the vertical deformation speed of the road surface.
  • the vertical deformation of the road surface close to the response start time can be calculated The first rate of change of speed.
  • the response start time of the first measurement point under load is obtained.
  • the response start time of the first measurement point under load can be estimated, recorded as t n+ 1 .
  • Obtaining the response start time of the second measurement point under load including: based on one or more measurement moments of the road surface corresponding to each first duration and the second measurement point that are close to the response start time of the second measurement point under load Vertical deformation speed, obtains the second change rate of the vertical deformation speed of the road surface.
  • the response start time of each first time period and the second measurement point corresponding to the second measurement point under the action of load can be close to One or more (for example, v, v may be an integer greater than or equal to 2) measures the second change rate of the vertical deformation speed of the road surface at the moment.
  • the response start time of the second measurement point under load is obtained.
  • the second measurement point under load can be estimated response start time.
  • Obtaining the response end time of the first measurement point under load includes: vertical deformation of the road surface based on multiple measurement moments corresponding to each first duration and the first measurement point that are close to the response end time of the first measurement point under load.
  • Speed obtains the first rate of change of the vertical deformation speed of the road surface.
  • the response end time of the first measurement point under load is obtained.
  • the response end time of the first measurement point under load can be estimated according to each first change rate of the response start time adjacent to the first measurement point.
  • the embodiment of the present application obtains the change in the vertical deformation speed of the road surface based on the vertical deformation speed of the road surface at multiple measurement moments corresponding to each first time period and the first measurement point that are close to the response start time of the first measurement point under load.
  • Rate based on the change rate and pavement vertical deformation speed knowledge base model, obtain the response start time and response end time of the first measurement point under load, and can obtain a more accurate length of each response time interval corresponding to each target position, thus More accurate deflection basin detection results can be obtained based on the length of each response time interval corresponding to each target position.
  • Figure 2 is the second schematic flow chart of the deflection basin detection method provided by this application.
  • the rapid detection method of the deflection basin based on the vertical deformation speed of the road surface under the action of rolling load can include the following steps.
  • Step 201 Obtain the vertical deformation speed of the road surface at corresponding positions of multiple first speed sensors in the deflection basin at the same time.
  • Step 202 Obtain the vertical deformation speed of the road surface at different measurement moments at the same target position.
  • Step 203 Obtain the time difference in the vertical deformation speed of the road surface between adjacent measurement times.
  • Step 204 Estimate the response start time and response end time of the first measurement point under the action of rolling load, and the response start time of each second measurement point.
  • Step 205 Obtain the representative road vertical deformation speed between adjacent moments.
  • Step 206 Calculate the road deflection basin.
  • Step 207 Perform road surface deflection basin correction based on the measurement environment information and the deflection basin correction knowledge base model.
  • the deflection basin detection device provided by the present application is described below.
  • the deflection basin detection device described below and the deflection basin detection method described above can be mutually referenced.
  • Figure 3 is a schematic structural diagram of a deflection basin detection device based on road surface deformation speed under rolling load provided by this application. Based on the content of any of the above embodiments, as shown in Figure 3, the device includes an original speed acquisition module 301, a duration acquisition module 302, a representative speed acquisition module 303 and a deflection basin detection module 304, where:
  • the original speed acquisition module 301 is used to obtain the vertical deformation speed of the road surface at each measurement moment corresponding to each target position in the target deflection basin during the load movement;
  • the duration acquisition module 302 is used to obtain each response time corresponding to each target position based on each measurement time corresponding to each target position, the road vertical deformation speed at each measurement time corresponding to each target position, and the road surface vertical deformation speed knowledge base model. The duration of the interval;
  • the representative speed acquisition module 303 is used to obtain the corresponding target position based on the vertical deformation speed of the road surface at each measurement time corresponding to each target position, the duration of each response time interval corresponding to each target position, and the vertical deformation speed knowledge base model of the road surface.
  • Each response time interval represents the vertical deformation speed of the road surface;
  • the deflection basin detection module 304 is configured to obtain the detection result of the target deflection basin based on the representative road vertical deformation speed of each response time interval corresponding to each target position and the duration of each response time interval corresponding to each target position;
  • each target position includes a first measurement point and at least three second measurement points; the first measurement point is the position corresponding to the load center position in the target deflection basin, and the second measurement point is within the target deflection basin.
  • the locations of the remaining measuring points except the load center position; the measurement moments corresponding to each target position are calculated through the load moving speed and the horizontal installation position of the speedometer in the deflection basin detection system.
  • the original speed acquisition module 301, the duration acquisition module 302, the representative speed acquisition module 303 and the deflection basin detection module 304 can be electrically connected in sequence.
  • the original speed acquisition module 301 can be based on the continuous deflection speed measurement subsystem to acquire the vertical deformation speed of the road surface at each measurement moment corresponding to each target position in the target deflection basin during the movement of the load.
  • the duration acquisition module 302 can estimate the current first measurement under the action of rolling load based on the vertical deformation speed of the road surface at each measurement moment corresponding to each first duration and each target position, the moving position information of the load, and the knowledge base model of vertical deformation speed of the road surface.
  • the response time period of the point; according to each measurement moment corresponding to each target position, the response time period of the current first measurement point under the action of rolling load can be divided into multiple response time intervals, thereby obtaining each response time interval corresponding to each target position. of duration.
  • the representative speed acquisition module 303 can obtain the road surface vertical deformation speed at each measurement moment corresponding to the target position, the length of each response time interval corresponding to the target position, and the road surface vertical deformation speed knowledge base model. The representative road surface vertical deformation speed in each response time interval corresponding to the target position.
  • the deflection basin detection module 304 can obtain the deflection value of each target position in the target deflection basin based on the representative road vertical deformation speed of each response time interval corresponding to each target position and the length of each response time interval corresponding to each target position. , thereby obtaining the shape of the target deflection basin.
  • the deflection basin detection device may also include:
  • the correction module is used to correct the detection results of the target deflection basin based on the measurement environment information of the target deflection basin and the deflection basin correction knowledge base model.
  • the duration acquisition module 302 may include:
  • the first duration acquisition unit is used to acquire each first duration based on each measurement moment corresponding to any target position
  • the response time acquisition unit is used to obtain the first response time under the action of the load based on the vertical deformation speed of the road surface at each measurement moment corresponding to the first duration and the first measurement point, the moving position information of the load, and the vertical deformation speed knowledge base model of the road surface. Response start time and response end time of the measurement point;
  • the second duration acquisition unit is configured to acquire the duration of each response time interval corresponding to the first measurement point based on each measurement moment corresponding to the first measurement point and the response start time and response end time of the first measurement point under load;
  • the response time acquisition unit is also configured to obtain the load effect based on the road surface vertical deformation speed at each measurement moment corresponding to the first duration and the second measurement point and the road surface vertical deformation speed knowledge base model.
  • the response start time of the second measurement point as described below;
  • a third duration acquisition unit configured to acquire each response time interval of the second measurement point based on each measurement moment corresponding to the second measurement point and the response start time of the second measurement point under the load. of duration.
  • the deflection basin detection module 304 may include:
  • the cumulative deformation acquisition unit is used for, for each target position, obtaining the cumulative vertical deformation amount of the target position based on the representative road vertical deformation speed of each response time interval corresponding to the target position and the duration of the response time interval;
  • the detection result acquisition unit is used to determine the cumulative vertical deformation of each target position as the detection result of the target deflection basin.
  • the cumulative deformation acquisition unit can be specifically used to obtain the product of the representative road vertical deformation speed of each response time interval corresponding to the target position and the duration of each response time interval; obtain the sum of each product as the target position The accumulated vertical deformation.
  • the detection results of the target deflection basin include the cumulative vertical deformation of each target position
  • the correction module can be specifically used to obtain the correction coefficient of each target position based on the measurement environment information of the target deflection basin and the deflection basin correction knowledge base model; for each target position, the correction coefficient of the target position based on the target position The accumulated vertical deformation is corrected.
  • the response time acquisition unit may include:
  • the response start time acquisition subunit is used for pavement vertical deformation speed and road surface vertical deformation based on multiple measurement moments corresponding to each first duration and first measurement point that are close to the response start time of the first measurement point under load.
  • Speed knowledge base model to obtain the response start time of the first measurement point under load;
  • the response end time acquisition subunit is used to obtain the road surface vertical deformation speed and the road surface vertical deformation speed at multiple measurement moments corresponding to each first time length and first measurement point that are close to the response end time of the first measurement point under load.
  • the response end time of the first measurement point under the action of the load is obtained.
  • the response time acquisition unit may be specifically configured to determine the vertical deformation speed of the road surface based on multiple measurement moments corresponding to each first duration and first measurement point that are close to the response start time of the first measurement point under load, Obtain the first change rate of the vertical deformation speed of the road surface; based on the first change rate and the knowledge base model of the vertical deformation speed of the road surface, obtain the response start time of the first measurement point under the action of load.
  • the response time acquisition unit may also be specifically used to obtain road surface vertical data based on one or more measurement moments corresponding to each first duration and second measurement point that are close to the response start time of the second measurement point under load.
  • the vertical deformation speed the second change rate of the road vertical deformation speed is obtained; based on the second change rate and the road surface vertical deformation speed knowledge base model, the response start time of the second measurement point under the load is obtained.
  • the response time acquisition unit can also be specifically used to obtain the response end time of the first measurement point under load, including:
  • the response end time of the first measurement point under load is obtained.
  • the deflection basin detection device provided by the embodiment of the present application is used to perform the above-mentioned deflection basin detection method of the present application. Its implementation is consistent with the implementation of the deflection basin detection method provided by the present application, and can achieve the same beneficial effects. No further details will be given here.
  • the embodiment of the present application detects the deflection basin based on the vertical deformation speed of the road surface under the action of rolling load, which can realize the rapid detection of continuous deflection basin and solve the problems of low efficiency, strong subjectivity and high risk of traditional deflection measurement. It can improve the efficiency and safety of deflection basin detection, obtain the deflection value of the entire deflection basin, and solve the problem that the laser dynamic deflection measurement system can only measure the maximum deflection value of the load center but cannot measure a certain deflection value. To characterize the load-bearing performance of each structural layer, the detection results are less affected by the environment, the detection results are not affected by the road surface texture, and the deflection basin detection results are more accurate.
  • FIG 4 is a schematic structural diagram of a deflection basin detection system based on road surface deformation speed under rolling load provided by this application.
  • the deflection basin detection system includes: a continuous deflection velocity measurement subsystem 401 and a deflection basin detection device 402;
  • Continuous deflection velocity measurement subsystem 401 includes: traction device 4011 and carrier 4012;
  • the carrier 4012 is used to move on the road surface under the traction of the traction device 4011 and apply a load to the road surface 5 during the movement;
  • the carrier 4012 is provided with a cross beam 3; the cross beam 3 is provided with a speed measurement device, an attitude measurement unit 4 and an auxiliary measurement unit;
  • the speed measurement unit includes a second speed sensor 2 and at least three first speed sensors 1; the first speed sensor 1 is used to measure the vertical deformation speed of the road surface in the target deflection basin; the second speed sensor 2 is installed in the deflection basin. The outside of the basin is used to eliminate the speed noise measured by the first speed sensor in the deflection basin;
  • Attitude measurement unit 4 used to measure the attitude angular velocity of the beam
  • the auxiliary measurement unit includes a positioning subunit; a positioning subunit is used to obtain the position of the load and the traveling speed of the carrier on the road.
  • point O is the first measurement point, which is the position where the dynamic load F is applied; P1, P2,..., Pn are n second measurement points; ⁇ represents the installation angle of the first speed sensor 1; ⁇ represents the second speed measurement The installation angle of sensor 2; R represents the corresponding measurement position of second speed sensor 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本申请提供一种基于滚动载荷作用下变形速度的弯沉盆检测方法及装置,其中,该方法包括:获取载荷移动过程中,目标弯沉盆内各目标位置对应的各测量时刻的路面垂向变形速度;基于各目标位置对应的各测量时刻、各目标位置对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取各响应时间区间的时长;基于各目标位置对应的各测量时刻的路面垂向变形速度、各响应时间区间的时长和路面垂向变形速度知识库模型,获取各响应时间区间的代表路面垂向变形速度;基于各代表路面垂向变形速度和各响应时间区间的时长,获取目标弯沉盆的检测结果。本申请提供的基于滚动载荷作用下变形速度的弯沉盆检测方法及装置,能实现连续弯沉盆快速检测。

