WO2024010019A1 - Tire and power feed system - Google Patents

Tire and power feed system Download PDF

Info

Publication number
WO2024010019A1
WO2024010019A1 PCT/JP2023/024861 JP2023024861W WO2024010019A1 WO 2024010019 A1 WO2024010019 A1 WO 2024010019A1 JP 2023024861 W JP2023024861 W JP 2023024861W WO 2024010019 A1 WO2024010019 A1 WO 2024010019A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
tire
power receiving
receiving coil
coil
Prior art date
Application number
PCT/JP2023/024861
Other languages
French (fr)
Japanese (ja)
Inventor
篤 丹野
宏和 鈴木
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2024010019A1 publication Critical patent/WO2024010019A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power supply system for supplying power to a tire and an electronic device provided on the tire.
  • a pressure sensor and a transmitting device are provided in the tire cavity area, and an internal pressure alarm system that wirelessly transmits the pressure monitoring result by the pressure sensor from the transmitting device to a receiving device on the vehicle side;
  • an acceleration sensor may be provided on the inner peripheral surface of the tread within the tire cavity, and the results of monitoring the deformation behavior of the tread during tire rolling may be transmitted to the vehicle from a transmitting device provided within the tire cavity.
  • Examples include a tire deformation behavior measurement system that wirelessly transmits data to a receiving device on the side.
  • Power is required to drive such a sensor and transmitter, and this power is supplied, for example, from a battery built into the transmitter.
  • this power capacity supplied by this battery is limited, it is not possible to drive the sensor and transmitter semi-permanently, and the pneumatic tire and wheel assembled on the wheel must be separated to reduce wear and tear within the tire cavity. A complicated process is required to replace the old battery.
  • the present invention aims to provide a tire that can improve transmission efficiency while suppressing fluctuations in transmitted power when power is supplied to electronic devices provided in the tire, and a power supply system applied to this tire. purpose.
  • a tire equipped with a power receiving coil that generates electric power by receiving an alternating magnetic field from outside the tire A power receiving coil is provided on the inner surface of the side of the side portion between the tread portion and the bead portion facing the tire cavity region of the tire, and generates AC power by receiving an alternating current magnetic field transmitted through the side portion.
  • the power receiving coil is a circular coil that extends around the inner surface of the side in a circumferential direction of the tire,
  • the thickness of the side portion at the position of the inner surface of the side where the power receiving coil is provided is Ts [mm]
  • the minimum thickness of the side portion in the tire radial direction is Tmin [mm].
  • the first power receiving coil and the second power receiving coil extend so that both ends of the first power receiving coil and the second power receiving coil deviate from the tire circumferential direction so that the power receiving coil is interrupted in the tire circumferential direction. having a discontinuity formed;
  • the tire according to aspect [2], wherein the angle formed by the discontinuous portion of the first power receiving coil and the discontinuous portion of the second power receiving coil in the tire circumferential direction is 4 degrees or more.
  • the power transmission coil has a planar power transmission area arranged to face the side part,
  • the power transmission coil has an arc-shaped curvature portion that extends according to a predetermined curvature in the plane of the power transmission region,
  • the power receiving coil has a discontinuous portion formed such that the power receiving coil is interrupted in the tire circumferential direction by extending both ends of the power receiving coil deviating from the tire circumferential direction, Aspect [1] wherein the ratio d/L of the distance d [mm] between the both ends of the discontinuous part in the tire circumferential direction to the length L [mm] of the curvature part in the tire circumferential direction is 1/3 or less. 6].
  • the power transmission unit is a magnetic body disposed on a side opposite to the side portion with respect to the power transmission coil, and has a relative magnetic permeability of 30 to 300 at a frequency of an alternating current magnetic field generated by the power transmission coil.
  • the power feeding system according to any one of aspects [8] to [10], further comprising:
  • the magnetic body is arranged on a side opposite to the side portion with respect to the power transmission coil, with a distance h [mm] from the power transmission coil,
  • the ratio h/G of the interval h to the average value G [mm] of the distance between the power transmission region and each of the first power receiving coil and the second power receiving coil is 0.01 to 0.5, [ 11].
  • the power transmitting coil and the power receiving coil each include a single conductive wire made of a single wire,
  • the power supply system according to any one of aspects [5] to [13], wherein the diameter of the conductor of the conductor in the power transmission coil is larger than the diameter of the conductor of the conductor in the power reception coil.
  • the power transmission coil is located within an angular range of 45 degrees on each side of a line extending vertically upward from the central axis of rotation of the tire in the tire circumferential direction, when viewed in the tire width direction. 14].
  • the power supply system according to any one of [14].
  • FIG. 1 is a diagram showing an example of a cross section of a tire and a power supply system according to an embodiment.
  • FIG. 3 is a plan view of a power receiving coil.
  • FIG. 3 is a cross-sectional view illustrating the arrangement of power receiving coils. It is a plan view of a power transmission coil.
  • (a) is a diagram showing the overlapping of a power transmitting coil and a power receiving coil as seen in the tire width direction, and
  • (b) is a partially enlarged view of (a).
  • FIG. 3 is a diagram showing an example of a cross section of a coil.
  • FIG. 3 is a cross-sectional view illustrating the relationship between the distance between a power transmitting coil and a power receiving coil, and the thickness of a side portion.
  • FIG. 2 is a cross-sectional view illustrating the relationship between the height position of a power receiving coil and the aspect ratio of a tire.
  • FIG. 2 is a diagram illustrating an angular range around the rotation center axis of the tire in which a power transmission coil is arranged.
  • the tire of the present invention is preferably a pneumatic tire, and in the following description, a pneumatic tire will be used as an example.
  • the gas filled in the hollow region surrounded by the pneumatic tire and the rim is not limited to air, and may be an inert gas such as nitrogen or other gases.
  • FIG. 1 is a diagram showing an example of a cross section of a pneumatic tire and a power supply system including the pneumatic tire.
  • a pneumatic tire (hereinafter also simply referred to as a tire) 10 shown in FIG. 1 includes a pair of bead cores 12, a carcass ply layer 14, and a belt layer 16 as skeleton parts.
  • the tire 10 is assembled to a wheel 11 (see FIG. 3). In FIG. 3, a part of the wheel 11 (rim bottom surface, rim flange) is shown.
  • the bead core 12 is an annular member formed by winding a steel bead wire in multiple stages in the tire circumferential direction.
  • a bead portion B is formed by the bead core 12, the rim cushion rubber 46, the carcass ply layer 14, and the inner liner rubber 48 arranged around the bead core 12.
  • the carcass ply layer 14 is a member made of an organic fiber cord that has a toroidal shape by being wound around each of the bead cores 12 and folded back. In the carcass ply layer 14, organic fiber cords are provided so as to extend in the tire radial direction or the tire width direction.
  • the belt layer 16 is composed of one carcass ply layer 14, a plurality of carcass ply layers may have a toroidal shape.
  • the belt layer 16 is provided on the outside of the carcass ply layer 14 in the tire radial direction, and is composed of a steel belt cord.
  • the belt layer 16 is composed of two laminated belts, and the steel cords have different inclination directions with respect to the tire circumferential direction to form an intersecting layer.
  • Tread rubber 40, side rubber 42, bead filler rubber 44, rim cushion rubber 46, and inner liner rubber 48 are provided around these skeleton parts.
  • the tread portion T is formed by the tread rubber 40, the belt layer 16, the carcass ply layer 14, and the inner liner rubber 48 that are laminated on the tread rubber 40.
  • side rubber 42, bead filler rubber 44, rim cushion rubber 46, carcass ply layer 14, and inner liner rubber 48 are curved convexly outward in the tire width direction.
  • the side portion S is a portion between the tread portion T and the bead portion B, and is formed of side rubber 42, rim cushion rubber 46, carcass ply layer 14, and inner liner rubber 48.
  • the side portions S are located between the tread portion T and the bead portion B, and there is one on each side in the tire width direction.
  • the configuration of the rubber of the side portion S is not limited to the configuration described above, and in addition to the side rubber 42, rim cushion rubber 46, and inner liner rubber 48, the rubber configuration of the side portion S may further include rubber such as an auxiliary filler, a run flat liner, and a bead filler.
  • the auxiliary filler is a rubber that reinforces the side portion of the side portion S on the side of the bead portion B.
  • the auxiliary filler is placed between the carcass ply layer and the rim cushion rubber or the side rubber, and has a harder rubber than the side rubber. It is a high quality rubber.
  • a run-flat liner is a rubber that reinforces the side part of a run-flat tire. For example, it is placed between the carcass ply layer and the inner liner rubber, and is made of rubber that has the same hardness or higher hardness than the side rubber. be.
  • the tire 10 further includes a power receiving unit 30 and an electronic device 24.
  • the power receiving unit 30 receives power from outside the tire through wireless power transmission.
  • Power receiving unit 30 includes power receiving coil 18 .
  • the power receiving coil 18 is provided on the side inner surface S1 facing the cavity region C of the tire 10, and receives an AC magnetic field transmitted through the side rubber 42 of the side portion S, the carcass ply layer 14, and the inner liner rubber 48, thereby receiving an AC magnetic field. This is the part that generates AC power according to the Depending on the position of the power receiving coil 18, the alternating current magnetic field that the power receiving coil 18 receives may also pass through the rim cushion rubber 46.
  • the alternating current magnetic field received by the power receiving coil 18 may also pass through other rubber such as an auxiliary filler, a run flat liner, a bead filler, etc.
  • the tire cavity region C is a region surrounded by the inner circumferential surface of the tire and the bottom surface of the rim of the wheel 11 assembled with the rim (a portion of the wheel is shown in FIGS. 3 and subsequent figures), and is filled with air to a predetermined internal pressure.
  • the power receiving coil 18 is a circular coil that extends around the tire circumferential direction along the side inner surface S1.
  • the power receiving coil 18 in the example shown in FIG. 2 is a one-turn circular coil.
  • FIG. 2 is a plan view of the power receiving coil 18.
  • the power receiving coil 18 is provided at the side S of the pair of side parts S that is arranged so as to face the side of the vehicle (inside the vehicle) on which the tire 10 is mounted via the wheel 11 .
  • the power receiving unit 30 further includes a rectifier circuit and a stabilizing circuit (not shown), and the AC power generated by the power receiving coil 18 is converted into DC power and becomes power at a predetermined voltage.
  • the electronic device 24 includes a sensor section 20 and a communication device 22.
  • the sensor unit 20 includes a sensor element (not shown) that is driven by receiving DC power converted from AC power generated by the power receiving coil 18 .
  • the sensor element is, for example, an acceleration sensor that measures the deformation behavior of the tread portion T of the tire 10 during rolling, although it is not particularly limited.
  • the sensor unit 20 may further include an arithmetic processing circuit (not shown) that processes data of measurement results measured by the sensor element through arithmetic processing.
  • the communication device 22 is a part that transmits all of the data measured by the sensor unit 20 or processed information to a communication device (not shown) outside the tire by wire or wirelessly, and transmits the DC power converted from the generated AC power. Receives supply and drives.
  • a power line (not shown) extending from the power receiving unit 30 is connected to the sensor section 20 and the communication device 22.
  • the DC power from the power receiving unit 30 is used for driving power for the sensor unit 20 and driving power for the communication device 22 (power for signal processing, transmission, etc.).
  • the alternating current magnetic field received by the power receiving coil 18 is generated, for example, by a power transmitting unit 104 including an alternating current power supply device 102 and a power transmitting coil 100 shown in FIG.
  • the AC power supply device 102 may be supplied with power from a battery mounted on the vehicle body, or it may be supplied with power directly or via a rectifier/regulator from regenerative power generated by an alternator or drive motor without going through a battery. may be supplied.
  • the power transmission coil 100 is provided at a base that does not rotate relative to the rotation of the tire 10, for example, at a non-rotating portion of a suspension (eg, a knuckle).
  • a capacitor that forms a resonant circuit together with the power transmitting coil 100 is connected to the power transmitting coil 100, and is arranged within a rectangular area indicated by the reference numeral 100c in FIG.
  • the power transmission unit 104 generates AC power using an inverter provided in the AC power supply device 102, and generates an AC magnetic field M using the power transmission coil 100.
  • power is transmitted from the power transmission unit 104 to the power reception unit 30 using a magnetic resonance method. In the magnetic resonance method, by matching the resonant frequency in the circuit of the power transmitting unit 104 with the resonant frequency in the circuit of the power receiving unit 30, the AC magnetic field generated by the power transmitting coil 100 causes the power receiving coil 18 to resonate.
  • the magnetic resonance method has higher power transmission efficiency and longer transmission distance than the conventional electromagnetic induction method. From this point of view, it is preferable to match the resonance frequencies of the power transmission unit 104 and the power reception unit 30.
  • the resonance frequency is adjusted, for example, by adjusting the inductance of the coils of the power transmission unit 104 and the power reception unit 30, and the capacitance within the resonance circuit.
  • the power receiving coil 18 is provided in the side portion S as described above.
  • the transmission distance with the power transmission coil 100 provided in the non-rotating portion of the suspension is shortened, and high transmission efficiency can be obtained.
  • a conductive material such as a metal near the receiving coil 18, loss due to eddy current will occur and the transmission efficiency will decrease. , the bead wire of the bead core 12).
  • the power receiving coil 18 is a circular coil that extends around the tire circumferential direction along the side inner surface S1. Therefore, the position and length of the circumferential portion of the power receiving coil 18 facing the power transmitting coil 100 do not substantially change due to rotation of the tire 10, and fluctuations in transmitted power are suppressed. Therefore, even when the vehicle is stopped or running at low speed, the amount of power supplied to the electronic device remains constant. In this way, according to the power receiving coil 18, power can be supplied at any time regardless of whether the vehicle is running or stopped or the vehicle speed. It is preferable that the receiving coil 18 has a circular shape with a constant curvature.
  • the power receiving coil 18 is arranged so as to go around a concentric circle of the side portion S centered on the rotation center axis of the tire 10.
  • the tire circumferential direction refers to a direction around the tire rotation center axis.
  • the concentric positions of the side portions S are determined with the tire 10 not in contact with the ground.
  • the power receiving coil 18 is a loop-shaped coil that forms a closed area that includes the tire rotation center axis on the inner circumferential side, so the area of the side inner surface S1 that the power receiving coil 18 occupies in the tire radial direction is small. be.
  • the receiving coil 18 is provided in a thin portion of the side portion S where the amount of vertical deflection due to the rolling of the tire 10 is large, it is unlikely to peel off or fall off from the side inner surface S1.
  • the coils occupy a large area of the side inner surface in the tire radial direction, and deform to follow the vertical deflection of the side part. Since the amount of deformation of the coil is large, the coil is likely to peel off or fall off from the inner surface of the side.
  • the tire axial thickness of the side portion S at the position of the side inner surface S1 where the power receiving coil 18 is provided is Ts [mm] (see FIG. 3), and the tire axial thickness of the side portion S is Ts [mm] (see FIG. 3).
  • Tmin the minimum thickness in the axial direction of the tire over the radial direction
  • Ts/Tmin the ratio Ts/Tmin is 1.0 to 5.5.
  • the tire axial direction refers to a direction parallel to the tire rotation center axis.
  • the tire axial direction is parallel to the tire width direction.
  • FIG. 3 is a cross-sectional view illustrating the arrangement of the power receiving coil 18.
  • the ratio Ts/Tmin is more preferably 4.0 or less.
  • the tire axial thickness Ts of the side portion S is the total thickness of the side rubber 42, carcass ply layer 14, and inner liner rubber 48 when the power receiving coil 18 is provided at the position shown in FIG. In addition, the rubber of tires generates heat when the vehicle is driven.
  • the power receiving coil may also generate heat due to wireless power transfer, so if the power receiving coil is placed on the side of the rubber where a large amount of heat is generated, the heat generated by the rubber will not be dissipated, which may cause tire failure. There are cases.
  • the power receiving coil 18 is provided in the thinner side portion S as described above, the generated heat is more easily released than in the thicker side portion S. .
  • the thin portion of the side portion S is subject to a large amount of vertical deflection due to the rolling of the tire 10, and depending on the form of the receiving coil, it may cause peeling or falling off from the side inner surface S1.
  • the side portion S is a portion of the rim that protrudes outward in the tire width direction from the outer position of the tire radial direction, and is 1.5 times or more, preferably twice or more, the minimum thickness Tmin of the side portion S of the tire shaft.
  • the range of the ratio Ts/Tmin is preferably 1.0 to 5.5, and preferably 1.0 to 4.2 when it has a portion having the maximum thickness in the direction (rim protection portion). It is more preferable.
  • the ratio Ts/Tmin preferably ranges from 1.0 to 3.3, more preferably from 1.0 to 3.0.
  • the range of the ratio Ts/Tmin is preferably 1.0 to 1.8, and 1.0 to 1, regardless of the presence or absence of the rim protect part. More preferably, it is .5.
  • both ends of the side portion in the tire radial direction are, for example, both ends of the side rubber region exposed on the tire outer surface on the opposite side to the tire inner surface of the side portion in the tire radial direction.
  • the power receiving coil 18 is provided on the side inner surface S1 of the side portion S, heat generated during generation of AC power is easily released compared to a case where at least a portion of the power receiving coil 18 is embedded within the side portion S. ,preferable.
  • the power receiving coil 18 can be fixed to the inner side surface S1 by, for example, bonding the coil to the inner peripheral surface of the tire with an adhesive or the like, or by a known fixing method.
  • the power supply system includes a power transmission unit 104 and a power reception unit 30.
  • the power transmission unit 104 includes a power transmission coil 100 that is provided at a non-rotating portion of the tire 10 and generates an alternating current magnetic field.
  • the power transmitting coil 100 is disposed on the side opposite to the power receiving coil 18 with respect to the side portion S, specifically, on the outer side of the side portion S in the tire width direction.
  • Power receiving unit 30 is provided in tire 10 .
  • the power receiving unit 30 includes the power receiving coil 18, and the electronic device 24 includes the sensor section 20 and the communication device 22.
  • the power receiving coil 18 is provided on the side inner surface S1 of the side portion S facing the tire cavity region C of the tire 10, receives the alternating current magnetic field generated from the power transmitting coil 100 and transmitted through the side portion S, and receives power. Coil 18 generates alternating current power.
  • the power receiving coil 18 is a circular coil that extends in the tire circumferential direction along the side inner surface S1, and the position in the tire radial direction on the side inner surface S1 where the power receiving coil 18 is provided.
  • the ratio Ts/Tmin is 1.0 to 5.5. Therefore, it is possible to increase transmission efficiency while suppressing fluctuations in transmission power when power is supplied to an electronic device.
  • the power transmission coil 100 is preferably provided at a position facing the side portion S of the tire 10 in an unsprung region of a suspension of a vehicle on which the tire 10 is mounted. By arranging the power transmitting coil 100 in this manner, the power receiving coil 18 and the power transmitting coil 100 can be provided so as to substantially face each other, so that the power receiving coil 18 can efficiently receive the alternating current magnetic field.
  • the power transmission coil 100 is preferably provided, for example, in a damper case in the case of a strut suspension, or in a knuckle in the case of a multi-link suspension, with these as the base.
  • it is preferable that one power transmission coil 100 is provided for one tire 10. When a plurality of power transmission coils 100 are provided adjacently, cross-coupling between adjacent power transmission coils 100 occurs, which tends to reduce power feeding efficiency.
  • the power transmission coil 100 has a planar power transmission region arranged to face the side portion S, as shown in FIG.
  • the power transmission region is a part that generates an alternating magnetic field.
  • FIG. 4 is a plan view of the power transmission coil 100.
  • the power transmission coil 100 has an electric wire 100b wired in a spiral shape (spiral shape) on a non-magnetic substrate 100a.
  • the electric wire 100b may be made of a conductive material printed on the non-magnetic substrate 100a, or a wire-like conductor may be arranged in a coil shape.
  • the electric wires 100b wired in this manner form a power transmission area of the power transmission coil 100.
  • the power transmission coil 100 preferably has an arc-shaped curvature portion 101a that extends according to a predetermined curvature within the plane of the power transmission region.
  • the curvature portion 101a forms a part of a section in the circumferential direction of a circle that is concentric with the circular shape of the power receiving coil 18.
  • FIG. 5(a) is a diagram showing the overlapping of the power transmitting coil 100 and the power receiving coil 18 when viewed in the tire width direction
  • FIG. 5(b) is a partially enlarged view of FIG. 5(a).
  • the curvature portion 101a in the example shown in FIG. 4 is a portion having an arc shape in the outermost portion along the tire radial direction in the power transmission region.
  • the power receiving coil 18 extends so that both circumferential ends of the power receiving coil 18 deviate from the tire circumferential direction, so that the power receiving coil 18 is interrupted in the tire circumferential direction. It has a discontinuous portion 18a formed therein.
  • FIG. 6(a) is a diagram showing the overlap between the power transmitting coil 100 and the discontinuous portion 18a of the power receiving coil 18 when viewed in the tire width direction
  • FIG. 6(b) is a partially enlarged view of FIG. 6(a). It is a diagram.
  • a capacitor that forms a resonant circuit together with the power receiving coil 18 is connected to the power lines at both ends of the power receiving coil 18 forming the interrupted portion 18a. In the example shown in FIGS.
  • the capacitor is arranged within a rectangular area indicated by reference numeral 18b.
  • the distance L [mm] along the tire circumferential direction of the curved portion 101a of the power transmitting coil 100 is the distance d [mm] in the tire circumferential direction between both ends of the power receiving coil 18 at the discontinuous portion 18a (FIGS. 4, 6(b) ) is preferably 1/3 or less. Since the ratio d/L is 1/3 or less, when viewed in the tire width direction, the discontinuous portion 18a is a region of the side inner surface S1 that overlaps with the power transmission region of the power transmission coil 100 as the tire 10 rotates. Stable power transmission can be achieved even when passing through.
  • the ratio d/L is preferably 1/4 or less.
  • the two power lines forming the interrupted portion 18a do not contact each other in order to prevent a decrease in transmission efficiency due to the proximity effect, and the ratio d/L is preferably 1/20 or more.
  • the length L of the curved portion 101a is preferably 50 to 180 mm in view of the balance between the magnitude of transmitted power and the installation space constraints of the base to which the power transmission coil 100 is attached.
  • the power receiving unit 30 further includes a second power receiving coil 28 when the power receiving coil 18 is referred to as the first power receiving coil 18 .
  • the second power receiving coil 28 is provided on the side inner surface S1, and generates an alternating current magnetic field by receiving an alternating magnetic field transmitted through the side portion S.
  • the second power receiving coil 28 is a circular coil that extends along the side inner surface S1 and concentrically with the first power receiving coil 18 in a circumferential direction of the tire.
  • the resonant frequency in the circuit of the second power receiving coil 28 matches the resonant frequency in the circuit of the power transmitting unit 104, and the alternating current magnetic field generated by the power transmitting coil 100 causes the second power receiving coil 28 to resonate.
  • the resonant frequency in the circuit of the first power receiving coil 18 matches the resonant frequency in the circuit of the power transmitting coil 100, and as a result, it also matches the resonant frequency in the circuit of the second power receiving coil 28. Not only the AC magnetic field generated by the power transmitting coil 100 but also the AC magnetic field generated by the second power receiving coil 28 causes the first power receiving coil 18 to resonate. According to the inventor's study, it has been confirmed that by making the second power receiving coil 28 function as a relay coil in this way, larger AC power is generated in the first power receiving coil 18, and power feeding efficiency is greatly improved. Ta.
  • the second power receiving coil 28 does not have a power line connected from the second power receiving coil 28 to the communication device 22, and is independent from the communication device 22.
  • the ratio Ts2/Tmin is preferably 1.0 to 5.5.
  • the preferred range of Ts2/Tmin for each rubber configuration of the side portion S is the same as the above-described preferred range of the ratio Ts/Tmin for each rubber configuration of the side portion S.
  • the first power receiving coil 18 is placed near the belt layer 16 and the steel cord of the bead core 12
  • a conductive material is placed near the transmission path of the alternating current magnetic field, causing loss due to eddy current, resulting in transmission efficiency. This is not preferable because it reduces the In particular, in low-profile tires, the distance between the belt layer 16 and the bead core 12 is narrow, and the distance between the alternating current magnetic field and the conductive material becomes short, so the alternating magnetic field may not reach the first power receiving coil 18 with sufficient strength. There is.
  • the first power receiving coil 18 with respect to the average value (average distance) G [mm] of the distance (shortest distance) between the power transmission area of the power transmitting coil 100 and each of the first power receiving coil 18 and the second power receiving coil 28 (see FIG. 7)
  • the ratio R/G of the interval R [mm] (see FIG. 7) in the tire radial direction between the second power receiving coil 28 and the second power receiving coil 28 is preferably 0.1 to 1.2, and preferably 0.2 to 1.0. It is preferable.
  • FIG. 7 is a diagram illustrating the arrangement of the power transmitting coil 100 and the power receiving coils 18 and 28. In order to efficiently transmit power, it is preferable that the distance between power transmitting coil 100 and power receiving coils 18 and 28 be short.
  • the radial distance R between the first power receiving coil 18 and the second power receiving coil 28 is preferably narrow from the viewpoint of suppressing a decrease in transmission efficiency.
  • the average distance G is preferably 10 to 50 mm. If the average distance G is short, there is a high possibility that the side part S will come into contact with the power transmission coil 100, while if the average distance G is long, the transmission distance will be too long and the transmission efficiency will tend to decrease.
  • the second power receiving coil 28 has a discontinuous portion 28a formed such that the second power receiving coil 28 is interrupted in the tire circumferential direction by extending both ends of the second power receiving coil 28 in the circumferential direction so as to deviate from the tire circumferential direction. are doing.
  • a capacitor that forms a resonant circuit together with the second power receiving coil 28 is connected to the power lines at both ends of the second power receiving coil 28 forming the interrupted portion 28a.
  • the angle between the discontinuous portion 18a of the first power receiving coil 18 and the discontinuous portion 28a of the second power receiving coil 28 in the tire circumferential direction (around the tire rotation center axis Ax) is 4 degrees or more. It is preferable that FIG.
  • the angle formed is an angle formed between the center positions of the discontinuous portions 18a and 28a in the tire circumferential direction. If the angle formed by the discontinuous parts 18a, 28a is less than 4 degrees, the power lines forming the discontinuous parts 18a, 28a will be too close together, and the resonance circuit of one power receiving coil will be influenced by the power line of the other power receiving coil. Losses may occur.
  • the angle formed above is preferably 5 degrees or more.
  • the second radial region R2 whose ends are the positions of the first power receiving coil 18 and the second power receiving coil 28 in the tire radial direction (facing the curved portion 101a with the side portion S sandwiched in between) is defined as As shown in 9, it is preferable that they are not separated in the tire radial direction.
  • the first radial region R1 is a region in the tire radial direction whose ends are the outermost circumferential portion and the innermost circumferential portion in the tire radial direction of the electric wire 101b forming the curved portion 101a.
  • the alternating current magnetic field generated by the power transmitting coil 100 is transferred to the first power receiving coil 18 and
  • the second receiving coil 28 can receive the power with sufficient strength, which increases the effect of improving transmission efficiency.
  • the two radial regions R1 and R2 are specified when the tire 10 is mounted on the vehicle and filled with air to a predetermined internal pressure (the air pressure of the relevant tire size specified by the vehicle; if not specified, 230 kPa). Ru. In the example shown in FIGS.
  • the first radial region R1 and the second radial region R2 are in contact with each other in the tire radial direction, and FIGS. 9(c) and 9(d) ), the first radial region R1 and the second radial region R2 overlap in the tire circumferential direction.
  • the first radial region R1 and the second radial region R2 overlap in the tire circumferential direction.
  • the power transmission unit 104 preferably further includes a magnetic body 110 disposed on the side opposite to the side portion S with respect to the power transmission coil 100.
  • FIG. 10 is a diagram illustrating the magnetic body 110.
  • the relative magnetic permeability of the magnetic body 110 at the frequency of the alternating magnetic field generated by the power transmission coil 100 is 30 to 300.
  • the magnetic body 110 in the example shown in FIG. 10 is a magnetic sheet having a surface parallel to the plane of the power transmission region of the power transmission coil 100.
  • the magnetic body 110 in the example shown in FIG. 10 is in contact with the power transmission coil 100 and is laminated on the surface of the nonmagnetic substrate 100a on the side portion S side.
  • the thickness of the magnetic sheet is preferably 0.01 to 0.5 mm.
  • the power transmission coil 100 is disposed, for example, in a wheel house of a vehicle that accommodates a suspension, and on the side opposite to the side where the power reception coils 18 and 28 are provided with respect to the power transmission coil 100 (the back side of the power transmission coil 100), an aluminum , structural materials and parts containing metals (conductors) such as iron are arranged. Therefore, an eddy current is generated on the surface of the conductor due to the alternating magnetic field generated by the power transmission coil 100, and the resulting loss may reduce transmission efficiency or cause the metal member to generate heat. Therefore, it is preferable to arrange a magnetic sheet to absorb or block the magnetic flux generated by the power transmission coil 100. More preferably, as shown in FIG.
  • FIG. 11 is a diagram illustrating the arrangement of the magnetic body 110, the power transmitting coil 100, and the power receiving coils 18 and 28.
  • a non-magnetic substrate 100a in contact with the power transmission coil 100 is laminated on the surface of the side portion S of the magnetic body 110 in the example shown in FIG. It is preferable that the distance between the power transmitting coil 100 and the power receiving coils 18, 28 is short.
  • the ratio h/G of the interval h to the average value (average distance) G [mm] of the distance (shortest distance) between the power transmission area of the power transmission coil 100 and each of the power reception coils 18 and 28 is 0.01 to 0.5. It is preferable that
  • the power receiving coils 18, 28 and the power transmitting coil 100 are each formed of a single conductive wire made of a single wire.
  • a coil is suitable for feeding power using a magnetic resonance method using electromagnetic waves having a frequency in the MHz band.
  • the frequency range when power is supplied using the magnetic resonance method is preferably in the range of 1 MHz to 1 GHz, more preferably in the range of 2 to 20 MHz.
  • the power receiving coils 18 and 28 that are made up of a single conductive wire made of a single wire can prevent an increase in AC resistance due to the proximity effect compared to a given power receiving coil that has the same cross-sectional area and is made up of a power line made of stranded wires. can.
  • the diameter of the conducting wire (single wire) in the power transmitting coil 100 is preferably larger than the diameter of the conducting wire (single wire) in the power receiving coils 18 and 28.
  • the diameter D1 of the single wire conductor is the length obtained by excluding the thickness D2 of the coating layer covering the conductor from the diameter of the single wire.
  • the conductor is made of copper, for example, and the coating layer is made of resin, for example. The larger the diameter of the power transmitting coil 100 and the power receiving coils 18 and 28 is, the more advantageous it is from the viewpoint of increasing transmission efficiency by generating a strong alternating current magnetic field and generating large alternating current power.
  • the diameter of the power receiving coils 18, 28 is excessively large, the distortion when deformed following the deformation of the side portion S is large, and durability may deteriorate. Furthermore, if the diameter of the power receiving coils 18, 28 is too large, there is a risk that they may peel off or fall off from the side inner surface S1 due to centrifugal force during rolling. Therefore, by making the diameter of the conducting wire (single wire) in the power transmitting coil 100 thicker than the diameter of the conducting wire (single wire) in the power receiving coils 18, 28, the thickness of the power receiving coils 18, 28 is limited. This can complement the effect of improving transmission efficiency that is suppressed by this, and further ensure the durability of the power receiving coils 18 and 28.
  • the diameter of the conducting wire (single wire) in the receiving coils 18, 28 is preferably 0.5 to 1.0 mm.
  • the diameter of the conductor (single wire) in the power transmission coil 100 is preferably 0.8 to 1.5 mm. Further, the number of turns of the power transmission coil 100 is preferably 3 to 12 turns.
  • At least one of the ratio Ts2/G2 of the thickness Ts2 [mm] (see FIG. 13) of the side portion S at the position of the side inner surface S1 where the second power receiving coil 28 is provided is 0.1 to 0.7.
  • FIG. 13 is a cross-sectional view illustrating the relationship between the distances G1, G2 between the power transmitting coil 100 and the power receiving coils 18, 28, and the thicknesses Ts1, Ts2 of the side portions S.
  • the distance between power transmitting coil 100 and power receiving coils 18 and 28 be short.
  • the degree of lateral deformation of the side portion S becomes too large relative to the distances G1, G2, and the fluctuation range of the transmitted power becomes large. I end up.
  • the distance between the power transmitting coil 100 and the power receiving coils 18 and 28 is too short, there is a high possibility that the side part S will come into contact with the power transmitting coil 100 due to lateral deformation of the side part S during tire cornering.
  • the ratio Ts1/G1 and the ratio Ts2/G2 are each more preferably from 0.2 to 0.6, and even more preferably from 0.15 to 0.55.
  • the distance between the power transmitting coil 100 and the power receiving coils 18, 28 is adjusted, for example, by adjusting the thickness along the tire width direction of a pedestal for attaching the nonmagnetic substrate 100a or the magnetic body 110 to the base.
  • the height is Sh [mm]
  • the height of the position of the side inner surface S1 where the thickness of the side portion S is Tmin is Ht [mm]
  • the position of the side inner surface S1 where the first power receiving coil 18 is provided is provided.
  • the height of is H1 [mm]
  • the height of the position of the side inner surface S1 where the second power receiving coil 28 is provided is H2 [mm]
  • the oblateness of the tire 10 is P x 100 [%].
  • FIG. 14 is a diagram illustrating the relationship between the height positions of the power receiving coils 18 and 28 and the aspect ratio P.
  • the low-profile tire 10 has a small amount of vertical deflection of the side portion S, suppresses deformation of the power receiving coils 18, 28 due to rolling of the tire 10, and easily ensures durability of the power receiving coils 18, 28.
  • the transmission efficiency is likely to decrease due to the belt layer 16 and the steel cord of the bead core 12, and the ratio Ts1/Tmin or the ratio Ts2/Tmin at the position where the power receiving coils 18, 28 are provided is outside the above range. Even if the conditions are satisfied, it may be difficult to suppress a decrease in transmission efficiency. Therefore, it is preferable that the lower the tire is, the closer the height position of the power receiving coils 18, 28 is to the height position of the side portion S having the thickness Tmin. If the height positions of the power receiving coils 18 and 28 are set so as to satisfy at least one of the above two relationships, the durability of the power receiving coils 18 and 28 and the suppression of reduction in transmission efficiency are particularly well balanced.
  • the aspect ratio P is preferably 0.30 to 0.65.
  • Regular internal pressure is the air pressure specified for each tire by each standard in the standard system including the standard on which the tire is based.
  • the maximum value stated in “LIMITS AT VARIOUS COLD INFLATION PRESSURES” refers to "INFLATION PRESSURES" specified in ETRTO, and if the tire 10 is for a passenger car, it is 230 kPa. However, if the tire 10 is a tire installed on a new vehicle, the air pressure is set to the value specified by the vehicle.
  • FIG. 15 is a diagram illustrating an angular range in the tire circumferential direction (around the rotation center axis Ax of the tire 10) in which the power transmission coil 100 is arranged.
  • the power transmitting coil 100 When the power transmitting coil 100 is located near the ground contact surface of the tire 10, the height positions of the power receiving coils 18 and 28 change with the vertical deflection deformation of the tire 10, so that the height position of the power transmitting coil 100 changes. Misalignment is likely to occur. Therefore, the power receiving coils 18 and 28 may not be able to sufficiently receive the alternating current magnetic field generated by the power transmitting coil 100, and there is a possibility that the transmission efficiency may be reduced.
  • the power transmitting coil 100 When the power transmitting coil 100 is arranged within the above-mentioned angle range, the influence on the transmitted power due to the change in the height position of the power receiving coils 18, 28 due to the vertical bending deformation of the tire 10 can be reduced, and a decrease in transmission efficiency can be suppressed. be able to.
  • tire and power supply system of the present invention have been described in detail above, the tire and power supply system of the present invention are not limited to the above embodiments, and various improvements and changes can be made without departing from the gist of the present invention. Of course it's good too.

