WO2018182324A1 - Ammonia sensor - Google Patents

Ammonia sensor Download PDF

Info

Publication number
WO2018182324A1
WO2018182324A1 PCT/KR2018/003699 KR2018003699W WO2018182324A1 WO 2018182324 A1 WO2018182324 A1 WO 2018182324A1 KR 2018003699 W KR2018003699 W KR 2018003699W WO 2018182324 A1 WO2018182324 A1 WO 2018182324A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
electrode
plate
solid electrolyte
pair
Prior art date
Application number
PCT/KR2018/003699
Other languages
French (fr)
Korean (ko)
Inventor
박진수
김정민
이태훈
박준형
Original Assignee
주식회사 코멧네트워크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170041102A external-priority patent/KR101951253B1/en
Application filed by 주식회사 코멧네트워크 filed Critical 주식회사 코멧네트워크
Priority to JP2018535010A priority Critical patent/JP2020512524A/en
Publication of WO2018182324A1 publication Critical patent/WO2018182324A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4162Systems investigating the composition of gases, by the influence exerted on ionic conductivity in a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0054Specially adapted to detect a particular component for ammonia

Definitions

  • the present invention provides a measuring device for measuring one of a plate-like sensor element having a pair of electrodes having different reactivity with ammonia on a surface of a plate-like solid electrolyte having oxygen ion conductivity and a potential difference or current between the pair of electrodes. It is related with the ammonia sensor provided with both and a pair of electrodes formed so that it may expose to the gas to be measured.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-40959
  • This invention is made
  • a plate-shaped sensor element having a pair of electrodes having different reactivity with respect to ammonia on the surface of the plate-shaped solid electrolyte having oxygen ion conductivity;
  • a measuring device for measuring one of a potential difference or a current between the pair of electrodes
  • the characteristic configuration is
  • the solid electrolyte is formed of a porous
  • the pair of electrodes comprises a first electrode having an oxidation activity for ammonia and a second electrode having a lower oxidation activity for ammonia than the first electrode,
  • the first electrode includes a material having a high oxidation activity against ammonia, including at least one of ZnO, SnO 2 and In 2 O 3 , 50 to 90 Wt%, 1 to 15 Wt% glass,
  • the gas to be measured passes through the solid electrolyte and flows from one side to the other side of the solid electrolyte of the sensor element. For this reason, the measurement target gas rapidly reaches the entire interface between the solid electrolyte and the electrode where the electrode reaction of the measurement target gas becomes active. As a result, since the electrode reaction of ammonia contained in the measurement target gas proceeds, electromotive force according to the concentration of ammonia is rapidly generated between the pair of electrodes. Since the ammonia concentration can be detected by measuring the electromotive force generated thus quickly by the measuring device, the ammonia concentration detection responsiveness can be improved.
  • the flow of the gas to be measured is hindered.
  • the gas to be newly introduced from outside reaches the entire interface between the solid electrolyte and the electrode quickly, and the ammonia concentration detection response cannot be improved.
  • the measurement target gas quickly reaches the entire interface between the electrode and the solid electrolyte in which the electrode reaction of the measurement target gas becomes active, the ammonia concentration detection responsiveness can be improved. Can be.
  • the electrode reaction for oxidizing ammonia in the first electrode is promoted, it is possible to generate electromotive force between the pair of electrodes in a state where the first electrode is an anode and the second electrode is a cathode.
  • the 1st electrode contains glass, it is possible to improve the sintering property of a 1st electrode.
  • One of the pair of electrodes is formed on one side of the solid electrolyte, and the sensor element is provided with the other one of the pair of electrodes formed on the other side opposite to one side of the solid electrolyte.
  • the electrode reaction of the gas to be measured since the gas to be measured passes through the solid electrolyte after passing through the interface between one electrode and the solid electrolyte, and reaches the interface between the other electrode and the solid electrolyte, the electrode reaction of the gas to be measured is It quickly reaches the interface between the solid electrolyte and one electrode which becomes active and the interface between the solid electrolyte and the other electrode. Thereby, since the electrode reaction of ammonia contained in the measurement target gas is promoted, the detection response of ammonia concentration can be improved. In addition, since electrodes are provided on each of one side and the other side of the solid electrolyte, the electrode area can be formed on each of one side and the other side of the solid electrolyte to be wide. Thereby, the electrode reaction of ammonia contained in the measurement object gas can be promoted to each electrode.
  • One side of the solid electrolyte is provided with the sensor element in which the pair of electrodes are formed.
  • the measurement target gas reaches one side of the solid electrolyte provided with all the electrodes, so that it is included in the measurement target.
  • Electromotive force is generated by the electrode reaction of ammonia. Therefore, the electromotive force generated by the electrode reaction of the ammonia contained in the gas to be measured can be measured without the gas to be measured reaching the other side of the solid electrolyte. Thereby, ammonia concentration can be detected quickly.
  • the second electrode includes a noble metal.
  • the noble metal since the noble metal has a high decomposition activity for decomposing oxygen molecules into oxygen ions, it is possible to promote an electrode reaction for oxygen ionizing oxygen contained in the measurement target gas at the second electrode serving as a cathode. Do. As a result, since a large electromotive force is generated between the pair of electrodes, the ammonia concentration contained in the measurement target gas can be detected more accurately based on the electromotive force.
  • the second electrode includes a material having a decomposition activity for nitrogen oxide gas.
  • the nitrogen oxide gas contained in the measurement target gas acts on the electrode reaction for oxidizing ammonia, thereby preventing the decrease in the electromotive force generated between the pair of electrodes.
  • the gas to be measured contains nitrogen dioxide as a nitrogen oxide gas
  • the nitrogen dioxide acts on an electrode reaction for oxidizing ammonia at the first electrode, which is an anode, whereby the electromotive force generated between the pair of electrodes is reduced.
  • the electromotive force generated between the pair of electrodes is reduced.
  • the electromotive force generated between the pair of electrodes Is increased. Therefore, the above-mentioned electromotive force fall can be prevented.
  • the concentration of nitrogen dioxide contained in the gas to be measured increases, and similarly, the nitrogen dioxide acts on the electrode reaction of the second electrode. This increases the amount of electromotive force generated. Therefore, at any concentration of nitrogen dioxide, the reduction in electromotive force generated by the action of nitrogen dioxide on the electrode reaction of the first electrode can be prevented by the increase in electromotive force generated by the action of nitrogen dioxide on the electrode reaction of the second electrode. Can be. Therefore, even when nitrogen dioxide is contained in the measurement target gas, it is possible to prevent a decrease in the electromotive force generated between the pair of electrodes.
  • the material having a decomposing activity for the nitrogen oxide gas is NiO, CuO, Cr 2 O 3 , WO 3, 2CuO-Cr 2 O 3, LaNiO 3 , LaCoO 3 , La 0 . 6 Sr 0 . 4 Co 0 . 8 Fe 0 . 2 O 3 , La 0 . 8 Sr 0 . 2 MnO 3 or La 0 . 85 Sr 0 . 15 CrO 3 At least one of the materials.
  • the nitrogen oxide gas contained in the measurement target gas acts on the electrode reaction for oxidizing ammonia, thereby preventing the decrease in the electromotive force generated between the pair of electrodes.
  • Each of the pair of electrodes comprises at least one of an oxygen ion conductive solid electrolyte, alumina, zirconia and glass.
  • each of the pair of electrodes contains a solid electrolyte of oxygen ion conductivity
  • the interface between the electrode material and the solid electrolyte in which the electrode reaction in the electrode is activated is increased. Therefore, the electrode reaction can be promoted to each of the pair of electrodes.
  • each pair of electrodes contains alumina or zirconia
  • the electrical resistance value of each pair of electrodes can be adjusted. Specifically, by adjusting the content of alumina or zirconia, which is an insulator, the electrical resistance of each of the pair of electrodes can be adjusted to the desired resistance. For example, by adjusting the electrical resistance of each electrode, the influence of moisture and oxygen, which are coexisting gases contained in the measurement target gas, on the electromotive force generated between the pair of electrodes can be reduced as much as possible.
  • each pair of electrodes contains glass
  • the sinterability of an electrode can be improved.
  • the glass can be included in the electrode, the sinterability of the electrode can be improved. Even when zirconia is included in the electrode, it is possible to prevent the sintering temperature of the electrode from becoming high.
  • the solid electrolyte is formed of any one of yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ), samarium doped ceria (SDC), gadolinium doped ceria (GDC) or thorium dioxide (ThO 2 ). Is that it is.
  • YSZ yttria stabilized zirconia
  • ScSZ scandia stabilized zirconia
  • SDC samarium doped ceria
  • GDC gadolinium doped ceria
  • ThO 2 thorium dioxide
  • the solid electrolyte since the solid electrolyte has good oxygen ion conductivity, it is possible to efficiently transport oxygen ions generated at the electrode serving as the cathode into the solid electrolyte. And by measuring the large electromotive force which arises with favorable movement of oxygen ion, the ammonia density
  • the non-combustible oxidation catalyst layer for oxidizing carbon monoxide and hydrocarbons contained in the measurement target gas is provided on at least one of the one side and the other side of the plate-shaped sensor element.
  • carbon monoxide and hydrocarbons are oxidized and removed before they enter the pair of electrodes because carbon monoxide and hydrocarbons that may inhibit the electrode reaction in the pair of electrodes are reacted at the pair of electrodes. Can be prevented. Thereby, the fall of the detection precision of ammonia concentration can be prevented.
  • the unburned oxidation catalyst layer comprises a porous ceramic in which at least one of Pt, Pd, Rh, Ir, Ru or Ag is dispersed and supported.
  • An ammonia oxidation catalyst layer for oxidizing ammonia contained in the measurement target gas is provided on the one side or the other side of the plate-shaped sensor element.
  • part or all of the ammonia contained in the measurement target gas can be oxidized and removed before the measurement target gas flows into the pair of electrodes.
  • an ammonia oxidation catalyst layer which oxidizes and removes ammonia of a predetermined concentration
  • ammonia contained in the measurement target gas is not detected.
  • ammonia can be detected.
  • the ammonia oxidation catalyst layer is Co 3 O 4 , MnO 2 , V 2 O 5 , Ni-Al 2 O 3 , Fe-Al 2 O 3 , Mn-Al 2 O 3 , CuO-Al 2 O 3 , Fe 2 O 3 -Al 2 O 3 , Fe 2 O 3 -TiO 2 , Fe 2 O 3 -ZrO 2 Or at least one of the metal ion exchange zeolites.
  • ammonia contained in the measurement target gas since it is possible to oxidize and remove some or all of the ammonia contained in the measurement target gas before the measurement target gas flows into the pair of electrodes, for example, If ammonia contained in the target gas is below a predetermined concentration, ammonia can be detected without exceeding the predetermined concentration.
  • the support body which supports the said plate-shaped sensor element is provided in the said one side surface or the said other side surface of the said plate-shaped sensor element,
  • the said support body is equipped with the heater which heats the said plate-shaped sensor element.
  • the mechanical strength of a plate-shaped sensor element can be reinforced.
  • the heater which heats a plate-shaped sensor element is provided, a plate-shaped sensor element can be heated to predetermined optimal temperature.
  • a support for supporting the plate sensor element is provided on the one side of the plate sensor element, and the carbon monoxide and the hydrocarbon contained in the measurement target gas are provided on the other side of the plate sensor element on which the first electrode is formed.
  • An unburned oxide oxidation catalyst layer for oxidizing and an ammonia oxidation catalyst layer for oxidizing ammonia contained in the gas to be measured are provided in a stacked state.
  • the gas to be measured flows in from the other side of the plate sensor element, it passes through the unburned oxidation catalyst layer and the ammonia oxidation catalyst layer and flows into the plate sensor element, thereby inhibiting the electrode reaction of ammonia. Since potential carbon monoxide and hydrocarbons are oxidized and removed before entering the first electrode, a decrease in detection accuracy of the ammonia concentration can be prevented.
  • ammonia contained in the measurement target gas is oxidized and removed before entering the first electrode, for example, when ammonia contained in the measurement target gas is below a predetermined concentration, ammonia is not detected. Instead, ammonia can be detected when it exceeds a predetermined concentration.
  • the plate-shaped sensor element is supported by the support, the mechanical strength of the plate-shaped sensor element can be reinforced.
  • a power supply device for applying a constant voltage or a constant current between the pair of electrodes.
  • the electrode reaction can be promoted in the pair of electrodes by applying a constant voltage or a constant current between the pair of electrodes.
  • a constant voltage or a constant current is applied between the pair of electrodes.
  • a power supply device for applying a voltage or a current in a state in which the first electrode becomes an anode and in a state in which the second electrode becomes a cathode.
  • an electrode reaction for oxidizing ammonia contained in the gas to be measured at the first electrode by applying a voltage or a current by a power supply such that the first electrode is an anode and the second electrode is a cathode. This is accelerated, and the electrode reaction which ionizes oxygen contained in the measurement target gas is accelerated in the second electrode. Therefore, as described above, even when the electromotive force generated based on the electrode reaction of ammonia is so small that it is difficult to detect the ammonia concentration contained in the gas to be measured from the electromotive force, the ammonia concentration contained in the gas to be measured is accurately determined. Can be detected.
  • the gas to be measured passes through the solid electrolyte and flows from one side to the other side of the solid electrolyte of the sensor element. For this reason, the measurement target gas rapidly reaches the entire interface between the solid electrolyte and the electrode where the electrode reaction of the measurement target gas becomes active. As a result, since the electrode reaction of ammonia contained in the measurement target gas proceeds, electromotive force according to the concentration of ammonia is rapidly generated between the pair of electrodes. Since the ammonia concentration can be detected by measuring the electromotive force generated thus quickly by the measuring device, the ammonia concentration detection responsiveness can be improved.
  • the ammonia sensor according to the present invention improves the sinterability of the electrode because a glass component is added to the electrode.
  • the improvement of the sintering property of the electrode can minimize the difference in thermal expansion coefficient between the electrode and the solid electrolyte, thereby improving the mechanical bonding strength.
  • the addition of the glass component may improve the interfacial stability of the electrode and the solid electrolyte to improve the sensor signal stability.
  • Charge exchange reaction of NH 3 in the ammonia sensor according to the present invention is the sum of reactions in a plurality of micro-cells, and the interfacial stability of the electrode and the solid electrolyte minimizes the change of the micro-cells. Sensor signal changes can be suppressed.
  • the addition of the glass component can improve the signal size of the ammonia sensor according to the present invention.
  • the signal of the ammonia sensor according to the invention is generated by an electrochemical catalyst (with charge exchange) reaction at the electrode of the non-equilibrium target gas.
  • the electrode can also play the role of a chemical catalyst (no charge exchange), and when the measurement target gas is an unbalanced gas, the concentration decreases due to the chemical catalysis in the process of passing the electrode through the electrode.
  • the signal from the sensor is reduced because it reaches. Therefore, as the porosity of the electrode increases, the sensitivity decreases, so that the porosity decrease due to the improvement of sinterability due to the addition of the glass component may improve the sensitivity (signal size) of the sensor.
  • FIG. 1 is a schematic diagram of an ammonia sensor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the ammonia sensor according to the first embodiment of the present invention.
  • FIG 3 is an exploded perspective view of the ammonia sensor according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a relationship between voltage and current of the ammonia sensor according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing the responsiveness of the ammonia sensor when the ammonia concentration is increased according to the first embodiment of the present invention.
  • Fig. 6 is a diagram showing the responsiveness of the ammonia sensor when the ammonia concentration is reduced according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a relationship between ammonia concentration and electromotive force according to the first embodiment of the present invention.
  • FIG 9 is an exploded perspective view of the ammonia sensor according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of the ammonia sensor according to the second embodiment of the present invention.
  • FIG. 11 is an exploded perspective view of the ammonia sensor according to the third embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the ammonia sensor according to the third embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an ammonia sensor according to another embodiment of the present invention.
  • Ammonia sensor according to one embodiment of the invention e.g., as an element the gas to measure the exhaust gas discharged from the SCR system with a diesel engine, and is used to detect the concentration of ammonia NH 3 contained in the exhaust gas.
  • the measurement target gas which the ammonia sensor of this embodiment uses as a measurement target gas is not limited to the discharge gas discharged
  • the ammonia sensor 100 which concerns on this embodiment is equipped with the plate-shaped sensor element 20.
  • the plate-shaped sensor element 20 includes a plate-shaped solid electrolyte 1 having oxygen ion conductivity and a pair of electrodes 2 formed on the surface of the solid electrolyte 1.
  • One side of the plate-shaped sensor element 20 is provided with a support 3 for supporting the plate-shaped sensor element 20, and the other side of the plate-shaped sensor element 20 is an unburned oxidation catalyst layer 4 for oxidizing carbon monoxide and hydrocarbons contained in the gas to be measured. Is provided.
  • the lower side of the drawing toward the support 3 from the plate-shaped sensor element 20 is referred to as one side
  • the upper side of the drawing toward the plate-shaped sensor element 20 from the support 3 is referred to as the other side. It is called.
  • the ammonia sensor 100 is provided with a measuring device 12 that measures either the potential difference or the current between the pair of electrodes 2.
  • This measuring device 12 is connected to a pair of terminals 6 provided in the support 3.
  • the measuring device 12 measures the electromotive force generated between the pair of electrodes 2 with respect to the concentration of ammonia contained in the measurement target gas.
  • a pair of terminal 6 is connected to the pair of electrode 2 by the lead wire 5 with which the support body 3 was equipped.
  • the exhaust gas ammonia concentration can be detected.
  • the ammonia sensor 100 is disposed in an exhaust pipe or the like through which the gas to be measured flows, the ammonia concentration of the gas to be measured is detected.
  • Solid electrolyte 1 is formed in a rectangular plate shape.
  • the solid electrolyte 1 is made of porous material, and the porosity of the porous material is formed to be any porosity between 10% and 80%. In this embodiment, the porosity of the solid electrolyte 1 is formed to be 23%.
  • the solid electrolyte 1 is provided with many through-holes from which the gas to be measured reaches from one side of the solid electrolyte 1 to the other side facing the one side. This through hole is formed by connecting fine pores in the solid electrolyte 1.
  • the solid electrolyte 1 is made of one of yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ), samarium-doped ceria (SDC), gadolinium-doped ceria (GDC), or thorium dioxide (ThO 2 ). It is formed.
  • YSZ yttria stabilized zirconia
  • ScSZ scandia stabilized zirconia
  • SDC samarium-doped ceria
  • GDC gadolinium-doped ceria
  • ThO 2 thorium dioxide
  • one electrode 2a (referred to as one electrode) of a pair of electrodes 2 is formed on one side of the plate-shaped solid electrolyte 1 so as to face one side of the plate-shaped solid electrolyte 1.
  • One electrode 2a and the other electrode 2b are formed in a thin plate shape, and at the same time, are formed in a rectangular shape in a plan view from the thickness direction of the solid electrolyte 1. Moreover, it is formed so that it may be slightly smaller than the solid electrolyte 1 in the planar viewpoint seen from the thickness direction of the solid electrolyte 1.
  • the measurement target gas E flows in from the other side of the plate-shaped sensor element 20 and is inside the other electrode 2b, the solid electrolyte 1, and the one electrode 2a. It passes through and flows to one side of the plate-shaped sensor element 20. And the measurement object gas E which flowed to the other side from the other side of the plate-shaped sensor element 20 flows out of the plate-shaped sensor element 20 from the one side side of the plate-shaped sensor element 20.
  • both of the pair of electrodes 2 provided on one side and the other side of the plate-shaped sensor element 20 are formed to be exposed to the measurement target gas E.
  • the measurement object gas E flows in from one side of the plate-shaped sensor element 20, passes through one electrode 2a, the solid electrolyte 1 and the other electrode 2b, and flows to the other side of the plate-shaped sensor element 20. You may.
  • the pair of electrodes 2 are a first electrode C having an oxidation activity with respect to ammonia contained in the measurement target gas, and a second electrode D having a lower oxidation activity with respect to ammonia contained in the measurement target gas than the first electrode C. Consists of. In this embodiment, one electrode 2a is referred to as the second electrode D and the other electrode 2b is referred to as the first electrode C. FIG.
  • the first electrode C is ZnO, SnO 2 and In 2 O 3 which are materials having high oxidation activity against ammonia.
  • the second electrode D is formed of a noble metal containing at least one of the above, and having a lower oxidation activity to ammonia than a material having a higher oxidation activity to these ammonias.
  • the first electrode C is formed including ZnO, and the second electrode D is formed of platinum.
  • an anode reaction occurs in which oxygen ions contained in the gas to be measured become oxygen gas.
  • an anodic reaction by ammonia occurs as shown in the following formula (2).
  • the above-described electrode reaction occurs at the first electrode C and the second electrode D, so that the electromotive force according to the concentration of ammonia contained in the gas to be measured is reduced. It occurs between the pair of electrodes 2.
  • the electromotive force is measured by the measuring apparatus 12, the ammonia concentration contained in the measurement target gas can be detected.
  • the first electrode C is formed including one or more of a solid electrolyte, alumina, zirconia, and glass of oxygen ion conductivity.
  • the 1st electrode C is formed including the solid electrolyte of oxygen ion conductivity, alumina, and glass.
  • the first electrode C contains yttria stabilized zirconia (YSZ), in the first electrode C, the interface between the electrode material and the solid electrolyte increases, so that the electrode reaction is activated. As a result, in the first electrode C, the electrode reaction is promoted.
  • the solid electrolyte of oxygen ion conductivity is contained in the range of 5-30 Wt% in the 1st electrode C.
  • the oxygen ion conductive solid electrolyte is yttria stabilized zirconia (YSZ) similarly to solid electrolyte 1.
  • each said resistance value of the 1st electrode C can be adjusted to desired resistance value.
  • the said resistance value of the 1st electrode C can be adjusted so that the bad influence which moisture and oxygen which are coexistence gases contained in the measurement object gas have on ammonia concentration detection as possible as possible can be minimized.
  • alumina is contained in the 1st electrode C in the range of 1-30 Wt%.
  • the first electrode C contains glass, it is possible to improve the sinterability of the first electrode C when the ammonia sensor 100 is made. It is preferable that the glass is contained in the range of 1 to 15 Wt% in the first electrode C. In this embodiment, glass has silicon dioxide as a main component.
  • a material having a high oxidation activity against ammonia is preferably contained in a range of 50 to 90 Wt%.
  • the first electrode C contains ZnO, yttria stabilized zirconia, alumina, and glass in a weight ratio of 65: 27: 6: 2, which has a high oxidation activity against ammonia.
  • the method for detecting ammonia concentration by the ammonia sensor 100 is, for example, before detecting the ammonia concentration of the gas to be measured by the ammonia sensor 100, using an ammonia mixed gas having a known ammonia concentration.
  • the electromotive force generated between the pair of electrodes 2 is measured.
  • a relation curve of ammonia concentration and electromotive force is prepared.
  • a detection device (not shown) for detecting the ammonia concentration may be provided. That is, an electromotive force measured by the measuring device 12 is input, and at the same time, the relationship curve between the ammonia concentration and the electromotive force is stored, and a detection device for detecting the ammonia concentration from the input power force and the stored relationship curve is provided. , Ammonia concentration can be detected.
  • the unburned oxidation catalyst layer 4 shown in FIGS. 1 to 3 is formed in a porous material through which the gas to be measured is permeable, and in order to oxidize carbon monoxide and hydrocarbons contained in the gas to be measured, Pt, Au, Pd, Rh, Ir, Ru, or Ag It is formed of one or more materials selected from precious metals such as these, porous ceramics in which these precious metals are dispersed and supported.
  • the unburned oxidation catalyst layer 4 is formed of a porous ceramic dispersedly supported by platinum.
  • the unburned oxidation catalyst layer 4 is formed in the same dimension as the solid electrolyte 1 from the planar view point viewed from the thickness direction of the solid electrolyte 1. Therefore, the unburned oxidation catalyst layer 4 covers the entirety of the other side surface of the other electrode 2b formed on the other side of the solid electrolyte 1, and at the same time, the periphery of the unburned oxidation catalyst layer 4 is provided at the periphery of the solid electrolyte 1. It is laminated
  • the support body 3 is formed by stacking the first support plate 3a and the second support plate 3b formed in an elongated shape.
  • the plate-shaped sensor element 20 is provided in the other side surface of the front end side part of the 1st support plate 3a in the longitudinal direction.
  • the plate-shaped sensor element 20 is formed on the other side of the first support plate 3a in a state where one electrode 2a is sandwiched between the solid electrolyte 1 and the support 3, and the peripheral portion of the solid electrolyte 1 is in close contact with the support 3. It is stacked.
  • a pair of terminals 6 are provided on the other side of the rear end side portion in the longitudinal direction of the first supporting plate 3a. A pair of terminals 6 are connected to the measuring device 12. Moreover, the lead wire 5 which connects a pair of electrode 2 of the plate-shaped sensor element 20 to a pair of terminal 6 is provided in the other side surface of the 1st support plate 3a. Lead wire 5 is made of platinum.
  • the heater 8 which heats the plate-shaped sensor element 20 is provided between the 1st support plate 3a and the 2nd support plate 3b.
  • the heater 8 is located between the first support plate 3a and the second support plate 3b and at the same time at the front end side portion in the longitudinal direction of the first support plate 3a and the second support plate 3b, and viewed from the thickness direction of the solid electrolyte 1. It is provided in the position which overlaps with the plate-shaped sensor element 20.
  • the pair of heater terminals 9 is provided in the rear end side part of the 2nd support plate 3b in the longitudinal direction.
  • the heater 8 and the pair of heater terminals 9 are connected by a heater connecting line 10.
  • the pair of heater terminals 9 are provided on one side of the second support plate 3b and are connected to a heater power supply (not shown). The heater 8 can be heated to a predetermined temperature by this heater power supply.
  • the first support plate 3a and the second support plate 3b are made of dense alumina and yttria stabilized zirconia (YSZ). In addition, when formed from yttria stabilized zirconia (YSZ), an insulating layer such as alumina or zirconia (not shown) is formed between the first support plate 3a and the heater 8 and between the second support plate 3b and the heater 8.
  • YSZ yttria stabilized zirconia
  • the voltage on the horizontal axis is an applied voltage applied between the pair of electrodes 2
  • the current on the vertical axis is a current generated between the pair of electrodes 2 due to the applied voltage.
  • the relationship between the voltage and the current is a voltage between -5V and 5V between the pair of electrodes 2 in a state where the ammonia sensor 100 is heated to 700 ° C in a dry mixed gas of 21% oxygen and 79% nitrogen.
  • the thickness of the solid electrolyte 1 is 50 ⁇ m.
  • the change in electromotive force (EMF) shown in FIG. 5 and FIG. 6 shows a change in electromotive force output from the ammonia sensor 100 when the ammonia concentration contained in the measurement target gas changes, and the response of the ammonia sensor 100 of the present embodiment is changed. It is a surname.
  • the electromotive force shown in FIG. 5 and FIG. 6 uses the mixed gas which mixed ammonia with the combustion gas containing 13% of oxygen which generate
  • the change in electromotive force of the ammonia sensor 100 shown in FIG. 5 is a change in electromotive force when the ammonia concentration of the measurement target gas is increased from 0 ppm to 42 ppm, and the voltage change shown in FIG. 6 is 208 ppm of the ammonia concentration of the measurement target gas.
  • FIG. 5 and 6 show changes in electromotive force output from ammonia sensors composed of conventional dense solid electrolytes.
  • the electromotive force of the ammonia sensor 100 of this embodiment was shown by the solid line, and the electromotive force of the conventional ammonia sensor was shown by the broken line.
  • concentration of the measurement object gas was shown to 0 horizontal axis.
  • the ammonia sensor 100 of the present embodiment has a solid electrolyte in which the solid electrolyte 1 is made of porous, and the measurement target gas is active in the electrode reaction of the measurement target gas. Since the entire electrode including the interface between the electrode 1 and electrode 2 is reached quickly, the electromotive force according to the ammonia sensor concentration was output faster than the conventional ammonia sensor in both the increase in the ammonia concentration and the decrease in the ammonia concentration. Therefore, it turns out that the responsiveness of the ammonia sensor 100 improves compared with the conventional ammonia sensor.
  • the electromotive force shown in FIG. 5 and FIG. 6 is measured by the measuring apparatus 12, and ammonia concentration is detected by this detection apparatus from this electromotive force.
  • FIG. 7 shows the results of investigating the influence of moisture and oxygen contained in the measurement target gas on the electromotive force of the ammonia sensor 100 of the present embodiment.
  • the electromotive force (EMF) shown in FIG. 7 is obtained by arranging the ammonia sensor 100 in an exhaust pipe through which the gas to be measured flows, and changing the water concentration and oxygen concentration of the gas to be measured in a state where the ammonia sensor 100 is heated to 700 ° C. It is the electromotive force obtained.
  • ammonia gas was added to the measurement target gas so that the ammonia concentration of the measurement target gas was 250 ppm.
  • an oxygen concentration of 21%, a water concentration of 1% and a nitrogen balance target gas are used, and in a period P2 including the period c and the period d, the oxygen concentration is 15%.
  • Measurement target gas of moisture concentration 3% and nitrogen balance was used.
  • ammonia was not included in the measurement target gas.
  • the ammonia sensor 100 does not affect the electromotive force generated with respect to the ammonia concentration even when the water concentration and the oxygen concentration change at least in the above concentration range. Thereby, even when the water concentration and oxygen concentration contained in the measurement target gas change, the ammonia concentration of the measurement target gas can be detected accurately.
  • the electromotive force shown in FIG. 7 is an electromotive force obtained by making the measurement object gas of the flow volume smaller than the electromotive force shown in FIG. 5 and FIG. 6 as a measurement object gas. Therefore, the responsiveness of the ammonia sensor 100 shown in FIG. 7 differs from the responsiveness of the ammonia sensor 100 shown in FIGS. 5 and 6.
  • FIG. 8 shows the relationship between the ammonia concentration and the electromotive force (EMF) of the ammonia sensor 100 of the present embodiment.
  • the relationship between the ammonia concentration and the electromotive force shown in FIG. 8 is a measurement gas using a mixed gas in which ammonia is mixed with a combustion gas containing an oxygen concentration of 13% generated by combustion of LP gas. It is a relationship between the ammonia concentration and electromotive force obtained in the state which arrange
  • the temperature of the combustion gas was 135 ° C, and the ammonia concentration of the measurement target gas was changed by adjusting the amount of ammonia mixed in the combustion gas.
  • the relationship between the ammonia concentration and the electromotive force shown in the drawing is an example of a relationship curve between the ammonia concentration and the electromotive force, and by referring to this relationship curve, the ammonia concentration corresponding to the electromotive force measured by the measuring apparatus 12 can be detected.
  • FIGS. 9 and 10 differs from the first embodiment described above in that the plate-shaped sensor element 20 in which a pair of electrodes 2 are formed on one side of the solid electrolyte 1 is provided.
  • 9 is an exploded perspective view of the ammonia sensor 100 according to the present embodiment
  • FIG. 10 is a cross-sectional view of a portion in which the plate-like sensor element 20 is provided in the longitudinal direction of the ammonia sensor 100 according to the present embodiment.
  • a pair of electrodes 2 are provided between the solid electrolyte 1 and the support 3 in a state in which the pair of electrodes 2 are arranged in a short direction that runs straight in the longitudinal direction of the support 3. .
  • the pair of electrodes 2 are composed of the right electrode 2c provided on the right side and the left electrode 2d provided on the left side from the rear end side in the longitudinal direction of the support body 3 to the front end side.
  • the right electrode 2c is the first electrode C and the left electrode 2d is the second electrode D.
  • the right electrode 2c and the left electrode 2d are formed in a thin plate shape and, in a plan view viewed from the thickness direction of the solid electrolyte 1, are formed in a rectangular shape having a long side in the longitudinal direction of the support 3.
  • the solid electrolyte 1 is formed of porous material having a through hole, one side and the other side surface of the solid electrolyte 1 of the plate-shaped sensor element 20 in the thickness direction of the plate-shaped sensor element 20. A large number of gas through holes through which the measurement target gas flows are formed in the plate-shaped sensor element 20 during the period.
  • the measurement target gas E flows from the other side of the plate-shaped sensor element 20, passes through the solid electrolyte 1, the right electrode 2c, and the left electrode 2d, and forms a plate. It flows to one side of the sensor element 20.
  • the measurement target gas E that flowed from the other side of the plate sensor element 20 to one side flows out of the plate sensor element 20 from one side side of the plate sensor element 20.
  • both of the pair of electrodes 2 provided on one side and the other side of the plate-shaped sensor element 20 are formed to be exposed to the measurement target gas E.
  • the measurement target gas E flows into one side of the plate-shaped sensor element 20, passes through the right electrode 2c, the left electrode 2d, and the solid electrolyte 1, and can flow to the other side of the plate-shaped sensor element 20. have.
  • the unburned oxidation catalyst layer 4 formed porous is provided on the other side of the plate-shaped sensor element 20, the unburned oxidation catalyst layer 4 formed porous is provided. Specifically, the unburned oxidation catalyst layer 4 is formed in the same dimension as that of the solid electrolyte 1 in a plan view from the thickness direction of the solid electrolyte 1. The unburned oxidation catalyst layer 4 is laminated on the other side of the plate-shaped sensor element 20 in such a state that one side of the unburned oxidation catalyst layer 4 is in close contact with the other side of the solid electrolyte 1.
  • the support body 3 which supports the plate-shaped sensor element 20 is provided in one side surface of the plate-shaped sensor element 20.
  • the plate-shaped sensor element 20 is a state in which the right electrode 2c and the left electrode 2d are sandwiched between the solid electrolyte 1 and the support 3, and the peripheral portion of one side of the solid electrolyte 1 is the other side of the first support plate 3a. It is laminated
  • FIGS. 11 and 12 The ammonia sensor 100 according to the third embodiment differs from the first embodiment described above in that the plate-shaped sensor element 20 is provided with an ammonia oxidation catalyst layer 7 for oxidizing ammonia contained in the measurement target gas.
  • FIG. 11 shows an exploded perspective view of the ammonia sensor 100 according to the present embodiment
  • FIG. 12 shows a cross-sectional view of a part provided with the plate-like sensor element 20 in the longitudinal direction of the ammonia sensor 100 according to the present embodiment.
  • the ammonia sensor 100 is provided with a support 3 supporting the plate sensor element 20 on one side of the plate sensor element 20, and the plate electrode on which the first electrode C is formed.
  • the unburned oxidation catalyst layer 4 and the ammonia oxidation catalyst layer 7 are provided in a stacked state.
  • the ammonia oxidation catalyst layer 7 is formed so as to have the same dimensions as the unburned oxidation catalyst layer 4 in a plan view from the thickness direction of the solid electrolyte 1, and is laminated on the other side of the unburned oxidation catalyst layer 4.
  • the ammonia oxidation catalyst layer 7 is formed of a porous material through which the gas to be measured can flow, similar to the unburned oxidation catalyst layer 4. Accordingly, as shown in FIG. 12, the measurement target gas E flows in from one side of the ammonia oxidation catalyst layer 7, passes through the ammonia oxidation catalyst layer 7 and the unburned oxidation catalyst layer 4, and reaches one side of the plate-shaped sensor element 20. .
  • the ammonia oxidation catalyst layer 7 includes Co 3 O 4 , MnO 2 , V 2 O 5 , Ni-Al 2 O 3 , Fe-Al 2 O 3 , Mn-Al 2 O 3 , CuO-Al 2 O 3 , Fe 2 O 3 -Al 2 O 3 , Fe 2 O 3 -TiO 2 , Fe 2 O 3 -ZrO 2
  • the metal ion exchange zeolite is formed of at least one material.
  • the ammonia oxidation catalyst layer 7 it is possible to oxidize and remove some or all of the ammonia contained in the measurement target gas before the measurement target gas flows into the pair of electrodes 2. For example, by adjusting the material of the ammonia oxidation catalyst layer 7 and the thickness of the ammonia oxidation catalyst layer, it is possible to oxidize and remove ammonia at a predetermined concentration from the measurement target gas passing through the ammonia oxidation catalyst layer 7. Therefore, the ammonia sensor 100 provided with the ammonia oxidation catalyst layer 7 does not detect ammonia when the ammonia contained in the measurement target gas is below a predetermined concentration, and ammonia when the ammonia contained in the measurement target gas exceeds the predetermined concentration. Can be detected.
  • the ammonia sensor 100 according to the fourth embodiment differs from the first embodiment described above in that the second electrode D is formed including a material having a decomposition activity with respect to nitrogen oxide gas.
  • Specific materials having a decomposition activity with respect to the nitrogen oxide gas included in the second electrode D include NiO, CuO, Cr 2 O 3 , WO 3 , 2CuO-Cr 2 O 3 , LaNiO 3 , LaCoO 3 , and La 0. . 6 Sr 0 . 4 Co 0 . 8 Fe 0 . 2 O 3 , La 0.8 Sr 0.2 MnO 3 or La 0 . 85 Sr 0 . 15 CrO 3 Of at least one material.
  • the second electrode D is formed including at least one of an oxygen ion conductive solid electrolyte, alumina, zirconia, and glass. That is, each of the pair of electrodes 2 includes at least one or more of an oxygen ion conductive solid electrolyte, alumina, zirconia, and glass. Specifically, the second electrode D is formed including a solid electrolyte, alumina, and glass of oxygen ion conductivity.
  • the oxygen ion conductive solid electrolyte is preferably contained in the range of 2 to 25 Wt%
  • the alumina is preferably contained in the range of 5 to 60 Wt%.
  • the second electrode D contains LaCoO 3 , yttria stabilized zirconia, alumina, and glass in a weight ratio of 60: 10: 25: 5 as a material having decomposition activity with respect to nitrogen oxide gas.
  • the nitrogen dioxide as the nitrogen oxide gas included in the measurement target gas prevents the electromotive force generated by the electrode reaction oxidizing ammonia from being lowered, thereby reducing the amount of ammonia contained in the measurement target gas.
  • the concentration can be detected accurately.
  • the nitrogen dioxide acts on the electrode reaction of oxidizing ammonia at the first electrode C serving as the anode, thereby reducing the electromotive force generated between the pair of electrodes 2.
  • the second electrode D serving as a cathode contains a material having a decomposition activity with respect to nitrogen dioxide which is nitrogen oxide gas, an electrode reaction for decomposing oxygen ions from nitrogen dioxide contained in the measurement target gas is promoted. By the oxygen ions generated in the second electrode D electrode reaction, the electromotive force generated between the pair of electrodes 2 increases.
  • the decrease in the electromotive force generated by the action of nitrogen dioxide on the electrode reaction of the first electrode C and the increase in the electromotive force generated by the action of nitrogen dioxide in the electrode reaction of the second electrode D depend on the concentration of nitrogen dioxide contained in the gas to be measured. It is either an increase or a decrease. That is, the higher the concentration of nitrogen dioxide contained in the gas to be measured, the greater the decrease in electromotive force generated by the action of nitrogen dioxide on the electrode reaction of the first electrode C. Similarly, the nitrogen dioxide is caused by the electrode reaction action of the second electrode D. The increase in generated electromotive force also increases.
  • the second electrode such that the amount of decrease in the electromotive force generated by the action of the unit concentration of nitrogen dioxide in the first electrode C and the increase in the amount of increase in the electromotive force generated by the action of the unit concentration of nitrogen dioxide in the second electrode D are the same.
  • the mixing rate of the material having a decomposing activity with respect to nitrogen dioxide for D the reduction in the electromotive force generated by the action of the electrode reaction of the first electrode C with respect to the concentration of nitrogen oxides is achieved.
  • Nitrogen dioxide can be offset by an increase in the electromotive force generated by the action of the electrode reaction of the second electrode D.
  • the electromotive force generated between the pair of electrodes 2 is reduced. It can detect the density
  • a measuring device 12 for measuring at least one of a potential difference or a current between a pair of electrodes is provided between a pair of electrodes 2, but as shown in FIG. 13, a pair of electrodes Between 2, in addition to the measuring apparatus 12, the power supply apparatus which applies a constant current or voltage between a pair of electrodes 2 can be provided.
  • the power supply 11 can be provided in a state where the first electrode C becomes an anode and at the same time a second electrode D becomes a cathode.
  • the first electrode C is ZnO or SnO 2 , which is a material having a high oxidation activity with respect to ammonia. And at least one material of In 2 O 3 , which includes an oxygen ion conductive solid electrolyte, alumina, and glass, but is not limited thereto.
  • the first electrode C may be a ZnO material having a high oxidation activity with respect to ammonia; It may be formed of only at least one material of SnO 2 and In 2 O 3 .
  • the second electrode D is formed of only a noble metal, but the present invention is not limited thereto, and the second electrode D is formed of an oxygen ion conductive solid electrolyte, alumina, zirconia, and glass in addition to the noble metal. It may be formed including at least one.
  • the unburned oxidation catalyst layer 4 is a noble metal such as Pt, Au, Pd, Rh, Ir, Ru, or Ag, which oxidizes carbon monoxide and a hydrocarbon contained in the gas to be measured, It is formed of at least one material selected from a porous ceramic, etc., which is dispersed and supported, but is not limited thereto.
  • the non-flammable oxidation catalyst layer 4 may include a material for oxidizing ammonia included in the gas to be measured.
  • Co 3 O 4 , MnO 2 , V 2 O 5 , Ni-Al 2 O 3 , Fe-Al 2 O 3 , Mn-Al 2 O 3 , CuO-Al 2 O 3 , Fe At least one material of 2 O 3 -Al 2 O 3 , Fe 2 O 3 -TiO 2 , Fe 2 O 3 -ZrO 2, or a noble metal ion exchange zeolite may be used.
  • the ammonia included in the measurement target gas can be oxidized by the unburned oxidation catalyst layer 4.
  • one electrode 2a is used as the second electrode D and the other electrode 2b is used as the first electrode C.
  • the present invention is not limited thereto, and one electrode 2a is used as the first electrode C.
  • the other electrode 2b can be used as the second electrode D.
  • the right electrode 2c is the first electrode C
  • the left electrode 2d is the second electrode D
  • the present invention is not limited thereto
  • the right electrode 2c is the second electrode D
  • the left electrode is 2d can be used as the first electrode C.
  • the right electrode 2c and the left electrode 2d are provided on one side of the solid electrolyte 1
  • the present invention is not limited thereto, and the right electrode 2c and the left electrode 2d may be provided on the other side of the solid electrolyte 1.
  • a support body 3 supporting the plate sensor element 20 is provided on one side of the plate sensor element 20, and the non-flammable material is on the other side of the plate sensor element 20 on which the first electrode C is formed.
  • the oxidation catalyst layer 4 and the ammonia oxidation catalyst layer 7 are provided in a stacked state, the present invention is not limited thereto, and the unburned oxidation catalyst layer 4 and the ammonia oxidation catalyst layer 7 may be provided on one side of the plate sensor element 20.
  • the support body 3 can be provided in one side surface of the plate-shaped sensor element 20 in the state which the unburned oxidation catalyst layer 4 and the ammonia oxidation catalyst layer 7 are pinched
  • ammonia oxidation catalyst layer 7 is laminated on the unburned oxidation catalyst layer 4 included in the plate sensor element 20, the ammonia oxidation catalyst layer 7 is provided on the plate sensor element 20 without being limited thereto.
  • the unburned oxidation catalyst layer 4 can be laminated on the ammonia oxidation catalyst layer 7.
  • the flammable oxidation catalyst layer 4 and the ammonia oxidation catalyst layer 7 are provided on one side of the plate sensor element 20 in a stacked state, but the present invention is not limited thereto, and the flammable oxidation catalyst layer 4 is not provided. Instead, the ammonia oxidation catalyst layer 7 can be provided on one side of the plate sensor element 20. In this case, the ammonia oxidation catalyst layer 7 may include a material for oxidizing carbon monoxide and hydrocarbons included in the gas to be measured.
  • the ammonia oxidation catalyst layer 7 can oxidize carbon monoxide and hydrocarbons contained in the measurement target gas in addition to ammonia included in the measurement target gas.
  • the second electrode D is formed of an oxygen ion conductive solid electrolyte, alumina, zirconia, and glass, in addition to a material having a decomposition activity with respect to nitrogen oxide gas.
  • the second electrode D can be formed of only a material having a decomposition activity with respect to the nitrogen oxide gas, without limitation.
  • the non-flammable oxidation catalyst layer 4 is provided on the other side of the plate sensor element 20.
  • the present invention is not limited thereto, and the flammable oxidation catalyst layer 4 may be provided on one side of the plate sensor element 20.
  • the support 3 can be provided on one side of the plate-shaped sensor element 20 while the nonflammable oxidation catalyst layer 4 is sandwiched between one side of the plate-shaped sensor element 20 and the support 3, and the other side of the plate-shaped sensor element 20.
  • the support 3 can be provided in a side surface.
  • the support body 3 can be provided in the other side surface of the plate-shaped sensor element 20.
  • the said embodiment provided the support body 3 in one side surface of the plate-shaped sensor element 20, it is not limited to this, The support body 3 does not need to be provided. In this case, in order to connect the pair of electrodes 2 and the measuring device 12, the lead wire 5 and the heater terminal 9 can be provided in the solid electrolyte 1.
  • the solid electrolyte 1 is formed in a flat state, but is not limited thereto, and the solid electrolyte 1 may be formed in a curved state.
  • each of the pair of electrodes 2 is formed by including an oxygen ion conductive solid electrolyte, alumina, and glass, but the present invention is not limited thereto, and each pair of electrodes includes oxygen ions. And at least one or more of a conductive solid electrolyte, alumina, zirconia, and glass.
  • a conductive solid electrolyte, alumina, zirconia, and glass may include only an oxygen ion conductive solid electrolyte, and may include only an oxygen ion conductive solid electrolyte and alumina.
  • it may include an oxygen ion conductive solid electrolyte, zirconia, and glass.
  • the oxygen ion conductive solid electrolyte contained in each of the pair of electrodes 2 is yttria stabilized zirconia (YSZ), but is not limited thereto, and the oxygen ion conductivity included in the pair of electrodes 2
  • the solid electrolyte may be any of Scandia stabilized zirconia (ScSZ), samarium-doped ceria (GDC) or thorium dioxide (ThO 2 ).
  • an ammonia sensor capable of improving the ammonia concentration detection response can be provided.

Abstract

Provided is an ammonia sensor capable of improving detection responsiveness of an ammonia concentration. The ammonia sensor comprises: a plate-shaped sensor element in which a pair of electrodes (2) having different reactivities to ammonia are formed on a plate-shaped surface of a solid electrolyte (1) having oxygen ion conductivity; and a measurement device (12) for measuring at least one of a potential difference or a current between the pair of electrodes (2), wherein both of the pair of electrodes (2) are formed so as to be exposed to a gas to be measured (E); the solid electrolyte (1) is formed to be porous; and a plurality of gas flow holes, through which the gas to be measured (E) flows from one side of the solid electrolyte (1) of the plate-shaped sensor element (20) to the other side opposite to the one side, are formed, in the thickness direction of the plate-shaped sensor element (20).

