WO2024010487A1 - Скважинный лопастной насос - Google Patents
Скважинный лопастной насос Download PDFInfo
- Publication number
- WO2024010487A1 WO2024010487A1 PCT/RU2023/000019 RU2023000019W WO2024010487A1 WO 2024010487 A1 WO2024010487 A1 WO 2024010487A1 RU 2023000019 W RU2023000019 W RU 2023000019W WO 2024010487 A1 WO2024010487 A1 WO 2024010487A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearing
- liner
- cylindrical surface
- bushing
- shaft
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 claims abstract description 12
- 239000012530 fluid Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 239000000919 ceramic Substances 0.000 claims description 4
- 229910000760 Hardened steel Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 9
- 238000005086 pumping Methods 0.000 abstract description 5
- 239000003208 petroleum Substances 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract description 2
- 230000000712 assembly Effects 0.000 abstract 3
- 238000000429 assembly Methods 0.000 abstract 3
- 238000010276 construction Methods 0.000 abstract 1
- 239000012535 impurity Substances 0.000 description 7
- 238000007789 sealing Methods 0.000 description 5
- 102220057728 rs151235720 Human genes 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 241000825560 Carbula Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/08—Units comprising pumps and their driving means the pump being electrically driven for submerged use
- F04D13/10—Units comprising pumps and their driving means the pump being electrically driven for submerged use adapted for use in mining bore holes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C27/00—Elastic or yielding bearings or bearing supports, for exclusively rotary movement
- F16C27/06—Elastic or yielding bearings or bearing supports, for exclusively rotary movement by means of parts of rubber or like materials
Definitions
- the invention relates to petroleum engineering and can be used in the design of radial bearing supports for multistage vane pumps.
- a well known borehole centrifugal pump having an appropriate system of radial bearings is known.
- Compatible radial bearings in accordance with the present invention use a fluid chamber of variable size between the stationary bearing housing and the bore in which it is mounted.
- These variable fluid chambers may be formed by elastomeric elements, such as O-rings, which are mounted on the outside of the bearing housing.
- the size of the variable fluid chamber, as well as the fluid contained in it, serves to dampen vibration and mechanical shock to the bearing components. This damping of vibration and shock facilitates the use of ceramic components in the bearing system (according to patent US5209577, class F16C 53/10, published 05/11/93).
- a pump containing a housing, a shaft, impellers, protective bushings, packs of sealing rings made of elastically deformable material, the cross-section of which is a hollow truncated cone, according to the utility model, equipped with ground bushings.
- the elastically deformable sealing rings of the packages together with the shaft form sliding bearings, while on the inner cylindrical surface of the sealing rings, in addition to the outer ones, at least three semicircular grooves are made. All sealing rings, except the outer ones, are connected to each other by a pin, and the outer sealing rings of the packages are made of elastic, rubber-like wear-resistant material and are shaft seals (according to patent RU73410, class F04D 13/06, published 05.20.08).
- the disadvantage of the bearings used in the pump is the large contact area of the outer rings and the ring pack with the protective sleeve, which increases friction and makes lubrication and heat removal difficult.
- a sliding bearing which contains a shaft and a housing with lubrication holes and pockets evenly spaced along the circumference between the shaft and the housing, sealed around the perimeter with elastic seals.
- the elastic seals of the pockets are made with thickenings at the junction of the axial and circumferential elements and are installed in the grooves of the shaft (according to patent SU1064063, class F16C 32/06, published 12/30/83).
- the disadvantage of this solution is the difficulty of accurately manufacturing the groove on the shaft and the elastic seal.
- the elastic element is installed without preliminary compression with a large gap between the housing and the shaft, so self-centering of the bearing strongly depends on the tightness of the pockets formed elastic element between the housing and the shaft. If the element is damaged, for example during installation or wear products during operation, radial runout of the shaft appears, which will negatively affect the performance and service life of the product in which this bearing is used.
