WO2024010011A1 - Alkoxy group-containing radical generator, radical polymer, composition, and method for producing radical polymer - Google Patents

Alkoxy group-containing radical generator, radical polymer, composition, and method for producing radical polymer Download PDF

Info

Publication number
WO2024010011A1
WO2024010011A1 PCT/JP2023/024837 JP2023024837W WO2024010011A1 WO 2024010011 A1 WO2024010011 A1 WO 2024010011A1 JP 2023024837 W JP2023024837 W JP 2023024837W WO 2024010011 A1 WO2024010011 A1 WO 2024010011A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical
polymer
group
radical polymer
alkoxy group
Prior art date
Application number
PCT/JP2023/024837
Other languages
French (fr)
Japanese (ja)
Inventor
真澄 高村
理 糸山
Original Assignee
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学 filed Critical 国立大学法人山形大学
Publication of WO2024010011A1 publication Critical patent/WO2024010011A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/32Peroxy compounds the —O—O— group being bound between two >C=O groups
    • C07C409/34Peroxy compounds the —O—O— group being bound between two >C=O groups both belonging to carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/34Per-compounds with one peroxy-radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/26Removing halogen atoms or halogen-containing groups from the molecule

Definitions

  • the present invention relates to an alkoxy group-containing radical generator, a radical polymer having a specific terminal functional group structure, a composition thereof, a method for producing the radical polymer, and the like.
  • Living radical polymerization is an epoch-making polymerization that can take advantage of the advantages of radical polymerization, such as simplicity and versatility, while solving the disadvantage of non-uniform molecular weight.
  • the living radical polymerization method is obtained by using a polymerization initiator composed of a dormant that generates a polymerization active terminal in the presence of a catalyst and an organic compound moiety, and a radically polymerizable unsaturated monomer. (hereinafter referred to as precursor), the organic compound moiety in the polymerization initiator and the dormant are respectively bonded to the ends.
  • copolymers with different components block copolymers bonded in block shapes, graft copolymers bonded in branched shapes, and even star-like copolymers
  • a star-shaped copolymer bonded to a star-shaped copolymer, a ladder-shaped copolymer bonded to a ladder-shaped copolymer, etc. are obtained, respectively.
  • Living radical polymerization is an important technology both academically and industrially because the primary structure of copolymers with different bonding states greatly influences the chemical and physical properties of the polymer.
  • the resulting precursor-terminated dormant contains sulfides, halogens, transition metals, etc., and therefore has disadvantages such as odor, corrosivity, toxicity, and coloring, and there are many limitations in developing it for various uses. There is. Therefore, it is necessary to remove the dormant at the end of the obtained precursor.
  • a functional group to the terminal end of the precursor, for example, by causing the functional group to segregate near the surface of a thin film, reacting with another polymer, adsorbing or reacting with the surface of an organic or inorganic particle, etc. It becomes possible to express new functions.
  • the precursor with a functional group bonded to the terminal (I) a polymer in which an organic compound moiety of a polymerization initiator containing a functional group in advance is bonded to the precursor terminal, and (II) a functional group-containing compound,
  • a dormant at the precursor end is removed and at the same time a new functional group is attached to the end.
  • a dormant terminal is present at one end of the polymer, and this can be said to be unfavorable from the viewpoint of safety such as toxicity as described above.
  • Patent Document 1 describes a living radical polymer in which a hydrolyzable silyl group is bonded via nitrogen and sulfur as the polymer (II) above. Furthermore, Non-Patent Document 1 describes a polymer in which a hydroxyl group, a thiol group, or an alkoxysilyl group is bonded to a precursor via a nitrogen link.
  • the polymers obtained in these documents had the problem that a desired chemical structure could not be bonded to them due to deterioration due to side reactions.
  • the present invention has been made in view of the problems of the prior art described above, and uses an alkoxy group-containing radical generator that imparts hydrophilicity to a polymer, and a radical generator that has a narrow molecular weight distribution and has an alkoxy group at at least one end.
  • the present invention provides a polymer, a composition containing a highly pure radical polymer, a method for producing a radical polymer, and the like.
  • the present invention includes those described below.
  • R 1 and R 1 ' are linear or branched C 1-5 alkyl groups
  • R 2 and R 2 ' are linear or branched C 1-10 alkylene groups.
  • R 1 ' and R 1 are linear or branched C 1-3 alkyl groups
  • R 2 ' and R 2 The alkoxy group-containing radical generator according to [1] above, wherein is a linear or branched C 1-5 alkylene group.
  • [3] The alkoxy group-containing radical generator described in [1] or [2] above, for example, in [1] above, wherein R 1 and/or R 1 ' is a methyl group.
  • R 1 is a linear or branched C 1-5 alkyl group
  • R 2 is a linear or branched C 1-10 alkylene group
  • * is a connection site with the main chain of the radical polymer.
  • the radical polymer according to the above [5] which is a living radical polymer.
  • a radical polymer composition comprising the radical polymer according to any one of [5] to [10] above and a polymer that does not contain the terminal functional group structure.
  • a method for producing a radical polymer according to any one of [5] to [10] above comprising: a polymerization step of forming a precursor of a radical polymer using a polymerization initiator containing an organic compound moiety and a dormant and a radically polymerizable unsaturated monomer; The dormant end derived from the dormant of the precursor is reacted with any one of the above [1] to [4], for example, the radical generator described in the above [1], instead of the dormant end.
  • a method for producing a radical polymer comprising an introduction step of introducing a terminal functional group structure derived from the radical generator.
  • any one of the above [1] to [4], for example, the radical generator described in the above [1] is added dropwise to the reaction system, the above [12] to [15]
  • the method for producing a radical polymer according to [12] above is added dropwise to the reaction system, the above [12] to [15]
  • the method for producing a radical polymer according to [12] above is added dropwise to the reaction system, the above [12] to [15]
  • a nonmetallic compound having an ionic bond with an iodide ion is further added to any one of the above [1] to [4], for example, the radical generator described in the above [1].
  • any one of [12] to [16] above for example, the method for producing a radical polymer according to [12] above.
  • the alkoxy group-containing radical generator of the present invention is useful in radical polymerization, particularly in living radical polymerization, and enables the production of a radical polymer containing a hydrophilic alkoxy group-containing terminal structure by a relatively easy production method. enable.
  • effects obtained by the radical polymer having a specific functional group at at least one terminal obtained by the above-mentioned radical generator according to the present invention, the composition thereof, and the method for producing the radical polymer will be explained. Although some details of the mechanism of action of this effect are unclear, it is estimated as follows. However, the present invention does not need to be interpreted as being limited to this mechanism of action.
  • the polymer of the present invention is characterized by having a narrow molecular weight distribution and having a specific functional group present in high purity at at least one end. This makes it easy to segregate specific functional groups near the surface of the thin film, and also makes the adsorption and reaction of other polymers and organic or inorganic particles on the surface uniform and efficient. Therefore, using the polymer of the present invention, it is possible to obtain, for example, additives such as compatibilizers and surface modifiers, and polymer films or particles whose surfaces are functionalized.
  • the polymer of the present invention having a hydrophilic terminal functional group is useful in, for example, antifogging paints.
  • the method for producing a polymer of the present invention is based on the dormant end of a precursor, which is a polymer obtained by using a polymerization initiator composed of an organic compound and a dormant, and a radically polymerizable unsaturated monomer. It is obtained by reacting the above-mentioned alkoxy group-containing radical generator.
  • the reaction mechanism is estimated as follows. First, the alkoxy group-containing radical generated from the radical generating agent extracts the dormant present at the end of the precursor, thereby generating a radical at the end of the precursor.
  • the alkoxy group-containing radical derived from the alkoxy group-containing radical generator present in an equimolar or more amount to the dormant present at the end of the precursor has a low molecular weight, it can quickly diffuse in the reaction solution. . Therefore, the alkoxy group-containing radical quickly bonds with the terminal radical of the precursor, and as a result, a highly purified precursor to which a specific functional group-containing compound is bonded can be obtained. Furthermore, since the alkoxy group-containing radical inhibits the bonding between the terminal radicals of the precursor, which would otherwise broaden the molecular weight distribution, the resulting polymer can maintain the narrow molecular weight distribution of the precursor as it is.
  • a polymer to which a desired alkoxy group is bonded can be obtained without deteriorating the polymer.
  • FIG. 3 is a diagram showing MALDI-TOFMS spectrum data of a sample of the precursor of Production Example 1.
  • FIG. 7 is a diagram showing MALDI-TOFMS spectrum data for a sample of the polymer of Example 16.
  • Linear mode data was used for the spectrum, and Spiral mode data was used for the exact mass of the peak.
  • the radical generator of the present invention is a peroxide having a molecular structure represented by the following formula (1).
  • R 1 and R 1 ' are each a linear or branched alkyl group having 1 to 5 carbon atoms (C 1 to 5 ).
  • R 1 ' and R 1 may be different or the same.
  • R 2 and R 2 ' are each a linear or branched alkylene group having 1 to 10 carbon atoms (C 1 to 10 ).
  • R 2 ' and R 2 may be different or the same.
  • the radical generator has a peroxide structure (-O-O-) which is a radical generating site at the center and an alkoxy group at the end. Radicals are generated by cleavage of peroxide bonds in the radical generator having such a molecular structure.
  • R 1 and R 1 ' are each preferably a linear or branched C 1-3 alkyl group.
  • R 1 and R 1 ′ are preferably an alkyl group having 1 or 2 carbon atoms, more preferably at least one of R 1 and R 1 ′ is a methyl group, and even more preferably R 1 and R 1 ' are both methyl groups.
  • R 2 and R 2 ' are each preferably a linear or branched C 1-5 alkylene group. Preferred specific examples of R 2 and R 2 ' include a methylene group, an ethylene group, and a propylene group.
  • R 2 and R 2 ′ is a methylene group, an ethylene group, or a propylene group, and more preferably that both of R 2 and R 2 ′ are a methylene group, an ethylene group, or a propylene group.
  • R 1 , R 1 ′ , R 2 and R 2 ′ may each be substituted with a substituent, and examples of the substituent include a halogen atom, a hydroxyl group, an alkoxy group, a carboxyl group, an acyl group, an amino group, nitro group, cyano group, mercapto group, silyl group, etc.
  • R 1 , R 1 ′ , R 2 and R 2 ′ are substituted with a substituent, the above-mentioned number of carbon atoms does not include the number of carbon atoms in the substituent.
  • radical generator As the radical generator, other radical generators may be used in addition to the above-mentioned alkoxy group-containing radical generator. That is, a radical generator composition containing an alkoxy group-containing radical generator and a general-purpose radical generator may be used in the radical polymerization reaction.
  • the general-purpose radical generator is not particularly limited as long as it is a known radical generator such as an azo compound or an organic peroxide. Specific general-purpose radical generators include 4-1 below. The same radical polymerization initiators as described in the column of polymerization step can be used.
  • the alkoxy group-containing radical generator of formula (1) preferably contains 30% by weight or more, 50% by weight or more, It is more preferable that it is contained, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the radical generator of the present invention is particularly suitable for use in living radical polymerization reactions.
  • the alkoxy group-containing radical generated from the radical generator acts on the living radical polymer precursor in which the dormant derived from the polymerization initiator is bonded to the terminal, and an alkoxy group-containing terminal structure is introduced. enables the production of living radical polymers.
  • the radical generator of the present invention can also be used as a radical generator in radical polymerization other than living radical polymerization, a crosslinking agent for synthetic resins and rubber, a degrading agent for polypropylene, an oxidizing agent, etc. .
  • the radical polymer of the present invention for example a living radical polymer, has a specific functional group at at least one end. That is, the terminal of the radical polymer of the present invention contains at least a specific functional group represented by the following formula (2).
  • the terminal functional group is bonded to the main chain of the radical polymer, as shown in formula (2) below.
  • * is a linking site to the main chain of the radical polymer, and R 1 and R 2 are both described in 1-1 above. As stated in the column.
  • the structure of the radical polymer having the above-mentioned terminal functional group differs mainly depending on the polymerization initiator, for example, depending on the number of dormants in one molecule of the polymerization initiator.
  • the radical polymer obtained from a monofunctional polymerization initiator having one dormant in one molecule an organic compound fragment of the polymerization initiator is bonded to one end of the polymer as the main chain.
  • a compound having a specific functional group is bonded to the other end.
  • organic compounds originating from the polymerization initiator occur at the center of the main chain or at the center of the polymer molecule.
  • a polymer having two to four branched chains sandwiching the organic compound moiety is obtained by arranging the compound moieties, and a compound having a specific functional group is bonded to the end of the branched chain of each polymer. .
  • radical polymers of formulas A'-(M-X) 2 to 4 above since the lengths of the multiple branched chains represented by M are substantially uniform, A' The above-mentioned organic compound moiety represented will be located approximately at the center of the radical polymer. That is, by using a polyfunctional initiator, it is possible to produce a radical polymer in which an organic compound moiety is located at the center of a main chain having multiple branches. Regarding these structures in the radical polymer, the most suitable one can be used depending on the desired use. For example, if you want to react only at one end, a polymer in which a compound having a specific functional group is bonded to the end of a radical polymer obtained from a monofunctional polymerization initiator having no functional group is suitable.
  • a radical polymer obtained from a monofunctional polymerization initiator having a functional group or a radical polymer obtained from a polyfunctional polymerization initiator may be reacted with a specific terminal.
  • a polymer to which a compound having a functional group is bonded is good.
  • the radical polymer with a dormant bonded to the terminal (hereinafter referred to as precursor) has one type of radical polymer that constitutes the main chain.
  • radical polymer that constitutes the main chain.
  • Homopolymers of polymerizable unsaturated monomers random copolymers of two or more types of radically polymerizable unsaturated monomers, block copolymers, graft copolymers, and even one or more types of radically polymerizable unsaturated monomers. Examples include star-shaped (co)polymers and ladder-shaped (co)polymers of saturated monomers, but the present invention is not limited to these examples.
  • a radically polymerizable unsaturated monomer is a monomer that is used in the production of a radical polymer and has an unsaturated bond that can undergo radical polymerization in the presence of an organic radical. More specifically, a so-called vinyl monomer can be used to form the main chain of the radical polymer. Vinyl monomer is a general term for monomers represented by formula (3).
  • CHR 7 CR 8 R 9 (3)
  • R 7 , R 8 and R 9 each independently represent a hydrogen atom or an organic group.
  • the organic group includes an optionally substituted alkyl group having 1 to 12 carbon atoms, an optionally substituted aryl group having 6 to 18 carbon atoms, and the like.
  • vinyl monomer represented by formula (3) includes the following, but the present invention is not limited to these examples.
  • vinyl monomers examples include styrene and its derivatives (R 7 and R 8 are hydrogen atoms, R 9 is a phenyl group that may have a substituent), acrylic acid (R 7 and R 8 are hydrogen atoms, R 9 is a carboxyl group) and its alkali metal salts, acrylamide (R 7 and R 8 are hydrogen atoms, R 9 is a CONH 2 group) and its derivatives, acrylate (acrylic ester or acrylate), methacrylic acid (R 7 is a hydrogen atom, R8 is a methyl group, R9 is a carboxyl group) and its alkali metal salts, methacrylamide ( R7 is a hydrogen atom, R8 is a methyl group, R is a CONH2 group) and its derivatives, methacrylate (methacrylate) acid esters or methacrylates), but the present invention is not limited to these examples.
  • styrene and its derivatives include styrene (hereinafter also referred to as St), o-, m- or p-methoxystyrene, o-, m- or pt-butoxystyrene, o-, m- or p-chloromethylstyrene, o-, m- or p-chlorostyrene, o-, m- or p-hydroxystyrene, o-, m- or p-styrene sulfonic acid and its alkali metal salts, o-, m- - or p-styrene boronic acid and derivatives thereof, but the present invention is not limited to these examples.
  • acrylamide and its derivatives include acrylamide, N-isopropylacrylamide, N,N-dimethylacrylamide, N-methylolacrylamide, N-hydroxyethylacrylamide, etc., but the present invention is limited only to such examples. It is not something that will be done.
  • acrylate examples include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate (hereinafter referred to as BA), t-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, nonyl acrylate, Alkyl acrylates such as decanyl acrylate, lauryl acrylate, behenyl acrylate, stearyl acrylate, arylalkyl acrylates such as benzyl acrylate, epoxyalkyl acrylates such as tetrahydrofurfuryl acrylate, glycidyl acrylate, cycloalkyl acrylates such as cyclohexyl acrylate, 2-methoxyethyl Acrylate (hereinafter referred to as MEA), alkoxyalkyl acrylate such as 2-butoxyethyl acrylate,
  • alkoxypolyalkylene glycol acrylate such as methoxytetraethylene glycol acrylate, methoxypolyethylene glycol acrylate, dialkylaminoalkyl acrylate such as 2-(dimethylamino)ethyl acrylate, 3-chloro-2-hydroxypropyl acrylate, 2-hydroxy-3 - Phenoxypropyl acrylate, fluoroalkyl acrylate in which the alkyl group of alkyl acrylate is substituted with a fluorine atom, acrylate in which the alkyl group of alkyl acrylate is substituted with a tris(trialkylsiloxy)silyl group, ethylphosphorylcholine group is substituted in the alkyl group of alkyl acrylate
  • Examples include acrylates, but the present invention is not limited to these examples.
  • methacrylamide and its derivatives include methacrylamide, N-isopropylmethacrylamide, N,N-dimethylmethacrylamide, N-methylolmethacrylamide, N-hydroxyethylmethacrylamide, etc. is not limited to these examples.
  • methacrylate examples include methyl methacrylate (hereinafter referred to as MMA), ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, nonyl methacrylate, Alkyl methacrylates such as decanyl methacrylate, lauryl methacrylate, behenyl methacrylate, stearyl methacrylate, arylalkyl methacrylates such as benzyl methacrylate, epoxyalkyl methacrylates such as tetrahydrofurfuryl methacrylate, glycidyl methacrylate, cycloalkyl methacrylates such as cyclohexyl methacrylate, 2-methoxy Alkoxyalkyl methacrylates such as ethyl
  • Examples include 3-[[tris(triethylsiloxy)silyl]propyl methacrylate, ethylphosphorylcholine methacrylate in which the alkyl group of alkyl methacrylate is substituted with an ethylphosphorylcholine group, but are not limited to these examples.
  • Both R 8 and R 9 of the vinyl monomer represented by formula (3) may be groups having a carboxyl group or a carboxylate. Specific examples thereof include itaconic acid, dimethyl itaconate, monobutyl itaconate, and its monoalkyl esters and dialkyl esters, but are not limited to these examples.
  • a vinyl monomer having two or more double bonds may be used.
  • diene compounds e.g., butadiene, isoprene, etc.
  • compounds having two allyl groups e.g., diallyl phthalate, etc.
  • compounds having two acrylic groups e.g., ethylene glycol diacrylate, etc.
  • compounds having two methacrylic groups eg, ethylene glycol dimethacrylate
  • diene compounds e.g., butadiene, isoprene, etc.
  • allyl groups e.g., diallyl phthalate, etc.
  • acrylic groups e.g., ethylene glycol diacrylate, etc.
  • methacrylic groups eg, ethylene glycol dimethacrylate
  • vinyl monomers other than those mentioned above can also be used.
  • vinyl esters e.g., vinyl acetate, vinyl propionate, vinyl benzoate
  • styrene derivatives other than the above e.g., ⁇ -methylstyrene
  • vinyl ketones e.g., vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone
  • N-vinyl compounds e.g.
  • vinyl halides e.g., vinyl chloride, vinylidene chloride, tetrachloroethylene, hexachloropropylene, vinyl fluoride, vinylidene fluoride
  • olefins e.g.,
  • the radically polymerizable unsaturated monomers may be used alone or in combination of two or more.
  • acrylates, methacrylates, and styrenes are preferable, it is more preferable to use at least one of acrylates and methacrylates, and it is particularly preferable to use acrylates.
  • acrylate is contained in an amount of 30% by weight or more, and preferably 50% by weight or more. It is more preferable that the content is 70% by weight or more, and it is particularly preferable that the content is 90% by weight or more.
  • the amount of the radically polymerizable unsaturated monomer used can be adjusted as appropriate depending on the desired molecular weight.
  • the number average molecular weight of the radical polymer is, for example, 1,000 to 200,000, preferably 1,500 to 100,000, and more preferably 3,000 to 50,000.
  • the weight average molecular weight of the radical polymer is equal to or slightly larger than the number average molecular weight, for example, 1,000 to 240,000, preferably 1,500 to 120,000, more preferably 3. 000 to 60,000.
  • Radical polymers are also characterized by a narrower molecular weight distribution compared to normal radical polymerization.
  • Molecular weight distribution is the value obtained by dividing the weight average molecular weight of a polymer by the number average molecular weight, and compared to the molecular weight distribution obtained by ordinary radical polymerization, which is about 2 or more, the molecular weight distribution obtained by the present invention is
  • the molecular weight distribution of the aggregate is preferably 1.0 to 1.5, more preferably 1.0 to 1.3, even more preferably 1.0 to 1.25, and particularly preferably 1.0 to 1.3. It is 0 to 1.24.
  • the lower limit of the molecular weight distribution range of the radical polymer may be 1.05, 1.10, or the like.
  • the number average molecular weight and weight average molecular weight of the polymer were measured by size exclusion chromatography according to the general rules (JISK 7252-1 (2016) and ISO 16014-1 (2012)) under the following measurement conditions. This is the value at the time.
  • [Number average molecular weight and weight average molecular weight of polymer] ⁇ Measuring equipment: EXTREMA size exclusion chromatography (GPC/SEC) system manufactured by JASCO Corporation ⁇ Column: SHODEX manufactured by Showa Denko Co., Ltd.
  • Sample side 3 K-803, KF-804L, KF-806F connected , Reference side: KF-800RH ⁇ Eluent: Tetrahydrofuran (hereinafter referred to as THF) ⁇ Calibration curve standard material: Polymethyl methacrylate (other than styrene polymers), polystyrene (styrene polymers) - Preparation of sample for measurement: Dissolve the polymer in an eluent (THF) to prepare a solution with a polymer concentration of 0.1% by weight, and use the filtrate after filtering the solution with a filter.
  • THF Tetrahydrofuran
  • the polymerization initiator used for producing the above-mentioned precursor contains an organic compound part and a dormant, and preferably consists of only an organic compound part and a dormant. Further, in the polymerization of the radical polymer precursor, although already known methods can be utilized, it is necessary to appropriately select the type of polymerization initiator depending on the polymerization method as described below.
  • NMP method nitroxide-mediated radical polymerization method (NMP method) using a nitroxide compound (nitroxide group) as a dormant
  • ATRP method atom transfer radical polymerization method
  • thiocarbonylthio compound thiocarbonylthio group
  • RAFT method radical polymerization method using organic tellurium, organic antimony, or organic bismuth, etc.
  • a radical polymer precursor can be produced by a radical polymerization method using iodine (eg, RCMP method or RTCP method).
  • Typical polymerization initiators in the NMP method using a nitroxide compound as a dormant include, for example, a polymer having a 1-phenylethyl group as an organic compound moiety and a t-butyl (1-phenyl-2-methylpropyl) nitroxide group as a dormant. Examples include t-butyl(1-phenyl-2-methylpropyl)(1-phenylethoxy)amine, but the present invention is not limited to such examples.
  • the NMP method and the polymerization initiator used therein are summarized in Sigma-Aldrich's "Precision Radical Polymerization Handbook" published in July 2012, pages 31-34, so please refer to it.
  • Typical polymerization initiators in the ATRP method using bromine as a dormant include, for example, monofunctional type t-butyl- ⁇ -bromoisobutyrate having a t-butyl isobutyrate group as an organic compound moiety, and t-butyl- ⁇ -bromoisobutyrate containing a functional group.
  • Monofunctional 2-hydroxyethyl-2-bromoisobutyrate has a hydroxyl-containing 2-hydroxyethyl-2-isobutyrate group as an organic compound moiety
  • bifunctional 2-hydroxyethyl-2-bromoisobutyrate has an ethylenebis(isobutyrate group) as an organic compound moiety.
  • Examples include ethylene bis(2-bromoisobutyrate), but the present invention is not limited to such examples.
  • catalysts include amine compounds such as 2,2'-bipyridine, and examples of metal salts for catalysts include transition metal halides such as copper(I) chloride, but in the present invention, only such examples are used. It is not limited to.
  • the ATRP method and the polymerization initiator used therein are summarized in Sigma-Aldrich's "Precision Radical Polymerization Handbook", p. 2-18, published in July 2012, so please refer to it.
  • Typical polymerization initiators in the RAFT polymerization method using a thiocarbonylthio compound as a dormant include, for example, a phenyldithioester group as a dithioester dormant, and a monofunctional cyanopropyl group having a cyanoisopropyl group as an organic compound moiety.
  • trithiocarbonates such as benzothyanoate (hereinafter referred to as CPBS), monofunctional cyanopentanoic acid benzothyanoate, etc., which has a carboxyl group such as a cyanopentanoic acid group as a functional group-containing organic compound moiety; monofunctional cyanopropyl-n-dodecyltrithiocarbonate having an n-dodecyltrithiocarbonate group as a system dormant and a cyanoisopropyl group as an organic compound moiety, and an ethylenebiscyanopentanoic acid group as an organic compound moiety.
  • CPBS benzothyanoate
  • monofunctional cyanopentanoic acid benzothyanoate etc.
  • monofunctional cyanopropyl-n-dodecyltrithiocarbonate having an n-dodecyltrithiocarbonate group as a system dormant and a cyano
  • Examples include bifunctional ethylene bis(cyanopentanoic acid-n-dodecylthiocarbonate) having the following, but the present invention is not limited to such examples.
  • the RAFT polymerization method and the polymerization initiator used therein are summarized in Sigma-Aldrich's "Precision Radical Polymerization Handbook", pages 19-30, published in July 2012, so please refer to it.
  • Typical polymerization initiators in the TERP method using an organic tellurium compound as a dormant include, for example, 2-methyltellanylpropionitrile having a methyltellurium group as an organic tellurium dormant and a cyanoisopropyl group as an organic compound moiety.
  • the present invention is not limited to these examples.
  • the TERP method and the polymerization initiators used in it are summarized in "Living Radical Polymerization 2. Polymerization Mechanism and Method 2" pages 365-367 of the Japan Rubber Association Journal (No. 82) published in August 2009. So please refer to it.
  • Typical polymerization initiators used in the RCMP method and RTCP method that use iodine as a dormant include, for example, monofunctional diamines having an isobutyronitrile group, an ethyl isobutyrate group, or an ethyl phenylacetate group as an organic compound moiety.
  • CP-I -Iodoisobutyronitrile
  • PAME ethyl 2-iodoisobutyrate
  • PAME ethyl 2-iodo-2-phenylacetate
  • isobutyric acid group containing a carboxyl group phenyl Monofunctional 2-iodoisobutyric acid and 2-iodo-2-phenylacetic acid each having an acetate group
  • difunctional 2-iodoisobutyric acid-2- each having a hydroxyethyl isobutyrate group and a hydroxyethyl phenylacetate group as organic compound moieties.
  • Examples include hydroxyethyl, 2-hydroxyethyl 2-iodo-2-phenylacetate, but the present invention is not limited to these examples.
  • RCMP method and RTCP method and the polymerization initiators used therein please refer to pages 6610-6618 of Macromolecules (No. 47) published by ACS Publishing in September 2014 and ELSEVIER Publishing published in September 2008, respectively. Please refer to the magazine Polymer (No. 49), pages 5177-5185.
  • the amount of the polymerization initiator used to obtain the radical polymer is preferably 0.1 to 50 moles, and 0.1 to 50 moles per 100 moles of the radically polymerizable unsaturated monomer used. More preferably, it is 5 to 40 moles. Further, from the viewpoint of the degree of polymerization, it is more preferable to use 0.5 to 10 moles of the polymerization initiator per 100 moles of the radically polymerizable unsaturated monomer.
  • Methods for obtaining radical polymers include the RAFT method using a thiocarbonylthio compound as a dormant and the use of an organic tellurium compound, from the viewpoint of the efficiency of dormant extraction from the polymer terminal and bonding of functional group-containing organic compound fragments.
  • TERP method ATRP method using halogen (bromine or iodine), RCMP method or RTCP method is preferable, and among them, ATRP method, RCMP method or RTCP method using halogen (bromine or iodine) is more preferable, and the resulting polymer has low odor.
  • RCMP method or RTCP method is most preferred from the viewpoint of low coloring and low toxicity.
  • the radical polymer of the present invention contains an organic compound moiety derived from the above-mentioned polymerization initiator for producing the precursor.
  • the organic compound moiety introduced into one end or main chain of the precursor by the polymerization initiator will not undergo radical polymerization even if a radical polymer with a changed terminal structure of the precursor is subsequently produced. Maintained during coalescence.
  • the organic compound moiety contained in the radical polymer exists either at one end of the radical polymer or in the main chain.
  • specific examples of the organic compound moiety include the following.
  • 1-phenylethyl group that can be introduced by NMP method t-butyl isobutyrate group, 2-hydroxyethyl-2-isobutyrate group, ethylene bis (isobutyrate group) that can be introduced by ATRP method, for example, by RAFT polymerization method.
  • the organic compound moiety exemplified in the above structure may be substituted with a phenyl group, halogen, hydroxyl group, cyano, etc., and may have an organic acid group such as a carboxyl group, an acetate group, a butyrate group, etc.
  • Residues of alkyl groups or alkylate groups having a total number of carbon atoms of 1 to 20, preferably 1 to 12 (alkylene groups, etc. when included in the main chain of the polymer); phenyl groups, halogens, hydroxyl groups Aryl having 6 to 24 carbon atoms in total, preferably 8 to 18 carbon atoms in total, which may be substituted with Examples include residues of groups (arylene groups when included in the main chain of the polymer).
  • organic compound moieties that can be introduced by ATRP method, RCMP method, etc.
  • a polymerization initiator containing halogen such as iodine such as t-butyl isobutyrate group, 2-hydroxyethyl-2-isobutyrate group, ethylene Bis (isobutyrate group): Residues such as isobutyronitrile group, ethyl isobutyrate group, ethyl phenylacetate group, isobutyric acid group containing carboxyl group, phenylacetate group, hydroxyethyl isobutyrate group, hydroxyethyl phenylacetate group, etc. , preferred as an organic compound moiety.
  • halogen such as iodine
  • Residues such as isobutyronitrile group, ethyl isobutyrate group, ethyl phenylacetate group, isobutyric acid group containing carboxyl group, phenylacetate group, hydroxyethyl isobutyrate group, hydroxyethyl
  • a functional group containing an alkoxy group represented by formula (2) is bonded to at least one end, ie, one end or both ends, via an ester moiety.
  • the terminal functional group of formula (2) is derived from an alkoxy group-containing radical generator, and has a structure corresponding to formula (1) representing an alkoxy group-containing radical generator as shown below.
  • R 1 and R 2 are as described above. That is, R 1 is preferably an alkyl group having 1 or 2 carbon atoms, more preferably a methyl group. R 2 is preferably an alkylene group having 1 or 2 carbon atoms, more preferably an ethylene group.
  • R 1 and R 2 contained in the terminal functional group may each be independently substituted with a substituent, and examples of substituents contained in R 1 and R 2 include a halogen atom, a hydroxyl group, an alkoxy group. , carboxyl group, acyl group, amino group, nitro group, cyano group, mercapto group, silyl group, etc.
  • substituents contained in R 1 and R 2 include a halogen atom, a hydroxyl group, an alkoxy group. , carboxyl group, acyl group, amino group, nitro group, cyano group, mercapto group, silyl group, etc.
  • the living radical polymer composition includes at least the above-mentioned living radical polymer and the above-mentioned polymer that does not contain a terminal functional group (a polymer that does not contain a specific terminal functional group, such as a living radical polymer). radical polymers such as coalescence).
  • the radical polymer to which a compound having a functional group containing an alkoxy group is not bonded to the terminal thereof preferably includes a precursor and a radical polymer in which the dormant of the precursor is replaced with hydrogen by some reaction. It will be done.
  • the composition, primary structure and molecular weight of these polymers, which do not contain specific terminal functional groups, are almost the same, with little change compared to those of radical polymers. That is, the radical polymer that may be included in the radical polymer composition preferably differs primarily only in the terminal structure from a radical polymer having a specific terminal functional group.
  • polymers that can be included in the radical polymer composition include thermoplastic resins, thermosetting resins, and polymers derived from precursors that are not derived from precursors.
  • Known solvents such as soluble solvents and antioxidants can be used.
  • the above-mentioned radical polymer having a terminal functional group containing an alkoxy group is the entire mixture of polymers derived from a precursor, that is, a precursor in which a dormant such as a halogen such as iodine is introduced at the terminal end, and a precursor terminal having a dormant such as halogen such as iodine. It preferably accounts for 50 to 100 parts by weight, more preferably 70 to 100 parts by weight, and even more preferably It accounts for 90 to 100 parts by weight. According to the method for producing a radical polymer of the present invention, a radical polymer contained in a high content (purity) in a mixture derived from a precursor can be efficiently produced without the need for a special purification process. Obtainable.
  • the radical polymer composition includes a thermoplastic polymer which is a polymer not derived from a precursor.
  • the resin, thermosetting resin, a solvent that dissolves the polymer derived from the precursor, an antioxidant, and the like may be included.
  • the content of the above-mentioned radical polymer having an alkoxy group-containing terminal functional group in the radical polymer composition is preferably 1 to 100 parts by weight based on 100 parts by weight of the entire polymer composition.
  • the content of the polymer that does not contain a specific alkoxy group-containing terminal functional group is preferably 0 to 50 parts by weight based on 100 parts by weight of the entire polymer composition.
  • the content of thermoplastic resins and thermosetting resins that are polymers not derived from precursors, solvents that dissolve polymers derived from precursors, antioxidants, etc. is 100 parts by weight of the entire polymer composition. The amount is preferably 0 to 99 parts by weight.
  • the method for producing a polymer of the present invention includes a polymerization step of forming a radical polymer precursor and an introduction step of introducing an alkoxy group-containing functional group structure to the terminal end of the precursor.
  • a precursor can be formed by using a polymerization initiator containing an organic compound moiety and a dormant, or preferably a polymerization initiator consisting only of an organic compound moiety and a dormant, and a radically polymerizable unsaturated monomer. polymerize.
  • an alkoxy group-containing radical generator is reacted with the dormant end of the precursor obtained in the polymerization step at a predetermined temperature to form a terminal functional group structure derived from the alkoxy group-containing radical generator. Introduce. Each step will be explained below.
  • the aforementioned NMP method, ATRP method, RAFT polymerization method, TERP method, RCMP method, RTCP method, etc. can be used.
  • the polymerization initiator for producing the precursor the above-mentioned polymerization initiators shown in the explanation of these production methods can be used, but in particular, the dormant at the terminal end of the precursor can be efficiently eliminated by using an alkoxy group-containing radical generator. Preference is given to using organic iodine compounds capable of binding as polymerization initiators. For this reason, of the RCMP method and RTCP method using at least an organic iodine compound as a polymerization initiator, the RCMP method in which the content of radical polymer terminal iodine is high will be explained in more detail.
  • the organic iodine compound that can be suitably used as a polymerization initiator for producing a precursor was described in detail in the previous section, but in addition to the method using an already produced polymerization initiator, there are also methods that use a polymerization initiator raw material.
  • an azo compound and iodine may be charged at the initial stage of polymerization, and a polymerization initiator made of an organic iodine compound may be generated in-situ by the reaction of the two.
  • Examples of azo compounds used to generate organic iodine compounds include 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(isobutyronitrile) (AIBN ), 2,2'-azobis(2-methylbutyronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 2,2'-azobis(2,4,4-trimethylpentane), etc.
  • Azo compounds containing no functional group such as 4,4-azobis-4-cyanovaleric acid (ACVA) having a carboxyl group, and 2,2'-azobis ⁇ 2-methyl-N-(2-hydroxyethyl) having a hydroxyl group.
  • ACVA 4,4-azobis-4-cyanovaleric acid
  • propionamide ⁇ 2-2'-azobis ⁇ 2-(2-imidazolin-2-yl)propane ⁇ having an amino group, and other functional group-containing azo compounds, but the present invention is limited only to such examples. It's not something you can do.
  • the amount of the azo compound used to produce the above-mentioned polymerization initiator is preferably 1 to 5 mol, more preferably 1.3 to 3 mol, per 1 mol of iodine.
  • a catalyst in addition to the polymerization initiator.
  • the catalyst include known compounds that coordinate to iodine and extract iodine, but the present invention is not limited to such examples.
  • catalysts include organic amine compounds and nonmetallic compounds that have ionic bonds with iodide ions, in which the nonmetallic atoms in the nonmetallic compound are in a cation state and form ionic bonds with iodide ions.
  • the present invention is not limited to only such examples.
  • catalysts made of organic amine compounds include triethylamine, tributylamine, 1,1,2,2-tetrakis(dimethylamino)ethene, 1,4,8,11-tetramethyl-1,4,8, Examples include 11-tetraazacyclotetradecane, ethylenediamine, tetramethylethylenediamine, tetramethyldiaminomethane, tris(2-aminoethyl)amine, tris(2-(methylamino)ethyl)amine, hematoporphyrin, and the like. These catalysts may be used alone or in combination of two or more.
  • catalysts that are nonmetallic compounds that have ionic bonds with iodide ions, in which the nonmetallic atoms in the nonmetallic compounds are in a cation state and form ionic bonds with iodide ions, include: Examples include ammonium salts, imidazolium salts, pyridinium salts, phosphonium salts, sulfonium salts, iodonium salts, and more specifically, tetrabutylammonium iodide, tetrabutylammonium triiodide, tetrabutylammonium bromodiiodide, 1-Methyl-3-methyl-imidazolium iodide, 2-chloro-1-methylpyridinium iodide, methyltributylphosphonium iodide (hereinafter referred to as PMBI), tetraphenylphosphonium iodide, tributylsulfon
  • the amount of the catalyst is preferably 0.01 to 50 mol, more preferably 0.05 mol, per 100 mol of the organic iodine compound, from the viewpoint of increasing the polymerization rate and reducing the residual amount of unreacted monomers. ⁇ 30 moles, more preferably 0.1 moles to 20 moles, even more preferably 0.5 to 10 moles.
  • a small amount of a general-purpose radical polymerization initiator may be used, if necessary, for the purpose of increasing the polymerization rate.
  • the type of general-purpose radical polymerization initiator it is not necessary to select it as strictly as the type of polymerization initiator for producing the precursor described above, and it is appropriately selected depending on the polymerization temperature, polymerization time, etc.
  • general-purpose radical polymerization initiators include azo compounds and organic peroxides, but the present invention is not limited to these examples. These general-purpose radical polymerization initiators may be used alone, or two or more types may be used in combination.
  • azo compound the same azo compounds as mentioned above can be exemplified. These azo compounds may be used alone or in combination of two or more.
  • organic peroxides include, in addition to the above-mentioned specific functional group-containing diacyl peroxides, general-purpose organic peroxides that do not contain functional groups, such as di-(3,5,5-trimethylhexanoyl) peroxide and benzoyl peroxide.
  • diacyl peroxides such as di-n-propyl peroxydicarbonate, di-isopropyl peroxydicarbonate, dialkyl peroxides such as dicumyl peroxide, di-t-butyl peroxide, and t-butyl peroxide.
  • Examples include peroxyesters such as peroxypivalate and t-butylperoxy-2-ethylhexanoate, and peroxyketals such as 1,1-bis(t-butylperoxy)cyclohexane. It is not limited to only. These organic peroxides may be used alone or in combination of two or more.
  • the general-purpose radical polymerization initiator it is preferable not to use the general-purpose radical polymerization initiator substantially from the viewpoint of avoiding the adverse effects of the general-purpose radical polymerization initiator. It is more preferable not to use it at all.
  • substantially not used means an amount of the general-purpose radical polymerization initiator such that the polymerization initiator does not substantially affect the polymerization reaction. More specifically, the amount of general-purpose radical polymerization initiator per mole of catalyst is preferably 10 mmol or less, more preferably 1 mmol or less, and even more preferably 0.1 mmol or less.
  • the amount of the general-purpose radical polymerization initiator per 100 moles of all radically polymerizable unsaturated monomer components is preferably from the viewpoint of increasing the polymerization rate and reducing the remaining amount of unreacted radically polymerizable unsaturated monomers.
  • the amount is 0.005 to 30 mol, more preferably 0.01 to 20 mol, and even more preferably 0.02 to 15 mol.
  • the radically polymerizable unsaturated monomer was described in detail in the previous section, but the polymerization conditions when polymerizing the radically polymerizable unsaturated monomer depend on the polymerization method of the radically polymerizable unsaturated monomer. It may be set as appropriate and is not particularly limited.
  • the polymerization temperature is preferably room temperature (eg, 10-25°C, 20°C, etc.) to 200°C, more preferably 30-140°C.
  • the atmosphere during polymerization of the radically polymerizable unsaturated monomer is preferably an inert gas such as nitrogen gas or argon gas.
  • the reaction time may be appropriately set so that the polymerization reaction of the radically polymerizable unsaturated monomer is completed.
  • the polymerization of the radically polymerizable unsaturated monomer may be bulk polymerization without using a solvent, or solution polymerization using a solvent that dissolves in the radically polymerizable unsaturated monomer or the polymer obtained thereby. Good too. Furthermore, by using a solvent that does not dissolve in the radically polymerizable unsaturated monomer or the polymer obtained thereby, emulsion polymerization, dispersion polymerization, suspension polymerization, etc. can be performed.
  • solvents used in solution polymerization of radically polymerizable unsaturated monomers include water, aromatic solvents such as benzene, toluene, xylene, and ethylbenzene, methanol, ethanol, isopropanol, n-butanol, and t-butanol.
  • Alcohol-based solvents such as butyl alcohol, halogen atom-containing solvents such as dichloromethane, dichloroethane, and chloroform
  • linear solvents such as propylene glycol methyl ether, dipropylene glycol methyl ether, ethyl cellosolve, butyl cellosolve, diglyme, and propylene glycol monomethyl ether acetate.
  • aliphatic or branched aliphatic ether solvents such as tetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, ethyl acetate, butyl acetate, cellosolve acetate, cellosolve acetate
  • ester solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, ketone solvents such as diacetone alcohol, amide solvents such as dimethylformamide, and sulfoxide solvents such as dimethyl sulfoxide. It is not limited to only. These solvents may be used alone or in combination of two or more. The amount of the solvent may be appropriately determined in consideration of the polymerization conditions, monomer composition, concentration of the resulting polymer, and the like.
  • an alkoxy group-containing radical generator is reacted with the dormant end of a precursor obtained from a polymerization initiator and a radically polymerizable unsaturated monomer, and the temperature is lowered.
  • a polymer with a changed terminal structure can be obtained.
  • the functional group-containing radical generator at least a compound having an alkoxy group represented by the above formula (1) is used.
  • the amount of the above-mentioned alkoxy group-containing radical generator to be added is preferably 0.5 to 30 mol, more preferably 0.5 to 20 mol, and even more preferably 1 to 10 mol, per 1 mol of the dormant at the terminal end of the precursor. , more preferably 1 to 5 mol.
  • the dropping rate (supply rate) of the radical generator into the reaction system in the introduction step is, for example, 2 to 20 (ml/min), preferably 5 to 10 per liter of the reaction system as a product diluted with a reaction solvent at a concentration of 10% by mass. (ml/min).
  • the reaction conditions for reacting the alkoxy group-containing radical generator with the dormant at the terminal end of the precursor may be appropriately set depending on the conditions for decomposing the alkoxy group-containing radical generator, and are not particularly limited.
  • the reaction temperature is, for example, 70°C to 140°C, preferably 80°C to 110°C when the main radically polymerizable unsaturated monomer constituting the precursor is styrene and its derivatives.
  • the temperature is 110°C to 130°C. In this case, the temperature is 70°C to 100°C.
  • the atmosphere during the reaction is preferably an inert gas such as nitrogen gas or argon gas.
  • the reaction time may be appropriately set so that the decomposition of the alkoxy group-containing radical generator is completed, but for example, it may be 50 minutes to 200 minutes, 60 minutes to 150 minutes, 70 minutes to 120 minutes, 80 minutes to 100 minutes, etc. can be selected from the range of .
  • a solvent can be used as appropriate.
  • any solvent can be used as long as it can dissolve the radical polymer, and for example, the same solvents as those used in polymerizing the above-mentioned radically polymerizable unsaturated monomer can be used.
  • the reaction mechanism of the method for producing a polymer of the present invention is estimated to be as follows. First, the alkoxy group-containing radical generated from the alkoxy group-containing radical generating agent extracts the dormant present at the end of the precursor, thereby generating a precursor end radical. On the other hand, since the alkoxy group-containing radical derived from the alkoxy group-containing radical generator present in an equimolar or more amount to the dormant present at the end of the precursor has a low molecular weight, it can quickly diffuse in the reaction solution. .
  • the alkoxy group-containing radical quickly bonds with the terminal radical of the precursor, and as a result, a highly purified precursor to which a specific functional group-containing compound is bonded can be obtained. Furthermore, since the alkoxy group-containing radical inhibits the bonding between the terminal radicals of the precursor, which would otherwise broaden the molecular weight distribution, the resulting polymer can maintain the narrow molecular weight distribution of the precursor as it is.
  • a nonmetallic compound having an ionic bond with an iodide ion or the like is used as a compound that extracts the dormant present at the end of the precursor faster than the alkoxy group-containing radical, the dormant present at the end of the precursor can be extracted by the alkoxy group-containing radical. , thereby rapidly generating precursor terminal radicals.
  • alkoxy-containing radicals generated from alkoxy-containing radical generators have a low molecular weight and are oxygen radicals, so they can diffuse quickly in the reaction solution, and the alkoxy-containing terminal functional groups have higher purity and higher efficiency. is generated.
  • examples of compounds that extract radicals from precursors include nonmetallic compounds that have an ionic bond with iodide ions.
  • nonmetallic compounds having an ionic bond with iodide ions include ammonium salts, imidazolium salts, pyridinium salts, phosphonium salts, sulfonium salts, and iodonium salts.
  • tetrabutyl Ammonium iodide tetrabutylammonium triiodide, tetrabutylammonium bromodiiodide, 1-methyl-3-methyl-imidazolium iodide, 2-chloro-1-methylpyridinium iodide, methyltributylphosphonium iodide (hereinafter referred to as BMPI), tetraphenylphosphonium iodide, tributylsulfonium iodide, diphenyliodonium iodide, and the like.
  • BMPI methyltributylphosphonium iodide
  • tributylsulfonium iodide diphenyliodonium iodide, and the like.
  • the amount of the compound that extracts radicals from the above-mentioned precursor is 0.5 to 20 mol, preferably 1 to 10 mol, per mol of the terminal dormant of the radical polymer precursor, from the viewpoint of increasing the reaction rate.
  • Example 1 Synthesis of methoxy group-containing raw material acid chloride 3-Methoxypropionic acid (3-MPA; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was placed in a 30 ml eggplant flask equipped with a 1.5 mm long rugby ball stirrer, a thermometer, a reflux condenser, and a calcium tube. 3.75 g (36 mmol) was charged, and 6.85 g (54 mmol) of oxanyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise over 20 minutes at room temperature while rotating a stirrer at 500 rpm. Thereafter, the temperature inside the 30 ml eggplant flask was raised to 80° C.
  • 3-MPA manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • reaction solution was transferred to a 50 ml separatory funnel, left to stand for 5 minutes, and only the upper layer remained, to which was added 25 g of 3.3% by weight saline solution, which had been adjusted to 0 to 5°C in advance. Thereafter, the reaction solution was washed by shaking the separatory funnel, and the mixture was allowed to stand for 5 minutes to separate. The same washing operation was repeated using 25 g of 3.3% by weight saline solution, which had been adjusted to 0 to 5°C in advance. After confirming with pH test paper that the waste liquid in the lower layer has changed from alkaline to neutral, take out the upper layer after static separation, dehydrate the system using anhydrous magnesium sulfate, and filter it.
  • Example 2 (Synthesis of methoxy group-containing raw material acid chloride) 2 was prepared in the same manner as in Example 1, except that 3.75 g (36 mmol) of 3-MPA was changed to 3.24 g (36 mmol) of 2-methoxyacetic acid (2-MAA; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.). -Methoxyacetic acid chloride (2-MA-Cl) 5.76 g (yield 100% based on the amount of 2-MAA charged) was obtained.
  • a toluene solution product of di-2-methoxyacetyl peroxide (2-MAPO) was prepared in the same manner as in Example 1 except that 3.68 g (30 mmol) of 3-MP-Cl was changed to 4.80 g (30 mmol) of 2-MA-Cl. 10.14g was obtained.
  • the 10-hour half-life temperature and 2-MAPO purity in the resulting 2-MAPO toluene solution were calculated to be approximately 54° C. and 41.1%, respectively. Further, the yield based on the amount of 2-MA-Cl charged was 78%.
  • Example 3 Synthesis of methoxy group-containing raw material acid chloride
  • 3-MPA 4-methoxybutanoic acid
  • 4-MBA 4-methoxybutanoic acid
  • 4-MB-Cl 4-methoxybutanoic acid chloride
  • 4-methoxybutanoyl peroxide (4-MBPO) toluene solution product 14 was prepared in the same manner as in Example 1 except that 3.68 g (30 mmol) of 3-MP-Cl was changed to 5.64 g (30 mmol) of 4-MB-Cl. .19g was obtained.
  • the 10-hour half-life temperature and 4-MBPO purity of the obtained 4-MBPO toluene solution product were calculated to be approximately 64° C. and 42.1%, respectively. Further, the yield based on the amount of 4-MB-Cl charged was 85%.
  • the polymerization solution was reprecipitated by dropping it into a mixed solution of 180 ml of ion-exchanged water and 720 ml of methanol, and the polymer precipitated in the mixed solution of ion-exchanged water and methanol was vacuum-dried at 60°C for 18 hours.
  • a BA polymer having iodine at the end (hereinafter referred to as PBA) was obtained. This reaction is represented by the following formula (i).
  • the number average molecular weight of the obtained polymer was 6,340, and the molecular weight distribution (weight average molecular weight/number average molecular weight, hereinafter referred to as Mw/Mn) was 1.17.
  • Mw/Mn molecular weight distribution
  • the obtained polymer was dissolved in deuterated chloroform and analyzed by 13 C-NMR, it was found that the integral value of carbon (carbon number: 1) of the quaternary carbon in CP-I and one BA molecule immediately adjacent to iodine. Since the integral value of carbon (carbon number: 1) of tertiary carbon was 1:0.99, it was confirmed that 99.0% of iodine present at the end of the polymer was introduced. The results are shown in Table 1.
  • Production example 4 Instead of using 19.23 g of BA as a radically polymerizable unsaturated monomer, 19.53 g of 2-methoxyethyl acrylate (MEA; manufactured by Tokyo Kasei Kogyo Co., Ltd., purified by distillation using a conventional method) was used for polymerization.
  • MEA 2-methoxyethyl acrylate
  • PMEA having iodine at one molecular end was obtained in the same manner as in Production Example 2, except that the conditions were changed from 110°C for 6 hours to 110°C for 10 hours.
  • the number average molecular weight of the obtained polymer was 4,910, and Mw/Mn was 1.12.
  • Table 1 The results are shown in Table 1.
  • sample preparation A sample solution obtained by adding 1 ml of THF to 0.01 g of the obtained polymer, matrix trans-2- ⁇ 3-(4-t-butylphenyl)-2-methyl-2-propenylidene ⁇ malononitrate (manufactured by Tokyo Kasei Kogyo Co., Ltd., hereinafter referred to as DCTB) and a matrix solution obtained by adding 1 ml of THF to 0.02 g, and an ionizing agent, sodium trifluoroacetate (manufactured by Tokyo Kasei Kogyo Co., Ltd., hereinafter referred to as An ionizing agent solution was prepared by adding 1 ml of THF to 0.001 g of NaTFA.
  • a sample was prepared by mixing 100 ⁇ l of the matrix solution, 20 ⁇ l of the ionizing agent solution, and 20 ⁇ l of the sample solution in a 2 ml sample bottle, spotting 1 ⁇ l of the mixed solution onto the sample plate, and drying the THF at room temperature for about 5 minutes.
  • Example 4 2 mol of 3-MPPO was added per 1 mol of iodine terminal in the precursor, but in Example 5, 0.5 mol was added, and in Example 6, 10 mol was added. Except for this, a polymer was produced in the same manner as in Example 4. As a result, the dormant at the terminal end of the precursor was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
  • Example 7 In Example 4, a polymer was produced in the same manner as in Example 4 except that 2 mol of BNI was added per 1 mol of iodine end of the precursor, but the addition was changed to 1 mol. As a result, the dormant at the terminal end of the precursor was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
  • Examples 8-9 Polymers were produced in the same manner as in Example 4, except that Mn in the precursor in Example 4 was changed to 3,360 g/mol in Example 8 and 26,000 g/mol in Example 9. As a result, the dormant at the end of the polymer was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
  • Example 10-11 Same as Example 4 except that the radical generator in Example 4 was changed to 2-MAPO obtained in Example 2 in Example 10 and 4-MBPO obtained in Example 3 in Example 11.
  • the polymer was produced by the method described in the following. As a result, the dormant at the end of the polymer was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (2-methoxyacetoxyoxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
  • Example 12 A polymer was produced in the same manner as in Example 4, except that the precursor in Example 4 was changed to PMEA having iodine at the molecular terminal obtained in Production Example 4. As a result, the dormant at the end of the polymer was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
  • Example 13 In Example 4, 2 moles of BNI was added per mole of iodine terminal in the precursor, but the same procedure as in Example 4 was carried out except that the addition was increased to 2 moles and the reaction temperature was changed from 110°C to 130°C.
  • the polymer was prepared by the method. As a result, the dormant at the terminal end of the precursor was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded.
  • the number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
  • Example 14-15 Polymers of Examples 14 and 15 were obtained according to Example 13. That is, in Example 14, the polymer was produced in the same manner as in Example 4, except that the precursor was PSt having iodine at the molecular end obtained in Production Example 5, and the reaction conditions were changed to 80°C for 4 hours. Manufactured. In Example 15, the polymer was produced in the same manner as in Example 13, except that the precursor was PMMA having iodine at the molecular end obtained in Production Example 6, and the reaction conditions were changed to 70°C for 8 hours. did. As a result, the dormant at the terminal end of the precursor was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
  • a polymer was produced in the same manner as in Example 4, except that 0.177 g of a toluene solution of 3-MPPO adjusted to a concentration of 10% by weight was added dropwise over about 30 minutes. As a result, the dormant at the terminal end of the precursor was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded.
  • the number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
  • the alkoxy-containing radical generator of the present invention is a living radical polymer in which a structure having an alkoxy group-containing compound is introduced on the dormant side of the polymer terminal, that is, the alkoxy group-containing compound replaces the eliminated dormant. It can be seen that the living radical polymer to which the compound is bonded has a narrow molecular weight distribution and high purity. Furthermore, according to the production method of the present invention, a living radical polymer with a narrow molecular weight distribution and high purity is obtained by reacting a radical polymerization initiator having a specific functional group-containing compound with the terminal dormant of the precursor. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention addresses the problem of providing: an alkoxy group-containing radical generator that imparts hydrophilicity to a polymer; a radical polymer that has a narrow molecular weight distribution and includes an alkoxy group at at least one terminal thereof; and a method for producing such a radical polymer. This problem is solved by an alkoxy group-containing radical generator expressed by formula (1) (in formula (1), R1 and R1' are straight chain or branched C1-5 alkyl groups, and R2 and R2' are straight chain or branched C1-10 alkylene groups), a radical polymer having a terminal functional group structure derived from the radical generator, and a method for producing said radical polymer.

