WO2024009837A1 - Plate for sliding nozzle device, and manufacturing method and manufacturing device for manufacturing same - Google Patents

Plate for sliding nozzle device, and manufacturing method and manufacturing device for manufacturing same Download PDF

Info

Publication number
WO2024009837A1
WO2024009837A1 PCT/JP2023/023719 JP2023023719W WO2024009837A1 WO 2024009837 A1 WO2024009837 A1 WO 2024009837A1 JP 2023023719 W JP2023023719 W JP 2023023719W WO 2024009837 A1 WO2024009837 A1 WO 2024009837A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
thin iron
strip
shaped thin
iron plate
Prior art date
Application number
PCT/JP2023/023719
Other languages
French (fr)
Japanese (ja)
Inventor
新一 福永
祐大 青山
裕之 桃田
Original Assignee
黒崎播磨株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒崎播磨株式会社 filed Critical 黒崎播磨株式会社
Publication of WO2024009837A1 publication Critical patent/WO2024009837A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/28Plates therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/28Plates therefor
    • B22D41/30Manufacturing or repairing thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material

Definitions

  • the present invention relates to a plate for a sliding nozzle device used to control the flow of molten steel discharged from a container such as a ladle or tundish used in a casting device, and a method and apparatus for manufacturing the same.
  • a plate for a sliding nozzle device refers to a plate-like component as an integrated structure that includes a plate body made of a refractory material, a hoop, etc., and is attached to a sliding nozzle device. .
  • a band-shaped metal plate is installed on the outer peripheral side of the plate body made of refractory material to suppress cracks during use and prevent collapse during recovery. It is common to restrain the plate body with a band-shaped metal plate.
  • the band-shaped metal plate installed on the outer peripheral side of the plate body is mainly a relatively thin band-shaped metal plate (hereinafter referred to as ⁇ band-shaped thin iron plate''.
  • the so-called multi-hoop method in which multiple layers are wound to form a multi-layer structure, and the thickness is thicker than the above-mentioned strip-shaped thin iron plate (mostly about 3 mm or more thick), which is shaped into a loop shape to match the shape of the outer peripheral side of the plate body.
  • There is a so-called shrink fitting method also called a hot band method in which a metal plate is heated to expand and then fitted into the plate body.
  • Patent Document 1 states, ⁇ A groove is provided in a part of the circumferential surface of the plate (same as the plate body), and the bent end portion of the steel strip (same as the strip-shaped thin iron plate) is fitted into this groove.
  • a plate for a sliding nozzle has been proposed in which the remainder of the steel strip is tightly wound and fixed around the circumferential side of the plate.
  • Patent Document 1 discloses that when a steel strip (strip-shaped thin iron plate) is stretched around a plate body, the hoop loosens due to insufficient fixation of at least the first layer of steel strip (strip-shaped thin iron plate) to the plate body. This is an attempt to eliminate problems such as tightening and poor tightening.
  • the restraining force on the plate body was still at a level that could not be said to be sufficient, and the above-mentioned problems of the multiple hoop system still remained. For this reason, most of them have recently shifted to the shrink-fitting method.
  • the shape of the outer circumferential side of the plate body is not entirely circular or nearly perfect, but has bent portions, straight lines, or almost straight lines. It has a section or is oval in shape. In such a shape that is not a perfect circle or almost a perfect circle, although the plate body is tightened and restrained by the band-shaped metal plate, the tightening force or restraint force cannot be uniform throughout, and there is has a stronger restraining force than straight lines or gently curved parts.
  • a band-shaped metal plate having a thickness of about 3 mm or more used in the shrink-fitting method its deformability is small, so local stress is generated in the plate body, and the plate body is likely to crack or break.
  • the shrink-fitting method even if the band-shaped metal plate is looped to match the shape of the outer peripheral side of the plate body, the deformation due to thermal expansion/contraction of the band-shaped metal plate does not follow the shape of the outer peripheral side of the plate body. The restraining force on the main body is not uniform.
  • the degree of adhesion and degree of restraint differs depending on the part near the bent part of the plate body, making it impossible to restrain the entire outer peripheral side of the plate body with a uniform force.
  • the behavior of each part of the strip metal plate specifically, the degree of expansion/contraction
  • uneven stress may be applied to the inside of the plate body made of refractory material. This tends to cause cracks and destruction in the plate body.