Abstract

This tire comprises a power reception coil that generates electric power upon reception of an AC magnetic field from the outside of the tire. The power reception coil is provided to a side part, between a tread part and a bead part, at the inner side surface facing a tire hollow region of the tire, and generates AC power upon reception of an AC magnetic field that has passed through said side part. The power reception coil has a circular shape and extends along the inner side surface so as to go around in the tire circumferential direction. When the thickness of the side part at the location, of the inner side surface, where the power reception coil is disposed is defined as Ts and the minimum thickness of the side part in the tire radial thicknesses is defined as Tmin, the ratio Ts/Tmin is 1.0-5.5.

Description

タイヤ及び給電システムTires and power supply system
 本発明は、タイヤ及びタイヤに設けられる電子デバイスに電力を供給するための給電システムに関する。 The present invention relates to a power supply system for supplying power to a tire and an electronic device provided on the tire.
 タイヤに、センサー等の電子デバイスを組み込み、タイヤの状態を監視する技術が提案されている。例えば、空気入りタイヤの空気圧を監視するために、タイヤ空洞領域内に圧力センサー及び送信装置を設け、圧力センサーによる圧力のモニタリング結果を送信装置から車両側の受信装置にワイヤレス送信する内圧警報システム、あるいは、タイヤ空洞領域内のトレッド部の内周面側に加速度センサーを設け、加速度センサーによるタイヤ転動時のトレッド部の変形挙動のモニタリング結果を、タイヤ空洞領域内に設けられた送信装置から車両側の受信装置にワイヤレス送信するタイヤ変形挙動計測システム等が挙げられる。 Technology has been proposed to monitor the condition of tires by incorporating electronic devices such as sensors into tires. For example, in order to monitor the air pressure of a pneumatic tire, a pressure sensor and a transmitting device are provided in the tire cavity area, and an internal pressure alarm system that wirelessly transmits the pressure monitoring result by the pressure sensor from the transmitting device to a receiving device on the vehicle side; Alternatively, an acceleration sensor may be provided on the inner peripheral surface of the tread within the tire cavity, and the results of monitoring the deformation behavior of the tread during tire rolling may be transmitted to the vehicle from a transmitting device provided within the tire cavity. Examples include a tire deformation behavior measurement system that wirelessly transmits data to a receiving device on the side.
 このようなセンサー及び送信装置を駆動するためには電力を要するが、この電力は、例えば、送信装置内に内蔵されたバッテリーから供給される。しかし、このバッテリーの供給する電力容量には制限があるため、センサー及び送信装置を半永久的に駆動することはできず、ホイール組みした空気入りタイヤとホイールとをばらして、タイヤ空洞領域内の消耗したバッテリーを取り替える煩雑な処理が必要である。 Power is required to drive such a sensor and transmitter, and this power is supplied, for example, from a battery built into the transmitter. However, since the power capacity supplied by this battery is limited, it is not possible to drive the sensor and transmitter semi-permanently, and the pneumatic tire and wheel assembled on the wheel must be separated to reduce wear and tear within the tire cavity. A complicated process is required to replace the old battery.
 これに対して、電気回路を内蔵しかつその電気回路に安定して電力を供給可能なタイヤ及びそのタイヤへの給電構造を提供する技術が知られている(特許文献1)。
 上記技術では、自動車のタイヤには、電力を受けて駆動される電気回路と、前記電気回路に連なる二次コイルとが設けられ、自動車の車両本体には、車両の電源装置に連なるインバータと、車両本体のうちタイヤとの対向部分に配置されて、インバータによって励磁される一次コイルとが設けられている。
On the other hand, a technique is known that provides a tire that includes an electric circuit and is capable of stably supplying power to the electric circuit, and a power supply structure for the tire (Patent Document 1).
In the above technology, the tires of the automobile are provided with an electric circuit that receives electric power and is driven, and a secondary coil that is connected to the electric circuit, and the vehicle body of the automobile is provided with an inverter that is connected to the power supply device of the vehicle. A primary coil is disposed in a portion of the vehicle body that faces the tires, and is excited by an inverter.
特開2000-255229号公報Japanese Patent Application Publication No. 2000-255229
 上記技術では、タイヤ空洞領域に設けられる複数の二次コイルがタイヤの側壁の内周面全周に亘り互いに隣接するように埋設されている(特許文献1の図5)。
 上記技術では、二次コイルそれぞれが一次コイルに対して向き合う位置にあるとき、最も伝送効率が高くなる。そして、タイヤの回転に伴い、一次コイルと二次コイルの向き合う位置が変化することで、伝送電力は変動する。そのため、車両が停止したときあるいは低速走行中の、一次コイルに対するタイヤの相対的な回転方向位置によっては、伝送電力が低くなり、送信装置及びセンサーに十分な電力の供給ができない場合がある。
In the above technology, a plurality of secondary coils provided in a tire cavity region are embedded adjacent to each other over the entire inner peripheral surface of the side wall of the tire (FIG. 5 of Patent Document 1).
In the above technology, the transmission efficiency is highest when each of the secondary coils is positioned facing the primary coil. As the tire rotates, the position where the primary coil and the secondary coil face each other changes, causing the transmitted power to fluctuate. Therefore, depending on the rotational position of the tire relative to the primary coil when the vehicle is stopped or running at low speed, the transmitted power may become low and sufficient power may not be supplied to the transmitter and sensor.
 本発明は、タイヤ内に設けられた電子デバイスに電力を給電する際の伝送電力の変動を抑えつつ、伝送効率を高めることができるタイヤ、及び、このタイヤに適用した給電システムを提供することを目的とする。 The present invention aims to provide a tire that can improve transmission efficiency while suppressing fluctuations in transmitted power when power is supplied to electronic devices provided in the tire, and a power supply system applied to this tire. purpose.
 本開示は、以下の態様を包含する。
態様[1]
 タイヤ外部からの交流磁界を受けて電力を生成する受電コイルを備えたタイヤであって、
 トレッド部とビード部との間にあるサイド部の、前記タイヤのタイヤ空洞領域に面するサイド内表面に設けられ、前記サイド部を透過した交流磁界を受けることにより交流電力を生成する受電コイルを備え、
 前記受電コイルは、前記サイド内表面に沿ってタイヤ周方向に一周するように延びる円形状のコイルであり、
 前記受電コイルが設けられた前記サイド内表面の位置における前記サイド部の厚さをTs[mm]とし、前記サイド部のタイヤ径方向にわたる厚さのうちの最小厚さをTmin[mm]としたとき、比Ts/Tminは1.0~5.5である、ことを特徴とするタイヤ。
The present disclosure includes the following aspects.
Aspect [1]
A tire equipped with a power receiving coil that generates electric power by receiving an alternating magnetic field from outside the tire,
A power receiving coil is provided on the inner surface of the side of the side portion between the tread portion and the bead portion facing the tire cavity region of the tire, and generates AC power by receiving an alternating current magnetic field transmitted through the side portion. Prepare,
The power receiving coil is a circular coil that extends around the inner surface of the side in a circumferential direction of the tire,
The thickness of the side portion at the position of the inner surface of the side where the power receiving coil is provided is Ts [mm], and the minimum thickness of the side portion in the tire radial direction is Tmin [mm]. A tire characterized in that: the ratio Ts/Tmin is 1.0 to 5.5.
態様[2]
 前記受電コイルを第1受電コイルというとき、前記サイド内表面に設けられ、前記サイド部を透過した交流磁界を受けることにより交流磁界を生成する第2受電コイルをさらに備え、
 前記第2受電コイルは、前記サイド内表面に沿って、前記第1受電コイルと同心円状にタイヤ周方向に一周するように延びる円形状のコイルである、態様[1]に記載のタイヤ。
Aspect [2]
When the power receiving coil is referred to as a first power receiving coil, the power receiving coil further includes a second power receiving coil that is provided on the inner surface of the side and generates an alternating current magnetic field by receiving an alternating magnetic field transmitted through the side part,
The tire according to aspect [1], wherein the second power receiving coil is a circular coil that extends along the inner surface of the side and concentrically with the first power receiving coil in a circumferential direction of the tire.
態様[3]
 前記第1受電コイル及び前記第2受電コイルは、前記第1受電コイル及び前記第2受電コイルそれぞれの両端部がタイヤ周方向から逸脱するように延びることにより前記受電コイルがタイヤ周方向に途切れるよう形成された途切れ部を有し、
 タイヤ周方向に、前記第1受電コイルの前記途切れ部と前記第2受電コイルの前記途切れ部とがなす角度は、4度以上である、態様[2]に記載のタイヤ。
Aspect [3]
The first power receiving coil and the second power receiving coil extend so that both ends of the first power receiving coil and the second power receiving coil deviate from the tire circumferential direction so that the power receiving coil is interrupted in the tire circumferential direction. having a discontinuity formed;
The tire according to aspect [2], wherein the angle formed by the discontinuous portion of the first power receiving coil and the discontinuous portion of the second power receiving coil in the tire circumferential direction is 4 degrees or more.
態様[4]
 前記ビード部のタイヤ径方向内側の端を基準としたタイヤ径方向に沿った高さに関して、前記タイヤの断面高さをSh[mm]とし、前記サイド部の厚さがTminとなる前記サイド内表面上の位置の高さをHt[mm]とし、前記第1受電コイルが設けられた前記サイド内表面上の位置の高さをH1[mm]とし、前記第2受電コイルが設けられた前記サイド内表面上の位置の高さをH2[mm]とし、前記タイヤの偏平率をP×100[%]としたとき、
 Ht-Sh×P/4≦H1≦Ht+Sh×P/4、及び
 Ht-Sh×P/4≦H2≦Ht+Sh×P/4、
の少なくとも一方を満足する、態様[2]又は[3]に記載のタイヤ。
Aspect [4]
Regarding the height along the tire radial direction with reference to the inner end of the tire radial direction of the bead portion, the cross-sectional height of the tire is Sh [mm], and the thickness of the side portion is Tmin. The height of the position on the surface is Ht [mm], the height of the position on the side inner surface where the first power receiving coil is provided is H1 [mm], and the height of the position on the side inner surface where the first power receiving coil is provided is H1 [mm]. When the height of the position on the side inner surface is H2 [mm] and the flatness ratio of the tire is P x 100 [%],
Ht-Sh×P/4≦H1≦Ht+Sh×P/4, and Ht-Sh×P/4≦H2≦Ht+Sh×P/4,
The tire according to aspect [2] or [3], which satisfies at least one of the following.
態様[5]
 送電ユニットから、タイヤに設けられた受電ユニットに電力をワイヤレス伝送して、前記受電ユニットに接続される電子デバイスに給電する給電システムであって、
 前記送電ユニットは、前記タイヤに対して非回転の基部に設けられ交流磁界を生成する送電コイルを備え、
 前記受電ユニットは、前記タイヤのトレッド部とビード部との間にあるサイド部の、前記タイヤのタイヤ空洞領域に面するサイド内表面に設けられ、前記送電コイルから発生し前記サイド部を透過した前記交流磁界を受けることにより交流電力を生成する受電コイルを備え、
 前記電子デバイスは、前記受電ユニットにおいて前記交流電力から直流電力に変換された電力の供給を受けて駆動し、
 前記送電コイルは、前記基部に設けられることにより前記サイド部に対して前記受電コイルの側と反対側に配置され、
 前記受電コイルは、前記サイド内表面に沿ってタイヤ周方向に一周するように延びる円形状のコイルであり、
 前記受電コイルが設けられた前記サイド内表面のタイヤ径方向の位置における前記サイド部の厚さをTs[mm]とし、前記サイド部のタイヤ径方向にわたる厚さのうちの最小厚さをTmin[mm]としたとき、比Ts/Tminは1.0~5.5である、ことを特徴とする給電システム。
Aspect [5]
A power supply system that wirelessly transmits power from a power transmission unit to a power reception unit provided on a tire to supply power to an electronic device connected to the power reception unit,
The power transmission unit includes a power transmission coil that is provided at a base that does not rotate with respect to the tire and generates an alternating current magnetic field,
The power receiving unit is provided on an inner surface of a side portion of the tire between a tread portion and a bead portion of the tire facing a tire cavity region, and the power receiving unit is configured to receive power generated from the power transmission coil and transmitted through the side portion. comprising a power receiving coil that generates AC power by receiving the AC magnetic field,
The electronic device is driven by receiving power converted from the AC power to DC power in the power receiving unit,
The power transmitting coil is provided at the base and is disposed on a side opposite to the power receiving coil with respect to the side part,
The power receiving coil is a circular coil that extends around the inner surface of the side in a circumferential direction of the tire,
The thickness of the side portion at the position in the tire radial direction of the side inner surface where the power receiving coil is provided is Ts [mm], and the minimum thickness of the side portion in the tire radial direction is Tmin [mm]. mm], the ratio Ts/Tmin is 1.0 to 5.5.
態様[6]
 前記送電コイルは、前記サイド部の側を向くよう配置される平面状の送電領域を有し、
 前記送電コイルは、前記送電領域の面内において所定の曲率に従って延びる円弧形状の曲率部を有し、
 タイヤ幅方向に見て、前記曲率部は、前記受電コイルの前記円形状と同心円である円の周方向の一部の区間をなしている、態様[5]に記載の給電システム。
Aspect [6]
The power transmission coil has a planar power transmission area arranged to face the side part,
The power transmission coil has an arc-shaped curvature portion that extends according to a predetermined curvature in the plane of the power transmission region,
The power feeding system according to aspect [5], wherein the curvature portion forms a part of a section in the circumferential direction of a circle that is concentric with the circular shape of the power receiving coil when viewed in the tire width direction.
態様[7]
 前記受電コイルは、前記受電コイルの両端部がタイヤ周方向から逸脱するように延びることにより前記受電コイルがタイヤ周方向に途切れるように形成された途切れ部を有し、
 前記途切れ部における前記両端部のタイヤ周方向の間隔d[mm]の、前記曲率部のタイヤ周方向に沿った長さL[mm]に対する比d/Lは1/3以下である、態様[6]に記載の給電システム。
Aspect [7]
The power receiving coil has a discontinuous portion formed such that the power receiving coil is interrupted in the tire circumferential direction by extending both ends of the power receiving coil deviating from the tire circumferential direction,
Aspect [1] wherein the ratio d/L of the distance d [mm] between the both ends of the discontinuous part in the tire circumferential direction to the length L [mm] of the curvature part in the tire circumferential direction is 1/3 or less. 6].
態様[8]
 前記受電コイルを第1受電コイルというとき、前記受電ユニットは、前記サイド内表面に設けられ、前記サイド部を透過した交流磁界を受けることにより交流磁界を生成する第2受電コイルをさらに備え、
 前記第2受電コイルは、前記サイド内表面に沿って、前記第1受電コイルと同心円状にタイヤ周方向に一周するように延びる円形状のコイルである、態様[6]又は[7]に記載の給電システム。
Aspect [8]
When the power receiving coil is referred to as a first power receiving coil, the power receiving unit further includes a second power receiving coil that is provided on the inner surface of the side and generates an alternating current magnetic field by receiving an alternating magnetic field transmitted through the side part,
According to aspect [6] or [7], the second power receiving coil is a circular coil that extends along the inner surface of the side and concentrically with the first power receiving coil in a circumferential direction of the tire. power supply system.
態様[9]
 前記送電領域と、前記第1受電コイル及び前記第2受電コイルそれぞれとの距離の平均値G[mm]に対する、前記第1受電コイル及び前記第2受電コイルのタイヤ径方向の間隔R[mm]の比R/Gは0.1~1.2である、態様[8]又は[9]に記載の給電システム。
Aspect [9]
The distance R [mm] between the first power receiving coil and the second power receiving coil in the tire radial direction with respect to the average value G [mm] of the distance between the power transmission region and each of the first power receiving coil and the second power receiving coil. The power supply system according to aspect [8] or [9], wherein the ratio R/G is 0.1 to 1.2.
態様[10]
 タイヤ径方向に沿った前記曲率部を通る断面において、前記曲率部が位置する第1の径方向領域と、前記サイド部に対し前記曲率部の側と反対側に位置する前記第1受電コイル及び前記第2受電コイルそれぞれのタイヤ径方向の位置を両端とする第2の径方向領域とはタイヤ径方向に離れていない、態様[8]から[10]のいずれか1つに記載の給電システム。
Aspect [10]
In a cross section passing through the curvature part along the tire radial direction, a first radial region where the curvature part is located, the first power receiving coil located on the side opposite to the curvature part with respect to the side part, and The power feeding system according to any one of aspects [8] to [10], wherein the second radial region whose ends are the positions of the second power receiving coils in the tire radial direction is not separated in the tire radial direction. .
態様[11]
 前記送電ユニットは、前記送電コイルに対し前記サイド部の側と反対側に配置される磁性体であって、前記送電コイルにより生成する交流磁界の周波数における比透磁率が30~300である磁性体をさらに備える、態様[8]から[10]のいずれか1つに記載の給電システム。
Aspect [11]
The power transmission unit is a magnetic body disposed on a side opposite to the side portion with respect to the power transmission coil, and has a relative magnetic permeability of 30 to 300 at a frequency of an alternating current magnetic field generated by the power transmission coil. The power feeding system according to any one of aspects [8] to [10], further comprising:
態様[12]
 前記磁性体は、前記送電コイルに対し前記サイド部の側と反対側に、前記送電コイルと間隔h[mm]をあけて配置され、
 前記送電領域と、前記第1受電コイル及び前記第2受電コイルそれぞれとの距離の平均値G[mm]に対する、前記間隔hの比h/Gは0.01~0.5である、態様[11]に記載の給電システム。
Aspect [12]
The magnetic body is arranged on a side opposite to the side portion with respect to the power transmission coil, with a distance h [mm] from the power transmission coil,
The ratio h/G of the interval h to the average value G [mm] of the distance between the power transmission region and each of the first power receiving coil and the second power receiving coil is 0.01 to 0.5, [ 11].
態様[13]
 前記送電コイルと前記第1受電コイルとのタイヤ幅方向の距離G1[mm]に対する、前記第1受電コイルが設けられる前記サイド内表面の位置における前記サイド部の厚さTs1[mm]の比Ts1/G1、及び、前記送電領域と前記第2受電コイルとのタイヤ幅方向の距離G2[mm]に対する、前記第2受電コイルが設けられる前記サイド内表面の位置における前記サイド部の厚さTs2[mm]の比Ts2/G2、の少なくとも一方は0.1~0.7である、態様[8]から[12]のいずれか1つに記載の給電システム。
Aspect [13]
ratio Ts1 of the thickness Ts1 [mm] of the side portion at the position of the inner surface of the side where the first power receiving coil is provided to the distance G1 [mm] in the tire width direction between the power transmitting coil and the first power receiving coil; /G1, and the thickness Ts2 of the side portion at the position of the side inner surface where the second power receiving coil is provided with respect to the distance G2 [mm] in the tire width direction between the power transmission region and the second power receiving coil. The power feeding system according to any one of aspects [8] to [12], wherein at least one of the ratio Ts2/G2 of [mm] is 0.1 to 0.7.
態様[14]
 前記送電コイル及び前記受電コイルはそれぞれ、単線からなる1本の導線で構成され、
 前記送電コイルにおける前記導線の導体の直径は、前記受電コイルにおける前記導線の導体の直径より大きい、態様[5]から[13]のいずれか1つに記載の給電システム。
Aspect [14]
The power transmitting coil and the power receiving coil each include a single conductive wire made of a single wire,