Description

アルコキシ基含有ラジカル発生剤、ラジカル重合体、組成物及びラジカル重合体の製造方法Alkoxy group-containing radical generator, radical polymer, composition, and method for producing radical polymer
 本発明は、アルコキシ基含有ラジカル発生剤、特定の末端官能基構造を有するラジカル重合体、その組成物及びラジカル重合体の製造方法等に関する。 The present invention relates to an alkoxy group-containing radical generator, a radical polymer having a specific terminal functional group structure, a composition thereof, a method for producing the radical polymer, and the like.
 リビングラジカル重合は、ラジカル重合の長所である簡便性と汎用性を生かしつつ、欠点である不均一な分子量を解決できる画期的な重合である。リビングラジカル重合法は、触媒存在下で重合活性末端を生成するドーマントと有機化合物部位とから構成される重合開始剤と、ラジカル重合性不飽和単量体とを用いることで得られ、その重合体(以下、前駆体という)の末端には、重合開始剤中の有機化合物部位とドーマントがそれぞれ結合している。そのため、前駆体に新たなラジカル重合性単量体を加えて重合させると、成分の異なる共重合体(ブロック状に結合したブロック共重合体、枝状に結合したグラフト共重合体、さらに星状に結合した星型共重合体或いは梯子状に結合した梯子型共重合体など)がそれぞれ得られる。このような結合状態の異なる共重合体の一次構造は、ポリマーの化学的性質や物理的性質に大きく影響を与えることから、リビングラジカル重合は学術的にも工業的にも重要な技術である。 Living radical polymerization is an epoch-making polymerization that can take advantage of the advantages of radical polymerization, such as simplicity and versatility, while solving the disadvantage of non-uniform molecular weight. The living radical polymerization method is obtained by using a polymerization initiator composed of a dormant that generates a polymerization active terminal in the presence of a catalyst and an organic compound moiety, and a radically polymerizable unsaturated monomer. (hereinafter referred to as precursor), the organic compound moiety in the polymerization initiator and the dormant are respectively bonded to the ends. Therefore, when a new radically polymerizable monomer is added to the precursor and polymerized, copolymers with different components (block copolymers bonded in block shapes, graft copolymers bonded in branched shapes, and even star-like copolymers) are produced. A star-shaped copolymer bonded to a star-shaped copolymer, a ladder-shaped copolymer bonded to a ladder-shaped copolymer, etc.) are obtained, respectively. Living radical polymerization is an important technology both academically and industrially because the primary structure of copolymers with different bonding states greatly influences the chemical and physical properties of the polymer.
 しかしながら、得られる前駆体末端のドーマントは、硫化物、ハロゲン又は遷移金属等を含むため、臭気、腐蝕性、毒性及び着色性といった欠点を有し、様々な用途に展開するには、多くの制限がある。そのため、得られた前駆体末端のドーマントを除去する必要がある。 However, the resulting precursor-terminated dormant contains sulfides, halogens, transition metals, etc., and therefore has disadvantages such as odor, corrosivity, toxicity, and coloring, and there are many limitations in developing it for various uses. There is. Therefore, it is necessary to remove the dormant at the end of the obtained precursor.
 一方、前駆体末端に官能基を結合させることによって、例えば、官能基を薄膜表面近傍に偏析させたり、他の重合体と反応させたり、有機又は無機粒子の表面に吸着又は反応させる等によって、新たな機能を発現させることが可能となる。末端に官能基が結合した前駆体としては、(I)あらかじめ官能基を含有した重合開始剤の有機化合物部位が前駆体末端に結合した重合体と、(II)官能基含有化合物を用いて、前駆体末端のドーマントを脱離させると同時に新たな官能基を末端に結合させた重合体の二つが存在する。上述の(I)の重合体においては、重合体の片末端にドーマント末端が存在しており、先述のような毒性等の安全性の面から、好ましくないものといえる。 On the other hand, by bonding a functional group to the terminal end of the precursor, for example, by causing the functional group to segregate near the surface of a thin film, reacting with another polymer, adsorbing or reacting with the surface of an organic or inorganic particle, etc. It becomes possible to express new functions. As the precursor with a functional group bonded to the terminal, (I) a polymer in which an organic compound moiety of a polymerization initiator containing a functional group in advance is bonded to the precursor terminal, and (II) a functional group-containing compound, There are two types of polymers in which the dormant at the precursor end is removed and at the same time a new functional group is attached to the end. In the above-mentioned polymer (I), a dormant terminal is present at one end of the polymer, and this can be said to be unfavorable from the viewpoint of safety such as toxicity as described above.
 例えば、特許文献1には、上記(II)の重合体として、窒素及び硫黄を介して加水分解性シリル基が結合したリビングラジカル重合体が記されている。また、非特許文献1には、前駆体に窒素を介して水酸基、チオール基又はアルコキシシリル基が結合した重合体が記されている。しかしながら、これらの文献で得られた重合体においては、副反応による劣化によって、所望の化学構造が結合できないという問題があった。 For example, Patent Document 1 describes a living radical polymer in which a hydrolyzable silyl group is bonded via nitrogen and sulfur as the polymer (II) above. Furthermore, Non-Patent Document 1 describes a polymer in which a hydroxyl group, a thiol group, or an alkoxysilyl group is bonded to a precursor via a nitrogen link. However, the polymers obtained in these documents had the problem that a desired chemical structure could not be bonded to them due to deterioration due to side reactions.
特開2011-74325号公報Japanese Patent Application Publication No. 2011-74325
 本発明は、上述の従来技術の問題点に鑑みてなされたものであり、重合体に親水性をもたらすアルコキシ基含有ラジカル発生剤、分子量分布が狭く、かつ少なくとも一方の末端にアルコキシ基を有するラジカル重合体、高純度のラジカル重合体を含む組成物、ラジカル重合体の製造方法などを提供する。 The present invention has been made in view of the problems of the prior art described above, and uses an alkoxy group-containing radical generator that imparts hydrophilicity to a polymer, and a radical generator that has a narrow molecular weight distribution and has an alkoxy group at at least one end. The present invention provides a polymer, a composition containing a highly pure radical polymer, a method for producing a radical polymer, and the like.
 本発明は以下に記載のものを含む。 The present invention includes those described below.
[1]下記式(1)で表されるアルコキシ基含有ラジカル発生剤。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、
 R及びR’は、直鎖又は分岐のC1~5のアルキル基であり、
 R及びR’は、直鎖又は分岐のC1~10のアルキレン基である。)
[2]R’及びRは、直鎖又は分岐のC1~3のアルキル基であり、R’及びR
は、直鎖又は分岐のC1~5のアルキレン基である、上記[1]に記載のアルコキシ基含有ラジカル発生剤。
[3]R及び/又はR’がメチル基である、上記[1]又は[2]、例えば上記[1]に記載のアルコキシ基含有ラジカル発生剤。
[4]R及び/又はR’が、メチレン基、エチレン基又はプロピレン基である、上記[1]~[3]のいずれか一項、例えば上記[1]に記載のアルコキシ基含有ラジカル発生剤。
[1] An alkoxy group-containing radical generator represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
(In formula (1),
R 1 and R 1 ' are linear or branched C 1-5 alkyl groups,
R 2 and R 2 ' are linear or branched C 1-10 alkylene groups. )
[2] R 1 ' and R 1 are linear or branched C 1-3 alkyl groups, and R 2 ' and R 2
The alkoxy group-containing radical generator according to [1] above, wherein is a linear or branched C 1-5 alkylene group.
[3] The alkoxy group-containing radical generator described in [1] or [2] above, for example, in [1] above, wherein R 1 and/or R 1 ' is a methyl group.
[4] Any one of [1] to [3] above, for example the alkoxy group-containing radical according to [1] above, wherein R 2 and/or R 2 ' is a methylene group, ethylene group or propylene group Generating agent.
[5]少なくともいずれかの末端において、下記式(2)で表される末端官能基構造を有するラジカル重合体。
Figure JPOXMLDOC01-appb-C000004
(式(2)中、Rは、直鎖又は分岐のC1~5のアルキル基であり、
 Rは、直鎖又は分岐のC1~10のアルキレン基であり、
 *は、前記ラジカル重合体の主鎖との連結部位である。)
[6]リビングラジカル重合体である、上記[5]に記載のラジカル重合体。
[7]前記ラジカル重合体の片末端又は主鎖において重合開始剤由来の有機化合物部位を含む、上記[5]又は[6]、例えば上記[5]に記載のラジカル重合体。
[8]有機ヨウ素化合物に由来する前記有機化合物部位を含む、上記[7]に記載のラジカル重合体。
[9]前記ラジカル重合体の主鎖を構成するラジカル性不飽和単量体がアクリレートを含む、上記[5]~[8]のいずれか一項、例えば上記[5]に記載のラジカル重合体。
[10]分子量分布の値が1.0~1.5である、上記[5]~[9]のいずれか一項、例えば上記[5]に記載のラジカル重合体。
[5] A radical polymer having a terminal functional group structure represented by the following formula (2) at least at either end.
Figure JPOXMLDOC01-appb-C000004
(In formula (2), R 1 is a linear or branched C 1-5 alkyl group,
R 2 is a linear or branched C 1-10 alkylene group,
* is a connection site with the main chain of the radical polymer. )
[6] The radical polymer according to the above [5], which is a living radical polymer.
[7] The radical polymer according to [5] or [6] above, for example, the radical polymer according to [5] above, which contains an organic compound moiety derived from a polymerization initiator at one end or main chain of the radical polymer.
[8] The radical polymer according to [7] above, which contains the organic compound moiety derived from an organic iodine compound.
[9] The radical polymer according to any one of [5] to [8] above, for example, according to [5] above, wherein the radically unsaturated monomer constituting the main chain of the radical polymer contains an acrylate. .
[10] The radical polymer according to any one of [5] to [9] above, such as the radical polymer according to [5] above, which has a molecular weight distribution value of 1.0 to 1.5.
[11]上記[5]~[10]のいずれかに記載のラジカル重合体と、前記末端官能基構造を含まない重合体とを含む、ラジカル重合体組成物。 [11] A radical polymer composition comprising the radical polymer according to any one of [5] to [10] above and a polymer that does not contain the terminal functional group structure.
[12]上記[5]~[10]のいずれかに記載のラジカル重合体の製造方法であって、
 有機化合物部位とドーマントとを含む重合開始剤と、ラジカル重合性不飽和単量体とを用いてラジカル重合体の前駆体を形成する重合工程と、
 前記前駆体の前記ドーマントに由来するドーマント末端に、上記[1]~[4]のいずれか一項、例えば上記[1]に記載の前記ラジカル発生剤を反応させて、前記ドーマント末端の代わりに前記ラジカル発生剤に由来する末端官能基構造を導入する導入工程とを有する、ラジカル重合体の製造方法。
[13]前記導入工程において、前記ラジカル重合体を製造するための反応温度が、70℃~130℃の範囲内である、上記[12]に記載のラジカル重合体の製造方法。
[14]前記重合工程において、前記ラジカル重合性不飽和単量体100モルに対して、0.5~30モルの前記重合開始剤を用いる、上記[12]又は[13]に記載のラジカル重合体の製造方法。
[15]前記導入工程において、前記前駆体の前記ドーマント末端1モルに対して、0.5~30モルの上記[1]~[4]のいずれか一項、例えば上記[1]に記載の前記ラジカル発生剤を用いる、上記[12]~[14]のいずれか一項、例えば上記[12]に記載のラジカル重合体の製造方法。
[16]前記導入工程において、上記[1]~[4]のいずれか一項、例えば上記[1]記載の前記ラジカル発生剤を滴下して反応系に加える、上記[12]~[15]のいずれか一項、例えば上記[12]に記載のラジカル重合体の製造方法。
[17]前記導入工程において、上記[1]~[4]のいずれか一項、例えば上記[1]記載の前記ラジカル発生剤に、さらにヨウ化物イオンとのイオン結合を有する非金属化合物を加える、上記[12]~[16]のいずれか一項、例えば上記[12]に記載のラジカル重合体の製造方法。
[12] A method for producing a radical polymer according to any one of [5] to [10] above, comprising:
a polymerization step of forming a precursor of a radical polymer using a polymerization initiator containing an organic compound moiety and a dormant and a radically polymerizable unsaturated monomer;
The dormant end derived from the dormant of the precursor is reacted with any one of the above [1] to [4], for example, the radical generator described in the above [1], instead of the dormant end. A method for producing a radical polymer, comprising an introduction step of introducing a terminal functional group structure derived from the radical generator.
[13] The method for producing a radical polymer according to [12] above, wherein in the introduction step, the reaction temperature for producing the radical polymer is within the range of 70°C to 130°C.
[14] The radical polymerization according to [12] or [13] above, wherein in the polymerization step, 0.5 to 30 mol of the polymerization initiator is used with respect to 100 mol of the radically polymerizable unsaturated monomer. Method of manufacturing coalescence.
[15] In the introduction step, 0.5 to 30 mol of any one of the above [1] to [4], for example the one according to the above [1], per 1 mol of the dormant end of the precursor. The method for producing a radical polymer according to any one of [12] to [14] above, for example, according to [12] above, using the radical generator.
[16] In the introduction step, any one of the above [1] to [4], for example, the radical generator described in the above [1] is added dropwise to the reaction system, the above [12] to [15] For example, the method for producing a radical polymer according to [12] above.
[17] In the introduction step, a nonmetallic compound having an ionic bond with an iodide ion is further added to any one of the above [1] to [4], for example, the radical generator described in the above [1]. , any one of [12] to [16] above, for example, the method for producing a radical polymer according to [12] above.
 本発明のアルコキシ基含有ラジカル発生剤は、ラジカル重合、特にリビングラジカル重合において有用であり、親水性を有するアルコキシ基含有の末端構造を含むラジカル重合体を比較的、容易な製法によって製造することを可能にする。
 また、本発明における上述のラジカル発生剤によって得られる少なくとも一方の末端に特定の官能基を有するラジカル重合体、その組成物、及びラジカル重合体の製造方法によって得られる効果を説明する。本効果の作用メカニズムの詳細においては不明な部分もあるが、以下のように推定される。ただし、本発明は、この作用メカニズムに限定して解釈されなくてもよい。
The alkoxy group-containing radical generator of the present invention is useful in radical polymerization, particularly in living radical polymerization, and enables the production of a radical polymer containing a hydrophilic alkoxy group-containing terminal structure by a relatively easy production method. enable.
In addition, effects obtained by the radical polymer having a specific functional group at at least one terminal obtained by the above-mentioned radical generator according to the present invention, the composition thereof, and the method for producing the radical polymer will be explained. Although some details of the mechanism of action of this effect are unclear, it is estimated as follows. However, the present invention does not need to be interpreted as being limited to this mechanism of action.
 本発明の重合体は、分子量分布が狭く、かつ少なくとも一方の末端に特定の官能基が高純度で存在することを特徴とする。これによって、特定の官能基を薄膜表面近傍に偏析させることが容易となり、また、他の重合体や有機又は無機粒子の表面への吸着や反応が均一かつ効率的となる。そのため、本発明の重合体により、例えば、相容化剤や表面改質剤等の添加剤、表面を機能化した高分子フィルム又は粒子を得ることができる。
 特に、親水性の末端官能基を有する本発明の重合体は、例えば防曇塗料などにおいて有用である。
The polymer of the present invention is characterized by having a narrow molecular weight distribution and having a specific functional group present in high purity at at least one end. This makes it easy to segregate specific functional groups near the surface of the thin film, and also makes the adsorption and reaction of other polymers and organic or inorganic particles on the surface uniform and efficient. Therefore, using the polymer of the present invention, it is possible to obtain, for example, additives such as compatibilizers and surface modifiers, and polymer films or particles whose surfaces are functionalized.
In particular, the polymer of the present invention having a hydrophilic terminal functional group is useful in, for example, antifogging paints.
 本発明の重合体の製造方法は、有機化合物とドーマントから構成される重合開始剤と、ラジカル重合性不飽和単量体とを用いることで得られる重合体である前駆体のドーマント末端に対し、上述のアルコキシ基含有ラジカル発生剤を反応させることによって得られる。
 その反応機構は以下のように推定される。まず上記ラジカル発生剤から生成したアルコキシ基含有ラジカルは前駆体末端に存在するドーマントを引き抜き、それによって前駆体末端ラジカルが生成する。一方、前駆体の末端に存在するドーマントに対して等モル以上存在させたアルコキシ基含有ラジカル発生剤に由来するアルコキシ基含有ラジカルは、低分子量であることから反応液中で速く拡散することができる。このため、アルコキシ基含有ラジカルは速やかに前駆体末端ラジカルと結合するのであり、このことによって、特定の官能基含有化合物が結合した前駆体が高純度で得られる。さらにアルコキシ基含有ラジカルは、分子量分布を広めてしまうこととなる前駆体末端ラジカル同士の結合を阻害するため、得られた重合体においては、前駆体での狭い分子量分布をそのままで維持できる。
The method for producing a polymer of the present invention is based on the dormant end of a precursor, which is a polymer obtained by using a polymerization initiator composed of an organic compound and a dormant, and a radically polymerizable unsaturated monomer. It is obtained by reacting the above-mentioned alkoxy group-containing radical generator.
The reaction mechanism is estimated as follows. First, the alkoxy group-containing radical generated from the radical generating agent extracts the dormant present at the end of the precursor, thereby generating a radical at the end of the precursor. On the other hand, since the alkoxy group-containing radical derived from the alkoxy group-containing radical generator present in an equimolar or more amount to the dormant present at the end of the precursor has a low molecular weight, it can quickly diffuse in the reaction solution. . Therefore, the alkoxy group-containing radical quickly bonds with the terminal radical of the precursor, and as a result, a highly purified precursor to which a specific functional group-containing compound is bonded can be obtained. Furthermore, since the alkoxy group-containing radical inhibits the bonding between the terminal radicals of the precursor, which would otherwise broaden the molecular weight distribution, the resulting polymer can maintain the narrow molecular weight distribution of the precursor as it is.
 従って、本発明の製造方法によれば、先述した効果に加えて、重合体を劣化させることなく所望のアルコキシ基が結合した重合体を得ることができる。 Therefore, according to the production method of the present invention, in addition to the above-mentioned effects, a polymer to which a desired alkoxy group is bonded can be obtained without deteriorating the polymer.
製造例1の前駆体のサンプルにおけるMALDI-TOFMSのスペクトルデータを示す図である。FIG. 3 is a diagram showing MALDI-TOFMS spectrum data of a sample of the precursor of Production Example 1. 実施例16の重合体のサンプルにおけるMALDI-TOFMSのスペクトルデータを示す図である。 なお、図1及び図2において、スペクトルはLinearモードのデータを使用し、ピークの精密質量はSpiralモードのデータを使用した。 さらに、スペクトル中に記載した精密分子量は、すべてイオン化剤であるNa(精密質量=22.99)が付加された数値を示す。FIG. 7 is a diagram showing MALDI-TOFMS spectrum data for a sample of the polymer of Example 16. In addition, in FIGS. 1 and 2, Linear mode data was used for the spectrum, and Spiral mode data was used for the exact mass of the peak. Further, the exact molecular weights described in the spectra all indicate the values to which Na (accurate mass = 22.99), which is an ionizing agent, is added.
 以下、本願発明について、詳細に説明する。 Hereinafter, the present invention will be explained in detail.
[1.ラジカル発生剤(アルコキシ基含有ラジカル発生剤)]
(1-1.アルコキシ基含有ラジカル発生剤の分子構造)
 本発明のラジカル発生剤は、以下の式(1)で表される分子構造を有する過酸化物である。
 式(1)のラジカル発生剤において、R及びR’は、それぞれ、直鎖状又は分岐状である炭素数が1~5(C1~5)のアルキル基である。R’及びRは、異なっていても同じであってもよい。
 また、R及びR’は、それぞれ、直鎖状又は分岐状である炭素数が1~10(C1~10)のアルキレン基である。R’及びRは、異なっていても同じであってもよい。
 式(1)から明らかであるように、ラジカル発生剤は、中央にラジカル発生部位であるペルオキシド構造(-O-O-)を有し、末端にはアルコキシ基を有する。このような分子構造のラジカル発生剤のペルオキシド結合の開裂により、ラジカルが発生する。
Figure JPOXMLDOC01-appb-C000005
[1. Radical generator (alkoxy group-containing radical generator)]
(1-1. Molecular structure of alkoxy group-containing radical generator)
The radical generator of the present invention is a peroxide having a molecular structure represented by the following formula (1).
In the radical generator of formula (1), R 1 and R 1 ' are each a linear or branched alkyl group having 1 to 5 carbon atoms (C 1 to 5 ). R 1 ' and R 1 may be different or the same.
Further, R 2 and R 2 ' are each a linear or branched alkylene group having 1 to 10 carbon atoms (C 1 to 10 ). R 2 ' and R 2 may be different or the same.
As is clear from formula (1), the radical generator has a peroxide structure (-O-O-) which is a radical generating site at the center and an alkoxy group at the end. Radicals are generated by cleavage of peroxide bonds in the radical generator having such a molecular structure.
Figure JPOXMLDOC01-appb-C000005
 ラジカル発生剤において、R及びR’は、それぞれ、直鎖又は分岐のC1~3のアルキル基であることが好ましい。ラジカル発生剤において、R及びR’は、好ましくは炭素数が1又は2のアルキル基であり、より好ましくはR及びR’の少なくとも一方がメチル基であり、さらに好ましくはR及びR’のいずれもがメチル基である。
 R及びR’は、それぞれ、直鎖又は分岐のC1~5のアルキレン基であることが好ましい。R及びR’の好ましい具体例として、メチレン基、エチレン基及びプロピレン基が挙げられる。そしてR及びR’の少なくともいずれかが、メチレン基、エチレン基又はプロピレン基であることが好ましく、さらに好ましくはR及びR’のいずれもがメチレン基、エチレン基又はプロピレン基である。
 また、R、R’、R及びR’は、それぞれ、置換基によって置換されていてもよく、置換基の例として、ハロゲン原子、水酸基、アルコキシ基、カルボキシル基、アシル基、アミノ基、ニトロ基、シアノ基、メルカプト基、シリル基などが挙げられる。R、R’、R及びR’が置換基によって置換されている場合、上述の炭素数には、置換基における炭素の数が含まれない。
In the radical generator, R 1 and R 1 ' are each preferably a linear or branched C 1-3 alkyl group. In the radical generator, R 1 and R 1 ′ are preferably an alkyl group having 1 or 2 carbon atoms, more preferably at least one of R 1 and R 1 ′ is a methyl group, and even more preferably R 1 and R 1 ' are both methyl groups.
R 2 and R 2 ' are each preferably a linear or branched C 1-5 alkylene group. Preferred specific examples of R 2 and R 2 ' include a methylene group, an ethylene group, and a propylene group. It is preferable that at least one of R 2 and R 2 ′ is a methylene group, an ethylene group, or a propylene group, and more preferably that both of R 2 and R 2 ′ are a methylene group, an ethylene group, or a propylene group. .
Further, R 1 , R 1 ′ , R 2 and R 2 ′ may each be substituted with a substituent, and examples of the substituent include a halogen atom, a hydroxyl group, an alkoxy group, a carboxyl group, an acyl group, an amino group, nitro group, cyano group, mercapto group, silyl group, etc. When R 1 , R 1 ′ , R 2 and R 2 ′ are substituted with a substituent, the above-mentioned number of carbon atoms does not include the number of carbon atoms in the substituent.
(1-2.その他のラジカル発生剤)
 ラジカル発生剤としては、上述のアルコキシ基含有ラジカル発生剤とともに、その他のラジカル発生剤を用いてもよい。すなわち、アルコキシ基含有ラジカル発生剤と、汎用ラジカル発生剤とを含むラジカル発生剤組成物をラジカル重合反応に用いてもよい。
 汎用ラジカル発生剤としては、アゾ化合物又は有機過酸化物等の公知のラジカル発生剤であれば特に制限されない。具体的な汎用ラジカル発生剤としては、後述する4-1.重合工程の欄に記載のラジカル重合開始剤と同じものを使用することができる。
(1-2. Other radical generators)
As the radical generator, other radical generators may be used in addition to the above-mentioned alkoxy group-containing radical generator. That is, a radical generator composition containing an alkoxy group-containing radical generator and a general-purpose radical generator may be used in the radical polymerization reaction.
The general-purpose radical generator is not particularly limited as long as it is a known radical generator such as an azo compound or an organic peroxide. Specific general-purpose radical generators include 4-1 below. The same radical polymerization initiators as described in the column of polymerization step can be used.
 ラジカル発生剤として、式(1)のアルコキシ基含有ラジカル発生剤以外のものが併用される組成物の場合、例えば、式(1)のアルコキシ基含有ラジカル発生剤と汎用ラジカル発生剤を併用する組成物の場合、ラジカル発生剤混合物において、すなわち組成物の全重量を基準として、式(1)のアルコキシ基含有ラジカル発生剤が30重量%以上、含まれていることが好ましく、50重量%以上、含まれていることがより好ましく、70重量%以上、含まれていることがさらに好ましく、90重量%以上、含まれていることが特に好ましい。 In the case of a composition in which a radical generator other than the alkoxy group-containing radical generator of formula (1) is used in combination, for example, a composition in which the alkoxy group-containing radical generator of formula (1) and a general-purpose radical generator are used in combination. In the case of a radical generator mixture, that is, based on the total weight of the composition, the alkoxy group-containing radical generator of formula (1) preferably contains 30% by weight or more, 50% by weight or more, It is more preferable that it is contained, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
(1-3.ラジカル発生剤の用途)
 本発明のラジカル発生剤は、特に、リビングラジカル重合反応において好適に用いられる。ラジカル発生剤から生じるアルコキシ基含有ラジカルは、詳細を後述するように、重合開始剤由来のドーマントが末端に結合した状態のリビングラジカル重合体の前駆体に作用し、アルコキシ基含有の末端構造が導入されたリビングラジカル重合体の生成を可能にする。
(1-3. Application of radical generator)
The radical generator of the present invention is particularly suitable for use in living radical polymerization reactions. As will be described in detail later, the alkoxy group-containing radical generated from the radical generator acts on the living radical polymer precursor in which the dormant derived from the polymerization initiator is bonded to the terminal, and an alkoxy group-containing terminal structure is introduced. enables the production of living radical polymers.
 上述の用途以外にも、本発明のラジカル発生剤は、リビングラジカル重合以外のラジカル重合におけるラジカル発生剤、合成樹脂やゴムの架橋剤、ポリプロプレンの減成剤、酸化剤などとしても用いられ得る。 In addition to the above-mentioned uses, the radical generator of the present invention can also be used as a radical generator in radical polymerization other than living radical polymerization, a crosslinking agent for synthetic resins and rubber, a degrading agent for polypropylene, an oxidizing agent, etc. .
[2.ラジカル重合体(リビングラジカル重合体)]
(2-1.ラジカル重合体の構造)
 本発明のラジカル重合体、例えばリビングラジカル重合体は、少なくとも一方の末端に特定の官能基を有する。すなわち、本発明のラジカル重合体の末端には、少なくとも、下記式(2)で表される特定の官能基が含まれている。末端官能基は、下記式(2)で示されるように、ラジカル重合体の主鎖に結合されている。
Figure JPOXMLDOC01-appb-C000006
 式(2)において、*は、ラジカル重合体の主鎖に対する連結部位であり、R及びRは、いずれも上記1-1.欄にて記載した通りである。
[2. Radical polymer (living radical polymer)]
(2-1. Structure of radical polymer)
The radical polymer of the present invention, for example a living radical polymer, has a specific functional group at at least one end. That is, the terminal of the radical polymer of the present invention contains at least a specific functional group represented by the following formula (2). The terminal functional group is bonded to the main chain of the radical polymer, as shown in formula (2) below.
Figure JPOXMLDOC01-appb-C000006
In formula (2), * is a linking site to the main chain of the radical polymer, and R 1 and R 2 are both described in 1-1 above. As stated in the column.