  • the problem to be solved by the present invention is to provide a sliding nozzle device that can suppress cracks and destruction of the plate body, and can also strengthen the restraining force on the plate body compared to the conventional multiple hoop system.
  • An object of the present invention is to provide a plate for use in the manufacturing process, a method for manufacturing the same, and a manufacturing device for the same.
  • the present inventors closely observed the occurrence of cracks and fractures in various plate bodies during actual operations and analyzed the causes thereof. As a result, it was found that in order to suppress cracks and destruction of the plate body in actual operation, it is important to improve the uniformity of the restraining force on the plate body by the band-shaped metal plate installed on the outer peripheral side of the plate body. Ta. Therefore, the present inventors decided to adopt a multi-hoop method instead of a shrink-fitting method as an installation method for the band-shaped metal plate to be installed on the outer peripheral side surface of the plate body.
  • the multi-hoop method has a weaker restraining force on the plate body than the shrink-fitting method, and that the effect of suppressing cracks/destruction of the plate body is small. Therefore, the present inventors also analyzed in detail the relationship between the occurrence of cracks and fractures in various plate bodies in actual operation and the restraining force on the plate bodies. As a result, in order to suppress cracks and destruction of the plate body in actual operation of the multiple hoop system, it is necessary to It has been found that it is sufficient to set it within a specific range that is larger than that of the hoop method.
  • a holding jig is used to hold the thin iron strip so that it follows the outer peripheral surface of the plate body.
  • the following plate for a sliding nozzle device is provided.
  • a plate for a sliding nozzle device in which a hoop made of a plurality of layers of strip-shaped thin iron plates is installed on the outer peripheral side of a plate body made of a refractory material,
  • a plate for a sliding nozzle device wherein the maximum compressive strain of the inner circumferential surface of the inner hole of the plate body is 200 ⁇ or more and 1500 ⁇ or less, as measured by a method of measuring the strain released when the hoop is cut using a strain gauge.
  • a method for manufacturing a plate for a sliding nozzle device in which a hoop made of a plurality of layers of strip-shaped thin iron plates is installed on the outer peripheral side of a plate body made of a refractory material, the method comprising: a seaming step of seaming the strip-shaped thin iron plate while heating and applying tensile force to the outer peripheral side surface of the plate body; In the seaming step, the band-shaped thin iron plate is tightened by a holding jig that is displaced along the outer circumferential side of the plate body so that the band-shaped thin iron plate follows the outer circumferential side of the plate body at a portion where the thin iron plate begins to contact the outer circumferential side of the plate body.
  • a method of manufacturing a plate for a sliding nozzle device including a process of suppressing a thin iron plate.
  • a manufacturing device for a plate for a sliding nozzle device in which a hoop made of a plurality of layers of strip-shaped thin iron plates is installed on the outer peripheral side of a plate body made of a refractory material, A seaming mechanism is provided on the outer circumferential side of the plate body for seaming the belt-shaped thin iron plate while heating it and applying a tensile force, The seaming mechanism moves the strip-shaped thin iron plate while being displaced along the outer circumferential side of the plate body so that the strip-shaped thin iron plate follows the outer circumferential side of the plate body at a portion where the strip-shaped thin iron plate begins to contact the outer circumferential side of the plate body.
  • a manufacturing device for plates for sliding nozzle devices including a holding jig.
  • the present invention it is possible to suppress cracks and destruction of the plate body in a plate for a sliding nozzle device. Furthermore, the restraint force on the plate body can be made stronger than in the conventional multiple hoop system.
  • FIG. 1 is a diagram illustrating a configuration example of an apparatus for manufacturing a plate for a sliding nozzle device according to the present invention, with the upper stage being a plan view and the lower stage being a front view.
  • FIG. 2 is a schematic diagram showing a state in which the winding start end of a strip-shaped thin iron plate is fixed to the outer circumferential side of a plate body.
  • the schematic diagram which shows an example of the fixing method of the winding start end part of a strip-shaped thin iron plate.
  • the schematic diagram which shows the other example of the fixing method of the winding start end part of a strip-shaped thin iron plate.
  • FIG. 1 is a diagram illustrating a configuration example of an apparatus for manufacturing a plate for a sliding nozzle device according to the present invention, with the upper stage being a plan view and the lower stage being a front view.