The power supply system according to any one of aspects [5] to [13], wherein the diameter of the conductor of the conductor in the power transmission coil is larger than the diameter of the conductor of the conductor in the power reception coil.
態様[15]
 タイヤ幅方向に見て、前記送電コイルは、前記タイヤの回転中心軸から鉛直上方に延びる線のタイヤ周方向の両側それぞれに45度の角度範囲内に位置している、態様[5]から[14]のいずれか1つに記載の給電システム。
Aspect [15]
From aspect [5], the power transmission coil is located within an angular range of 45 degrees on each side of a line extending vertically upward from the central axis of rotation of the tire in the tire circumferential direction, when viewed in the tire width direction. 14]. The power supply system according to any one of [14].
 上述のタイヤ、及び、給電システムによれば、タイヤ内に設けられた電子デバイスに電力を給電する際の電力の変動を抑えつつ、伝送効率を高めることができる。 According to the tire and power supply system described above, it is possible to increase transmission efficiency while suppressing fluctuations in power when power is supplied to electronic devices provided within the tire.
一実施形態のタイヤの断面及び給電システムの一例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an example of a cross section of a tire and a power supply system according to an embodiment. 受電コイルを平面視した図である。FIG. 3 is a plan view of a power receiving coil. 受電コイルの配置を説明する断面図である。FIG. 3 is a cross-sectional view illustrating the arrangement of power receiving coils. 送電コイルを平面視した図である。It is a plan view of a power transmission coil. (a)は、タイヤ幅方向に見た送電コイルと受電コイルの重なりを示す図であり、(b)は、(a)の一部拡大図である。(a) is a diagram showing the overlapping of a power transmitting coil and a power receiving coil as seen in the tire width direction, and (b) is a partially enlarged view of (a). (a)は、タイヤ幅方向に見た送電コイルと、受電コイルの途切れ部との重なりを示す図であり、(b)は、(a)の一部拡大図である。(a) is a diagram showing an overlap between a power transmitting coil and a discontinuous portion of a power receiving coil when viewed in the tire width direction, and (b) is a partially enlarged view of (a). 送電コイル及び受電コイルの配置を説明する図である。It is a figure explaining arrangement of a power transmission coil and a power reception coil. 2つの受電コイルの配置を説明する図である。FIG. 3 is a diagram illustrating the arrangement of two power receiving coils. (a)~(d)は、送電コイルと受電コイルとのタイヤ径方向に沿った位置関係を説明する断面図である。(a) to (d) are cross-sectional views illustrating the positional relationship between the power transmitting coil and the power receiving coil along the tire radial direction. 磁性体を説明する図である。It is a figure explaining a magnetic body. 磁性体、送電コイル及び受電コイルの配置を説明する図である。It is a figure explaining arrangement of a magnetic body, a power transmission coil, and a power reception coil. コイルの断面の一例を示す図である。FIG. 3 is a diagram showing an example of a cross section of a coil. 送電コイルと受電コイルとの距離と、サイド部の厚さと関係を説明する断面図である。FIG. 3 is a cross-sectional view illustrating the relationship between the distance between a power transmitting coil and a power receiving coil, and the thickness of a side portion. 受電コイルの高さ位置とタイヤの偏平率との関係を説明する断面図である。FIG. 2 is a cross-sectional view illustrating the relationship between the height position of a power receiving coil and the aspect ratio of a tire. 送電コイルが配置される、タイヤの回転中心軸の周りの角度範囲を説明する図である。FIG. 2 is a diagram illustrating an angular range around the rotation center axis of the tire in which a power transmission coil is arranged.
 以下、一実施形態のタイヤ、及びタイヤに設けられる電子デバイスに電力を供給するための給電システムを、図面を参照しながら説明する。本発明のタイヤは、空気入りタイヤであることが好ましく、以降の説明では、空気入りタイヤを例にする。空気入りタイヤとリムで囲まれる空洞領域に充填される気体は、空気に制限されず、窒素等の不活性ガス、その他の気体であってもよい。 Hereinafter, a tire according to one embodiment and a power feeding system for supplying power to an electronic device provided on the tire will be described with reference to the drawings. The tire of the present invention is preferably a pneumatic tire, and in the following description, a pneumatic tire will be used as an example. The gas filled in the hollow region surrounded by the pneumatic tire and the rim is not limited to air, and may be an inert gas such as nitrogen or other gases.
 図1は、空気入りタイヤ断面の一例、及び空気入りタイヤを含む給電システムを示す図である。図1に示す空気入りタイヤ(以降、単にタイヤともいう)10は、一対のビードコア12、カーカスプライ層14、ベルト層16を骨格部分として備える。タイヤ10は、ホイール11(図3参照)に組みつけられている。図3中、ホイール11の一部(リム底面、リムフランジ)を示している。 FIG. 1 is a diagram showing an example of a cross section of a pneumatic tire and a power supply system including the pneumatic tire. A pneumatic tire (hereinafter also simply referred to as a tire) 10 shown in FIG. 1 includes a pair of bead cores 12, a carcass ply layer 14, and a belt layer 16 as skeleton parts. The tire 10 is assembled to a wheel 11 (see FIG. 3). In FIG. 3, a part of the wheel 11 (rim bottom surface, rim flange) is shown.
 ビードコア12は、スチール製のビードワイヤーがタイヤ周方向に多段に巻きまわされて構成された環状部材である。ビードコア12と、その周りに配置されるリムクッションゴム46、カーカスプライ層14及びインナーライナーゴム48によりビード部Bが形成される。ビード部Bは、タイヤ幅方向の両側それぞれに1つある。
 カーカスプライ層14は、ビードコア12それぞれの周りに巻きまわして折り返すことによりトロイダル形状を成した、有機繊維コードにより構成された部材である。カーカスプライ層14では、有機繊維コードがタイヤ径方向あるいはタイヤ幅方向に延びるように設けられている。図1に示すタイヤ10は、一枚のカーカスプライ層14で構成されるが、複数のカーカスプライ層がトロイダル形状を成してもよい。
 ベルト層16は、カーカスプライ層14のタイヤ径方向外側に設けられ、スチール製のベルトコードで構成されている。ベルト層16は、2枚の積層ベルトで構成され、スチールコードのタイヤ周方向に対する傾斜の向きが互いに異なって交錯層を形成している。
 これらの骨格部分の周りに、トレッドゴム40、サイドゴム42、ビードフィラーゴム44、リムクッションゴム46、及びインナーライナーゴム48が設けられる。トレッドゴム40と、トレッドゴム40に積層されたベルト層16、カーカスプライ層14及びインナーライナーゴム48とによりトレッド部Tが形成される。ビードコア12のタイヤ径方向外側において、サイドゴム42、ビードフィラーゴム44、リムクッションゴム46、カーカスプライ層14及びインナーライナーゴム48がタイヤ幅方向外側に凸状に湾曲している。図1に示す例において、サイド部Sは、トレッド部Tとビード部Bの間の部分であり、サイドゴム42、リムクッションゴム46、カーカスプライ層14、及びインナーライナーゴム48により形成される。サイド部Sは、トレッド部Tとビード部Bとの間にあり、タイヤ幅方向の両側それぞれに1つある。なお、サイド部Sのゴムの構成は、上記した構成に制限されず、サイドゴム42、リムクッションゴム46、インナーライナーゴム48に加え、補助フィラー、ランフラットライナー、ビードフィラー等のゴムをさらに備える場合がある。補助フィラーは、サイド部Sのビード部Bの側の部分を補強するゴムであり、例えば、カーカスプライ層と、リムクッションゴムあるいはサイドゴムとの間に挟まれるように配置され、サイドゴムよりもゴム硬度が高いゴムである。ランフラットライナーは、ランフラットタイヤのサイド部を補強するゴムであり、例えば、カーカスプライ層とインナーライナーゴムとの間に挟まれるように配置され、サイドゴムと同等あるいはサイドゴムよりゴム硬度が高いゴムである。
The bead core 12 is an annular member formed by winding a steel bead wire in multiple stages in the tire circumferential direction. A bead portion B is formed by the bead core 12, the rim cushion rubber 46, the carcass ply layer 14, and the inner liner rubber 48 arranged around the bead core 12. There is one bead portion B on each side in the tire width direction.
The carcass ply layer 14 is a member made of an organic fiber cord that has a toroidal shape by being wound around each of the bead cores 12 and folded back. In the carcass ply layer 14, organic fiber cords are provided so as to extend in the tire radial direction or the tire width direction. Although the tire 10 shown in FIG. 1 is composed of one carcass ply layer 14, a plurality of carcass ply layers may have a toroidal shape.
The belt layer 16 is provided on the outside of the carcass ply layer 14 in the tire radial direction, and is composed of a steel belt cord. The belt layer 16 is composed of two laminated belts, and the steel cords have different inclination directions with respect to the tire circumferential direction to form an intersecting layer.
Tread rubber 40, side rubber 42, bead filler rubber 44, rim cushion rubber 46, and inner liner rubber 48 are provided around these skeleton parts. The tread portion T is formed by the tread rubber 40, the belt layer 16, the carcass ply layer 14, and the inner liner rubber 48 that are laminated on the tread rubber 40. On the outer side of the bead core 12 in the tire radial direction, side rubber 42, bead filler rubber 44, rim cushion rubber 46, carcass ply layer 14, and inner liner rubber 48 are curved convexly outward in the tire width direction. In the example shown in FIG. 1, the side portion S is a portion between the tread portion T and the bead portion B, and is formed of side rubber 42, rim cushion rubber 46, carcass ply layer 14, and inner liner rubber 48. The side portions S are located between the tread portion T and the bead portion B, and there is one on each side in the tire width direction. Note that the configuration of the rubber of the side portion S is not limited to the configuration described above, and in addition to the side rubber 42, rim cushion rubber 46, and inner liner rubber 48, the rubber configuration of the side portion S may further include rubber such as an auxiliary filler, a run flat liner, and a bead filler. There is. The auxiliary filler is a rubber that reinforces the side portion of the side portion S on the side of the bead portion B. For example, the auxiliary filler is placed between the carcass ply layer and the rim cushion rubber or the side rubber, and has a harder rubber than the side rubber. It is a high quality rubber. A run-flat liner is a rubber that reinforces the side part of a run-flat tire. For example, it is placed between the carcass ply layer and the inner liner rubber, and is made of rubber that has the same hardness or higher hardness than the side rubber. be.
 タイヤ10は、さらに、受電ユニット30、及び電子デバイス24を備える。
 受電ユニット30は、ワイヤレス電力伝送によりタイヤ外部から電力の供給を受ける。受電ユニット30は、受電コイル18を備える。
 受電コイル18は、タイヤ10の空洞領域Cに面するサイド内表面S1に設けられ、サイド部Sのサイドゴム42、カーカスプライ層14、及びインナーライナーゴム48を透過した交流磁界を受けることにより交流磁界に応じた交流電力を生成する部分である。受電コイル18が受ける交流磁界は、受電コイル18の位置によっては、リムクッションゴム46も透過する場合がある。また、受電コイル18が受ける交流磁界は、サイド部Sのゴムの構成によっては、補助フィラー、ランフラットライナー、ビードフィラー等の他のゴムも透過する場合がある。タイヤ空洞領域Cは、タイヤ内周面とリム組みしたホイール11(図3以降においてホイールの一部を図示)のリム底面とで囲まれた、空気が所定の内圧に充填される領域である。受電コイル18は、サイド内表面S1に沿ってタイヤ周方向に一周するように延びる円形状のコイルである。図2に示す例の受電コイル18は、1回巻きの円形コイルである。図2は、受電コイル18を平面視した図である。受電コイル18は、一対のサイド部Sのうち、タイヤ10がホイール11を介して装着される車両の側(車両内側)を向くように配置される側のサイド部Sに設けられる。
 受電ユニット30は、さらに、図示されない整流回路及び安定化回路を備えており、受電コイル18が生成した交流電力は直流電力に変換され、所定の電圧の電力となる。
The tire 10 further includes a power receiving unit 30 and an electronic device 24.
The power receiving unit 30 receives power from outside the tire through wireless power transmission. Power receiving unit 30 includes power receiving coil 18 .
The power receiving coil 18 is provided on the side inner surface S1 facing the cavity region C of the tire 10, and receives an AC magnetic field transmitted through the side rubber 42 of the side portion S, the carcass ply layer 14, and the inner liner rubber 48, thereby receiving an AC magnetic field. This is the part that generates AC power according to the Depending on the position of the power receiving coil 18, the alternating current magnetic field that the power receiving coil 18 receives may also pass through the rim cushion rubber 46. Further, depending on the configuration of the rubber of the side portion S, the alternating current magnetic field received by the power receiving coil 18 may also pass through other rubber such as an auxiliary filler, a run flat liner, a bead filler, etc. The tire cavity region C is a region surrounded by the inner circumferential surface of the tire and the bottom surface of the rim of the wheel 11 assembled with the rim (a portion of the wheel is shown in FIGS. 3 and subsequent figures), and is filled with air to a predetermined internal pressure. The power receiving coil 18 is a circular coil that extends around the tire circumferential direction along the side inner surface S1. The power receiving coil 18 in the example shown in FIG. 2 is a one-turn circular coil. FIG. 2 is a plan view of the power receiving coil 18. The power receiving coil 18 is provided at the side S of the pair of side parts S that is arranged so as to face the side of the vehicle (inside the vehicle) on which the tire 10 is mounted via the wheel 11 .
The power receiving unit 30 further includes a rectifier circuit and a stabilizing circuit (not shown), and the AC power generated by the power receiving coil 18 is converted into DC power and becomes power at a predetermined voltage.
 電子デバイス24は、センサー部20及び通信装置22を備える。センサー部20は、受電コイル18が生成した交流電力から変換された直流電力の供給を受けて駆動する図示されないセンサー素子を有している。センサー素子は、特に制限されないが、例えば、転動中のタイヤ10のトレッド部Tの変形挙動を計測する加速度センサーである。センサー部20は、センサー素子が計測した測定結果のデータを演算処理により加工する図示されない演算処理回路をさらに有していてもよい。
 通信装置22は、センサー部20で計測したデータの全て、又は加工した情報を、タイヤ外部の図示されない通信装置に有線または無線で送信する部分であり、生成した交流電力から変換された直流電力の供給を受けて駆動する。
 受電ユニット30から延びる図示されない電力線が、センサー部20や通信装置22に接続されている。受電ユニット30からの直流電力は、センサー部20の駆動電力及び通信装置22の駆動電力(信号処理や送信等の電力)に用いられる。
The electronic device 24 includes a sensor section 20 and a communication device 22. The sensor unit 20 includes a sensor element (not shown) that is driven by receiving DC power converted from AC power generated by the power receiving coil 18 . The sensor element is, for example, an acceleration sensor that measures the deformation behavior of the tread portion T of the tire 10 during rolling, although it is not particularly limited. The sensor unit 20 may further include an arithmetic processing circuit (not shown) that processes data of measurement results measured by the sensor element through arithmetic processing.
The communication device 22 is a part that transmits all of the data measured by the sensor unit 20 or processed information to a communication device (not shown) outside the tire by wire or wirelessly, and transmits the DC power converted from the generated AC power. Receives supply and drives.
A power line (not shown) extending from the power receiving unit 30 is connected to the sensor section 20 and the communication device 22. The DC power from the power receiving unit 30 is used for driving power for the sensor unit 20 and driving power for the communication device 22 (power for signal processing, transmission, etc.).
 受電コイル18が受ける交流磁界は、例えば図1に示す交流電源装置102と送電コイル100とを備える送電ユニット104によって生成される。交流電源装置102には、車両本体に搭載されたバッテリーから電力が供給されてもよいし、バッテリーを介さず、オルタネータや駆動モータが発生する回生電力等から、直接又は整流・レギュレータを介して電力が供給されてもよい。送電コイル100は、タイヤ10の回転に対して、非回転の基部、例えばサスペンションの非回転部分(例えば、ナックル)に設けられる。送電コイル100には、送電コイル100と共に共振回路を構成するコンデンサが接続され、図4において符号100cで指す矩形の領域内に配置されている。送電ユニット104は、交流電源装置102に設けられるインバータにより交流電力を生成し、送電コイル100で交流磁界Mを生成する。
 一実施形態によれば、送電ユニット104から受電ユニット30への電力の伝送を、磁界共鳴方式で行う。磁界共鳴方式は、送電ユニット104の回路における共振周波数に、受電ユニット30の回路における共振周波数を一致させることにより、送電コイル100で生成された交流磁界が受電コイル18を共鳴させる。すなわち、共鳴により受電コイル18に交流電流が流れ、この交流電流を整流することにより直流電力を得ることができる。
 磁界共鳴方式では、電力の伝送効率が従来の電磁誘導方式に比べて高く、伝送距離も長い。この点から、送電ユニット104と受電ユニット30の共振周波数を一致させることが好ましい。共振周波数の調整は、例えば、送電ユニット104及び受電ユニット30それぞれのコイルのインダクタンスや共振回路内のキャパシタンスの調整によって行われる。一方で、伝送距離をなるべく短くすることで、伝送効率が高くなることから、受電コイル18は、上述のように、サイド部Sに設けられる。これにより、サスペンションの非回転部分に設けた送電コイル100との伝送距離が短くなり、高い伝送効率が得られる。
 また、磁界共鳴方式を用いる場合、受電コイル18の近傍に金属等の導電性材料が存在すると渦電流による損失が発生し伝送効率が低下するため、導電性材料(例えば、ベルト層16のベルトコード、ビードコア12のビードワイヤー)から離間したサイド部Sに、受電コイル18は設けられることが好ましい。
The alternating current magnetic field received by the power receiving coil 18 is generated, for example, by a power transmitting unit 104 including an alternating current power supply device 102 and a power transmitting coil 100 shown in FIG. The AC power supply device 102 may be supplied with power from a battery mounted on the vehicle body, or it may be supplied with power directly or via a rectifier/regulator from regenerative power generated by an alternator or drive motor without going through a battery. may be supplied. The power transmission coil 100 is provided at a base that does not rotate relative to the rotation of the tire 10, for example, at a non-rotating portion of a suspension (eg, a knuckle). A capacitor that forms a resonant circuit together with the power transmitting coil 100 is connected to the power transmitting coil 100, and is arranged within a rectangular area indicated by the reference numeral 100c in FIG. The power transmission unit 104 generates AC power using an inverter provided in the AC power supply device 102, and generates an AC magnetic field M using the power transmission coil 100.
According to one embodiment, power is transmitted from the power transmission unit 104 to the power reception unit 30 using a magnetic resonance method. In the magnetic resonance method, by matching the resonant frequency in the circuit of the power transmitting unit 104 with the resonant frequency in the circuit of the power receiving unit 30, the AC magnetic field generated by the power transmitting coil 100 causes the power receiving coil 18 to resonate. That is, an alternating current flows through the power receiving coil 18 due to resonance, and by rectifying this alternating current, direct current power can be obtained.
The magnetic resonance method has higher power transmission efficiency and longer transmission distance than the conventional electromagnetic induction method. From this point of view, it is preferable to match the resonance frequencies of the power transmission unit 104 and the power reception unit 30. The resonance frequency is adjusted, for example, by adjusting the inductance of the coils of the power transmission unit 104 and the power reception unit 30, and the capacitance within the resonance circuit. On the other hand, since transmission efficiency increases by shortening the transmission distance as much as possible, the power receiving coil 18 is provided in the side portion S as described above. Thereby, the transmission distance with the power transmission coil 100 provided in the non-rotating portion of the suspension is shortened, and high transmission efficiency can be obtained.
In addition, when using the magnetic resonance method, if there is a conductive material such as a metal near the receiving coil 18, loss due to eddy current will occur and the transmission efficiency will decrease. , the bead wire of the bead core 12).