Description

基于滚动载荷作用下变形速度的弯沉盆检测方法及装置
相关申请的交叉引用
本申请要求于2022年07月11日提交的申请号为202210814910.8,名称为“基于滚动载荷作用下变形速度的弯沉盆检测方法及装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及公路路面、机场道面检测技术领域,尤其涉及一种基于滚动载荷作用下变形速度的弯沉盆检测方法及装置。
背景技术
公路路面/机场道面弯沉检测是评价路面承载力的基础,对于工程质量的控制和检验至关重要。传统的弯沉测量方法都是基于直接位移的测量方法,也就是直接测量路面在力的作用下的位移,代表方法有贝克曼梁和FWD(Falling Weight Deflectometer,落锤式弯沉仪)。这些方法都采用动态行驶结合静态测量的测量方法,测量效率低下,对交通的影响大,还存在着巨大的安全隐患,无法满足道路预防性养护(preventive maintenance)要求短周期对路网进行动态弯沉测量的要求。
目前,在正常交通速度下,可以进行快速弯沉测量的方法主要包括两类:采用“力-位移”的直接测量方法和采用“力-速度-变形量”的间接测量方法。
在采用“力-位移”的直接测量方法中,代表技术有RWD(Rolling Wheel Deflectometer,滚轮式弯沉仪),RDT(Road Deflection Tester,道路弯沉测试仪),RDD(Rolling Dynamic Deflectometer,滚轮式动力弯沉仪)等。但这些测量方法在试验阶段取得了一定的成果,但并没有得到实际工程应用。
在采用“力-速度-变形量”的间接测量方法,即基于路面变形速度的弯沉测量中,代表技术有TSD(Traffic Speed Deflectometer,交通速度弯沉仪)、HSD(High Speed Deflectograph,高速弯沉检测设备)和LDD(Laser Dynamic Deflectometer,激光动态弯沉仪)等。此类测量系统由多台多普 勒测振仪组成,其中1台用于测量弯沉盆外(例如3.6米处)没有路面垂向变形速度的数据做参考,其余多普勒测振仪用于测量50KN载荷轮下弯沉盆内的路面垂向变形速度。此类设备可以在20-90km/h下正常进行实际路网的载荷中心最大弯沉值测量。
结构层的承载性能虽然可以通过载荷中心最大弯沉值进行反映,但无法对某个结构层的承载性能进行表征,承载力相近的载荷中心弯沉可能相差很大。路表单点弯沉并不能较好地反映路面结构实际的承载能力,用它来进行路面补强设计或养护决策具有明显的不合理性。为了准确地评价路面结构的承载能力,需要利用路面弯沉盆数据,确定路面各结构层的模量,进行路面结构的应力分析,从而得出承载力变化规律,进而用于评定道路的建设质量和使用状况。
综上所述,现有公路路面/机场道面弯沉检测通常是针对路表单点的弯沉检测,针对公路路面/机场道面弯沉盆的快速检测是本领域亟待解决的技术课题。
发明内容
本申请提供一种基于滚动载荷作用下变形速度的弯沉盆检测方法及装置,用以解决现有技术中难以进行快速的弯沉盆检测的缺陷,实现连续快速的弯沉盆检测。
本申请提供一种基于滚动载荷作用下变形速度的弯沉盆检测方法,包括:
获取载荷移动过程中,目标弯沉盆内各目标位置对应的各测量时刻的路面垂向变形速度;
基于所述各目标位置对应的各测量时刻、所述各目标位置对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的时长;
基于所述各目标位置对应的各测量时刻的路面垂向变形速度、所述各目标位置对应的各响应时间区间的时长和所述路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的代表路面垂向变形速度;
基于所述各目标位置对应的各响应时间区间的代表路面垂向变形速 度和所述各目标位置对应的各响应时间区间的时长,获取所述目标弯沉盆的检测结果;
其中,所述各目标位置,包括第一测量点和至少3个第二测量点;所述第一测量点为目标弯沉盆内载荷中心位置对应测点所在的位置,所述第二测量点为所述目标弯沉盆内除所述载荷中心位置外的其余测点所在的位置;各所述目标位置对应的各所述测量时刻,是通过载荷移动速度和弯沉盆检测系统中测速仪的水平安装位置计算获得的。
根据本申请提供的一种基于滚动载荷作用下变形速度的弯沉盆检测方法,适用于公路路面或机场道面弯沉盆检测;
所述基于所述各目标位置对应的各响应时间区间的代表路面垂向变形速度和所述各目标位置对应的各响应时间区间的时长,获取所述目标弯沉盆的检测结果之后,还包括:
基于所述目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,对所述目标弯沉盆的检测结果进行修正。
根据本申请提供的一种基于滚动载荷作用下变形速度的弯沉盆检测方法,所述基于所述各目标位置对应的各测量时刻、所述各目标位置对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的时长,包括:
基于任一所述目标位置对应的各测量时刻,获取各第一时长;所述第一时长,为任一所述目标位置对应的两个相邻测量时刻之间的时间差;
基于所述各第一时长、所述第一测量点对应的各测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应开始时间和响应结束时间;
基于所述第一测量点对应的各测量时刻,以及所述载荷作用下所述第一测量点的响应开始时间和响应结束时间,获取所述第一测量点对应的各响应时间区间的时长;
基于所述各第一时长、所述第二测量点对应的各测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第二测量点的响应开始时间;
基于所述第二测量点对应的各测量时刻,以及所述载荷作用下所述第 二测量点的响应开始时间,获取所述第二测量点的各响应时间区间的时长。
根据本申请提供的一种基于滚动载荷作用下变形速度的弯沉盆检测方法,所述基于所述各目标位置对应的各响应时间区间的代表路面垂向变形速度和所述各目标位置对应的各响应时间区间的时长,获取所述目标弯沉盆的检测结果,包括:
对于每一所述目标位置,基于所述目标位置对应的各响应时间区间的代表路面垂向变形速度和所述响应时间区间的时长,获取所述目标位置的累积竖向变形量;
将各所述目标位置的累积竖向变形量,确定为所述目标弯沉盆的检测结果;
所述基于所述目标位置对应的各响应时间区间的代表路面垂向变形速度和所述响应时间区间的时长,获取所述目标位置的累积竖向变形量,包括:
获取所述目标位置对应的每一响应时间区间的代表路面垂向变形速度与所述每一响应时间区间的时长的乘积;
获取各乘积之和,作为所述目标位置的累积竖向变形量。
根据本申请提供的一种基于滚动载荷作用下变形速度的弯沉盆检测方法,所述基于所述各目标位置对应的各测量时刻的路面垂向变形速度、所述各目标位置对应的各响应时间区间的时长和所述路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的代表路面垂向变形速度,包括:
对所述各目标位置中的任一目标位置,利用所述目标位置对应的不同测量时刻的路面垂向变形速度、所述各目标位置对应的各响应时间区间的时长和所述路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的代表路面垂向变形速度。
根据本申请提供的一种基于滚动载荷作用下变形速度的弯沉盆检测方法,所述目标弯沉盆的检测结果,包括各所述目标位置的累积竖向变形量;
所述基于所述目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,对所述目标弯沉盆的检测结果进行修正,包括:
基于所述目标弯沉盆的测量环境信息和所述弯沉盆修正知识库模型,获取每一所述目标位置的修正系数;
对于每一所述目标位置,基于所述目标位置的修正系数对所述目标位置的累积竖向变形量进行修正。
根据本申请提供的一种基于滚动载荷作用下变形速度的弯沉盆检测方法,所述基于所述各第一时长、所述第一测量点对应的各测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应开始时间和响应结束时间,包括:
基于所述各第一时长、所述第一测量点对应的与所述载荷作用下所述第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应开始时间;
基于所述各第一时长、所述第一测量点对应的与所述载荷作用下所述第一测量点的响应结束时间接近的多个测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,以及所述载荷的移动位置信息和所述载荷的移动速度信息,获取所述载荷作用下所述第一测量点的响应结束时间。
根据本申请提供的一种基于滚动载荷作用下变形速度的弯沉盆检测方法,所述获取所述载荷作用下所述第一测量点的响应开始时间,包括:
基于所述各第一时长和所述第一测量点对应的与所述载荷作用下所述第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第一变化速率;
基于所述第一变化速率和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应开始时间;
所述获取所述载荷作用下所述第二测量点的响应开始时间,包括:
基于所述各第一时长和所述第二测量点对应的与所述载荷作用下所述第二测量点的响应开始时间接近的1个或多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第二变化速率;
