WO2024010246A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2024010246A1
WO2024010246A1 PCT/KR2023/008486 KR2023008486W WO2024010246A1 WO 2024010246 A1 WO2024010246 A1 WO 2024010246A1 KR 2023008486 W KR2023008486 W KR 2023008486W WO 2024010246 A1 WO2024010246 A1 WO 2024010246A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
heater pattern
gas sensor
insulating substrate
sensing
Prior art date
Application number
PCT/KR2023/008486
Other languages
French (fr)
Korean (ko)
Inventor
유도준
정종진
김용
Original Assignee
주식회사 센텍코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 센텍코리아 filed Critical 주식회사 센텍코리아
Publication of WO2024010246A1 publication Critical patent/WO2024010246A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/122Circuits particularly adapted therefor, e.g. linearising circuits
    • G01N27/123Circuits particularly adapted therefor, e.g. linearising circuits for controlling the temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Definitions

  • the present invention relates to gas sensors. More specifically, it relates to a gas sensor that does not require wire bonding during packaging.
  • Gas sensors are used to detect combustible gases or toxic gases, and include contact combustion gas sensors, semiconductor gas sensors, electrochemical gas sensors, and optical gas sensors.
  • Contact combustion gas sensors are intended to detect combustible gases.
  • Contact combustion gas sensors detect combustible gases by using the change in resistance of a platinum coil or platinum pattern due to the reaction heat generated when combustible gases such as hydrogen are burned in the catalyst layer.
  • Contact combustion gas sensors can be manufactured in a variety of ways.
  • a bead-type contact combustion gas sensor can be manufactured by covering a platinum coil with an alumina carrier and forming a catalyst layer on the surface.
  • a thick film type contact combustion gas sensor can be manufactured by forming a heater pattern on a ceramic substrate and then forming a catalyst layer on the heater pattern.
  • a MEMS-type contact combustion gas sensor can be manufactured by forming a ceramic layer on a silicon substrate using a semiconductor process, forming a zigzag platinum pattern on it, and then forming a catalyst layer on the platinum pattern.
  • this contact combustion type gas sensor is briefly explained as follows.
  • reaction heat is generated as combustible gas and oxygen react on the surface of the catalyst layer.
  • temperature of the platinum coil or pattern rises due to this heat of reaction.
  • the electrical resistance increases, so combustible gas can be detected through changes in the electrical resistance of the platinum coil or pattern.
  • contact combustion type gas sensors have been required to detect hydrogen gas leaks from hydrogen electric vehicles.
  • An essential requirement for contact combustion gas sensors used in hydrogen electric vehicles is that they must be able to detect hydrogen gas leaks within about 2 seconds after the hydrogen electric vehicle is started.
  • the bead-type or thick-film type contact combustion gas sensor described above had a problem in that it was difficult to detect hydrogen gas leakage at an early time because it took a long time to heat the catalyst layer. Additionally, the MEMS-type contact combustion gas sensor had the problem that the manufacturing process was complicated.
  • the conventional thick film type contact combustion type gas sensor had a problem of poor durability because it was supported by a wire.
  • pads formed on a ceramic substrate coated with a catalyst layer and the stamp of the package are electrically connected through wire bonding. And the ceramic substrate floats, supported only by the wire.
  • This wire bonding type gas sensor has a problem of poor durability because the contact points of the wire may fall off or the wire itself may break due to external impact. This is especially problematic when used in vehicles that continuously vibrate. In addition, since it is difficult to automate the wire bonding work and the process is performed manually, there is a problem that work efficiency is low and the defect rate is high.
  • the semiconductor gas sensor that uses the change in electrical conductivity that occurs when gas contacts the surface also has the problem of poor durability, like the thick film type contact combustion gas sensor described above, when wire bonding is used.
  • the present invention is intended to solve the above-mentioned problems, and provides a gas sensor with a new structure that has a faster gas response speed compared to conventional gas sensors, enables mass production through automation, has a low defect rate, and has improved durability.
  • the purpose is intended to solve the above-mentioned problems, and provides a gas sensor with a new structure that has a faster gas response speed compared to conventional gas sensors, enables mass production through automation, has a low defect rate, and has improved durability. The purpose.
  • the present invention provides a gas sensor including a detection unit that generates an electrical signal according to gas concentration, the detection unit comprising: an insulating substrate; a heater pattern formed in a zigzag pattern on one surface of the insulating substrate; a pair of extension patterns each connected to both ends of the heater pattern, parallel to each other, extending long from one side of the heater pattern; A sensing layer is formed on at least one side or the opposite side on which the heater pattern is formed, at a position of the heater pattern, is heated by heat generated from the heater pattern, and includes a sensing layer whose electrical characteristics change depending on gas concentration, and the insulating substrate.
  • a gas sensor wherein an opening is formed surrounding the outer edges of the heater pattern and the extension pattern to separate the heater pattern and the extension pattern from other parts of the insulating substrate.
  • the gas sensor is provided wherein the opening is curved in a U-shape.
  • the insulating substrate provides a gas sensor, wherein the insulating substrate is a zirconia or yttria-stabilized zirconia substrate.
  • it further includes a pair of sensing patterns formed to face each other at a distance from the surface of the insulating substrate opposite to the surface on which the heater pattern is formed, wherein the sensing layer is formed on the sensing pattern. do.
  • the gas sensor further includes a compensating unit, and the compensating unit includes an insulating substrate, a heater pattern, and an extension pattern having the same shape as the insulating substrate on which the opening of the sensing unit is formed, the heater pattern, and the extension pattern, A gas sensor is provided, wherein a sensing layer is not formed on the insulating substrate of the compensation unit.
  • the gas sensor is provided wherein the insulating substrate of the sensing unit and the insulating substrate of the compensating unit are formed as one body.
  • a gas sensor is provided, further comprising an insulating layer formed between the insulating substrate and the heater pattern.
  • a gas sensor is provided wherein the insulating layer is a glass layer.
  • the gas sensor according to the present invention heat leaking through the substrate is minimized because the heater pattern is separated from other parts of the substrate by an opening. Therefore, it has the advantage of faster response speed compared to conventional gas sensors.
  • wire bonding work since wire bonding work is not required, it has the advantage of being easy to automate, having a low defect rate, and having excellent durability.
  • FIG. 1 is a plan view of a gas sensor according to an embodiment of the present invention.
  • FIG. 2 is a bottom view of the detection unit of the gas sensor shown in FIG. 1.
  • FIG. 3 is a circuit diagram for explaining the measurement method of the contact combustion gas sensor shown in FIG. 1.
  • Figure 4 is a top view of a gas sensor according to another embodiment of the present invention.
  • FIG. 5 is a bottom view of the detection unit and compensation unit of the gas sensor shown in FIG. 4.
  • Figure 6 is a top view of a gas sensor according to another embodiment of the present invention.
  • FIG. 7 is a bottom view of the detection unit of the gas sensor shown in FIG. 6.
  • FIG. 1 is a top view of a gas sensor according to an embodiment of the present invention
  • FIG. 2 is a bottom view of the detection unit of the gas sensor shown in FIG. 1.
  • the gas sensor 100 according to an embodiment of the present invention is a contact combustion type gas sensor and largely includes a detection unit 10, a compensation unit 30, and a housing 50.
  • the sensing unit 10 includes an insulating substrate 11, a heater pattern 20, a sensing layer (catalyst layer) 22, an extension pattern 24, an electrode pattern 25, Includes pad 26.
  • the insulating substrate 11 various ceramic substrates such as an alumina substrate and a zirconia substrate can be used.
  • a zirconia or yttria stabilized zirconia substrate with relatively low thermal conductivity can be used. If the thermal conductivity of the insulating substrate 11 is too high, heat is transferred around the sensing layer 22, and it takes a long time to heat the sensing layer 22 to the desired temperature.
  • An opening 12 is formed in the insulating substrate 11.
  • the opening 12 can be formed by a method such as processing using a laser or punching processing.
  • the opening 12 is preferably large enough to allow water generated during the oxidation process of hydrogen gas to escape. If water forms on the opening 12, the heat blocking effect of the opening 12 is reduced, and the heat generated by the heater pattern 20 is not concentrated on the sensing layer 22, so the amount of time required to heat the sensing layer 22 is reduced. It may take a long time.
  • the opening 12 is generally formed in a U-shape.
  • the heater pattern 20 is formed on one surface (the lower surface in FIGS. 1 and 2) of the insulating substrate 11.
  • the heater pattern 20 may be made of platinum.