 上述の末端官能基を有するラジカル重合体の構造は、主として、重合開始剤によって、例えば、重合開始剤一分子中のドーマントの数によって異なる。例えば、一分子中に一つのドーマントを有する単官能性の重合開始剤から得られるラジカル重合体の場合、主鎖としての重合体の一方の末端には、重合開始剤の有機化合物断片が結合され、他方の末端には、特定の官能基を有する化合物が結合している。一方で、一分子中に2~4つのドーマントを有する多官能性の重合開始剤から得られるラジカル重合体の場合、主鎖中央において、あるいは重合体分子の中央において、重合開始剤に由来の有機化合物部位が配置され、有機化合物部位を挟んだ2~4つの分岐鎖を有する重合体が得られ、その各重合体の分岐鎖の末端には、特定の官能基を有する化合物が結合している。 The structure of the radical polymer having the above-mentioned terminal functional group differs mainly depending on the polymerization initiator, for example, depending on the number of dormants in one molecule of the polymerization initiator. For example, in the case of a radical polymer obtained from a monofunctional polymerization initiator having one dormant in one molecule, an organic compound fragment of the polymerization initiator is bonded to one end of the polymer as the main chain. , a compound having a specific functional group is bonded to the other end. On the other hand, in the case of radical polymers obtained from polyfunctional polymerization initiators having 2 to 4 dormants in one molecule, organic compounds originating from the polymerization initiator occur at the center of the main chain or at the center of the polymer molecule. A polymer having two to four branched chains sandwiching the organic compound moiety is obtained by arranging the compound moieties, and a compound having a specific functional group is bonded to the end of the branched chain of each polymer. .
 すなわち、A-Xの式で表される単官能開始剤(Aは有機化合物部位、Xはドーマントを示す)を用いた場合、得られるラジカル重合体の構造は、A-M-Xの式で例示され(Mは主鎖)、A'-X2~4で表される多官能開始剤(A'は有機化合物部位、X2~4は2~4つのドーマントを示す)を用いた場合、得られるラジカル重合体の構造は、A'-(M-X)2~4の式で例示される(Mは主鎖を形成し得る分岐鎖)。そして、上記A'-(M-X)2~4の式のラジカル重合体においては、Mで表される複数の分岐鎖のそれぞれの長さが実質的に均一であることから、A'で表される上述の有機化合物部位は、ラジカル重合体の略中心に位置することとなる。すなわち、多官能性の開始剤を用いると、複数の分岐鎖を有する主鎖の中央に有機化合物部位が配置されたラジカル重合体を製造できる。
 ラジカル重合体におけるこれらの構造に関しては、求められる用途によって最適なものを使い分けることができる。例えば、片末端のみを反応させたい場合には、官能基を有しない単官能性の重合開始剤から得られるラジカル重合体の末端に特定の官能基を有する化合物が結合した重合体が良好であり、二つ以上の末端を反応させたい場合には、官能基を有する単官能性の重合開始剤から得られるラジカル重合体或いは多官能性の重合開始剤から得られるラジカル重合体の末端に特定の官能基を有する化合物が結合した重合体が良好である。
That is, when a monofunctional initiator represented by the formula A-X (A is an organic compound moiety and X represents a dormant) is used, the structure of the resulting radical polymer is as shown in the formula A-M-X. When using a polyfunctional initiator (M is the main chain) and represented by A'-X 2 to 4 (A' is an organic compound moiety, and X 2 to 4 represent 2 to 4 dormants), The structure of the resulting radical polymer is exemplified by the formulas A'-(M-X) 2 to 4 (M is a branched chain that can form a main chain). In the radical polymers of formulas A'-(M-X) 2 to 4 above, since the lengths of the multiple branched chains represented by M are substantially uniform, A' The above-mentioned organic compound moiety represented will be located approximately at the center of the radical polymer. That is, by using a polyfunctional initiator, it is possible to produce a radical polymer in which an organic compound moiety is located at the center of a main chain having multiple branches.
Regarding these structures in the radical polymer, the most suitable one can be used depending on the desired use. For example, if you want to react only at one end, a polymer in which a compound having a specific functional group is bonded to the end of a radical polymer obtained from a monofunctional polymerization initiator having no functional group is suitable. When it is desired to react two or more terminals, a radical polymer obtained from a monofunctional polymerization initiator having a functional group or a radical polymer obtained from a polyfunctional polymerization initiator may be reacted with a specific terminal. A polymer to which a compound having a functional group is bonded is good.
 特定の官能基を有する化合物を結合させる前のラジカル重合体であって、末端にドーマントが結合したラジカル重合体(以下、前駆体という)の主鎖を構成する重合体としては、1種類のラジカル重合性不飽和単量体の単独重合体、2種類以上のラジカル重合性不飽和単量体のランダム共重合体、ブロック共重合体、グラフト共重合体、さらには1種類以上のラジカル重合性不飽和単量体の星形(共)重合体、梯子型(共)重合体などが挙げられるが、本発明はかかる例示のみに限定されるものではない。 Before bonding a compound having a specific functional group, the radical polymer with a dormant bonded to the terminal (hereinafter referred to as precursor) has one type of radical polymer that constitutes the main chain. Homopolymers of polymerizable unsaturated monomers, random copolymers of two or more types of radically polymerizable unsaturated monomers, block copolymers, graft copolymers, and even one or more types of radically polymerizable unsaturated monomers. Examples include star-shaped (co)polymers and ladder-shaped (co)polymers of saturated monomers, but the present invention is not limited to these examples.
(2-2.ラジカル重合性不飽和単量体(ラジカル性不飽和単量体))
 ラジカル重合性不飽和単量体は、ラジカル重合体の製造に用いられるものであって、有機ラジカルの存在下にラジカル重合を行い得る不飽和結合を有する単量体をいう。より具体的には、いわゆるビニル系単量体と呼ばれる単量体をラジカル重合体の主鎖の形成に用いることができる。ビニル単量体とは、式(3)で表される単量体の総称である。
  CHR=CR  (3)
(式(3)中、R、R及びRは、それぞれ独立して、水素原子又は有機基を示す。)
 式(3)において、有機基には、置換されていてもよい炭素数1~12のアルキル基、置換されていてもよい炭素数6~18のアリール基等が含まれる。
(2-2. Radical polymerizable unsaturated monomer (radical unsaturated monomer))
A radically polymerizable unsaturated monomer is a monomer that is used in the production of a radical polymer and has an unsaturated bond that can undergo radical polymerization in the presence of an organic radical. More specifically, a so-called vinyl monomer can be used to form the main chain of the radical polymer. Vinyl monomer is a general term for monomers represented by formula (3).
CHR 7 = CR 8 R 9 (3)
(In formula (3), R 7 , R 8 and R 9 each independently represent a hydrogen atom or an organic group.)
In formula (3), the organic group includes an optionally substituted alkyl group having 1 to 12 carbon atoms, an optionally substituted aryl group having 6 to 18 carbon atoms, and the like.
 なお、式(3)で表されるビニル単量体としては、以下のものが挙げられるが、本発明はかかる例示のみに限定されるものではない。 Note that the vinyl monomer represented by formula (3) includes the following, but the present invention is not limited to these examples.
 ビニル系単量体としては、スチレン及びその誘導体(R及びRが水素原子、Rが置換基を有していてもよいフェニル基)、アクリル酸(R及びRが水素原子、Rがカルボキシル基)及びそのアルカリ金属塩、アクリルアミド(R及びRが水素原子、RがCONH基)及びその誘導体、アクリレート(アクリル酸エステル又はアクリル酸塩)、メタクリル酸(Rが水素原子、Rがメチル基、Rがカルボキシル基)及びそのアルカリ金属塩、メタクリルアミド(Rが水素原子、Rがメチル基、RがCONH基)及びその誘導体、メタクリレート(メタクリル酸エステル又はメタクリル酸塩)等が挙げられるが、本発明はかかる例示のみに限定されるものではない。 Examples of vinyl monomers include styrene and its derivatives (R 7 and R 8 are hydrogen atoms, R 9 is a phenyl group that may have a substituent), acrylic acid (R 7 and R 8 are hydrogen atoms, R 9 is a carboxyl group) and its alkali metal salts, acrylamide (R 7 and R 8 are hydrogen atoms, R 9 is a CONH 2 group) and its derivatives, acrylate (acrylic ester or acrylate), methacrylic acid (R 7 is a hydrogen atom, R8 is a methyl group, R9 is a carboxyl group) and its alkali metal salts, methacrylamide ( R7 is a hydrogen atom, R8 is a methyl group, R is a CONH2 group) and its derivatives, methacrylate (methacrylate) acid esters or methacrylates), but the present invention is not limited to these examples.
 スチレン及びその誘導体の具体例としては、例えば、スチレン(以下、Stともいう)、o-、m-又はp-メトキシスチレン、o-、m-又はp-t-ブトキシスチレン、o-、m-又はp-クロロメチルスチレン、o-、m-又はp-クロロスチレン、o-、m-又はp-ヒドロキシスチレン、o-、m-又はp-スチレンスルホン酸及びそのアルカリ金属塩、o-、m-又はp-スチレンボロン酸及びその誘導体等が挙げられるが、本発明はかかる例示のみに限定されるものではない。 Specific examples of styrene and its derivatives include styrene (hereinafter also referred to as St), o-, m- or p-methoxystyrene, o-, m- or pt-butoxystyrene, o-, m- or p-chloromethylstyrene, o-, m- or p-chlorostyrene, o-, m- or p-hydroxystyrene, o-, m- or p-styrene sulfonic acid and its alkali metal salts, o-, m- - or p-styrene boronic acid and derivatives thereof, but the present invention is not limited to these examples.
 アクリルアミド及びその誘導体の具体例としては、例えば、アクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、N-ヒドロキシエチルアクリルアミド等が挙げられるが、本発明はかかる例示のみに限定されるものではない。 Specific examples of acrylamide and its derivatives include acrylamide, N-isopropylacrylamide, N,N-dimethylacrylamide, N-methylolacrylamide, N-hydroxyethylacrylamide, etc., but the present invention is limited only to such examples. It is not something that will be done.
 アクリレートの具体例としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、n-ブチルアクリレート(以下、BAという)、t-ブチルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、ノニルアクリレート、デカニルアクリレート、ラウリルアクリレート、ベヘニルアクリレート、ステアリルアクリレート等のアルキルアクリレート、ベンジルアクリレート等のアリールアルキルアクリレート、テトラヒドロフルフリルアクリレート、グリシジルアクリレート等のエポキシアルキルアクリレート、シクロヘキシルアクリレート等のシクロアルキルアクリレート、2-メトキシエチルアクリレート(以下、MEAという)、2-ブトキシエチルアクリレート等のアルコキシアルキルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート等のヒドロキシアルキルアクリレート、ジエチレングリコールモノアクリレート、ポリエチレングリコールモノアクリレート等のポリアルキレングリコールモノアクリレート、メトキシテトラエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート等のアルコキシポリアルキレングリコールアクリレート、2-(ジメチルアミノ)エチルアクリレート等のジアルキルアミノアルキルアクリレート、3-クロロ-2-ヒドロキシプロピルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、アルキルアクリレートのアルキル基にフッ素原子が置換したフルオロアルキルアクリレート、アルキルアクリレートのアルキル基にトリス(トリアルキルシロキシ)シリル基が置換したアクリレート、アルキルアクリレートのアルキル基にエチルホスホリルコリン基が置換したアクリレート等が挙げられるが、本発明はかかる例示のみに限定されるものではない。 Specific examples of acrylate include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate (hereinafter referred to as BA), t-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, nonyl acrylate, Alkyl acrylates such as decanyl acrylate, lauryl acrylate, behenyl acrylate, stearyl acrylate, arylalkyl acrylates such as benzyl acrylate, epoxyalkyl acrylates such as tetrahydrofurfuryl acrylate, glycidyl acrylate, cycloalkyl acrylates such as cyclohexyl acrylate, 2-methoxyethyl Acrylate (hereinafter referred to as MEA), alkoxyalkyl acrylate such as 2-butoxyethyl acrylate, hydroxyalkyl acrylate such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, polyalkylene glycol monoacrylate such as diethylene glycol monoacrylate, polyethylene glycol monoacrylate, etc. Acrylate, alkoxypolyalkylene glycol acrylate such as methoxytetraethylene glycol acrylate, methoxypolyethylene glycol acrylate, dialkylaminoalkyl acrylate such as 2-(dimethylamino)ethyl acrylate, 3-chloro-2-hydroxypropyl acrylate, 2-hydroxy-3 - Phenoxypropyl acrylate, fluoroalkyl acrylate in which the alkyl group of alkyl acrylate is substituted with a fluorine atom, acrylate in which the alkyl group of alkyl acrylate is substituted with a tris(trialkylsiloxy)silyl group, ethylphosphorylcholine group is substituted in the alkyl group of alkyl acrylate Examples include acrylates, but the present invention is not limited to these examples.
 メタクリルアミド及びその誘導体の具体例としては、例えば、メタクリルアミド、N-イソプロピルメタクリルアミド、N,N-ジメチルメタクリルアミド、N-メチロールメタクリルアミド、N-ヒドロキシエチルメタクリルアミド等が挙げられるが、本発明はかかる例示のみに限定されるものではない。 Specific examples of methacrylamide and its derivatives include methacrylamide, N-isopropylmethacrylamide, N,N-dimethylmethacrylamide, N-methylolmethacrylamide, N-hydroxyethylmethacrylamide, etc. is not limited to these examples.
 メタクリレートの具体例としては、例えば、メチルメタクリレート(以下、MMAという)、エチルメタクリレート、プロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、n-オクチルメタクリレート、ノニルメタクリレート、デカニルメタクリレート、ラウリルメタクレート、ベヘニルメタクリレート、ステアリルメタクリレート等のアルキルメタクリレート、ベンジルメタクリレート等のアリールアルキルメタクリレート、テトラヒドロフルフリルメタクリレート、グリシジルメタクリレート等のエポキシアルキルメタクリレート、シクロヘキシルメタクリレート等のシクロアルキルメタクリレート、2-メトキシエチルメタクリレート、2-ブトキシエチルメタクリレート等のアルコキシアルキルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート等のヒドロキシアルキルメタクリレート、ジエチレングリコールモノメタクリレート、ポリエチレングリコールモノメタクリレート等のポリアルキレングリコールモノメタクリレート、メトキシテトラエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート等のアルコキシポリアルキレングリコールメタクリレート、2-(ジメチルアミノ)エチルメタクリレート等のジアルキルアミノアルキルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、アルキルメタクリレートのアルキル基にフッ素原子が置換した2,2,3,4,4,4-ヘキサフルオロブチルメタクリレート等のフルオロアルキルメタクリレート、アルキルメタクリレートのアルキル基にトリス(トリアルキルシロキシ)シリル基が置換した3-[[トリス(トリエチルシロキシ)シリル]プロピルメタクリレート、アルキルメタクリレートのアルキル基にエチルホスホリルコリン基が置換したエチルホスホリルコリンメタクリレート等が挙げられるが、これらの例示のみに限定されるものではない。 Specific examples of methacrylate include methyl methacrylate (hereinafter referred to as MMA), ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, nonyl methacrylate, Alkyl methacrylates such as decanyl methacrylate, lauryl methacrylate, behenyl methacrylate, stearyl methacrylate, arylalkyl methacrylates such as benzyl methacrylate, epoxyalkyl methacrylates such as tetrahydrofurfuryl methacrylate, glycidyl methacrylate, cycloalkyl methacrylates such as cyclohexyl methacrylate, 2-methoxy Alkoxyalkyl methacrylates such as ethyl methacrylate and 2-butoxyethyl methacrylate; hydroxyalkyl methacrylates such as 2-hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate; polyalkylene glycol monomethacrylates such as diethylene glycol monomethacrylate and polyethylene glycol monomethacrylate; methoxytetraethylene Glycol methacrylate, alkoxypolyalkylene glycol methacrylate such as methoxypolyethylene glycol methacrylate, dialkylaminoalkyl methacrylate such as 2-(dimethylamino)ethyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate, Fluoroalkyl methacrylates such as 2,2,3,4,4,4-hexafluorobutyl methacrylate in which the alkyl group of the alkyl methacrylate is substituted with a fluorine atom, and tris(trialkylsiloxy)silyl group is substituted in the alkyl group of the alkyl methacrylate. Examples include 3-[[tris(triethylsiloxy)silyl]propyl methacrylate, ethylphosphorylcholine methacrylate in which the alkyl group of alkyl methacrylate is substituted with an ethylphosphorylcholine group, but are not limited to these examples.
 式(3)で表されるビニル単量体のR及びRが共にカルボキシル基又はカルボキシレートを有する基である場合でもよい。具体的には、例えば、イタコン酸、イタコン酸ジメチル、イタコン酸モノブチル等のイタコン酸、そのモノアルキルエステル及びジアルキルエステルが挙げられるが、これらの例示のみに限定されるものではない。 Both R 8 and R 9 of the vinyl monomer represented by formula (3) may be groups having a carboxyl group or a carboxylate. Specific examples thereof include itaconic acid, dimethyl itaconate, monobutyl itaconate, and its monoalkyl esters and dialkyl esters, but are not limited to these examples.
 ビニル単量体として、2つ以上の二重結合(ビニル基、イソプロペニル基等)を有するビニル単量体を用いてもよい。具体的には、例えば、ジエン系化合物(例えば、ブタジエン、イソプレン等)、アリル基を2つ有する化合物(例えば、ジアリルフタレート等)、アクリル基を2つ有する化合物(例えば、エチレングリコールジアクリレート等)、メタクリル基を2つ有する化合物(例えば、エチレングリコールジメタクリレート等)が挙げられるが、これらの例示のみに限定されるものではない。 As the vinyl monomer, a vinyl monomer having two or more double bonds (vinyl group, isopropenyl group, etc.) may be used. Specifically, for example, diene compounds (e.g., butadiene, isoprene, etc.), compounds having two allyl groups (e.g., diallyl phthalate, etc.), compounds having two acrylic groups (e.g., ethylene glycol diacrylate, etc.) , compounds having two methacrylic groups (eg, ethylene glycol dimethacrylate), but are not limited to these examples.
 ビニル単量体としては、上述した以外のビニル単量体を使用することもできる。具体的には、例えば、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル)、上記以外のスチレン誘導体(例えば、α-メチルスチレン)、ビニルケトン類(例えば、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン)、N-ビニル化合物(例えば、N-ビニルピロリドン、N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール、ビニルオキサゾリン)、アクリロニトリル、メタクリロニトリル、マレイン酸及びその誘導体(例えば、無水マレイン酸)、ハロゲン化ビニル類(例えば、塩化ビニル、塩化ビニリデン、テトラクロロエチレン、ヘキサクロロプロピレン、フッ化ビニル、フッ化ビニリデン)、オレフィン類(例えば、エチレン、プロピレン、1又は2-ブテン、1-ヘキセン、1-オクテン、シクロヘキセン)等が挙げられるが、これらの例示のみに限定されるものではない。 As the vinyl monomer, vinyl monomers other than those mentioned above can also be used. Specifically, for example, vinyl esters (e.g., vinyl acetate, vinyl propionate, vinyl benzoate), styrene derivatives other than the above (e.g., α-methylstyrene), vinyl ketones (e.g., vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone), N-vinyl compounds (e.g. N-vinylpyrrolidone, N-vinylpyrrole, N-vinylcarbazole, N-vinylindole, vinyloxazoline), acrylonitrile, methacrylonitrile, maleic acid and its derivatives (e.g., maleic anhydride), vinyl halides (e.g., vinyl chloride, vinylidene chloride, tetrachloroethylene, hexachloropropylene, vinyl fluoride, vinylidene fluoride), olefins (e.g., ethylene, propylene, 1- or 2-butene, 1-hexene, 1-octene, cyclohexene), etc., but are not limited to these examples.
 ラジカル重合性不飽和単量体は、単独で使用してもよいし、また、2種以上を併用してもいい。
 ラジカル重合性不飽和単量体としては、アクリレート、メタクリレート、スチレン類が好ましく、アクリレートとメタクリレートの少なくとも一方を用いることがより好ましく、アクリレートを用いることが特に好ましい。例えば、ラジカル重合体の製造に用いられる全てのラジカル重合性不飽和単量体の全重量を基準として、アクリレートが30重量%以上、含まれていることが好ましく、50重量%以上、含まれていることがより好ましく、70重量%以上、含まれていることがさらに好ましく、90重量%以上、含まれていることが特に好ましい。
The radically polymerizable unsaturated monomers may be used alone or in combination of two or more.
As the radically polymerizable unsaturated monomer, acrylates, methacrylates, and styrenes are preferable, it is more preferable to use at least one of acrylates and methacrylates, and it is particularly preferable to use acrylates. For example, based on the total weight of all radically polymerizable unsaturated monomers used in the production of the radical polymer, it is preferable that acrylate is contained in an amount of 30% by weight or more, and preferably 50% by weight or more. It is more preferable that the content is 70% by weight or more, and it is particularly preferable that the content is 90% by weight or more.
 ラジカル重合性不飽和単量体の使用量は、目的とする分子量などによって、適宜調整できる。 The amount of the radically polymerizable unsaturated monomer used can be adjusted as appropriate depending on the desired molecular weight.
(2-3.ラジカル重合体の性状)
 ラジカル重合体の数平均分子量は、例えば、1,000~200,000であり、好ましくは1,500~100,000であり、より好ましくは3,000~50,000である。
 ラジカル重合体の重量平均分子量は、数平均分子量のよりも同等か少し大きい値、例えば、1,000~240,000であり、好ましくは1,500~120,000であり、より好ましくは3,000~60,000である。
(2-3. Properties of radical polymer)
The number average molecular weight of the radical polymer is, for example, 1,000 to 200,000, preferably 1,500 to 100,000, and more preferably 3,000 to 50,000.
The weight average molecular weight of the radical polymer is equal to or slightly larger than the number average molecular weight, for example, 1,000 to 240,000, preferably 1,500 to 120,000, more preferably 3. 000 to 60,000.
 ラジカル重合体は、さらに、通常のラジカル重合と比較して、分子量分布が狭いという特徴も有する。分子量分布とは、重合体の重量平均分子量を数平均分子量で除した値であり、通常のラジカル重合によって得られる分子量分布が約2以上であるのと比較して、本発明で得られるラジカル重合体の分子量分布は、1.0~1.5であることが好ましく、より好ましくは1.0~1.3であり、さらに好ましくは1.0~1.25であり、特に好ましくは1.0~1.24である。ただし、ラジカル重合体の分子量分布の範囲の下限値は、1.05、1.10等であってもよい。 Radical polymers are also characterized by a narrower molecular weight distribution compared to normal radical polymerization. Molecular weight distribution is the value obtained by dividing the weight average molecular weight of a polymer by the number average molecular weight, and compared to the molecular weight distribution obtained by ordinary radical polymerization, which is about 2 or more, the molecular weight distribution obtained by the present invention is The molecular weight distribution of the aggregate is preferably 1.0 to 1.5, more preferably 1.0 to 1.3, even more preferably 1.0 to 1.25, and particularly preferably 1.0 to 1.3. It is 0 to 1.24. However, the lower limit of the molecular weight distribution range of the radical polymer may be 1.05, 1.10, or the like.
 なお、重合体の数平均分子量及び重量平均分子量は、通則(JISK 7252-1(2016))、及びISO 16014-1(2012))に従ったサイズ排除クロマトグラフィーにより、以下の測定条件で測定したときの値である。
〔重合体の数平均分子量及び重量平均分子量〕
・測定機器:日本分光(株)製EXTREMAサイズ排除クロマトグラフィー(GPC/SEC)システム
・カラム:昭和電工(株)製SHODEX、サンプル側:K-803、KF-804L、KF-806Fを3本接続、リファレンス側:KF-800RH
・溶離液:テトラヒドロフラン(以下、THFという)
・検量線標準物質:ポリメチルメタクリレート(スチレン系重合体以外)、ポリスチレン(スチレン系重合体)
・測定用試料の調製:溶離液(THF)に重合体を溶解させて重合体の濃度が0.1重量%の溶液を調製し、その溶液をフィルターでろ過した後の濾液を使用する。
The number average molecular weight and weight average molecular weight of the polymer were measured by size exclusion chromatography according to the general rules (JISK 7252-1 (2016) and ISO 16014-1 (2012)) under the following measurement conditions. This is the value at the time.
[Number average molecular weight and weight average molecular weight of polymer]
・Measuring equipment: EXTREMA size exclusion chromatography (GPC/SEC) system manufactured by JASCO Corporation ・Column: SHODEX manufactured by Showa Denko Co., Ltd. Sample side: 3 K-803, KF-804L, KF-806F connected , Reference side: KF-800RH
・Eluent: Tetrahydrofuran (hereinafter referred to as THF)
・Calibration curve standard material: Polymethyl methacrylate (other than styrene polymers), polystyrene (styrene polymers)
- Preparation of sample for measurement: Dissolve the polymer in an eluent (THF) to prepare a solution with a polymer concentration of 0.1% by weight, and use the filtrate after filtering the solution with a filter.
(2-4.重合開始剤)
 上述の前駆体の製造に用いられる重合開始剤(以下、前駆体製造用の重合開始剤ともいう)は、有機化合物部位とドーマントを含み、好ましくは、有機化合物部位とドーマントのみからなる。
 また、ラジカル重合体の前駆体の重合においては、すでに公知の方法を活用できるものの、以下のように、重合法に応じて適宜、重合開始剤の種類を選択する必要がある。例えば、ドーマントとしてニトロキシド化合物(ニトロキシド基)を使用するニトロキシド媒介ラジカル重合法(NMP法)、ドーマントとして臭素を使用する原子移動ラジカル重合法(ATRP法)、ドーマントとしてチオカルボニルチオ化合物(チオカルボニルチオ基)を使用する可逆的付加開裂反応を利用したラジカル重合法(RAFT法)、ドーマントとして有機テルル、有機アンチモン、又は有機ビスマス等を使用するラジカル重合(有機テルルを代表としたTERP法)、ドーマントとしてヨウ素を使用するラジカル重合法(例えばRCMP法やRTCP法)などにより、ラジカル重合体の前駆体を製造できる。
(2-4. Polymerization initiator)
The polymerization initiator used for producing the above-mentioned precursor (hereinafter also referred to as a polymerization initiator for producing the precursor) contains an organic compound part and a dormant, and preferably consists of only an organic compound part and a dormant.
Further, in the polymerization of the radical polymer precursor, although already known methods can be utilized, it is necessary to appropriately select the type of polymerization initiator depending on the polymerization method as described below. For example, nitroxide-mediated radical polymerization method (NMP method) using a nitroxide compound (nitroxide group) as a dormant, atom transfer radical polymerization method (ATRP method) using bromine as a dormant, thiocarbonylthio compound (thiocarbonylthio group) as a dormant, ) radical polymerization method using reversible addition-fragmentation reaction (RAFT method), radical polymerization method using organic tellurium, organic antimony, or organic bismuth, etc. as a dormant (TERP method using organic tellurium as a representative), as a dormant A radical polymer precursor can be produced by a radical polymerization method using iodine (eg, RCMP method or RTCP method).
 ドーマントとしてニトロキシド化合物を使用するNMP法における代表的な重合開始剤としては、例えば有機化合物部位として1-フェニルエチル基、ドーマントしてt-ブチル(1-フェニル-2-メチルプロピル)ニトロキシド基を有するt-ブチル(1-フェニル-2-メチルプロピル)(1-フェニルエトキシ)アミン等が挙げられるが、本発明は、かかる例示のみに限定されるものではない。NMP法及びそれに使用される重合開始剤については、2012年7月に発行されたシグマアルドリッチ社の「精密ラジカル重合ハンドブック」p31-34にまとめられているので、参照されたい。 Typical polymerization initiators in the NMP method using a nitroxide compound as a dormant include, for example, a polymer having a 1-phenylethyl group as an organic compound moiety and a t-butyl (1-phenyl-2-methylpropyl) nitroxide group as a dormant. Examples include t-butyl(1-phenyl-2-methylpropyl)(1-phenylethoxy)amine, but the present invention is not limited to such examples. The NMP method and the polymerization initiator used therein are summarized in Sigma-Aldrich's "Precision Radical Polymerization Handbook" published in July 2012, pages 31-34, so please refer to it.
 ドーマントとして臭素を使用するATRP法における代表的な重合開始剤としては、例えば有機化合物部位としてt-ブチルイソブチレート基を有する単官能タイプのt-ブチル-α-ブロモイソブチレート、官能基含有有機化合物部位として水酸基含有の2-ヒドロキシエチル-2-イソブチレート基を有する単官能系の2-ヒドロキシエチル-2-ブロモイソブチレート、有機化合物部位としてエチレンビス(イソブチレート基)を有する2官能系のエチレンビス(2-ブロモイソブチレート)等が挙げられるが、本発明は、かかる例示のみに限定されるものではない。さらに、触媒として例えば2,2’-ビピリジン等のアミン系化合物や、触媒用金属塩として例えば、塩化銅(I)等のハロゲン化遷移金属等が挙げられるが、本発明においては、かかる例示のみに限定されるものではない。ATRP法及びそれに使用される重合開始剤については、2012年7月に発行されたシグマアルドリッチ社の「精密ラジカル重合ハンドブック」p2-18にまとめられているので、参照されたい。 Typical polymerization initiators in the ATRP method using bromine as a dormant include, for example, monofunctional type t-butyl-α-bromoisobutyrate having a t-butyl isobutyrate group as an organic compound moiety, and t-butyl-α-bromoisobutyrate containing a functional group. Monofunctional 2-hydroxyethyl-2-bromoisobutyrate has a hydroxyl-containing 2-hydroxyethyl-2-isobutyrate group as an organic compound moiety, and bifunctional 2-hydroxyethyl-2-bromoisobutyrate has an ethylenebis(isobutyrate group) as an organic compound moiety. Examples include ethylene bis(2-bromoisobutyrate), but the present invention is not limited to such examples. Further, examples of catalysts include amine compounds such as 2,2'-bipyridine, and examples of metal salts for catalysts include transition metal halides such as copper(I) chloride, but in the present invention, only such examples are used. It is not limited to. The ATRP method and the polymerization initiator used therein are summarized in Sigma-Aldrich's "Precision Radical Polymerization Handbook", p. 2-18, published in July 2012, so please refer to it.