  • FIG. 2 is a schematic diagram showing a state in which the winding start end of a strip-shaped thin iron plate is fixed to the outer circumferential side of
  • FIG. 3 is a schematic diagram showing an example of the shape of a recess provided in a part of the outer peripheral side surface of the plate body.
  • FIG. 3 is a schematic diagram showing a seaming process using a presser jig that holds down the strip-shaped thin iron plate so that the strip-shaped thin iron plate follows the outer circumferential surface of the plate body.
  • the schematic diagram which shows the process of winding the strip-shaped thin iron plate of a 2nd layer.
  • the schematic diagram which shows the example of a structure which integrated the hoop and the fixing member.
  • the schematic diagram which shows the measuring method of the maximum compressive strain of the inner peripheral surface of the inner hole of a plate main body.
  • 3 is a graph showing the measurement results of the maximum compressive strain of the inner circumferential surface of the inner hole of the plate body in the plates of Examples, Comparative Examples, and Reference Examples.
  • Graph showing the relationship between heating temperature and maximum compressive strain of a strip-shaped thin iron plate.
  • a graph showing the relationship between the tensile force applied to a strip-shaped thin iron plate and the maximum compressive strain.
  • FIG. 1 shows an example of the configuration of a plate manufacturing apparatus, with the upper diagram showing a plan view and the lower diagram showing a front view.
  • the plate manufacturing apparatus shown in the figure includes a plate holding mechanism 1 that holds a plate main body A1, which is the main body of a plate for a sliding nozzle device (hereinafter simply referred to as "plate”), and a plurality of layers on the outer peripheral side of the plate main body A1.
  • An iron plate holding mechanism 2 that holds the band-shaped thin iron plate B that is wound to form a hoop; and a seaming mechanism that tightens the band-shaped thin iron plate B while heating and applying tensile force to the outer peripheral side of the plate body. 3.
  • the plate holding mechanism 1 includes a mounting table 11 on which the plate main body A1 is placed, and a motor 12 that rotates this mounting table 11 in a horizontal plane.
  • the motor 12 rotates the rotating shaft 111 extending vertically downward from the lower surface of the mounting table 11 around its axis, thereby rotating the mounting table 11 in a horizontal plane.
  • the rotational speed of the motor 12 can be controlled by an inverter, and the number of rotations thereof can also be controlled.
  • fixing jigs 13 are incorporated in the mounting table 11 at multiple locations (10 locations in this embodiment) as fixing means for fixing the plate main body A1 to the mounting table 11. There is. These fixing jigs 13 are built in so that they can move forward and backward relative to the outer peripheral side surface of the plate main body A1, and when fixing the plate main body A1 to the mounting table 11, the tips of these fixing jigs 13 Advance it until it hits the side and clamp it at that position.
  • the tips of these fixing jigs 13 are attached to the plate body A1 so that the tips of these fixing jigs 13 do not get in the way when winding the strip-shaped thin iron plate B around the outer peripheral side of the plate body A1. It abuts against the lower end side of the outer circumferential side (for example, at a height of several mm from the lower end surface of the plate main body A1).
  • the mode of the fixing means for fixing the plate main body A1 to the mounting table 11 is not limited to the fixing jig 13 as in this embodiment, but may be a mode that uses attraction force by a magnet or a vacuum, or a mode that uses the attraction force of a magnet or vacuum, or A fixing jig may be installed in the inner hole A1a of the main body A1 to fix the main body A1.
  • the iron plate holding mechanism 2 includes a holding stand 21 that holds a strip-shaped thin iron plate B wound into a coil, and a rotary shaft 211 extending vertically downward from the lower surface of this holding stand 21 so as to be rotatable around its axis.
  • a bearing part 22 is included.
  • the coiled strip-shaped thin iron plate B held on the holding stand 21 is dispensed by the holding stand 21 rotating within a horizontal plane.
  • the bearing section 22 includes an air brake 221 as a brake mechanism.
  • This air brake 221 applies a braking force to the rotating shaft 211 according to air pressure. As a result, a braking force acts on the rotation of the holding table 21.
  • a tensile force is applied to the strip-shaped thin iron plate B by this braking force.
  • the strength of this braking force can be adjusted by adjusting the air pressure of the air brake 221, and thereby the tensile force applied to the strip-shaped thin iron plate B can be changed.
  • the iron plate holding mechanism 2 can include means for adjusting the vertical position (height) of the strip-shaped thin iron plate B delivered from the holding table 21.