  • the heater pattern 20 can be formed by printing a paste mixed with conductive particles such as platinum, a binder, and a solvent on one side of the insulating substrate 11 using a screen printing method, followed by heat treatment.
  • the heater pattern 20 serves to heat the sensing layer 22. It also serves to detect temperature changes in the sensing layer 22.
  • the resistance of the heater pattern 20 changes depending on the temperature. In the case of a platinum pattern, resistance increases as temperature increases.
  • the heater pattern 20 is formed at the innermost part of the section surrounded by the opening 12.
  • the heater pattern 20 is formed in a zigzag shape.
  • the exterior of the heater pattern 20 has an overall rectangular shape, and the opening 12 surrounds three sides of the heater pattern 20. Therefore, it is possible to prevent heat generated in the heater pattern 20 from being transferred to other areas of the insulating substrate 11 as much as possible.
  • a glass layer which is an insulating layer, may be formed between the insulating substrate 11 and the heater pattern 20.
  • the glass layer can be formed using a screen printing method or a vapor deposition method.
  • the glass layer serves to improve the adhesion between the insulating substrate 11 and the heater pattern 20. In addition, it also serves to improve the problem of poor insulation of the insulating substrate 11 at high temperatures.
  • the sensing layer 22 is formed on at least one of one side or the opposite side of the insulating substrate 11 where the heater pattern 20 is formed.
  • the combustible gas reacts with oxygen on the surface of the heated sensing layer 22, generating reaction heat. 1 and 2, it is shown that the sensing layer 22 is formed on the lower surface where the heater pattern 20 is formed to cover the heater pattern 20.
  • Forming the sensing layer 22 on both sides of the insulating substrate 11 has the advantage of greater sensitivity because the reaction heat of oxygen and combustible gas is generated on both sides of the insulating substrate 11.
  • the sensing layer 22 can be formed by applying a paste containing alumina and platinum or palladium using a screen printing method and then heat treating it.
  • a pair of extension patterns 24 are electrically connected to both ends of the heater pattern 20.
  • a pair of extension patterns 24 are formed parallel to each other.
  • a pair of extension patterns 24 extend long from one side of the heater pattern 20 that is not blocked by the opening 212 .
  • a pair of extension patterns 24 are connected to the heater pattern 20 inside the section surrounded by the opening 12, and extend long to the outermost section of the section surrounded by the opening 12. The width of the pair of extension patterns 24 is thicker than that of the heater pattern 20.
  • a pair of extension patterns 24 are electrically connected to pads 26 formed at the corners of the insulating substrate 11 through electrode patterns 25.
  • the extension pattern 24, electrode pattern 25, and pad 26 can be formed by printing electrode paste using a screen printing method and then heat treating it.
  • the housing 50 may be provided with a pin header 51. Although not shown, the housing 50 may further include a protective cap covering the pin header 51.
  • the housing 50 may be, for example, a transistor outline package (TO package).
  • the pin header 51 includes a generally disk-shaped base 52 and a plurality of conductive pins 54 penetrating the base 52.
  • the base 52 and the conductive pins 54 are electrically insulated by an insulating layer between the base 52 and the conductive pins 54.
  • the sensing unit 10 is disposed on the conductive pin 54. At this time, the pads 26 of the sensing unit 10 are electrically connected to the conductive pins 54. For example, after applying conductive paste to the head of the conductive pin 54, the pads 26 of the sensing unit 10 are placed on the head of the conductive pin 54 and then dried. ) can be electrically connected to the pads 26 and the conductive pin 54.
  • the compensation unit 30 has the same structure as the detection unit 10 except for the sensing layer. Like the sensing unit 10, the compensation unit 30 includes an insulating substrate 31, a heater pattern, an extension pattern, an electrode pattern, and pads. The compensation unit 30 is installed on the pin header 51 in parallel with the detection unit 10.
  • FIG. 3 is a circuit diagram for explaining the measurement method of the contact combustion gas sensor shown in FIG. 1.
  • the heater patterns 20 and 40 of the sensing unit 10 and the compensating unit 30 serve as two of the four resistors of the Wheatstone bridge.
  • the resistance of the heater pattern 20 of the sensing unit 10 increases due to the reaction heat in the sensing layer 22, the balance is broken and an output voltage between points A and B is detected. Using this output voltage, flammable gas can be detected.
  • Figure 4 is a plan view of a gas sensor according to another embodiment of the present invention
  • Figure 5 is a bottom view of the detection unit and compensation unit of the gas sensor shown in Figure 4.
  • FIGS. 4 and 5 is different from the embodiment shown in FIGS. 1 and 2 in that the sensing unit 110 and the compensation unit 130 are formed using a single insulating substrate 111. .
  • both the sensing unit 110 and the compensating unit 130 can be formed using one insulating substrate 111, so the heater patterns 120 and 140 of the sensing unit 110 and the compensating unit 130 ) is formed at once, and the extension patterns 124, 144, electrode patterns 125, 145, and pads 126, 146 can also be formed at once, which has the advantage of a simple process.
  • the embodiment shown in FIGS. 1 and 2 has the advantage that the reaction heat generated in the sensing unit 10 is not transmitted to the compensating unit 30 through the insulating substrate 11.
  • Figure 6 is a top view of a gas sensor according to another embodiment of the present invention
  • Figure 7 is a bottom view of the detection unit of the gas sensor shown in Figure 6.
  • the embodiment shown in FIG. 6 is a semiconductor gas sensor 300.
  • the semiconductor gas sensor 300 shown in FIG. 6 does not have a compensation unit, and the resistance of the sensing layer 222 is applied to the surface opposite to the surface of the insulating substrate 211 on which the heater pattern 220 is formed (the lower surface in FIG. 6).
  • a pair of sensing patterns 230 for measuring changes are formed, and a sensing layer 222 is formed on the pair of sensing patterns 223, the contact combustion gas sensor shown in FIGS. 1 and 2 ( 100) and there is a difference.
  • the sensing unit 210 of the gas sensor 300 includes an insulating substrate 211, a heater pattern 220, a sensing pattern 230, a sensing layer 222, an extension pattern 224, and , includes an electrode pattern 225.
  • the heater pattern 220, the extension pattern 224, and the electrode pattern 225 are formed on one side (the top surface in FIG. 6) of the insulating substrate 211, and the sensing pattern 230 and the sensing layer 222 are formed on the opposite side. formed on the surface.
  • a ceramic substrate may be used as the insulating substrate 211.
  • a zirconia or yttria stabilized zirconia substrate with relatively low thermal conductivity can be used.
  • An opening 212 is formed in the insulating substrate 211.
  • the opening 212 is generally U-shaped. The opening 212 surrounds the heater pattern 220 and the extension pattern 224 to prevent heat generated in the heater pattern 220 from escaping.
  • the heater pattern 220 is formed on one surface of the insulating substrate 211.
  • the heater pattern 220 may be made of platinum.
  • the heater pattern 220 can be formed by printing a paste mixed with conductive particles such as platinum, a binder, and a solvent on one side of the insulating substrate 211 using a screen printing method, followed by heat treatment.
  • the heater pattern 220 serves to heat the sensing layer 222 formed on the opposite side of the insulating substrate 211.
  • the extension pattern 224 is electrically connected to the heater pattern 220.
  • the extension pattern 224 is connected to the pad 226 through the electrode pattern 225.
  • the extension pattern 224, electrode pattern 225, and pad 226 can be formed by printing electrode paste using a screen printing method and then heat treating it.
  • the pad 226 is connected to the pad 237 on the opposite side through a via hole (not shown).
  • a pair of sensing patterns 230 are formed to face the heater pattern 220 with the insulating substrate 211 interposed therebetween.
  • a pair of sensing patterns 230 may be an interdigital electrode pattern.
  • the pair of sensing patterns 230 are formed at the innermost part of the section surrounded by the opening 212.
  • the pair of sensing patterns 230 may be made of platinum. Like the heater pattern 220, the pair of sensing patterns 230 are printed on the opposite side of the insulating substrate 211 using a screen printing method using a paste mixed with conductive particles such as platinum, a binder, and a solvent, and then heat treated. It can be formed as
  • the sensing layer 222 is formed on the surface of the insulating substrate 211 on which the pair of sensing patterns 230 are formed to cover the pair of sensing patterns 230 and the gap between the pair of sensing patterns 230 .
  • the sensing layer 222 includes a sensing material such as SnO 2 or In 2 O 3 whose electrical conductivity changes when in contact with gas.
  • the sensing layer 222 can be formed by applying a paste to which a sensing material is added using a screen printing method and then heat treating it.
  • the sensing pattern 230 is connected to the pad 236 through a pair of sensing pattern side extension patterns 234 and a pair of sensing pattern side electrode patterns 235. Since the sensing pattern 230 and the heater pattern 220 are formed to face each other with the insulating substrate 211 in between, the sensing pattern 230 and the pair of sensing pattern side extension patterns 234 are also located in the opening 212. It is formed within an area surrounded by