 ドーマントとしてチオカルボニルチオ化合物を使用するRAFT重合法における代表的な重合開始剤として、例えば、ジチオエステル系ドーマントとしてのフェニルジチオエステル基、有機化合物部位としてのシアノイソプロピル基を有する単官能系のシアノプロピルベンゾチアノエート(以下、CPBSという)等や、例えば官能基含有有機化合物部位としてシアノペンタノイックアシッド基等のカルボキシル基を有する単官能系のシアノペンタノイックアシッドベンゾチアノエート等、トリチオカルボナート系ドーマントとしてn-ドデシルトリチオカルボナート基、有機化合物部位としてシアノイソプロピル基を有する単官能系のシアノプロピル-n-ドデシルトリチオカルボナート等や、有機化合物部位としてエチレンビスシアノペンタノイックアシッド基を有する2官能系のエチレンビス(シアノペンタノイックアシッド-n-ドデシルチオカルボナート)等が挙げられるが、本発明は、かかる例示のみに限定されるものではない。RAFT重合法及びそれに使用される重合開始剤については、2012年7月に発行されたシグマアルドリッチ社の「精密ラジカル重合ハンドブック」p19-30にまとめられているので、参照されたい。 Typical polymerization initiators in the RAFT polymerization method using a thiocarbonylthio compound as a dormant include, for example, a phenyldithioester group as a dithioester dormant, and a monofunctional cyanopropyl group having a cyanoisopropyl group as an organic compound moiety. trithiocarbonates, such as benzothyanoate (hereinafter referred to as CPBS), monofunctional cyanopentanoic acid benzothyanoate, etc., which has a carboxyl group such as a cyanopentanoic acid group as a functional group-containing organic compound moiety; monofunctional cyanopropyl-n-dodecyltrithiocarbonate having an n-dodecyltrithiocarbonate group as a system dormant and a cyanoisopropyl group as an organic compound moiety, and an ethylenebiscyanopentanoic acid group as an organic compound moiety. Examples include bifunctional ethylene bis(cyanopentanoic acid-n-dodecylthiocarbonate) having the following, but the present invention is not limited to such examples. The RAFT polymerization method and the polymerization initiator used therein are summarized in Sigma-Aldrich's "Precision Radical Polymerization Handbook", pages 19-30, published in July 2012, so please refer to it.
 ドーマントとして有機テルル化合物を使用するTERP法における代表的な重合開始剤として、例えば、有機テルル系ドーマントとしてメチルテルル基、有機化合物部位としてシアノイソプロピル基を有する2-メチルテラニルプロピオニトリル等が挙げられるが、本発明においては、かかる例示のみに限定されるものではない。TERP法及びそれに使用される重合開始剤については、2009年8月に発行された日本ゴム協会誌(82号)の「リビングラジカル重合2. 重合機構と方法2」p365-367にまとめられているので、参照されたい。 Typical polymerization initiators in the TERP method using an organic tellurium compound as a dormant include, for example, 2-methyltellanylpropionitrile having a methyltellurium group as an organic tellurium dormant and a cyanoisopropyl group as an organic compound moiety. However, the present invention is not limited to these examples. The TERP method and the polymerization initiators used in it are summarized in "Living Radical Polymerization 2. Polymerization Mechanism and Method 2" pages 365-367 of the Japan Rubber Association Journal (No. 82) published in August 2009. So please refer to it.
 ドーマントとしてヨウ素を使用するRCMP法やRTCP法における代表的な重合開始剤として、例えば、有機化合物部位としてイソブチロニトリル基、イソ酪酸エチル基、フェニル酢酸エチル基を有する、それぞれ単官能系の2-ヨードイソブチロニトリル(CP-I)、2-ヨードイソ酪酸エチル、2-ヨード-2-フェニル酢酸エチル(PAME)等や、官能基含有有機化合物部位として、カルボキシル基含有のイソ酪酸基、フェニル酢酸基を有するそれぞれ単官能の2-ヨードイソ酪酸、2-ヨード-2-フェニル酢酸、有機化合物部位としてイソ酪酸ヒドロキシエチル基、フェニル酢酸ヒドロキシエチル基を有するそれぞれ2官能の2-ヨードイソ酪酸-2-ヒドロキシエチル、2-ヨード-2-フェニル酢酸-2-ヒドロキシエチル等が挙げられるが、本発明においては、かかる例示のみに限定されるものではない。RCMP法やRTCP法及びそれに使用される重合開始剤については、それぞれ、2014年9月に発行されたACS出版の雑誌Macromolecules(47号)のp6610-6618及び2008年9月に発行されたELSEVIER出版の雑誌Polymer(49号)のp5177-5185にまとめられているので、参照されたい。 Typical polymerization initiators used in the RCMP method and RTCP method that use iodine as a dormant include, for example, monofunctional diamines having an isobutyronitrile group, an ethyl isobutyrate group, or an ethyl phenylacetate group as an organic compound moiety. -Iodoisobutyronitrile (CP-I), ethyl 2-iodoisobutyrate, ethyl 2-iodo-2-phenylacetate (PAME), etc., and as a functional group-containing organic compound moiety, isobutyric acid group containing a carboxyl group, phenyl Monofunctional 2-iodoisobutyric acid and 2-iodo-2-phenylacetic acid each having an acetate group, and difunctional 2-iodoisobutyric acid-2- each having a hydroxyethyl isobutyrate group and a hydroxyethyl phenylacetate group as organic compound moieties. Examples include hydroxyethyl, 2-hydroxyethyl 2-iodo-2-phenylacetate, but the present invention is not limited to these examples. Regarding the RCMP method and RTCP method and the polymerization initiators used therein, please refer to pages 6610-6618 of Macromolecules (No. 47) published by ACS Publishing in September 2014 and ELSEVIER Publishing published in September 2008, respectively. Please refer to the magazine Polymer (No. 49), pages 5177-5185.
 ラジカル重合体を得るための重合開始剤の量は、重合制御の観点から、使用するラジカル重合性不飽和単量体100モルに対して、0.1~50モルであることが好ましく、0.5~40モルであることがより好ましい。また、重合度の観点から、ラジカル重合性不飽和単量体100モルに対して0.5~10モルの重合開始剤を使用することがさらに好ましい。 From the viewpoint of polymerization control, the amount of the polymerization initiator used to obtain the radical polymer is preferably 0.1 to 50 moles, and 0.1 to 50 moles per 100 moles of the radically polymerizable unsaturated monomer used. More preferably, it is 5 to 40 moles. Further, from the viewpoint of the degree of polymerization, it is more preferable to use 0.5 to 10 moles of the polymerization initiator per 100 moles of the radically polymerizable unsaturated monomer.
 ラジカル重合体を得るための方法としては、重合体末端のドーマント引き抜きと官能基含有有機化合物断片の結合の効率性の観点から、ドーマントとしてチオカルボニルチオ化合物を用いるRAFT法、有機テルル化合物を使用するTERP法、ハロゲン(臭素又はヨウ素)を用いるATRP法、RCMP法又はRTCP法が好ましく、中でもハロゲン(臭素又はヨウ素)を用いるATRP法、RCMP法又はRTCP法がより好ましく、得られる重合体の低臭気、低着色、低毒性の観点からRCMP法又はRTCP法が最も好ましい。 Methods for obtaining radical polymers include the RAFT method using a thiocarbonylthio compound as a dormant and the use of an organic tellurium compound, from the viewpoint of the efficiency of dormant extraction from the polymer terminal and bonding of functional group-containing organic compound fragments. TERP method, ATRP method using halogen (bromine or iodine), RCMP method or RTCP method is preferable, and among them, ATRP method, RCMP method or RTCP method using halogen (bromine or iodine) is more preferable, and the resulting polymer has low odor. , RCMP method or RTCP method is most preferred from the viewpoint of low coloring and low toxicity.
(2-5.有機化合物部位の構造)
 本発明のラジカル重合体には、上述の前駆体製造用の重合開始剤に由来する有機化合物部位が含まれる。すなわち、重合開始剤によって前駆体の一方の末端部及び主鎖中のいずれかに導入された有機化合物部位は、その後、前駆体の末端構造が変化したラジカル重合体が製造されても、ラジカル重合体中に維持される。こうしてラジカル重合体に含まれる有機化合物部位は、ラジカル重合体の一方の末端及び主鎖中のいずれかに存在する。 有機化合物部位が上述の重合開始剤に由来することからも明らかであるように、有機化合物部位の具体例として、以下のものが挙げられる。例えばNMP法で導入され得る1-フェニルエチル基、例えばATRP法で導入され得るt-ブチルイソブチレート基、2-ヒドロキシエチル-2-イソブチレート基、エチレンビス(イソブチレート基)、例えばRAFT重合法で導入され得るシアノイソプロピル基、シアノペンタノイックアシッド基、シアノイソプロピル基、エチレンビスシアノペンタノイックアシッド基、例えばTERP法で導入され得るシアノイソプロピル基、例えばRCMP法又はRTCP法により導入され得るイソブチロニトリル基、イソ酪酸エチル基、フェニル酢酸エチル基、カルボキシル基含有のイソ酪酸基、フェニル酢酸基、イソ酪酸ヒドロキシエチル基、フェニル酢酸ヒドロキシエチル基等の構造を有する有機化合物部位である。
 上述の構造に例示される有機化合物部位として、フェニル基、ハロゲン、水酸基、シアノ等で置換されていてもよく、カルボキシル基、酢酸基、酪酸基等の有機酸基を有していてもよい、合計炭素数が1~20、好ましくは合計炭素数1~12のアルキル基あるいはアルキレート基の残基(重合体の主鎖中に含まれる場合にはアルキレン基等);フェニル基、ハロゲン、水酸基、シアノ等で置換されていてもよく、カルボキシル基、酢酸基、酪酸基等の有機酸基を有していてもよい、合計炭素数が6~24、好ましくは合計炭素数8~18のアリール基の残基(重合体の主鎖中に含まれる場合にはアリーレン基)などが挙げられる。
 これらの中でも、ヨウ素等のハロゲンを含む重合開始剤を用いるATRP法、RCMP法等によって導入され得る有機化合物部位、例えば、t-ブチルイソブチレート基、2-ヒドロキシエチル-2-イソブチレート基、エチレンビス(イソブチレート基);イソブチロニトリル基、イソ酪酸エチル基、フェニル酢酸エチル基、カルボキシル基含有のイソ酪酸基、フェニル酢酸基、イソ酪酸ヒドロキシエチル基、フェニル酢酸ヒドロキシエチル基等の残基が、有機化合物部位として好ましい。
(2-5. Structure of organic compound part)
The radical polymer of the present invention contains an organic compound moiety derived from the above-mentioned polymerization initiator for producing the precursor. In other words, the organic compound moiety introduced into one end or main chain of the precursor by the polymerization initiator will not undergo radical polymerization even if a radical polymer with a changed terminal structure of the precursor is subsequently produced. Maintained during coalescence. In this way, the organic compound moiety contained in the radical polymer exists either at one end of the radical polymer or in the main chain. As is clear from the fact that the organic compound moiety is derived from the above-mentioned polymerization initiator, specific examples of the organic compound moiety include the following. For example, 1-phenylethyl group that can be introduced by NMP method, t-butyl isobutyrate group, 2-hydroxyethyl-2-isobutyrate group, ethylene bis (isobutyrate group) that can be introduced by ATRP method, for example, by RAFT polymerization method. Cyanoisopropyl group, cyanopentanoic acid group, cyanoisopropyl group, ethylenebiscyanopentanoic acid group that can be introduced, for example, cyanoisopropyl group that can be introduced by TERP method, for example, isobutylene group that can be introduced by RCMP method or RTCP method. It is an organic compound moiety having a structure such as a lonitrile group, an ethyl isobutyrate group, an ethyl phenylacetate group, a carboxyl group-containing isobutyric acid group, a phenylacetate group, a hydroxyethyl isobutyrate group, or a hydroxyethyl phenylacetate group.
The organic compound moiety exemplified in the above structure may be substituted with a phenyl group, halogen, hydroxyl group, cyano, etc., and may have an organic acid group such as a carboxyl group, an acetate group, a butyrate group, etc. Residues of alkyl groups or alkylate groups having a total number of carbon atoms of 1 to 20, preferably 1 to 12 (alkylene groups, etc. when included in the main chain of the polymer); phenyl groups, halogens, hydroxyl groups Aryl having 6 to 24 carbon atoms in total, preferably 8 to 18 carbon atoms in total, which may be substituted with Examples include residues of groups (arylene groups when included in the main chain of the polymer).
Among these, organic compound moieties that can be introduced by ATRP method, RCMP method, etc. using a polymerization initiator containing halogen such as iodine, such as t-butyl isobutyrate group, 2-hydroxyethyl-2-isobutyrate group, ethylene Bis (isobutyrate group): Residues such as isobutyronitrile group, ethyl isobutyrate group, ethyl phenylacetate group, isobutyric acid group containing carboxyl group, phenylacetate group, hydroxyethyl isobutyrate group, hydroxyethyl phenylacetate group, etc. , preferred as an organic compound moiety.
(2-6.末端官能基の構造)
 本発明のラジカル重合体においては、少なくとも一方の末端に、すなわち片末端または両端に、式(2)で表されるアルコキシ基を含む官能基がエステル部位を介して、結合されている。式(2)の末端官能基は、アルコキシ基含有ラジカル発生剤に由来するものであり、以下のように、アルコキシ基含有ラジカル発生剤を示す式(1)に対応する構造を有する。 
Figure JPOXMLDOC01-appb-C000007
 式(2)中、R及びRは上述の通りである。
 すなわち、Rは、好ましくは炭素数が1又は2のアルキル基であり、より好ましくはメチル基である。
 Rは、好ましくは炭素数が1又は2のアルキレン基であり、より好ましくはエチレン基である。
 また、末端官能基に含まれるR及びRは、それぞれ独立して置換基によって置換されていてもよく、R及びRに含まれる置換基の例として、ハロゲン原子、水酸基、アルコキシ基、カルボキシル基、アシル基、アミノ基、ニトロ基、シアノ基、メルカプト基、シリル基などが挙げられる。R及びRが置換基によって置換されている場合、上述の炭素数には、置換基における炭素の数が含まれない。
(2-6. Structure of terminal functional group)
In the radical polymer of the present invention, a functional group containing an alkoxy group represented by formula (2) is bonded to at least one end, ie, one end or both ends, via an ester moiety. The terminal functional group of formula (2) is derived from an alkoxy group-containing radical generator, and has a structure corresponding to formula (1) representing an alkoxy group-containing radical generator as shown below.
Figure JPOXMLDOC01-appb-C000007
In formula (2), R 1 and R 2 are as described above.
That is, R 1 is preferably an alkyl group having 1 or 2 carbon atoms, more preferably a methyl group.
R 2 is preferably an alkylene group having 1 or 2 carbon atoms, more preferably an ethylene group.
Furthermore, R 1 and R 2 contained in the terminal functional group may each be independently substituted with a substituent, and examples of substituents contained in R 1 and R 2 include a halogen atom, a hydroxyl group, an alkoxy group. , carboxyl group, acyl group, amino group, nitro group, cyano group, mercapto group, silyl group, etc. When R 1 and R 2 are substituted with a substituent, the number of carbon atoms in the substituent is not included in the above number of carbon atoms.
[3.ラジカル重合体組成物(リビングラジカル重合体組成物)]
 次に、本発明のラジカル重合体組成物、例えばリビングラジカル重合体組成物について説明する。リビングラジカル重合体組成物は、少なくとも、上述のリビングラジカル重合体と、上述の末端官能基が含まれていない重合体(特定の末端官能基を含まない重合体であって、例えば、リビングラジカル重合体などのラジカル重合体)とを含む。
[3. Radical polymer composition (living radical polymer composition)]
Next, the radical polymer composition of the present invention, for example a living radical polymer composition, will be explained. The living radical polymer composition includes at least the above-mentioned living radical polymer and the above-mentioned polymer that does not contain a terminal functional group (a polymer that does not contain a specific terminal functional group, such as a living radical polymer). radical polymers such as coalescence).
 上述のアルコキシ基を含む官能基を有する化合物が末端に結合されていないラジカル重合体には、好ましくは、前駆体と、前駆体のドーマントが何らかの反応より水素に置換されたラジカル重合体とが含まれる。特定の末端官能基を含まないこれらの重合体の組成、一次構造及び分子量は、ラジカル重合体のそれらと比較してもほとんど変化しておらず、ほぼ同じものである。すなわち、ラジカル重合体組成物に含まれ得るラジカル重合体は、好ましくは、主として末端構造のみが特定の末端官能基を有するラジカル重合体と相違する。
 ラジカル重合体組成物に含まれ得る重合体として、前駆体に由来する上述のものの他に、前駆体に由来しない重合体である熱可塑性樹脂、熱硬化性樹脂、前駆体に由来する重合体を溶解する溶剤、酸化防止剤等の公知のものが挙げられる。
The radical polymer to which a compound having a functional group containing an alkoxy group is not bonded to the terminal thereof preferably includes a precursor and a radical polymer in which the dormant of the precursor is replaced with hydrogen by some reaction. It will be done. The composition, primary structure and molecular weight of these polymers, which do not contain specific terminal functional groups, are almost the same, with little change compared to those of radical polymers. That is, the radical polymer that may be included in the radical polymer composition preferably differs primarily only in the terminal structure from a radical polymer having a specific terminal functional group.
In addition to the above-mentioned polymers derived from precursors, polymers that can be included in the radical polymer composition include thermoplastic resins, thermosetting resins, and polymers derived from precursors that are not derived from precursors. Known solvents such as soluble solvents and antioxidants can be used.
 上述のアルコキシ基を含む末端官能基を有するラジカル重合体は、前駆体に由来する重合体の混合物全体、すなわち、末端にヨウ素を始めとするハロゲン等のドーマントが導入された前駆体、前駆体末端にてドーマントが水素に置換された重合体及びラジカル重合体の混合物100重量部において、好ましくは50~100重量部を占めており、より好ましくは70~100重量部を占めており、さらに好ましくは90~100重量部を占める。本発明のラジカル重合体の製造方法によれば、このように、前駆体由来の混合物において高い含有率(純度)で含まれるラジカル重合体を、特別な精製工程などを必要とせず、効率的に得ることができる。 The above-mentioned radical polymer having a terminal functional group containing an alkoxy group is the entire mixture of polymers derived from a precursor, that is, a precursor in which a dormant such as a halogen such as iodine is introduced at the terminal end, and a precursor terminal having a dormant such as halogen such as iodine. It preferably accounts for 50 to 100 parts by weight, more preferably 70 to 100 parts by weight, and even more preferably It accounts for 90 to 100 parts by weight. According to the method for producing a radical polymer of the present invention, a radical polymer contained in a high content (purity) in a mixture derived from a precursor can be efficiently produced without the need for a special purification process. Obtainable.
 ラジカル重合体組成物には、上述のアルコキシ基含有末端官能基を有するラジカル重合体、上述のアルコキシ基含有末端官能基を含まない重合体の他に、前駆体に由来しない重合体である熱可塑性樹脂、熱硬化性樹脂、前駆体に由来する重合体を溶解する溶剤、酸化防止剤等が含まれていてもよい。そして、ラジカル重合体組成物における上述のアルコキシ基含有末端官能基を有するラジカル重合体の含有量は、重合体組成物全体の100重量部において、好ましくは1~100重量部である。一方、特定のアルコキシ基含有末端官能基を含まない重合体の含有量は、重合体組成物全体の100重量部において、好ましくは0~50重量部である。また、前駆体に由来しない重合体である熱可塑性樹脂、熱硬化性樹脂、前駆体に由来する重合体を溶解する溶剤、酸化防止剤等の含有量は、重合体組成物全体の100重量部において、好ましくは0~99重量部である。 In addition to the above-mentioned radical polymer having an alkoxy group-containing terminal functional group and the above-mentioned polymer not containing an alkoxy group-containing terminal functional group, the radical polymer composition includes a thermoplastic polymer which is a polymer not derived from a precursor. The resin, thermosetting resin, a solvent that dissolves the polymer derived from the precursor, an antioxidant, and the like may be included. The content of the above-mentioned radical polymer having an alkoxy group-containing terminal functional group in the radical polymer composition is preferably 1 to 100 parts by weight based on 100 parts by weight of the entire polymer composition. On the other hand, the content of the polymer that does not contain a specific alkoxy group-containing terminal functional group is preferably 0 to 50 parts by weight based on 100 parts by weight of the entire polymer composition. In addition, the content of thermoplastic resins and thermosetting resins that are polymers not derived from precursors, solvents that dissolve polymers derived from precursors, antioxidants, etc. is 100 parts by weight of the entire polymer composition. The amount is preferably 0 to 99 parts by weight.
[4.ラジカル重合体(リビングラジカル重合体)の製造方法]
 次に、本発明におけるリビングラジカル重合体などのラジカル重合体の製造方法について説明する。当該製造方法は、分子量分布が狭く、かつ少なくとも一方の重合体末端に上述のアルコキシ基含有官能基を有する重合体が高純度で得られることを特徴とする。
[4. Method for producing radical polymer (living radical polymer)]
Next, a method for producing a radical polymer such as a living radical polymer according to the present invention will be explained. The production method is characterized in that a highly purified polymer having a narrow molecular weight distribution and having the above-mentioned alkoxy group-containing functional group at at least one polymer terminal is obtained.
 本発明の重合体の製造方法は、ラジカル重合体の前駆体を形成する重合工程と、前駆体の末端にアルコキシ基含有官能基構造を導入する導入工程とを含む。重合工程では、有機化合物部位とドーマントとを含む重合開始剤、あるいは、好ましくは有機化合物部位とドーマントのみから構成される重合開始剤と、ラジカル重合性不飽和単量体とを用いることで前駆体を重合する。そして、導入工程では、重合工程で得られた前駆体のドーマント末端に、アルコキシ基含有ラジカル発生剤を所定の温度下で反応させ、アルコキシ基官能基含有ラジカル発生剤に由来の末端官能基構造を導入する。以下、各工程について説明する。 The method for producing a polymer of the present invention includes a polymerization step of forming a radical polymer precursor and an introduction step of introducing an alkoxy group-containing functional group structure to the terminal end of the precursor. In the polymerization step, a precursor can be formed by using a polymerization initiator containing an organic compound moiety and a dormant, or preferably a polymerization initiator consisting only of an organic compound moiety and a dormant, and a radically polymerizable unsaturated monomer. polymerize. In the introduction step, an alkoxy group-containing radical generator is reacted with the dormant end of the precursor obtained in the polymerization step at a predetermined temperature to form a terminal functional group structure derived from the alkoxy group-containing radical generator. Introduce. Each step will be explained below.
(4-1.重合工程)
 重合工程においては、前述したNMP法、ATRP法、RAFT重合法、TERP法、RCMP法又はRTCP法等が用いられ得る。前駆体製造用の重合開始剤としては、これらの製法についての説明で示した上述の重合開始剤が利用できるが、特に、前駆体末端のドーマントをアルコキシ基含有ラジカル発生剤によって効率よく脱離、結合することが可能な、有機ヨウ素化合物を重合開始剤として使用することが好ましい。このため、少なくとも有機ヨウ素化合物を重合開始剤として用いるRCMP法及びRTCP法のうちの、ラジカル重合体末端ヨウ素の含有率の高いRCMP法について、さらに詳しく説明する。
(4-1. Polymerization step)
In the polymerization step, the aforementioned NMP method, ATRP method, RAFT polymerization method, TERP method, RCMP method, RTCP method, etc. can be used. As the polymerization initiator for producing the precursor, the above-mentioned polymerization initiators shown in the explanation of these production methods can be used, but in particular, the dormant at the terminal end of the precursor can be efficiently eliminated by using an alkoxy group-containing radical generator. Preference is given to using organic iodine compounds capable of binding as polymerization initiators. For this reason, of the RCMP method and RTCP method using at least an organic iodine compound as a polymerization initiator, the RCMP method in which the content of radical polymer terminal iodine is high will be explained in more detail.
 前駆体製造用の重合開始剤として好適に用いられ得る有機ヨウ素化合物については、前項で詳細に述べたが、既に製造された重合開始剤を用いる方法の他にも、重合開始剤原料である、例えばアゾ化合物とヨウ素と重合の初期段階に仕込み、その両者の反応により有機ヨウ素化合物からなる重合開始剤をin-situで生成させて用いることもできる。 The organic iodine compound that can be suitably used as a polymerization initiator for producing a precursor was described in detail in the previous section, but in addition to the method using an already produced polymerization initiator, there are also methods that use a polymerization initiator raw material. For example, an azo compound and iodine may be charged at the initial stage of polymerization, and a polymerization initiator made of an organic iodine compound may be generated in-situ by the reaction of the two.
 有機ヨウ素化合物を生成させるために用いるアゾ化合物としては、例えば、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2,4,4-トリメチルペンタン)等の官能基非含有アゾ化合物や、例えば、カルボキシル基を有する4,4-アゾビス-4-シアノ吉草酸(ACVA)、水酸基を有する2,2’-アゾビス{2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド}、アミノ基を有する2-2’-アゾビス{2-(2-イミダゾリン-2-イル)プロパン}等の官能基含有アゾ化合物が挙げられるが、本発明はかかる例示のみに限定されるものではない。 Examples of azo compounds used to generate organic iodine compounds include 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(isobutyronitrile) (AIBN ), 2,2'-azobis(2-methylbutyronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 2,2'-azobis(2,4,4-trimethylpentane), etc. Azo compounds containing no functional group, such as 4,4-azobis-4-cyanovaleric acid (ACVA) having a carboxyl group, and 2,2'-azobis{2-methyl-N-(2-hydroxyethyl) having a hydroxyl group. ) propionamide}, 2-2'-azobis{2-(2-imidazolin-2-yl)propane} having an amino group, and other functional group-containing azo compounds, but the present invention is limited only to such examples. It's not something you can do.
 上述の重合開始剤を生成させるために用いるアゾ化合物の量は、ヨウ素1モルに対して1~5モルが好ましく、1.3~3モルがより好ましい。 The amount of the azo compound used to produce the above-mentioned polymerization initiator is preferably 1 to 5 mol, more preferably 1.3 to 3 mol, per 1 mol of iodine.
 上述の重合開始剤を効率よく重合させる目的として、重合開始剤に加えて、さらに触媒を併用することが望ましい。触媒としては、例えば、ヨウ素に配位してヨウ素を引き抜く公知の化合物が挙げられるが、本発明はかかる例示のみに限定されるものではない。 In order to efficiently polymerize the above-mentioned polymerization initiator, it is desirable to use a catalyst in addition to the polymerization initiator. Examples of the catalyst include known compounds that coordinate to iodine and extract iodine, but the present invention is not limited to such examples.
 触媒としては、例えば、有機アミン化合物、ヨウ化物イオンとのイオン結合を有する非金属化合物であって、当該非金属化合物中の非金属原子がカチオンの状態であり、ヨウ化物イオンとイオン結合を形成している触媒などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of catalysts include organic amine compounds and nonmetallic compounds that have ionic bonds with iodide ions, in which the nonmetallic atoms in the nonmetallic compound are in a cation state and form ionic bonds with iodide ions. However, the present invention is not limited to only such examples.
 有機アミン化合物からなる触媒としては、具体的にはトリエチルアミン、トリブチルアミン、1,1,2,2-テトラキス(ジメチルアミノ)エテン、1,4,8,11-テトラメチル-1,4,8,11-テトラアザシクロテトラデカン、エチレンジアミン、テトラメチルエチレンジアミン、テトラメチルジアミノメタン、トリス(2-アミノエチル)アミン、トリス(2-(メチルアミノ)エチル)アミン、ヘマトポルフィリンなどが挙げられる。これらの触媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Specific examples of catalysts made of organic amine compounds include triethylamine, tributylamine, 1,1,2,2-tetrakis(dimethylamino)ethene, 1,4,8,11-tetramethyl-1,4,8, Examples include 11-tetraazacyclotetradecane, ethylenediamine, tetramethylethylenediamine, tetramethyldiaminomethane, tris(2-aminoethyl)amine, tris(2-(methylamino)ethyl)amine, hematoporphyrin, and the like. These catalysts may be used alone or in combination of two or more.