Description

암모니아 센서Ammonia sensor
본 발명은, 산소 이온 전도성을 갖는 판상 고체 전해질의 표면에, 암모니아에 대한 반응성이 서로 다른 한 쌍의 전극이 형성된 판상 센서 소자와, 한 쌍의 전극 사이의 전위차 또는 전류 중 하나를 측정하는 측정 장치를 갖추고, 한 쌍의 전극 모두가, 측정 대상 가스에 노출되도록 형성되어 있는 암모니아 센서에 관한 것이다.The present invention provides a measuring device for measuring one of a plate-like sensor element having a pair of electrodes having different reactivity with ammonia on a surface of a plate-like solid electrolyte having oxygen ion conductivity and a potential difference or current between the pair of electrodes. It is related with the ammonia sensor provided with both and a pair of electrodes formed so that it may expose to the gas to be measured.
이와 같은 암모니아 센서에서는, 한 쌍의 전극이 측정 대상 가스에 노출된 것에 의하여, 한쪽 전극에서 측정 대상 가스에 포함되는 산소를 이온화하는 반응이 진행되고, 그 반응에 의하여 발생하는 산소 이온이 고체 전해질 내를 이동하며, 다른 쪽의 전극에서 산소 이온이 측정 대상 가스에 포함된 암모니아를 산화하는 반응이 진행된다. 이와 같은 한 쌍의 전극 반응으로, 측정 대상 가스 중의 암모니아 농도에 따른 기전력이 한 쌍의 전극 사이에 발생한다. 따라서, 이러한 기전력을 측정함으로써, 측정 대상 가스에 포함된 암모니아 농도의 검출이 가능하다.In such an ammonia sensor, when a pair of electrodes are exposed to the gas to be measured, a reaction for ionizing oxygen contained in the gas to be measured at one electrode proceeds, and oxygen ions generated by the reaction are in the solid electrolyte. The reaction proceeds by oxidizing ammonia contained in the gas to be measured by oxygen ions at the other electrode. With such a pair of electrode reactions, an electromotive force according to the ammonia concentration in the measurement target gas is generated between the pair of electrodes. Therefore, by measuring such electromotive force, it is possible to detect the ammonia concentration contained in the measurement target gas.
이러한 암모니아 센서로, 요소 SCR 시스템을 갖춘 자동차 등으로부터 대기 중에 배출되는 배기가스의 암모니아 농도를 검출하는 것이 있다(예를 들면, 특허문헌 1 참조). 이 특허문헌 1에는, 암모니아 센서에 의해서 검출된 암모니아 농도에 따라서, 요소 SCR 시스템에서 배기가스 중에 분사하는 요소량을, 암모니아 배출이 억제되는 요소량으로 조정하는 것이 기재되어 있다. 따라서, 이러한 요소 SCR 시스템을 갖춘 자동차 등으로부터 대기 중으로 배출하는 암모니아를 저감하려면 암모니아 센서의 뛰어난 응답성이 필요하다.As such an ammonia sensor, there exists a thing which detects the ammonia density | concentration of the waste gas discharged | emitted to air | atmosphere from the automobile etc. provided with the urea SCR system (for example, refer patent document 1). This patent document 1 describes adjusting the amount of urea injected into the exhaust gas in the urea SCR system to the amount of urea in which ammonia emission is suppressed in accordance with the ammonia concentration detected by the ammonia sensor. Therefore, in order to reduce the ammonia emitted to the atmosphere from an automobile or the like equipped with such an element SCR system, excellent response of the ammonia sensor is required.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 일본특허공개 제2013-40959호 공보(Patent Document 1) Japanese Patent Application Laid-Open No. 2013-40959
최근 환경 보호의 관점에서, 자동차 등에서 배출되는 암모니아에 대한 농도 규제가 강화되고 있다. 이런 농도 규제 강화에 대응하고, 요소 SCR 시스템을 갖춘 자동차 등으로부터 대기 중에 배출되는 암모니아를 저감하기 위해서, 암모니아 센서의 응답성 향상이 요망된다.Recently, from the viewpoint of environmental protection, the concentration regulation on ammonia emitted from automobiles and the like has been tightened. In order to cope with such a tightening of concentration regulation and to reduce ammonia emitted to the atmosphere from automobiles and the like equipped with the urea SCR system, it is desired to improve the ammonia sensor response.
본 발명은, 상기 실정을 감안하여 이루어진 것이며, 그 목적은 암모니아 농도 검출 응답성을 향상할 수 있는 암모니아 센서를 제공하는 점에 있다.This invention is made | formed in view of the said situation, and the objective is to provide the ammonia sensor which can improve ammonia concentration detection responsiveness.
본 발명에 관련된 암모니아 센서는,Ammonia sensor according to the present invention,
산소 이온 전도성을 갖는 판상 고체 전해질의 표면에, 암모니아에 대한 반응성이 서로 다른 한 쌍의 전극이 형성된 판상 센서 소자와, A plate-shaped sensor element having a pair of electrodes having different reactivity with respect to ammonia on the surface of the plate-shaped solid electrolyte having oxygen ion conductivity;
상기 한 쌍의 전극 사이의 전위차 또는 전류 중 하나를 측정하는 측정 장치를 구비하고,A measuring device for measuring one of a potential difference or a current between the pair of electrodes,
상기 한 쌍의 전극 모두가, 측정 대상 가스에 노출되게 형성되어 있는 암모니아 센서로서, 그 특징적 구성은, As the ammonia sensor in which all of the pair of electrodes are formed to be exposed to the measurement target gas, the characteristic configuration is
상기 고체 전해질은 다공질로 형성되고,The solid electrolyte is formed of a porous,
상기 한 쌍의 전극은, 암모니아에 대한 산화 활성을 갖는 제1전극과, 상기 제1전극보다 암모니아에 대한 산화 활성이 낮은 제2전극으로 구성되며,The pair of electrodes comprises a first electrode having an oxidation activity for ammonia and a second electrode having a lower oxidation activity for ammonia than the first electrode,
상기 제1전극은 ZnO, SnO2 및 In2O3 중 적어도 하나 이상을 포함하는 암모니아에 대한 산화 활성이 높은 재질을 50 ~ 90Wt% 포함하고, 유리를 1 ~ 15Wt% 포함하며,The first electrode includes a material having a high oxidation activity against ammonia, including at least one of ZnO, SnO 2 and In 2 O 3 , 50 to 90 Wt%, 1 to 15 Wt% glass,
상기 판상 센서 소자의 두께 방향에서, 상기 판상 센서 소자의 고체 전해질의 한쪽 측면에서 상기 한쪽 측면에 마주보는 다른 쪽 측면까지 상기 측정 대상 가스가 통류하는 가스통류공이 다수 형성되어 있다는 점에 있다.In the thickness direction of the said plate-shaped sensor element, many gas flow holes through which the said object gas flows are formed from one side of the solid electrolyte of the said plate-shaped sensor element to the other side facing the said one side.
상기 특징적 구성에 따르면, 측정 대상 가스가 고체 전해질 내를 통과하고, 센서 소자의 고체 전해질의 한쪽 측면에서 다른 쪽 측면까지 통류한다. 이로 인해, 측정 대상 가스가, 측정 대상 가스의 전극 반응이 활발해지는 고체 전해질과 전극의 계면 전체에 신속하게 도달한다. 그 결과, 측정 대상 가스에 포함된 암모니아의 전극 반응이 진행되므로, 한 쌍의 전극 사이에 암모니아의 농도에 따른 기전력이 신속하게 발생한다. 이처럼 신속하게 발생하는 기전력을 측정 장치에 의해서 측정함으로써, 암모니아 농도를 검출할 수 있기 때문에, 암모니아 농도 검출 응답성을 향상할 수 있다.According to the above characteristic configuration, the gas to be measured passes through the solid electrolyte and flows from one side to the other side of the solid electrolyte of the sensor element. For this reason, the measurement target gas rapidly reaches the entire interface between the solid electrolyte and the electrode where the electrode reaction of the measurement target gas becomes active. As a result, since the electrode reaction of ammonia contained in the measurement target gas proceeds, electromotive force according to the concentration of ammonia is rapidly generated between the pair of electrodes. Since the ammonia concentration can be detected by measuring the electromotive force generated thus quickly by the measuring device, the ammonia concentration detection responsiveness can be improved.
예를 들면, 고체 전해질이 치밀질인 경우에는, 고체 전해질이 형성된 전극의 한쪽 표면이, 고체 전해질에 의해서 막힌 상태이므로, 측정 대상 가스의 통류가 저해되는 상태가 된다. 이 경우, 외부에서 새로 유입하는 측정 대상 가스가 고체 전해질과 전극의 계면 전체에 신속하게 도달하는 것이 저해되고, 암모니아 농도 검출 응답성을 향상시킬 수 없다. 이에 대하여, 본 특징적 구성에 따르면, 상술한 것처럼, 측정 대상 가스가, 측정 대상 가스의 전극 반응이 활발하게 되는 고체 전해질과 전극의 계면 전체에 신속하게 도달하기 때문에, 암모니아 농도 검출 응답성을 향상할 수 있다.For example, when the solid electrolyte is dense, since one surface of the electrode on which the solid electrolyte is formed is blocked by the solid electrolyte, the flow of the gas to be measured is hindered. In this case, it is inhibited that the gas to be newly introduced from outside reaches the entire interface between the solid electrolyte and the electrode quickly, and the ammonia concentration detection response cannot be improved. In contrast, according to this characteristic configuration, as described above, since the measurement target gas quickly reaches the entire interface between the electrode and the solid electrolyte in which the electrode reaction of the measurement target gas becomes active, the ammonia concentration detection responsiveness can be improved. Can be.
또한, 상기 특징적 구성에 따르면,Further, according to the above characteristic configuration,
제1전극에서 암모니아를 산화하는 전극반응이 촉진되기 때문에, 제1전극이 애노드, 제2전극이 캐소드가 되는 상태로, 한 쌍의 전극 사이에 기전력을 발생시키는 것이 가능하다.Since the electrode reaction for oxidizing ammonia in the first electrode is promoted, it is possible to generate electromotive force between the pair of electrodes in a state where the first electrode is an anode and the second electrode is a cathode.
또한, 상기 특징적 구성에 따르면, ZnO, SnO2 및 In2O3이, 암모니아에 대한 높은 산화 활성을 갖기 때문에, 애노드가 되는 제1전극으로, 측정 대상 가스에 포함된 암모니아를 산화하는 전극반응을 촉진시키는 것이 가능하다. 이에 의해서, 한 쌍의 전극 사이에 큰 기전력이 발생하기 때문에, 기전력에 기반하여, 보다 정확히 측정 대상 가스에 포함된 암모니아 농도를 검출할 수 있다.In addition, according to the characteristic configuration, ZnO, SnO 2 Since In 2 O 3 has a high oxidation activity against ammonia, it is possible to accelerate the electrode reaction of oxidizing ammonia contained in the gas to be measured as the first electrode serving as an anode. As a result, since a large electromotive force is generated between the pair of electrodes, it is possible to more accurately detect the ammonia concentration contained in the measurement target gas based on the electromotive force.
또한, 상기 특징적 구성에 따르면, 제1전극이 유리를 포함하므로, 제1전극의 소결성을 향상시키는 것이 가능하다.Moreover, according to the said characteristic structure, since the 1st electrode contains glass, it is possible to improve the sintering property of a 1st electrode.
본 발명에 관련된 암모니아 센서의 추가된 특징적 구성은,Further characteristic configuration of the ammonia sensor according to the present invention,
상기 고체 전해질의 한쪽 측면에 상기 한 쌍의 전극 중 하나가 형성되고, 상기 고체 전해질의 한쪽 측면에 대향하는 다른 쪽 측면에 상기 한 쌍의 전극 중 다른 하나가 형성된 상기 센서 소자를 갖춘 점에 있다.One of the pair of electrodes is formed on one side of the solid electrolyte, and the sensor element is provided with the other one of the pair of electrodes formed on the other side opposite to one side of the solid electrolyte.
상기 특징적 구성에 따르면, 측정 대상 가스가, 한쪽 전극과 고체 전해질의 계면을 통과한 후에, 고체 전해질 내를 통류하고, 다른 쪽 전극과 고체 전해질의 계면에 도달하기 때문에, 측정 대상 가스의 전극 반응이 활발하게 되는 고체 전해질과 한쪽 전극의 계면 및 고체 전해질과 다른 쪽 전극의 계면에 신속하게 도달한다. 이에 의하여, 측정 대상 가스에 포함되는 암모니아의 전극반응이 촉진되기 때문에, 암모니아 농도의 검출응답성을 향상할 수 있다. 또한, 고체 전해질의 한쪽 측면과 다른 쪽 측면의 각각에, 한 개씩 전극이 구비되어 있기 때문에, 고체 전해질의 한쪽 측면 및 다른 측면의 각각에, 전극면적을 넓게 형성할 수 있다. 이에 의하여, 각각의 전극에, 측정 대상 가스에 포함되는 암모니아의 전극반응을 촉진할 수 있다.According to the above characteristic configuration, since the gas to be measured passes through the solid electrolyte after passing through the interface between one electrode and the solid electrolyte, and reaches the interface between the other electrode and the solid electrolyte, the electrode reaction of the gas to be measured is It quickly reaches the interface between the solid electrolyte and one electrode which becomes active and the interface between the solid electrolyte and the other electrode. Thereby, since the electrode reaction of ammonia contained in the measurement target gas is promoted, the detection response of ammonia concentration can be improved. In addition, since electrodes are provided on each of one side and the other side of the solid electrolyte, the electrode area can be formed on each of one side and the other side of the solid electrolyte to be wide. Thereby, the electrode reaction of ammonia contained in the measurement object gas can be promoted to each electrode.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 고체 전해질의 한쪽 측면에, 상기 한 쌍의 전극이 형성되어 있는 상기 센서 소자를 구비한다는 점에 있다.One side of the solid electrolyte is provided with the sensor element in which the pair of electrodes are formed.
상기 특징적 구성에 따르면, 고체 전해질의 한쪽 측면에, 한 쌍의 전극의 모든 전극이 형성되어 있기 때문에, 모든 전극이 구비된 고체 전해질의 한쪽 측면에 측정 대상 가스가 도달하는 것에 의하여, 측정대상에 포함된 암모니아의 전극반응에 의한 기전력이 발생한다. 따라서, 측정 대상 가스가 고체 전해질의 다른 쪽 측면에 도달할 필요 없이, 측정 대상 가스에 포함된 암모니아의 전극반응에 의해서 발생하는 기전력을 측정할 수 있다. 이에 의하여, 암모니아 농도를 신속하게 검출할 수 있다. According to the above characteristic configuration, since all the electrodes of the pair of electrodes are formed on one side of the solid electrolyte, the measurement target gas reaches one side of the solid electrolyte provided with all the electrodes, so that it is included in the measurement target. Electromotive force is generated by the electrode reaction of ammonia. Therefore, the electromotive force generated by the electrode reaction of the ammonia contained in the gas to be measured can be measured without the gas to be measured reaching the other side of the solid electrolyte. Thereby, ammonia concentration can be detected quickly.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 제2전극이, 귀금속을 포함한다는 점에 있다.The second electrode includes a noble metal.
상기 특징적 구성에 따르면, 귀금속이, 산소 분자를 산소 이온으로 분해하는 높은 분해활성을 갖기 때문에, 캐소드가 되는 제2전극에서, 측정 대상 가스에 포함된 산소를 산소 이온화하는 전극반응을 촉진시키는 것이 가능하다. 이에 의하여, 한 쌍의 전극 사이에 큰 기전력이 발생하기 때문에, 그 기전력에 기반하여, 보다 정확하게 측정 대상 가스에 포함된 암모니아 농도를 검출할 수 있다.According to the above characteristic configuration, since the noble metal has a high decomposition activity for decomposing oxygen molecules into oxygen ions, it is possible to promote an electrode reaction for oxygen ionizing oxygen contained in the measurement target gas at the second electrode serving as a cathode. Do. As a result, since a large electromotive force is generated between the pair of electrodes, the ammonia concentration contained in the measurement target gas can be detected more accurately based on the electromotive force.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 제2전극이, 질소산화물 가스에 대한 분해활성을 갖는 재질을 포함한다는 점에 있다.The second electrode includes a material having a decomposition activity for nitrogen oxide gas.
상기 특징적 구성에 따르면, 측정 대상 가스에 포함된 질소산화물가스가, 암모니아를 산화하는 전극반응에 작용하여, 한 쌍의 전극 사이에 발생하는 기전력의 저하를 방지할 수 있다.According to the above characteristic configuration, the nitrogen oxide gas contained in the measurement target gas acts on the electrode reaction for oxidizing ammonia, thereby preventing the decrease in the electromotive force generated between the pair of electrodes.
요컨대, 측정 대상 가스에 질소산화물가스로서의 이산화질소가 포함된 경우, 이 이산화질소가, 애노드인 제1전극에서 암모니아를 산화하는 전극반응에 작용하는 것에 의해서, 한 쌍의 전극 사이에 발생하는 기전력이 저하될 수 있다. 이런 경우에, 본 특징적 구성에 의하면, 캐소드인 제2전극에서, 측정 대상 가스에 포함된 이산화질소로부터 산소 이온을 분해하는 전극반응을 촉진시키는 것이 가능하기 때문에, 한 쌍의 전극 사이에 발생하는 기전력이 증가된다. 따라서, 상술한 기전력 저하를 방지할 수 있다.In other words, when the gas to be measured contains nitrogen dioxide as a nitrogen oxide gas, the nitrogen dioxide acts on an electrode reaction for oxidizing ammonia at the first electrode, which is an anode, whereby the electromotive force generated between the pair of electrodes is reduced. Can be. In this case, according to this characteristic configuration, since it is possible to accelerate the electrode reaction for decomposing oxygen ions from nitrogen dioxide contained in the measurement target gas in the cathode, the electromotive force generated between the pair of electrodes Is increased. Therefore, the above-mentioned electromotive force fall can be prevented.
그리고 측정 대상 가스에 포함된 이산화질소의 농도가 높아질수록, 이산화질소가 제1전극의 전극반응에 작용하는 것에 의해 발생하는 기전력의 감소량이 커지게 되고, 마찬가지로, 이산화질소가 제2전극의 전극반응에 작용하는 것에 의해 발생하는 기전력의 증가량도 커지게 된다. 따라서, 어느 이산화질소의 농도에도, 이산화질소가 제1전극의 전극반응에 작용하는 것에 의해서 발생하는 기전력의 감소를, 이산화질소가 제2전극의 전극반응에 작용하는 것에 의해 발생하는 기전력의 증가에 의해서 방지할 수 있다. 따라서 측정 대상 가스에 이산화질소가 포함된 경우에도, 한 쌍의 전극 사이에 발생하는 기전력의 저하를 방지할 수 있다.As the concentration of nitrogen dioxide contained in the gas to be measured increases, the amount of decrease in electromotive force generated by the action of nitrogen dioxide on the electrode reaction of the first electrode increases, and similarly, the nitrogen dioxide acts on the electrode reaction of the second electrode. This increases the amount of electromotive force generated. Therefore, at any concentration of nitrogen dioxide, the reduction in electromotive force generated by the action of nitrogen dioxide on the electrode reaction of the first electrode can be prevented by the increase in electromotive force generated by the action of nitrogen dioxide on the electrode reaction of the second electrode. Can be. Therefore, even when nitrogen dioxide is contained in the measurement target gas, it is possible to prevent a decrease in the electromotive force generated between the pair of electrodes.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 질소산화물가스에 대한 분해활성을 갖는 재질이, NiO, CuO, Cr2O3, WO3, 2CuO-Cr2O3, LaNiO3, LaCoO3, La0 . 6Sr0 . 4Co0 . 8Fe0 . 2O3, La0 . 8Sr0 . 2MnO3 혹은 La0 . 85Sr0 . 15CrO3 중 하나 이상의 재질인 점에 있다.The material having a decomposing activity for the nitrogen oxide gas is NiO, CuO, Cr 2 O 3 , WO 3, 2CuO-Cr 2 O 3, LaNiO 3 , LaCoO 3 , La 0 . 6 Sr 0 . 4 Co 0 . 8 Fe 0 . 2 O 3 , La 0 . 8 Sr 0 . 2 MnO 3 or La 0 . 85 Sr 0 . 15 CrO 3 At least one of the materials.
상기 특징적 구성에 따르면, 상술한 바와 같이, 측정 대상 가스에 포함된 질소산화물가스가, 암모니아를 산화하는 전극반응에 작용하여, 한 쌍의 전극의 사이에 발생하는 기전력의 저하를 방지할 수 있다.According to the above characteristic configuration, as described above, the nitrogen oxide gas contained in the measurement target gas acts on the electrode reaction for oxidizing ammonia, thereby preventing the decrease in the electromotive force generated between the pair of electrodes.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 한 쌍의 전극의 각각은, 산소 이온 전도성의 고체 전해질, 알루미나, 지르코니아 및 유리 중 하나 이상을 포함한다는 점에 있다.Each of the pair of electrodes comprises at least one of an oxygen ion conductive solid electrolyte, alumina, zirconia and glass.
상기 특징적 구성에 따르면, 한 쌍의 전극 각각이, 산소 이온 전도성의 고체 전해질을 포함하고 있는 경우에는, 전극 내의 전극반응이 활성화하는 전극재료와 고체 전해질의 계면이 증가된다. 따라서, 한 쌍의 전극의 각각에, 전극반응을 촉진할 수 있다.According to the above characteristic configuration, when each of the pair of electrodes contains a solid electrolyte of oxygen ion conductivity, the interface between the electrode material and the solid electrolyte in which the electrode reaction in the electrode is activated is increased. Therefore, the electrode reaction can be promoted to each of the pair of electrodes.
또한, 한 쌍의 전극 각각이, 알루미나 혹은 지르코니아를 포함하고 있는 경우에는, 한 쌍의 전극 각각의 전기저항치를 조정할 수 있다. 구체적으로는, 절연체인 알루미나 혹은 지르코니아의 함유량을 조절하는 것에 의하여, 한 쌍의 전극 각각의 전기저항치를, 요망하는 저항치로 조정할 수 있다. 예를 들면, 각각의 전극의 전기 저항치를 조정하는 것에 의해, 측정 대상 가스에 포함된 공존가스인 수분이나 산소가, 한 쌍의 전극 사이에 발생하는 기전력에 미치는 영향을 가능한 한 적게 할 수 있다.In addition, when each pair of electrodes contains alumina or zirconia, the electrical resistance value of each pair of electrodes can be adjusted. Specifically, by adjusting the content of alumina or zirconia, which is an insulator, the electrical resistance of each of the pair of electrodes can be adjusted to the desired resistance. For example, by adjusting the electrical resistance of each electrode, the influence of moisture and oxygen, which are coexisting gases contained in the measurement target gas, on the electromotive force generated between the pair of electrodes can be reduced as much as possible.
더욱이, 한 쌍의 전극 각각이, 유리를 포함하고 있는 경우에는, 전극의 소결성을 향상할 수 있다. 즉, 소결온도가 높은 알루미나 혹은 지르코니아를 포함하는 것에 의해서, 전극의 소결온도를 고온으로 하는 것이 필요하게 되지만, 글래스를 전극에 포함시키는 것에 의해서, 전극의 소결성을 향상시키는 것이 가능하기 때문에, 알루미나 혹은 지르코니아가 전극에 포함되어 있는 경우에도, 전극의 소결온도가 고온이 되는 것을 방지할 수 있다.Furthermore, when each pair of electrodes contains glass, the sinterability of an electrode can be improved. In other words, by containing alumina or zirconia having a high sintering temperature, it is necessary to increase the sintering temperature of the electrode. However, since the glass can be included in the electrode, the sinterability of the electrode can be improved. Even when zirconia is included in the electrode, it is possible to prevent the sintering temperature of the electrode from becoming high.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 고체 전해질은, 이트리아 안정화 지르코니아(YSZ), 스칸디아 안정화 지르코니아(ScSZ), 사마륨이 도핑된 세리아(SDC), 가돌리늄이 도핑된 세리아(GDC) 혹은 이산화토륨(ThO2)중 어느 재질에 의해 형성되어 있다는 점에 있다.The solid electrolyte is formed of any one of yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ), samarium doped ceria (SDC), gadolinium doped ceria (GDC) or thorium dioxide (ThO 2 ). Is that it is.