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The present invention relates to a gas sensor. The present invention relates to a gas sensor comprising a sensing unit which generates an electrical signal according to gas concentration, the sensing unit comprising: an insulating substrate; a heater pattern formed in a zigzag pattern on one surface of the insulating substrate; a pair of extension patterns connected to respective ends of the heater pattern so as to be parallel to each other and be elongated from one side of the heater pattern; and a sensing layer which is formed, at the location of the heater pattern, on at least one of the surface on which the heater pattern is formed and the opposite surface, is heated by heat generated by the heater pattern, and has electrical characteristics that change according to the gas concentration, wherein an opening is formed in the insulating substrate and surrounds the periphery of the heater pattern and the extension patterns, so as to separate the heater pattern and the extension patterns from other parts of the insulating substrate. The gas sensor of the present invention minimizes heat leakage through the substrate since the heater pattern is separated from the other parts of the substrate by means of the opening. Accordingly, the sensor has a faster response speed compared to conventional gas sensors.

Description

가스 센서gas sensor
본 발명은 가스 센서에 관한 것이다. 더욱 상세하게는 패키징시에 와이어 본딩이 필요없는 가스 센서에 관한 것이다.The present invention relates to gas sensors. More specifically, it relates to a gas sensor that does not require wire bonding during packaging.
가스 센서는 가연성 가스나 유독 가스 등을 감지하기 위한 것으로서, 접촉 연소식 가스 센서, 반도체식 가스 센서, 전기 화학식 가스 센서, 광학식 가스 센서 등이 있다.Gas sensors are used to detect combustible gases or toxic gases, and include contact combustion gas sensors, semiconductor gas sensors, electrochemical gas sensors, and optical gas sensors.
접촉 연소식 가스 센서는 가연성 가스를 감지하기 위한 것이다. 접촉 연소식 가스 센서는 촉매 층에서 수소와 같은 가연성 가스가 연소하면서 생기는 반응열에 의한 백금 코일이나 백금 패턴의 저항 변화를 이용하여 가연성 가스를 감지한다.Contact combustion gas sensors are intended to detect combustible gases. Contact combustion gas sensors detect combustible gases by using the change in resistance of a platinum coil or platinum pattern due to the reaction heat generated when combustible gases such as hydrogen are burned in the catalyst layer.
접촉 연소식 가스 센서는 다양한 방법으로 제조할 수 있다. 예를 들어, 비드형 접촉 연소식 가스 센서는 백금 코일을 알루미나 담체로 덮고 그 표면에 촉매 층을 형성하는 방법으로 제조할 수 있다. 후막형 접촉 연소식 가스 센서는 세라믹 기판에 히터 패턴을 형성한 후 히터 패턴 위에 촉매 층을 형성하는 방법으로 제조할 수 있다.Contact combustion gas sensors can be manufactured in a variety of ways. For example, a bead-type contact combustion gas sensor can be manufactured by covering a platinum coil with an alumina carrier and forming a catalyst layer on the surface. A thick film type contact combustion gas sensor can be manufactured by forming a heater pattern on a ceramic substrate and then forming a catalyst layer on the heater pattern.
또한, MEMS형 접촉 연소식 가스 센서는 반도체 공정을 이용하여 실리콘 기판 위에 세라믹 층을 형성하고, 그 위에 지그재그 형 백금 패턴을 형성한 후 백금 패턴 위에 촉매 층을 형성하는 방법으로 제조할 수 있다.Additionally, a MEMS-type contact combustion gas sensor can be manufactured by forming a ceramic layer on a silicon substrate using a semiconductor process, forming a zigzag platinum pattern on it, and then forming a catalyst layer on the platinum pattern.
이러한 접촉 연소식 가스 센서의 작용을 간단히 설명하면 다음과 같다. 백금 코일이나 패턴에 전류를 흘려, 촉매 층을 200~300℃로 가열하면, 촉매 층의 표면에서 가연성 가스와 산소가 반응하면서 반응열이 생긴다. 그리고 이 반응열에 의해서 백금 코일이나 패턴의 온도가 상승한다. 백금은 온도가 상승하면, 전기 저항이 증가하기 때문에 백금 코일이나 패턴의 전기 저항의 변화를 통해서 가연성 가스를 감지할 수 있다.The operation of this contact combustion type gas sensor is briefly explained as follows. When current is passed through a platinum coil or pattern and the catalyst layer is heated to 200-300°C, reaction heat is generated as combustible gas and oxygen react on the surface of the catalyst layer. And the temperature of the platinum coil or pattern rises due to this heat of reaction. As the temperature of platinum increases, the electrical resistance increases, so combustible gas can be detected through changes in the electrical resistance of the platinum coil or pattern.
최근에는 수소 전기차에서의 수소 가스 누출을 감지하기 위한 접촉 연소식 가스 센서가 요구되고 있다. 수소 전기차에 사용되는 접촉 연소식 가스 센서의 필수 요건은 수소 전기차의 시동이 걸린 후 약 2초 이내로 수소 가스 누출 여부를 감지할 수 있어야 한다는 것이다.Recently, contact combustion type gas sensors have been required to detect hydrogen gas leaks from hydrogen electric vehicles. An essential requirement for contact combustion gas sensors used in hydrogen electric vehicles is that they must be able to detect hydrogen gas leaks within about 2 seconds after the hydrogen electric vehicle is started.
그런데 상술한 비드형이나 후막형 접촉 연소식 가스 센서는 촉매 층을 가열하는데 시간이 오래 걸리기 때문에 수소 가스 누출 여부를 이른 시간에 감지하기 어렵다는 문제가 있었다. 그리고 MEMS형 접촉 연소식 가스 센서는 제조공정이 복잡하다는 문제가 있었다.However, the bead-type or thick-film type contact combustion gas sensor described above had a problem in that it was difficult to detect hydrogen gas leakage at an early time because it took a long time to heat the catalyst layer. Additionally, the MEMS-type contact combustion gas sensor had the problem that the manufacturing process was complicated.
또한, 종래의 후막형 접촉 연소식 가스 센서는 와이어에 의해서 지탱되기 때문에 내구성이 약하다는 문제도 있었다. 종래의 후막형 접촉 연소식 가스 센서는 촉매 층이 도포된 세라믹 기판에 형성된 패드들과 패키지의 스템핀이 와이어 본딩을 통해서 전기적으로 연결된다. 그리고 세라믹 기판은 와이어에 의해서만 지탱된 상태로 떠 있게 된다.In addition, the conventional thick film type contact combustion type gas sensor had a problem of poor durability because it was supported by a wire. In a conventional thick film type contact combustion gas sensor, pads formed on a ceramic substrate coated with a catalyst layer and the stamp of the package are electrically connected through wire bonding. And the ceramic substrate floats, supported only by the wire.
이와 같은 와이어 본딩 방식의 가스 센서는 외부의 충격에 의해 와이어의 접점이 떨어지거나 와이어 자체가 끊어질 수 있어서, 내구성이 약하다는 문제가 있었다. 특히, 계속해서 진동이 발생하는 차량에 사용될 경우에는 더욱 문제가 된다. 또한, 와이어 본딩 작업의 자동화가 곤란하여 수작업에 의해 공정이 진행되므로, 작업 효율이 떨어지며 불량률이 높다는 문제도 있다.This wire bonding type gas sensor has a problem of poor durability because the contact points of the wire may fall off or the wire itself may break due to external impact. This is especially problematic when used in vehicles that continuously vibrate. In addition, since it is difficult to automate the wire bonding work and the process is performed manually, there is a problem that work efficiency is low and the defect rate is high.
또한, 표면에 가스가 접촉하였을 때 일어나는 전기전도도 변화를 이용하는 반도체식 가스 센서도 와이어 본딩을 사용하는 경우에는 상술한 후막형 접촉 연소식 가스 센서와 마찬가지로 내구성이 약하다는 문제가 있다.In addition, the semiconductor gas sensor that uses the change in electrical conductivity that occurs when gas contacts the surface also has the problem of poor durability, like the thick film type contact combustion gas sensor described above, when wire bonding is used.
[선행기술문헌][Prior art literature]
한국등록특허 10-1828549Korean registered patent 10-1828549
한국등록특허 10-0929025Korean registered patent 10-0929025
한국등록특허 10-0799810Korean registered patent 10-0799810
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 종래의 가스 센서에 비해서 가스 응답 속도가 빠르며, 자동화를 통한 대량 생산이 가능하며, 불량률이 낮으며, 내구성이 향상된 새로운 구조의 가스 센서를 제공하는 것을 목적으로 한다.The present invention is intended to solve the above-mentioned problems, and provides a gas sensor with a new structure that has a faster gas response speed compared to conventional gas sensors, enables mass production through automation, has a low defect rate, and has improved durability. The purpose.