 ヨウ化物イオンとのイオン結合を有する非金属化合物であって、当該非金属化合物中の非金属原子がカチオンの状態であり、ヨウ化物イオンとイオン結合を形成している触媒としては、具体的にはアンモニウム塩、イミダゾリウム塩、ピリジニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩などが挙げられ、より具体的には、テトラブチルアンモニウムヨージド、テトラブチルアンモニウムトリヨージド、テトラブチルアンモニウムブロモジヨージド、1-メチル-3-メチル-イミダゾリウムヨージド、2-クロロ-1-メチルピリジニウムヨージド、メチルトリブチルホスホニウムヨージド(以下、PMBIという)、テトラフェニルホスホニウムヨージド、トリブチルスルホニウムヨージド、ジフェニルヨードニウムヨージドなどが挙げられる。これらの触媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Specific examples of catalysts that are nonmetallic compounds that have ionic bonds with iodide ions, in which the nonmetallic atoms in the nonmetallic compounds are in a cation state and form ionic bonds with iodide ions, include: Examples include ammonium salts, imidazolium salts, pyridinium salts, phosphonium salts, sulfonium salts, iodonium salts, and more specifically, tetrabutylammonium iodide, tetrabutylammonium triiodide, tetrabutylammonium bromodiiodide, 1-Methyl-3-methyl-imidazolium iodide, 2-chloro-1-methylpyridinium iodide, methyltributylphosphonium iodide (hereinafter referred to as PMBI), tetraphenylphosphonium iodide, tributylsulfonium iodide, diphenyliodonium iodide Examples include de. These catalysts may be used alone or in combination of two or more.
 触媒の量は、重合速度を高め、未反応の単量体の残存量を低減させる観点から、上記有機ヨウ素化合物100モルに対して、好ましくは0.01~50モル、より好ましくは0.05~30モル、さらに好ましくは0.1モル~20モル、さらにいっそう好ましくは0.5~10モルである。 The amount of the catalyst is preferably 0.01 to 50 mol, more preferably 0.05 mol, per 100 mol of the organic iodine compound, from the viewpoint of increasing the polymerization rate and reducing the residual amount of unreacted monomers. ~30 moles, more preferably 0.1 moles to 20 moles, even more preferably 0.5 to 10 moles.
 上述の触媒の他に、重合速度を速める目的で、必要に応じて、少量の汎用ラジカル重合開始剤を用いてもよい。汎用ラジカル重合開始剤の種類については、上述の前駆体製造用の重合開始剤の種類ほど厳密に選択する必要はなく、適宜、重合温度や重合時間等に応じたものを用いる。 In addition to the above-mentioned catalysts, a small amount of a general-purpose radical polymerization initiator may be used, if necessary, for the purpose of increasing the polymerization rate. Regarding the type of general-purpose radical polymerization initiator, it is not necessary to select it as strictly as the type of polymerization initiator for producing the precursor described above, and it is appropriately selected depending on the polymerization temperature, polymerization time, etc.
 汎用ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの汎用ラジカル重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Examples of general-purpose radical polymerization initiators include azo compounds and organic peroxides, but the present invention is not limited to these examples. These general-purpose radical polymerization initiators may be used alone, or two or more types may be used in combination.
 アゾ化合物としては、先述のアゾ化合物と同様のものを例示できる。これらのアゾ化合物は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 As the azo compound, the same azo compounds as mentioned above can be exemplified. These azo compounds may be used alone or in combination of two or more.
 有機過酸化物としては、先述の特定の官能基含有ジアシルペルオキシドの他に、官能基非含有の汎用有機過酸化物、例えば、ジ-(3,5,5-トリメチルヘキサノイル)ペルオキシド、ベンゾイルペルオキシド等のジアシルペルオキシド類や、ジ-n-プロピルペルオキシジカーボネート、ジ-イソプロピルペルオキシジカーボネート等のペルオキシジカーボネート類や、ジクミルペルオキシド、ジ-t-ブチルペルオキシド等のジアルキルペルオキシド類や、t-ブチルペルオキシピバレート、t-ブチルペルオキシ-2-エチルヘキサノエート等のペルオキシエステル類や、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン等のペルオキシケタール類等が挙げられるが、本発明はかかる例示のみに限定されるものではない。これらの有機過酸化物は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Examples of organic peroxides include, in addition to the above-mentioned specific functional group-containing diacyl peroxides, general-purpose organic peroxides that do not contain functional groups, such as di-(3,5,5-trimethylhexanoyl) peroxide and benzoyl peroxide. diacyl peroxides such as di-n-propyl peroxydicarbonate, di-isopropyl peroxydicarbonate, dialkyl peroxides such as dicumyl peroxide, di-t-butyl peroxide, and t-butyl peroxide. Examples include peroxyesters such as peroxypivalate and t-butylperoxy-2-ethylhexanoate, and peroxyketals such as 1,1-bis(t-butylperoxy)cyclohexane. It is not limited to only. These organic peroxides may be used alone or in combination of two or more.
 なお、汎用ラジカル重合開始剤を使用する必要がない場合には、汎用ラジカル重合開始剤による悪影響を回避する観点から、汎用ラジカル重合開始剤を実質的に使用しないことが好ましく、汎用ラジカル重合開始剤をまったく使用しないことがより好ましい。ここで、「実質的に使用しない」とは、重合開始剤による重合反応への影響が実質的に生じない程度の汎用ラジカル重合開始剤の量を意味する。より具体的には、触媒1モルあたりの汎用ラジカル重合開始剤の量は、好ましくは10ミリモル以下、より好ましくは1ミリモル以下、さらに好ましくは0.1ミリモル以下である。 In addition, if there is no need to use a general-purpose radical polymerization initiator, it is preferable not to use the general-purpose radical polymerization initiator substantially from the viewpoint of avoiding the adverse effects of the general-purpose radical polymerization initiator. It is more preferable not to use it at all. Here, "substantially not used" means an amount of the general-purpose radical polymerization initiator such that the polymerization initiator does not substantially affect the polymerization reaction. More specifically, the amount of general-purpose radical polymerization initiator per mole of catalyst is preferably 10 mmol or less, more preferably 1 mmol or less, and even more preferably 0.1 mmol or less.
 全ラジカル重合性不飽和単量体成分100モルあたりの汎用ラジカル重合開始剤の量は、重合速度を高め、未反応のラジカル重合性不飽和単量体の残存量を低減させる観点から、好ましくは0.005~30モル、より好ましくは0.01~20モル、さらにより好ましくは0.02~15モルである。 The amount of the general-purpose radical polymerization initiator per 100 moles of all radically polymerizable unsaturated monomer components is preferably from the viewpoint of increasing the polymerization rate and reducing the remaining amount of unreacted radically polymerizable unsaturated monomers. The amount is 0.005 to 30 mol, more preferably 0.01 to 20 mol, and even more preferably 0.02 to 15 mol.
 ラジカル重合性不飽和単量体については、前項で詳細に述べたが、ラジカル重合性不飽和単量体を重合させる際の重合条件は、当該ラジカル重合性不飽和単量体の重合方法に応じて適宜設定すればよく、特に限定されるものではない。重合温度は、好ましくは室温(例えば10~25℃、20℃など)~200℃、より好ましくは30~140℃である。また、ラジカル重合性不飽和単量体を重合させる際の雰囲気は、窒素ガス、アルゴンガスなどの不活性ガスであることが好ましい。反応時間は、ラジカル重合性不飽和単量体の重合反応が完結するように適宜設定すればよい。 The radically polymerizable unsaturated monomer was described in detail in the previous section, but the polymerization conditions when polymerizing the radically polymerizable unsaturated monomer depend on the polymerization method of the radically polymerizable unsaturated monomer. It may be set as appropriate and is not particularly limited. The polymerization temperature is preferably room temperature (eg, 10-25°C, 20°C, etc.) to 200°C, more preferably 30-140°C. Further, the atmosphere during polymerization of the radically polymerizable unsaturated monomer is preferably an inert gas such as nitrogen gas or argon gas. The reaction time may be appropriately set so that the polymerization reaction of the radically polymerizable unsaturated monomer is completed.
 ラジカル重合性不飽和単量体の重合は、溶剤を使用しない塊状重合であってもよく、ラジカル重合性不飽和単量体又はそれによって得られる重合体に溶解する溶剤を用いる溶液重合であってもよい。また、ラジカル重合性不飽和単量体又はそれによって得られる重合体に溶解しない溶媒を用いることにより、乳化重合、分散重合、懸濁重合などを行うことができる。 The polymerization of the radically polymerizable unsaturated monomer may be bulk polymerization without using a solvent, or solution polymerization using a solvent that dissolves in the radically polymerizable unsaturated monomer or the polymer obtained thereby. Good too. Furthermore, by using a solvent that does not dissolve in the radically polymerizable unsaturated monomer or the polymer obtained thereby, emulsion polymerization, dispersion polymerization, suspension polymerization, etc. can be performed.
 ラジカル重合性不飽和単量体を溶液重合させる際に用いられる溶媒としては、例えば、水、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族系溶媒、メタノール、エタノール、イソプロパノール、n-ブタノール、t-ブチルアルコールなどのアルコール系溶媒、ジクロロメタン、ジクロロエタン、クロロホルムなどのハロゲン原子含有溶媒、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、エチルセルソルブ、ブチルセルソルブ、ジグライム、プロピレングリコールモノメチルエーテルアセテートなどの直鎖状または分岐状の脂肪族エーテル系溶媒、テトラヒドロフラン、1,2-ジオキサン、1,3-ジオキサン、1,4-ジオキサンなどの脂環式エーテル系溶媒、酢酸エチル、酢酸ブチル、酢酸セルソルブ、酢酸セロソルブなどのエステル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコールなどのケトン系溶媒、ジメチルホルムアミドなどのアミド系溶媒、ジメチルスルホキシドなどのスルホキシド系溶媒などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの溶媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。溶媒の量は、重合条件、単量体の組成、得られる重合体の濃度などを考慮して適宜決定すればよい。 Examples of solvents used in solution polymerization of radically polymerizable unsaturated monomers include water, aromatic solvents such as benzene, toluene, xylene, and ethylbenzene, methanol, ethanol, isopropanol, n-butanol, and t-butanol. Alcohol-based solvents such as butyl alcohol, halogen atom-containing solvents such as dichloromethane, dichloroethane, and chloroform, and linear solvents such as propylene glycol methyl ether, dipropylene glycol methyl ether, ethyl cellosolve, butyl cellosolve, diglyme, and propylene glycol monomethyl ether acetate. aliphatic or branched aliphatic ether solvents, alicyclic ether solvents such as tetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, ethyl acetate, butyl acetate, cellosolve acetate, cellosolve acetate Examples thereof include ester solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, ketone solvents such as diacetone alcohol, amide solvents such as dimethylformamide, and sulfoxide solvents such as dimethyl sulfoxide. It is not limited to only. These solvents may be used alone or in combination of two or more. The amount of the solvent may be appropriately determined in consideration of the polymerization conditions, monomer composition, concentration of the resulting polymer, and the like.
(4-2.導入工程)
 本発明の重合体の製造方法の導入工程においては、重合開始剤とラジカル重合性不飽和単量体とから得られる前駆体のドーマント末端に、アルコキシ基含有ラジカル発生剤を反応させて、温度をかけることによって、末端構造の変化した重合体が得られる。官能基含有ラジカル発生剤としては、少なくとも、上述の式(1)で表されるアルコキシ基を有する化合物が用いられる。
(4-2. Introduction process)
In the introduction step of the method for producing a polymer of the present invention, an alkoxy group-containing radical generator is reacted with the dormant end of a precursor obtained from a polymerization initiator and a radically polymerizable unsaturated monomer, and the temperature is lowered. By applying this method, a polymer with a changed terminal structure can be obtained. As the functional group-containing radical generator, at least a compound having an alkoxy group represented by the above formula (1) is used.
 上述のアルコキシ基含有ラジカル発生剤の添加量は、前駆体末端のドーマント1モルに対して、0.5~30モルが好ましく、0.5~20モルがより好ましく、1~10モルがさらに好ましく、1~5モルがより好ましい。また、導入工程においては、ラジカル発生剤を滴下させつつ徐々に反応系に加えることが好ましい。導入工程におけるラジカル発生剤の反応系への滴下速度(供給速度)は、例えば、反応溶媒による濃度10質量%の希釈品として反応系1Lあたり2~20(ml/分)、好ましくは5~10(ml/分)である。 The amount of the above-mentioned alkoxy group-containing radical generator to be added is preferably 0.5 to 30 mol, more preferably 0.5 to 20 mol, and even more preferably 1 to 10 mol, per 1 mol of the dormant at the terminal end of the precursor. , more preferably 1 to 5 mol. Moreover, in the introduction step, it is preferable to gradually add the radical generator to the reaction system while dropping it. The dropping rate (supply rate) of the radical generator into the reaction system in the introduction step is, for example, 2 to 20 (ml/min), preferably 5 to 10 per liter of the reaction system as a product diluted with a reaction solvent at a concentration of 10% by mass. (ml/min).
 前駆体末端のドーマントにアルコキシ基含有ラジカル発生剤を反応させる際の反応条件は、アルコキシ基含有ラジカル発生剤の分解する条件に応じて適宜設定すればよく、特に限定されない。
 ただし、反応温度は、例えば70℃~140℃であり、好ましくは、前駆体を構成する主となるラジカル重合性不飽和単量体がスチレン及びその誘導体の場合には80℃~110℃、前駆体を構成する主となるラジカル重合性不飽和単量体がアクリルアミド及びその誘導体又はアクリレートの場合には110℃~130℃、前駆体を構成する主となるラジカル重合性不飽和単量体がメタクリレートの場合には70℃~100℃である。また、反応させる際の雰囲気は、窒素ガス、アルゴンガスなどの不活性ガスであることが好ましい。反応時間は、アルコキシ基含有ラジカル発生剤の分解が完結するように適宜設定すればよいものの、例えば、50分~200分、60分~150分、70分~120分、80分~100分等の範囲から選択され得る。また反応を均一にするため、適宜溶媒を用いることができる。溶媒としては、ラジカル重合体を溶解できるものであれば適宜使用でき、例えば、上述のラジカル重合性不飽和単量体を重合させる際に使用する溶媒と同様のものを提示できる。
The reaction conditions for reacting the alkoxy group-containing radical generator with the dormant at the terminal end of the precursor may be appropriately set depending on the conditions for decomposing the alkoxy group-containing radical generator, and are not particularly limited.
However, the reaction temperature is, for example, 70°C to 140°C, preferably 80°C to 110°C when the main radically polymerizable unsaturated monomer constituting the precursor is styrene and its derivatives. When the main radically polymerizable unsaturated monomer constituting the precursor is acrylamide and its derivatives or acrylates, the temperature is 110°C to 130°C. In this case, the temperature is 70°C to 100°C. Further, the atmosphere during the reaction is preferably an inert gas such as nitrogen gas or argon gas. The reaction time may be appropriately set so that the decomposition of the alkoxy group-containing radical generator is completed, but for example, it may be 50 minutes to 200 minutes, 60 minutes to 150 minutes, 70 minutes to 120 minutes, 80 minutes to 100 minutes, etc. can be selected from the range of . Further, in order to make the reaction uniform, a solvent can be used as appropriate. As the solvent, any solvent can be used as long as it can dissolve the radical polymer, and for example, the same solvents as those used in polymerizing the above-mentioned radically polymerizable unsaturated monomer can be used.
 先述したように、本発明の重合体の製造方法の反応機構は、以下の通りと推定される。まずアルコキシ基含有ラジカル発生剤から生成したアルコキシ基含有ラジカルは前駆体末端に存在するドーマントを引き抜き、それによって前駆体末端ラジカルが生成する。一方、前駆体の末端に存在するドーマントに対して等モル以上存在させたアルコキシ基含有ラジカル発生剤に由来するアルコキシ基含有ラジカルは、低分子量であることから反応液中で速く拡散することができる。このため、アルコキシ基含有ラジカルは速やかに前駆体末端ラジカルと結合するのであり、このことによって、特定の官能基含有化合物が結合した前駆体が高純度で得られる。さらにアルコキシ基含有ラジカルは、分子量分布を広めてしまうこととなる前駆体末端ラジカル同士の結合を阻害するため、得られた重合体においては、前駆体での狭い分子量分布をそのままで維持できる。
 さらに、アルコキシ基含有ラジカルよりも速く前駆体末端に存在するドーマントを引き抜く化合物として、ヨウ化物イオンなどとのイオン結合を有する非金属化合物を用いると、前駆体末端に存在するドーマントをアルコキシ基含有ラジカルよりも速く引き抜き、それによって前駆体末端ラジカルが速やかに生成する。一方、アルコキシ含有ラジカル発生剤から発生するアルコキシ基含有ラジカルは、低分子量かつ酸素ラジカルであることから反応液中で速く拡散することができ、アルコキシ基含有の末端官能基がより高純度かつ高効率で生成される。
As mentioned above, the reaction mechanism of the method for producing a polymer of the present invention is estimated to be as follows. First, the alkoxy group-containing radical generated from the alkoxy group-containing radical generating agent extracts the dormant present at the end of the precursor, thereby generating a precursor end radical. On the other hand, since the alkoxy group-containing radical derived from the alkoxy group-containing radical generator present in an equimolar or more amount to the dormant present at the end of the precursor has a low molecular weight, it can quickly diffuse in the reaction solution. . Therefore, the alkoxy group-containing radical quickly bonds with the terminal radical of the precursor, and as a result, a highly purified precursor to which a specific functional group-containing compound is bonded can be obtained. Furthermore, since the alkoxy group-containing radical inhibits the bonding between the terminal radicals of the precursor, which would otherwise broaden the molecular weight distribution, the resulting polymer can maintain the narrow molecular weight distribution of the precursor as it is.
Furthermore, if a nonmetallic compound having an ionic bond with an iodide ion or the like is used as a compound that extracts the dormant present at the end of the precursor faster than the alkoxy group-containing radical, the dormant present at the end of the precursor can be extracted by the alkoxy group-containing radical. , thereby rapidly generating precursor terminal radicals. On the other hand, alkoxy-containing radicals generated from alkoxy-containing radical generators have a low molecular weight and are oxygen radicals, so they can diffuse quickly in the reaction solution, and the alkoxy-containing terminal functional groups have higher purity and higher efficiency. is generated.
 上述のように、前駆体からラジカルを引き抜く化合物としては、例えば、ヨウ化物イオンとのイオン結合を有する非金属化合物が挙げられる。 As mentioned above, examples of compounds that extract radicals from precursors include nonmetallic compounds that have an ionic bond with iodide ions.
 ヨウ化物イオンとのイオン結合を有する非金属化合物としては、具体的にはアンモニウム塩、イミダゾリウム塩、ピリジニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩などが挙げられ、より具体的には、テトラブチルアンモニウムヨージド、テトラブチルアンモニウムトリヨージド、テトラブチルアンモニウムブロモジヨージド、1-メチル-3-メチル-イミダゾリウムヨージド、2-クロロ-1-メチルピリジニウムヨージド、メチルトリブチルホスホニウムヨージド(以下、BMPIという)、テトラフェニルホスホニウムヨージド、トリブチルスルホニウムヨージド、ジフェニルヨードニウムヨージドなどが挙げられる。これらの触媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Specific examples of nonmetallic compounds having an ionic bond with iodide ions include ammonium salts, imidazolium salts, pyridinium salts, phosphonium salts, sulfonium salts, and iodonium salts. More specifically, tetrabutyl Ammonium iodide, tetrabutylammonium triiodide, tetrabutylammonium bromodiiodide, 1-methyl-3-methyl-imidazolium iodide, 2-chloro-1-methylpyridinium iodide, methyltributylphosphonium iodide (hereinafter referred to as BMPI), tetraphenylphosphonium iodide, tributylsulfonium iodide, diphenyliodonium iodide, and the like. These catalysts may be used alone or in combination of two or more.
 上述の前駆体からラジカルを引き抜く化合物の量は、反応速度を高める観点から、ラジカル重合体の前駆体の末端ドーマント1モルに対して0.5~20モル、好ましくは1~10モルである。 The amount of the compound that extracts radicals from the above-mentioned precursor is 0.5 to 20 mol, preferably 1 to 10 mol, per mol of the terminal dormant of the radical polymer precursor, from the viewpoint of increasing the reaction rate.
 以下に実施例を挙げて本発明をさらに詳細に説明する。まずは、メトキシ基含有ラジカル重合開始剤の実施例を以下に示す。 The present invention will be explained in more detail with reference to Examples below. First, examples of methoxy group-containing radical polymerization initiators are shown below.
実施例1
(メトキシ基含有原料酸クロライドの合成)
 長さ1.5mmのラグビーボール型撹拌子、温度計、還流冷却器、カルシウム管を備えた30mlのナスフラスコに、3-メトキシプロピオン酸(3-MPA;富士フィルム和光純薬(株)製)3.75g(36mmol)を仕込み、撹拌子を回転数500rpmで回しながら室温で塩化オキサニル(東京化成工業株式会社(株)製)6.85g(54mmol)を20分かけて滴下した。その後、オイルバスで30mlのナスフラスコ内の温度を80℃に上げて2時間、反応させた。得られた反応液を含むナスフラスコ内の温度をオイルバスで95℃に上げて常圧蒸留し、未反応の塩化オキサニル(沸点:63℃)を留去することにより、3-メトキシプロピオン酸クロライド(3-MP-Cl)4.61g(3-MPA仕込み量に対する収率105%)を得た。
 得られた3-MP―Clのアルカリ消費量及び塩素量を化学滴定にて測定したところ、それぞれ0.365g/g(理論アルカリ消費量=0.326g/g)、31.5%(理論塩素量=28.9%)であった。また得られた3-MP―CLのH-NMR(溶媒:CDCl、TMS入)を測定したところ、以下の通りとなり、3-MP-Clであることが帰属された。
 3.10-3.13ppm(t,j=1.96,-CH-CO(Cl)),3.37ppm(s,j=3.37,-O-CH),3.68-3.71ppm(t,j=2.01,-O-CH-).
Example 1
(Synthesis of methoxy group-containing raw material acid chloride)
3-Methoxypropionic acid (3-MPA; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was placed in a 30 ml eggplant flask equipped with a 1.5 mm long rugby ball stirrer, a thermometer, a reflux condenser, and a calcium tube. 3.75 g (36 mmol) was charged, and 6.85 g (54 mmol) of oxanyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise over 20 minutes at room temperature while rotating a stirrer at 500 rpm. Thereafter, the temperature inside the 30 ml eggplant flask was raised to 80° C. in an oil bath, and the reaction was carried out for 2 hours. The temperature in the eggplant flask containing the obtained reaction solution was raised to 95°C in an oil bath and distilled under normal pressure to remove unreacted oxanyl chloride (boiling point: 63°C), thereby producing 3-methoxypropionic acid chloride. 4.61 g (3-MP-Cl) (yield 105% based on the amount of 3-MPA charged) was obtained.
When the alkali consumption and chlorine content of the obtained 3-MP-Cl were measured by chemical titration, they were 0.365 g/g (theoretical alkali consumption = 0.326 g/g) and 31.5% (theoretical chlorine consumption), respectively. amount = 28.9%). Furthermore, when 1 H-NMR (solvent: CDCl 3 , TMS included) of the obtained 3-MP-CL was measured, the following results were obtained, and it was assigned to be 3-MP-Cl.
3.10-3.13 ppm (t, j = 1.96, -CH 2 - CO (Cl)), 3.37 ppm (s, j = 3.37, -O-CH 3 ), 3.68-3 .71ppm (t,j=2.01, -O-CH 2 -).
(メトキシ基含有ラジカル発生剤の合成)
 長さ38mmの三日月羽根をつけたガラス棒、温度計、撹拌機を備えた50mlの三つ口フラスコに、水酸化ナトリウム水溶液(NaOH;富士フィルム和光純薬(株)製を水で10重量%に調整)14.5g(36.3mmol)、60重量%の過酸化水素水溶液(三菱ガス化学(株)製)0.94g(16.5mmol)及びトルエン(富士フィルム和光純薬(株)製)6.19gをそれぞれ仕込み、温度を20℃以下、回転数を400rpmにした状態で約30分攪拌した。液の温度を5±2℃に調整しながら、先ほど合成した3-MP-Cl3.68g(30mmol)を30分かけて滴下した後、さらに60分間、反応させた。得られた反応溶液を50mlの分液漏斗に移し替え、5分静置分離した後の上層のみを残し、そこにあらかじめ0~5℃に調節した3.3重量%の食塩水25gを加えた後、分液漏斗を振とうして反応液を洗浄し、5分静置分離させた。同様にあらかじめ0~5℃に調整した3.3重量%の食塩水25gを用いて同様な洗浄操作を繰り返した。下層の廃液がアルカリ性から中性になったことをpH試験紙で確認した後、静置分離後の上層を取り出し、無水硫酸マグネシウムを用いて系内を脱水し、ろ過することによって、ジ-3-メトキシプロピオニルペルオキシド(3-MPPO)トルエン溶液品5.04gを得た。
 得られた3-MPPOトルエン溶液の活性酸素量及び塩素量を化学滴定にて測定したところ、それぞれ、3.24%(理論活性酸素量=7.76%)及び0.03%であった。
従って理論活性酸素量から求められる純度は41.8%であり、純度と収量から算出される3-MP-Cl仕込み量に対する収率は82%であった。
(Synthesis of methoxy group-containing radical generator)
In a 50 ml three-necked flask equipped with a glass rod with a 38 mm long crescent blade, a thermometer, and a stirrer, add 10% by weight of sodium hydroxide aqueous solution (NaOH; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) with water. ) 14.5 g (36.3 mmol), 60% by weight hydrogen peroxide aqueous solution (manufactured by Mitsubishi Gas Chemical Co., Ltd.) 0.94 g (16.5 mmol) and toluene (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 6.19 g of each was charged and stirred for about 30 minutes at a temperature of 20° C. or less and a rotation speed of 400 rpm. While adjusting the temperature of the liquid to 5±2° C., 3.68 g (30 mmol) of 3-MP-Cl synthesized earlier was added dropwise over 30 minutes, followed by further reaction for 60 minutes. The obtained reaction solution was transferred to a 50 ml separatory funnel, left to stand for 5 minutes, and only the upper layer remained, to which was added 25 g of 3.3% by weight saline solution, which had been adjusted to 0 to 5°C in advance. Thereafter, the reaction solution was washed by shaking the separatory funnel, and the mixture was allowed to stand for 5 minutes to separate. The same washing operation was repeated using 25 g of 3.3% by weight saline solution, which had been adjusted to 0 to 5°C in advance. After confirming with pH test paper that the waste liquid in the lower layer has changed from alkaline to neutral, take out the upper layer after static separation, dehydrate the system using anhydrous magnesium sulfate, and filter it. -Methoxypropionyl peroxide (3-MPPO) 5.04 g of toluene solution was obtained.
The active oxygen content and chlorine content of the obtained 3-MPPO toluene solution were measured by chemical titration and were found to be 3.24% (theoretical active oxygen content = 7.76%) and 0.03%, respectively.
Therefore, the purity determined from the theoretical amount of active oxygen was 41.8%, and the yield calculated from the purity and yield based on the amount of 3-MP-Cl charged was 82%.
 また、得られた3-MPPOトルエン溶液品にトルエンを添加して3-MPPOが0.1mol/Lとなるように希釈し、示差走査熱量測定(DSC)によって分解させることで得られた3-MPPOの10時間半減期温度は、約60℃であった。
 さらに、得られた3-MPPOトルエン溶液品をH-NMR(溶媒:CDCl、TMS入)で測定したところ、以下の通りとなり、3-MPPOであることが帰属された。
 2.69-2.72ppm(t,j=4.01,-CH-CO(O)-),3.37ppm(s,j=6.00,-O-CH),3.70-3.73ppm(t,j=4.03,-O-CH-).
In addition, toluene was added to the obtained 3-MPPO toluene solution to dilute 3-MPPO to 0.1 mol/L, and 3-MPPO was decomposed by differential scanning calorimetry (DSC). The 10 hour half-life temperature of MPPO was approximately 60°C.
Furthermore, when the obtained 3-MPPO toluene solution product was measured by 1 H-NMR (solvent: CDCl 3 with TMS), the following results were obtained, and it was assigned to be 3-MPPO.
2.69-2.72ppm (t, j = 4.01, -CH 2 -CO(O)-), 3.37ppm (s, j = 6.00, -O-CH 3 ), 3.70- 3.73ppm (t,j=4.03, -O-CH 2 -).
実施例2
(メトキシ基含有原料酸クロライドの合成)
 3-MPA3.75g(36mmol)を2-メトキシ酢酸(2-MAA;富士フィルム和光純薬(株)製)3.24g(36mmol)に変更した以外は、実施例1と同様の方法で、2-メトキシ酢酸クロライド(2-MA-Cl)5.76g(2-MAA仕込み量に対する収率100%)を得た。
(メトキシ基含有ラジカル発生剤の合成)
 3-MP-Cl3.68g(30mmol)を2-MA-Cl4.80g(30mmol)に変更した以外は実施例1と同様の方法で、ジ-2-メトキシアセチルペルオキシド(2-MAPO)トルエン溶液品10.14gを得た。得られた2-MAPOトルエン溶液中の10時間半減期温度及び2-MAPO純度は、それぞれ、約54℃及び41.1%と計算された。また2-MA-Cl仕込み量に対する収率は78%であった。
Example 2
(Synthesis of methoxy group-containing raw material acid chloride)