- the closest technical solution is a method for absorbing radial load during rotation, which consists in installing at least one polymer wavy ring between coaxial cylindrical surfaces performing rotational motion relative to each other and the common axis.
- the ring is in an elastically compressed state relative to the cylindrical surfaces.
- a sliding bearing in which this method is implemented is also offered.
- the bearing consists of a housing and a bushing, between the coaxial cylindrical surfaces of which at least one polymer wave-shaped ring is installed.
- the ring is in an elastically compressed state relative to the cylindrical surfaces (according to patent RU2763763, class F16C 17/02, F16C 27/06, publ. 01/10/22).
- the technical result to which the proposed invention is aimed is to ensure reliable operation and increase the service life of a downhole radial sliding bearing vane pump when pumping liquid containing mechanical impurities, reducing shaft precession in the supports and vibration.
- a downhole vane pump consists of a base and a head connected by a housing, a shaft and working elements are installed inside bearing supports, each bearing support is a plain bearing, consisting of a stationary liner with a fixed liner installed inside it with radial clearance and fixed on the shaft with a bushing, on the outer cylindrical surface of the bushing there is a wavy groove in which a polymer ring with elastic properties is installed, pressed by the inner cylindrical surface of the liner, and is characterized in that at least one additional groove is made on the outer cylindrical surface of the bushing, ensuring the passage fluid through a bearing under a polymer ring with elastic properties.
- each additional groove can be made at an angle to the bearing axis.
- a groove can be made along the circumference on the outer cylindrical surface of the bushing, the depth of which exceeds the depth of the wavy groove.
- blind holes can be made on the outer cylindrical surface of the bushing at the intersection of the wavy groove and additional grooves, the depth of which exceeds the depth of the wavy groove.
- the length of the sleeve may be less than the length of the liner
- the liner can be made of a material with a hardness of at least 55 HRC, for example, hardened steel, carbide, ceramics, carbula.
- Fig. 1 borehole vane pump
- Fig. 6 - a sliding bearing in which the length of the sleeve is less than the length of the liner
- Fig. 7 is an example of a sleeve.
- a downhole vane pump (Fig. 1) consists of a base 1 and a head 2, connected by a housing 3. Inside, a shaft 5 and working bodies are installed in bearing supports 4, which are sequentially installed impellers 6 mounted on a shaft 5, and guide vanes 7, installed in housing 3.
- Each bearing support 4 is a radial sliding bearing (Fig. 2), consisting of a liner 8 and a sleeve 9 installed inside it with radial clearance. In the hole of the sleeve 9 there is a keyway 10 for fastening to the shaft 5.
- a wavy groove 11 into which a polymer ring 12 with elastic properties is installed.
- additional grooves 13 are made at an angle to the bearing axis, ensuring the passage of fluid through the bearing under the polymer ring due to the fact that the depth of the additional grooves 13 is greater than the depth of the wavy groove 11.
- a groove 14 (Fig. 4) can be made along the circumference on the outer surface of the sleeve 9 (Fig. 4), the depth of which exceeds the depth of the wavy groove 11.
- blind holes 15 (Fig. 5) can be made, the depth of which exceeds the depth of the wavy groove.
- the length Li of the bushing 9 should be less than the length L2 of the liner 8. This will increase the fluid speed at the outlet of the bushing.
- a downhole vane pump is used to extract formation fluid from a well as part of a submersible installation, which also includes a submersible electric motor (SEM), hydraulic protection and various upstream devices.
- SEM submersible electric motor
- the SEM is powered via a cable.
- the electric motor transmits torque to the pump shaft 5 and impellers 6, which ensure the creation of pressure.
- Guide vanes 7 direct the flow to the input of the impellers 6.
- Bearing supports 4 operate in a reservoir fluid environment containing mechanical impurities, sand, proppant, and chemically aggressive compounds.
- the use of a polymer ring 12 with elastic properties installed on the bushing to absorb radial load during rotation in the bearing support 4 as one of its elements increases operational reliability and service life due to the properties of the polymer material, which has high hardness, elasticity and wear resistance. As a result, wear, shaft precession and vibration are reduced.