상술한 목적을 달성하기 위해서, 본 발명은 가스 농도에 따른 전기신호를 생성하는 감지부를 구비하는 가스센서로서, 상기 감지부는, 절연체 기판과; 상기 절연체 기판의 일면에 지그재그로 형성되는 히터 패턴과; 상기 히터 패턴의 양단부와 각각 연결되며, 서로 나란하게, 상기 히터 패턴의 한쪽으로부터 길게 연장된 한 쌍의 연장 패턴과; 상기 히터 패턴이 형성된 일면 또는 반대면 중 적어도 하나에, 상기 히터 패턴 위치에 형성되어, 상기 히터 패턴에서 발생한 열에 의해서 가열되며, 가스 농도에 따라서 전기적 특성이 변화하는 감지 층을 포함하며, 상기 절연체 기판에는 상기 히터 패턴과, 상기 연장 패턴을 상기 절연체 기판의 다른 부분으로부터 분리하도록, 상기 히터 패턴과 상기 연장 패턴의 외곽을 둘러싸는 개구부가 형성된 것을 특징으로 하는 가스 센서를 제공한다.In order to achieve the above-described object, the present invention provides a gas sensor including a detection unit that generates an electrical signal according to gas concentration, the detection unit comprising: an insulating substrate; a heater pattern formed in a zigzag pattern on one surface of the insulating substrate; a pair of extension patterns each connected to both ends of the heater pattern, parallel to each other, extending long from one side of the heater pattern; A sensing layer is formed on at least one side or the opposite side on which the heater pattern is formed, at a position of the heater pattern, is heated by heat generated from the heater pattern, and includes a sensing layer whose electrical characteristics change depending on gas concentration, and the insulating substrate. Provides a gas sensor wherein an opening is formed surrounding the outer edges of the heater pattern and the extension pattern to separate the heater pattern and the extension pattern from other parts of the insulating substrate.
또한, 상기 개구부는 ㄷ자 형태로 굽은 개구부 것을 특징으로 하는 가스 센서를 제공한다.In addition, the gas sensor is provided wherein the opening is curved in a U-shape.
또한, 상기 절연체 기판은 지르코니아 또는 이트리아 안정화 지르코니아 기판인 것을 특징으로 하는 가스 센서를 제공한다.In addition, the insulating substrate provides a gas sensor, wherein the insulating substrate is a zirconia or yttria-stabilized zirconia substrate.
또한, 상기 절연체 기판의 히터 패턴이 형성된 면의 반대 면에 간격을 두고 서로 마주보도록 형성된 한 쌍의 감지 패턴을 더 포함하며, 상기 감지 층은 상기 감지 패턴 위에 형성되는 것을 특징으로 하는 가스 센서를 제공한다.In addition, it further includes a pair of sensing patterns formed to face each other at a distance from the surface of the insulating substrate opposite to the surface on which the heater pattern is formed, wherein the sensing layer is formed on the sensing pattern. do.
또한, 상기 가스 센서는 보상부를 더 포함하며, 상기 보상부는, 상기 감지부의 상기 개구부가 형성된 상기 절연체 기판, 상기 히터 패턴 및 상기 연장 패턴과 동일한 형태의 절연체 기판, 히터 패턴 및 연장 패턴을 포함하며, 상기 보상부의 상기 절연체 기판에는 감지 층이 형성되지 않는 것을 특징으로 하는 가스 센서를 제공한다.In addition, the gas sensor further includes a compensating unit, and the compensating unit includes an insulating substrate, a heater pattern, and an extension pattern having the same shape as the insulating substrate on which the opening of the sensing unit is formed, the heater pattern, and the extension pattern, A gas sensor is provided, wherein a sensing layer is not formed on the insulating substrate of the compensation unit.
또한, 상기 감지부의 상기 절연체 기판과 상기 보상부의 상기 절연체 기판은 일체로 이루어진 것을 특징으로 하는 가스 센서를 제공한다.In addition, the gas sensor is provided wherein the insulating substrate of the sensing unit and the insulating substrate of the compensating unit are formed as one body.
또한, 상기 절연체 기판과 상기 히터 패턴 사이에 형성된 절연층을 더 포함하는 것을 특징으로 하는 가스 센서를 제공한다.In addition, a gas sensor is provided, further comprising an insulating layer formed between the insulating substrate and the heater pattern.
또한, 상기 절연층은 글라스 층인 것을 특징으로 하는 가스 센서를 제공한다.In addition, a gas sensor is provided wherein the insulating layer is a glass layer.
본 발명에 따른 가스 센서는 히터 패턴이 개구부에 의해서 기판의 다른 부분과 분리되어 있기 때문에 기판을 통해서 새어나가는 열이 최소화된다. 따라서 종래의 가스 센서에 비해서 응답 속도가 빠르다는 장점이 있다.In the gas sensor according to the present invention, heat leaking through the substrate is minimized because the heater pattern is separated from other parts of the substrate by an opening. Therefore, it has the advantage of faster response speed compared to conventional gas sensors.
또한, 감지 층에서 발생할 수 있는 수분이 개구부를 통해서 쉽게 제거된다는 장점도 있다.Additionally, there is an advantage that moisture that may occur in the sensing layer can be easily removed through the opening.
또한, 와이어 본딩 작업이 필요하지 않아서 자동화가 용이하고, 불량률이 낮으며, 내구성이 뛰어나다는 장점이 있다.In addition, since wire bonding work is not required, it has the advantage of being easy to automate, having a low defect rate, and having excellent durability.
도 1은 본 발명의 일실시예에 따른 가스 센서의 평면도이다.1 is a plan view of a gas sensor according to an embodiment of the present invention.
도 2는 도 1에 도시된 가스 센서의 감지부의 저면도이다.FIG. 2 is a bottom view of the detection unit of the gas sensor shown in FIG. 1.
도 3은 도 1에 도시된 접촉 연소식 가스 센서의 측정방법을 설명하기 위한 회로도이다.FIG. 3 is a circuit diagram for explaining the measurement method of the contact combustion gas sensor shown in FIG. 1.
도 4는 본 발명의 다른 실시예에 따른 가스 센서의 평면도이다.Figure 4 is a top view of a gas sensor according to another embodiment of the present invention.
도 5는 도 4에 도시된 가스 센서의 감지부 및 보상부의 저면도이다.FIG. 5 is a bottom view of the detection unit and compensation unit of the gas sensor shown in FIG. 4.
도 6은 본 발명의 또 다른 실시예에 따른 가스 센서의 평면도이다.Figure 6 is a top view of a gas sensor according to another embodiment of the present invention.
도 7은 도 6에 도시된 가스 센서의 감지부의 저면도이다.FIG. 7 is a bottom view of the detection unit of the gas sensor shown in FIG. 6.
이하, 본 발명의 실시예를 첨부된 도면들에 의거하여 상세하게 설명한다. 다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, embodiments of the present invention will be described in detail based on the attached drawings. The examples introduced below are provided as examples so that the idea of the present invention can be sufficiently conveyed to those skilled in the art. Accordingly, the present invention is not limited to the embodiments described below and may be embodied in other forms. And in the drawings, the width, length, thickness, etc. of components may be exaggerated for convenience. Like reference numerals refer to like elements throughout the specification.
도 1은 본 발명의 일실시예에 따른 가스 센서의 평면도이며, 도 2는 도 1에 도시된 가스 센서의 감지부의 저면도이다. 도 1에 도시된 바와 같이, 본 발명의 일실시예에 따른 가스 센서(100)는 접촉 연소식 가스센서로서 크게 감지부(10)와, 보상부(30) 및 하우징(50)을 포함한다.FIG. 1 is a top view of a gas sensor according to an embodiment of the present invention, and FIG. 2 is a bottom view of the detection unit of the gas sensor shown in FIG. 1. As shown in FIG. 1, the gas sensor 100 according to an embodiment of the present invention is a contact combustion type gas sensor and largely includes a detection unit 10, a compensation unit 30, and a housing 50.
도 1과 2에 도시된 바와 같이, 감지부(10)는 절연체 기판(11), 히터 패턴(20), 감지 층(촉매 층)(22), 연장 패턴(24), 전극 패턴(25), 패드(26)를 포함한다.As shown in Figures 1 and 2, the sensing unit 10 includes an insulating substrate 11, a heater pattern 20, a sensing layer (catalyst layer) 22, an extension pattern 24, an electrode pattern 25, Includes pad 26.
절연체 기판(11)으로는 알루미나 기판, 지르코니아 기판 등 다양한 세라믹 기판이 사용될 수 있다. 바람직하게는, 열전도도가 비교적 낮은 지르코니아 또는 이트리아 안정화 지르코니아 기판이 사용될 수 있다. 절연체 기판(11)의 열전도도가 너무 높으면, 감지 층(22) 주변으로 열이 전달되어, 감지 층(22)을 원하는 온도까지 가열하는데 시간이 오래 걸리기 때문이다.As the insulating substrate 11, various ceramic substrates such as an alumina substrate and a zirconia substrate can be used. Preferably, a zirconia or yttria stabilized zirconia substrate with relatively low thermal conductivity can be used. If the thermal conductivity of the insulating substrate 11 is too high, heat is transferred around the sensing layer 22, and it takes a long time to heat the sensing layer 22 to the desired temperature.
절연체 기판(11)에는 개구부(12)가 형성된다. 개구부(12)는 레이저를 이용한 가공이나 펀칭 가공 등의 방법으로 형성할 수 있다. 개구부(12)는 수소 가스 등의 산화 과정에서 발생하는 물이 빠져나갈 수 있도록 충분히 크게 형성되는 것이 바람직하다. 개구부(12)에 물이 맺히면 개구부(12)에 의한 열 차단 효과가 떨어지고, 히터 패턴(20)에 의한 열이 감지 층(22)에 집중되지 않아서, 감지 층(22)의 가열에 소요되는 시간이 길어질 수 있다. 개구부(12)는 대체로 ㄷ자 형태로 형성된다.An opening 12 is formed in the insulating substrate 11. The opening 12 can be formed by a method such as processing using a laser or punching processing. The opening 12 is preferably large enough to allow water generated during the oxidation process of hydrogen gas to escape. If water forms on the opening 12, the heat blocking effect of the opening 12 is reduced, and the heat generated by the heater pattern 20 is not concentrated on the sensing layer 22, so the amount of time required to heat the sensing layer 22 is reduced. It may take a long time. The opening 12 is generally formed in a U-shape.
히터 패턴(20)은 절연체 기판(11)의 일면(도 1과 2에서는 하면)에 형성된다. 히터 패턴(20)은 백금으로 이루어질 수 있다. 히터 패턴(20)은 백금과 같은 전도성 입자들과 바인더 및 용제가 혼합된 페이스트를 스크린 프린팅 방법으로 절연체 기판(11)의 일면에 인쇄한 후 열처리하는 방법으로 형성할 수 있다. The heater pattern 20 is formed on one surface (the lower surface in FIGS. 1 and 2) of the insulating substrate 11. The heater pattern 20 may be made of platinum. The heater pattern 20 can be formed by printing a paste mixed with conductive particles such as platinum, a binder, and a solvent on one side of the insulating substrate 11 using a screen printing method, followed by heat treatment.