  • the seaming mechanism 3 includes a presser jig 31.
  • the holding jig 31 holds down the strip-shaped thin iron plate B so that the strip-shaped thin iron plate B follows the outer circumferential surface of the plate main body A1 at the portion where the strip-shaped thin iron plate B starts to contact the outer circumferential surface of the plate main body A1.
  • the presser jig 31 is attached such that its intermediate portion is rotatable around the pin 311. Further, a base end portion of the presser jig 31 is connected to a cylinder rod 312a of an air cylinder 312.
  • the presser jig 31 rotates around the pin 311.
  • the holding part 31a at the tip of the holding jig 31 can be displaced so as to follow the outer circumferential side surface of the plate main body A1.
  • the presser part 31a is comprised by the roller which rolls along the outer peripheral side of plate main body A1.
  • the seaming mechanism 3 further includes two pressing jigs 32A and 32B.
  • the two pressing jigs 32A and 32B each touch the vicinity of the winding start end of the strip-shaped thin iron plate B to the plate body A1 when winding the strip-shaped thin iron plate B around the outer peripheral side of the plate body A1. Press it against the outer circumferential side to fix it.
  • the two pressing jigs 32A and 32B are placed at a fixing position where the vicinity of the winding start end of the strip-shaped thin iron plate B is pressed against the outer peripheral side surface of the plate body A1, and at a fixed position where the vicinity of the winding start end of the strip-shaped thin iron plate B is pressed and fixed.
  • the two pressing jigs 32A and 32B are movable in the horizontal and vertical directions, respectively, and by a combination of horizontal and vertical movements, they can be moved to the above-mentioned fixed position and retracted position. ing.
  • the plate manufacturing apparatus includes an induction heating coil 4 as a heating means for heating the strip-shaped thin iron plate B.
  • the induction heating coil 4 heats the strip-shaped thin iron plate B, which moves horizontally from the iron plate holding mechanism 2 toward the plate holding mechanism 1, by induction heating.
  • a radiation thermometer 41 is attached to the induction heating coil 4 as a thermometer for measuring the temperature of the strip-shaped thin iron plate B heated by the induction heating coil 4.
  • the induction heating coil 4 heats the strip-shaped thin iron plate B so that the temperature measured by the radiation thermometer 41 becomes a preset target temperature.
  • the target temperature can be set and changed, and by changing the setting of the target temperature, the heating temperature of the strip-shaped thin iron plate B can be changed.
  • the heating method of the heating means for heating the strip-shaped thin iron plate B is not limited to induction heating, and may also be electrical heating or gas burner heating.
  • the thermometer type is not limited to a radiation thermometer, and other non-contact thermometers such as an infrared thermometer may be used.
  • the winding start end of the strip-shaped thin iron plate B is fixed to a predetermined location on the outer peripheral side surface of the plate main body A1 fixed to the mounting table 11.
  • the plate main body A1 has a recess A1b in a part of its outer circumferential side surface, and the winding start end of the strip-shaped thin iron plate B is fixed to the location where the recess A1b is located.
  • FIG. 3 shows an example of the fixing method.
  • the winding start end of the strip-shaped thin iron plate B is placed so as to cover the recess A1b (FIG. 3(a)), and then the welding machine 5 is used to open the recess from the outside of the winding start end of the strip-shaped thin iron plate B.
  • Penetration welding is performed toward the inside of A1b (Fig. 3(b) to (c)).
  • the molten material of the strip-shaped thin iron plate B enters into the recess A1b and solidifies to become a fixing member A1c, and the winding start end of the strip-shaped thin iron plate B is fixed to this fixing member A1c.
  • FIG. 4 shows another example of a method for fixing the winding start end of the strip-shaped thin iron plate B.
  • a fixing member A1c made of iron or the like is placed in advance in the recess A1b (FIG. 4(a)).
  • the rest is similar to the example shown in FIG. 3, and the winding start end of the strip-shaped thin iron plate B is placed so as to cover the concave portion A1b (FIG. 4(b)), and then the welding machine 5 is used to weld the strip-shaped thin iron plate B.
  • Penetration welding is performed from the outside of the winding start end into the recess A1b (FIGS. 4(c) to (d)).
  • the fixing member A1c in the recess A1b and the winding start end of the strip-shaped thin iron plate B are welded, and the winding start end of the strip-shaped thin iron plate B is fixed to the fixing member A1c.