- additional grooves 13 For better pumping of liquid through the bearing, it is advisable to make additional grooves 13 at an angle to the bearing axis.
- the condition for ensuring the possibility of pumping liquid through the bearing is that the depth of the additional grooves 13 must be greater than the depth of the wavy groove 11 so that the liquid can pass under the polymer ring 12.
- a circumferential groove 14 for better passage of liquid under the polymer ring in the sleeve 9 can be made a circumferential groove 14, the depth of which exceeds the depth of the wavy groove I, or blind holes 15, the depth of which must also exceed the depth of the wavy groove.
- additional grooves 13 can be made smaller or of the same depth as the wavy groove 11, which will have a positive effect on the strength of the sleeve 9.
- liner 8 from a material having a hardness of at least 55 HRC makes it possible to increase its wear resistance when working with constant removal of solids.
- a material having a hardness of at least 55 HRC makes it possible to increase its wear resistance when working with constant removal of solids.
- hardened steels, hard alloys, ceramics or carbules, which also have high temperature resistance can be used.
- the solutions used in the invention ensure reliable operation and increase the service life of the radial sliding bearing of a downhole vane pump under conditions of removal of mechanical impurities, reduce the precession of the shaft in the supports and vibration, and thereby ensure the achievement of a technical result.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Abstract
Изобретение относится к нефтяному машиностроению и может быть использовано в конструкции радиальных подшипниковых опор многоступенчатых лопастных насосов. Предлагается скважинный лопастной насос, который состоит из основания и головки, соединенных корпусом. Внутри в подшипниковых опорах установлен вал и рабочие органы. Каждая подшипниковая опора представляет собой подшипник скольжения, состоящий из неподвижного вкладыша с установленной внутри него с радиальным зазором и закрепленной на валу втулкой. На внешней цилиндрической поверхности втулки выполнена волнообразная канавка, в которую установлено полимерное кольцо с упругими свойствами, поджатое внутренней цилиндрической поверхностью вкладыша. На внешней цилиндрической поверхности втулки выполнена, по меньшей мере, одна дополнительная канавка, обеспечивающая прохождение жидкости через подшипник под полимерным кольцом с упругими свойствами. Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в обеспечении надежной работы и повышении ресурса радиального подшипника скольжения скважинного лопастного насоса при перекачивании жидкости, содержащей механические примеси, снижение прецессии вала в опорах и вибрации.
Description
СКВАЖИННЫЙ ЛОПАСТНОЙ НАСОС
Изобретение относится к нефтяному машиностроению и может быть использовано в конструкции радиальных подшипниковых опор многоступенчатых лопастных насосов.
Известен скважинный центробежный насос, имеющий соответствующую систему радиальных подшипников. Совместимые радиальные подшипники в соответствии с настоящим изобретением используют жидкостную камеру переменного размера между неподвижным корпусом подшипника и отверстием, в которое он установлен. Эти изменяемые жидкостные камеры могут быть образованы эластомерными элементами, такими как уплотнительные кольца, которые установлены с наружной стороны корпуса подшипника. Размер изменяемой жидкостной камеры, а также находящаяся в ней жидкость служат для гашения вибрации и механических ударов по компонентам подшипника. Такое гашение вибрации и ударов облегчает использование керамических компонентов в подшипниковой системе (по патенту US5209577, кл. F16C 53/10, опубл. 11.05.93).
Недостатком данного решения является наличие зазора в подшипнике между втулкой, установленной на валу, и корпусом подшипника. Под действием неуравновешенных масс роторов возникает прецессия вала в опорах и вибрация. Эластомерные элементы в радиальных подшипниках лишь частично гасят эти колебания, но не уменьшают прецессию и амплитуду колебаний. То есть данное техническое решение направлено на борьбу со следствием, а не с причиной возникновения колебаний.