히터 패턴(20)은 감지 층(22)을 가열하는 역할을 한다. 또한, 감지 층(22)의 온도 변화를 감지하는 역할도 한다. 히터 패턴(20)은 온도에 따라서 저항이 변화한다. 백금 패턴일 경우에는 온도가 증가함에 따라서 저항이 증가한다.The heater pattern 20 serves to heat the sensing layer 22. It also serves to detect temperature changes in the sensing layer 22. The resistance of the heater pattern 20 changes depending on the temperature. In the case of a platinum pattern, resistance increases as temperature increases.
히터 패턴(20)은 개구부(12)에 의해서 둘러싸인 구간의 가장 안쪽에 형성된다. 히터 패턴(20)은 지그재그 형태로 형성된다. 히터 패턴(20)의 외곽은 전체적으로 사각형 형태이며, 개구부(12)는 히터 패턴(20)의 3면을 둘러싼다. 따라서 히터 패턴(20)에서 발생한 열이 절연체 기판(11)의 다른 영역으로 전달되는 것을 최대한 차단할 수 있다.The heater pattern 20 is formed at the innermost part of the section surrounded by the opening 12. The heater pattern 20 is formed in a zigzag shape. The exterior of the heater pattern 20 has an overall rectangular shape, and the opening 12 surrounds three sides of the heater pattern 20. Therefore, it is possible to prevent heat generated in the heater pattern 20 from being transferred to other areas of the insulating substrate 11 as much as possible.
도시하지 않았으나, 절연체 기판(11)과 히터 패턴(20) 사이에는 절연층인 글라스 층이 형성될 수 있다. 글라스 층은 스크린 프린팅 방법이나, 증착법을 이용하여 형성할 수 있다. 글라스 층은 절연체 기판(11)과 히터 패턴(20) 사이의 접착력을 향상시키는 역할을 한다. 또한, 고온에서 절연체 기판(11)의 절연성이 떨어지는 문제를 개선하는 역할도 한다.Although not shown, a glass layer, which is an insulating layer, may be formed between the insulating substrate 11 and the heater pattern 20. The glass layer can be formed using a screen printing method or a vapor deposition method. The glass layer serves to improve the adhesion between the insulating substrate 11 and the heater pattern 20. In addition, it also serves to improve the problem of poor insulation of the insulating substrate 11 at high temperatures.
감지 층(22)은 절연체 기판(11)의 히터 패턴(20)이 형성된 일면 또는 반대면 중 적어도 하나에 형성된다. 가연성 가스는 가열된 감지 층(22)의 표면에서 산소와 반응하면서 반응열을 일으킨다. 도 1과 2에서는 히터 패턴(20)이 형성된 하면에 히터 패턴(20)을 덮도록 감지 층(22)이 형성된 것으로 도시되어 있다.The sensing layer 22 is formed on at least one of one side or the opposite side of the insulating substrate 11 where the heater pattern 20 is formed. The combustible gas reacts with oxygen on the surface of the heated sensing layer 22, generating reaction heat. 1 and 2, it is shown that the sensing layer 22 is formed on the lower surface where the heater pattern 20 is formed to cover the heater pattern 20.
절연체 기판(11)의 양면 모두에 감지 층(22)을 형성하면, 산소와 가연성 가스의 반응열이 절연체 기판(11)의 양면에서 발생하기 때문에 감도가 더 커진다는 장점이 있다.Forming the sensing layer 22 on both sides of the insulating substrate 11 has the advantage of greater sensitivity because the reaction heat of oxygen and combustible gas is generated on both sides of the insulating substrate 11.
감지 층(22)은 알루미나와 백금 또는 팔라듐이 첨가된 페이스트를 스크린 프린팅 방법으로 도포한 후 열처리하는 방법으로 형성할 수 있다.The sensing layer 22 can be formed by applying a paste containing alumina and platinum or palladium using a screen printing method and then heat treating it.
한 쌍의 연장 패턴(24)들은 히터 패턴(20)의 양단부와 전기적으로 연결된다. 한 쌍의 연장 패턴(24)들은 서로 나란하게 형성된다. 한 쌍의 연장 패턴(24)들은 개구부(212)에 의해서 막히지 않은 히터 패턴(20)의 한쪽으로부터 길게 연장된다. 한 쌍의 연장 패턴(24)들은 개구부(12)에 의해서 둘러싸인 구간의 안쪽에서 히터 패턴(20)과 연결되며, 개구부(12)에 의해서 둘러싸인 구간의 가장 바깥쪽까지 길게 연장된다. 한 쌍의 연장 패턴(24)의 폭은 히터 패턴(20)에 비해서 두껍다.A pair of extension patterns 24 are electrically connected to both ends of the heater pattern 20. A pair of extension patterns 24 are formed parallel to each other. A pair of extension patterns 24 extend long from one side of the heater pattern 20 that is not blocked by the opening 212 . A pair of extension patterns 24 are connected to the heater pattern 20 inside the section surrounded by the opening 12, and extend long to the outermost section of the section surrounded by the opening 12. The width of the pair of extension patterns 24 is thicker than that of the heater pattern 20.
한 쌍의 연장 패턴(24)들은 전극 패턴(25)들을 통해서 절연체 기판(11)의 모서리에 형성된 패드(26)들과 전기적으로 연결된다.A pair of extension patterns 24 are electrically connected to pads 26 formed at the corners of the insulating substrate 11 through electrode patterns 25.
연장 패턴(24), 전극 패턴(25) 및 패드(26)는 전극 페이스트를 스크린 프린팅 방법으로 인쇄한 후 열처리하는 방법으로 형성할 수 있다.The extension pattern 24, electrode pattern 25, and pad 26 can be formed by printing electrode paste using a screen printing method and then heat treating it.
도 1에 도시된 바와 같이, 하우징(50)은 핀 헤더(51)를 구비할 수 있다. 도시하지 않았으나, 하우징(50)은 핀 헤더(51)를 덮는 보호 캡을 더 포함할 수 있다. 하우징(50)은, 예를 들어, 트랜지스터 아웃라인 패키지(TO package)일 수 있다.As shown in FIG. 1, the housing 50 may be provided with a pin header 51. Although not shown, the housing 50 may further include a protective cap covering the pin header 51. The housing 50 may be, for example, a transistor outline package (TO package).
핀 헤더(51)는 대체로 원판형의 베이스(52)와 베이스(52)를 관통하는 복수의 전도성 핀(54)들을 포함한다. 베이스(52)와 전도성 핀(54)들은 베이스(52)와 전도성 핀(54) 사이의 절연층에 의해서 전기적으로 절연된다.The pin header 51 includes a generally disk-shaped base 52 and a plurality of conductive pins 54 penetrating the base 52. The base 52 and the conductive pins 54 are electrically insulated by an insulating layer between the base 52 and the conductive pins 54.
감지부(10)는 전도성 핀(54) 위에 배치된다. 이때, 감지부(10)의 패드(26)들은 전도성 핀(54)과 전기적으로 연결된다. 예를 들어, 전도성 핀(54)의 머리 부분에 전도성 페이스트를 도포한 후에 감지부(10)의 패드(26)들을 전도성 핀(54)의 머리 부분에 올려놓은 후 건조하는 방법으로 감지부(10)의 패드(26)들과 전도성 핀(54)을 전기적으로 연결할 수 있다.The sensing unit 10 is disposed on the conductive pin 54. At this time, the pads 26 of the sensing unit 10 are electrically connected to the conductive pins 54. For example, after applying conductive paste to the head of the conductive pin 54, the pads 26 of the sensing unit 10 are placed on the head of the conductive pin 54 and then dried. ) can be electrically connected to the pads 26 and the conductive pin 54.
보상부(30)는 감지 층을 제외한 모든 구조가 감지부(10)와 동일하다. 보상부(30)는 감지부(10)와 마찬가지로 절연체 기판(31)과, 히터 패턴과, 연장 패턴과, 전극 패턴, 패드들을 포함한다. 보상부(30)는 감지부(10)와 나란하게 핀 헤더(51)에 설치된다.The compensation unit 30 has the same structure as the detection unit 10 except for the sensing layer. Like the sensing unit 10, the compensation unit 30 includes an insulating substrate 31, a heater pattern, an extension pattern, an electrode pattern, and pads. The compensation unit 30 is installed on the pin header 51 in parallel with the detection unit 10.
도 3은 도 1에 도시된 접촉 연소식 가스 센서의 측정방법을 설명하기 위한 회로도이다. 도 3에 도시된 바와 같이, 감지부(10)와 보상부(30)의 각각의 히터 패턴(20, 40)이 휘트스톤 브리지의 네 개의 저항 중 두 개의 저항 역할을 한다. 감지 층(22)에서의 반응열에 의해서 감지부(10)의 히터 패턴(20)의 저항이 증가하면 평형이 깨지면서 A-B 지점 사이의 출력 전압이 검출된다. 이러한 출력 전압을 이용하면 가연성 가스를 검출할 수 있다.FIG. 3 is a circuit diagram for explaining the measurement method of the contact combustion gas sensor shown in FIG. 1. As shown in FIG. 3, the heater patterns 20 and 40 of the sensing unit 10 and the compensating unit 30 serve as two of the four resistors of the Wheatstone bridge. When the resistance of the heater pattern 20 of the sensing unit 10 increases due to the reaction heat in the sensing layer 22, the balance is broken and an output voltage between points A and B is detected. Using this output voltage, flammable gas can be detected.
도 4는 본 발명의 다른 실시예에 따른 가스 센서 평면도이며, 도 5는 도 4에 도시된 가스 센서의 감지부 및 보상부의 저면도이다.Figure 4 is a plan view of a gas sensor according to another embodiment of the present invention, and Figure 5 is a bottom view of the detection unit and compensation unit of the gas sensor shown in Figure 4.
도 4와 5에 도시된 실시예는 하나의 절연체 기판(111)을 이용하여 감지부(110)와 보상부(130)를 형성한다는 점에서, 도 1과 2에 도시된 실시예와 차이가 있다.The embodiment shown in FIGS. 4 and 5 is different from the embodiment shown in FIGS. 1 and 2 in that the sensing unit 110 and the compensation unit 130 are formed using a single insulating substrate 111. .
본 실시예는 하나의 절연체 기판(111)을 이용하여 감지부(110)와 보상부(130)를 모두 형성할 수 있어서, 감지부(110)와 보상부(130)의 히터 패턴(120, 140)을 한 번에 형성하고, 연장 패턴(124, 144), 전극 패턴(125, 145), 패드(126, 146)도 한 번에 형성할 수 있다는 점 등 공정이 간단하다는 장점이 있다.In this embodiment, both the sensing unit 110 and the compensating unit 130 can be formed using one insulating substrate 111, so the heater patterns 120 and 140 of the sensing unit 110 and the compensating unit 130 ) is formed at once, and the extension patterns 124, 144, electrode patterns 125, 145, and pads 126, 146 can also be formed at once, which has the advantage of a simple process.