 受電コイル18は、上述のように、サイド内表面S1に沿ってタイヤ周方向に一周するように延びる円形状のコイルである。そのため、送電コイル100と向き合う受電コイル18の周上の部分の位置及び長さは、タイヤ10の回転によって実質的に変化せず、伝送電力の変動が抑制される。そのため、車両の停止中、あるいは低速走行時であっても、電子デバイスに供給される電力の大きさは一定に維持される。このように、受電コイル18によれば、車両の走行及び停止や、車両速度によらず、いつでも給電を行うことができる。受電コイル18は、一定の曲率で円形状になっていることが好ましい。また、受電コイル18は、タイヤ10の回転中心軸を中心としたサイド部Sの同心円に沿って一周するよう配置されることが好ましい。なお、タイヤ周方向とは、タイヤ回転中心軸の周りの方向をいう。サイド部Sの同心円となる位置は、タイヤ10を接地させない状態で定められる。このように、受電コイル18は、タイヤ回転中心軸を内周側に包含する閉領域をなすループ状のコイルであるため、受電コイル18がタイヤ径方向に占めるサイド内表面S1の領域は僅かである。そのため、タイヤ10の転動に伴う縦撓み量が大きい、サイド部Sの厚さが薄い部分に受電コイル18が設けられていても、サイド内表面S1からの剥離や脱落が起こり難い。一方、サイド内表面に複数のコイルをタイヤ周方向に互いに隣接するように設けた場合は、コイルがタイヤ径方向に占めるサイド内表面の領域が広く、サイド部の縦撓みに追従して変形するコイルの変形量が大きいので、サイド内表面からのコイルの剥離や脱落が起こりやすい。 As described above, the power receiving coil 18 is a circular coil that extends around the tire circumferential direction along the side inner surface S1. Therefore, the position and length of the circumferential portion of the power receiving coil 18 facing the power transmitting coil 100 do not substantially change due to rotation of the tire 10, and fluctuations in transmitted power are suppressed. Therefore, even when the vehicle is stopped or running at low speed, the amount of power supplied to the electronic device remains constant. In this way, according to the power receiving coil 18, power can be supplied at any time regardless of whether the vehicle is running or stopped or the vehicle speed. It is preferable that the receiving coil 18 has a circular shape with a constant curvature. Moreover, it is preferable that the power receiving coil 18 is arranged so as to go around a concentric circle of the side portion S centered on the rotation center axis of the tire 10. Note that the tire circumferential direction refers to a direction around the tire rotation center axis. The concentric positions of the side portions S are determined with the tire 10 not in contact with the ground. In this way, the power receiving coil 18 is a loop-shaped coil that forms a closed area that includes the tire rotation center axis on the inner circumferential side, so the area of the side inner surface S1 that the power receiving coil 18 occupies in the tire radial direction is small. be. Therefore, even if the receiving coil 18 is provided in a thin portion of the side portion S where the amount of vertical deflection due to the rolling of the tire 10 is large, it is unlikely to peel off or fall off from the side inner surface S1. On the other hand, when multiple coils are provided adjacent to each other in the tire circumferential direction on the side inner surface, the coils occupy a large area of the side inner surface in the tire radial direction, and deform to follow the vertical deflection of the side part. Since the amount of deformation of the coil is large, the coil is likely to peel off or fall off from the inner surface of the side.
 そして、本実施形態のタイヤ10では、受電コイル18が設けられたサイド内表面S1の位置におけるサイド部Sのタイヤ軸方向厚さをTs[mm](図3参照)とし、サイド部Sのタイヤ径方向にわたるタイヤ軸方向の厚さのうちの最小厚さをTmin[mm]としたとき、比Ts/Tminは1.0~5.5である。タイヤ軸方向とは、タイヤ回転中心軸と平行な方向をいう。タイヤ軸方向はタイヤ幅方向と平行である。図3は、受電コイル18の配置を説明する断面図である。このようにサイド部Sの厚さが薄い部分に受電コイル18を設けることで、サイド部Sを通過する交流磁界の減衰を最小限に抑えることができ、伝送効率を高めることができる。このように、本実施形態によれば、電子デバイスに電力を給電する際の伝送電力の変動を抑えつつ、伝送効率を高めることができる。比Ts/Tminは、4.0以下であることがより好ましい。サイド部Sのタイヤ軸方向厚さTsは、受電コイル18が図1に示す位置に設けられている場合は、サイドゴム42、カーカスプライ層14及びインナーライナーゴム48の合計厚さである。
 また、タイヤは、走行によってゴムが発熱する。加えて、受電コイルもワイヤレス給電によって発熱する場合があるため、ゴムの発熱量の多いサイド部の位置に受電コイルを設けると、ゴムで発生した熱の放熱が妨げられ、タイヤ故障の原因となる場合がある。本実施形態のタイヤ10では、上記のようにサイド部Sの厚さが薄い部分に受電コイル18を設けているので、サイド部Sの厚さが厚い部分と比べ、発生した熱が放出されやすい。
 さらに、サイド部Sの厚さが薄い部分は、上記のようにタイヤ10の転動に伴う縦撓み量が大きく、受電コイルの形態によっては、サイド内表面S1からの剥離や脱落を起こさせる場合があるが、受電コイル18は円形状のコイルであるため、タイヤ径方向にわたる受電領域を有する従来の受電コイルと比べ、サイド部の撓みに追従して変形する変形量が小さく、受電コイル18の耐久性は向上する。
 なお、サイド部Sが、リムのタイヤ径方向外側位置からタイヤ幅方向外側に突出した部分であって、サイド部Sの最小厚さTminの1.5倍以上、好ましくは2倍以上のタイヤ軸方向の最大厚さを有する部分(リムプロテクト部)を有している場合の比Ts/Tminの範囲は、1.0~5.5であることが好ましく、1.0~4.2であることがより好ましい。図1に示すサイド部Sは、リムプロテクト部を有している。サイド部Sが、リムプロテクト部を有しない場合の比Ts/Tminの範囲は、1.0~3.3であることが好ましく、1.0~3.0であることがより好ましい。サイド部Sが、ランフラットライナーを有している場合の比Ts/Tminの範囲は、リムプロテクト部の有無に関わらず、1.0~1.8であることが好ましく、1.0~1.5であることがより好ましい。なお、サイド部のタイヤ径方向の両端は、例えば、サイド部のタイヤ内表面と反対側のタイヤ外表面に露出しているサイドゴムの領域のタイヤ径方向の両端である。
In the tire 10 of this embodiment, the tire axial thickness of the side portion S at the position of the side inner surface S1 where the power receiving coil 18 is provided is Ts [mm] (see FIG. 3), and the tire axial thickness of the side portion S is Ts [mm] (see FIG. 3). When the minimum thickness in the axial direction of the tire over the radial direction is Tmin [mm], the ratio Ts/Tmin is 1.0 to 5.5. The tire axial direction refers to a direction parallel to the tire rotation center axis. The tire axial direction is parallel to the tire width direction. FIG. 3 is a cross-sectional view illustrating the arrangement of the power receiving coil 18. By providing the receiving coil 18 in the thin portion of the side portion S in this manner, attenuation of the alternating current magnetic field passing through the side portion S can be minimized, and transmission efficiency can be increased. As described above, according to the present embodiment, it is possible to improve transmission efficiency while suppressing fluctuations in transmitted power when power is supplied to an electronic device. The ratio Ts/Tmin is more preferably 4.0 or less. The tire axial thickness Ts of the side portion S is the total thickness of the side rubber 42, carcass ply layer 14, and inner liner rubber 48 when the power receiving coil 18 is provided at the position shown in FIG.
In addition, the rubber of tires generates heat when the vehicle is driven. In addition, the power receiving coil may also generate heat due to wireless power transfer, so if the power receiving coil is placed on the side of the rubber where a large amount of heat is generated, the heat generated by the rubber will not be dissipated, which may cause tire failure. There are cases. In the tire 10 of this embodiment, since the power receiving coil 18 is provided in the thinner side portion S as described above, the generated heat is more easily released than in the thicker side portion S. .
Furthermore, as described above, the thin portion of the side portion S is subject to a large amount of vertical deflection due to the rolling of the tire 10, and depending on the form of the receiving coil, it may cause peeling or falling off from the side inner surface S1. However, since the power receiving coil 18 is a circular coil, the amount of deformation that follows the deflection of the side portion is small compared to a conventional power receiving coil that has a power receiving area extending in the tire radial direction, and the power receiving coil 18 is Durability is improved.
The side portion S is a portion of the rim that protrudes outward in the tire width direction from the outer position of the tire radial direction, and is 1.5 times or more, preferably twice or more, the minimum thickness Tmin of the side portion S of the tire shaft. The range of the ratio Ts/Tmin is preferably 1.0 to 5.5, and preferably 1.0 to 4.2 when it has a portion having the maximum thickness in the direction (rim protection portion). It is more preferable. The side portion S shown in FIG. 1 has a rim protection portion. When the side portion S does not have a rim protection portion, the ratio Ts/Tmin preferably ranges from 1.0 to 3.3, more preferably from 1.0 to 3.0. When the side part S has a run flat liner, the range of the ratio Ts/Tmin is preferably 1.0 to 1.8, and 1.0 to 1, regardless of the presence or absence of the rim protect part. More preferably, it is .5. Note that both ends of the side portion in the tire radial direction are, for example, both ends of the side rubber region exposed on the tire outer surface on the opposite side to the tire inner surface of the side portion in the tire radial direction.
 また、受電コイル18は、サイド部Sのサイド内表面S1に設けられるので、サイド部S内に少なくとも一部が埋め込まれた場合と比べ、交流電力の生成に伴って発生した熱が放出されやすく、好ましい。
 なお、受電コイル18は、例えば、接着剤等でコイルをタイヤ内周面に接着することや、公知の固定方法でサイド内表面S1に固定することができる。
In addition, since the power receiving coil 18 is provided on the side inner surface S1 of the side portion S, heat generated during generation of AC power is easily released compared to a case where at least a portion of the power receiving coil 18 is embedded within the side portion S. ,preferable.
Note that the power receiving coil 18 can be fixed to the inner side surface S1 by, for example, bonding the coil to the inner peripheral surface of the tire with an adhesive or the like, or by a known fixing method.
 一実施形態の給電システムでは、ホイール11に組み付けたタイヤ10に設けられた受電ユニット30に、送電ユニット104から、電力をワイヤレス伝送して、電子デバイス24に給電することを行う。給電システムは、送電ユニット104と、受電ユニット30とを備える。
 送電ユニット104は、タイヤ10に対して非回転の部分に設けられ交流磁界を生成する送電コイル100を備える。送電コイル100は、サイド部Sに対し受電コイル18の側と反対側、具体的には、サイド部Sに対しタイヤ幅方向外側に配置される。
 受電ユニット30は、タイヤ10に設けられる。
 具体的には、上述したように、受電ユニット30は、受電コイル18を備え、電子デバイス24は、センサー部20及び通信装置22を備える。受電コイル18は、上述したように、タイヤ10のタイヤ空洞領域Cと面するサイド部Sのサイド内表面S1に設けられ、送電コイル100から発生しサイド部Sを透過した交流磁界を受け、受電コイル18は、交流電力を生成する。
 この給電システムにおいて、受電コイル18は、サイド内表面S1に沿ってタイヤ周方向に一周するように延びる円形状のコイルであり、受電コイル18が設けられたサイド内表面S1のタイヤ径方向の位置におけるサイド部Sの厚さをTs[mm]、サイド部Sのタイヤ径方向にわたる厚さのうちの最小厚さをTmin[mm]としたとき、比Ts/Tminは1.0~5.5であるため、電子デバイスに電力を給電する際の伝送電力の変動を抑えつつ、伝送効率を高めることができる。
In the power supply system of one embodiment, power is wirelessly transmitted from the power transmission unit 104 to the power reception unit 30 provided on the tire 10 assembled to the wheel 11, and power is supplied to the electronic device 24. The power supply system includes a power transmission unit 104 and a power reception unit 30.
The power transmission unit 104 includes a power transmission coil 100 that is provided at a non-rotating portion of the tire 10 and generates an alternating current magnetic field. The power transmitting coil 100 is disposed on the side opposite to the power receiving coil 18 with respect to the side portion S, specifically, on the outer side of the side portion S in the tire width direction.
Power receiving unit 30 is provided in tire 10 .
Specifically, as described above, the power receiving unit 30 includes the power receiving coil 18, and the electronic device 24 includes the sensor section 20 and the communication device 22. As described above, the power receiving coil 18 is provided on the side inner surface S1 of the side portion S facing the tire cavity region C of the tire 10, receives the alternating current magnetic field generated from the power transmitting coil 100 and transmitted through the side portion S, and receives power. Coil 18 generates alternating current power.
In this power feeding system, the power receiving coil 18 is a circular coil that extends in the tire circumferential direction along the side inner surface S1, and the position in the tire radial direction on the side inner surface S1 where the power receiving coil 18 is provided. When the thickness of the side portion S is Ts [mm] and the minimum thickness of the side portion S in the tire radial direction is Tmin [mm], the ratio Ts/Tmin is 1.0 to 5.5. Therefore, it is possible to increase transmission efficiency while suppressing fluctuations in transmission power when power is supplied to an electronic device.
 送電コイル100は、タイヤ10を装着する車両のサスペンションのバネ下領域の、タイヤ10のサイド部Sに対向する位置に設けられることが好ましい。このように送電コイル100を配置することにより、受電コイル18と送電コイル100をほぼ対向するように設けることができるので、受電コイル18は、効率よく交流磁場を受けることができる。
 送電コイル100は、例えば、ストラットサスペンションであればダンパケース、マルチリンクサスペンションであればナックルに、これらを基部として設けられることが好ましい。
 また、一実施形態によれば、送電コイル100は、1つのタイヤ10に対して1つ設けられることが好ましい。送電コイル100を隣接させて複数設ける場合、隣接する送電コイル100間のクロスカップリングが生じ、給電効率が低下し易い。
The power transmission coil 100 is preferably provided at a position facing the side portion S of the tire 10 in an unsprung region of a suspension of a vehicle on which the tire 10 is mounted. By arranging the power transmitting coil 100 in this manner, the power receiving coil 18 and the power transmitting coil 100 can be provided so as to substantially face each other, so that the power receiving coil 18 can efficiently receive the alternating current magnetic field.
The power transmission coil 100 is preferably provided, for example, in a damper case in the case of a strut suspension, or in a knuckle in the case of a multi-link suspension, with these as the base.
Moreover, according to one embodiment, it is preferable that one power transmission coil 100 is provided for one tire 10. When a plurality of power transmission coils 100 are provided adjacently, cross-coupling between adjacent power transmission coils 100 occurs, which tends to reduce power feeding efficiency.
 送電コイル100は、図4に示すように、サイド部Sの側を向くよう配置される平面状の送電領域を有していることが好ましい。送電領域は、交流磁界を生成する部分である。図4は、送電コイル100を平面視した図である。送電コイル100は、非磁性基板100aに電線100bがらせん形状(渦巻き形状)に配線されたものである。電線100bは、非磁性基板100aにプリントされた導体材料で構成されてもよいが、ワイヤー状の導体をコイル形状をなすように配置してもよい。このように配線された電線100bが、送電コイル100の送電領域を形成する。非磁性基板100aが基部に設けられることにより、送電コイル100は、転舵の際にタイヤ10と一体に動くことができる。 It is preferable that the power transmission coil 100 has a planar power transmission region arranged to face the side portion S, as shown in FIG. The power transmission region is a part that generates an alternating magnetic field. FIG. 4 is a plan view of the power transmission coil 100. The power transmission coil 100 has an electric wire 100b wired in a spiral shape (spiral shape) on a non-magnetic substrate 100a. The electric wire 100b may be made of a conductive material printed on the non-magnetic substrate 100a, or a wire-like conductor may be arranged in a coil shape. The electric wires 100b wired in this manner form a power transmission area of the power transmission coil 100. By providing the non-magnetic substrate 100a at the base, the power transmission coil 100 can move together with the tire 10 during steering.
 送電コイル100は、図4に示すように、送電領域の面内において所定の曲率に従って延びる円弧形状の曲率部101aを有していることが好ましい。この場合に、タイヤ幅方向に見て、図4に示すように、曲率部101aは、受電コイル18の円形状と同心円である円の周方向の一部の区間をなしていることが好ましい。図5(a)は、タイヤ幅方向に見た送電コイル100と受電コイル18の重なりを示す図であり、図5(b)は、図5(a)の一部拡大図である。図5(b)及び後で参照する図6(b)に示す送電コイル100は、わかりやすく説明するため、送電コイル100の輪郭に沿った1回巻きの閉じたコイルとして示される。受電コイル18に対して、このように送電コイル100が設けられていることで、送電コイル100からの交流磁界を、受電コイル18のうちの、より長い周上の部分で受けることができ、伝送効率が向上する。図4に示す例の曲率部101aは、送電領域のうち、タイヤ径方向に沿った最外部分において円弧形状をなす部分である。このような部分を曲率部101aとすることで、曲率部101aの円弧の長さを長く確保しやすく、送電コイル100からの交流磁界を受ける受電コイル18の周上の部分を長く確保しやすくなる。 As shown in FIG. 4, the power transmission coil 100 preferably has an arc-shaped curvature portion 101a that extends according to a predetermined curvature within the plane of the power transmission region. In this case, as shown in FIG. 4 when viewed in the tire width direction, it is preferable that the curvature portion 101a forms a part of a section in the circumferential direction of a circle that is concentric with the circular shape of the power receiving coil 18. FIG. 5(a) is a diagram showing the overlapping of the power transmitting coil 100 and the power receiving coil 18 when viewed in the tire width direction, and FIG. 5(b) is a partially enlarged view of FIG. 5(a). The power transmitting coil 100 shown in FIG. 5(b) and FIG. 6(b) to be referred to later is shown as a closed coil with one turn along the outline of the power transmitting coil 100 for easy explanation. By providing the power transmitting coil 100 with respect to the power receiving coil 18 in this way, the alternating current magnetic field from the power transmitting coil 100 can be received by a longer circumferential portion of the power receiving coil 18, and the transmission Increased efficiency. The curvature portion 101a in the example shown in FIG. 4 is a portion having an arc shape in the outermost portion along the tire radial direction in the power transmission region. By making such a part the curvature part 101a, it is easy to ensure a long arc length of the curvature part 101a, and it is easy to ensure a long part on the circumference of the power receiving coil 18 that receives the alternating magnetic field from the power transmitting coil 100. .