基于所述第二变化速率和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第二测量点的响应开始时间;
获取所述载荷作用下所述第一测量点的响应结束时间,包括:
基于所述各第一时长和所述第一测量点对应的与所述载荷作用下所述第一测量点的响应结束时间接近的多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第一变化速率;
基于所述第一变化速率和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应结束时间。
本申请还提供一种基于滚动载荷作用下路面变形速度的弯沉盆检测装置,包括:
原始速度获取模块,用于获取载荷移动过程中,目标弯沉盆内各目标位置对应的各测量时刻的路面垂向变形速度;
时长获取模块,用于基于所述各目标位置对应的各测量时刻、所述各目标位置对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的时长;
代表速度获取模块,用于基于所述各目标位置对应的各测量时刻的路面垂向变形速度、所述各目标位置对应的各响应时间区间的时长和所述路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的代表路面垂向变形速度;
弯沉盆检测模块,用于基于所述各目标位置对应的各响应时间区间的代表路面垂向变形速度和所述各目标位置对应的各响应时间区间的时长,获取所述目标弯沉盆的检测结果;
其中,所述各目标位置,包括第一测量点和至少3个第二测量点;所述第一测量点为目标弯沉盆内载荷中心位置对应测点所在的位置,所述第二测量点为所述目标弯沉盆内除所述载荷中心位置外的其余测点所在的位置;各所述目标位置对应的各所述测量时刻,是通过载荷移动速度和弯沉盆检测系统中测速仪的水平安装位置计算获得的。
本申请还提供一种基于滚动载荷作用下路面变形速度的弯沉盆检测系统,连续弯沉测速子系统和上述任一种所述的基于滚动载荷作用下路面变形速度的弯沉盆检测装置;
所述连续弯沉测速子系统,包括:牵引装置和载体;
所述载体,用于在所述牵引装置的牵引下,在路面上移动并在移动过 程中向所述路面施加载荷;
所述载体上设置有横梁;所述横梁上设置有速度测量装置、姿态测量单元和辅助测量单元;
所述速度测量单元包括第二测速传感器和至少3个第一测速传感器;所述第一测速传感器,用于测量目标弯沉盆内的路面垂向变形速度;所述第二测速传感器,安装在弯沉盆外部,用于消除弯沉盆内第一测速传感测量的速度噪声;
所述姿态测量单元,用于测量所述横梁的姿态角速度;
所述辅助测量单元包括定位子单元;所述定位子单元,用于获取所述载荷的位置和所述载体在所述路面上的行进速度。
本申请提供的基于滚动载荷作用下变形速度的弯沉盆检测方法及装置,通过基于滚动载荷作用下路面垂向变形速度进行弯沉盆检测,能实现连续弯沉盆的快速检测,能解决传统的弯沉测量存在的效率低、主观性强、危险性高和费时费力等问题,能提高弯沉盆检测的效率和安全性,能获取整个弯沉盆的弯沉值,能解决激光动态弯沉测量系统仅可以测量载荷中心最大弯沉值而无法对某个结构层的承载性能进行表征等问题,检测结果受环境影响较小,检测结果不受路表纹理的影响,弯沉盆检测结果的准确度更高。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的基于滚动载荷作用下变形速度的弯沉盆检测方法的流程示意图之一;
图2是本申请提供的基于滚动载荷作用下变形速度的弯沉盆检测方法的流程示意图之二;
图3是本申请提供的基于滚动载荷作用下变形速度的弯沉盆检测装置的结构示意图;
图4是本申请提供的基于滚动载荷作用下变形速度的弯沉盆检测系统 的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性,且不涉及顺序。
下面结合图1至图4描述本申请提供的基于滚动载荷作用下变形速度的弯沉盆检测方法及装置。
图1是本申请提供的弯沉盆检测方法的流程示意图之一。如图1所示,本申请实施例提供的弯沉盆检测方法的执行主体可以为弯沉盆检测装置,该方法包括步骤101、步骤102、步骤103和步骤104。
步骤101、获取载荷移动过程中,目标弯沉盆内各目标位置对应的各测量时刻的路面垂向变形速度;其中,各目标位置,包括第一测量点和至少3个第二测量点;第一测量点为目标弯沉盆内载荷中心位置对应测点所在的位置,第二测量点为目标弯沉盆内除载荷中心位置外的其余测点所在的位置;各目标位置对应的各测量时刻,是通过载荷移动速度和弯沉盆检测系统中测速仪的水平安装位置计算获得的。
具体地,可以基于连续弯沉测速子系统,获取载荷的移动过程中,目标弯沉盆内各目标位置对应的各测量时刻的路面垂向变形速度。
可选地,该连续弯沉测速子系统可以包括牵引装置和载体。
示例性地,牵引装置可以为牵引卡车等具有牵引能力的机械。
载体,用于在牵引装置的牵引下,在路面上移动并在移动过程中向路面施加载荷。
具体地,载体可以为拖车等可以移动的无动力机械。
可选地,拖车的后轴可以施加至少10吨载荷。载体在牵引装置的牵 引下,可以在路面上移动并在移动过程中向路面施加载荷,形成滚动载荷作用于路面。
载体上设置有横梁;横梁上设置有速度测量装置、姿态测量单元和辅助测量单元。
具体地,载体上可以设置有方舱。方舱可以采用集成的方式设置。
方舱,用于安装所有测量设备以及测量需要的支持环境。所有测量设备,可以包括但不限于速度测量装置、姿态测量单元和辅助测量单元等。
横梁,可以为位于方舱内部特制的刚性横梁。
速度测量单元包括第二测速传感器和至少3个第一测速传感器;第一测速传感器,用于测量目标弯沉盆内的路面垂向变形速度;第二测速传感器,安装在弯沉盆外部,用于消除弯沉盆内第一测速传感测量的速度噪声。
具体地,速度测量单元可以包括至少3个第一测速传感器和1个第二测速传感器。第一测速传感器和第二测速传感器,均可以为任一种用于测量路面变形速度的测速传感器(即“测速仪”)。
各第一测速传感器和第二测速传感器,可以沿载体的移动方向共线安装。
第一测速传感器为弯沉盆内测速传感器,用于测量距离载荷中心不同位置的路面垂向变形速度。
第二测速传感器为弯沉盆外测速传感器,作为参考测速传感器,用于补偿弯沉盆内测速传感器(即第一测速传感器)测量的速度噪声。该速度噪声为载荷移动方向的分量速度噪声。第一测速传感器测量的速度噪声,指第一测速传感器测量速度所得到的结果中所包含的噪声。
姿态测量单元,用于测量横梁的姿态角速度。
具体地,姿态测量单元可以包括多个陀螺仪。陀螺仪,可以为任意种类的陀螺仪。姿态角速度,可以包括俯仰角速度、横滚角速度和航向角速度。
示例性地,姿态测量单元可以包括3个光纤陀螺仪。
辅助测量单元包括定位子单元;所述定位子单元,用于获取载荷的位置和载体在所述路面上的行进速度。
具体地,定位子单元,可以用于基于至少一种全球卫星导航系统(Global Navigation Satellite System,GNSS),或为任一种测距仪(Distance Measuring Instrument,DMI),或全球卫星导航系统与测距仪相结合,对载荷进行定位,并可以通过测量预设时间段内载体与某一固定目标之间的距离变化,获取载体在路面上的行进速度。
示例性地,全球卫星导航系统,可以为北斗、伽利略、格洛纳斯或全球定位系统(Global Positioning System,GPS)等。
定位子单元,还可以用于进行授时。
在某一时刻,可以基于安装在弯沉盆外的第二测速传感器的测量值、第二测速传感器的安装夹角、载体的旋转速度、载体沿行车方向的运动速度、第一测速传感器的测量值和第一测速传感器的安装夹角,获取弯沉盆内多个第一测速传感器对应测点(即目标位置)的路面垂向变形速度。
可选地,第一测速传感器的测量值可以视为合速度(即路面变形速度、旋转速度和震动速度等的合速度),因此,可以在第一测速传感器的测量值和第二测速传感器的测量值的基础上,基于第二测速传感器的安装夹角、第一测速传感器的安装夹角,载体的旋转速度和载体沿行车方向的运动速度等,去掉路面变形速度中非垂向的分量速度噪声,从而得到路面垂向变形速度。
载体的旋转速度,可以通过姿态测量单元获取。
载体沿行车方向的运动速度,即载体在路面上的行进速度,可以通过定位子单元获取。
载体在牵引装置的牵引下,可以在路面上移动并在移动过程中向路面施加载荷,因此,可以在不同的时刻,基于连续弯沉测速子系统,分别获取各目标位置的路面垂向变形速度。
可选地,目标弯沉盆内可以预先设置有至少4个目标位置。上述至少4个目标位置中,目标弯沉盆内载荷中心位置对应测点所在的位置为 第一测量点,除载荷中心位置之外的其他测点所在的位置为第二测量点。测点,指需要进行测量的点。
假设在任意时刻t m,此时载荷中心(即第一测量点)的位置为x m,通过连续弯沉测速子系统获取该时刻目标弯沉盆内多个位置的路面垂向变形速度,记为
Figure PCTCN2022118738-appb-000001
其中,
Figure PCTCN2022118738-appb-000002
表示目标弯沉盆内第i个第一测速传感器在t m时刻获取的位于测量点x m+L i位置(即对应的第二测量点所在的位置)的路面垂向变形速度;n为目标弯沉盆内第二测量点的个数;L i表示目标弯沉盆内第i个第二测量点距离载荷中心测量点的水平距离。通常情况下,弯沉盆内第二测量点的个数,等于第一测速传感器的个数。
通过目标弯沉盆内多个第二测量点的位置信息和载荷的移动位置信息,匹配同一第一测量点(x m)在不同时刻由不同第一测速传感器获取的路面垂向变形速度,记为
Figure PCTCN2022118738-appb-000003
其中,t i为弯沉盆内第i个测速传感器测量当前测量点(x m)的时刻。