반면에, 도 1과 2에 도시된 실시예는 감지부(10)에서 발생한 반응열이 절연체 기판(11)을 통해서 보상부(30)로 전달되지 않는다는 장점이 있다.On the other hand, the embodiment shown in FIGS. 1 and 2 has the advantage that the reaction heat generated in the sensing unit 10 is not transmitted to the compensating unit 30 through the insulating substrate 11.
도 6은 본 발명의 또 다른 실시예에 따른 가스 센서의 평면도이며, 도 7은 도 6에 도시된 가스 센서의 감지부의 저면도이다. 도 6에 도시된 실시예는 반도체식 가스 센서(300)이다.Figure 6 is a top view of a gas sensor according to another embodiment of the present invention, and Figure 7 is a bottom view of the detection unit of the gas sensor shown in Figure 6. The embodiment shown in FIG. 6 is a semiconductor gas sensor 300.
도 6에 도시된 반도체식 가스 센서(300)는 보상부를 구비하지 않으며, 절연체 기판(211)의 히터 패턴(220)이 형성된 면의 반대 면(도 6에서는 하면)에 감지 층(222)의 저항 변화를 측정하기 위한 한 쌍의 감지 패턴(230)이 형성되며, 감지 층(222)이 한 쌍의 감지 패턴(223) 위에 형성된다는 점에서, 도 1과 2에 도시된 접촉 연소식 가스 센서(100)와 차이가 있다.The semiconductor gas sensor 300 shown in FIG. 6 does not have a compensation unit, and the resistance of the sensing layer 222 is applied to the surface opposite to the surface of the insulating substrate 211 on which the heater pattern 220 is formed (the lower surface in FIG. 6). In that a pair of sensing patterns 230 for measuring changes are formed, and a sensing layer 222 is formed on the pair of sensing patterns 223, the contact combustion gas sensor shown in FIGS. 1 and 2 ( 100) and there is a difference.
본 실시예에 가스 센서(300)의 감지부(210)는 절연체 기판(211)과, 히터 패턴(220)과, 감지 패턴(230)과, 감지 층(222)과, 연장 패턴(224)과, 전극 패턴(225)을 포함한다. 히터 패턴(220), 연장 패턴(224)과, 전극 패턴(225)은 절연체 기판(211)의 일면(도 6에서는 상면)에 형성되며, 감지 패턴(230)과, 감지 층(222)은 반대 면에 형성된다.In this embodiment, the sensing unit 210 of the gas sensor 300 includes an insulating substrate 211, a heater pattern 220, a sensing pattern 230, a sensing layer 222, an extension pattern 224, and , includes an electrode pattern 225. The heater pattern 220, the extension pattern 224, and the electrode pattern 225 are formed on one side (the top surface in FIG. 6) of the insulating substrate 211, and the sensing pattern 230 and the sensing layer 222 are formed on the opposite side. formed on the surface.
절연체 기판(211)으로는 세라믹 기판이 사용될 수 있다. 바람직하게는, 열전도도가 비교적 낮은 지르코니아 또는 이트리아 안정화 지르코니아 기판이 사용될 수 있다. 절연체 기판(211)에는 개구부(212)가 형성된다. 개구부(212)는 대체로 ㄷ자 형태이다. 개구부(212)는 히터 패턴(220)과 연장 패턴(224)을 둘러싸서, 히터 패턴(220)에서 발생한 열이 빠져나가는 것을 방지한다.A ceramic substrate may be used as the insulating substrate 211. Preferably, a zirconia or yttria stabilized zirconia substrate with relatively low thermal conductivity can be used. An opening 212 is formed in the insulating substrate 211. The opening 212 is generally U-shaped. The opening 212 surrounds the heater pattern 220 and the extension pattern 224 to prevent heat generated in the heater pattern 220 from escaping.
히터 패턴(220)은 절연체 기판(211)의 일면에 형성된다. 히터 패턴(220)은 백금으로 이루어질 수 있다. 히터 패턴(220)은 백금과 같은 전도성 입자들과 바인더 및 용제가 혼합된 페이스트를 스크린 프린팅 방법으로 절연체 기판(211)의 일면에 인쇄한 후 열처리하는 방법으로 형성할 수 있다. 히터 패턴(220)은 절연체 기판(211)의 반대 면에 형성된 감지 층(222)을 가열하는 역할을 한다.The heater pattern 220 is formed on one surface of the insulating substrate 211. The heater pattern 220 may be made of platinum. The heater pattern 220 can be formed by printing a paste mixed with conductive particles such as platinum, a binder, and a solvent on one side of the insulating substrate 211 using a screen printing method, followed by heat treatment. The heater pattern 220 serves to heat the sensing layer 222 formed on the opposite side of the insulating substrate 211.
연장 패턴(224)은 히터 패턴(220)과 전기적으로 연결된다. 연장 패턴(224)은 전극 패턴(225)를 통해서 패드(226)와 연결된다.The extension pattern 224 is electrically connected to the heater pattern 220. The extension pattern 224 is connected to the pad 226 through the electrode pattern 225.
연장 패턴(224), 전극 패턴(225), 패드(226)는 전극 페이스트를 스크린 프린팅 방법으로 인쇄한 후 열처리하는 방법으로 형성할 수 있다. 패드(226)는 비아 홀(미도시)을 통해서 반대 면의 패드(237)와 연결된다. The extension pattern 224, electrode pattern 225, and pad 226 can be formed by printing electrode paste using a screen printing method and then heat treating it. The pad 226 is connected to the pad 237 on the opposite side through a via hole (not shown).
한 쌍의 감지 패턴(230)은 절연체 기판(211)을 사이에 두고 히터 패턴(220)과 마주보도록 형성된다. 한 쌍의 감지 패턴(230)은 인터디지털(interdigital) 전극 패턴일 수 있다. 한 쌍의 감지 패턴(230)은 히터 패턴(220)과 마찬가지로, 개구부(212)에 의해서 둘러싸인 구간의 가장 안쪽에 형성된다.A pair of sensing patterns 230 are formed to face the heater pattern 220 with the insulating substrate 211 interposed therebetween. A pair of sensing patterns 230 may be an interdigital electrode pattern. Like the heater pattern 220, the pair of sensing patterns 230 are formed at the innermost part of the section surrounded by the opening 212.
한 쌍의 감지 패턴(230)은 백금으로 이루어질 수 있다. 한 쌍의 감지 패턴(230)은 히터 패턴(220)과 마찬가지로 백금과 같은 전도성 입자들과 바인더 및 용제가 혼합된 페이스트를 스크린 프린팅 방법으로 절연체 기판(211)의 반대 면에 인쇄한 후 열처리하는 방법으로 형성할 수 있다.The pair of sensing patterns 230 may be made of platinum. Like the heater pattern 220, the pair of sensing patterns 230 are printed on the opposite side of the insulating substrate 211 using a screen printing method using a paste mixed with conductive particles such as platinum, a binder, and a solvent, and then heat treated. It can be formed as
감지 층(222)은 절연체 기판(211)의 한 쌍의 감지 패턴(230)이 형성된 면에 한 쌍의 감지 패턴(230) 및 한 쌍의 감지 패턴(230) 사이의 갭을 덮도록 형성된다. 감지 층(222)은 가스와 접촉하였을 때 전기전도도가 변화하는 SnO2, In2O3 등의 감지 물질을 포함한다. 감지 층(222)은 감지 물질이 첨가된 페이스트를 스크린 프린팅 방법으로 도포한 후 열처리하는 방법으로 형성할 수 있다.The sensing layer 222 is formed on the surface of the insulating substrate 211 on which the pair of sensing patterns 230 are formed to cover the pair of sensing patterns 230 and the gap between the pair of sensing patterns 230 . The sensing layer 222 includes a sensing material such as SnO 2 or In 2 O 3 whose electrical conductivity changes when in contact with gas. The sensing layer 222 can be formed by applying a paste to which a sensing material is added using a screen printing method and then heat treating it.
감지 패턴(230)은 한 쌍의 감지 패턴 측 연장 패턴(234)과, 한 쌍의 감지 패턴 측 전극 패턴(235)을 통해서 패드(236)와 연결된다. 감지 패턴(230)과 히터 패턴(220)이 절연체 기판(211)을 사이에 두고 마주보도록 형성되므로, 감지 패턴(230)과, 한 쌍의 감지 패턴 측 연장 패턴(234)도 개구부(212)에 의해서 둘러싸인 구역 내에 형성된다.The sensing pattern 230 is connected to the pad 236 through a pair of sensing pattern side extension patterns 234 and a pair of sensing pattern side electrode patterns 235. Since the sensing pattern 230 and the heater pattern 220 are formed to face each other with the insulating substrate 211 in between, the sensing pattern 230 and the pair of sensing pattern side extension patterns 234 are also located in the opening 212. It is formed within an area surrounded by
이상에서 설명된 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하고, 본 발명의 권리범위는 설명된 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상과 특허청구범위 내에서 이 분야의 당업자에 의하여 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시예들은 본 발명의 범위에 속하는 것으로 이해되어야 한다.The embodiments described above merely describe preferred embodiments of the present invention, and the scope of the present invention is not limited to the described embodiments, and is within the scope of the technical idea and claims of the present invention. Various changes, modifications or substitutions may be possible, and such embodiments should be understood as falling within the scope of the present invention.
[부호의 설명][Explanation of symbols]
100, 200, 300: 가스 센서100, 200, 300: Gas sensor
10, 110, 210: 감지부10, 110, 210: Sensing unit
11, 31, 111, 211: 절연체 기판11, 31, 111, 211: insulator substrate
12, 32, 112, 132, 212: 개구부12, 32, 112, 132, 212: opening
20, 120, 140, 220: 히터 패턴20, 120, 140, 220: Heater pattern
22, 122, 222: 감지 층22, 122, 222: sensing layer
24, 124, 224: 연장 패턴24, 124, 224: Extension pattern
25, 125, 225: 전극 패턴25, 125, 225: Electrode pattern
26, 126, 226: 패드26, 126, 226: Pad
30, 130: 보상부30, 130: Compensation unit