상기 특징적 구성에 의하면, 고체 전해질이 양호한 산소 이온 도전성을 갖기 때문에, 캐소드가 되는 전극에서 발생하는 산소 이온을, 효율적으로 고체 전해질 내에 넣고 이동시키는 것이 가능하다. 그리고 양호한 산소 이온의 이동에 동반하여 발생하는 큰 기전력을 측정하는 것에 의해서, 측정 대상 가스에 포함된 암모니아 농도를 정확히 검출할 수 있다.According to the above characteristic configuration, since the solid electrolyte has good oxygen ion conductivity, it is possible to efficiently transport oxygen ions generated at the electrode serving as the cathode into the solid electrolyte. And by measuring the large electromotive force which arises with favorable movement of oxygen ion, the ammonia density | concentration contained in the gas to be measured can be detected correctly.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 측정 대상 가스에 포함된 일산화탄소 및 탄화수소를 산화하는 미연물(未燃物) 산화 촉매층이, 상기 판상 센서 소자의 상기 한쪽 측면 및 상기 다른 쪽 측면 중 적어도 어느 한쪽에 구비되었다는 점에 있다.The non-combustible oxidation catalyst layer for oxidizing carbon monoxide and hydrocarbons contained in the measurement target gas is provided on at least one of the one side and the other side of the plate-shaped sensor element.
상기 특징적 구성에 의하면, 한 쌍의 전극에서 전극반응을 저해하는 가능성이 있는 일산화탄소 및 탄화수소가, 한 쌍의 전극에 유입되기 전에 산화되어 제거되기 때문에, 일산화탄소 및 탄화수소가, 한 쌍의 전극에서 전극반응을 저해하는 것을 방지할 수 있다. 이에 의해, 암모니아 농도의 검출정밀도의 저하를 방지할 수 있다.According to the above characteristic configuration, carbon monoxide and hydrocarbons are oxidized and removed before they enter the pair of electrodes because carbon monoxide and hydrocarbons that may inhibit the electrode reaction in the pair of electrodes are reacted at the pair of electrodes. Can be prevented. Thereby, the fall of the detection precision of ammonia concentration can be prevented.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 미연물 산화 촉매층이, Pt, Pd, Rh, Ir, Ru 혹은 Ag 중 하나 이상이 분산 담지된 다공성 세라믹을 포함하는 점에 있다.The unburned oxidation catalyst layer comprises a porous ceramic in which at least one of Pt, Pd, Rh, Ir, Ru or Ag is dispersed and supported.
상기 특징적 구성에 의하면, 일산화탄소 및 탄화수소가, 한 쌍의 전극에서 전극반응을 저해하는 것을 방지하는 것이 가능하기 때문에, 암모니아 농도의 검출정밀도의 저하를 방지할 수 있다.According to the above characteristic configuration, since it is possible to prevent the carbon monoxide and the hydrocarbon from inhibiting the electrode reaction at the pair of electrodes, it is possible to prevent the decrease in the detection accuracy of the ammonia concentration.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 측정 대상 가스에 포함된 암모니아를 산화하는 암모니아 산화 촉매층이, 상기 판상 센서 소자의 상기 한쪽 측면 또는 상기 다른 쪽 측면에 구비된다는 점에 있다.An ammonia oxidation catalyst layer for oxidizing ammonia contained in the measurement target gas is provided on the one side or the other side of the plate-shaped sensor element.
상기 특징적 구성에 의하면, 측정 대상 가스가 한 쌍의 전극에 유입되기 전에, 측정 대상 가스에 포함된 암모니아의 일부 혹은 전부를 산화하여 제거할 수 있다. 예를 들면, 소정 농도의 암모니아를 산화하여 제거하는 암모니아 산화 촉매층을 구비함으로써, 측정 대상 가스에 포함된 암모니아가 소정 농도 이하의 경우에는 암모니아를 검출하지 않고, 측정 대상 가스에 포함된 암모니아가 소정 농도를 초과할 경우에는 암모니아를 검출할 수 있다. According to the above characteristic configuration, part or all of the ammonia contained in the measurement target gas can be oxidized and removed before the measurement target gas flows into the pair of electrodes. For example, by providing an ammonia oxidation catalyst layer which oxidizes and removes ammonia of a predetermined concentration, when ammonia contained in the measurement target gas is less than or equal to the predetermined concentration, ammonia contained in the measurement target gas is not detected. When exceeding, ammonia can be detected.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 암모니아 산화 촉매층은, Co3O4, MnO2, V2O5, Ni-Al2O3, Fe-Al2O3, Mn-Al2O3, CuO-Al2O3, Fe2O3-Al2O3, Fe2O3-TiO2, Fe2O3-ZrO2 혹은, 금속 이온교환 제올라이트 중 하나 이상을 포함하는 점에 있다.The ammonia oxidation catalyst layer is Co 3 O 4 , MnO 2 , V 2 O 5 , Ni-Al 2 O 3 , Fe-Al 2 O 3 , Mn-Al 2 O 3 , CuO-Al 2 O 3 , Fe 2 O 3 -Al 2 O 3 , Fe 2 O 3 -TiO 2 , Fe 2 O 3 -ZrO 2 Or at least one of the metal ion exchange zeolites.
상기 특징적 구성에 의하면, 상술한 바와 같이, 측정 대상 가스가 한 쌍의 전극에 유입하기 전에, 측정 대상 가스에 포함된 암모니아의 일부 혹은 전부를 산화하여 제거하는 것이 가능하기 때문에, 예를 들면, 측정 대상 가스에 포함된 암모니아가 소정 농도 이하인 경우는 암모니아를 검출하지 않고, 소정 농도를 초과하는 경우에 암모니아를 검출할 수 있다.According to the above characteristic configuration, as described above, since it is possible to oxidize and remove some or all of the ammonia contained in the measurement target gas before the measurement target gas flows into the pair of electrodes, for example, If ammonia contained in the target gas is below a predetermined concentration, ammonia can be detected without exceeding the predetermined concentration.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 판상 센서 소자를 지지하는 지지체가, 상기 판상 센서 소자의 상기 한쪽 측면 혹은 상기 다른 쪽 측면에 구비되며,The support body which supports the said plate-shaped sensor element is provided in the said one side surface or the said other side surface of the said plate-shaped sensor element,
상기 지지체에, 상기 판상 센서 소자를 가열하는 히터가 구비되어 있다는 점에 있다.The said support body is equipped with the heater which heats the said plate-shaped sensor element.
상기 특징적 구성에 의하면, 판상 센서 소자가 지지체에 의해서 지지되고 있기 때문에, 판상 센서 소자의 기계적 강도를 보강할 수 있다. 또한, 판상 센서 소자를 가열하는 히터가 구비되어 있기 때문에, 판상 센서 소자를 소정의 최적온도로 가열할 수 있다.According to the said characteristic structure, since the plate-shaped sensor element is supported by the support body, the mechanical strength of a plate-shaped sensor element can be reinforced. Moreover, since the heater which heats a plate-shaped sensor element is provided, a plate-shaped sensor element can be heated to predetermined optimal temperature.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 판상 센서 소자의 상기 한쪽 측면에, 상기 판상 센서 소자를 지지하는 지지체가 구비되어, 상기 제1전극이 형성된 상기 판상 센서 소자의 상기 다른 쪽 측면에, 상기 측정 대상 가스에 포함된 일산화탄소와 탄화수소를 산화하는 미연물 산화 촉매층 및 상기 측정 대상 가스에 포함된 암모니아를 산화하는 암모니아 산화 촉매층이 적층상태로 구비되어 있는 점에 있다.A support for supporting the plate sensor element is provided on the one side of the plate sensor element, and the carbon monoxide and the hydrocarbon contained in the measurement target gas are provided on the other side of the plate sensor element on which the first electrode is formed. An unburned oxide oxidation catalyst layer for oxidizing and an ammonia oxidation catalyst layer for oxidizing ammonia contained in the gas to be measured are provided in a stacked state.
상기 특징적 구성에 의하면, 측정 대상 가스가, 판상 센서 소자의 다른 쪽 측면으로부터 유입되는 경우, 미연물 산화 촉매층 및 암모니아 산화 촉매층을 통과하여, 판상 센서 소자에 유입되기 때문에, 암모니아의 전극반응을 저해하는 가능성이 있는 일산화탄소 및 탄화수소가, 제1전극에 유입되기 전에 산화제거 때문에, 암모니아 농도의 검출정밀도 저하를 방지할 수 있다. 게다가, 측정 대상 가스에 포함된 암모니아의 일부 혹은 전부가, 제1전극에 유입되기 전에 산화되어 제거되기 때문에, 예를 들면, 측정 대상 가스에 포함된 암모니아가 소정 농도 이하의 경우는 암모니아를 검출하지 않고, 소정 농도를 초과할 경우에 암모니아를 검출할 수 있다. 또한, 판상 센서 소자가 지지체에 의해서 지지되기 때문에, 판상 센서 소자의 기계적 강도를 보강할 수 있다.According to the above characteristic configuration, when the gas to be measured flows in from the other side of the plate sensor element, it passes through the unburned oxidation catalyst layer and the ammonia oxidation catalyst layer and flows into the plate sensor element, thereby inhibiting the electrode reaction of ammonia. Since potential carbon monoxide and hydrocarbons are oxidized and removed before entering the first electrode, a decrease in detection accuracy of the ammonia concentration can be prevented. In addition, since some or all of the ammonia contained in the measurement target gas is oxidized and removed before entering the first electrode, for example, when ammonia contained in the measurement target gas is below a predetermined concentration, ammonia is not detected. Instead, ammonia can be detected when it exceeds a predetermined concentration. In addition, since the plate-shaped sensor element is supported by the support, the mechanical strength of the plate-shaped sensor element can be reinforced.
본 발명에 따른 암모니아 센서의 추가된 특징적 구성은,A further characteristic configuration of the ammonia sensor according to the invention is that
상기 한 쌍의 전극 사이에, 일정 전압 혹은 일정 전류를 인가하는 전원 장치를 구비한다는 점에 있다.There is provided a power supply device for applying a constant voltage or a constant current between the pair of electrodes.
상기 특징적 구성에 따르면, 한 쌍의 전극 사이에, 일정 전압 혹은 일정 전류를 인가하는 것에 의하여, 한 쌍의 전극에서 전극반응을 촉진할 수 있다. 따라서, 예를 들면, 암모니아의 전극반응에 의하여 발생하는 기전력이 작고, 그 기전력으로부터 측정 대상 가스에 포함된 암모니아 농도를 검출하는 것이 곤란한 경우에도, 한 쌍의 전극 사이에 일정 전압 혹은 일정 전류를 인가하는 것에 의해서, 암모니아의 전극반응이 촉진되기 때문에, 한 쌍의 전극 사이에서 암모니아의 전극반응에 기반한 큰 전위차 혹은 전류가 발생한다. 이 전위차 혹은 전류 중 하나를 측정하는 것에 의해서, 측정 대상 가스에 포함된 암모니아 농도를 정확히 검출할 수 있다.According to the above characteristic configuration, the electrode reaction can be promoted in the pair of electrodes by applying a constant voltage or a constant current between the pair of electrodes. Thus, for example, even when the electromotive force generated by the electrode reaction of ammonia is small and it is difficult to detect the ammonia concentration contained in the measurement target gas from the electromotive force, a constant voltage or a constant current is applied between the pair of electrodes. By promoting the ammonia electrode reaction, a large potential difference or current based on the ammonia electrode reaction is generated between the pair of electrodes. By measuring one of this potential difference or an electric current, the ammonia density | concentration contained in the measurement object gas can be detected correctly.
본 발명에 관한 암모니아 센서의 추가된 특징적 구성은,Further characteristic configuration of the ammonia sensor according to the present invention,
상기 한 쌍의 전극 사이에, 상기 제1전극이 애노드가 되는 상태, 또한, 상기 제2전극이 캐소드가 되는 상태로, 전압 혹은 전류를 인가하는 전원 장치를 구비한다는 점에 있다.Between the pair of electrodes, there is provided a power supply device for applying a voltage or a current in a state in which the first electrode becomes an anode and in a state in which the second electrode becomes a cathode.
상기 특징적 구성에 따르면, 제1전극이 애노드, 또한, 제2전극이 캐소드가 되도록 전원 장치에 의해서 전압 혹은 전류를 인가하는 것에 의해, 제1전극에서는 측정 대상 가스에 포함된 암모니아를 산화하는 전극반응이 촉진되고, 제2전극에서는 측정 대상 가스에 포함된 산소를 이온화하는 전극반응이 촉진된다. 따라서, 상술한 바와 같이, 암모니아의 전극반응에 기반하여 발생하는 기전력이 작아서, 그 기전력으로부터 측정 대상 가스에 포함된 암모니아 농도를 검출하는 것이 곤란한 듯한 경우에도, 측정 대상 가스에 포함된 암모니아 농도를 정확히 검출할 수 있다.According to the above characteristic configuration, an electrode reaction for oxidizing ammonia contained in the gas to be measured at the first electrode by applying a voltage or a current by a power supply such that the first electrode is an anode and the second electrode is a cathode. This is accelerated, and the electrode reaction which ionizes oxygen contained in the measurement target gas is accelerated in the second electrode. Therefore, as described above, even when the electromotive force generated based on the electrode reaction of ammonia is so small that it is difficult to detect the ammonia concentration contained in the gas to be measured from the electromotive force, the ammonia concentration contained in the gas to be measured is accurately determined. Can be detected.
본 발명에 따른 암모니아 센서는 측정 대상 가스가 고체 전해질 내를 통과하고, 센서 소자의 고체 전해질의 한쪽 측면에서 다른 쪽 측면까지 통류한다. 이로 인해, 측정 대상 가스가, 측정 대상 가스의 전극 반응이 활발해지는 고체 전해질과 전극의 계면 전체에 신속하게 도달한다. 그 결과, 측정 대상 가스에 포함된 암모니아의 전극 반응이 진행되므로, 한 쌍의 전극 사이에 암모니아의 농도에 따른 기전력이 신속하게 발생한다. 이처럼 신속하게 발생하는 기전력을 측정 장치에 의해서 측정함으로써, 암모니아 농도를 검출할 수 있기 때문에, 암모니아 농도 검출 응답성을 향상할 수 있다.In the ammonia sensor according to the present invention, the gas to be measured passes through the solid electrolyte and flows from one side to the other side of the solid electrolyte of the sensor element. For this reason, the measurement target gas rapidly reaches the entire interface between the solid electrolyte and the electrode where the electrode reaction of the measurement target gas becomes active. As a result, since the electrode reaction of ammonia contained in the measurement target gas proceeds, electromotive force according to the concentration of ammonia is rapidly generated between the pair of electrodes. Since the ammonia concentration can be detected by measuring the electromotive force generated thus quickly by the measuring device, the ammonia concentration detection responsiveness can be improved.
또한, 본 발명에 따른 암모니아 센서는 전극에 유리성분이 첨가되므로 전극의 소결성이 향상된다. 전극의 소결성의 향상은 전극과 고체 전해질의 열팽창계수의 차이를 최소화하여 기계적 접합 강도를 향상시킬 수 있다. 또한, 유리성분의 첨가는 전극과 고체 전해질의 계면안정성을 향상하여 센서신호 안정성을 향상시킬 수 있다. 본 발명에 따른 암모니아 센서에서 NH3의 전하교환 반응은 다수의 마이크로셀(Micro-cell)에서의 반응의 총합으로, 전극과 고체 전해질의 계면안정성은 마이크로셀(Micro-cell)의 변화를 최소화하여 센서신호 변화를 억제할 수 있다. In addition, the ammonia sensor according to the present invention improves the sinterability of the electrode because a glass component is added to the electrode. The improvement of the sintering property of the electrode can minimize the difference in thermal expansion coefficient between the electrode and the solid electrolyte, thereby improving the mechanical bonding strength. In addition, the addition of the glass component may improve the interfacial stability of the electrode and the solid electrolyte to improve the sensor signal stability. Charge exchange reaction of NH 3 in the ammonia sensor according to the present invention is the sum of reactions in a plurality of micro-cells, and the interfacial stability of the electrode and the solid electrolyte minimizes the change of the micro-cells. Sensor signal changes can be suppressed.
또한, 유리성분의 첨가는 본 발명에 따른 암모니아 센서의 신호 크기를 향상시킬 수 있다. 본 발명에 따른 암모니아 센서의 신호는 비평형 상태 목표가스의 전극에서의 전기 화학적 촉매(전하 교환 있음)반응에 의하여 발생한다. 그러나 전극은 화학적 촉매(전하 교환 없음)의 역할도 동시에 수행할 수 있으며, 측정 목표가스가 비평형 상태의 가스일 경우, 측정가스가 전극을 통과하는 과정에서 화학적 촉매반응에 의하여 농도가 감소하여 삼중점에 도달하기 때문에 센서의 신호가 감소한다. 그렇기에 전극의 기공률이 높을수록 감도는 감소하므로, 유리성분의 첨가에 따른 소결성 향상에 따른 기공률 감소는 센서의 감도(신호크기)를 향상시킬 수 있다.In addition, the addition of the glass component can improve the signal size of the ammonia sensor according to the present invention. The signal of the ammonia sensor according to the invention is generated by an electrochemical catalyst (with charge exchange) reaction at the electrode of the non-equilibrium target gas. However, the electrode can also play the role of a chemical catalyst (no charge exchange), and when the measurement target gas is an unbalanced gas, the concentration decreases due to the chemical catalysis in the process of passing the electrode through the electrode. The signal from the sensor is reduced because it reaches. Therefore, as the porosity of the electrode increases, the sensitivity decreases, so that the porosity decrease due to the improvement of sinterability due to the addition of the glass component may improve the sensitivity (signal size) of the sensor.
도 1은 본 발명의 제1실시형태에 따른 암모니아 센서의 개략도1 is a schematic diagram of an ammonia sensor according to a first embodiment of the present invention.
도 2는 본 발명의 제1실시형태에 따른 암모니아 센서의 단면도2 is a cross-sectional view of the ammonia sensor according to the first embodiment of the present invention.
도 3은 본 발명의 제1실시형태에 따른 암모니아 센서의 분해사시도3 is an exploded perspective view of the ammonia sensor according to the first embodiment of the present invention.
도 4는 본 발명의 제1실시형태에 따른 암모니아 센서의 전압과 전류의 관계를 나타낸 도면4 is a diagram showing a relationship between voltage and current of the ammonia sensor according to the first embodiment of the present invention.
도 5는 본 발명의 제1실시형태에 따른 암모니아 농도 증가시의 암모니아 센서의 응답성을 나타낸 도면5 is a diagram showing the responsiveness of the ammonia sensor when the ammonia concentration is increased according to the first embodiment of the present invention.
도 6은 본 발명의 제1실시형태에 따른 암모니아 농도 감소시의 암모니아 센서의 응답성을 나타낸 도면Fig. 6 is a diagram showing the responsiveness of the ammonia sensor when the ammonia concentration is reduced according to the first embodiment of the present invention.
도 7은 본 발명의 제1실시형태에 따른 공존가스가 기전력에 미치는 영향을 나타낸 도면7 is a view showing the effect of the coexistence gas on the electromotive force according to the first embodiment of the present invention
도 8은 본 발명의 제1실시형태에 따른 암모니아 농도와 기전력의 관계를 나타낸 도면8 is a diagram showing a relationship between ammonia concentration and electromotive force according to the first embodiment of the present invention.
도 9는 본 발명의 제2실시형태에 따른 암모니아 센서의 분해사시도 9 is an exploded perspective view of the ammonia sensor according to the second embodiment of the present invention.
도 10은 본 발명의 제2실시형태에 따른 암모니아 센서의 단면도10 is a cross-sectional view of the ammonia sensor according to the second embodiment of the present invention.
도 11은 본 발명의 제3실시형태에 따른 암모니아 센서의 분해사시도11 is an exploded perspective view of the ammonia sensor according to the third embodiment of the present invention.
도 12는 본 발명의 제3실시형태에 따른 암모니아 센서의 단면도12 is a cross-sectional view of the ammonia sensor according to the third embodiment of the present invention.
도 13은 본 발명의 기타실시형태에 따른 암모니아 센서의 개략도13 is a schematic diagram of an ammonia sensor according to another embodiment of the present invention.
[제1실시형태][First Embodiment]
본 발명에 따른 암모니아 센서의 제1실시형태에 대하여, 이하, 도면에 기반하여 설명한다. 본 실시형태의 암모니아 센서는, 예를 들면, 디젤엔진에 구비된 요소 SCR 시스템에서 배출되는 배기가스를 측정 대상 가스로 하고, 그 배기가스에 포함된 암모니아 NH3의 농도를 검출하기 위하여 사용된다. 또한, 본 실시형태의 암모니아 센서가 측정 대상 가스로 하는 측정 대상 가스는, 요소 SCR 시스템에서부터 배출된 배출가스에 한정되는 것은 아니고, 그 외의 암모니아를 포함한 배출가스를 측정 대상 가스로 할 수 있다.EMBODIMENT OF THE INVENTION The 1st Embodiment of the ammonia sensor which concerns on this invention is described below based on drawing. Ammonia sensor according to one embodiment of the invention, e.g., as an element the gas to measure the exhaust gas discharged from the SCR system with a diesel engine, and is used to detect the concentration of ammonia NH 3 contained in the exhaust gas. In addition, the measurement target gas which the ammonia sensor of this embodiment uses as a measurement target gas is not limited to the discharge gas discharged | emitted from the urea SCR system, and can also use the discharge gas containing other ammonia as a measurement target gas.
도 1 및 도 2에 나타낸 바와 같이, 본 실시형태에 따른 암모니아 센서 100은, 판상 센서 소자 20을 구비하고 있다. 또한, 도 2에 도시된 바와 같이, 판상 센서 소자 20은 산소 이온 전도성을 갖는 판상의 고체 전해질 1과 고체 전해질 1의 표면에 형성된 한 쌍의 전극 2를 포함한다. 판상 센서 소자 20의 한쪽 측면에, 판상 센서 소자 20을 지지하는 지지체 3이 구비되어 있고, 판상 센서 소자 20의 다른 쪽 측면에, 측정 대상 가스에 포함된 일산화탄소 및 탄화수소를 산화하는 미연물 산화 촉매층 4가 구비되어 있다. 이하, 도 1 및 도 2에서, 판상 센서 소자 20의 두께방향에서, 판상 센서 소자 20으로부터 지지체 3을 향하는 도면 아래 쪽을 한쪽이라고 하며, 지지체 3에서 판상 센서 소자 20을 향하는 도면의 위쪽을 다른 쪽이라고 한다.As shown to FIG. 1 and FIG. 2, the ammonia sensor 100 which concerns on this embodiment is equipped with the plate-shaped sensor element 20. As shown in FIG. In addition, as shown in FIG. 2, the plate-shaped sensor element 20 includes a plate-shaped solid electrolyte 1 having oxygen ion conductivity and a pair of electrodes 2 formed on the surface of the solid electrolyte 1. One side of the plate-shaped sensor element 20 is provided with a support 3 for supporting the plate-shaped sensor element 20, and the other side of the plate-shaped sensor element 20 is an unburned oxidation catalyst layer 4 for oxidizing carbon monoxide and hydrocarbons contained in the gas to be measured. Is provided. 1 and 2, in the thickness direction of the plate-shaped sensor element 20, the lower side of the drawing toward the support 3 from the plate-shaped sensor element 20 is referred to as one side, and the upper side of the drawing toward the plate-shaped sensor element 20 from the support 3 is referred to as the other side. It is called.
또한, 도 1에 도시된 바와 같이, 암모니아 센서 100에는, 한 쌍의 전극 2의 사이의 전위차 혹은 전류 중 하나를 측정하는 측정장치 12가 구비되어 있다. 이 측정장치 12는, 지지체 3에 구비된 한 쌍의 단자 6에 접속되어 있다. 이 측정장치 12에 의해서, 측정 대상 가스에 포함된 암모니아의 농도에 대하여 한 쌍의 전극 2 사이에서 발생하는 기전력을 측정한다. 자세한 것은 후술하지만, 한 쌍의 단자 6은 지지체 3에 구비된 리드선 5에 의하여 한 쌍의 전극 2에 접속되어 있다. In addition, as shown in FIG. 1, the ammonia sensor 100 is provided with a measuring device 12 that measures either the potential difference or the current between the pair of electrodes 2. This measuring device 12 is connected to a pair of terminals 6 provided in the support 3. The measuring device 12 measures the electromotive force generated between the pair of electrodes 2 with respect to the concentration of ammonia contained in the measurement target gas. Although details are mentioned later, a pair of terminal 6 is connected to the pair of electrode 2 by the lead wire 5 with which the support body 3 was equipped.