2 was prepared in the same manner as in Example 1, except that 3.75 g (36 mmol) of 3-MPA was changed to 3.24 g (36 mmol) of 2-methoxyacetic acid (2-MAA; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.). -Methoxyacetic acid chloride (2-MA-Cl) 5.76 g (yield 100% based on the amount of 2-MAA charged) was obtained.
(Synthesis of methoxy group-containing radical generator)
A toluene solution product of di-2-methoxyacetyl peroxide (2-MAPO) was prepared in the same manner as in Example 1 except that 3.68 g (30 mmol) of 3-MP-Cl was changed to 4.80 g (30 mmol) of 2-MA-Cl. 10.14g was obtained. The 10-hour half-life temperature and 2-MAPO purity in the resulting 2-MAPO toluene solution were calculated to be approximately 54° C. and 41.1%, respectively. Further, the yield based on the amount of 2-MA-Cl charged was 78%.
実施例3
(メトキシ基含有原料酸クロライドの合成)
 3-MPA3.75g(36mmol)を4-メトキシブタン酸(4-MBA;富士フィルム和光純薬(株)製)4.25g(36mmol)に変更した以外は実施例1と同様の方法で、4-メトキシブタン酸クロライド(4-MB-Cl)6.78g(4-MBA仕込み量に対する収率103%)を得た。
(メトキシ基含有ラジカル発生剤の合成)
 3-MP-Cl3.68g(30mmol)を4-MB-Cl5.64g(30mmol)に変更した以外は実施例1と同様の方法で、4-メトキシブタノイルペルオキシド(4-MBPO)トルエン溶液品14.19gを得た。得られた4-MBPOトルエン溶液品の10時間半減期温度及び4-MBPO純度は、それぞれ、約64℃及び42.1%と計算された。また4-MB-Cl仕込み量に対する収率は85%であった。
Example 3
(Synthesis of methoxy group-containing raw material acid chloride)
In the same manner as in Example 1, except that 3.75 g (36 mmol) of 3-MPA was changed to 4.25 g (36 mmol) of 4-methoxybutanoic acid (4-MBA; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), -Methoxybutanoic acid chloride (4-MB-Cl) 6.78 g (yield 103% based on the amount of 4-MBA charged) was obtained.
(Synthesis of methoxy group-containing radical generator)
4-methoxybutanoyl peroxide (4-MBPO) toluene solution product 14 was prepared in the same manner as in Example 1 except that 3.68 g (30 mmol) of 3-MP-Cl was changed to 5.64 g (30 mmol) of 4-MB-Cl. .19g was obtained. The 10-hour half-life temperature and 4-MBPO purity of the obtained 4-MBPO toluene solution product were calculated to be approximately 64° C. and 42.1%, respectively. Further, the yield based on the amount of 4-MB-Cl charged was 85%.
 次にリビングラジカル重合体前駆体の製造例を以下に示す。 Next, an example of producing a living radical polymer precursor is shown below.
製造例1
 30mlのシュレンク管内に、n-ブチルアクリレート(BA;富士フィルム和光純薬(株)製を常法により蒸留精製したもの)19.23g、2-ヨードイソブチロニトリル(CP-I、東京化成工業(株)製)0.172g、及びテトラブチルアンモニウムヨージド(BNI;東京化成工業(株)製)1.303gを添加し、シュレンク管の内部空間を窒素ガスで置換した。シュレンク管の内容物を110℃で9時間攪拌した後、室温に急冷した。重合溶液をイオン交換水180mlとメタノール720mlの混合溶液に滴下しながら再沈殿を行い、イオン交換水とメタノール混合溶液に沈殿した重合体を60℃で18時間真空乾燥を行うことにより、一方の分子末端にヨウ素を有するBA重合体(以下、PBAという)を得た。本反応は以下の式(i)によって表される。
Figure JPOXMLDOC01-appb-C000008
Manufacturing example 1
In a 30 ml Schlenk tube, 19.23 g of n-butyl acrylate (BA; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., purified by distillation using a conventional method), 2-iodoisobutyronitrile (CP-I, Tokyo Chemical Industry Co., Ltd.) Co., Ltd.) and 1.303 g of tetrabutylammonium iodide (BNI; manufactured by Tokyo Chemical Industry Co., Ltd.) were added, and the internal space of the Schlenk tube was replaced with nitrogen gas. The contents of the Schlenk tube were stirred at 110° C. for 9 hours and then rapidly cooled to room temperature. The polymerization solution was reprecipitated by dropping it into a mixed solution of 180 ml of ion-exchanged water and 720 ml of methanol, and the polymer precipitated in the mixed solution of ion-exchanged water and methanol was vacuum-dried at 60°C for 18 hours. A BA polymer having iodine at the end (hereinafter referred to as PBA) was obtained. This reaction is represented by the following formula (i).
Figure JPOXMLDOC01-appb-C000008
 得られた重合体の数平均分子量は6,340であり、分子量分布(重量平均分子量/数平均分子量、以下、Mw/Mnという)は1.17であった。また得られた重合体を重クロロホルムに溶解し、13C-NMRで分析したところ、CP-I中の4級炭素のカーボン(炭素数:1)の積分値とヨウ素のすぐ隣にあるBA1分子の3級炭素のカーボン(炭素数:1)の積分値が1:0.99であることから、重合体末端に存在するヨウ素は、99.0%導入されていることが確認された。結果を表1に示した。 The number average molecular weight of the obtained polymer was 6,340, and the molecular weight distribution (weight average molecular weight/number average molecular weight, hereinafter referred to as Mw/Mn) was 1.17. In addition, when the obtained polymer was dissolved in deuterated chloroform and analyzed by 13 C-NMR, it was found that the integral value of carbon (carbon number: 1) of the quaternary carbon in CP-I and one BA molecule immediately adjacent to iodine. Since the integral value of carbon (carbon number: 1) of tertiary carbon was 1:0.99, it was confirmed that 99.0% of iodine present at the end of the polymer was introduced. The results are shown in Table 1.
製造例2
 CPIの添加量を0.172gから0.292gに、BNIの添加量を1.303gから2.172gに、重合条件を110℃で9時間から110℃で6時間に変更した以外は、製造例1と同様の方法で一方の分子末端にヨウ素を有するPBAを得た。
 得られた重合体の数平均分子量は3,360であり、Mw/Mnは1.18であった。また、13C-NMRの結果から、重合体末端に存在するヨウ素は、99.2%導入されていることが確認された。結果を表1に示した。
Manufacturing example 2
Production example except that the amount of CPI added was changed from 0.172 g to 0.292 g, the amount of BNI added was changed from 1.303 g to 2.172 g, and the polymerization conditions were changed from 9 hours at 110°C to 6 hours at 110°C. PBA having iodine at one molecule end was obtained in the same manner as in Example 1.
The number average molecular weight of the obtained polymer was 3,360, and Mw/Mn was 1.18. Furthermore, from the results of 13 C-NMR, it was confirmed that 99.2% of iodine present at the polymer terminals was introduced. The results are shown in Table 1.
製造例3
 CPIの添加量を0.172gから0.073gに、BNIの添加量を1.303gから8.688gに、重合条件を110℃で9時間から110℃で18時間に変更した以外は、製造例1と同様の方法で一方の分子末端にヨウ素を有するPBAを得た。
 得られた重合体の数平均分子量は26,000であり、Mw/Mnは1.19であった。また、13C-NMRの結果から、重合体末端に存在するヨウ素は、99.1%導入されていることが確認された。結果を表1に示した。
Manufacturing example 3
Production example except that the amount of CPI added was changed from 0.172g to 0.073g, the amount of BNI added was changed from 1.303g to 8.688g, and the polymerization conditions were changed from 9 hours at 110°C to 18 hours at 110°C. PBA having iodine at one molecule end was obtained in the same manner as in Example 1.
The number average molecular weight of the obtained polymer was 26,000, and Mw/Mn was 1.19. Furthermore, from the results of 13 C-NMR, it was confirmed that 99.1% of iodine present at the ends of the polymer was introduced. The results are shown in Table 1.
製造例4
 ラジカル重合性不飽和単量体として、BAを19.23g用いる代わりに、2-メトキシエチルアクリレート(MEA;東京化成工業(株)製を常法により蒸留精製したもの)を19.53g用い、重合条件を110℃で6時間から110℃で10時間に変更した以外は、製造例2と同様の方法で一方の分子末端にヨウ素を有するPMEAを得た。
 得られた重合体の数平均分子量は4,910であり、Mw/Mnは1.12であった。また、13C-NMRの結果から、重合体末端に存在するヨウ素は、99.6%導入されていることが確認された。結果を表1に示した。
Production example 4
Instead of using 19.23 g of BA as a radically polymerizable unsaturated monomer, 19.53 g of 2-methoxyethyl acrylate (MEA; manufactured by Tokyo Kasei Kogyo Co., Ltd., purified by distillation using a conventional method) was used for polymerization. PMEA having iodine at one molecular end was obtained in the same manner as in Production Example 2, except that the conditions were changed from 110°C for 6 hours to 110°C for 10 hours.
The number average molecular weight of the obtained polymer was 4,910, and Mw/Mn was 1.12. Furthermore, from the results of 13 C-NMR, it was confirmed that 99.6% of iodine present at the ends of the polymer was introduced. The results are shown in Table 1.
製造例5
 ラジカル重合性不飽和単量体として、BAを19.23g用いる代わりに、スチレン(St;富士フィルム和光純薬(株)製を常法により蒸留精製したもの)を15.63g用い、BNIの添加量を2.172gから0.543gに、重合条件を110℃で6時間から80℃で18時間に変更した以外は、製造例2と同様の方法で一方の分子末端にヨウ素を有するPStを得た。
 得られた重合体の数平均分子量は6,060であり、Mw/Mnは1.21であった。また、13C-NMRの結果から、重合体末端に存在するヨウ素は、98.1%導入されていることが確認された。結果を表1に示した。
Manufacturing example 5
Instead of using 19.23 g of BA as a radically polymerizable unsaturated monomer, 15.63 g of styrene (St; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., purified by distillation by a conventional method) was used, and BNI was added. PSt having iodine at one molecule end was obtained in the same manner as Production Example 2, except that the amount was changed from 2.172 g to 0.543 g and the polymerization conditions were changed from 110 °C for 6 hours to 80 °C for 18 hours. Ta.
The number average molecular weight of the obtained polymer was 6,060, and Mw/Mn was 1.21. Furthermore, from the results of 13 C-NMR, it was confirmed that 98.1% of iodine present at the ends of the polymer was introduced. The results are shown in Table 1.
製造例6
 ラジカル重合性不飽和単量体として、BAを19.23g用いる代わりに、メチルメタクリレート(MMA;富士フィルム和光純薬(株)製を常法により蒸留精製したもの)を15.02g用い、BNIの添加量を2.172gから0.543gに、重合条件を110℃で6時間から70℃で3時間に変更した以外は、製造例2と同様の方法で一方の分子末端にヨウ素を有するPMMAを得た。
 得られた重合体の数平均分子量は6,600であり、Mw/Mnは1.19であった。また、13C-NMRの結果から、重合体末端に存在するヨウ素は、98.4%導入されていることが確認された。結果を表1に示した。
Manufacturing example 6
Instead of using 19.23 g of BA as a radically polymerizable unsaturated monomer, 15.02 g of methyl methacrylate (MMA; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., purified by distillation using a conventional method) was used, and BNI PMMA having iodine at one molecular end was prepared in the same manner as in Production Example 2, except that the amount added was changed from 2.172 g to 0.543 g and the polymerization conditions were changed from 110° C. for 6 hours to 70° C. for 3 hours. Obtained.
The number average molecular weight of the obtained polymer was 6,600, and Mw/Mn was 1.19. Furthermore, from the results of 13 C-NMR, it was confirmed that 98.4% of the iodine present at the ends of the polymer was introduced. The results are shown in Table 1.
製造例7
 有機ヨウ素化合物であるCP-Iを0.073g用いる代わりに、RAFT化剤である2-シアノ-2-プロピルベンゾジチアノエート(シグマアルドリッチジャパン(同)製、以下、CPBDという)を0.083g用い、AIBNを0.812gに、重合条件を110℃で18時間から70℃で1時間に変更した以外は、製造例3と同様の方法で一方の分子末端にフェニルジチオエステル基を有するPBAを得た。
 得られた重合体の数平均分子量は5,500であり、Mw/Mnは1.15であった。また、H-NMRの結果から、重合体末端に存在するフェニルジチオエステルは、98.8%導入されていることが確認された。結果を表1に示した。
Manufacturing example 7
Instead of using 0.073 g of CP-I, which is an organic iodine compound, 0.083 g of 2-cyano-2-propyl benzodithianoate (manufactured by Sigma-Aldrich Japan, hereinafter referred to as CPBD), which is a RAFT agent, was used. PBA having a phenyldithioester group at one molecular end was prepared in the same manner as in Production Example 3, except that 0.812 g of AIBN was used and the polymerization conditions were changed from 110°C for 18 hours to 70°C for 1 hour. Obtained.
The number average molecular weight of the obtained polymer was 5,500, and Mw/Mn was 1.15. Furthermore, from the results of 1 H-NMR, it was confirmed that 98.8% of the phenyl dithioester present at the polymer terminal had been introduced. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 次に上述の製造例で得られた前駆体に対し、特定の官能基含有化合物に由来する末端構造を結合させた実施例について、以下に説明する。 Next, an example in which a terminal structure derived from a specific functional group-containing compound was bonded to the precursor obtained in the above production example will be described below.
 なお、後述する実施例で得られた特定の官能基含有化合物を有する重合体の同定及び純度は、以下の方法に基づいて確認した。 Incidentally, the identity and purity of the polymer having a specific functional group-containing compound obtained in the Examples described below was confirmed based on the following method.
(サンプル調製)
 得られた重合体0.01gにTHF1mlを添加して得られたサンプル溶液、マトリックスであるトランス-2-{3-(4-t-ブチルフェニル)-2-メチル-2-プロペニリデン}マロノナイトレート(東京化成工業(株)製、以下、DCTBという)0.02gにTHF1mlを添加して得られたマトリックス溶液、及び、イオン化剤であるトリフルオロ酢酸ナトリウム(東京化成工業(株)製、以下、NaTFAという)0.001gにTHF1mlを添加して得られたイオン化剤溶液を調製した。2mlサンプル瓶に、マトリックス溶液を100μl、イオン化剤溶液20μl及びサンプル溶液20μlを混合し、サンプル板の上に混合液を1μlスポットし、室温で約5分THFを乾燥させ、サンプルを調製した。
(sample preparation)
A sample solution obtained by adding 1 ml of THF to 0.01 g of the obtained polymer, matrix trans-2-{3-(4-t-butylphenyl)-2-methyl-2-propenylidene}malononitrate (manufactured by Tokyo Kasei Kogyo Co., Ltd., hereinafter referred to as DCTB) and a matrix solution obtained by adding 1 ml of THF to 0.02 g, and an ionizing agent, sodium trifluoroacetate (manufactured by Tokyo Kasei Kogyo Co., Ltd., hereinafter referred to as An ionizing agent solution was prepared by adding 1 ml of THF to 0.001 g of NaTFA. A sample was prepared by mixing 100 μl of the matrix solution, 20 μl of the ionizing agent solution, and 20 μl of the sample solution in a 2 ml sample bottle, spotting 1 μl of the mixed solution onto the sample plate, and drying the THF at room temperature for about 5 minutes.
(重合体末端基の同定)
 日本電子(株)製JMS-S3000 SpiralTOFを用いて、製造例1の前駆体について上記(サンプル調製)に記載の方法に沿って作成したサンプルと、重合体についての上述のサンプルに、50kVのレーザーをそれぞれ照射して得られたMSスペクトルを分析した。前駆体のMSスペクトルでは、前駆体のPBA-I及び前駆体末端のヨウ素が外れたPBA-HのMSスペクトルはほぼ同じ位置に現れるため見分けがつかなかったが、前駆体のNMR測定からPBA-Iが高い純度で存在したため(図1参照)、メインピークはPBA-Iであると予想された。
 一方、サンプルのMSスペクトルではPBA-IとPBA-Hの両方或いはそのいずれか一方が極少量存在した(図2参照)。サンプルの図2に示されたMSスペクトルには、PBA-IとPBA-H由来のスペクトルにあてはまらないメインのスペクトルが存在し、その総分子量が、3-メトキシプロピオニルオキシ基がPBAに付加した分子量とイオン化剤のNa分子量とを加えた総分子量と一致した。従って、3-メトキシプロピオニルオキシ基が、PBA末端に直接結合していることが確認された。
(Identification of polymer terminal groups)
Using JMS-S3000 SpiralTOF manufactured by JEOL Ltd., a 50 kV laser was applied to the sample prepared according to the method described above (sample preparation) for the precursor of Production Example 1 and the above-mentioned sample for the polymer. The MS spectra obtained by each irradiation were analyzed. In the MS spectrum of the precursor, the MS spectra of the precursor PBA-I and PBA-H, in which the iodine at the end of the precursor was removed, appeared at almost the same position and could not be distinguished, but from NMR measurements of the precursor, PBA- The main peak was expected to be PBA-I since I was present in high purity (see Figure 1).
On the other hand, in the MS spectrum of the sample, PBA-I and/or PBA-H were present in extremely small amounts (see FIG. 2). In the MS spectrum shown in Figure 2 of the sample, there is a main spectrum that does not fit the spectra derived from PBA-I and PBA-H, and its total molecular weight is the molecular weight of the 3-methoxypropionyloxy group added to PBA. and the Na molecular weight of the ionizing agent. Therefore, it was confirmed that the 3-methoxypropionyloxy group was directly bonded to the PBA terminal.
(アルコキシ基含有ラジカル発生剤由来の化合物を末端に有する重合体の純度測定)
 サンプル中に存在する、末端にアルコキシ基含有ラジカル発生剤由来の化合物を有する重合体のMSスペクトルの面積とその他のスペクトルの面積を、サンプル中に存在するすべてのMSスペクトルの総面積で除することで、サンプル中のアルコキシ基含有ラジカル発生剤由来の化合物を末端に有する重合体の純度を算出した。
(Purity measurement of a polymer having a compound derived from an alkoxy group-containing radical generator at its terminal)
Divide the area of the MS spectrum of the polymer having a compound derived from an alkoxy group-containing radical generator at the end and the area of other spectra present in the sample by the total area of all MS spectra present in the sample. Then, the purity of the polymer having a compound derived from an alkoxy group-containing radical generator at its terminal in the sample was calculated.
実施例4
 30mlのシュレンク管内に、製造例1で得られた重合体を0.3g、ラジカル発生剤としての3-MPPO(濃度=43.1重量%トルエン溶液)を0.041g、BNIを0.079g及び溶媒としてのトルエン(関東化学(株)製)2.442g(PO純分使用の場合、2.7mlのトルエン使用)を添加し、溶解させた後、シュレンク管の内部空間を窒素ガスで置換した。シュレンク管の内容物をそれぞれ、実施例1では110℃で1時間反応させた。その後、室温に急冷し、未反応のBNIを除去する目的で、3000rpmで5分間遠心分離を行った。エバポレーターを用いて、上澄み液に含まれるトルエンを減圧留去することによって得られた重合体を60℃で1時間真空乾燥を行うことにより、重合体末端のドーマントが脱離し、アルコキシ基含有化合物を有する構造(3-メトキシプロピオニルオキシ基)が結合した重合体を得た。得られた重合体の数平均分子量、Mw/Mn、また得られたアルコキシ基が結合した重合体の純度を算出し、表2に結果を示した。本反応は以下の式(ii)によって表される。
Figure JPOXMLDOC01-appb-C000010
Example 4
In a 30 ml Schlenk tube, 0.3 g of the polymer obtained in Production Example 1, 0.041 g of 3-MPPO (concentration = 43.1% by weight toluene solution) as a radical generator, 0.079 g of BNI, and After adding and dissolving 2.442 g of toluene (manufactured by Kanto Kagaku Co., Ltd.) as a solvent (2.7 ml of toluene was used when using pure PO), the internal space of the Schlenk tube was replaced with nitrogen gas. . In Example 1, the contents of each Schlenk tube were reacted at 110° C. for 1 hour. Thereafter, the mixture was rapidly cooled to room temperature, and centrifuged at 3000 rpm for 5 minutes to remove unreacted BNI. By vacuum drying the polymer obtained by distilling off toluene contained in the supernatant under reduced pressure using an evaporator at 60°C for 1 hour, the dormant at the terminal of the polymer is removed and the alkoxy group-containing compound is released. A polymer having a structure (3-methoxypropionyloxy group) bonded thereto was obtained. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2. This reaction is represented by the following formula (ii).
Figure JPOXMLDOC01-appb-C000010
実施例5~6
 実施例4においては、3-MPPOを前駆体のヨウ素末端1モルに対して2モル添加していたところ、それぞれ、実施例5では0.5モル添加、実施例6では10モル添加に変更する以外は、実施例4と同様の方法で重合体を製造した。この結果、前駆体末端のドーマントが脱離し、アルコキシ基含有化合物を有する構造(3-メトキシプロピオニルオキシ基)が結合した重合体を得た。得られた重合体の数平均分子量、Mw/Mn、また得られたアルコキシ基が結合した重合体の純度を算出し、表2に結果を示した。
Examples 5-6
In Example 4, 2 mol of 3-MPPO was added per 1 mol of iodine terminal in the precursor, but in Example 5, 0.5 mol was added, and in Example 6, 10 mol was added. Except for this, a polymer was produced in the same manner as in Example 4. As a result, the dormant at the terminal end of the precursor was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
実施例7
 実施例4においては、BNIを前駆体のヨウ素末端1モルに対して2モル添加していたところ、1モル添加に変更する以外は、実施例4と同様の方法で重合体を製造した。この結果、前駆体末端のドーマントが脱離し、アルコキシ基含有化合物を有する構造(3-メトキシプロピオニルオキシ基)が結合した重合体を得た。得られた重合体の数平均分子量、Mw/Mn、また得られたアルコキシ基が結合した重合体の純度を算出し、表2に結果を示した。
Example 7
In Example 4, a polymer was produced in the same manner as in Example 4 except that 2 mol of BNI was added per 1 mol of iodine end of the precursor, but the addition was changed to 1 mol. As a result, the dormant at the terminal end of the precursor was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
実施例8~9
 実施例4における前駆体のMnをそれぞれ、実施例8では3,360g/mol、実施例9では26,000g/molに変更する以外は、実施例4と同様の方法で重合体を製造した。この結果、重合体末端のドーマントが脱離し、アルコキシ基含有化合物を有する構造(3-メトキシプロピオニルオキシ基)が結合した重合体を得た。得られた重合体の数平均分子量、Mw/Mn、また得られたアルコキシ基が結合した重合体の純度を算出し、表2に結果を示した。
Examples 8-9
Polymers were produced in the same manner as in Example 4, except that Mn in the precursor in Example 4 was changed to 3,360 g/mol in Example 8 and 26,000 g/mol in Example 9. As a result, the dormant at the end of the polymer was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
実施例10~11
 実施例4におけるラジカル発生剤をそれぞれ、実施例10では実施例2で得られた2-MAPO、実施例11では実施例3で得られた4-MBPOに変更する以外は、実施例4と同様の方法で重合体を製造した。この結果、重合体末端のドーマントが脱離し、アルコキシ基含有化合物を有する構造(2-メトキシアセトキシオキシ基)が結合した重合体を得た。得られた重合体の数平均分子量、Mw/Mn、また得られたアルコキシ基が結合した重合体の純度を算出し、表2に結果を示した。
Examples 10-11
Same as Example 4 except that the radical generator in Example 4 was changed to 2-MAPO obtained in Example 2 in Example 10 and 4-MBPO obtained in Example 3 in Example 11. The polymer was produced by the method described in the following. As a result, the dormant at the end of the polymer was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (2-methoxyacetoxyoxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
実施例12
 実施例4における前駆体を、製造例4で得られた分子末端にヨウ素を有するPMEAに変更する以外は実施例4と同様の方法で重合体を製造した。この結果、重合体末端のドーマントが脱離し、アルコキシ基含有化合物を有する構造(3-メトキシプロピオニルオキシ基)が結合した重合体を得た。得られた重合体の数平均分子量、Mw/Mn、また得られたアルコキシ基が結合した重合体の純度を算出し、表2に結果を示した。
Example 12
A polymer was produced in the same manner as in Example 4, except that the precursor in Example 4 was changed to PMEA having iodine at the molecular terminal obtained in Production Example 4. As a result, the dormant at the end of the polymer was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
実施例13
 実施例4においては、BNIを前駆体のヨウ素末端1モルに対して2モル添加していたところ、2モル添加にし、反応温度を110℃から130℃にする以外は、実施例4と同様の方法で重合体を製造した。この結果、前駆体末端のドーマントが脱離し、アルコキシ基含有化合物を有する構造(3-メトキシプロピオニルオキシ基)が結合した重合体を得た。得られた重合体の数平均分子量、Mw/Mn、また得られたアルコキシ基が結合した重合体の純度を算出し、表2に結果を示した。
Example 13
In Example 4, 2 moles of BNI was added per mole of iodine terminal in the precursor, but the same procedure as in Example 4 was carried out except that the addition was increased to 2 moles and the reaction temperature was changed from 110°C to 130°C. The polymer was prepared by the method. As a result, the dormant at the terminal end of the precursor was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
実施例14~15
 実施例13に準じて実施例14及び15の重合体を得た。すなわち、実施例14では、前駆体を製造例5で得られた分子末端にヨウ素を有するPStとし、反応条件を80℃で4時間に変更した他、実施例4と同様の方法で重合体を製造した。実施例15では、前駆体を製造例6で得られた分子末端にヨウ素を有するPMMAとし、反応条件を70℃で8時間に変更する以外は、実施例13と同様の方法で重合体を製造した。この結果、前駆体末端のドーマントが脱離し、アルコキシ基含有化合物を有する構造(3-メトキシプロピオニルオキシ基)が結合した重合体を得た。得られた重合体の数平均分子量、Mw/Mn、また得られたアルコキシ基が結合した重合体の純度を算出し、表2に結果を示した。
Examples 14-15
Polymers of Examples 14 and 15 were obtained according to Example 13. That is, in Example 14, the polymer was produced in the same manner as in Example 4, except that the precursor was PSt having iodine at the molecular end obtained in Production Example 5, and the reaction conditions were changed to 80°C for 4 hours. Manufactured. In Example 15, the polymer was produced in the same manner as in Example 13, except that the precursor was PMMA having iodine at the molecular end obtained in Production Example 6, and the reaction conditions were changed to 70°C for 8 hours. did. As a result, the dormant at the terminal end of the precursor was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
実施例16
 実施例4におけるトルエンの添加量2.442gを2.306gに変更し、さらに、実施例4にて用いた3-MPPO(濃度=43.1重量%トルエン溶液)0.041gの代わりに、トルエン0.136gで濃度10重量%に調整した3-MPPOのトルエン溶液品0.177gを約30分かけて滴下した以外は、実施例4と同様の方法で重合体を製造した。この結果、前駆体末端のドーマントが脱離し、アルコキシ基含有化合物を有する構造(3-メトキシプロピオニルオキシ基)が結合した重合体を得た。得られた重合体の数平均分子量、Mw/Mn、また得られたアルコキシ基が結合した重合体の純度を算出し、表2に結果を示した。
Example 16
The amount of toluene added in Example 4 was changed from 2.442 g to 2.306 g, and in place of 0.041 g of 3-MPPO (concentration = 43.1% by weight toluene solution) used in Example 4, toluene was added. A polymer was produced in the same manner as in Example 4, except that 0.177 g of a toluene solution of 3-MPPO adjusted to a concentration of 10% by weight was added dropwise over about 30 minutes. As a result, the dormant at the terminal end of the precursor was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
比較例
 前駆体を製造するリビングラジカル重合法としてRAFT重合法を採用し、特定官能基非含有化合物を有するラジカル発生剤である2,2’-アゾビス(イソブチロニトリル)(AIBN;富士フィルム和光純薬(株)製)を用いる以外は、実施例4と同様の方法で重合体を製造した。この結果、前駆体末端のドーマントが脱離し、アルコキシ基含有化合物を有する構造(3-メトキシプロピオニルオキシ基)が結合した重合体を得た。得られた重合体の数平均分子量、Mw/Mn、また得られたアルコキシ基が結合した重合体の純度を算出し、表2に結果を示した。
Comparative Example The RAFT polymerization method was adopted as a living radical polymerization method to produce a precursor, and 2,2'-azobis(isobutyronitrile) (AIBN; Fujifilm Wa A polymer was produced in the same manner as in Example 4, except that Hikari Junyaku Co., Ltd.) was used. As a result, the dormant at the terminal end of the precursor was removed, yielding a polymer to which a structure having an alkoxy group-containing compound (3-methoxypropionyloxy group) was bonded. The number average molecular weight, Mw/Mn, and purity of the obtained alkoxy group-bonded polymer were calculated, and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表2の結果より、本発明におけるアルコキシ含有ラジカル発生剤、重合体末端のドーマント側にアルコキシ基含有化合物を有する構造が導入されたリビングラジカル重合体、すなわち、脱離したドーマントに代わってアルコキシ基含有化合物が結合されたリビングラジカル重合体は、分子量分布が狭く純度が高いことがわかる。また、本発明の製造方法によれば、前駆体の末端のドーマントに特定の官能基含有化合物を有するラジカル重合開始剤を反応させることによって、分子量分布が狭く、純度が高いリビングラジカル重合体を得ることができる。 From the results in Table 2, it is clear that the alkoxy-containing radical generator of the present invention is a living radical polymer in which a structure having an alkoxy group-containing compound is introduced on the dormant side of the polymer terminal, that is, the alkoxy group-containing compound replaces the eliminated dormant. It can be seen that the living radical polymer to which the compound is bonded has a narrow molecular weight distribution and high purity. Furthermore, according to the production method of the present invention, a living radical polymer with a narrow molecular weight distribution and high purity is obtained by reacting a radical polymerization initiator having a specific functional group-containing compound with the terminal dormant of the precursor. be able to.