第二测量点的位置信息,可以根据连续弯沉测速子系统中第一测速传感器的安装位置和安装角度确定。
载荷的移动位置信息,可以包括载荷在移动过程中,各目标位置对应的各测量时刻载荷的位置信息。
可以理解的是,对于每一目标位置,可以通过载荷移动速度和弯沉盆检测系统中测速仪的水平安装位置,计算出对应的各第一测速传感器经过该目标位置的时刻,作为该目标位置对应的各测量时刻。
步骤102、基于各目标位置对应的各测量时刻、各目标位置对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取各目标位置对应的各响应时间区间的时长。
具体地,路面垂向变形速度知识库模型,可以用于表征路面垂向变形速度,与载荷的移动速度和载荷的重量等之间的关系。
步骤102之前,还可以包括:获取路面垂向变形速度知识库模型。
可选地,路面垂向变形速度知识库模型可以通过以下任意一种方式获取,但不限于以下方式:
方式一:选择多种典型路段,通过预埋加速度计和连续弯沉测速子系统分别采集在不同行车速度下的路面垂向变形速度,再通过统计分析方法或人工智能方法,建立加速度系统获取的路面垂向变形速度与连续弯沉测速子系统获取的路面垂向变形速度的关系模型,得到路面垂向变形速度知识库模型;
方式二:对多种典型路段,结合滚动载荷作用下路面响应理论模型,得到路面垂向变形速度知识库模型;
方式三:对多种典型路段,通过对比分析FWD测量的弯沉盆与连续弯沉测速子系统测量的弯沉盆之间的关系,建立并完善路面垂向变形速度模型,得到路面垂向变形速度知识库模型。
基于各第一时长、各目标位置对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,可以估算滚动载荷作用下当前第一测量点的响应时间段。
根据各目标位置对应的各测量时刻,可以将滚动载荷作用下当前第一测量点的响应时间段分为多个响应时间区间,从而得到各目标位置对应的各响应时间区间的时长。
各目标位置对应的各响应时间区间的集合可以记为ET i(ET i∈{VT j|j=i,i+1,L,n}),i=0,1,2,L,n。其中,ET i(i=1,2,L,n)为目标弯沉盆内第i个第一测速传感器对应的第二测量点的响应时间区间集合,ET 0为载荷中心(第一测量点)的响应时间区间集合。
同一第一测量点相邻时刻间路面垂向变形速度的时间差为弯沉盆内相邻第一测速传感器经过该第一测量点的时间差,可以记为{VT i=t i-t i+1|i=1,2,L,n-1}。
步骤103、基于各目标位置对应的各测量时刻的路面垂向变形速度、各目标位置对应的各响应时间区间的时长和路面垂向变形速度知识库模型,获取各目标位置对应的各响应时间区间的代表路面垂向变形速度。
具体地,对于每一目标位置对应每一响应时间区间,该目标位置对应的该响应时间区间的代表路面垂向变形速度,可以视为该目标位置对应的该响应时间区间内的平均路面垂向变形速度。
对于任一目标位置,可以基于该目标位置对应的各测量时刻的路面垂向变形速度、该目标位置对应的各响应时间区间的时长和路面垂向变形速度知识库模型,获取该目标位置对应的各响应时间区间的代表路面垂向变形速度。
步骤104、基于各目标位置对应的各响应时间区间的代表路面垂向变形速度和各目标位置对应的各响应时间区间的时长,获取目标弯沉盆的检测结果。
具体地,弯沉盆对指载荷中心在第一测量点,不同第二测量点处具备不同的变形量,形成类似盆状的一个形态。
基于各目标位置对应的各响应时间区间的代表路面垂向变形速度和各目标位置对应的各响应时间区间的时长,可以获取目标弯沉盆内各目标位置的弯沉值,从而得到目标弯沉盆的形状。
本申请实施例通过基于滚动载荷作用下路面垂向变形速度进行弯沉盆检测,能实现连续弯沉盆的快速检测,能解决传统的弯沉测量存在的效率低、主观性强、危险性高和费时费力等问题,能提高弯沉盆检测的效率和安全性,能获取整个弯沉盆的弯沉值,能解决激光动态弯沉测量系统仅可以测量载荷中心最大弯沉值而无法对某个结构层的承载性能进行表征等问题,检测结果受环境影响较小,检测结果不受路表纹理的影响,弯沉盆检测结果的准确度更高。
基于上述任一实施例的内容,该检测方法适用于公路路面或机场道面弯沉盆检测。
基于各目标位置对应的各响应时间区间的代表路面垂向变形速度和各目标位置对应的各响应时间区间的时长,获取目标弯沉盆的检测结果之后,还包括:基于目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,对目标弯沉盆的检测结果进行修正。
具体地,测量环境信息,可以包括路面温度、载荷的移动速度和载荷的重量等。
弯沉盆修正知识库模型,可以用于表征路面温度、载荷的移动速度和载荷的重量等,与弯沉盆的检测结果之间的关系。
获取目标弯沉盆的检测结果之后,可以基于目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,对目标弯沉盆的检测结果进行修正,以得到更准确的弯沉盆检测结果。
可选地,基于目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,对目标弯沉盆的检测结果进行修正之前,还包括:获取目标弯沉盆的测量环境信息。
可选地,路面温度,可以通过辅助测量单元包括的测温仪获取。测温仪可以是任意种类的测温仪,例如红外测温仪。
可选地,基于目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,对目标弯沉盆的检测结果进行修正之前,还包括:建立弯沉盆修正知识库模型。
可选地,弯沉盆修正知识库模型可以通过以下方式获取,但不限于以下方式:
选择多种典型路段和典型气候;对各种典型路段,在T h小时内,采集载荷的不同移动速度、不同路面温度下的测量结果;再以特定温度T c和特定测试速度T v下的测量结果为标准,建立弯沉盆修正知识库模型。
本申请实施例通过基于目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,对目标弯沉盆的检测结果进行修正,能进一步提高弯沉盆检测结果的准确度。
基于上述任一实施例的内容,基于各目标位置对应的各测量时刻、各目标位置对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取各目标位置对应的各响应时间区间的时长,包括:基于任一目标位置对应的各测量时刻,获取各第一时长;第一时长,为任一目标位置对应的两个相邻测量时刻之间的时间差。
具体地,第一时长,为任一目标位置对应的两个相邻测量时刻之间的时间差,即相邻两个第一测速传感器经过同一目标位置的时间差。
同一第一测量点相邻时刻间路面垂向变形速度的时间差为弯沉盆内相邻第一测速传感器经过该第一测量点的时间差,可以记为{VT i=t i-t i+1|i=1,2,L,n-1}。
基于各第一时长、第一测量点对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取载荷作用下第一测量点的响应开始时间和响应结束时间。
具体的基于所述各第一时长和所述第一测量点对应的与所述载荷作用下所述第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第一变化速率;基于所述第一变化速率和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应开始时间。
具体的基于所述各第一时长和所述第一测量点对应的与所述载荷作用下所述第一测量点的响应结束时间接近的多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第一变化速率;基于所述第一变化速率和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应结束时间。
基于第一测量点对应的各测量时刻,以及载荷作用下第一测量点的响应开始时间和响应结束时间,获取第一测量点对应的各响应时间区间的时长。
具体地,滚动载荷作用下第一测量点的响应开始时间和响应结束时间,可以界定滚动载荷作用下第一测量点的响应时间段。根据第一测量点对应的各测量时刻,可以将滚动载荷作用下第一测量点的响应时间段分为多个响应时间区间,从而得到第一测量点对应的各响应时间区间的时长。
基于各第一时长、第二测量点对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取载荷作用下第二测量点的响应开始时间。
具体地,对于每一第二测量点,基于所述各第一时长和所述第二测量点对应的与所述载荷作用下所述第二测量点的响应开始时间接近的1个或多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第二变化速率;基于所述第二变化速率和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第二测量点的响应开始时间。
基于第二测量点对应的各测量时刻,以及载荷作用下第二测量点的响应开始时间,获取第二测量点的各响应时间区间的时长。
具体地,对于每一第二测量点,滚动载荷作用下该第二测量点的响应开始时间和响应结束时间,可以界定滚动载荷作用下该第二测量点的响应时间段。根据该第二测量点对应的各测量时刻,可以将滚动载荷作用下该第二测量点的响应时间段分为多个响应时间区间,从而得到该第二测量点对应的各响应时间区间的时长。
本申请实施例通过基于各目标位置对应的各测量时刻、各目标位置对应的各测量时刻的路面垂向变形速度、载荷的移动位置信息和路面垂向变形速度知识库模型,获取各目标位置对应的各响应时间区间的时长,能基于各目标位置对应的各响应时间区间的时长,获取更准确的弯沉盆检测结果。