  • the plate main body A1 has a recess A1b in a part of its outer circumferential side surface, a fixing member A1c in the recess A1b, and a strip-shaped thin iron plate.
  • the winding start end of B is fixed to the fixing member A1c.
  • the means for fixing the winding start end of the strip-shaped thin iron plate B and the fixing member A1c in the recess A1b is not limited to welding, but may also be mechanical means such as screwing or driving, or adhesive.
  • the shape of the recess A1b is determined in the tensile direction of the strip-shaped thin iron plate B (in the direction of the arrow in FIG. ) is preferably a shape including an inner wall surface A1b1 forming an acute angle with respect to the inner wall surface A1b1.
  • the two pressing jigs 32A and 32B are moved to the fixing positions, respectively, as schematically shown in FIG. .
  • the vicinity of the winding start end of the strip-shaped thin iron plate B is pressed and fixed to the outer peripheral side surface of the plate body at two locations (two pressing jigs 32A, 32B).
  • the vicinity of the winding start end of the strip-shaped thin iron plate B is fixed at two places, but it may be fixed at at least one place (at least one of the two pressing jigs 32A and 32B).
  • a seaming process is performed in which the belt-shaped thin iron plate B is tightened while heating and applying tensile force to the outer peripheral side of the plate body A1.
  • the band-shaped thin iron plate B is wound and tightened around the outer peripheral side of the plate body A1.
  • this seaming process is performed so that the strip-shaped thin iron plate B follows the outer circumferential surface of the plate main body A1 at the portion where the strip-shaped thin iron plate B starts to contact the outer circumferential surface of the plate main body A1.
  • the step includes a step of holding down the strip-shaped thin iron plate B with a holding jig 31.
  • a predetermined tensile force is applied to the strip-shaped thin iron plate B by the braking force of the air brake 221 mentioned above, and the strip-shaped thin iron plate B is heated to a predetermined temperature by the above-mentioned induction heating coil 4. has been done.
  • seaming is performed while heating and applying tensile force to the strip-shaped thin iron plate B on the outer circumferential side of the plate body A1.
  • the strip-shaped thin iron plate B is held down by the holding jig 31 so as to follow the outer peripheral side surface of the main body A1.
  • the restraining force on the plate body A1 can be made stronger than in the conventional multiple hoop system.
  • the restraining force on the plate body A1 can be adjusted by changing at least one of the heating temperature of the strip-shaped thin iron plate B, the tensile force applied to the strip-shaped thin iron plate B, and the number of layers of the strip-shaped thin iron plate B.
  • the heating temperature of the strip-shaped thin iron plate B can be changed by changing the setting of the target temperature for heating by the induction heating coil 4, for example, within the range of 200 to 800°C, as described above. can.
  • the tensile force applied to the strip-shaped thin iron plate B can be changed by changing the strength of the braking force of the air brake 221, for example, in the range of 30 to 400 kgf (approximately 0.3 to 4 kN).
  • the number of layers of the strip-shaped thin iron plate B can be changed by changing the rotation speed of the motor 12, that is, the number of turns of the strip-shaped thin iron plate B, and can be changed, for example, within the range of 2 to 10 layers.
  • FIGS. 7(a) to 7(e) when winding the second layer of strip-shaped thin iron plate B near the winding start end of strip-shaped thin iron plate B, two pressing jigs are applied.
  • two layers are formed while pressing and fixing the vicinity of the winding start end of the strip-shaped thin iron plate B to the outer circumferential side of the plate body A1 at at least one place. Wind the strip-shaped thin iron plate B. Note that in FIG.
  • the third layer of the strip thin iron plate B when winding the third layer of the strip thin iron plate B near the winding start end of the second layer strip thin iron plate B, at least one place near the winding start end of the second layer strip thin iron plate B is wound.
  • the third layer of strip-shaped thin iron plate B can be wound while pressing and fixing it against the outer circumferential side of the plate main body A1 using (at least one of the two pressing jigs 32A and 32B). This prevents loosening of the first and second layer thin iron strips B when winding the third layer thin iron strip B near the winding start end of the second layer thin iron strip B. This can contribute to strengthening the restraining force on the plate main body A.
  • the restraining force on the plate body can be made stronger than in the conventional multiple hoop system, as shown in the embodiments described later.