암모니아 센서 100은, 한 쌍의 전극 2를 측정 대상 가스에 노출시키면, 배기가스 암모니아 농도의 검출이 가능해진다. 예를 들면, 암모니아 센서 100을 측정 대상 가스가 흐르는 배기관 내 등에 배치하면, 측정 대상 가스의 암모니아 농도가 검출된다.When the ammonia sensor 100 exposes the pair of electrodes 2 to the measurement target gas, the exhaust gas ammonia concentration can be detected. For example, when the ammonia sensor 100 is disposed in an exhaust pipe or the like through which the gas to be measured flows, the ammonia concentration of the gas to be measured is detected.
도 2 및 도 3에 기반하여, 판상 센서 소자 20에 대해 자세히 설명한다. 고체 전해질 1은 직사각형의 판상으로 형성되어 있다. 또한, 고체 전해질 1은 다공질로 형성되고, 그 다공질의 기공률은, 10%에서 80% 사이의 어떠한 기공률이 되도록 형성되어 있다. 본 실시형태에서는, 고체 전해질 1의 기공률은 23%가 되도록 형성되어 있다. 또한, 고체 전해질 1에는, 측정 대상 가스가 고체 전해질 1의 한쪽 측면에서부터 한쪽 측면에 대향하는 다른 쪽 측면에 도달하는 관통공이 다수 형성되어 있다. 이 관통공은, 고체 전해질 1 내의 미세한 기공끼리 접속함으로써 형성되는 것이다.Based on FIG. 2 and FIG. 3, the plate sensor element 20 will be described in detail. Solid electrolyte 1 is formed in a rectangular plate shape. In addition, the solid electrolyte 1 is made of porous material, and the porosity of the porous material is formed to be any porosity between 10% and 80%. In this embodiment, the porosity of the solid electrolyte 1 is formed to be 23%. Moreover, the solid electrolyte 1 is provided with many through-holes from which the gas to be measured reaches from one side of the solid electrolyte 1 to the other side facing the one side. This through hole is formed by connecting fine pores in the solid electrolyte 1.
또한, 고체 전해질 1은, 이트리아 안정화 지르코니아(YSZ), 스칸디아 안정화 지르코니아(ScSZ), 사마륨이 도핑된 세리아(SDC), 가돌리늄이 도핑된 세리아(GDC) 또는 이산화토륨(ThO2) 중 하나의 재질로 형성되어 있다.In addition, the solid electrolyte 1 is made of one of yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ), samarium-doped ceria (SDC), gadolinium-doped ceria (GDC), or thorium dioxide (ThO 2 ). It is formed.
한 쌍의 전극 2에 관하여 설명한다. 본 실시형태에 따른 암모니아 센서 100은, 판상의 고체 전해질 1의 한쪽 측면에 한 쌍의 전극 2 중에서 하나의 전극 2a(한쪽 편 전극이라 한다)가 형성되어, 판상의 고체 전해질 1의 한쪽 측면에 대향하는 다른 쪽 측면에 한 쌍의 전극 2 중에서 다른 하나의 전극 2b(다른 쪽 편 전극이라고 한다)가 형성된 판상 센서 소자 20을 갖춘다. 즉, 한 쌍의 전극 2는, 고체 전해질 1의 한쪽 측면과 다른 쪽 측면의 각각에 1개씩 구비되어 있다. 한쪽 편 전극 2a 및 다른 쪽 편 전극 2b는, 박판 판상으로 형성되고, 동시에, 고체 전해질 1의 두께방향에서 본 평면 시점에서 직사각형으로 형성되어 있다. 또한, 고체 전해질 1의 두께 방향에서 본 평면 시점에서, 고체 전해질 1보다도 약간 작도록 형성되어 있다.A pair of electrodes 2 will be described. In the ammonia sensor 100 according to the present embodiment, one electrode 2a (referred to as one electrode) of a pair of electrodes 2 is formed on one side of the plate-shaped solid electrolyte 1 so as to face one side of the plate-shaped solid electrolyte 1. The plate-shaped sensor element 20 in which the other electrode 2b (called the other electrode) of the pair of electrodes 2 is formed in the other side. That is, one pair of electrodes 2 is provided on each of one side and the other side of the solid electrolyte 1. One electrode 2a and the other electrode 2b are formed in a thin plate shape, and at the same time, are formed in a rectangular shape in a plan view from the thickness direction of the solid electrolyte 1. Moreover, it is formed so that it may be slightly smaller than the solid electrolyte 1 in the planar viewpoint seen from the thickness direction of the solid electrolyte 1.
도 2에 파선의 화살표로 표시한 바와 같이, 예를 들면, 측정 대상 가스 E는, 판상 센서 소자 20의 다른 쪽 측면에서 유입되어, 다른 쪽 편 전극 2b, 고체 전해질 1 및 한쪽 편 전극 2a의 내부를 통과하고, 판상 센서 소자 20의 한쪽 측면까지 통류한다. 그리고 판상 센서 소자 20의 다른 쪽 측면에서 한쪽 측면까지 통류한 측정 대상 가스 E는, 판상 센서 소자 20의 한쪽 측 측면에서 판상 센서 소자 20의 외부로 유출된다. 이렇게 해서, 판상 센서 소자 20의 한쪽 측면과 다른 쪽 측면에 구비된 한 쌍의 전극 2의 모두가, 측정 대상 가스 E에 노출되도록 형성되어 있다. 또한, 도시하지는 하지만, 측정 대상 가스 E는, 판상 센서 소자 20의 한쪽 측면에서 유입하여, 한쪽 편 전극 2a, 고체 전해질 1 및 다른 쪽 편 전극 2b를 통과하고, 판상 센서 소자 20의 다른 측면까지 통류할 수도 있다.As indicated by the broken arrow in FIG. 2, for example, the measurement target gas E flows in from the other side of the plate-shaped sensor element 20 and is inside the other electrode 2b, the solid electrolyte 1, and the one electrode 2a. It passes through and flows to one side of the plate-shaped sensor element 20. And the measurement object gas E which flowed to the other side from the other side of the plate-shaped sensor element 20 flows out of the plate-shaped sensor element 20 from the one side side of the plate-shaped sensor element 20. Thus, both of the pair of electrodes 2 provided on one side and the other side of the plate-shaped sensor element 20 are formed to be exposed to the measurement target gas E. In addition, although not shown, the measurement object gas E flows in from one side of the plate-shaped sensor element 20, passes through one electrode 2a, the solid electrolyte 1 and the other electrode 2b, and flows to the other side of the plate-shaped sensor element 20. You may.
한 쌍의 전극 2는, 측정 대상 가스에 포함된 암모니아에 대한 산화 활성이 있는 제1전극 C와, 이 제1전극 C보다도 측정 대상 가스에 포함된 암모니아에 대한 산화 활성이 낮은 제2전극 D로 구성되어 있다. 본 실시형태에서는, 한쪽 편 전극 2a를 제2전극 D로, 다른 쪽 편 전극 2b를 제1전극 C로 한다.The pair of electrodes 2 are a first electrode C having an oxidation activity with respect to ammonia contained in the measurement target gas, and a second electrode D having a lower oxidation activity with respect to ammonia contained in the measurement target gas than the first electrode C. Consists of. In this embodiment, one electrode 2a is referred to as the second electrode D and the other electrode 2b is referred to as the first electrode C. FIG.
구체적으로는, 제1전극 C가, 암모니아에 대한 산화 활성이 높은 재질인 ZnO, SnO2 및 In2O3 중 하나 이상을 포함하고, 제2전극 D가, 이들 암모니아에 대한 산화 활성이 높은 재질보다도, 암모니에 대한 산화 활성이 낮은 귀금속으로 형성되어 있다. 본 실시형태에서는, 제1전극 C가, ZnO를 포함하여 형성되어 있고, 제2전극 D가, 백금으로 형성되어 있다.Specifically, the first electrode C is ZnO, SnO 2 and In 2 O 3 which are materials having high oxidation activity against ammonia. The second electrode D is formed of a noble metal containing at least one of the above, and having a lower oxidation activity to ammonia than a material having a higher oxidation activity to these ammonias. In this embodiment, the first electrode C is formed including ZnO, and the second electrode D is formed of platinum.
제1전극 C 및 제2전극 D에 일어나는 전극반응에 대하여 자세히 설명한다. 캐소드인 제2전극 D와 고체 전해질 1의 계면에는, 측정 대상 가스에 포함된 산소가스가 산소 이온으로 되는 캐소드반응이 일어난다.An electrode reaction occurring at the first electrode C and the second electrode D will be described in detail. At the interface between the cathode, the second electrode D, and the solid electrolyte 1, a cathode reaction occurs in which oxygen gas contained in the gas to be measured becomes oxygen ions.
Figure PCTKR2018003699-appb-C000001
Figure PCTKR2018003699-appb-C000001
애노드인 제1전극 C와 고체 전해질 1의 계면에서는, 측정 대상 가스에 포함된 산소 이온이 산소가스가 되는 애노드반응이 일어난다. 또한, 암모니아가 측정 대상 가스에 포함되는 경우는, 이하의 화학식2에 나타낸 바와 같이, 암모니아에 의한 애노드반응이 일어난다.At the interface between the first electrode C, which is an anode, and the solid electrolyte 1, an anode reaction occurs in which oxygen ions contained in the gas to be measured become oxygen gas. In addition, when ammonia is contained in the gas to be measured, an anodic reaction by ammonia occurs as shown in the following formula (2).
Figure PCTKR2018003699-appb-C000002
Figure PCTKR2018003699-appb-C000002
따라서 암모니아 센서 100의 한 쌍의 전극 2 모두가 측정 대상 가스에 노출되어도, 제1전극 C 및 제2전극 D에 상술한 전극반응이 일어나기 때문에, 측정 대상 가스에 포함된 암모니아의 농도에 따른 기전력이 한 쌍의 전극 2의 사이에서 발생한다. 이 기전력을 측정장치 12에 의해서 측정하면, 측정 대상 가스에 포함된 암모니아 농도를 검출할 수 있다. Therefore, even if both of the pair of electrodes 2 of the ammonia sensor 100 are exposed to the gas to be measured, the above-described electrode reaction occurs at the first electrode C and the second electrode D, so that the electromotive force according to the concentration of ammonia contained in the gas to be measured is reduced. It occurs between the pair of electrodes 2. When the electromotive force is measured by the measuring apparatus 12, the ammonia concentration contained in the measurement target gas can be detected.
또한, 제1전극 C는, 산소 이온 전도성의 고체 전해질, 알루미나, 지르코니아, 및 유리 중 하나 이상을 포함하여 형성되어 있다. 본 실시형태에는, 제1전극 C가, 산소 이온 전도성의 고체 전해질, 알루미나, 및 유리를 포함하여 형성되어 있다. In addition, the first electrode C is formed including one or more of a solid electrolyte, alumina, zirconia, and glass of oxygen ion conductivity. In this embodiment, the 1st electrode C is formed including the solid electrolyte of oxygen ion conductivity, alumina, and glass.
제1전극 C가, 이트리아 안정화 지르코니아(YSZ)를 포함하고 있는 것에 의하여, 제1전극 C 내에서, 전극재료와 고체 전해질의 계면이 증가하기 때문에, 전극반응이 활성화된다. 이에 의하여, 제1전극 C에 있어서, 전극반응이 촉진된다. 산소 이온 전도성의 고체 전해질은, 제1전극 C에 5~30Wt%의 범위로 함유되어 있는 것이 바람직하다. 본 실시형태에서, 산소 이온 전도성 고체 전해질은, 고체 전해질 1과 동일하게 이트리아 안정화 지르코니아(YSZ)이다.Since the first electrode C contains yttria stabilized zirconia (YSZ), in the first electrode C, the interface between the electrode material and the solid electrolyte increases, so that the electrode reaction is activated. As a result, in the first electrode C, the electrode reaction is promoted. It is preferable that the solid electrolyte of oxygen ion conductivity is contained in the range of 5-30 Wt% in the 1st electrode C. In this embodiment, the oxygen ion conductive solid electrolyte is yttria stabilized zirconia (YSZ) similarly to solid electrolyte 1.
또한, 제1전극 C가, 알루미나를 포함한 것에 의하여, 제1전극 C 의 각각의 상기 저항치를, 원하는 저항치로 조정할 수 있다. 이에 의하여, 측정 대상 가스에 포함된 공존가스인 수분과 산소가, 암모니아 농도 검출에 주는 악영향을 가능한 적게 되도록, 제1전극 C의 상기 저항치를 조정할 수 있다. 알루미나는, 제1전극 C에 1~30Wt% 의 범위로 함유되어 있는 것이 바람직하다.In addition, since the 1st electrode C contains alumina, each said resistance value of the 1st electrode C can be adjusted to desired resistance value. Thereby, the said resistance value of the 1st electrode C can be adjusted so that the bad influence which moisture and oxygen which are coexistence gases contained in the measurement object gas have on ammonia concentration detection as possible as possible can be minimized. It is preferable that alumina is contained in the 1st electrode C in the range of 1-30 Wt%.
게다가, 제1전극 C가, 유리를 포함하고 있는 것에 의하여, 암모니아 센서 100을 만들 때, 제1전극 C의 소결성을 향상시키는 것이 가능하다. 유리는, 제1전극 C에 있어 1~15Wt%의 범위로 함유되어 있는 것이 바람직하다. 본 실시형태에서, 유리는, 이산화규소를 주성분으로 한다.In addition, since the first electrode C contains glass, it is possible to improve the sinterability of the first electrode C when the ammonia sensor 100 is made. It is preferable that the glass is contained in the range of 1 to 15 Wt% in the first electrode C. In this embodiment, glass has silicon dioxide as a main component.
또한, 제1전극 C에 있어, 암모니아에 대한 산화 활성이 높은 재질은, 50~90Wt%의 범위로 함유되어 있는 것이 바람직하다. 본 실시형태에서, 제1전극 C에는, 암모니아에 대한 산화 활성이 높은 재질로 ZnO, 이트리아 안정화 지르코니아, 알루미나 및 유리가 65:27:6:2의 중량비율로 함유되어 있다.In the first electrode C, a material having a high oxidation activity against ammonia is preferably contained in a range of 50 to 90 Wt%. In the present embodiment, the first electrode C contains ZnO, yttria stabilized zirconia, alumina, and glass in a weight ratio of 65: 27: 6: 2, which has a high oxidation activity against ammonia.
이러한 암모니아 센서 100에 의한 암모니아 농도 검출방법은, 예를 들면, 암모니아 센서 100에 의해서 측정 대상 가스의 암모니아 농도를 검출하기 전에, 이미 알고 있는 암모니아 농도의 암모니아 혼합가스를 사용하여, 암모니아 센서 100의 한 쌍의 전극 2 사이에서 발생하는 기전력을 측정한다. 다음은, 그러한 측정결과를 바탕으로, 암모니아 농도와 기전력의 관계곡선을 작성한다. 그리고 암모니아 센서 100에 의한 측정 대상 가스의 암모니아 농도를 검출할 때, 작성한 암모니아 농도와 기전력의 관계곡선을 참조하여, 측정장치 12에 의하여 측정한 기전력에 대응하는 암모니아 농도를 검출할 수 있다.The method for detecting ammonia concentration by the ammonia sensor 100 is, for example, before detecting the ammonia concentration of the gas to be measured by the ammonia sensor 100, using an ammonia mixed gas having a known ammonia concentration. The electromotive force generated between the pair of electrodes 2 is measured. Next, based on the measurement results, a relation curve of ammonia concentration and electromotive force is prepared. When detecting the ammonia concentration of the gas to be measured by the ammonia sensor 100, the ammonia concentration corresponding to the electromotive force measured by the measuring device 12 can be detected by referring to the relation curve between the ammonia concentration and the electromotive force created.
이러한 암모니아 농도의 검출방법을 실시하기 위하여, 암모니아 농도를 검출하기 위한 검출장치(도시하지 않음)를 구비할 수 있다. 즉, 측정장치 12에 의하여 측정된 기전력이 입력되고, 동시에, 암모니아 농도와 기전력의 관계곡선이 기억되도록 구성되어, 입력된 가전력과 기억된 관계곡선으로부터 암모니아 농도를 검출하는 검출장치를 구비하는 것으로, 암모니아 농도를 검출할 수 있다.In order to implement such a method for detecting ammonia concentration, a detection device (not shown) for detecting the ammonia concentration may be provided. That is, an electromotive force measured by the measuring device 12 is input, and at the same time, the relationship curve between the ammonia concentration and the electromotive force is stored, and a detection device for detecting the ammonia concentration from the input power force and the stored relationship curve is provided. , Ammonia concentration can be detected.
도 1 내지 3에 나타낸 미연물 산화 촉매층 4는 측정 대상 가스가 통류가능한 다공질에 형성되고, 측정 대상 가스에 포함된 일산화탄소 및 탄화수소를 산화하기 위하여, Pt, Au, Pd, Rh, Ir, Ru 혹은 Ag 등의 귀금속, 이들 귀금속이 분산담지된 다공성 세라믹 등으로부터 선택된 하나 이상의 재질로 형성되어 있다. 본 실시형태에서는, 백금이 분산담지된 다공성 세라믹으로 미연물 산화 촉매층 4이 형성되어 있다.The unburned oxidation catalyst layer 4 shown in FIGS. 1 to 3 is formed in a porous material through which the gas to be measured is permeable, and in order to oxidize carbon monoxide and hydrocarbons contained in the gas to be measured, Pt, Au, Pd, Rh, Ir, Ru, or Ag It is formed of one or more materials selected from precious metals such as these, porous ceramics in which these precious metals are dispersed and supported. In the present embodiment, the unburned oxidation catalyst layer 4 is formed of a porous ceramic dispersedly supported by platinum.
미연물 산화 촉매층 4는, 고체 전해질 1의 두께 방향에서 본 평면 시점에서, 고체 전해질 1과 동등한 치수로 형성되어 있다. 따라서, 미연물 산화 촉매층 4는, 고체 전해질 1의 다른 쪽 측면에 형성된 다른 쪽 편 전극 2b의 다른 쪽 측 표면의 전체를 덮는 상태, 동시에, 미연물 산화 촉매층 4의 주변부가 고체 전해질 1의 주변부에 밀착된 상태로 판상 센서 소자 20의 다른 쪽 측면에 적층되어 있다.The unburned oxidation catalyst layer 4 is formed in the same dimension as the solid electrolyte 1 from the planar view point viewed from the thickness direction of the solid electrolyte 1. Therefore, the unburned oxidation catalyst layer 4 covers the entirety of the other side surface of the other electrode 2b formed on the other side of the solid electrolyte 1, and at the same time, the periphery of the unburned oxidation catalyst layer 4 is provided at the periphery of the solid electrolyte 1. It is laminated | stacked on the other side surface of the plate-shaped sensor element 20 in close contact.
도 2 및 도 3에 기반하여, 지지체 3에 대해 설명한다. 지지체 3은, 긴 형상으로 형성된 제1지지판 3a와 제2지지판 3b가 적층되어 형성되어 있다. 제1지지판 3a의 길이방향의 선단 측 부분의 다른 쪽 측면에 판상 센서 소자 20이 구비되어 있다. 판상 센서 소자 20은, 고체 전해질 1과 지지체 3의 사이에, 한쪽 편 전극 2a가 끼어 있는 상태, 더불어, 고체 전해질 1의 주변부가 지지체 3에 밀착된 상태로, 제1지지판 3a의 다른 쪽 측면에 적층되어 있다.Based on FIG. 2 and FIG. 3, the support 3 will be described. The support body 3 is formed by stacking the first support plate 3a and the second support plate 3b formed in an elongated shape. The plate-shaped sensor element 20 is provided in the other side surface of the front end side part of the 1st support plate 3a in the longitudinal direction. The plate-shaped sensor element 20 is formed on the other side of the first support plate 3a in a state where one electrode 2a is sandwiched between the solid electrolyte 1 and the support 3, and the peripheral portion of the solid electrolyte 1 is in close contact with the support 3. It is stacked.
제1지지판 3a의 길이방향의 후단 측 부분의 다른 쪽 측면에 한 쌍의 단자 6이 구비되어 있다. 한 쌍의 단자 6은 측정장치 12에 접속되어 있다. 또한, 제1지지판 3a의 다른 쪽 측면에는, 판상 센서 소자 20의 한 쌍의 전극 2를 한 쌍의 단자 6에 접속하는 리드선 5가 구비되어 있다. 리드선 5는 백금으로 형성되어 있다.A pair of terminals 6 are provided on the other side of the rear end side portion in the longitudinal direction of the first supporting plate 3a. A pair of terminals 6 are connected to the measuring device 12. Moreover, the lead wire 5 which connects a pair of electrode 2 of the plate-shaped sensor element 20 to a pair of terminal 6 is provided in the other side surface of the 1st support plate 3a. Lead wire 5 is made of platinum.
제1지지판 3a와 제2지지판 3b의 사이에는 판상 센서 소자 20을 가열하는 히터 8이 구비되어 있다. 히터 8은, 제1지지판 3a와 제2지지판 3b의 사이에 위치하고, 동시에, 제1지지판 3a 및 제2지지판 3b의 길이방향의 선단 측 부분에 있어, 고체 전해질 1의 두께 방향에서 본 평면 시점에서 판상 센서 소자 20에 겹치는 위치에 구비되어 있다. 또한, 제2지지판 3b의 길이방향의 후단 측 부분에는, 한 쌍의 히터단자 9가 구비되어 있다. 히터 8과 한 쌍의 히터단자 9는 히터접속선 10으로 접속되어 있다. 한 쌍의 히터단자 9는 제2지지판 3b의 한쪽 측면에 구비되어 있어, 도시하지 않은 히터용 전원에 접속되어 있다. 이 히터용 전원에 의하여, 히터 8을 소정 온도로 가열할 수 있다.The heater 8 which heats the plate-shaped sensor element 20 is provided between the 1st support plate 3a and the 2nd support plate 3b. The heater 8 is located between the first support plate 3a and the second support plate 3b and at the same time at the front end side portion in the longitudinal direction of the first support plate 3a and the second support plate 3b, and viewed from the thickness direction of the solid electrolyte 1. It is provided in the position which overlaps with the plate-shaped sensor element 20. As shown in FIG. Moreover, the pair of heater terminals 9 is provided in the rear end side part of the 2nd support plate 3b in the longitudinal direction. The heater 8 and the pair of heater terminals 9 are connected by a heater connecting line 10. The pair of heater terminals 9 are provided on one side of the second support plate 3b and are connected to a heater power supply (not shown). The heater 8 can be heated to a predetermined temperature by this heater power supply.
제1지지판 3a와 제2지지판 3b는, 치밀질의 알루미나 및 이트리아 안정화 지르코니(YSZ)로 형성되어 있다. 더불어, 이트리아 안정화 지르코니아 (YSZ)로 형성된 경우는, 제1지지판 3a와 히터 8의 사이 및 제2지지판 3b와 히터 8의 사이에 도시하지 않은 알루미나 혹은 지르코니아 등의 절연층이 형성된다. The first support plate 3a and the second support plate 3b are made of dense alumina and yttria stabilized zirconia (YSZ). In addition, when formed from yttria stabilized zirconia (YSZ), an insulating layer such as alumina or zirconia (not shown) is formed between the first support plate 3a and the heater 8 and between the second support plate 3b and the heater 8.
도 4는 본 실시형태의 암모니아 센서 100의 전압과 전류의 관계를 나타낸다. 도면에서, 횡축의 전압은, 한 쌍의 전극 2의 사이에 인가한 인가전압이고, 종축의 전류는, 인가전압에 의한 한 쌍의 전극 2 사이에 발생하는 전류이다. 이 전압과 전류의 관계는, 산소 21%, 질소 79%의 건조혼합가스에서, 암모니아 센서 100을 700℃로 가열한 상태에서, 한 쌍의 전극 2 사이에, -5V에서 5V 사이의 전압을 소정 전압간격의 인가에 의하여 얻어진 전압과 전류의 관계이다. 또한, 고체 전해질 1의 두께는 50㎛이다.4 shows the relationship between the voltage and the current of the ammonia sensor 100 of the present embodiment. In the figure, the voltage on the horizontal axis is an applied voltage applied between the pair of electrodes 2, and the current on the vertical axis is a current generated between the pair of electrodes 2 due to the applied voltage. The relationship between the voltage and the current is a voltage between -5V and 5V between the pair of electrodes 2 in a state where the ammonia sensor 100 is heated to 700 ° C in a dry mixed gas of 21% oxygen and 79% nitrogen. The relationship between the voltage and the current obtained by the application of the voltage interval. In addition, the thickness of the solid electrolyte 1 is 50 µm.
도 4에는, 인가전압을 -5V에서 5V 사이에서 왕복한 경우의 전류의 변화가 표시되어 있으나, 도면에 표시된 전압과 전류의 관계는, 히스테리시스(hysteresis)를 나타내지 않는 것을 알 수 있다. 따라서, 측정 대상 가스에 포함된 암모니아 농도가 변화하는 경우에도, 암모니아 농도를 정확히 검출할 수 있다. In Fig. 4, the change in the current when the applied voltage is reciprocated between -5V and 5V is shown, but it can be seen that the relationship between the voltage and the current shown in the figure does not show hysteresis. Therefore, even when the ammonia concentration contained in the measurement target gas changes, the ammonia concentration can be detected accurately.