基于上述任一实施例的内容,基于各目标位置对应的各响应时间区间的代表路面垂向变形速度和各目标位置对应的各响应时间区间的时长,获取目标弯沉盆的检测结果,包括:对于每一目标位置,基于目标位置对应的各响应时间区间的代表路面垂向变形速度和响应时间区间的时长,获取目标位置的累积竖向变形量。
具体地,目标位置的累积竖向变形量,可以反映目标弯沉盆中该目标位置的形状。
第一测量点的位置为x m,计算目标弯沉盆内各目标位置的竖向变形量DEF i(i=0,1,2,L,n)。其中,DEF i(i=1,2,L,n)表示目标弯沉盆内第i个第一测速传感器对应的第二测量点的累积竖向变形量;DEF 0表示第一测量点的累积竖向变形量。
将各目标位置的累积竖向变形量,确定为目标弯沉盆的检测结果。
具体地,目标弯沉盆的检测结果,可以包括各目标位置的累积竖向变形量。
本申请实施例通过基于目标位置对应的各响应时间区间的代表路面垂向变形速度和响应时间区间的时长,获取目标位置的累积竖向变形量,能获取更准确的弯沉盆检测结果。
基于上述任一实施例的内容,基于目标位置对应的各响应时间区间的代表路面垂向变形速度和响应时间区间的时长,获取目标位置的累积竖向变形量,包括:获取目标位置对应的每一响应时间区间的代表路面垂向变形速度与每一响应时间区间的时长的乘积;获取各乘积之和,作为目标位置的累积竖向变形量。
具体地,第一测量点的位置为x m,计算目标弯沉盆内各目标位置的竖向
Figure PCTCN2022118738-appb-000004
本申请实施例通过获取目标位置对应的每一响应时间区间的代表路面垂向变形速度与每一响应时间区间的时长的乘积之和,作为目标位置的累积竖向变形量,能获取更准确的弯沉盆检测结果。
基于上述任一实施例的内容,基于各目标位置对应的各测量时刻的路面垂向变形速度、各目标位置对应的各响应时间区间的时长和路面垂向变形速度知识库模型,获取各目标位置对应的各响应时间区间的代表路面垂向变形速度,包括:对各目标位置中的任一目标位置,利用目标位置对应的不同测量时刻的路面垂向变形速度、各目标位置对应的各响应时间区间的时长和路面垂向变形速度知识库模型,获取各目标位置对应的各响应时间区间的代表路面垂向变形速度。
可选地,可以基于该目标位置对应的各响应时间区间的时长和路面垂向变形速度知识库模型等,对该目标位置对应的各测量时刻的路面垂向变形速度进行拟合,得到滚动载荷作用下当前第一测量点的响应时间段内该目标位置的路面垂向变形速度随时间变化的曲线或方程;基于拟合得到的曲线或方程,可以得到该目标位置对应的各响应时间区间的代表路面垂向变形速度。
可选地,可以基于该目标位置对应的各测量时刻的路面垂向变形速度、该目标位置对应的各响应时间区间的时长和路面垂向变形速度知识库模型,得到该目标位置对应的每一响应时间区间内,该目标位置的路面垂向变形速度随时间变化的规律;基于该规律,可以得到该目标位置对应的各响应时间区间的代表路面垂向变形速度。
本申请实施例通过获取各目标位置对应的各响应时间区间的代表路面垂向变形速度,能实现基于代表路面垂向变形速度进行更快速的弯沉盆检测。基于上述任一实施例的内容,目标弯沉盆的检测结果,包括各目标位置的累积竖向变形量。
基于目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,对目标弯沉盆的检测结果进行修正,包括:基于目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,获取每一目标位置的修正系数。
具体地,可以基于弯沉盆修正知识库模型,根据目标弯沉盆的测量环境信息,计算各目标位置的修正系数{F i|i=0,1,2,...,n}。
该修正系数,用于修正测量环境信息对目标位置的累积竖向变形量带来的误差。
对于每一目标位置,基于目标位置的修正系数对目标位置的累积竖向变形量进行修正。
具体地,可以依据弯沉盆内各目标位置的修正系数{F i|i=0,1,2,...,n},对各测点进行弯沉盆的检测结果进行修正。进行修正的公式为
DEF i'=DEF i*F i(i=0,1,2,L,n),
其中,DEF i′表示目标弯沉盆内第i个第一测速传感器对应的第二测量点修正后的累积竖向变形量。
本申请实施例通过基于目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,获取每一目标位置的修正系数,对于每一目标位置,基于目标位置的修正系数对目标位置的累积竖向变形量进行修正,能进一步提高弯沉盆检测结果的准确度。
基于上述任一实施例的内容,基于各第一时长、第一测量点对应的各测量时刻的路面垂向变形速度、载荷的移动位置信息和路面垂向变形速度知识库模型,获取载荷作用下第一测量点的响应开始时间和响应结束时间,包括:基于各第一时长、第一测量点对应的与载荷作用下第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取载荷作用下第一测量点的响应开始时间;基于各第一时长、第一测量点对应的与载荷作用下第一测量点的响 应结束时间接近的多个测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,以及载荷的移动位置信息和载荷的移动速度信息,获取载荷作用下第一测量点的响应结束时间。
具体地,基于路面垂向变形速度知识库模型,可以根据各第一时长、以及第一测量点对应的与载荷作用下第一测量点的响应开始时间接近的多个(例如u个,u可以为大于或等于2的整数)测量时刻的路面垂向变形速度,估算出载荷作用下第一测量点的响应开始时间。
载荷作用下第一测量点的响应结束时间,可以为载荷移动至第一测量点所对应的时间,或为载荷离开第一测量点后某时刻所对应的时间(此时的测点响应存在滞后现象)。
基于所述各第一时长和所述第一测量点对应的与所述载荷作用下所述第一测量点的响应结束时间接近的多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第一变化速率;基于所述第一变化速率和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应结束时间,记为t 0
本申请实施例通过基于各第一时长、第一测量点对应的与载荷作用下第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取载荷作用下第一测量点的响应开始时间,并基于载荷的移动位置信息和载荷的移动速度信息,获取载荷作用下第一测量点的响应结束时间,能获取更准确的各目标位置对应的各响应时间区间的时长,从而能基于各目标位置对应的各响应时间区间的时长,获取更准确的弯沉盆检测结果。
基于上述任一实施例的内容,获取载荷作用下第一测量点的响应开始时间,包括:基于各第一时长和第一测量点对应的与载荷作用下第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第一变化速率。
具体地,基于各第一时长和第一测量点对应的与载荷作用下第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速度,可以邻近响应开始时间的路面垂向变形速度的第一变化速率。
基于第一变化速率和路面垂向变形速度知识库模型,获取载荷作用下第一测量点的响应开始时间。
具体地,基于路面垂向变形速度知识库模型,根据邻近第一测量点的响应开始时间的各第一变化速率,可以估算出载荷作用下第一测量点的响应开始时间,记为t n+1
获取载荷作用下第二测量点的响应开始时间,包括:基于各第一时长和第二测量点对应的与载荷作用下第二测量点的响应开始时间接近的1个或多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第二变化速率。
具体地,对于每一第二测量点,基于路面垂向变形速度知识库模型,可以根据各第一时长、以及第二测量点对应的与载荷作用下该第二测量点的响应开始时间接近的1个多个(例如v个,v可以为大于或等于2的整数)测量时刻的路面垂向变形速度的第二变化速率。
基于第二变化速率和路面垂向变形速度知识库模型,获取载荷作用下第二测量点的响应开始时间。
具体地,对于每一第二测量点,基于路面垂向变形速度知识库模型,根据邻近该第二测量点的响应开始时间的各第二变化速率,可以估算出载荷作用下该第二测量点的响应开始时间。
获取载荷作用下第一测量点的响应结束时间,包括:基于各第一时长和第一测量点对应的与载荷作用下第一测量点的响应结束时间接近的多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第一变化速率。
基于第一变化速率和路面垂向变形速度知识库模型,获取载荷作用下第一测量点的响应结束时间。
具体地,基于路面垂向变形速度知识库模型,根据邻近第一测量点的响应开始时间的各第一变化速率,可以估算出载荷作用下第一测量点的响应结束时间。
本申请实施例通过基于各第一时长和第一测量点对应的与载荷作用下第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速 度,获取路面垂向变形速度的变化速率,基于变化速率和路面垂向变形速度知识库模型,获取载荷作用下第一测量点的响应开始时间和响应结束时间,能获取更准确的各目标位置对应的各响应时间区间的时长,从而能基于各目标位置对应的各响应时间区间的时长,获取更准确的弯沉盆检测结果。
为了便于对本申请上述各实施例的理解,下面对基于滚动载荷作用下路面垂向变形速度的弯沉盆快速检测方法的实施过程进行描述。
图2是本申请提供的弯沉盆检测方法的流程示意图之二。如图2所示,基于滚动载荷作用下路面垂向变形速度的弯沉盆快速检测方法,可以包括以下步骤。
步骤201、获取同一时刻弯沉盆内多个第一测速传感器对应位置的路面垂向变形速度。