  • the maximum compressive strain on the inner peripheral surface of the inner hole of the plate body can be set to 200 ⁇ or more and 1500 ⁇ or less by measuring the strain released when the hoop is cut using a strain gauge. Cracks and destruction of the plate body can be suppressed. Note that the above-mentioned upper limit value (1500 ⁇ ) of the maximum compressive strain was set in consideration of the actual results of the conventional hot band method, etc.
  • a hoop A2 formed by winding a plurality of layers of strip-shaped thin iron plates B on the outer circumferential side of a plate body A1 is welded, for example, as explained in FIGS. 3 and 4.
  • a hole A2a reaching from the outermost layer of the hoop A2 to the fixing member A1c is provided, and the hoop A2 and the fixing member A1c are inserted into this hole A2a.
  • a structure filled with a material in the example of FIG. 8, a melt of the strip-shaped thin iron plate B
  • the most important technical feature of the manufacturing apparatus and manufacturing method described above is that, as shown in FIG.
  • the purpose is to suppress the strip-shaped thin iron plate B by using the following method. That is, in the manufacturing apparatus and manufacturing method of the present invention, the technical features shown in FIGS. 3 to 5, FIG. 7, and FIG. 8 can be omitted.
  • FIG. 9 shows the shape and dimensions of the plate main body A1 used in these examples, comparative examples, and reference examples.
  • This plate body A1 was made of a refractory material, and the elastic modulus of the refractory material was within the range of 46 to 53 GPa.
  • the material of the strip-shaped thin iron plates used in the Examples and Comparative Examples was general structural rolled steel SS400, and the dimensions were 1 mm thick x 30 mm wide. Furthermore, in the multiple hoop method of the examples and comparative examples, the heating temperature of the strip-shaped thin iron plate was 700° C., and the tensile force was 150 kgf. Further, the number of layers of the strip-shaped thin iron plate was 3 to 6 layers in the examples, and 6 to 8 layers in the comparative examples.
  • the material of the metal plate (HB) used in the reference example of the hot band method was also general structural rolled steel SS400, and the dimensions were 3 to 6 mm thick x 30 mm wide. Further, in the hot band method, the heating temperature of the metal plate (HB) was set at 400 to 600°C.
  • FIG. 10 schematically shows a method for measuring this maximum compressive strain.
  • strain gauges C1 to C4 are evenly pasted at four locations on the sliding surface A1d side of the inner circumferential surface of the inner hole A1a of the plate body A1, and then the hoop A2 is cut, and at this time, the released The strain is measured using strain gauges C1 to C4, and the maximum value is taken as the maximum compressive strain.
  • strain gauges C1 to C4 are “foil strain gauges", and their sizes are such that they can be evenly pasted at four locations on the sliding surface A1d side of the inner peripheral surface of the inner hole A1a. do. Specifically, in the present Examples, Comparative Examples, and Reference Examples, gauges having a gauge length of 5 mm and a gauge width of 1.4 mm were used.
  • FIG. 11 shows the measurement results.
  • one plot is the measurement result of one plate.
  • the maximum compressive strain was less than 200 ⁇ .
  • the maximum compressive strain was 200 ⁇ or more and 1500 ⁇ or less, and a restraining force equivalent to that of the hot band method as a reference example was obtained.
  • the maximum compressive strain was increased as the number of layers of the strip-shaped thin iron plate increased, but in the comparative example, even if the number of layers of the strip-shaped thin iron plate was increased, the maximum compressive strain did not necessarily increase.
  • the reason for this is that in the comparative example, a presser jig was not used during seaming as in the example, so the first and second layers were loosened, and even if layers were stacked on top of them, the binding force was still strong. This is because the maximum compressive strain does not increase as a result. Further, in the reference example, the variation in maximum compressive strain is larger than in the example.
  • variations in the maximum compressive strain are due to variations in the shape and material (modulus of elasticity) of the plate body, and variations in conditions such as heating temperature when installing the hoop. Since there are variations in the dimensions of the hoop itself, there is a large variation in the maximum compressive strain.
  • the uniformity of the restraint force on the plate body is improved compared to the hot band method, and the restraint force can be made stronger than the conventional multiple hoop method. As a result, it can be said that cracking and destruction of the plate body in a plate for a sliding nozzle device can be suppressed.