 受電コイル18は、図2、図5及び図6に示すように、受電コイル18の周方向の両端部がタイヤ周方向から逸脱するように延びることにより受電コイル18がタイヤ周方向に途切れるように形成された途切れ部18aを有している。図6(a)は、タイヤ幅方向に見た送電コイル100と、受電コイル18の途切れ部18aとの重なりを示す図であり、図6(b)は、図6(a)の一部拡大図である。途切れ部18aをなす受電コイル18の両端部の電力線には、受電コイル18と共に共振回路を構成するコンデンサが接続されている。コンデンサは、図5及び図6に示す例において、符号18bで指す矩形の領域内に配置されている。途切れ部18aにおける受電コイル18の両端部のタイヤ周方向の間隔d[mm]の、送電コイル100の曲率部101aのタイヤ周方向に沿った長さL[mm](図4、図6(b)参照)に対する比d/Lは1/3以下であることが好ましい。比d/Lが1/3以下であることにより、タイヤ幅方向に見たときに、途切れ部18aが、タイヤ10の回転に伴って、送電コイル100の送電領域と重なるサイド内表面S1の領域を通過する際にも安定した電力の伝送を行うことができる。また、タイヤ10が転動を停止したとき、途切れ部18aの領域を、送電コイル100が生成した交流磁界が通過する領域が小さくなり、電力の給電を維持することができる。比d/Lは、好ましくは1/4以下である。一方で、途切れ部18aをなす2本の電力線は、近接効果による伝送効率の低下を防ぐため、互いに接触しないことが好ましく、比d/Lは1/20以上であることが好ましい。なお、曲率部101aの上記長さLは、伝送される電力の大きさと、送電コイル100が取り付けられる上記基部の設置スペースの制約とのバランスから、50~180mmであることが好ましい。 As shown in FIGS. 2, 5, and 6, the power receiving coil 18 extends so that both circumferential ends of the power receiving coil 18 deviate from the tire circumferential direction, so that the power receiving coil 18 is interrupted in the tire circumferential direction. It has a discontinuous portion 18a formed therein. FIG. 6(a) is a diagram showing the overlap between the power transmitting coil 100 and the discontinuous portion 18a of the power receiving coil 18 when viewed in the tire width direction, and FIG. 6(b) is a partially enlarged view of FIG. 6(a). It is a diagram. A capacitor that forms a resonant circuit together with the power receiving coil 18 is connected to the power lines at both ends of the power receiving coil 18 forming the interrupted portion 18a. In the example shown in FIGS. 5 and 6, the capacitor is arranged within a rectangular area indicated by reference numeral 18b. The distance L [mm] along the tire circumferential direction of the curved portion 101a of the power transmitting coil 100 is the distance d [mm] in the tire circumferential direction between both ends of the power receiving coil 18 at the discontinuous portion 18a (FIGS. 4, 6(b) ) is preferably 1/3 or less. Since the ratio d/L is 1/3 or less, when viewed in the tire width direction, the discontinuous portion 18a is a region of the side inner surface S1 that overlaps with the power transmission region of the power transmission coil 100 as the tire 10 rotates. Stable power transmission can be achieved even when passing through. Further, when the tire 10 stops rolling, the area through which the alternating current magnetic field generated by the power transmission coil 100 passes through the discontinuous portion 18a becomes smaller, and the power supply can be maintained. The ratio d/L is preferably 1/4 or less. On the other hand, it is preferable that the two power lines forming the interrupted portion 18a do not contact each other in order to prevent a decrease in transmission efficiency due to the proximity effect, and the ratio d/L is preferably 1/20 or more. Note that the length L of the curved portion 101a is preferably 50 to 180 mm in view of the balance between the magnitude of transmitted power and the installation space constraints of the base to which the power transmission coil 100 is attached.
 受電ユニット30は、受電コイル18を第1受電コイル18というとき、第2受電コイル28をさらに備えることが好ましい。第2受電コイル28は、サイド内表面S1に設けられ、サイド部Sを透過した交流磁界を受けることにより交流磁界を生成する。第2受電コイル28は、サイド内表面S1に沿って、第1受電コイル18と同心円状にタイヤ周方向に一周するように延びる円形状のコイルである。第2受電コイル28の回路における共振周波数は、送電ユニット104の回路における共振周波数と一致しており、送電コイル100で生成した交流磁界が第2受電コイル28を共鳴させる。上述したように、第1受電コイル18の回路における共振周波数は、送電コイル100の回路における共振周波数と一致しており、その結果、第2受電コイル28の回路における共振周波数とも一致しているので、送電コイル100で生成した交流磁界のみでなく、第2受電コイル28で生成した交流磁界も、第1受電コイル18を共鳴させる。本発明者の検討によれば、このように第2受電コイル28を中継コイルとして機能させることで、第1受電コイル18においてより大きな交流電力が生成し、給電効率が大きく向上することが確認された。なお、第2受電コイル28は、第1受電コイル18と異なり、第2受電コイル28から通信装置22に接続される電力線を有しておらず、通信装置22から独立している。
 第2受電コイル28が設けられたサイド内表面S1の位置におけるサイド部Sの厚さをTs2[mm]としたとき、比Ts2/Tminは1.0~5.5であることが好ましい。これにより、第2受電コイル28が受ける、サイド部Sを通過する交流磁界の減衰を最小限に抑えられ、第1受電コイル18を強く共鳴させることができる。サイド部Sのゴムの構成ごとのTs2/Tminの好ましい範囲は、サイド部Sのゴムの構成ごとの比Ts/Tminの上記した好ましい範囲と同様である。
It is preferable that the power receiving unit 30 further includes a second power receiving coil 28 when the power receiving coil 18 is referred to as the first power receiving coil 18 . The second power receiving coil 28 is provided on the side inner surface S1, and generates an alternating current magnetic field by receiving an alternating magnetic field transmitted through the side portion S. The second power receiving coil 28 is a circular coil that extends along the side inner surface S1 and concentrically with the first power receiving coil 18 in a circumferential direction of the tire. The resonant frequency in the circuit of the second power receiving coil 28 matches the resonant frequency in the circuit of the power transmitting unit 104, and the alternating current magnetic field generated by the power transmitting coil 100 causes the second power receiving coil 28 to resonate. As mentioned above, the resonant frequency in the circuit of the first power receiving coil 18 matches the resonant frequency in the circuit of the power transmitting coil 100, and as a result, it also matches the resonant frequency in the circuit of the second power receiving coil 28. Not only the AC magnetic field generated by the power transmitting coil 100 but also the AC magnetic field generated by the second power receiving coil 28 causes the first power receiving coil 18 to resonate. According to the inventor's study, it has been confirmed that by making the second power receiving coil 28 function as a relay coil in this way, larger AC power is generated in the first power receiving coil 18, and power feeding efficiency is greatly improved. Ta. Note that, unlike the first power receiving coil 18, the second power receiving coil 28 does not have a power line connected from the second power receiving coil 28 to the communication device 22, and is independent from the communication device 22.
When the thickness of the side portion S at the position of the side inner surface S1 where the second power receiving coil 28 is provided is Ts2 [mm], the ratio Ts2/Tmin is preferably 1.0 to 5.5. Thereby, the attenuation of the alternating current magnetic field that passes through the side portion S, which is received by the second power receiving coil 28, can be minimized, and the first power receiving coil 18 can be made to resonate strongly. The preferred range of Ts2/Tmin for each rubber configuration of the side portion S is the same as the above-described preferred range of the ratio Ts/Tmin for each rubber configuration of the side portion S.
 第1受電コイル18が、ベルト層16及びビードコア12のスチールコードの近傍に配置されていると、交流磁界の伝送経路の近傍に導電性材料が位置することで渦電流による損失が発生し伝送効率が低下するため、好ましくない。特に、低偏平のタイヤでは、ベルト層16とビードコア12との間隔が狭く、交流磁界と導電性材料の距離が近くなるため、交流磁界が十分な強さで第1受電コイル18に届かない場合がある。このようなタイヤにおいて、第1受電コイル18と共に第2受電コイル28を用いて、第2受電コイル28において交流磁界を中継または増幅させることにより、第1受電コイル18を共鳴させる交流磁界を補完することができ、伝送効率の低下を抑制することができる。このため、第1受電コイル18及び第2受電コイル28のうち、ベルト層16及びビードコア12のスチールコードに近いほうの受電コイルを第1受電コイル18とし、遠いほうの受電コイルを第2受電コイル28とすることが好ましい。 If the first power receiving coil 18 is placed near the belt layer 16 and the steel cord of the bead core 12, a conductive material is placed near the transmission path of the alternating current magnetic field, causing loss due to eddy current, resulting in transmission efficiency. This is not preferable because it reduces the In particular, in low-profile tires, the distance between the belt layer 16 and the bead core 12 is narrow, and the distance between the alternating current magnetic field and the conductive material becomes short, so the alternating magnetic field may not reach the first power receiving coil 18 with sufficient strength. There is. In such a tire, the second power receiving coil 28 is used together with the first power receiving coil 18 to relay or amplify the alternating current magnetic field in the second power receiving coil 28, thereby supplementing the alternating current magnetic field that makes the first power receiving coil 18 resonate. This makes it possible to suppress a decrease in transmission efficiency. Therefore, among the first power receiving coil 18 and the second power receiving coil 28, the power receiving coil that is closer to the belt layer 16 and the steel cord of the bead core 12 is the first power receiving coil 18, and the power receiving coil that is farther away is the second power receiving coil. It is preferable to set it as 28.
 送電コイル100の送電領域と、第1受電コイル18及び第2受電コイル28それぞれとの距離(最短距離)の平均値(平均距離)G[mm](図7参照)に対する、第1受電コイル18と第2受電コイル28とのタイヤ径方向の間隔R[mm](図7参照)の比R/Gは0.1~1.2であることが好ましく、0.2~1.0であることが好ましい。図7は、送電コイル100及び受電コイル18,28の配置を説明する図である。効率の良い電力の伝送を行うためには、送電コイル100と受電コイル18,28との距離は短いことが好ましい。しかし、送電コイル100と受電コイル18,28との距離が短いと、タイヤコーナリング中のサイド部Sの横変形によって、サイド部Sが送電コイル100と接触する可能性が高くなる。一方、低偏平のタイヤでは、タイヤコーナリング中のサイド部Sの横変形の程度は小さく、サイド部Sが送電コイル100と接触する可能性は低い反面、上述したように、伝送効率の低下が生じやすい。そのため、低偏平のタイヤにおいては、伝送効率の低下を抑える観点からは、第1受電コイル18と第2受電コイル28との径方向の間隔Rは狭いことが好ましい。比R/Gが上記範囲内であると、種々の偏平率のタイヤにおいて、サイド部Sと送電コイル100との接触を回避しつつ、伝送効率の低下を抑制することができる。平均距離Gは、10~50mmであることが好ましい。平均距離Gが短いと、サイド部Sが送電コイル100と接触する可能性が高くなる一方で、平均距離Gが長いと、伝送距離が長すぎ、伝送効率が低下しやすい。 The first power receiving coil 18 with respect to the average value (average distance) G [mm] of the distance (shortest distance) between the power transmission area of the power transmitting coil 100 and each of the first power receiving coil 18 and the second power receiving coil 28 (see FIG. 7) The ratio R/G of the interval R [mm] (see FIG. 7) in the tire radial direction between the second power receiving coil 28 and the second power receiving coil 28 is preferably 0.1 to 1.2, and preferably 0.2 to 1.0. It is preferable. FIG. 7 is a diagram illustrating the arrangement of the power transmitting coil 100 and the power receiving coils 18 and 28. In order to efficiently transmit power, it is preferable that the distance between power transmitting coil 100 and power receiving coils 18 and 28 be short. However, if the distance between the power transmitting coil 100 and the power receiving coils 18 and 28 is short, the possibility that the side part S will come into contact with the power transmitting coil 100 increases due to lateral deformation of the side part S during tire cornering. On the other hand, in a low-profile tire, the degree of lateral deformation of the side part S during tire cornering is small, and the possibility of the side part S coming into contact with the power transmission coil 100 is low, but as described above, the transmission efficiency is reduced. Cheap. Therefore, in a low-profile tire, the radial distance R between the first power receiving coil 18 and the second power receiving coil 28 is preferably narrow from the viewpoint of suppressing a decrease in transmission efficiency. When the ratio R/G is within the above range, it is possible to suppress a decrease in transmission efficiency while avoiding contact between the side portion S and the power transmission coil 100 in tires having various aspect ratios. The average distance G is preferably 10 to 50 mm. If the average distance G is short, there is a high possibility that the side part S will come into contact with the power transmission coil 100, while if the average distance G is long, the transmission distance will be too long and the transmission efficiency will tend to decrease.
 第2受電コイル28は、第2受電コイル28の周方向の両端部がタイヤ周方向から逸脱するように延びることにより第2受電コイル28がタイヤ周方向に途切れるよう形成された途切れ部28aを有している。途切れ部28aをなす第2受電コイル28の両端部の電力線には、第2受電コイル28と共に共振回路を構成するコンデンサが接続されている。図8に示すように、タイヤ周方向(タイヤの回転中心軸Axの周り)に、第1受電コイル18の途切れ部18aと第2受電コイル28の途切れ部28aとがなす角度は、4度以上であることが好ましい。図8は、2つの受電コイル18,28の配置を説明する断面図である。当該なす角度は、途切れ部18a,28aそれぞれのタイヤ周方向の中心位置同士がなす角度である。途切れ部18a,28aがなす角度が4度未満であると、途切れ部18a,28aをなす電力線が接近しすぎることで、一方の受電コイルの共振回路が他方の受電コイルの電力線の影響を受けて損失が発生する場合がある。上記なす角度は、5度以上であることが好ましい。 The second power receiving coil 28 has a discontinuous portion 28a formed such that the second power receiving coil 28 is interrupted in the tire circumferential direction by extending both ends of the second power receiving coil 28 in the circumferential direction so as to deviate from the tire circumferential direction. are doing. A capacitor that forms a resonant circuit together with the second power receiving coil 28 is connected to the power lines at both ends of the second power receiving coil 28 forming the interrupted portion 28a. As shown in FIG. 8, the angle between the discontinuous portion 18a of the first power receiving coil 18 and the discontinuous portion 28a of the second power receiving coil 28 in the tire circumferential direction (around the tire rotation center axis Ax) is 4 degrees or more. It is preferable that FIG. 8 is a cross-sectional view illustrating the arrangement of the two power receiving coils 18 and 28. The angle formed is an angle formed between the center positions of the discontinuous portions 18a and 28a in the tire circumferential direction. If the angle formed by the discontinuous parts 18a, 28a is less than 4 degrees, the power lines forming the discontinuous parts 18a, 28a will be too close together, and the resonance circuit of one power receiving coil will be influenced by the power line of the other power receiving coil. Losses may occur. The angle formed above is preferably 5 degrees or more.
 タイヤ径方向に沿った、送電コイル100の曲率部101a及びタイヤ10を通る断面において、曲率部101aが位置する第1の径方向領域R1と、サイド部Sに対し曲率部101aと反対側に位置する(サイド部Sを挟むように曲率部101aと向き合う)第1受電コイル18及び第2受電コイル28それぞれの部分のタイヤ径方向の位置を両端とする第2の径方向領域R2とは、図9に示すように、タイヤ径方向に離れていないことが好ましい。図9(a)~(d)は、送電コイル100と受電コイル18,28とのタイヤ径方向に沿った位置関係を説明する断面図である。第1の径方向領域R1は、曲率部101aをなす電線101bのうちタイヤ径方向の最外周側部分と最内周側部分とを両端とするタイヤ径方向の領域である。送電コイル100及び受電コイル18,28が、2つの径方向領域R1,R2がタイヤ径方向に離れていないように配置されていると、送電コイル100で生成した交流磁界を第1受電コイル18及び第2受電コイル28が十分な強さで受けることができ、伝送効率が向上する効果が増す。なお、2つの径方向領域R1,R2は、タイヤ10を車両に装着し、空気を所定の内圧(車両が指定する該当タイヤサイズの空気圧。指定がない場合は230kPa)に充填した状態で特定される。図9(a)及び図9(b)に示す例では、第1の径方向領域R1と第2の径方向領域R2はタイヤ径方向に接しており、図9(c)及び図9(d)に示す例では、第1の径方向領域R1と第2の径方向領域R2はタイヤ周方向に重なっている。送電コイル100で生成した交流磁界を受電コイル18,28で十分な強さで受けて、伝送効率を高める効果を大きくするため、図9(b)及び図9(c)に示す例のように、第1の径方向領域R1と第2の径方向領域R2は、タイヤ周方向に重なっていることが好ましい。 In a cross section passing through the curvature part 101a of the power transmission coil 100 and the tire 10 along the tire radial direction, a first radial region R1 where the curvature part 101a is located and a position opposite to the curvature part 101a with respect to the side part S. The second radial region R2 whose ends are the positions of the first power receiving coil 18 and the second power receiving coil 28 in the tire radial direction (facing the curved portion 101a with the side portion S sandwiched in between) is defined as As shown in 9, it is preferable that they are not separated in the tire radial direction. FIGS. 9A to 9D are cross-sectional views illustrating the positional relationship between the power transmitting coil 100 and the power receiving coils 18 and 28 along the tire radial direction. The first radial region R1 is a region in the tire radial direction whose ends are the outermost circumferential portion and the innermost circumferential portion in the tire radial direction of the electric wire 101b forming the curved portion 101a. When the power transmitting coil 100 and the power receiving coils 18 and 28 are arranged so that the two radial regions R1 and R2 are not separated from each other in the tire radial direction, the alternating current magnetic field generated by the power transmitting coil 100 is transferred to the first power receiving coil 18 and The second receiving coil 28 can receive the power with sufficient strength, which increases the effect of improving transmission efficiency. The two radial regions R1 and R2 are specified when the tire 10 is mounted on the vehicle and filled with air to a predetermined internal pressure (the air pressure of the relevant tire size specified by the vehicle; if not specified, 230 kPa). Ru. In the example shown in FIGS. 9(a) and 9(b), the first radial region R1 and the second radial region R2 are in contact with each other in the tire radial direction, and FIGS. 9(c) and 9(d) ), the first radial region R1 and the second radial region R2 overlap in the tire circumferential direction. In order to receive the alternating current magnetic field generated by the power transmitting coil 100 with sufficient strength in the power receiving coils 18 and 28 and to increase the effect of increasing transmission efficiency, as in the examples shown in FIGS. 9(b) and 9(c). It is preferable that the first radial region R1 and the second radial region R2 overlap in the tire circumferential direction.