도 5 및 도 6에 나타낸 기전력(EMF)의 변화는, 측정 대상 가스에 포함된 암모니아 농도가 변화한 때에, 암모니아 센서 100으로부터 출력된 기전력의 변화를 나타낸 것으로, 본 실시형태의 암모니아 센서 100의 응답성을 나타낸 것이다. 또한, 도 5 및 도 6에 나타낸 기전력은, LP가스의 연소에 의해서 발생한 산소 13%를 포함하는 연소가스에 암모니아를 혼합한 혼합가스를 측정 대상 가스로 하여, 또한, 암모니아 센서 100을 측정 대상 가스가 흐르는 배기관에 배치하고, 암모니아 센서 100을 700℃로 가열한 상태에서 얻어진 기전력이다. 또한, 연소가스의 온도는 250℃이고, 연소가스에 혼합한 암모니아의 양을 조절한 것에 의하여, 측정 대상 가스의 암모니아 농도를 변화시켰다.The change in electromotive force (EMF) shown in FIG. 5 and FIG. 6 shows a change in electromotive force output from the ammonia sensor 100 when the ammonia concentration contained in the measurement target gas changes, and the response of the ammonia sensor 100 of the present embodiment is changed. It is a surname. In addition, the electromotive force shown in FIG. 5 and FIG. 6 uses the mixed gas which mixed ammonia with the combustion gas containing 13% of oxygen which generate | occur | produced by the combustion of LP gas as a measurement object gas, and uses the ammonia sensor 100 as a measurement object gas. It is an electromotive force obtained by arrange | positioning in the exhaust pipe through which the ammonia sensor 100 was heated at 700 degreeC. The temperature of the combustion gas was 250 ° C, and the ammonia concentration of the measurement target gas was changed by adjusting the amount of ammonia mixed in the combustion gas.
도 5에 나타낸 암모니아 센서 100의 기전력의 변화는, 측정 대상 가스의 암모니아 농도를, 0ppm에서 42ppm으로 증가시켰을 때의 기전력 변화이며, 도 6에 나타낸 전압 변화는, 측정 대상 가스의 암모니아 농도가, 208ppm에서 0ppm으로 감소시켰을 때의 기전력의 변화이다.The change in electromotive force of the ammonia sensor 100 shown in FIG. 5 is a change in electromotive force when the ammonia concentration of the measurement target gas is increased from 0 ppm to 42 ppm, and the voltage change shown in FIG. 6 is 208 ppm of the ammonia concentration of the measurement target gas. The change in electromotive force when reduced from 0ppm to.
또한, 도 5 및 도 6에, 종래의 치밀질 고체 전해질으로 구성된 암모니아 센서로부터 출력된 기전력의 변화를 합하여 나타낸다. 도면에서, 본 실시형태의 암모니아 센서 100의 기전력을 실선으로 나타내고, 종래의 암모니아 센서의 기전력을 파선으로 나타냈다. 또한, 도 5 및 도 6에는, 측정 대상 가스의 암모니아 농도의 변화에 의하여, 암모니아 센서 100으로부터 출력된 기전력의 상승 혹은 저하의 개시가 확인된 시각을, 횡축에 0sec로 나타냈다.5 and 6 show changes in electromotive force output from ammonia sensors composed of conventional dense solid electrolytes. In the figure, the electromotive force of the ammonia sensor 100 of this embodiment was shown by the solid line, and the electromotive force of the conventional ammonia sensor was shown by the broken line. In addition, in FIG. 5 and FIG. 6, the time when the start of the rise or fall of the electromotive force output from the ammonia sensor 100 was confirmed by the change of the ammonia density | concentration of the measurement object gas was shown to 0 horizontal axis.
도 5 및 도 6에 나타낸 기전력의 변화로부터, 본 실시형태의 암모니아 센서 100은, 상술한 바와 같이, 고체 전해질 1이 다공질로 형성되어서, 측정 대상 가스가 측정 대상 가스의 전극반응이 활발해진 고체 전해질 1과 전극 2의 계면을 포함한 전극 전체에 신속하게 도달하기 때문에, 암모니아 농도 증가 시 및 암모니아 농도 감소 시의 모두에 있어서, 종래의 암모니아 센서에 비하여 암모니아 센서농도에 따른 기전력이 신속하게 출력되었다. 따라서, 종래의 암모니아 센서에 비하여 암모니아 센서 100의 응답성이 향상되어 있는 것을 알 수 있다. 또한, 측정장치 12에 의해, 도 5 및 도 6에 나타낸 기전력이 측정되고, 이 기전력으로부터 상술한 검출장치에 의하여 암모니아 농도가 검출된다.From the change in electromotive force shown in FIGS. 5 and 6, as described above, the ammonia sensor 100 of the present embodiment has a solid electrolyte in which the solid electrolyte 1 is made of porous, and the measurement target gas is active in the electrode reaction of the measurement target gas. Since the entire electrode including the interface between the electrode 1 and electrode 2 is reached quickly, the electromotive force according to the ammonia sensor concentration was output faster than the conventional ammonia sensor in both the increase in the ammonia concentration and the decrease in the ammonia concentration. Therefore, it turns out that the responsiveness of the ammonia sensor 100 improves compared with the conventional ammonia sensor. In addition, the electromotive force shown in FIG. 5 and FIG. 6 is measured by the measuring apparatus 12, and ammonia concentration is detected by this detection apparatus from this electromotive force.
도 7에, 측정 대상 가스에 포함된 수분 및 산소가, 본 실시형태의 암모니아 센서 100의 기전력에 미치는 영향을 조사한 결과를 나타낸다. 도 7에 나타낸 기전력(EMF)은, 암모니아 센서 100을 측정 대상 가스가 흐르는 배기관에 배치하고, 암모니아 센서 100을 700℃로 가열한 상태에서, 측정 대상 가스의 수분농도 및 산소농도를 변화시킨 것에 의하여 얻어진 기전력이다.FIG. 7 shows the results of investigating the influence of moisture and oxygen contained in the measurement target gas on the electromotive force of the ammonia sensor 100 of the present embodiment. The electromotive force (EMF) shown in FIG. 7 is obtained by arranging the ammonia sensor 100 in an exhaust pipe through which the gas to be measured flows, and changing the water concentration and oxygen concentration of the gas to be measured in a state where the ammonia sensor 100 is heated to 700 ° C. It is the electromotive force obtained.
구체적으로, 도 7에 나타낸 기간 a~d의 각 기간에서, 측정대상 가스의 암모니아 농도가 250ppm이 되도록, 측정 대상 가스에 암모니아가스를 첨가하였다. 또, 기간 a 및 기간 b가 포함된 기간 P1에서는, 산소농도 21%, 수분농도 1% 및 질소 밸런스의 측정 대상 가스를 사용하고, 기간 c 및 기간 d를 포함하는 기간 P2에서는, 산소농도 15%, 수분농도 3% 및 질소 밸런스의 측정 대상 가스를 사용하였다. 또한, 기간 a~d 이외의 기간에서는, 측정 대상 가스에 암모니아를 포함하지 않았다.Specifically, in each of the periods a to d shown in FIG. 7, ammonia gas was added to the measurement target gas so that the ammonia concentration of the measurement target gas was 250 ppm. In the period P1 including the period a and the period b, an oxygen concentration of 21%, a water concentration of 1% and a nitrogen balance target gas are used, and in a period P2 including the period c and the period d, the oxygen concentration is 15%. , Measurement target gas of moisture concentration 3% and nitrogen balance was used. In addition, in periods other than periods a to d, ammonia was not included in the measurement target gas.
도 7에 나타낸 바와 같이, 기간 a~d에서, 동일한 크기의 기전력이 얻어진 것을 알 수 있다. 따라서, 적어도 상기의 농도범위에서 수분농도 및 산소농도가 변화한 경우에도, 암모니아 센서 100이 암모니아 농도에 대하여 발생하는 기전력에 영향을 미치지 않은 것을 알 수 있다. 이에 의하여, 측정대상 가스에 포함된 수분농도 및 산소농도가 변화한 경우에도, 측정 대상 가스의 암모니아 농도를 정확히 검출할 수 있다. 또한, 도 7에 나타낸 기전력은, 도 5 및 도 6에 나타낸 기전력보다도 작은 유량의 측정 대상 가스를 측정 대상 가스로 하여 얻어진 기전력이다. 따라서, 도 7에 나타낸 암모니아 센서 100의 응답성은, 도 5 및 도 6에 나타낸 암모니아 센서 100의 응답성과 다르다.As shown in Fig. 7, it can be seen that in the periods a to d, electromotive force of the same magnitude is obtained. Accordingly, it can be seen that the ammonia sensor 100 does not affect the electromotive force generated with respect to the ammonia concentration even when the water concentration and the oxygen concentration change at least in the above concentration range. Thereby, even when the water concentration and oxygen concentration contained in the measurement target gas change, the ammonia concentration of the measurement target gas can be detected accurately. In addition, the electromotive force shown in FIG. 7 is an electromotive force obtained by making the measurement object gas of the flow volume smaller than the electromotive force shown in FIG. 5 and FIG. 6 as a measurement object gas. Therefore, the responsiveness of the ammonia sensor 100 shown in FIG. 7 differs from the responsiveness of the ammonia sensor 100 shown in FIGS. 5 and 6.
도 8은, 본 실시형태의 암모니아 센서 100의, 암모니아 농도와 기전력(EMF)의 관계를 나타낸다. 도 8에 나타낸 암모니아 농도와 기전력의 관계는, LP가스의 연소로 발생한 산소농도 13%를 포함한 연소가스에 암모니아를 혼합한 혼합가스를 측정 대상 가스로 하여, 또한, 암모니아 센서 100을 측정 대상 가스가 흐르는 배기관에 배치하고, 암모니아 센서 100을 700℃로 가열한 상태에서 얻어진 암모니아 농도와 기전력과의 관계이다. 또한, 연소가스의 온도는 135℃이고, 연소가스에 혼합된 암모니아의 양을 조절하는 것에 의하여, 측정 대상 가스의 암모니아 농도를 변화시켰다. 도 8에서, 암모니아 농도의 증가와 함께, 기전력이 증가하는 것을 알 수 있다. 또한, 도면에 나타낸 암모니아 농도와 기전력의 관계는, 암모니아 농도와 기전력의 관계곡선의 일례로, 이 관계곡선을 참조함으로써, 측정장치 12에 의하여 측정한 기전력에 대응하는 암모니아 농도를 검출할 수 있다. 8 shows the relationship between the ammonia concentration and the electromotive force (EMF) of the ammonia sensor 100 of the present embodiment. The relationship between the ammonia concentration and the electromotive force shown in FIG. 8 is a measurement gas using a mixed gas in which ammonia is mixed with a combustion gas containing an oxygen concentration of 13% generated by combustion of LP gas. It is a relationship between the ammonia concentration and electromotive force obtained in the state which arrange | positioned at the flowing exhaust pipe and heated the ammonia sensor 100 to 700 degreeC. The temperature of the combustion gas was 135 ° C, and the ammonia concentration of the measurement target gas was changed by adjusting the amount of ammonia mixed in the combustion gas. 8, it can be seen that the electromotive force increases with the increase of the ammonia concentration. The relationship between the ammonia concentration and the electromotive force shown in the drawing is an example of a relationship curve between the ammonia concentration and the electromotive force, and by referring to this relationship curve, the ammonia concentration corresponding to the electromotive force measured by the measuring apparatus 12 can be detected.
[제2실시형태]Second Embodiment
이하, 본 발명에 따른 암모니아 센서의 제2실시형태를, 도 9 및 도 10에 기반하여 설명한다. 이러한 제2실시형태에 따른 암모니아 센서 100은, 고체 전해질 1의 한쪽 측면에, 한 쌍의 전극 2가 형성되어 있는 판상 센서 소자 20을 갖는 점에서 상술한 제1실시형태와 다르다. 도 9에, 본 실시형태에 따른 암모니아 센서 100의 분해사시도를 나타내고, 도 10에, 본 실시형태에 따른 암모니아 센서 100의 길이방향에 판상 센서 소자 20이 구비된 부분의 단면도를 나타낸다.Hereinafter, a second embodiment of the ammonia sensor according to the present invention will be described based on FIGS. 9 and 10. The ammonia sensor 100 according to the second embodiment differs from the first embodiment described above in that the plate-shaped sensor element 20 in which a pair of electrodes 2 are formed on one side of the solid electrolyte 1 is provided. 9 is an exploded perspective view of the ammonia sensor 100 according to the present embodiment, and FIG. 10 is a cross-sectional view of a portion in which the plate-like sensor element 20 is provided in the longitudinal direction of the ammonia sensor 100 according to the present embodiment.
제2실시형태에는, 도 9 및 도 10에 나타낸 바와 같이, 한 쌍의 전극 2가, 지지체 3의 길이방향으로 직행하는 짧은 방향으로 늘어선 상태로, 고체 전해질 1과 지지체 3의 사이에 구비되어 있다. 그리고 한 쌍의 전극 2는, 지지체 3의 길이방향의 후단 측에서 선단 측을 향하여, 우측에 구비된 우측전극 2c와, 좌측에 구비된 좌측전극 2d로 구성되어 있다. 이러한 제2실시형태에는, 우측전극 2c를 제1전극 C로, 좌측전극 2d를 제2전극 D로 한다.In the second embodiment, as shown in Figs. 9 and 10, a pair of electrodes 2 are provided between the solid electrolyte 1 and the support 3 in a state in which the pair of electrodes 2 are arranged in a short direction that runs straight in the longitudinal direction of the support 3. . The pair of electrodes 2 are composed of the right electrode 2c provided on the right side and the left electrode 2d provided on the left side from the rear end side in the longitudinal direction of the support body 3 to the front end side. In this second embodiment, the right electrode 2c is the first electrode C and the left electrode 2d is the second electrode D. FIG.
우측전극 2c 및 좌측전극 2d는, 박판 형태로 형성되고, 더불어, 고체 전해질 1의 두께방향에서 본 평면도에서, 지지체 3의 길이방향에 장변을 갖는 장방형상으로 형성되어 있다.The right electrode 2c and the left electrode 2d are formed in a thin plate shape and, in a plan view viewed from the thickness direction of the solid electrolyte 1, are formed in a rectangular shape having a long side in the longitudinal direction of the support 3.
또한, 상기 제1실시형태와 동일하게, 고체 전해질 1이 관통공을 갖는 다공질로 형성되어 있기 때문에, 판상 센서 소자 20의 두께방향에서, 판상 센서 소자 20의 고체 전해질 1의 한쪽 측면과 다른 쪽 측면의 사이에 측정 대상 가스가 통류하는 가스 통류공이 판상 센서 소자 20에 다수 형성되어 있다.In addition, similarly to the first embodiment, since the solid electrolyte 1 is formed of porous material having a through hole, one side and the other side surface of the solid electrolyte 1 of the plate-shaped sensor element 20 in the thickness direction of the plate-shaped sensor element 20. A large number of gas through holes through which the measurement target gas flows are formed in the plate-shaped sensor element 20 during the period.
예를 들면, 도 10에서 파선의 화살표로 표시한 바와 같이, 측정 대상 가스 E는, 판상 센서 소자 20의 다른 쪽 측면에서 유입되어, 고체 전해질 1, 우측전극 2c 및 좌측전극 2d를 통과하고, 판상 센서 소자 20의 한쪽 측면까지 통류한다. 판상 센서 소자 20의 다른 쪽 측면에서 한쪽 측면까지 통류한 측정 대상 가스 E는, 판상 센서 소자 20의 한쪽 측 측면으로부터 판상 센서 소자 20의 외부로 유출된다. 이렇게, 판상 센서 소자 20의 한쪽 측면과 다른 쪽 측면에 구비된 한 쌍의 전극 2 모두가, 측정 대상 가스 E에 노출되도록 형성되어 있다. 또한, 도시하지는 않지만, 측정 대상 가스 E는, 판상 센서 소자 20의 한쪽 측면으로 유입되어, 우측전극 2c, 좌측전극 2d 및 고체 전해질 1을 통과하고, 판상 센서 소자 20의 다른 쪽 측면까지 통류할 수 있다.For example, as indicated by the broken arrow in FIG. 10, the measurement target gas E flows from the other side of the plate-shaped sensor element 20, passes through the solid electrolyte 1, the right electrode 2c, and the left electrode 2d, and forms a plate. It flows to one side of the sensor element 20. The measurement target gas E that flowed from the other side of the plate sensor element 20 to one side flows out of the plate sensor element 20 from one side side of the plate sensor element 20. Thus, both of the pair of electrodes 2 provided on one side and the other side of the plate-shaped sensor element 20 are formed to be exposed to the measurement target gas E. Although not shown, the measurement target gas E flows into one side of the plate-shaped sensor element 20, passes through the right electrode 2c, the left electrode 2d, and the solid electrolyte 1, and can flow to the other side of the plate-shaped sensor element 20. have.
판상 센서 소자 20의 다른 쪽 측면에, 다공질로 형성된 미연물 산화 촉매층 4이 구비되어 있다. 구체적으로, 미연물 산화 촉매층 4는, 고체 전해질 1의 두께방향에서 본 평면 시점에서, 고체 전해질 1과 동등한 치수로 형성되어 있다. 그리고 미연물 산화 촉매층 4의 한쪽 측면이 고체 전해질 1의 다른 쪽 측면에 밀착한 상태로, 미연물 산화 촉매층 4이 판상 센서 소자 20의 다른 쪽 측면에 적층되어 있다.On the other side of the plate-shaped sensor element 20, the unburned oxidation catalyst layer 4 formed porous is provided. Specifically, the unburned oxidation catalyst layer 4 is formed in the same dimension as that of the solid electrolyte 1 in a plan view from the thickness direction of the solid electrolyte 1. The unburned oxidation catalyst layer 4 is laminated on the other side of the plate-shaped sensor element 20 in such a state that one side of the unburned oxidation catalyst layer 4 is in close contact with the other side of the solid electrolyte 1.
또한, 판상 센서 소자 20의 한쪽 측면에, 판상 센서 소자 20을 지지하는 지지체 3이 구비되어 있다. 구체적으로, 판상 센서 소자 20이, 고체 전해질 1과 지지체 3의 사이에, 우측전극 2c 및 좌측전극 2d가 끼어있는 상태로, 더불어, 고체 전해질 1의 한쪽 측면의 주변부가 제1지지판 3a의 다른 쪽 측면에 밀착한 상태로, 제1지지판 3a에 적층되어 있다.Moreover, the support body 3 which supports the plate-shaped sensor element 20 is provided in one side surface of the plate-shaped sensor element 20. As shown in FIG. Specifically, the plate-shaped sensor element 20 is a state in which the right electrode 2c and the left electrode 2d are sandwiched between the solid electrolyte 1 and the support 3, and the peripheral portion of one side of the solid electrolyte 1 is the other side of the first support plate 3a. It is laminated | stacked on the 1st support plate 3a in the state contact | adhered to the side surface.
[제3실시형태]Third Embodiment
이하, 본 발명에 따른 암모니아 센서의 제3실시형태를, 도 11 및 도 12에 기반하여 설명한다. 제3실시형태에 따른 암모니아 센서 100은, 측정 대상 가스에 포함된 암모니아를 산화하는 암모니아 산화 촉매층 7이 판상 센서 소자 20에 구비되어 있다는 점에서 상술한 제1실시형태와 다르다. 도 11에, 본 실시형태에 따른 암모니아 센서 100의 분해사시도를 나타내고, 도 12에, 본 실시형태에 따른 암모니아 센서 100의 길이방향에 판상 센서 소자 20을 구비한 부분의 단면도를 나타낸다.Hereinafter, a third embodiment of the ammonia sensor according to the present invention will be described based on FIGS. 11 and 12. The ammonia sensor 100 according to the third embodiment differs from the first embodiment described above in that the plate-shaped sensor element 20 is provided with an ammonia oxidation catalyst layer 7 for oxidizing ammonia contained in the measurement target gas. FIG. 11 shows an exploded perspective view of the ammonia sensor 100 according to the present embodiment, and FIG. 12 shows a cross-sectional view of a part provided with the plate-like sensor element 20 in the longitudinal direction of the ammonia sensor 100 according to the present embodiment.
제3실시형태에 따른 암모니아 센서 100은, 도 11 및 도 12에 나타낸 바와 같이, 판상 센서 소자 20의 한쪽 측면에, 판상 센서 소자 20을 지지하는 지지체 3이 구비되고, 제1전극 C가 형성된 판상 센서 소자 20의 다른 쪽 측면에, 미연물 산화 촉매층 4 및 암모니아 산화 촉매층 7이 적층상태로 구비되어 있다. 구체적으로는, 암모니아 산화 촉매층 7은, 고체 전해질 1의 두께 방향에서 본 평면 시점에서, 미연물 산화 촉매층 4와 동등한 치수가 되도록 형성되어, 미연물 산화 촉매층 4의 다른 쪽 측면에 적층되어 있다. 또한, 암모니아 산화 촉매층 7은, 미연물 산화 촉매층 4와 마찬가지로, 측정대상 가스가 통류 가능한 다공질로 형성되어 있다. 따라서, 도 12에 나타낸 바와 같이, 측정 대상 가스 E는, 암모니아 산화 촉매층 7의 한쪽 측면에서 유입하여, 암모니아 산화 촉매층 7 및 미연물 산화 촉매층 4를 통과하고, 판상 센서 소자 20의 한쪽 측면에 도달한다.As shown in FIGS. 11 and 12, the ammonia sensor 100 according to the third embodiment is provided with a support 3 supporting the plate sensor element 20 on one side of the plate sensor element 20, and the plate electrode on which the first electrode C is formed. On the other side of the sensor element 20, the unburned oxidation catalyst layer 4 and the ammonia oxidation catalyst layer 7 are provided in a stacked state. Specifically, the ammonia oxidation catalyst layer 7 is formed so as to have the same dimensions as the unburned oxidation catalyst layer 4 in a plan view from the thickness direction of the solid electrolyte 1, and is laminated on the other side of the unburned oxidation catalyst layer 4. The ammonia oxidation catalyst layer 7 is formed of a porous material through which the gas to be measured can flow, similar to the unburned oxidation catalyst layer 4. Accordingly, as shown in FIG. 12, the measurement target gas E flows in from one side of the ammonia oxidation catalyst layer 7, passes through the ammonia oxidation catalyst layer 7 and the unburned oxidation catalyst layer 4, and reaches one side of the plate-shaped sensor element 20. .
또한, 암모니아 산화 촉매층 7은, Co3O4, MnO2, V2O5, Ni-Al2O3, Fe-Al2O3, Mn-Al2O3, CuO-Al2O3, Fe2O3-Al2O3, Fe2O3-TiO2, Fe2O3-ZrO2 또는, 금속 이온교환 제올라이트로 중 적어도 하나 이상의 재질로 형성되어 있다. In addition, the ammonia oxidation catalyst layer 7 includes Co 3 O 4 , MnO 2 , V 2 O 5 , Ni-Al 2 O 3 , Fe-Al 2 O 3 , Mn-Al 2 O 3 , CuO-Al 2 O 3 , Fe 2 O 3 -Al 2 O 3 , Fe 2 O 3 -TiO 2 , Fe 2 O 3 -ZrO 2 Alternatively, the metal ion exchange zeolite is formed of at least one material.
이와 같이, 암모니아 산화 촉매층 7을 구비하는 것으로, 측정 대상 가스가 한 쌍의 전극 2에 유입되기 전에, 측정 대상 가스에 포함된 암모니아의 일부 혹은 전부를 산화하여 제거할 수 있다. 예를 들면, 암모니아 산화 촉매층 7의 재질이나, 암모니아 산화 촉매층의 두께를 조정하는 것으로, 암모니아 산화 촉매층 7을 통과하는 측정 대상 가스로부터, 소정 농도의 암모니아를 산화하여 제거할 수 있다. 따라서, 암모니아 산화 촉매층 7을 구비한 암모니아 센서 100에 의해, 측정 대상 가스에 포함된 암모니아가 소정 농도 이하일 경우에는 암모니아를 검출하지 않고, 측정 대상 가스에 포함된 암모니아가 소정 농도를 초과한 경우에 암모니아를 검출할 수 있다. Thus, by providing the ammonia oxidation catalyst layer 7, it is possible to oxidize and remove some or all of the ammonia contained in the measurement target gas before the measurement target gas flows into the pair of electrodes 2. For example, by adjusting the material of the ammonia oxidation catalyst layer 7 and the thickness of the ammonia oxidation catalyst layer, it is possible to oxidize and remove ammonia at a predetermined concentration from the measurement target gas passing through the ammonia oxidation catalyst layer 7. Therefore, the ammonia sensor 100 provided with the ammonia oxidation catalyst layer 7 does not detect ammonia when the ammonia contained in the measurement target gas is below a predetermined concentration, and ammonia when the ammonia contained in the measurement target gas exceeds the predetermined concentration. Can be detected.
[제4실시형태]Fourth Embodiment
이하, 본 발명에 따른 암모니아 센서의 제4실시형태를 설명한다. 제4실시형태에 따른 암모니아 센서 100은, 제2전극 D가, 질소산화물가스에 대한 분해활성을 갖는 재질을 포함하여 형성된다는 점에서 상술한 제1실시형태와 다르다.Hereinafter, a fourth embodiment of the ammonia sensor according to the present invention will be described. The ammonia sensor 100 according to the fourth embodiment differs from the first embodiment described above in that the second electrode D is formed including a material having a decomposition activity with respect to nitrogen oxide gas.