Claims (8)

  1. 가스 농도에 따른 전기신호를 생성하는 감지부를 구비하는 가스센서로서,A gas sensor having a detection unit that generates an electrical signal according to gas concentration,
    상기 감지부는,The sensing unit,
    절연체 기판과,an insulating substrate,
    상기 절연체 기판의 일면에 지그재그로 형성되는 히터 패턴과,A heater pattern formed in a zigzag pattern on one surface of the insulating substrate,
    상기 히터 패턴의 양단부와 각각 연결되며, 서로 나란하게, 상기 히터 패턴의 한쪽으로부터 길게 연장된 한 쌍의 연장 패턴과,A pair of extension patterns each connected to both ends of the heater pattern, parallel to each other, extending long from one side of the heater pattern,
    상기 히터 패턴이 형성된 일면 또는 반대면 중 적어도 하나에, 상기 히터 패턴 위치에 형성되어, 상기 히터 패턴에서 발생한 열에 의해서 가열되며, 가스 농도에 따라서 전기적 특성이 변화하는 감지 층을 포함하며,A sensing layer is formed on at least one of the one side or the opposite side where the heater pattern is formed, at the location of the heater pattern, is heated by heat generated from the heater pattern, and has electrical characteristics that change depending on the gas concentration.
    상기 절연체 기판에는 상기 히터 패턴과, 상기 연장 패턴을 상기 절연체 기판의 다른 부분으로부터 분리하도록, 상기 히터 패턴과 상기 연장 패턴의 외곽을 둘러싸는 개구부가 형성된 것을 특징으로 하는 가스 센서.A gas sensor, wherein an opening surrounding the heater pattern and the extension pattern is formed in the insulator substrate to separate the heater pattern and the extension pattern from other parts of the insulator substrate.
  2. 제1항에 있어서,According to paragraph 1,
    상기 개구부는 ㄷ자 형태로 굽은 개구부 것을 특징으로 하는 가스 센서.A gas sensor, wherein the opening is curved in a U-shape.
  3. 제1항에 있어서,According to paragraph 1,
    상기 절연체 기판은 지르코니아 또는 이트리아 안정화 지르코니아 기판인 것을 특징으로 하는 가스 센서.A gas sensor, wherein the insulating substrate is a zirconia or yttria-stabilized zirconia substrate.
  4. 제1항에 있어서,According to paragraph 1,
    상기 절연체 기판의 히터 패턴이 형성된 면의 반대 면에 간격을 두고 서로 마주보도록 형성된 한 쌍의 감지 패턴을 더 포함하며, 상기 감지 층은 상기 감지 패턴 위에 형성되는 것을 특징으로 하는 가스 센서.A gas sensor further comprising a pair of sensing patterns formed to face each other at a distance from a surface of the insulating substrate opposite to the surface on which the heater pattern is formed, wherein the sensing layer is formed on the sensing patterns.
  5. 제1항에 있어서,According to paragraph 1,
    상기 가스 센서는 보상부를 더 포함하며,The gas sensor further includes a compensation unit,
    상기 보상부는,The compensation department,
    상기 감지부의 상기 개구부가 형성된 상기 절연체 기판, 상기 히터 패턴 및 상기 연장 패턴과 동일한 형태의 절연체 기판, 히터 패턴 및 연장 패턴을 포함하며,It includes an insulating substrate, a heater pattern, and an extension pattern of the same shape as the insulating substrate, the heater pattern, and the extension pattern on which the opening of the sensing unit is formed,
    상기 보상부의 상기 절연체 기판에는 감지 층이 형성되지 않는 것을 특징으로 하는 가스 센서.A gas sensor, wherein a sensing layer is not formed on the insulating substrate of the compensating part.
  6. 제5항에 있어서,According to clause 5,
    상기 감지부의 상기 절연체 기판과 상기 보상부의 상기 절연체 기판은 일체로 이루어진 것을 특징으로 하는 가스 센서.A gas sensor, wherein the insulating substrate of the sensing unit and the insulating substrate of the compensating unit are integrally formed.
  7. 제1항에 있어서,According to paragraph 1,
    상기 절연체 기판과 상기 히터 패턴 사이에 형성된 절연층을 더 포함하는 것을 특징으로 하는 가스 센서.A gas sensor further comprising an insulating layer formed between the insulating substrate and the heater pattern.
  8. 제7항에 있어서,In clause 7,
    상기 절연층은 글라스 층인 것을 특징으로 하는 가스 센서.A gas sensor, wherein the insulating layer is a glass layer.
PCT/KR2023/008486 2022-07-05 2023-06-20 Gas sensor WO2024010246A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0082500 2022-07-05
KR1020220082500A KR20240006109A (en) 2022-07-05 2022-07-05 Gas sensor