步骤202、获取同一目标位置不同测量时刻的路面垂向变形速度。
步骤203、获取相邻测量时刻间路面垂向变形速度的时间差。
步骤204、估算滚动载荷作用下第一测量点的响应开始时间和响应结束时间,以及各第二测量点的响应开始时间。
步骤205、获取相邻时刻间的代表路面垂向变形速度。
步骤206、计算路面弯沉盆。
步骤207、基于测量环境信息和弯沉盆修正知识库模型进行路面弯沉盆修正。
下面对本申请提供的弯沉盆检测装置进行描述,下文描述的弯沉盆检测装置与上文描述的弯沉盆检测方法可相互对应参照。
图3是本申请提供的基于滚动载荷作用下路面变形速度的弯沉盆检测装置的结构示意图。基于上述任一实施例的内容,如图3所示,该装置包括原始速度获取模块301、时长获取模块302、代表速度获取模块303和弯沉盆检测模块304,其中:
原始速度获取模块301,用于获取载荷移动过程中,目标弯沉盆内各目标位置对应的各测量时刻的路面垂向变形速度;
时长获取模块302,用于基于各目标位置对应的各测量时刻、各目标 位置对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取各目标位置对应的各响应时间区间的时长;
代表速度获取模块303,用于基于各目标位置对应的各测量时刻的路面垂向变形速度、各目标位置对应的各响应时间区间的时长和路面垂向变形速度知识库模型,获取各目标位置对应的各响应时间区间的代表路面垂向变形速度;
弯沉盆检测模块304,用于基于各目标位置对应的各响应时间区间的代表路面垂向变形速度和各目标位置对应的各响应时间区间的时长,获取目标弯沉盆的检测结果;
其中,各目标位置,包括第一测量点和至少3个第二测量点;第一测量点为目标弯沉盆内载荷中心位置对应测点所在的位置,第二测量点为目标弯沉盆内除载荷中心位置外的其余测点所在的位置;各目标位置对应的各测量时刻,是通过载荷移动速度和弯沉盆检测系统中测速仪的水平安装位置计算获得的。
具体地,原始速度获取模块301、时长获取模块302、代表速度获取模块303和弯沉盆检测模块304可以顺次电连接。
原始速度获取模块301可以基于连续弯沉测速子系统,获取载荷的移动过程中,目标弯沉盆内各目标位置对应的各测量时刻的路面垂向变形速度。
时长获取模块302基于各第一时长、各目标位置对应的各测量时刻的路面垂向变形速度、载荷的移动位置信息和路面垂向变形速度知识库模型,可以估算滚动载荷作用下当前第一测量点的响应时间段;根据各目标位置对应的各测量时刻,可以将滚动载荷作用下当前第一测量点的响应时间段分为多个响应时间区间,从而得到各目标位置对应的各响应时间区间的时长。
代表速度获取模块303对于任一目标位置,可以基于该目标位置对应的各测量时刻的路面垂向变形速度、该目标位置对应的各响应时间区间的时长和路面垂向变形速度知识库模型,获取该目标位置对应的各响应时间区间的代表路面垂向变形速度。
弯沉盆检测模块304基于各目标位置对应的各响应时间区间的代表路面垂向变形速度和各目标位置对应的各响应时间区间的时长,可以获取目标弯沉盆内各目标位置的弯沉值,从而得到目标弯沉盆的形状。
可选地,该弯沉盆检测装置,可以还包括:
修正模块,用于基于目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,对目标弯沉盆的检测结果进行修正。
可选地,时长获取模块302,可以包括:
第一时长获取单元,用于基于任一目标位置对应的各测量时刻,获取各第一时长;
响应时间获取单元,用于基于各第一时长、第一测量点对应的各测量时刻的路面垂向变形速度、载荷的移动位置信息和路面垂向变形速度知识库模型,获取载荷作用下第一测量点的响应开始时间和响应结束时间;
第二时长获取单元,用于基于第一测量点对应的各测量时刻,以及载荷作用下第一测量点的响应开始时间和响应结束时间,获取第一测量点对应的各响应时间区间的时长;
响应时间获取单元,还用于基于所述各第一时长、所述第二测量点对应的各测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第二测量点的响应开始时间;
第三时长获取单元,用于基于所述第二测量点对应的各测量时刻,以及所述载荷作用下所述第二测量点的响应开始时间,获取所述第二测量点的各响应时间区间的时长。
可选地,弯沉盆检测模块304,可以包括:
累积变形获取单元,用于对于每一目标位置,基于目标位置对应的各响应时间区间的代表路面垂向变形速度和响应时间区间的时长,获取目标位置的累积竖向变形量;
检测结果获取单元,用于将各目标位置的累积竖向变形量,确定为目标弯沉盆的检测结果。
可选地,累积变形获取单元,可以具体用于获取目标位置对应的每 一响应时间区间的代表路面垂向变形速度与每一响应时间区间的时长的乘积;获取各乘积之和,作为目标位置的累积竖向变形量。
可选地,目标弯沉盆的检测结果,包括各目标位置的累积竖向变形量;
修正模块,可以具体用于基于目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,获取每一目标位置的修正系数;对于每一目标位置,基于目标位置的修正系数对目标位置的累积竖向变形量进行修正。
可选地,响应时间获取单元,可以包括:
响应开始时间获取子单元,用于基于各第一时长、第一测量点对应的与载荷作用下第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取载荷作用下第一测量点的响应开始时间;
响应结束时间获取子单元,用于基于各第一时长、第一测量点对应的与载荷作用下第一测量点的响应结束时间接近的多个测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,以及载荷的移动位置信息和载荷的移动速度信息,获取载荷作用下第一测量点的响应结束时间。
可选地,响应时间获取单元,可以具体用于基于各第一时长和第一测量点对应的与载荷作用下第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第一变化速率;基于第一变化速率和路面垂向变形速度知识库模型,获取载荷作用下第一测量点的响应开始时间。
可选地,响应时间获取单元,还可以具体用于基于各第一时长和第二测量点对应的与载荷作用下第二测量点的响应开始时间接近的1个或多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第二变化速率;基于第二变化速率和路面垂向变形速度知识库模型,获取载荷作用下第二测量点的响应开始时间。
可选地,响应时间获取单元,还可以具体用于获取载荷作用下第一测量点的响应结束时间,包括:
基于各第一时长和第一测量点对应的与载荷作用下第一测量点的响应结束时间接近的多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第一变化速率;
基于第一变化速率和路面垂向变形速度知识库模型,获取载荷作用下第一测量点的响应结束时间。
本申请实施例提供的弯沉盆检测装置,用于执行本申请上述弯沉盆检测方法,其实施方式与本申请提供的弯沉盆检测方法的实施方式一致,且可以达到相同的有益效果,此处不再赘述。
本申请实施例通过基于滚动载荷作用下路面垂向变形速度进行弯沉盆检测,能实现连续弯沉盆的快速检测,能解决传统的弯沉测量存在的效率低、主观性强、危险性高和费时费力等问题,能提高弯沉盆检测的效率和安全性,能获取整个弯沉盆的弯沉值,能解决激光动态弯沉测量系统仅可以测量载荷中心最大弯沉值而无法对某个结构层的承载性能进行表征等问题,检测结果受环境影响较小,检测结果不受路表纹理的影响,弯沉盆检测结果的准确度更高。
图4是本申请提供的基于滚动载荷作用下路面变形速度的弯沉盆检测系统的结构示意图。如图4所示,弯沉盆检测系统包括:连续弯沉测速子系统401和弯沉盆检测装置402;
连续弯沉测速子系统401,包括:牵引装置4011和载体4012;
载体4012,用于在牵引装置4011的牵引下,在路面上移动并在移动过程中向路面5施加载荷;
载体4012上设置有横梁3;横梁3上设置有速度测量装置、姿态测量单元4和辅助测量单元;
速度测量单元包括第二测速传感器2和至少3个第一测速传感器1;第一测速传感器1,用于测量目标弯沉盆内的路面垂向变形速度;第二测速传感器2,安装在弯沉盆外部,用于消除弯沉盆内第一测速传感测量的速度噪声;
姿态测量单元4,用于测量横梁的姿态角速度;
辅助测量单元包括定位子单元;定位子单元,用于获取载荷的位置 和载体在路面上的行进速度。
图4中O点为第一测量点,为施加动态载荷F的位置;P1、P2、…、Pn为n个第二测量点;α表示第一测速传感器1的安装角度;γ表示第二测速传感器2的安装角度;R表示第二测速传感器2对应的测量位置。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种基于滚动载荷作用下变形速度的弯沉盆检测方法,包括:
    获取载荷移动过程中,目标弯沉盆内各目标位置对应的各测量时刻的路面垂向变形速度;
    基于所述各目标位置对应的各测量时刻、所述各目标位置对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的时长;
    基于所述各目标位置对应的各测量时刻的路面垂向变形速度、所述各目标位置对应的各响应时间区间的时长和所述路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的代表路面垂向变形速度;
    基于所述各目标位置对应的各响应时间区间的代表路面垂向变形速度和所述各目标位置对应的各响应时间区间的时长,获取所述目标弯沉盆的检测结果;