제2전극 D에 포함되는 질소산화물 가스에 대한 분해활성을 갖는 재질은, 구체적으로는, NiO, CuO, Cr2O3, WO3, 2CuO-Cr2O3, LaNiO3, LaCoO3, La0 . 6Sr0 . 4Co0 . 8Fe0 . 2O3, La0.8Sr0.2MnO3 혹은 La0 . 85Sr0 . 15CrO3 중 적어도 하나 이상의 재질이다.Specific materials having a decomposition activity with respect to the nitrogen oxide gas included in the second electrode D include NiO, CuO, Cr 2 O 3 , WO 3 , 2CuO-Cr 2 O 3 , LaNiO 3 , LaCoO 3 , and La 0. . 6 Sr 0 . 4 Co 0 . 8 Fe 0 . 2 O 3 , La 0.8 Sr 0.2 MnO 3 or La 0 . 85 Sr 0 . 15 CrO 3 Of at least one material.
또한, 제2전극 D는, 산소 이온 전도성 고체 전해질, 알루미나, 지르코니아, 및, 유리 중 적어도 하나 이상을 포함하여 형성되어 있다. 즉, 한 쌍의 전극 2의 각각은, 산소 이온 전도성 고체 전해질, 알루미나, 지르코니아 및 유리 중 적어도 하나 이상을 포함하여 형성되어 있다. 구체적으로는, 제2전극 D는, 산소 이온 전도성의 고체 전해질, 알루미나, 및, 유리를 포함하여 형성되어 있다. 제2전극 D에 있어, 산소 이온 전도성 고체 전해질은, 2~25Wt%의 범위로 함유된 것이 바람직하며, 알루미나는, 5~60Wt%의 범위로 함유된 것이 바람직하다. 또한, 유리는, 1~15Wt%의 범위로 함유된 것이 바람직하며, 질소산화물가스에 대해 분해활성을 갖는 재질은, 50~90Wt%의 범위로 함유된 것이 바람직하다. 본 실시형태에는, 제2전극 D에 있어서, 질소산화물가스에 대하여 분해활성을 갖는 재질로서 LaCoO3, 이트리아 안정화 지르코니아, 알루미나 및 유리가 60:10:25:5의 중량비율로 함유되어 있다.In addition, the second electrode D is formed including at least one of an oxygen ion conductive solid electrolyte, alumina, zirconia, and glass. That is, each of the pair of electrodes 2 includes at least one or more of an oxygen ion conductive solid electrolyte, alumina, zirconia, and glass. Specifically, the second electrode D is formed including a solid electrolyte, alumina, and glass of oxygen ion conductivity. In the second electrode D, the oxygen ion conductive solid electrolyte is preferably contained in the range of 2 to 25 Wt%, and the alumina is preferably contained in the range of 5 to 60 Wt%. Moreover, it is preferable that glass is contained in the range of 1-15 Wt%, and it is preferable that the material which has a decomposition activity with respect to nitrogen oxide gas is contained in the range of 50-90 Wt%. In the present embodiment, the second electrode D contains LaCoO 3 , yttria stabilized zirconia, alumina, and glass in a weight ratio of 60: 10: 25: 5 as a material having decomposition activity with respect to nitrogen oxide gas.
제4실시형태에 따른 암모니아 센서 100에는, 측정 대상 가스에 포함된 질소산화물 가스로서의 이산화질소가, 암모니아를 산화하는 전극반응에 의해서 발생하는 기전력이 저하하는 것을 방지하여, 측정 대상 가스에 포함된 암모니아의 농도를 정확히 검출할 수 있다.In the ammonia sensor 100 according to the fourth embodiment, the nitrogen dioxide as the nitrogen oxide gas included in the measurement target gas prevents the electromotive force generated by the electrode reaction oxidizing ammonia from being lowered, thereby reducing the amount of ammonia contained in the measurement target gas. The concentration can be detected accurately.
즉, 측정 대상 가스에 이산화질소가 포함된 경우, 이 이산화질소가, 애노드가 되는 제1전극 C에서 암모니아를 산화하는 전극반응에 작용하여, 한 쌍의 전극 2의 사이에 발생하는 기전력을 감소시킬 수 있지만, 캐소드가 되는 제2전극 D가, 질소산화물가스인 이산화질소에 대한 분해활성을 갖는 재질을 포함하고 있기 때문에, 측정 대상 가스에 포함된 이산화질소로부터 산소 이온을 분해하는 전극반응이 촉진된다. 이러한 제2전극 D 전극반응에서 발생한 산소 이온에 의해, 한 쌍의 전극 2의 사이에 발생하는 기전력이 증가한다.That is, when nitrogen dioxide is included in the gas to be measured, the nitrogen dioxide acts on the electrode reaction of oxidizing ammonia at the first electrode C serving as the anode, thereby reducing the electromotive force generated between the pair of electrodes 2. Since the second electrode D serving as a cathode contains a material having a decomposition activity with respect to nitrogen dioxide which is nitrogen oxide gas, an electrode reaction for decomposing oxygen ions from nitrogen dioxide contained in the measurement target gas is promoted. By the oxygen ions generated in the second electrode D electrode reaction, the electromotive force generated between the pair of electrodes 2 increases.
그리고 제1전극 C의 전극반응에 이산화질소가 작용하여 발생하는 기전력의 감소와, 제2전극 D의 전극반응에서 이산화질소가 작용하여 발생하는 기전력의 증가는, 측정 대상 가스에 포함된 이산화질소의 농도에 따른 증가량 또는 감소량이 된다. 즉, 측정 대상 가스에 포함된 이산화질소의 농도가 높을수록, 이산화질소가 제1전극 C의 전극반응에 작용에 의해 발생하는 기전력의 감소량이 커지고, 마찬가지로, 이산화질소가 제2전극 D의 전극반응 작용에 의해 발생하는 기전력의 증가량도 커진다. 따라서, 예를 들면, 제1전극 C에서 단위농도의 이산화질소가 작용하여 발생하는 기전력의 감소량과, 제2전극 D에서 단위농도의 이산화질소가 작용하여 발생하는 기전력의 증가량이 동일하게 되도록, 제2전극 D에 대한 이산화질소질소에 대한 분해활성을 갖는 재질의 혼합률을 미리 조정하는 것에 의해서, 어느 질소산화물의 농도에 대하여서도, 이산화질소가 제1전극 C의 전극반응의 작용에 따라 발생하는 기전력의 감소를, 이산화질소가 제2전극 D의 전극 반응의 작용에 의하여 발생하는 기전력의 증가에 의해서 상쇄할 수 있다. The decrease in the electromotive force generated by the action of nitrogen dioxide on the electrode reaction of the first electrode C and the increase in the electromotive force generated by the action of nitrogen dioxide in the electrode reaction of the second electrode D depend on the concentration of nitrogen dioxide contained in the gas to be measured. It is either an increase or a decrease. That is, the higher the concentration of nitrogen dioxide contained in the gas to be measured, the greater the decrease in electromotive force generated by the action of nitrogen dioxide on the electrode reaction of the first electrode C. Similarly, the nitrogen dioxide is caused by the electrode reaction action of the second electrode D. The increase in generated electromotive force also increases. Thus, for example, the second electrode such that the amount of decrease in the electromotive force generated by the action of the unit concentration of nitrogen dioxide in the first electrode C and the increase in the amount of increase in the electromotive force generated by the action of the unit concentration of nitrogen dioxide in the second electrode D are the same. By adjusting in advance the mixing rate of the material having a decomposing activity with respect to nitrogen dioxide for D, the reduction in the electromotive force generated by the action of the electrode reaction of the first electrode C with respect to the concentration of nitrogen oxides is achieved. Nitrogen dioxide can be offset by an increase in the electromotive force generated by the action of the electrode reaction of the second electrode D.
따라서 제2전극 D에, 질소산화물가스에 대한 분해활성을 갖는 재질을 적절하게 포함시키는 것에 의해서, 측정 대상 가스에 이산화질소가 포함된 경우에도, 한 쌍의 전극 2의 사이에 발생하는 기전력이 저하되는 것을 방지하면서, 측정 대상 가스에 포함된 암모니아의 농도를 정확히 검출할 수 있다. Therefore, by appropriately including a material having a decomposition activity with respect to nitrogen oxide gas in the second electrode D, even when nitrogen dioxide is included in the measurement target gas, the electromotive force generated between the pair of electrodes 2 is reduced. It can detect the density | concentration of the ammonia contained in the gas to be measured accurately, preventing it.
[별도 실시형태][Separate embodiment]
이하, 별도 실시형태를 열거한다. Hereinafter, another embodiment is listed.
(1) 상기 실시형태에서는, 한 쌍의 전극 2의 사이에, 한 쌍의 전극 사이의 전위차 혹은 전류 중 적어도 하나를 측정하는 측정장치 12를 구비하였으나, 도 13에 나타낸 바와 같이, 한 쌍의 전극 2의 사이에, 측정장치 12에 더하여, 한 쌍의 전극 2의 사이에 일정의 전류 혹은 전압을 인가하는 전원 장치를 구비할 수 있다. 이 경우, 제1전극 C가 애노드가 되는 상태, 동시에, 제2전극 D가 캐소드가 되는 상태로, 전원 장치 11을 구비할 수 있다.(1) In the above embodiment, a measuring device 12 for measuring at least one of a potential difference or a current between a pair of electrodes is provided between a pair of electrodes 2, but as shown in FIG. 13, a pair of electrodes Between 2, in addition to the measuring apparatus 12, the power supply apparatus which applies a constant current or voltage between a pair of electrodes 2 can be provided. In this case, the power supply 11 can be provided in a state where the first electrode C becomes an anode and at the same time a second electrode D becomes a cathode.
(2) 상기 실시형태에 있어서, 제1전극 C가, 암모니아에 대하여 산화 활성이 높은 재질인 ZnO, SnO2 및 In2O3의 적어도 하나 이상의 재질에, 산소 이온 전도성 고체 전해질, 알루미나 및 유리를 포함하여 형성되어 있으나, 이에 한정하지 않고, 제1전극 C를, 암모니아에 대하여 산화 활성이 높은 재질인 ZnO, SnO2 및 In2O3 중 적어도 하나 이상의 재질만으로 형성될 수 있다.(2) In the above embodiment, the first electrode C is ZnO or SnO 2 , which is a material having a high oxidation activity with respect to ammonia. And at least one material of In 2 O 3 , which includes an oxygen ion conductive solid electrolyte, alumina, and glass, but is not limited thereto. The first electrode C may be a ZnO material having a high oxidation activity with respect to ammonia; It may be formed of only at least one material of SnO 2 and In 2 O 3 .
(3) 상기 제1실시형태에 있어서, 제2전극 D가, 귀금속만으로 형성되어 있으나, 이에 한정하지 않고, 제2전극 D가, 귀금속에 더하여, 산소 이온 전도성 고체 전해질, 알루미나, 지르코니아 및 유리의 적어도 하나 이상을 포함하여 형성될 수 있다.(3) In the first embodiment, the second electrode D is formed of only a noble metal, but the present invention is not limited thereto, and the second electrode D is formed of an oxygen ion conductive solid electrolyte, alumina, zirconia, and glass in addition to the noble metal. It may be formed including at least one.
(4) 상기 제1실시형태에 있어서, 미연물 산화 촉매층 4가, 측정 대상 가스에 포함된 일산화탄소 및 탄화수소를 산화하는 Pt, Au, Pd, Rh, Ir, Ru 또는 Ag 등의 귀금속, 이들 귀금속이 분산담지된 다공성 세라믹 등에서 선택된 하나이상의 재질로 형성되어 있으나, 이에 한정하지 않고, 미연물 산화 촉매층 4에, 측정 대상 가스에 포함된 암모니아를 산화하는 재질이 포함될 수 있다. 또한, 암모니아를 산화하는 재질로 Co3O4, MnO2, V2O5, Ni-Al2O3, Fe-Al2O3, Mn-Al2O3, CuO-Al2O3, Fe2O3-Al2O3, Fe2O3-TiO2, Fe2O3-ZrO2 또는, 귀금속 이온교환 제올라이트 중 적어도 하나 이상의 재질을 사용할 수 있다. 이에 의하여, 미연물 산화 촉매층 4에 의해, 측정 대상 가스에 포함된 일산화탄소 및 탄소수소에 더하여, 측정 대상 가스에 포함되는 암모니아를 산화할 수 있다.(4) In the first embodiment, the unburned oxidation catalyst layer 4 is a noble metal such as Pt, Au, Pd, Rh, Ir, Ru, or Ag, which oxidizes carbon monoxide and a hydrocarbon contained in the gas to be measured, It is formed of at least one material selected from a porous ceramic, etc., which is dispersed and supported, but is not limited thereto. The non-flammable oxidation catalyst layer 4 may include a material for oxidizing ammonia included in the gas to be measured. In addition, as a material for oxidizing ammonia, Co 3 O 4 , MnO 2 , V 2 O 5 , Ni-Al 2 O 3 , Fe-Al 2 O 3 , Mn-Al 2 O 3 , CuO-Al 2 O 3 , Fe At least one material of 2 O 3 -Al 2 O 3 , Fe 2 O 3 -TiO 2 , Fe 2 O 3 -ZrO 2, or a noble metal ion exchange zeolite may be used. Thereby, in addition to the carbon monoxide and the carbon hydrogen contained in the measurement target gas, the ammonia included in the measurement target gas can be oxidized by the unburned oxidation catalyst layer 4.
(5) 상기 제1실시형태에는, 한쪽 편 전극 2a를 제2전극 D로 하고, 다른 쪽 편 전극 2b를 제1전극 C로 하였으나, 이에 한정되지 않고, 한쪽 편 전극 2a를 제1전극 C로 하고, 다른 쪽 편 전극 2b를 제2전극 D로 할 수 있다.(5) In the first embodiment, one electrode 2a is used as the second electrode D and the other electrode 2b is used as the first electrode C. However, the present invention is not limited thereto, and one electrode 2a is used as the first electrode C. The other electrode 2b can be used as the second electrode D.
(6) 상기 제2실시형태는, 우측전극 2c를 제1전극 C로 하고, 좌측전극 2d를 제2전극 D로 하였으나, 이에 한정하지 않고, 우측전극 2c를 제2전극 D로 하고, 좌측전극 2d를 제1전극 C로 할 수 있다. 또한, 우측전극 2c 및 좌측전극 2d를, 고체 전해질 1의 한쪽 측면에 구비하였으나, 이에 한정하지 않고, 우측전극 2c 및 좌측전극 2d를, 고체 전해질 1의 다른 쪽 측면에 구비할 수 있다.(6) In the second embodiment, the right electrode 2c is the first electrode C, and the left electrode 2d is the second electrode D, but the present invention is not limited thereto, and the right electrode 2c is the second electrode D, and the left electrode is 2d can be used as the first electrode C. In addition, although the right electrode 2c and the left electrode 2d are provided on one side of the solid electrolyte 1, the present invention is not limited thereto, and the right electrode 2c and the left electrode 2d may be provided on the other side of the solid electrolyte 1.
(7) 상기 제3실시형태는, 판상 센서 소자 20의 한쪽 측면에, 판상 센서 소자 20을 지지하는 지지체 3가 구비되며, 제1전극 C가 형성된 판상 센서 소자 20의 다른 쪽 측면에, 미연물 산화 촉매층 4 및 암모니아 산화 촉매층 7이 적층상태로 구비되어 있으나, 이에 한정하지 않고, 미연물 산화 촉매층 4 및 암모니아 산화 촉매층 7을, 판상 센서 소자 20의 한쪽 측면에 구비할 수 있다. 이 경우, 판상 센서 소자 20의 한쪽 측면과 지지체 3의 사이에 미연물 산화 촉매층 4 및 암모니아 산화 촉매층 7이 끼어 있는 상태로, 판상 센서 소자 20의 한쪽 측면에 지지체 3을 구비할 수 있다.(7) In the third embodiment, a support body 3 supporting the plate sensor element 20 is provided on one side of the plate sensor element 20, and the non-flammable material is on the other side of the plate sensor element 20 on which the first electrode C is formed. Although the oxidation catalyst layer 4 and the ammonia oxidation catalyst layer 7 are provided in a stacked state, the present invention is not limited thereto, and the unburned oxidation catalyst layer 4 and the ammonia oxidation catalyst layer 7 may be provided on one side of the plate sensor element 20. In this case, the support body 3 can be provided in one side surface of the plate-shaped sensor element 20 in the state which the unburned oxidation catalyst layer 4 and the ammonia oxidation catalyst layer 7 are pinched | interposed between the one side surface of the plate-shaped sensor element 20, and the support body 3. As shown in FIG.
(8) 상기 제3실시형태는, 판상 센서 소자 20에 구비된 미연물 산화 촉매층 4에 암모니아 산화 촉매층 7이 적층되어 있으나, 이에 한정하지 않고, 판상 센서 소자 20에 암모니아 산화 촉매층 7을 구비하고, 그 암모니아 산화 촉매층 7에 미연물 산화 촉매층 4를 적층할 수 있다.(8) In the third embodiment, although the ammonia oxidation catalyst layer 7 is laminated on the unburned oxidation catalyst layer 4 included in the plate sensor element 20, the ammonia oxidation catalyst layer 7 is provided on the plate sensor element 20 without being limited thereto. The unburned oxidation catalyst layer 4 can be laminated on the ammonia oxidation catalyst layer 7.
(9) 상기 제3실시형태는, 판상 센서 소자 20의 한쪽 측면에, 미연물 산화 촉매층 4와 암모니아 산화 촉매층 7이 적층상태로 구비되어 있으나, 이에 한정하지 않고, 미연물 산화 촉매층 4를 구비하지 않고, 암모니아 산화 촉매층 7을, 판상 센서 소자 20의 한쪽 측면에 구비할 수 있다. 이 경우, 암모니아 산화 촉매층 7에, 측정 대상 가스에 포함된 일산화탄소 및 탄화수소를 산화하는 재질이 포함될 수 있다. 또한, 탄화수소를 산화하는 재질로서, Pt, Au, Pd, Rh, Ir, Ru 또는 Ag 등의 귀금속, 이들 귀금속이 분산담지된 다공성 세라믹 등으로부터 선택된 하나 이상의 재질을 사용할 수 있다. 이에 따라, 암모니아 산화 촉매층 7에 의해, 측정 대상 가스에 포함된 암모니아에 더하여, 측정 대상 가스에 포함된 일산화탄소 및 탄화수소를 산화할 수 있다.(9) In the third embodiment, the flammable oxidation catalyst layer 4 and the ammonia oxidation catalyst layer 7 are provided on one side of the plate sensor element 20 in a stacked state, but the present invention is not limited thereto, and the flammable oxidation catalyst layer 4 is not provided. Instead, the ammonia oxidation catalyst layer 7 can be provided on one side of the plate sensor element 20. In this case, the ammonia oxidation catalyst layer 7 may include a material for oxidizing carbon monoxide and hydrocarbons included in the gas to be measured. In addition, as a material for oxidizing hydrocarbons, one or more materials selected from precious metals such as Pt, Au, Pd, Rh, Ir, Ru, or Ag, porous ceramics in which these precious metals are dispersed and supported, and the like can be used. Thereby, the ammonia oxidation catalyst layer 7 can oxidize carbon monoxide and hydrocarbons contained in the measurement target gas in addition to ammonia included in the measurement target gas.
(10) 상기 제4실시형태에 있어서, 제2전극 D가, 질소산화물가스에 대하여 분해활성을 갖고 있는 재질에 더하여, 산소 이온 전도성 고체 전해질, 알루미나, 지르코니아 및 유리를 포함하여 형성되어 있으나, 이에 한정하지 않고, 제2전극 D를, 질소산화물가스에 대하여 분해활성을 갖는 재질만으로 형성할 수 있다.(10) In the fourth embodiment, the second electrode D is formed of an oxygen ion conductive solid electrolyte, alumina, zirconia, and glass, in addition to a material having a decomposition activity with respect to nitrogen oxide gas. The second electrode D can be formed of only a material having a decomposition activity with respect to the nitrogen oxide gas, without limitation.
(11) 상시 실시형태는, 판상 센서 소자 20의 다른 쪽 측면에 미연물 산화 촉매층 4를 구비하였으나, 이에 한정하지 않고, 미연물 산화 촉매층 4를 구비하지 않아도 좋다. 또한, 판상 센서 소자 20의 한쪽 측면 및 다른 쪽 측면에 미연물 산화 촉매층을 구비할 수 있다.(11) Always-on embodiment provided the nonflammable oxidation catalyst layer 4 in the other side surface of the plate-shaped sensor element 20, It is not limited to this, It is not necessary to provide the unflammable oxidation catalyst layer 4. In addition, one side surface and the other side surface of the plate-shaped sensor element 20 can be provided with the unburned oxidation catalyst layer.
(12) 상기 실시형태는, 판상 센서 소자 20의 다른 쪽 측면에 미연물 산화 촉매층 4를 구비하였으나, 이에 한정하지 않고, 판상 센서 소자 20의 한쪽 측면에 미연물 산화 촉매층 4를 구비할 수 있다. 이 경우, 판상 센서 소자 20의 한쪽 측면과 지지체 3의 사이에 미연물 산화 촉매층 4이 끼어 있는 상태로, 판상 센서 소자 20의 한쪽 측면에 지지체 3을 구비할 수 있고, 판상 센서 소자 20의 다른 쪽 측면에 지지체 3을 구비할 수 있다.(12) In the above embodiment, the non-flammable oxidation catalyst layer 4 is provided on the other side of the plate sensor element 20. However, the present invention is not limited thereto, and the flammable oxidation catalyst layer 4 may be provided on one side of the plate sensor element 20. In this case, the support 3 can be provided on one side of the plate-shaped sensor element 20 while the nonflammable oxidation catalyst layer 4 is sandwiched between one side of the plate-shaped sensor element 20 and the support 3, and the other side of the plate-shaped sensor element 20. The support 3 can be provided in a side surface.
(13) 상기 실시형태는, 판상 센서 소자 20의 한쪽 측면에 지지체 3을 구비하였으나, 이에 한정하지 않고, 판상 센서 소자 20의 다른 쪽 측면에 지지체 3을 구비할 수 있다.(13) Although the said embodiment provided the support body 3 on one side surface of the plate-shaped sensor element 20, it is not limited to this, The support body 3 can be provided in the other side surface of the plate-shaped sensor element 20.
(14) 상기 실시형태는, 판상 센서 소자 20의 한쪽 측면에 지지체 3을 구비하였으나, 이에 한정하지 않고, 지지체 3을 구비하지 않아도 좋다. 이 경우, 한 쌍의 전극 2와 측정장치 12를 접속하기 위하여 리드선 5과 히터단자 9는, 고체 전해질 1에 구비할 수 있다. (14) Although the said embodiment provided the support body 3 in one side surface of the plate-shaped sensor element 20, it is not limited to this, The support body 3 does not need to be provided. In this case, in order to connect the pair of electrodes 2 and the measuring device 12, the lead wire 5 and the heater terminal 9 can be provided in the solid electrolyte 1.
(15) 상기 실시형태는, 고체 전해질 1이 평판상태로 형성되어 있으나, 이에 한정하지 않고, 고체 전해질 1이 곡판상태로 형성될 수 있다.(15) In the above embodiment, the solid electrolyte 1 is formed in a flat state, but is not limited thereto, and the solid electrolyte 1 may be formed in a curved state.
(16) 상시 실시형태는, 한 쌍의 전극 2의 각각이, 산소 이온 전도성의 고체 전해질, 알루미나, 및, 유리를 포함하여 형성되었으나, 이에 한정하지 않고, 한 쌍의 전극의 각각이, 산소 이온 전도성 고체 전해질, 알루미나, 지르코니아, 및, 유리의 적어도 하나 이상을 포함하여 형성할 수 있다. 예를 들면, 산소 이온 전도성 고체 전해질만 포함할 수 있고, 산소 이온 전도성 고체 전해질과 알루미나만을 포함할 수 있다. 그 외, 산소 이온 전도성 고체 전해질, 지르코니아, 및, 유리를 포함할 수 있다.(16) In the embodiment, each of the pair of electrodes 2 is formed by including an oxygen ion conductive solid electrolyte, alumina, and glass, but the present invention is not limited thereto, and each pair of electrodes includes oxygen ions. And at least one or more of a conductive solid electrolyte, alumina, zirconia, and glass. For example, it may include only an oxygen ion conductive solid electrolyte, and may include only an oxygen ion conductive solid electrolyte and alumina. In addition, it may include an oxygen ion conductive solid electrolyte, zirconia, and glass.
(17) 상기 실시형태는, 한 쌍의 전극 2의 각각에 포함된 산소 이온 전도성 고체 전해질이, 이트리아 안정화 지르코니아(YSZ)이나, 이에 한정하지 않고, 한 쌍의 전극 2에 포함된 산소 이온 전도성 고체 전해질이, 스칸디아 안정화 지르코니아(ScSZ), 사마륨이 도핑된 세리아(GDC) 혹은 이산화토륨(ThO2) 중 어느 것이어도 좋다.(17) In the above embodiment, the oxygen ion conductive solid electrolyte contained in each of the pair of electrodes 2 is yttria stabilized zirconia (YSZ), but is not limited thereto, and the oxygen ion conductivity included in the pair of electrodes 2 The solid electrolyte may be any of Scandia stabilized zirconia (ScSZ), samarium-doped ceria (GDC) or thorium dioxide (ThO 2 ).
또한, 상기 실시 형태(다른 실시 형태를 포함, 이하 동일)에서 개시되는 구성은, 모순이 발생하지 않는 한, 다른 실시 형태로 개시되는 구성과 조합하여 적용할 수 있으며, 또한, 본 명세서에서 개시된 실시 형태는 예시이며, 본 발명의 실시 형태는 이에 한정되지 않고, 본 발명의 목적을 일탈하지 않는 범위 내에서 적절히 수정할 수 있다.In addition, the structure disclosed by the said embodiment (including another embodiment, is the same below) can be applied in combination with the structure disclosed by another embodiment, unless a contradiction arises, and also the embodiment disclosed by this specification The form is an illustration, and embodiment of this invention is not limited to this, It can modify suitably within the range which does not deviate from the objective of this invention.
이상 설명한 것처럼, 암모니아 농도 검출응답성을 향상할 수 있는 암모니아센서를 제공할 수 있다.As described above, an ammonia sensor capable of improving the ammonia concentration detection response can be provided.