 送電ユニット104は、図10に示すように、送電コイル100に対しサイド部Sの側と反対側に配置される磁性体110をさらに備えることが好ましい。図10は、磁性体110を説明する図である。送電コイル100により生成する交流磁界の周波数における磁性体110の比透磁率は30~300である。図10に示す例の磁性体110は、送電コイル100の送電領域の面と平行な表面を有する磁性シートである。図10に示す例の磁性体110は、送電コイル100と接し、サイド部Sの側の非磁性基板100aの表面に積層されている。磁性シートの厚さは、0.01~0.5mmであることが好ましい。送電コイル100は、例えばサスペンションを収容する車両のホイールハウス内に配置されており、送電コイル100に対し受電コイル18,28が設けられる側と反対側(送電コイル100の背面側)には、アルミニウム、鉄等の金属(導電体)を含む構造材や部品が配置されている。このため、送電コイル100が生成する交流磁界によって導電体の表面に渦電流が発生し、それによる損失が伝送効率を低下させたり、金属部材を発熱させる場合がある。そのため、磁性シートを配置し、送電コイル100で発生した磁束を吸収したり、遮断することが好ましい。さらに好ましくは、図11に示すように、送電コイル100から間隔h[mm]をあけて磁性体110を配置することが好ましい。間隔hをあけることで、磁性シートが磁気飽和して効果が低減されることを抑止できる。図11は、磁性体110、送電コイル100及び受電コイル18,28の配置を説明する図である。図11に示す例の磁性体110のサイド部Sの側の表面には、送電コイル100と接する非磁性基板100aが積層されている。送電コイル100と受電コイル18,28との距離は短いことが好ましい。そのため、送電コイル100の送電領域と受電コイル18,28それぞれとの距離(最短距離)の平均値(平均距離)G[mm]に対する、間隔hの比h/Gは0.01~0.5であることが好ましい。 As shown in FIG. 10, the power transmission unit 104 preferably further includes a magnetic body 110 disposed on the side opposite to the side portion S with respect to the power transmission coil 100. FIG. 10 is a diagram illustrating the magnetic body 110. The relative magnetic permeability of the magnetic body 110 at the frequency of the alternating magnetic field generated by the power transmission coil 100 is 30 to 300. The magnetic body 110 in the example shown in FIG. 10 is a magnetic sheet having a surface parallel to the plane of the power transmission region of the power transmission coil 100. The magnetic body 110 in the example shown in FIG. 10 is in contact with the power transmission coil 100 and is laminated on the surface of the nonmagnetic substrate 100a on the side portion S side. The thickness of the magnetic sheet is preferably 0.01 to 0.5 mm. The power transmission coil 100 is disposed, for example, in a wheel house of a vehicle that accommodates a suspension, and on the side opposite to the side where the power reception coils 18 and 28 are provided with respect to the power transmission coil 100 (the back side of the power transmission coil 100), an aluminum , structural materials and parts containing metals (conductors) such as iron are arranged. Therefore, an eddy current is generated on the surface of the conductor due to the alternating magnetic field generated by the power transmission coil 100, and the resulting loss may reduce transmission efficiency or cause the metal member to generate heat. Therefore, it is preferable to arrange a magnetic sheet to absorb or block the magnetic flux generated by the power transmission coil 100. More preferably, as shown in FIG. 11, the magnetic body 110 is preferably arranged at a distance h [mm] from the power transmission coil 100. By leaving the interval h, it is possible to prevent the magnetic sheet from becoming magnetically saturated and reducing its effectiveness. FIG. 11 is a diagram illustrating the arrangement of the magnetic body 110, the power transmitting coil 100, and the power receiving coils 18 and 28. A non-magnetic substrate 100a in contact with the power transmission coil 100 is laminated on the surface of the side portion S of the magnetic body 110 in the example shown in FIG. It is preferable that the distance between the power transmitting coil 100 and the power receiving coils 18, 28 is short. Therefore, the ratio h/G of the interval h to the average value (average distance) G [mm] of the distance (shortest distance) between the power transmission area of the power transmission coil 100 and each of the power reception coils 18 and 28 is 0.01 to 0.5. It is preferable that
 受電コイル18,28及び送電コイル100はそれぞれ、単線からなる1本の導線で構成されることが好ましい。このようなコイルは、MHz帯の周波数の電磁波を用いて、磁界共鳴方式で給電を行うのに適している。磁気共鳴方式で給電を行う場合の周波数の範囲は、好ましくは1MHz~1GHzの範囲であり、より好ましくは2~20MHzである。また、単線からなる1本の導線で構成される受電コイル18,28は、撚り線からなる電力線で構成される同じ断面積の受電コイルと比べ、近接効果による交流抵抗の増大を防止することができる。 It is preferable that the power receiving coils 18, 28 and the power transmitting coil 100 are each formed of a single conductive wire made of a single wire. Such a coil is suitable for feeding power using a magnetic resonance method using electromagnetic waves having a frequency in the MHz band. The frequency range when power is supplied using the magnetic resonance method is preferably in the range of 1 MHz to 1 GHz, more preferably in the range of 2 to 20 MHz. In addition, the power receiving coils 18 and 28 that are made up of a single conductive wire made of a single wire can prevent an increase in AC resistance due to the proximity effect compared to a given power receiving coil that has the same cross-sectional area and is made up of a power line made of stranded wires. can.
 送電コイル100における導線(単線)の導体の直径は、受電コイル18,28における導線(単線)の導体の直径より大きいことが好ましい。単線の導体の直径D1は、図12に示すように、単線の直径から、導体を被覆する被覆層の厚さD2を除外した長さである。導体は、例えば銅を材質とし、被覆層は、例えば樹脂を材質とする。送電コイル100及び受電コイル18,28の直径は、強い交流磁界を生成して大きな交流電力を生成することで伝送効率を高める観点からは、太いほど有利である。しかし、受電コイル18,28の直径が過度に太いと、サイド部Sの変形に追従して変形したときの歪が大きく、耐久性が悪化する場合がある。また、受電コイル18,28の直径が過度に太いと、転動中の遠心力を受けてサイド内表面S1から剥離、脱落するおそれがある。このため、送電コイル100における導線(単線)の導体の直径を、受電コイル18,28における導線(単線)の導体の直径よりも太くすることで、受電コイル18,28の太さが制限されることにより抑制される伝送効率の向上効果を補完し、さらに、受電コイル18,28の耐久性を確保することができる。受電コイル18,28における導線(単線)の導体の直径は、好ましくは0.5~1.0mmである。送電コイル100における導線(単線)の導体の直径は、好ましくは0.8~1.5mmである。また、送電コイル100の巻き数は、好ましくは3~12回である。 The diameter of the conducting wire (single wire) in the power transmitting coil 100 is preferably larger than the diameter of the conducting wire (single wire) in the power receiving coils 18 and 28. As shown in FIG. 12, the diameter D1 of the single wire conductor is the length obtained by excluding the thickness D2 of the coating layer covering the conductor from the diameter of the single wire. The conductor is made of copper, for example, and the coating layer is made of resin, for example. The larger the diameter of the power transmitting coil 100 and the power receiving coils 18 and 28 is, the more advantageous it is from the viewpoint of increasing transmission efficiency by generating a strong alternating current magnetic field and generating large alternating current power. However, if the diameter of the power receiving coils 18, 28 is excessively large, the distortion when deformed following the deformation of the side portion S is large, and durability may deteriorate. Furthermore, if the diameter of the power receiving coils 18, 28 is too large, there is a risk that they may peel off or fall off from the side inner surface S1 due to centrifugal force during rolling. Therefore, by making the diameter of the conducting wire (single wire) in the power transmitting coil 100 thicker than the diameter of the conducting wire (single wire) in the power receiving coils 18, 28, the thickness of the power receiving coils 18, 28 is limited. This can complement the effect of improving transmission efficiency that is suppressed by this, and further ensure the durability of the power receiving coils 18 and 28. The diameter of the conducting wire (single wire) in the receiving coils 18, 28 is preferably 0.5 to 1.0 mm. The diameter of the conductor (single wire) in the power transmission coil 100 is preferably 0.8 to 1.5 mm. Further, the number of turns of the power transmission coil 100 is preferably 3 to 12 turns.
 送電コイル100と第1受電コイル18とのタイヤ幅方向の距離(最短距離)G1[mm](図13参照)に対する、第1受電コイル18が設けられるサイド内表面S1の位置におけるサイド部Sの厚さTs1[mm](図13参照)の比Ts1/G1、及び、送電コイル100と第2受電コイル28とのタイヤ幅方向の距離(最短距離)G2[mm](図13参照)に対する、第2受電コイル28が設けられるサイド内表面S1の位置におけるサイド部Sの厚さTs2[mm](図13参照)の比Ts2/G2、の少なくとも一方は0.1~0.7であることが好ましく、両方が0.1~0.7であることがより好ましい。図13は、送電コイル100と受電コイル18,28との距離G1,G2と、サイド部Sの厚さTs1,Ts2との関係を説明する断面図である。上述したように、効率の良い電力の伝送を行うためには、送電コイル100と受電コイル18,28との距離は短いことが好ましい。しかし、送電コイル100と受電コイル18,28との距離が過度に短いと、サイド部Sの横変形の程度が距離G1,G2に対して大きくなりすぎ、伝送される電力の変動幅が大きくなってしまう。また、送電コイル100と受電コイル18,28との距離が過度に短いと、タイヤコーナリング中のサイド部Sの横変形によって、サイド部Sが送電コイル100と接触する可能性が高くなる。比Ts1/G1、及び、比Ts2/G2の少なくとも一方が上記範囲内に制限されていることで、伝送効率の変動を抑え、サイド部Sと送電コイル100との接触を回避しつつ、効率よく電力の伝送を行うことができる。比Ts1/G1、及び、比Ts2/G2はそれぞれ0.2~0.6であることがより好ましく、それぞれ0.15~0.55であることがさらに好ましい。送電コイル100と受電コイル18,28との距離は、例えば、非磁性基板100aあるいは磁性体110を基部に取り付けるための台座のタイヤ幅方向に沿った厚さの調整により調整される。 The side portion S at the position of the side inner surface S1 where the first power receiving coil 18 is provided with respect to the distance in the tire width direction (shortest distance) G1 [mm] (see FIG. 13) between the power transmitting coil 100 and the first power receiving coil 18. The ratio Ts1/G1 of the thickness Ts1 [mm] (see FIG. 13) and the distance (shortest distance) in the tire width direction between the power transmitting coil 100 and the second power receiving coil 28 G2 [mm] (see FIG. 13), At least one of the ratio Ts2/G2 of the thickness Ts2 [mm] (see FIG. 13) of the side portion S at the position of the side inner surface S1 where the second power receiving coil 28 is provided is 0.1 to 0.7. is preferred, and both are more preferably from 0.1 to 0.7. FIG. 13 is a cross-sectional view illustrating the relationship between the distances G1, G2 between the power transmitting coil 100 and the power receiving coils 18, 28, and the thicknesses Ts1, Ts2 of the side portions S. As described above, in order to efficiently transmit power, it is preferable that the distance between power transmitting coil 100 and power receiving coils 18 and 28 be short. However, if the distance between the power transmitting coil 100 and the power receiving coils 18, 28 is too short, the degree of lateral deformation of the side portion S becomes too large relative to the distances G1, G2, and the fluctuation range of the transmitted power becomes large. I end up. Furthermore, if the distance between the power transmitting coil 100 and the power receiving coils 18 and 28 is too short, there is a high possibility that the side part S will come into contact with the power transmitting coil 100 due to lateral deformation of the side part S during tire cornering. By limiting at least one of the ratio Ts1/G1 and the ratio Ts2/G2 within the above range, it is possible to suppress fluctuations in transmission efficiency, avoid contact between the side portion S and the power transmission coil 100, and efficiently operate the transmission coil 100. Power can be transmitted. The ratio Ts1/G1 and the ratio Ts2/G2 are each more preferably from 0.2 to 0.6, and even more preferably from 0.15 to 0.55. The distance between the power transmitting coil 100 and the power receiving coils 18, 28 is adjusted, for example, by adjusting the thickness along the tire width direction of a pedestal for attaching the nonmagnetic substrate 100a or the magnetic body 110 to the base.
 図14に示すように、ビード部Bのタイヤ径方向(タイヤ10の回転中心軸Axに対し接近あるいは遠ざかる方向)内側の端を基準としたタイヤ径方向に沿った高さに関して、タイヤ10の断面高さをSh[mm]とし、サイド部Sの厚さがTminとなるサイド内表面S1の位置の高さをHt[mm]とし、第1受電コイル18が設けられたサイド内表面S1の位置の高さをH1[mm]とし、第2受電コイル28が設けられたサイド内表面S1の位置の高さをH2[mm]とし、タイヤ10の偏平率をP×100[%]としたとき、
 Ht-Sh×P/4≦H1≦Ht+Sh×P/4、及び
 Ht-Sh×P/4≦H2≦Ht+Sh×P/4、
の少なくとも一方を満足することが好ましく、両方を満足することがより好ましい。図14は、受電コイル18,28の高さ位置と偏平率Pとの関係を説明する図である。低偏平のタイヤ10は、サイド部Sの縦撓み量が小さく、タイヤ10の転動に伴う受電コイル18,28の変形が抑えられ、受電コイル18,28の耐久性が確保されやすい。一方、低偏平のタイヤ10では、ベルト層16やビードコア12のスチールコードによる伝送効率の低下が生じやすく、受電コイル18,28が設けられる位置における比Ts1/Tmin又は比Ts2/Tminが上記範囲を満たしていても、伝送効率の低下を抑制することが困難となる場合がある。そのため、低偏平なタイヤであるほど、受電コイル18,28の高さ位置は、厚さTminとなるサイド部Sの高さ位置に近いことが好ましい。上記2つの関係の少なくとも一方を満たすように受電コイル18,28の高さ位置が設定されていると、受電コイル18,28の耐久性と伝送効率の低下抑制とのバランスに特に優れる。偏平率Pは、0.30~0.65であることが好ましい。
As shown in FIG. 14, the cross-section of the tire 10 with respect to the height along the tire radial direction based on the inner end of the bead portion B in the tire radial direction (the direction toward or away from the rotation center axis Ax of the tire 10). The height is Sh [mm], the height of the position of the side inner surface S1 where the thickness of the side portion S is Tmin is Ht [mm], and the position of the side inner surface S1 where the first power receiving coil 18 is provided. When the height of is H1 [mm], the height of the position of the side inner surface S1 where the second power receiving coil 28 is provided is H2 [mm], and the oblateness of the tire 10 is P x 100 [%]. ,
Ht-Sh×P/4≦H1≦Ht+Sh×P/4, and Ht-Sh×P/4≦H2≦Ht+Sh×P/4,
It is preferable to satisfy at least one of the following, and it is more preferable to satisfy both. FIG. 14 is a diagram illustrating the relationship between the height positions of the power receiving coils 18 and 28 and the aspect ratio P. The low-profile tire 10 has a small amount of vertical deflection of the side portion S, suppresses deformation of the power receiving coils 18, 28 due to rolling of the tire 10, and easily ensures durability of the power receiving coils 18, 28. On the other hand, in a low-profile tire 10, the transmission efficiency is likely to decrease due to the belt layer 16 and the steel cord of the bead core 12, and the ratio Ts1/Tmin or the ratio Ts2/Tmin at the position where the power receiving coils 18, 28 are provided is outside the above range. Even if the conditions are satisfied, it may be difficult to suppress a decrease in transmission efficiency. Therefore, it is preferable that the lower the tire is, the closer the height position of the power receiving coils 18, 28 is to the height position of the side portion S having the thickness Tmin. If the height positions of the power receiving coils 18 and 28 are set so as to satisfy at least one of the above two relationships, the durability of the power receiving coils 18 and 28 and the suppression of reduction in transmission efficiency are particularly well balanced. The aspect ratio P is preferably 0.30 to 0.65.
 本明細書で上述したR、R2、Sh、Ht、H1、H2等の各種寸法は、タイヤ10を正規リムにリム組みして正規内圧を充填した無負荷状態で測定される。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めているリムであり、例えば、JATMAに規定される標準リム、TRAに規定される“Design Rim”、或いはETRTOに規定される“Measuring Rim”をいう。但し、タイヤ10が新車装着タイヤである場合には、タイヤ10が組まれる純正ホイールが用いられる。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAに規定される最高空気圧、TRAに規定される、表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOに規定される“INFLATION PRESSURES”をいうが、タイヤ10が乗用車用である場合には230kPaとする。但し、タイヤ10が新車装着タイヤである場合には、車両が指定する空気圧とする。 The various dimensions such as R, R2, Sh, Ht, H1, H2, etc. mentioned above in this specification are measured in an unloaded state in which the tire 10 is mounted on a regular rim and filled with a regular internal pressure. "Regular rims" are rims that are specified for each tire by the standard system that includes the standard on which the tire is based, such as standard rims specified by JATMA, "Design Rim" specified by TRA, etc. ” or “Measuring Rim” as defined in ETRTO. However, if the tire 10 is a tire installed on a new vehicle, a genuine wheel to which the tire 10 is assembled is used. "Regular internal pressure" is the air pressure specified for each tire by each standard in the standard system including the standard on which the tire is based. The maximum value stated in "LIMITS AT VARIOUS COLD INFLATION PRESSURES" refers to "INFLATION PRESSURES" specified in ETRTO, and if the tire 10 is for a passenger car, it is 230 kPa. However, if the tire 10 is a tire installed on a new vehicle, the air pressure is set to the value specified by the vehicle.
 タイヤ幅方向(タイヤ10の回転中心軸Axと平行な方向)に見て、送電コイル100は、図15に示すように、タイヤ10の回転中心軸Axから鉛直上方に延びる仮想線のタイヤ周方向の両側それぞれに45度(合計90度)の角度範囲内に位置していることが好ましい。図15は、送電コイル100が配置される、タイヤ周方向(タイヤ10の回転中心軸Axの周り)の角度範囲を説明する図である。送電コイル100がタイヤ10の接地面付近に位置していると、受電コイル18,28の高さ位置が、タイヤ10の縦撓み変形に伴って変動することによって、送電コイル100の高さ位置に対してずれが生じやすい。そのため、受電コイル18,28が、送電コイル100で生成した交流磁界を十分に受けることができず、伝送効率が低下するおそれがある。送電コイル100が上記角度範囲内に配置されていると、タイヤ10の縦撓み変形に伴う受電コイル18,28の高さ位置の変動による伝送電力への影響を小さくでき、伝送効率の低下を抑えることができる。 When viewed in the tire width direction (direction parallel to the rotation center axis Ax of the tire 10), the power transmission coil 100 is aligned in the tire circumferential direction of an imaginary line extending vertically upward from the rotation center axis Ax of the tire 10, as shown in FIG. is preferably located within an angular range of 45 degrees (total of 90 degrees) on each side of the. FIG. 15 is a diagram illustrating an angular range in the tire circumferential direction (around the rotation center axis Ax of the tire 10) in which the power transmission coil 100 is arranged. When the power transmitting coil 100 is located near the ground contact surface of the tire 10, the height positions of the power receiving coils 18 and 28 change with the vertical deflection deformation of the tire 10, so that the height position of the power transmitting coil 100 changes. Misalignment is likely to occur. Therefore, the power receiving coils 18 and 28 may not be able to sufficiently receive the alternating current magnetic field generated by the power transmitting coil 100, and there is a possibility that the transmission efficiency may be reduced. When the power transmitting coil 100 is arranged within the above-mentioned angle range, the influence on the transmitted power due to the change in the height position of the power receiving coils 18, 28 due to the vertical bending deformation of the tire 10 can be reduced, and a decrease in transmission efficiency can be suppressed. be able to.
 以上、本発明のタイヤ及び給電システムについて詳細に説明したが、本発明のタイヤ及び給電システムは上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 Although the tire and power supply system of the present invention have been described in detail above, the tire and power supply system of the present invention are not limited to the above embodiments, and various improvements and changes can be made without departing from the gist of the present invention. Of course it's good too.
10 タイヤ
11 ホイール
12 ビードコア
12a ビード底面
14 カーカスプライ層
16 ベルト層
18 受電コイル(第1受電コイル)
18a 途切れ部
20 センサー部
22 通信装置
24 電子デバイス
28 受電コイル(第2受電コイル)
28a 途切れ部
30 受電ユニット
40 トレッドゴム
42 サイドゴム
44 ビードフィラーゴム
46 リムクッションゴム
48 インナーライナーゴム
100 送電コイル
100a 非磁性基板
100b 電線
101a 曲率部
102 交流電源装置
104 送電ユニット
110 磁性体
10 Tire 11 Wheel 12 Bead core 12a Bead bottom surface 14 Carcass ply layer 16 Belt layer 18 Power receiving coil (first power receiving coil)
18a Interruption section 20 Sensor section 22 Communication device 24 Electronic device 28 Power receiving coil (second power receiving coil)
28a Interrupted portion 30 Power receiving unit 40 Tread rubber 42 Side rubber 44 Bead filler rubber 46 Rim cushion rubber 48 Inner liner rubber 100 Power transmission coil 100a Non-magnetic substrate 100b Electric wire 101a Curved portion 102 AC power supply device 104 Power transmission unit 110 Magnetic body