    其中,所述各目标位置,包括第一测量点和至少3个第二测量点;所述第一测量点为目标弯沉盆内载荷中心位置对应测点所在的位置,所述第二测量点为所述目标弯沉盆内除所述载荷中心位置外的其余测点所在的位置;各所述目标位置对应的各所述测量时刻,是通过载荷移动速度和弯沉盆检测系统中测速仪的水平安装位置计算获得的。
  2. 根据权利要求1所述的基于滚动载荷作用下变形速度的弯沉盆检测方法,其中,所述检测方法适用于公路路面或机场道面弯沉盆检测;
    所述基于所述各目标位置对应的各响应时间区间的代表路面垂向变形速度和所述各目标位置对应的各响应时间区间的时长,获取所述目标弯沉盆的检测结果之后,还包括:
    基于所述目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,对所述目标弯沉盆的检测结果进行修正。
  3. 根据权利要求1所述的基于滚动载荷作用下变形速度的弯沉盆检测方法,其中,所述基于所述各目标位置对应的各测量时刻、所述各目标位置对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的时长,包括:
    基于任一所述目标位置对应的各测量时刻,获取各第一时长;所述第一时长,为任一所述目标位置对应的两个相邻测量时刻之间的时间差;
    基于所述各第一时长、所述第一测量点对应的各测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应开始时间和响应结束时间;
    基于所述第一测量点对应的各测量时刻,以及所述载荷作用下所述第一测量点的响应开始时间和响应结束时间,获取所述第一测量点对应的各响应时间区间的时长;
    基于所述各第一时长、所述第二测量点对应的各测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第二测量点的响应开始时间;
    基于所述第二测量点对应的各测量时刻,以及所述载荷作用下所述第二测量点的响应开始时间,获取所述第二测量点的各响应时间区间的时长。
  4. 根据权利要求1所述的基于滚动载荷作用下变形速度的弯沉盆检测方法,其中,所述基于所述各目标位置对应的各响应时间区间的代表路面垂向变形速度和所述各目标位置对应的各响应时间区间的时长,获取所述目标弯沉盆的检测结果,包括:
    对于每一所述目标位置,基于所述目标位置对应的各响应时间区间的代表路面垂向变形速度和所述响应时间区间的时长,获取所述目标位置的累积竖向变形量;
    将各所述目标位置的累积竖向变形量,确定为所述目标弯沉盆的检测结果;
    所述基于所述目标位置对应的各响应时间区间的代表路面垂向变形速度和所述响应时间区间的时长,获取所述目标位置的累积竖向变形量,包括:
    获取所述目标位置对应的每一响应时间区间的代表路面垂向变形速度与所述每一响应时间区间的时长的乘积;
    获取各乘积之和,作为所述目标位置的累积竖向变形量。
  5. 根据权利要求1所述的基于滚动载荷作用下变形速度的弯沉盆检测方法,其中,所述基于所述各目标位置对应的各测量时刻的路面垂向变形速度、所述各目标位置对应的各响应时间区间的时长和所述路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的代表路面垂向变形速度,包括:
    对所述各目标位置中的任一目标位置,利用所述目标位置对应的不同测量时刻的路面垂向变形速度、所述各目标位置对应的各响应时间区间的时长和所述路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的代表路面垂向变形速度。
  6. 根据权利要求2所述的基于滚动载荷作用下变形速度的弯沉盆检测方法,其中,所述目标弯沉盆的检测结果,包括各所述目标位置的累积竖向变形量;
    所述基于所述目标弯沉盆的测量环境信息和弯沉盆修正知识库模型,对所述目标弯沉盆的检测结果进行修正,包括:
    基于所述目标弯沉盆的测量环境信息和所述弯沉盆修正知识库模型,获取每一所述目标位置的修正系数;
    对于每一所述目标位置,基于所述目标位置的修正系数对所述目标位置的累积竖向变形量进行修正。
  7. 根据权利要求3所述的基于滚动载荷作用下变形速度的弯沉盆检测方法,其中,所述基于所述各第一时长、所述第一测量点对应的各测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应开始时间和响应结束时间,包括:
    基于所述各第一时长、所述第一测量点对应的与所述载荷作用下所述第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应开始时间;
    基于所述各第一时长、所述第一测量点对应的与所述载荷作用下所述第一测量点的响应结束时间接近的多个测量时刻的路面垂向变形速度和所述路面垂向变形速度知识库模型,以及所述载荷的移动位置信息和 所述载荷的移动速度信息,获取所述载荷作用下所述第一测量点的响应结束时间。
  8. 根据权利要求7所述的基于滚动载荷作用下变形速度的弯沉盆检测方法,其中,所述获取所述载荷作用下所述第一测量点的响应开始时间,包括:
    基于所述各第一时长和所述第一测量点对应的与所述载荷作用下所述第一测量点的响应开始时间接近的多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第一变化速率;
    基于所述第一变化速率和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应开始时间;
    所述获取所述载荷作用下所述第二测量点的响应开始时间,包括:
    基于所述各第一时长和所述第二测量点对应的与所述载荷作用下所述第二测量点的响应开始时间接近的1个或多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第二变化速率;
    基于所述第二变化速率和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第二测量点的响应开始时间;
    获取所述载荷作用下所述第一测量点的响应结束时间,包括:
    基于所述各第一时长和所述第一测量点对应的与所述载荷作用下所述第一测量点的响应结束时间接近的多个测量时刻的路面垂向变形速度,获取路面垂向变形速度的第一变化速率;
    基于所述第一变化速率和所述路面垂向变形速度知识库模型,获取所述载荷作用下所述第一测量点的响应结束时间。
  9. 一种基于滚动载荷作用下路面变形速度的弯沉盆检测装置,包括:
    原始速度获取模块,用于获取载荷移动过程中,目标弯沉盆内各目标位置对应的各测量时刻的路面垂向变形速度;
    时长获取模块,用于基于所述各目标位置对应的各测量时刻、所述各目标位置对应的各测量时刻的路面垂向变形速度和路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的时长;
    代表速度获取模块,用于基于所述各目标位置对应的各测量时刻的 路面垂向变形速度、所述各目标位置对应的各响应时间区间的时长和所述路面垂向变形速度知识库模型,获取所述各目标位置对应的各响应时间区间的代表路面垂向变形速度;
    弯沉盆检测模块,用于基于所述各目标位置对应的各响应时间区间的代表路面垂向变形速度和所述各目标位置对应的各响应时间区间的时长,获取所述目标弯沉盆的检测结果;
    其中,所述各目标位置,包括第一测量点和至少3个第二测量点;所述第一测量点为目标弯沉盆内载荷中心位置对应测点所在的位置,所述第二测量点为所述目标弯沉盆内除所述载荷中心位置外的其余测点所在的位置;各所述目标位置对应的各所述测量时刻,是通过载荷移动速度和弯沉盆检测系统中测速仪的水平安装位置计算获得的。
  10. 一种基于滚动载荷作用下路面变形速度的弯沉盆检测系统,包括:连续弯沉测速子系统和如权利要求9所述的基于滚动载荷作用下路面变形速度的弯沉盆检测装置;
    所述连续弯沉测速子系统,包括:牵引装置和载体;
    所述载体,用于在所述牵引装置的牵引下,在路面上移动并在移动过程中向所述路面施加载荷;
    所述载体上设置有横梁;所述横梁上设置有速度测量装置、姿态测量单元和辅助测量单元;
    所述速度测量单元包括第二测速传感器和至少3个第一测速传感器;所述第一测速传感器,用于测量目标弯沉盆内的路面垂向变形速度;所述第二测速传感器,安装在弯沉盆外部,用于消除弯沉盆内第一测速传感器测量的速度噪声;
    所述姿态测量单元,用于测量所述横梁的姿态角速度;
    所述辅助测量单元包括定位子单元;所述定位子单元,用于获取所述载荷的位置和所述载体在所述路面上的行进速度。
PCT/CN2022/118738 2022-07-11 2022-09-14 基于滚动载荷作用下变形速度的弯沉盆检测方法及装置 WO2024011746A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022454784A AU2022454784A1 (en) 2022-07-11 2022-09-14 Method and device for detecting deflection basin based on deformation speed under rolling load
CA3238408A CA3238408A1 (en) 2022-07-11 2022-09-14 Method and device for detecting deflection basin based on deformation speed under rolling load