Claims (16)

  1. 산소 이온 전도성을 갖는 판상의 고체 전해질의 표면에, 암모니아에 대한 반응성이 서로 다른 한 쌍의 전극이 형성된 판상 센서 소자와,A plate-shaped sensor element in which a pair of electrodes having different reactivity with respect to ammonia is formed on a surface of a plate-shaped solid electrolyte having oxygen ion conductivity;
    상기 한 쌍의 전극 사이의 전위차 또는 전류 중 적어도 하나를 측정하는 측정 장치를 구비하고,A measuring device for measuring at least one of a potential difference or a current between the pair of electrodes,
    상기 한 쌍의 전극 모두가 측정 대상 가스에 노출되도록 형성된 암모니아 센서로서,An ammonia sensor configured to expose all of the pair of electrodes to a gas to be measured,
    상기 고체 전해질은 다공질로 형성되고,The solid electrolyte is formed of a porous,
    상기 한 쌍의 전극은, 암모니아에 대한 산화 활성을 갖는 제1전극과, 상기 제1전극보다 암모니아에 대한 산화 활성이 낮은 제2전극으로 구성되며,The pair of electrodes comprises a first electrode having an oxidation activity for ammonia and a second electrode having a lower oxidation activity for ammonia than the first electrode,
    상기 제1전극은 ZnO, SnO2 및 In2O3 중 적어도 하나 이상을 포함하는 암모니아에 대한 산화 활성이 높은 재질을 50 ~ 90Wt% 포함하고, 유리를 1 ~ 15Wt% 포함하며,The first electrode includes a material having a high oxidation activity against ammonia, including at least one of ZnO, SnO 2 and In 2 O 3 , 50 to 90 Wt%, 1 to 15 Wt% glass,
    상기 판상 센서 소자의 두께 방향에서, 상기 판상 센서 소자의 고체 전해질의 한쪽 측면에서 상기 한쪽 측면에 대향하는 다른 쪽 측면까지 상기 측정 대상 가스가 통류하는 가스통류공이 다수 형성되어 있는 암모니아 센서.An ammonia sensor in which a plurality of gas flow holes through which the measurement target gas flows are formed from one side of the solid electrolyte of the plate sensor element to the other side facing the one side in the thickness direction of the plate sensor element.
  2. 제1항에 있어서, The method of claim 1,
    상기 고체 전해질의 한쪽 측면에 상기 한 쌍의 전극 중 하나가 형성되고, 상기 고체 전해질의 한쪽 측면에 대향하는 다른 쪽 측면에 상기 한 쌍의 전극 중 다른 하나가 형성된 상기 판상 센서 소자를 구비한 암모니아 센서.An ammonia sensor provided with one of said pair of electrodes formed on one side of said solid electrolyte, and said plate-shaped sensor element formed with the other of said pair of electrodes on the other side opposite said one side of said solid electrolyte .
  3. 제1항에 있어서,The method of claim 1,
    상기 고체 전해질의 한쪽 측면에, 상기 한 쌍의 전극이 형성된 상기 센서 소자를 구비한 암모니아 센서.The ammonia sensor provided with the said sensor element in which the said pair of electrode was formed in one side of the said solid electrolyte.
  4. 제1항에 있어서,The method of claim 1,
    상기 제2전극이, 귀금속을 포함하는 암모니아 센서.The second electrode, the ammonia sensor containing a noble metal.
  5. 제1항에 있어서,The method of claim 1,
    상기 제2전극이, 질소산화물 가스에 대한 분해 활성을 갖는 재질을 포함하는 암모니아 센서.And the second electrode comprises a material having a decomposition activity with respect to nitrogen oxide gas.
  6. 제5항에 있어서,The method of claim 5,
    상기 질소 산화물 가스에 대한 분해 활성을 가진 재질이 NiO, CuO, Cr2O3, WO3, 2CuO-Cr2O3, LaNiO3, LaCoO3, La0 . 6Sr0 . 4Co0 . 8Fe0 . 2O3, La0 . 8Sr0 . 2MnO3, La0 . 85Sr0 . 15CrO3중 하나 이상의 재질인 암모니아 센서.NiO, CuO, Cr 2 O 3 , WO 3 , 2CuO-Cr 2 O 3 , LaNiO 3 , LaCoO 3 , La 0 . 6 Sr 0 . 4 Co 0 . 8 Fe 0 . 2 O 3 , La 0 . 8 Sr 0 . 2 MnO 3 , La 0 . 85 Sr 0 . Ammonia sensor made of at least one of 15 CrO 3 .
  7. 제1항에 있어서,The method of claim 1,
    상기 한 쌍의 전극의 각각이, 산소 이온 전도성의 고체 전해질, 알루미나, 지르코니아 및 글래스 중 하나 이상을 포함하는 암모니아 센서.Wherein each of the pair of electrodes comprises at least one of an oxygen ion conductive solid electrolyte, alumina, zirconia, and glass.
  8. 제1항에 있어서,The method of claim 1,
    상기 고체 전해질은 이트리아안정화지르코니아(YSZ), 스칸디아 안정화 지르코니아(ScSZ), 사마륨이 도핑된 세리아(SDC), 가돌리늄이 도핑된 세리아(GDC) 또는 이산화토륨(ThO2)의 중 하나로 형성된 암모니아 센서.The solid electrolyte is an ammonia sensor formed of one of yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ), samarium doped ceria (SDC), gadolinium doped ceria (GDC) or thorium dioxide (ThO 2 ).
  9. 제1항에 있어서,The method of claim 1,
    상기 측정 대상 가스에 포함되는 일산화탄소 및 탄화수소를 산화하는 미연물 산화 촉매층이, 상기 판상 센서 소자의 상기 한쪽 측면 및 상기 다른 쪽 측면 중 적어도 한쪽에 구비된 암모니아 센서.The ammonia sensor provided with at least one of the said one side surface and the said other side surface of the said plate-shaped sensor element with the unburnt oxidation catalyst layer which oxidizes carbon monoxide and a hydrocarbon contained in the said measurement object gas.
  10. 제9항에 있어서,The method of claim 9,
    상기 미연물 산화 촉매층이, Pt, Pd, Rh, Ir, Ru 또는 Ag 중 하나 이상이 분산담지된 다공성세라믹을 포함하는 암모니아 센서.The ammonia sensor, wherein the unburned oxidation catalyst layer comprises a porous ceramic in which at least one of Pt, Pd, Rh, Ir, Ru or Ag is dispersed and supported.
  11. 제1항에 있어서,The method of claim 1,
    상기 측정 대상 가스에 포함되는 암모니아를 산화하는 암모니아 산화 촉매층이, 상기 판상 센서 소자의 상기 한쪽 측면 또는 상기 다른 쪽 측면에 구비된 암모니아 센서.The ammonia oxidation catalyst layer which oxidizes ammonia contained in the said measurement object gas is provided in the said one side surface or the said other side surface of the said plate-shaped sensor element.
  12. 제11항에 있어서,The method of claim 11,
    상기 암모니아 산화 촉매층은, Co3O4, MnO2, V2O5, Ni-Al2O3, Fe-Al2O3, Mn-Al2O3, CuO-Al2O3, Fe2O3-Al2O3, Fe2O3-TiO2, Fe2O3-ZrO2, 또는, 금속이온 교환 제올라이트 중 하나 이상의 재질을 포함하는 암모니아 센서.The ammonia oxidation catalyst layer is Co 3 O 4 , MnO 2 , V 2 O 5 , Ni-Al 2 O 3 , Fe-Al 2 O 3 , Mn-Al 2 O 3 , CuO-Al 2 O 3 , Fe 2 O An ammonia sensor comprising at least one of 3 -Al 2 O 3 , Fe 2 O 3 -TiO 2 , Fe 2 O 3 -ZrO 2 , or a metal ion exchange zeolite.
  13. 제1항에 있어서,The method of claim 1,
    상기 판상 센서 소자를 지지하는 지지체가, 상기 판상 센서 소자의 한쪽 측면 또는 상기 다른 쪽 측면에 구비되고, The support body which supports the said plate-shaped sensor element is provided in one side surface or the said other side surface of the said plate-shaped sensor element,
    상기 지지체에, 상기 판상 센서 소자를 가열하는 히터가 구비되어 있는 암모니아 센서.The ammonia sensor with which the said support body is equipped with the heater which heats the said plate-shaped sensor element.
  14. 제1항에 있어서,The method of claim 1,
    상기 판상 센서 소자의 상기 한쪽 측면에, 상기 판상 센서 소자를 지지하는 지지체가 구비되고, 상기 제1전극이 형성된 상기 판상 센서의 상기 다른 쪽 측면에, 상기 측정 대상 가스에 포함되는 일산화탄소와 탄화수소를 산화하는 미연물 산화 촉매층 및 상기 측정 대상 가스에 포함되는 암모니아를 산화하는 암모니아 산화 촉매층이 적층상태로 구비되어 있는 암모니아 센서.On one side of the plate sensor element, a support for supporting the plate sensor element is provided, and on the other side of the plate sensor on which the first electrode is formed, oxidation of carbon monoxide and hydrocarbons contained in the measurement target gas is performed. And ammonia oxidation catalyst layer for oxidizing ammonia contained in the measurement target gas in a stacked state.
  15. 제1항에 있어서,The method of claim 1,
    상기 한 쌍의 전극 사이에, 일정한 전압 또는 일정한 전류를 인가하는 전원 장치를 구비한 암모니아 센서.An ammonia sensor having a power supply device that applies a constant voltage or a constant current between the pair of electrodes.
  16. 제1항에 있어서,The method of claim 1,
    상기 한 쌍의 전극 사이에, 상기 제1전극이 애노드가 되는 상태 및 상기 제2전극이 캐소드가 되는 상태로, 일정한 전압 또는 전류를 인가하는 전원 장치를 구비하고 있는 암모니아 센서.An ammonia sensor having a power supply device for applying a constant voltage or current between the pair of electrodes in a state where the first electrode becomes an anode and the second electrode becomes a cathode.
PCT/KR2018/003699 2017-03-30 2018-03-29 Ammonia sensor WO2018182324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018535010A JP2020512524A (en) 2017-03-30 2018-03-29 Ammonia sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0041102 2017-03-30
KR1020170041102A KR101951253B1 (en) 2016-03-30 2017-03-30 Sensor device for sensing NOx concentration and detecting NH₃slip
KR10-2017-0120211 2017-09-19
KR1020170120211A KR101851281B1 (en) 2017-09-19 2017-09-19 Ammonia sensor