Claims (15)

  1.  タイヤ外部からの交流磁界を受けて電力を生成する受電コイルを備えたタイヤであって、
     トレッド部とビード部との間にあるサイド部の、前記タイヤのタイヤ空洞領域に面するサイド内表面に設けられ、前記サイド部を透過した交流磁界を受けることにより交流電力を生成する受電コイルを備え、
     前記受電コイルは、前記サイド内表面に沿ってタイヤ周方向に一周するように延びる円形状のコイルであり、
     前記受電コイルが設けられた前記サイド内表面の位置における前記サイド部の厚さをTsとし、前記サイド部のタイヤ径方向にわたる厚さのうちの最小厚さをTminとしたとき、比Ts/Tminは1.0~5.5である、ことを特徴とするタイヤ。
    A tire equipped with a power receiving coil that generates electric power by receiving an alternating magnetic field from outside the tire,
    A power receiving coil is provided on the inner surface of the side of the side portion between the tread portion and the bead portion facing the tire cavity region of the tire, and generates AC power by receiving an alternating current magnetic field transmitted through the side portion. Prepare,
    The power receiving coil is a circular coil that extends around the inner surface of the side in a circumferential direction of the tire,
    When the thickness of the side portion at the position of the inner surface of the side where the power receiving coil is provided is Ts, and the minimum thickness of the side portion over the tire radial direction is Tmin, the ratio Ts/Tmin is 1.0 to 5.5.
  2.  前記受電コイルを第1受電コイルというとき、前記サイド内表面に設けられ、前記サイド部を透過した交流磁界を受けることにより交流磁界を生成する第2受電コイルをさらに備え、
     前記第2受電コイルは、前記サイド内表面に沿って、前記第1受電コイルと同心円状にタイヤ周方向に一周するように延びる円形状のコイルである、請求項1に記載のタイヤ。
    When the power receiving coil is referred to as a first power receiving coil, the power receiving coil further includes a second power receiving coil that is provided on the inner surface of the side and generates an alternating current magnetic field by receiving an alternating magnetic field transmitted through the side part,
    The tire according to claim 1, wherein the second power receiving coil is a circular coil that extends along the inner surface of the side and concentrically with the first power receiving coil in a circumferential direction of the tire.
  3.  前記第1受電コイル及び前記第2受電コイルは、前記第1受電コイル及び前記第2受電コイルそれぞれの両端部がタイヤ周方向から逸脱するように延びることにより前記受電コイルがタイヤ周方向に途切れるよう形成された途切れ部を有し、
     タイヤ周方向に、前記第1受電コイルの前記途切れ部と前記第2受電コイルの前記途切れ部とがなす角度は、4度以上である、請求項2に記載のタイヤ。
    The first power receiving coil and the second power receiving coil extend so that both ends of the first power receiving coil and the second power receiving coil deviate from the tire circumferential direction so that the power receiving coil is interrupted in the tire circumferential direction. having a discontinuity formed;
    The tire according to claim 2, wherein an angle formed by the discontinuous portion of the first power receiving coil and the discontinuous portion of the second power receiving coil in the tire circumferential direction is 4 degrees or more.
  4.  前記ビード部のタイヤ径方向内側の端を基準としたタイヤ径方向に沿った高さに関して、前記タイヤの断面高さをShとし、前記サイド部の厚さがTminとなる前記サイド内表面上の位置の高さをHtとし、前記第1受電コイルが設けられた前記サイド内表面上の位置の高さをH1とし、前記第2受電コイルが設けられた前記サイド内表面上の位置の高さをH2とし、前記タイヤの偏平率をP×100[%]としたとき、
     Ht-Sh×P/4≦H1≦Ht+Sh×P/4、及び
     Ht-Sh×P/4≦H2≦Ht+Sh×P/4、
    の少なくとも一方を満足する、請求項2又は3に記載のタイヤ。
    Regarding the height along the tire radial direction based on the inner end of the tire radial direction of the bead portion, the cross-sectional height of the tire is Sh, and the thickness of the side portion is Tmin on the side inner surface. The height of the position on the side inner surface where the first power receiving coil is provided is H1, and the height of the position on the side inner surface where the second power receiving coil is provided. When is H2 and the aspect ratio of the tire is P x 100 [%],
    Ht-Sh×P/4≦H1≦Ht+Sh×P/4, and Ht-Sh×P/4≦H2≦Ht+Sh×P/4,
    The tire according to claim 2 or 3, which satisfies at least one of the following.
  5.  送電ユニットから、タイヤに設けられた受電ユニットに電力をワイヤレス伝送して、前記受電ユニットに接続される電子デバイスに給電する給電システムであって、
     前記送電ユニットは、前記タイヤに対して非回転の基部に設けられ交流磁界を生成する送電コイルを備え、
     前記受電ユニットは、前記タイヤのトレッド部とビード部との間にあるサイド部の、前記タイヤのタイヤ空洞領域に面するサイド内表面に設けられ、前記送電コイルから発生し前記サイド部を透過した前記交流磁界を受けることにより交流電力を生成する受電コイルを備え、
     前記電子デバイスは、前記受電ユニットにおいて前記交流電力から直流電力に変換された電力の供給を受けて駆動し、
     前記送電コイルは、前記基部に設けられることにより前記サイド部に対して前記受電コイルの側と反対側に配置され、
     前記受電コイルは、前記サイド内表面に沿ってタイヤ周方向に一周するように延びる円形状のコイルであり、
     前記受電コイルが設けられた前記サイド内表面のタイヤ径方向の位置における前記サイド部の厚さをTsとし、前記サイド部のタイヤ径方向にわたる厚さのうちの最小厚さをTminとしたとき、比Ts/Tminは1.0~5.5である、ことを特徴とする給電システム。
    A power supply system that wirelessly transmits power from a power transmission unit to a power reception unit provided on a tire to supply power to an electronic device connected to the power reception unit,
    The power transmission unit includes a power transmission coil that is provided at a base that does not rotate with respect to the tire and generates an alternating current magnetic field,
    The power receiving unit is provided on the inner surface of the side of the tire between the tread and the bead of the tire, facing the tire cavity area, and the power receiving unit is configured to receive power generated from the power transmission coil and transmitted through the side. comprising a power receiving coil that generates AC power by receiving the AC magnetic field,
    The electronic device is driven by being supplied with electric power converted from the AC power to DC power in the power receiving unit,
    The power transmitting coil is provided at the base and is disposed on a side opposite to the power receiving coil with respect to the side part,
    The power receiving coil is a circular coil that extends around the inner surface of the side in a circumferential direction of the tire,
    When the thickness of the side portion at a position in the tire radial direction of the side inner surface where the power receiving coil is provided is Ts, and the minimum thickness of the side portion across the tire radial direction is Tmin, A power supply system characterized in that the ratio Ts/Tmin is 1.0 to 5.5.
  6.  前記送電コイルは、前記サイド部の側を向くよう配置される平面状の送電領域を有し、
     前記送電コイルは、前記送電領域の面内において所定の曲率に従って延びる円弧形状の曲率部を有し、
     タイヤ幅方向に見て、前記曲率部は、前記受電コイルの前記円形状と同心円である円の周方向の一部の区間をなしている、請求項5に記載の給電システム。
    The power transmission coil has a planar power transmission area arranged to face the side part,
    The power transmission coil has an arc-shaped curvature portion that extends according to a predetermined curvature in the plane of the power transmission region,
    The power feeding system according to claim 5, wherein the curvature portion forms a part of a section in the circumferential direction of a circle that is concentric with the circular shape of the power receiving coil when viewed in the tire width direction.
  7.  前記受電コイルは、前記受電コイルの両端部がタイヤ周方向から逸脱するように延びることにより前記受電コイルがタイヤ周方向に途切れるように形成された途切れ部を有し、
     前記途切れ部における前記両端部のタイヤ周方向の間隔dの、前記曲率部のタイヤ周方向に沿った長さLに対する比d/Lは1/3以下である、請求項6に記載の給電システム。
    The power receiving coil has a discontinuous portion formed such that the power receiving coil is interrupted in the tire circumferential direction by extending both ends of the power receiving coil deviating from the tire circumferential direction,
    The power supply system according to claim 6, wherein a ratio d/L of a distance d in the tire circumferential direction between the both ends of the discontinuous portion to a length L of the curvature portion in the tire circumferential direction is 1/3 or less. .
  8.  前記受電コイルを第1受電コイルというとき、前記受電ユニットは、前記サイド内表面に設けられ、前記サイド部を透過した交流磁界を受けることにより交流磁界を生成する第2受電コイルをさらに備え、
     前記第2受電コイルは、前記サイド内表面に沿って、前記第1受電コイルと同心円状にタイヤ周方向に一周するように延びる円形状のコイルである、請求項6又は7に記載の給電システム。
    When the power receiving coil is referred to as a first power receiving coil, the power receiving unit further includes a second power receiving coil that is provided on the inner surface of the side and generates an alternating current magnetic field by receiving an alternating magnetic field transmitted through the side part,
    The power feeding system according to claim 6 or 7, wherein the second power receiving coil is a circular coil that extends along the inner surface of the side and concentrically with the first power receiving coil in a circumferential direction of the tire. .
  9.  前記送電領域と、前記第1受電コイル及び前記第2受電コイルそれぞれとの距離の平均値Gに対する、前記第1受電コイル及び前記第2受電コイルのタイヤ径方向の間隔Rの比R/Gは0.1~1.2である、請求項8に記載の給電システム。 The ratio R/G of the distance R in the tire radial direction between the first power receiving coil and the second power receiving coil to the average value G of the distance between the power transmission region and each of the first power receiving coil and the second power receiving coil is The power supply system according to claim 8, which is 0.1 to 1.2.
  10.  タイヤ径方向に沿った前記曲率部を通る断面において、前記曲率部が位置する第1の径方向領域と、前記サイド部に対し前記曲率部の側と反対側に位置する前記第1受電コイル及び前記第2受電コイルそれぞれのタイヤ径方向の位置を両端とする第2の径方向領域とはタイヤ径方向に離れていない、請求項8に記載の給電システム。 In a cross section passing through the curvature part along the tire radial direction, a first radial region where the curvature part is located, the first power receiving coil located on the side opposite to the curvature part with respect to the side part, and The power supply system according to claim 8, wherein the second power receiving coil is not separated in the tire radial direction from a second radial region having both ends at positions of the second power receiving coils in the tire radial direction.
  11.  前記送電ユニットは、前記送電コイルに対し前記サイド部の側と反対側に配置される磁性体であって、前記送電コイルにより生成する交流磁界の周波数における比透磁率が30~300である磁性体をさらに備える、請求項8に記載の給電システム。 The power transmission unit is a magnetic body disposed on a side opposite to the side portion with respect to the power transmission coil, and has a relative magnetic permeability of 30 to 300 at a frequency of an alternating current magnetic field generated by the power transmission coil. The power feeding system according to claim 8, further comprising:
  12.  前記磁性体は、前記送電コイルに対し前記サイド部の側と反対側に、前記送電コイルと間隔hをあけて配置され、
     前記送電領域と、前記第1受電コイル及び前記第2受電コイルそれぞれとの距離の平均値Gに対する、前記間隔hの比h/Gは0.01~0.5である、請求項11に記載の給電システム。
    The magnetic body is arranged on a side opposite to the side part with respect to the power transmission coil, with a distance h from the power transmission coil,
    According to claim 11, a ratio h/G of the interval h to an average value G of the distance between the power transmission region and each of the first power receiving coil and the second power receiving coil is 0.01 to 0.5. power supply system.
  13.  前記送電コイルと前記第1受電コイルとのタイヤ幅方向の距離G1に対する、前記第1受電コイルが設けられる前記サイド内表面の位置における前記サイド部の厚さTs1の比Ts1/G1、及び、前記送電領域と前記第2受電コイルとのタイヤ幅方向の距離G2に対する、前記第2受電コイルが設けられる前記サイド内表面の位置における前記サイド部の厚さTs2の比Ts2/G2、の少なくとも一方は0.1~0.7である、請求項8に記載の給電システム。 a ratio Ts1/G1 of the thickness Ts1 of the side portion at the position of the inner surface of the side where the first power receiving coil is provided to the distance G1 in the tire width direction between the power transmitting coil and the first power receiving coil; At least one of the ratio Ts2/G2 of the thickness Ts2 of the side portion at the position of the inner surface of the side where the second power receiving coil is provided to the distance G2 in the tire width direction between the power transmission region and the second power receiving coil is The power supply system according to claim 8, which is 0.1 to 0.7.
  14.  前記送電コイル及び前記受電コイルはそれぞれ、単線からなる1本の導線で構成され、
     前記送電コイルにおける前記導線の導体の直径は、前記受電コイルにおける前記導線の導体の直径より大きい、請求項5から7のいずれか1項に記載の給電システム。
    The power transmitting coil and the power receiving coil each include a single conductive wire made of a single wire,
    The power supply system according to any one of claims 5 to 7, wherein the diameter of the conductor of the conductor in the power transmission coil is larger than the diameter of the conductor of the conductor in the power reception coil.
  15.  タイヤ幅方向に見て、前記送電コイルは、前記タイヤの回転中心軸から鉛直上方に延びる線のタイヤ周方向の両側それぞれに45度の角度範囲内に位置している、請求項5から7のいずれか1項に記載の給電システム。 8. The power transmission coil according to claim 5, wherein the power transmission coil is located within an angular range of 45 degrees on each side of a line extending vertically upward from the central axis of rotation of the tire in the tire circumferential direction. The power supply system according to any one of the items above.
PCT/JP2023/024861 2022-07-07 2023-07-05 Tire and power feed system WO2024010019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022109677 2022-07-07
JP2022-109677 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024010019A1 true WO2024010019A1 (en) 2024-01-11