Claims (17)

  1.  下記式(1)で表されるアルコキシ基含有ラジカル発生剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
     R及びR’は、直鎖又は分岐のC1~5のアルキル基であり、
     R及びR’は、直鎖又は分岐のC1~10のアルキレン基である。)
    An alkoxy group-containing radical generator represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1),
    R 1 and R 1 ' are linear or branched C 1-5 alkyl groups,
    R 2 and R 2 ' are linear or branched C 1-10 alkylene groups. )
  2.  R及びR’は、直鎖又は分岐のC1~3のアルキル基であり、R及びR’は、直鎖又は分岐のC1~5のアルキレン基である、請求項1に記載のアルコキシ基含有ラジカル発生剤。 According to claim 1, R 1 and R 1 ' are linear or branched C 1-3 alkyl groups, and R 2 and R 2 ' are linear or branched C 1-5 alkylene groups. The alkoxy group-containing radical generator described above.
  3.  R及び/又はR’がメチル基である、請求項2に記載のアルコキシ基含有ラジカル発生剤。 The alkoxy group-containing radical generator according to claim 2, wherein R 1 and/or R 1 ' is a methyl group.
  4.  R及び/又はR’が、メチレン基、エチレン基又はプロピレン基である、請求項2に記載のアルコキシ基含有ラジカル発生剤。 The alkoxy group-containing radical generator according to claim 2, wherein R 2 and/or R 2 ' are a methylene group, an ethylene group, or a propylene group.
  5.  少なくともいずれかの末端において、下記式(2)で表される末端官能基構造を有するラジカル重合体。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは、直鎖又は分岐のC1~5のアルキル基であり、
     Rは、直鎖又は分岐のC1~10のアルキレン基であり、
     *は前記ラジカル重合体の主鎖との連結部位である。)
    A radical polymer having a terminal functional group structure represented by the following formula (2) at least at either terminal.
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), R 1 is a linear or branched C 1-5 alkyl group,
    R 2 is a linear or branched C 1-10 alkylene group,
    * is a connection site with the main chain of the radical polymer. )
  6.  リビングラジカル重合体である、請求項5に記載のラジカル重合体。 The radical polymer according to claim 5, which is a living radical polymer.
  7.  前記ラジカル重合体の片末端又は主鎖において重合開始剤由来の有機化合物部位を含む、請求項5に記載のラジカル重合体。 The radical polymer according to claim 5, which contains an organic compound moiety derived from a polymerization initiator at one end or main chain of the radical polymer.
  8.  有機ヨウ素化合物に由来する前記有機化合物部位を含む、請求項7に記載のラジカル重合体。 The radical polymer according to claim 7, which contains the organic compound moiety derived from an organic iodine compound.
  9.  前記ラジカル重合体の主鎖を構成するラジカル性不飽和単量体がアクリレートを含む、請求項5に記載のラジカル重合体。 The radical polymer according to claim 5, wherein the radically unsaturated monomer constituting the main chain of the radical polymer contains acrylate.
  10.  分子量分布の値が1.0~1.5である、請求項5に記載のラジカル重合体。 The radical polymer according to claim 5, which has a molecular weight distribution value of 1.0 to 1.5.
  11.  請求項5~10のいずれかに記載のラジカル重合体と、前記末端官能基構造を含まない重合体とを含む、ラジカル重合体組成物。 A radical polymer composition comprising the radical polymer according to any one of claims 5 to 10 and a polymer that does not contain the terminal functional group structure.
  12.  請求項5~10のいずれかに記載のラジカル重合体の製造方法であって、
     有機化合物部位とドーマントとを含む重合開始剤と、ラジカル重合性不飽和単量体とを用いてラジカル重合体の前駆体を形成する重合工程と、
     前記前駆体の前記ドーマントに由来するドーマント末端に、請求項1に記載の前記ラジカル発生剤を反応させて、前記ドーマント末端の代わりに前記ラジカル発生剤に由来する末端官能基構造を導入する導入工程とを有する、ラジカル重合体の製造方法。
    A method for producing a radical polymer according to any one of claims 5 to 10, comprising:
    a polymerization step of forming a precursor of a radical polymer using a polymerization initiator containing an organic compound moiety and a dormant and a radically polymerizable unsaturated monomer;
    An introduction step of reacting the radical generator according to claim 1 with the dormant end derived from the dormant of the precursor to introduce a terminal functional group structure originating from the radical generator instead of the dormant end. A method for producing a radical polymer, comprising:
  13.  前記導入工程において、前記ラジカル重合体を製造するための反応温度が、70~130℃である、請求項12に記載のラジカル重合体の製造方法。 The method for producing a radical polymer according to claim 12, wherein in the introduction step, the reaction temperature for producing the radical polymer is 70 to 130°C.
  14.  前記重合工程において、前記ラジカル重合性不飽和単量体100モルに対して、0.1~50モルの前記重合開始剤を用いる、請求項12に記載のラジカル重合体の製造方法。 The method for producing a radical polymer according to claim 12, wherein in the polymerization step, 0.1 to 50 mol of the polymerization initiator is used per 100 mol of the radically polymerizable unsaturated monomer.
  15.  前記導入工程において、前記前駆体の前記ドーマント末端1モルに対して、0.5~30モルの請求項1に記載の前記ラジカル発生剤を用いる、請求項12に記載のラジカル重合体の製造方法。 The method for producing a radical polymer according to claim 12, wherein in the introduction step, 0.5 to 30 mol of the radical generator according to claim 1 is used per 1 mol of the dormant end of the precursor. .
  16.  前記導入工程において、請求項1に記載の前記ラジカル発生剤を滴下して反応系に加える、請求項12に記載のラジカル重合体の製造方法。 The method for producing a radical polymer according to claim 12, wherein in the introduction step, the radical generator according to claim 1 is added dropwise to the reaction system.
  17.  前記導入工程において、請求項1に記載の前記ラジカル発生剤に、さらにヨウ化物イオンとのイオン結合を有する非金属化合物を加える、請求項12に記載のラジカル重合体の製造方法。  The method for producing a radical polymer according to claim 12, wherein in the introduction step, a nonmetallic compound having an ionic bond with an iodide ion is further added to the radical generator according to claim 1.​
PCT/JP2023/024837 2022-07-05 2023-07-04 Alkoxy group-containing radical generator, radical polymer, composition, and method for producing radical polymer WO2024010011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-108518 2022-07-05
JP2022108518A JP2024007206A (en) 2022-07-05 2022-07-05 Alkoxy group-containing radical generator, radical polymer, composition, and method for producing radical polymer