Publications (1)

Publication Number Publication Date
WO2018182324A1 true WO2018182324A1 (en) 2018-10-04

Family

ID=62622231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003699 WO2018182324A1 (en) 2017-03-30 2018-03-29 Ammonia sensor

Country Status (3)

Country Link
JP (1) JP2020512524A (en)
KR (1) KR101851281B1 (en)
WO (1) WO2018182324A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514729A (en) * 2019-09-05 2019-11-29 吉林大学 A kind of sensitive electrode and preparation method thereof detected for ammonia nitrogen Direct Electrochemistry in water
CN113189170A (en) * 2021-04-15 2021-07-30 上海交通大学 Double-working-electrode mixed potential type ammonia gas sensor and preparation method thereof
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354791B2 (en) 2015-10-09 2018-07-11 株式会社デンソー Gas sensor
KR102090489B1 (en) 2018-10-19 2020-03-18 한국과학기술연구원 Ammonia gas detecting sensor using graphene doped with copper oxide nanopaticles and ammonia gas detecting device comprising the same
KR20210120272A (en) 2020-03-26 2021-10-07 한국과학기술연구원 Ammonia gas detecting sensor using graphene doped with maganese oxide nanopaticles and ammonia gas detecting device comprising the same
CN114755280A (en) * 2021-01-08 2022-07-15 长城汽车股份有限公司 Ammonia gas sensor, method for measuring ammonia gas content in exhaust gas aftertreatment system and automobile exhaust gas aftertreatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243692A (en) * 2001-02-19 2002-08-28 Riken Corp Nitrogen oxide gas sensor
KR20080075104A (en) * 2005-10-07 2008-08-14 델피 테크놀로지스 인코포레이티드 Multicell ammonia sensor and method of use thereof
US20090308747A1 (en) * 2006-03-24 2009-12-17 Berndt Cramer Ammonia sensor
KR20140109123A (en) * 2013-03-05 2014-09-15 한국과학기술원 NOx GAS SENSOR
KR20140148164A (en) * 2013-06-21 2014-12-31 김준웅 DEVICE FOR SENSING NOx GAS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5215500B2 (en) 2012-11-13 2013-06-19 日本特殊陶業株式会社 Multi-gas sensor and gas sensor control device
KR20170067775A (en) * 2014-09-12 2017-06-16 넥스테크 머티리얼스, 엘티디. AMPEROMETRIC SOLID ELECTROLYTE SENSOR AND METHOD FOR DETECTING NH3 AND NOx

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243692A (en) * 2001-02-19 2002-08-28 Riken Corp Nitrogen oxide gas sensor
KR20080075104A (en) * 2005-10-07 2008-08-14 델피 테크놀로지스 인코포레이티드 Multicell ammonia sensor and method of use thereof
US20090308747A1 (en) * 2006-03-24 2009-12-17 Berndt Cramer Ammonia sensor
KR20140109123A (en) * 2013-03-05 2014-09-15 한국과학기술원 NOx GAS SENSOR
KR20140148164A (en) * 2013-06-21 2014-12-31 김준웅 DEVICE FOR SENSING NOx GAS

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514729A (en) * 2019-09-05 2019-11-29 吉林大学 A kind of sensitive electrode and preparation method thereof detected for ammonia nitrogen Direct Electrochemistry in water
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
CN113189170A (en) * 2021-04-15 2021-07-30 上海交通大学 Double-working-electrode mixed potential type ammonia gas sensor and preparation method thereof

Also Published As

Publication number Publication date
KR101851281B1 (en) 2018-06-12
JP2020512524A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2018182324A1 (en) Ammonia sensor
WO2018182323A1 (en) Nox sensor
US4559126A (en) Electrochemical device
US6579436B2 (en) Gas sensor and method of producing the same
JPS6156779B2 (en)
JPH0672861B2 (en) NOx sensor
EP0862056A1 (en) Gas sensor
US6514397B2 (en) Gas sensor
WO2010038990A2 (en) Nitrogen-oxide gas sensor
JPH07508100A (en) Sensor device for detecting gas components and/or gas concentration of gas mixture
JPH1172477A (en) Method for measuring gas concentration and composite gas sensor
JP3587290B2 (en) NOx gas sensor
US20190285571A1 (en) Sensor element and gas sensor
US7241477B2 (en) Methods of treating electrodes and gas sensors comprising the electrodes
JP2004226171A (en) Oxygen concentration detector
WO2010059823A2 (en) Sensor with electrodes of a same material
WO2010038989A2 (en) Nitrogen-oxide gas sensor
JP2002195978A (en) Gas detector element and gas sensing device using it
JP3589384B2 (en) Carbon monoxide sensor and its aging method
JP2000097903A (en) Apparatus and method for measuring gas concentration
US6797138B1 (en) Gas senior design and method for forming the same
WO2012030132A2 (en) Nitrogen oxide gas sensor
JP2004258033A (en) Sensor element for gas sensor
JP4037220B2 (en) Gas sensor element
JP3314782B2 (en) Composite gas sensor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018535010

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775778

Country of ref document: EP

Kind code of ref document: A1