Известен насос, содержащий корпус, вал, крыльчатки, защитные втулки, пакеты уплотнительных колец, выполненных из упругодеформируемого материала, сечение которых представляет собой полый усеченный конус, согласно полезной модели, снабжен грундбуксами. Причем уплотнительные упругодеформируемые кольца пакетов вместе с валом образуют подшипники скольжения, при этом на внутренней цилиндрической поверхности уплотнительных колец, кроме крайних, выполнены, как минимум, три полукруглых канавки. Все уплотнительные кольца, кроме крайних, соединены между собой штифтом, а крайние уплотнительные кольца пакетов выполнены из эластичного резиноподобного износостойкого материала и являются уплотнениями вала (по патенту RU73410, кл. F04D 13/06, опубл. 20.05.08).
Недостатком подшипников, используемых в насосе, является большая площадь контакта крайних колец и пакета колец с защитной втулкой, что увеличивает трение, затрудняет смазку и теплоотвод.
Известен подшипник скольжения, который содержит вал и корпус со смазочными отверстиями и равномерно расположенными по окружности между валом и корпусом карманами, герметизируемыми по периметру упругоэластичными уплотнениями. С целью обеспечения самоцентрирования и повышения КПД, упругоэластичные уплотнения карманов выполнены с утолщениями в местах стыка аксиальных и окружных элементов и установлены в пазах вала (по патенту SU1064063, кл. F16C 32/06, опубл. 30.12.83).
Недостатком данного решения является сложность точного изготовления канавки на валу и упругоэластичного уплотнения. Кроме того упругоэластичный элемент устанавливается без предварительного сжатия с большим зазором между корпусом и валом, поэтому самоцентрирование подшипника сильно зависит от герметичности карманов, образованных
упругоэластичным элементом между корпусом и валом. При повреждении элемента, например при монтаже или продуктами износа во время эксплуатации, появляется радиальное биение вала, что негативно скажется на работоспособности и ресурсе изделия, в котором применяется данный подшипник.
Наиболее близким техническим решением является способ восприятия радиальной нагрузки при вращении, который заключается в установке между коаксиальными цилиндрическими поверхностями, совершающими вращательное движение относительно друг друга и общей оси, по меньшей мере, одного полимерного волнообразного кольца. При этом кольцо находится в упруго сжатом состоянии относительно цилиндрических поверхностей. Также предлагается подшипник скольжения, в котором реализован данный способ. Подшипник состоит из корпуса и втулки, между коаксиальными цилиндрическими поверхностями которых установлено, по меньшей мере, одно полимерное волнообразное кольцо. При этом кольцо находится в упруго сжатом состоянии относительно цилиндрических поверхностей (по патенту RU2763763, кл. F16C 17/02, F16C 27/06, опубл. 10.01.22).
Недостатком данного решения является то, что при работе такого подшипника, например, в составе погружного лопастного насоса, содержащиеся в перекачиваемой насосом среде механические примеси (песок, частицы износа, пропант и т.п.) будут скапливаться в зазоре между втулкой и корпусом подшипника за кольцом. Это приведёт к повышенному износу подшипника, а также к его нагреву и разрушению.
Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в обеспечении надежной работы и повышении ресурса радиального подшипника скольжения скважинного
лопастного насоса при перекачивании жидкости, содержащей механические примеси, снижение прецессии вала в опорах и вибрации.
Указанный технический результат достигается тем, что скважинный лопастной насос состоит из основания и головки, соединенных корпусом, внутри в подшипниковых опорах установлен вал и рабочие органы, каждая подшипниковая опора представляет собой подшипник скольжения, состоящий из неподвижного вкладыша с установленной внутри него с радиальным зазором и закрепленной на валу втулкой, на внешней цилиндрической поверхности втулки выполнена волнообразная канавка, в которую установлено полимерное кольцо с упругими свойствами, поджатое внутренней цилиндрической поверхностью вкладыша, и отличается тем, что на внешней цилиндрической поверхности втулки выполнена, по меньшей мере, одна дополнительная канавка, обеспечивающая прохождение жидкости через подшипник под полимерным кольцом с упругими свойствами.