Publications (1)

Publication Number Publication Date
WO2024010011A1 true WO2024010011A1 (en) 2024-01-11

Family

ID=89453456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024837 WO2024010011A1 (en) 2022-07-05 2023-07-04 Alkoxy group-containing radical generator, radical polymer, composition, and method for producing radical polymer

Country Status (2)

Country Link
JP (1) JP2024007206A (en)
WO (1) WO2024010011A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1086405A (en) * 1965-04-15 1967-10-11 Wallace & Tiernan G M B H Diacyl peroxides and the use thereof as polymerisation catalysts
US3728402A (en) * 1968-05-15 1973-04-17 Teknor Apex Co Diacyl peroxides
JP2013227407A (en) * 2012-04-25 2013-11-07 Tosoh Corp Method for removing thiocarbonylthio terminal of vinyl chloride polymer
JP2014111798A (en) * 2008-09-08 2014-06-19 Kyoto Univ Catalyst for living radical polymerization method
JP2022098300A (en) * 2020-12-21 2022-07-01 東洋インキScホールディングス株式会社 Block copolymer, resin composition, stretchable conductor, electronic device, and adhesive film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1086405A (en) * 1965-04-15 1967-10-11 Wallace & Tiernan G M B H Diacyl peroxides and the use thereof as polymerisation catalysts
US3728402A (en) * 1968-05-15 1973-04-17 Teknor Apex Co Diacyl peroxides
JP2014111798A (en) * 2008-09-08 2014-06-19 Kyoto Univ Catalyst for living radical polymerization method
JP2013227407A (en) * 2012-04-25 2013-11-07 Tosoh Corp Method for removing thiocarbonylthio terminal of vinyl chloride polymer
JP2022098300A (en) * 2020-12-21 2022-07-01 東洋インキScホールディングス株式会社 Block copolymer, resin composition, stretchable conductor, electronic device, and adhesive film

Also Published As

Publication number Publication date
JP2024007206A (en) 2024-01-18

Similar Documents

Publication Publication Date Title
Mertoglu et al. New water soluble agents for reversible Addition− Fragmentation chain transfer polymerization and their application in aqueous solutions
Zhang et al. Facile synthesis of hyperbranched and star-shaped polymers by RAFT polymerization based on a polymerizable trithiocarbonate
Matyjaszewski et al. An investigation into the CuX/2, 2 ‘-bipyridine (X= Br or Cl) mediated atom transfer radical polymerization of acrylonitrile
JP5499477B2 (en) Hyperbranched polymer and method for producing the same
Stoffelbach et al. Surfactant-free, controlled/living radical emulsion polymerization in batch conditions using a low molar mass, surface-active reversible addition-fragmentation chain-transfer (RAFT) agent
EP1171496A1 (en) Catalytic processes for the controlled polymerization of free radically (co)polymerizable monomers and functional polymeric systems prepared thereby
JP5268644B2 (en) Hyperbranched polymer and method for producing the same
Mazzolini et al. Thiol-end-functionalized polyethylenes
Rinaldi et al. RAFT copolymerization of methacrylic acid and poly (ethylene glycol) methyl ether methacrylate in the presence of a hydrophobic chain transfer agent in organic solution and in water
US9777082B2 (en) Synthesis of hyperbranched polyacrylates by emulsion polymerizsation of inimers
JP2008247978A (en) Soluble polyfunctional vinylaromatic copolymer and its production method
JP2002532579A (en) Oligomerization, polymerization and copolymerization of substituted and unsubstituted α-methylene-γ-butyrolactone and their products
US20070004889A1 (en) Polymers based on n,n-diallylamine derivatives their production and use
Nguyen et al. Controlled radical polymerization of a trialkylsilyl methacrylate by reversible addition–fragmentation chain transfer polymerization
WO2024010011A1 (en) Alkoxy group-containing radical generator, radical polymer, composition, and method for producing radical polymer
JP2006089747A (en) Free radical polymerization process and polymer obtained by the process
KR101561066B1 (en) Photoacid generator compound, polymer comprising end groups containing the photoacid generator compound, and method of making
Samakande et al. RAFT-mediated polystyrene-clay nanocomposites prepared by making use of initiator-bound MMT clay
EP1637550A2 (en) Catalytic processes for the controlled polymerization of free radically (co) polymerizable monomers and functional polymeric systems prepared thereby
JP2024000913A (en) Living radical polymer and method for manufacturing the same
Yang et al. Self-condensing iodine transfer copolymerization for highly branched polymers using an in situ formed Chain transfer monomer
JP4009700B2 (en) Method for producing radical polymer
WO2004078811A1 (en) Solvent for polymerization reaction and process for producing polymer
Lin et al. Grafting well-defined polymers onto unsaturated PVDF using thiol-ene reactions
WO2021049627A1 (en) Polymer production method and polymerization catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835542

Country of ref document: EP

Kind code of ref document: A1