Family

ID=89453465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024861 WO2024010019A1 (en) 2022-07-07 2023-07-05 Tire and power feed system

Country Status (1)

Country Link
WO (1) WO2024010019A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501939A (en) * 1989-03-31 1992-04-02 ヒューズ・エアクラフト・カンパニー vehicle tire identification system
JP2004274754A (en) * 2003-03-04 2004-09-30 Goodyear Tire & Rubber Co:The Method for assembling annular antenna and transponder apparatus
WO2020040030A1 (en) * 2018-08-24 2020-02-27 横浜ゴム株式会社 Pneumatic tire, pneumatic tire assembly, and power supply system
WO2021020046A1 (en) * 2019-07-26 2021-02-04 株式会社デンソー System for supplying power during travel
WO2021030760A1 (en) * 2019-08-15 2021-02-18 Motamed Siavash Electro-magnetic coupled piezolectric powering of electric vehicles
JP2021125957A (en) * 2020-02-04 2021-08-30 Toyo Tire株式会社 Tire power supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501939A (en) * 1989-03-31 1992-04-02 ヒューズ・エアクラフト・カンパニー vehicle tire identification system
JP2004274754A (en) * 2003-03-04 2004-09-30 Goodyear Tire & Rubber Co:The Method for assembling annular antenna and transponder apparatus
WO2020040030A1 (en) * 2018-08-24 2020-02-27 横浜ゴム株式会社 Pneumatic tire, pneumatic tire assembly, and power supply system
WO2021020046A1 (en) * 2019-07-26 2021-02-04 株式会社デンソー System for supplying power during travel
WO2021030760A1 (en) * 2019-08-15 2021-02-18 Motamed Siavash Electro-magnetic coupled piezolectric powering of electric vehicles
JP2021125957A (en) * 2020-02-04 2021-08-30 Toyo Tire株式会社 Tire power supply system

Similar Documents

Publication Publication Date Title
JP4100868B2 (en) Pneumatic tire with antenna for radio frequency band transponder
JP4107381B2 (en) Pneumatic tire
WO2021070557A1 (en) Tire/wheel assembly
US20030000615A1 (en) Method for generating an electric current within a tyre
KR102215744B1 (en) Pneumatic tire
JP2003507230A (en) Arrangement of transponder coupling elements in tires
CN112351897B (en) Pneumatic tire, pneumatic tire assembly, and power supply system
WO2024010019A1 (en) Tire and power feed system
WO2021015259A1 (en) Tire wheel assembly and tire
JP2023121756A (en) Radio electric power reception system, tire/wheel assembly and tire
JP2021059308A (en) Tire and wheel assembly
JP2021059307A (en) Tire and wheel assembly
JP2021059304A (en) Tire and wheel assembly
WO2023276178A1 (en) Tire
EP3988346A1 (en) Tire
EP4005818A1 (en) Tire/wheel assembly and tire
JP2021059309A (en) Tire and wheel assembly
WO2023276190A1 (en) Tire
WO2021124600A1 (en) Tire/wheel assembly
EP4005829A1 (en) Tire/wheel assembly, tire, and wireless power reception system
JP2021059314A (en) Tire and wheel assembly
JP2021059315A (en) Tire and wheel assembly
JP2021020515A (en) Tire/wheel assembly, radio electric power reception system, and tire
JP2021059302A (en) Tire and wheel assembly
JP2021059303A (en) Tire and wheel assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835550

Country of ref document: EP

Kind code of ref document: A1