Кроме того, каждая дополнительная канавка может быть выполнена под углом к оси подшипника.
Кроме того, на внешней цилиндрической поверхности втулки может быть выполнена по окружности канавка, глубина которой превышает глубину волнообразной канавки.
Кроме того, на внешней цилиндрической поверхности втулки в местах пересечения волнообразной канавки и дополнительных канавок могут быть выполнены глухие отверстия, глубина которых превышает глубину волнообразной канавки.
Кроме того, длина втулки может быть меньше длины вкладыша;
Кроме того, вкладыш может быть выполнен из материала с твердостью не менее 55 HRC, например, из закалённой стали, твёрдого сплава, керамики, карбула.
Предлагаемое изобретение поясняется следующими чертежами:
Фиг. 1 - скважинный лопастной насос;
Фиг. 2 - подшипник скольжения;
Фиг. 3 - подшипник скольжения в разобранном состоянии;
Фиг. 4 - втулка подшипника с окружной канавкой;
Фиг. 5 - втулка подшипника с глухими отверстиями;
Фиг. 6 - подшипник скольжения, у которого длина втулки меньше длины вкладыша;
Фиг. 7 - пример выполнения втулки.
Скважинный лопастной насос (фиг. 1) состоит из основания 1 и головки 2, соединенных корпусом 3. Внутри в подшипниковых опорах 4 установлен вал 5 и рабочие органы, представляющие собой последовательно установленные рабочие колеса 6, закрепленные на валу 5, и направляющие аппараты 7, установленные в корпусе 3.
Каждая подшипниковая опора 4 представляет собой радиальный подшипник скольжения (фиг. 2), состоящий из вкладыша 8 и установленной внутри него с радиальным зазором втулки 9. В отверстии втулки 9 выполнен шпоночный паз 10 для закрепления на валу 5.
На внешней цилиндрической поверхности втулки 9 (фиг. 3) выполнена волнообразная канавка 11 , в которую установлено полимерное кольцо 12 с упругими свойствами. На внешней поверхности втулки выполнены под углом к оси подшипника дополнительные канавки 13, обеспечивающие прохождение жидкости через подшипник под полимерным кольцом за счет того, что глубина дополнительных канавок 13 больше, чем глубина волнообразной канавки 11.
Для большей прочности втулки 9 и обеспечения прохождения жидкости под кольцом на внешней поверхности втулки 9 может быть выполнена по окружности канавка 14 (фиг. 4), глубина которой превышает глубину волнообразной канавки 11. С той же целью на внешней
цилиндрической поверхности втулки 9 в местах пересечения волнообразной канавки И и дополнительных канавок 13 могут быть выполнены глухие отверстия 15 (фиг. 5), глубина которых превышает глубину волнообразной канавки.
Для обеспечения лучшего вымывания механических примесей и охлаждения подшипника длина Li втулки 9 (фиг. 6) должна быть меньше длины L2 вкладыша 8. Это позволит увеличить скорость жидкости на выходе из втулки.
Применение.
Скважинный лопастной насос используется для добычи пластовой жидкости из скважины в составе погружной установки, которая включает в себя также погружной электродвигатель (ПЭД), гидрозащиту и различные предвключенные устройства. Питание ПЭД осуществляется по кабелю. ПЭД передает крутящий момент на вал 5 насоса и рабочие колёса 6, которые обеспечивают создание напора. Направляющие аппараты 7 направляют поток на вход рабочих колёс 6.
Подшипниковые опоры 4 работают в среде пластовой жидкости, содержащей механические примеси, песок, пропант, химически агрессивные соединения. Применение полимерного кольца 12 с упругими свойствами, установленного на втулке для восприятия радиальной нагрузки при вращении в подшипниковой опоре 4 в качестве одного из её элементов повышает надежность работы и ресурс за счет свойств полимерного материала, который обладает высокой твердостью, эластичностью и износостойкостью. В результате чего снижается износ, прецессия вала и вибрации.