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210814910.8 2022-07-11
CN202210814910.8A CN115217018B (zh) 2022-07-11 基于滚动载荷作用下变形速度的弯沉盆检测方法及装置

Publications (1)

Publication Number Publication Date
WO2024011746A1 true WO2024011746A1 (zh) 2024-01-18

Family

ID=83611668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118738 WO2024011746A1 (zh) 2022-07-11 2022-09-14 基于滚动载荷作用下变形速度的弯沉盆检测方法及装置

Country Status (3)

Country Link
AU (1) AU2022454784A1 (zh)
CA (1) CA3238408A1 (zh)
WO (1) WO2024011746A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162217A (zh) * 2010-11-18 2011-08-24 武汉武大卓越科技有限责任公司 激光动态弯沉测量车
WO2013163618A1 (en) * 2012-04-26 2013-10-31 Quest Integrated, Inc. Rolling weight deflectometer
CN103452032A (zh) * 2013-09-26 2013-12-18 武汉武大卓越科技有限责任公司 基于角度的动态弯沉获取方法
CN107012772A (zh) * 2017-03-13 2017-08-04 长安大学 一种非接触式快速道路弯沉检测方法
CN111444463A (zh) * 2020-04-09 2020-07-24 武汉武大卓越科技有限责任公司 基于路面变形速度的弯沉计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162217A (zh) * 2010-11-18 2011-08-24 武汉武大卓越科技有限责任公司 激光动态弯沉测量车
WO2013163618A1 (en) * 2012-04-26 2013-10-31 Quest Integrated, Inc. Rolling weight deflectometer
CN103452032A (zh) * 2013-09-26 2013-12-18 武汉武大卓越科技有限责任公司 基于角度的动态弯沉获取方法
CN107012772A (zh) * 2017-03-13 2017-08-04 长安大学 一种非接触式快速道路弯沉检测方法
CN111444463A (zh) * 2020-04-09 2020-07-24 武汉武大卓越科技有限责任公司 基于路面变形速度的弯沉计算方法

Also Published As

Publication number Publication date
CN115217018A (zh) 2022-10-21
CA3238408A1 (en) 2024-01-18
AU2022454784A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
CN102162217B (zh) 激光动态弯沉测量车
US9417154B2 (en) Monitoring a response of a bridge based on a position of a vehicle crossing the bridge
Rasmussen et al. Non-contact deflection measurement at high speed
CN112378507B (zh) 一种基于运动补偿的计算机视觉结构振动监测方法
CN102444079B (zh) 路面弯沉测量系统及其测量方法
He et al. Accurate measurement of pavement deflection velocity under dynamic loads
Sekiya et al. Visualization system for bridge deformations under live load based on multipoint simultaneous measurements of displacement and rotational response using MEMS sensors
CN102261033A (zh) 一种基于惯性测量单元的车载路面检测系统的运补算法
CN109635386A (zh) 一种桥梁移动车辆荷载识别方法
CN103452032B (zh) 基于角度的动态弯沉获取方法
Jeon et al. Development of displacement estimation method of girder bridges using measured strain signal induced by vehicular loads
KR101366103B1 (ko) 지점부의 반력응답을 이용한 bwim 시스템 및 그의 제어 방법
WO2024011746A1 (zh) 基于滚动载荷作用下变形速度的弯沉盆检测方法及装置
CN109895808B (zh) 轨道离缝检测方法及测速系统
CN115217018B (zh) 基于滚动载荷作用下变形速度的弯沉盆检测方法及装置
Simonin et al. Assessment of the Danish high speed deflectograph in France
CN111189519B (zh) 基于重力异常的车辆超载监测方法
CN104390587B (zh) 基于刚性载体运行轨迹解析算法的线形检测方法及装置
CN104929023B (zh) 一种路面弯沉的快速检测方法
Zolghadri et al. Identification of truck types using strain sensors include co-located strain gauges
CN102927926B (zh) 一种基于光纤陀螺的线形测量系统动态校正方法
Ojio et al. BWIM systems using truss bridges
CN117802861A (zh) 小体积激光动态弯沉快速检测方法
Umekawa et al. Development of structural deformation measurement system using multiple acceleration sensors
Ishtiaq Non-intrusive bridge weigh-in-motion: integrating geophones and strain sensors for accurate vehicle characterization.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022454784

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022454784

Country of ref document: AU

Date of ref document: 20220914

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3238408

Country of ref document: CA