Publications (1)

Publication Number Publication Date
WO2024010246A1 true WO2024010246A1 (en) 2024-01-11

Family

ID=89453694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008486 WO2024010246A1 (en) 2022-07-05 2023-06-20 Gas sensor

Country Status (2)

Country Link
KR (1) KR20240006109A (en)
WO (1) WO2024010246A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569667U (en) * 1992-10-29 1993-09-21 新コスモス電機株式会社 Gas sensor
JP2009079908A (en) * 2007-09-25 2009-04-16 Citizen Holdings Co Ltd Catalytic combustion type gas sensor
KR20150010473A (en) * 2013-07-19 2015-01-28 한국전자통신연구원 Micro Semiconducting Gas Sensors for Low power operation and its fabrication method
US20180106745A1 (en) * 2016-10-13 2018-04-19 Riken Keiki Co., Ltd. Gas sensor
KR20220019227A (en) * 2020-08-06 2022-02-16 (주)센텍코리아 Gas sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100799810B1 (en) 2007-02-01 2008-01-31 유도준 Gas sensor entire set of pcb which has a chip of structure feasible for layer and parallel mount
KR100929025B1 (en) 2008-01-03 2009-11-27 한국에너지기술연구원 Plasma contact-fired hydrogen and combustible gas sensor and method of manufacturing the same
KR101828549B1 (en) 2016-10-31 2018-02-13 세종공업 주식회사 Catalytic combustion type Hydrogen Sensor for Icing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569667U (en) * 1992-10-29 1993-09-21 新コスモス電機株式会社 Gas sensor
JP2009079908A (en) * 2007-09-25 2009-04-16 Citizen Holdings Co Ltd Catalytic combustion type gas sensor
KR20150010473A (en) * 2013-07-19 2015-01-28 한국전자통신연구원 Micro Semiconducting Gas Sensors for Low power operation and its fabrication method
US20180106745A1 (en) * 2016-10-13 2018-04-19 Riken Keiki Co., Ltd. Gas sensor
KR20220019227A (en) * 2020-08-06 2022-02-16 (주)센텍코리아 Gas sensor

Also Published As

Publication number Publication date
KR20240006109A (en) 2024-01-15

Similar Documents

Publication Publication Date Title
WO2016165398A1 (en) Hydrogen gas sensor for online monitoring of hydrogen gas concentration in oil-immersed transformer and method for using same
GB2046921A (en) Measuring sensor for determining the constituents of flowing gases
KR100248069B1 (en) Temperature sensor element, temperature sensor having the same
WO2018182324A1 (en) Ammonia sensor
WO1995010770A1 (en) A catalytic gas sensor
WO2010056049A9 (en) Humidity sensor of capacitance type and method of fabricating same
WO2018182323A1 (en) Nox sensor
EP0058897A1 (en) Oxygen sensing element having barrier layer between ceramic substrate and solid electrolyte layer
WO2022030932A1 (en) Gas sensor
WO2024010246A1 (en) Gas sensor
WO2018043792A1 (en) Micro gas sensor and micro gas sensor module
WO2017188700A1 (en) Sensor
WO2011115321A1 (en) Micro gas sensor array
WO2023033264A1 (en) Gas sensor using uv led
WO2018155980A1 (en) Gas sensor, gas sensor element, and gas sensor package
WO2018066752A1 (en) Sensor
WO2016148500A1 (en) Hydrogen detection sensor for detecting hydrogen of wide concentration range
JP2000065783A (en) Explosion-proof type gas sensor
WO2022139105A1 (en) Gas sensor and preparation method thereof
WO2018199601A1 (en) Sensor-mounted wafer
WO2016060493A1 (en) Flat plate-type oxygen sensor element
WO2024190955A1 (en) Gas sensing element
WO2024136258A1 (en) Thermal conductivity gas sensor
JPH09218178A (en) Gas sensor and manufacture thereof
WO2019027120A1 (en) Gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835713

Country of ref document: EP

Kind code of ref document: A1