Наличие дополнительных канавок 13 обеспечивают перекачивание жидкости через радиальные подшипники, вымывая из зазора между втулкой 9 и вкладышем 8 механические примеси, и тем самым уменьшают износ и
способствуют охлаждению. Для большей эффективности этого процесса целесообразно чтобы втулка имела меньшую длину, чем вкладыш 8. Это позволяет увеличить скорость жидкости, проходящей через подшипник, и, как следствие, способствует лучшему вымыванию мехпримесей и охлаждению.
Для лучшего перекачивания жидкости через подшипник дополнительные канавки 13 целесообразно выполнить под углом к оси подшипника. Условием обеспечения возможности перекачивания жидкости через подшипник является то, что глубина дополнительных канавок 13 должна быть больше, чем глубина волнообразной канавки 11 , чтобы жидкость могла проходить под полимерным кольцом 12. Кроме того, для лучшего прохождения жидкости под полимерным кольцом во втулке 9 может быть выполнена окружная канавка 14, глубина которой превышает глубину волнообразной канавки И, или глухие отверстия 15, глубина которых также должна превышать глубину волнообразной канавки. В этом случае дополнительные канавки 13 можно выполнить меньшей или такой же глубины как и волнообразная канавка 11 , что положительно скажется на прочности втулки 9.
Выполнение вкладыша 8 из материала, имеющего твердость не менее 55 HRC, позволяет повысить его износостойкость при работе с постоянным выносом мехпримесей. В качестве такого материала могут быть использованы закаленные стали, твёрдый сплав, керамика или карбул, которые также имеют высокую температуростойкость.
Таким образом, решения, используемые в изобретении, обеспечивают надежную работу и повышают ресурс радиального подшипника скольжения скважинного лопастного насоса в условиях выноса механических примесей, снижают прецессию вала в опорах и вибрации, и тем самым обеспечивают достижение технического результата.
Claims
1. Скважинный лопастной насос, состоящий из основания и головки, соединенных корпусом, внутри в подшипниковых опорах установлен вал и рабочие органы, каждая подшипниковая опора представляет собой подшипник скольжения, состоящий из неподвижного вкладыша с установленной внутри него с радиальным зазором и закрепленной на валу втулкой, на внешней цилиндрической поверхности втулки выполнена волнообразная канавка, в которую установлено полимерное кольцо с упругими свойствами, поджатое внутренней цилиндрической поверхностью вкладыша, и отличающийся тем, что на внешней цилиндрической поверхности втулки выполнена, по меньшей мере, одна дополнительная канавка, обеспечивающая прохождение жидкости через подшипник под полимерным кольцом с упругими свойствами.
2. Насос по п.1, отличающийся тем, что каждая дополнительная канавка выполнена под углом к оси подшипника.
3. Насос по п.1 или 2, отличающийся тем, что на внешней цилиндрической поверхности втулки по окружности выполнена канавка, глубина которой превышает глубину волнообразной канавки.
4. Насос по п.1 или 2, отличающийся тем, что на внешней цилиндрической поверхности втулки в местах пересечения волнообразной канавки и дополнительных канавок выполнены глухие отверстия, глубина которых превышает глубину волнообразной канавки.
5. Насос по п.1 или 2, отличающийся тем, что длина втулки меньше длины вкладыша.
6. Насос по п.1 или 2, отличающийся тем, что вкладыш выполнен из материала с твердостью не менее 55 HRC.
7. Насос по п.6, отличающийся тем, что материалом вкладыша является закалённая сталь.
8
8. Насос по п.6, отличающийся тем, что материалом вкладыша является твёрдый сплав.
9. Насос по п.6, отличающийся тем, что материалом вкладыша является керамика.
10. Насос по п.6, отличающийся тем, что материалом вкладыша является карбул.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2022118215A RU2787446C1 (ru) | 2022-07-05 | Скважинный лопастной насос | |
RU2022118215 | 2022-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024010487A1 true WO2024010487A1 (ru) | 2024-01-11 |
Family
ID=89453912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2023/000019 WO2024010487A1 (ru) | 2022-07-05 | 2023-01-24 | Скважинный лопастной насос |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024010487A1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1064063A1 (ru) * | 1975-01-20 | 1983-12-30 | Vladimirov Porfirij S | Подшипник скольжени |
US4663810A (en) * | 1985-01-07 | 1987-05-12 | The B. F. Goodrich Company | Method for fabricating an elastomeric bearing assembly |
RU2398975C2 (ru) * | 2008-08-04 | 2010-09-10 | Игорь Иванович Белоконь | Радиальный подшипниковый узел скольжения |
RU2763763C1 (ru) * | 2021-09-09 | 2022-01-10 | Иван Соломонович Пятов | Способ восприятия радиальной нагрузки при вращении и подшипник скольжения по этому способу |
-
2023
- 2023-01-24 WO PCT/RU2023/000019 patent/WO2024010487A1/ru unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1064063A1 (ru) * | 1975-01-20 | 1983-12-30 | Vladimirov Porfirij S | Подшипник скольжени |
US4663810A (en) * | 1985-01-07 | 1987-05-12 | The B. F. Goodrich Company | Method for fabricating an elastomeric bearing assembly |
RU2398975C2 (ru) * | 2008-08-04 | 2010-09-10 | Игорь Иванович Белоконь | Радиальный подшипниковый узел скольжения |
RU2763763C1 (ru) * | 2021-09-09 | 2022-01-10 | Иван Соломонович Пятов | Способ восприятия радиальной нагрузки при вращении и подшипник скольжения по этому способу |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6036435A (en) | Thrust bearing | |
RU2330187C1 (ru) | Погружной электрический насос | |
US5951169A (en) | Thrust bearing | |
US3953150A (en) | Impeller apparatus | |
US7731476B2 (en) | Method and device for reducing axial thrust and radial oscillations and rotary machines using same | |
CA2934477C (en) | Multistage centrifugal pump with integral abrasion-resistant axial thrust bearings | |
CN203822685U (zh) | 一种近零内泄漏的氟塑料磁力泵 | |
CN203670229U (zh) | 一种耐腐蚀抗干磨的磁力泵 | |
EP3798449A1 (en) | Pump for conveying a fluid | |
CN109469624B (zh) | 一种高压力高转速筒型离心泵 | |
US9303648B2 (en) | Compliant radial bearing for electrical submersible pump | |
US20240133376A1 (en) | Method and apparatus for an end seal for increasing efficiency of a submersible multistage labyrinth-screw pump | |
RU2787446C1 (ru) | Скважинный лопастной насос | |
WO2024010487A1 (ru) | Скважинный лопастной насос | |
RU2294458C1 (ru) | Погружной многоступенчатый центробежный насос (варианты) | |
RU202692U1 (ru) | Погружной многоступенчатый скважинный центробежный насос с компрессионной схемой сборки | |
RU2328624C1 (ru) | Погружной многоступенчатый центробежный насос | |
EP3436703B1 (en) | Impeller-type liquid ring compressor | |
RU2296244C1 (ru) | Устройство охлаждения и защиты от твердых частиц торцевого уплотнения погружного электродвигателя | |
GB2438702A (en) | Efficiency maintenance apparatus for a mechanical assembly | |
RU2237198C1 (ru) | Входной модуль погружного центробежного многоступенчатого насоса | |
RU2249129C2 (ru) | Погружной многоступенчатый центробежный насос с торцовым самоустанавливающимся уплотнением | |
CN221400956U (zh) | 一种结构紧凑的无轴封化工泵 | |
RU2027073C1 (ru) | Центробежный насос | |
KR200265014Y1 (ko) | 펌프용 미캐니컬 씰 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23835916 Country of ref document: EP Kind code of ref document: A1 |