  • the shape and dimensions of the plate body A1 used in this adjustment example were the same as in the previous example (see FIG. 9), and the elastic modulus of the refractory was also within the same range of 46 to 53 GPa as in the previous example.
  • the number of layers of the strip-shaped thin iron plate was five. Then, in Adjustment Example 1, the heating temperature of the strip-shaped thin iron plate was changed, and in Adjustment Example 2, the tensile force applied to the strip-shaped thin iron plate was varied, and the maximum compressive strain was measured for each.
  • FIGS. 12 and 13 show the measurement results of the maximum compressive strain in Adjustment Example 1 and Adjustment Example 2, respectively. From FIGS. 12 and 13, it can be seen that the maximum compressive strain, that is, the restraining force on the plate body, can be adjusted by changing the heating temperature of the thin iron strip and the tensile force applied to the thin iron strip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Metal Rolling (AREA)

Abstract

The present invention provides: a plate for a sliding nozzle device with which it is possible to inhibit fracturing or destruction of a plate body, and apply a greater restraining force on the plate body than in a conventional multiple hoop method; and a manufacturing method and a manufacturing device for manufacturing the same. In this plate for a sliding nozzle device, in which a hoop obtained by winding a strip-shaped thin iron sheet B in a plurality of layers is installed on the outer peripheral side surface of a plate body A1 made of a refractory, the maximum compressive strain of the inner peripheral surface of an inner hole in the plate body A1, obtained by a method for using a strain gauge to measure the strain released when the hoop is cut, is 200-1500 με inclusive. This plate can be obtained using a manufacturing device provided with a tightening mechanism 3 that includes a pressing jig 31 for holding the strip-shaped thin iron sheet B while being displaced along the outer peripheral side surface of the plate body A1, so that the strip-shaped thin iron sheet B follows the outer peripheral side surface of the plate body A1 at the portion at which the strip-shaped thin iron sheet B comes into contact with the outer peripheral side surface of the plate body A1.

Description

スライディングノズル装置用のプレート並びにその製造方法及び製造装置Plate for sliding nozzle device, its manufacturing method and manufacturing device
 本発明は、鋳造装置に使用される取鍋やタンディシュ等の容器から排出する溶鋼流を制御するために用いるスライディングノズル装置用のプレート並びにその製造方法及び製造装置に関する。
 なお、本発明においてスライディングノズル装置用のプレートとは、耐火物からなるプレート本体とフープ等を含んでスライディングノズル装置に装着される状態にした、一体の構造物としての板状部品のことをいう。
The present invention relates to a plate for a sliding nozzle device used to control the flow of molten steel discharged from a container such as a ladle or tundish used in a casting device, and a method and apparatus for manufacturing the same.
In addition, in the present invention, a plate for a sliding nozzle device refers to a plate-like component as an integrated structure that includes a plate body made of a refractory material, a hoop, etc., and is attached to a sliding nozzle device. .
 スライディングノズル装置用のプレートにおいて、本体部分をなす耐火物からなるプレート本体には、使用時の亀裂の抑制、回収時の崩壊防止等を目的として、外周側面に帯状の金属板を設置し、その帯状の金属板でプレート本体を拘束することが一般的である。
 このプレート本体の外周側面に設置する帯状金属板には主として、比較的厚さが薄い帯状の金属板(以下「帯状薄鉄板」という。多くは厚さ約0.4~0.6mm程度。)を複数層巻回して多層構造とする、いわゆる多重フープ方式と、プレート本体の外周側面形状に合わせてループ形状に整形した、厚さが上記帯状薄鉄板よりも厚い(多くは厚さ約3mm以上)金属板を加熱して膨張させておいてプレート本体に嵌め込む、いわゆる焼嵌め方式(又はホットバンド方式とも称される)がある。
In the plate for a sliding nozzle device, a band-shaped metal plate is installed on the outer peripheral side of the plate body made of refractory material to suppress cracks during use and prevent collapse during recovery. It is common to restrain the plate body with a band-shaped metal plate.
The band-shaped metal plate installed on the outer peripheral side of the plate body is mainly a relatively thin band-shaped metal plate (hereinafter referred to as ``band-shaped thin iron plate''. Most have a thickness of about 0.4 to 0.6 mm.) The so-called multi-hoop method, in which multiple layers are wound to form a multi-layer structure, and the thickness is thicker than the above-mentioned strip-shaped thin iron plate (mostly about 3 mm or more thick), which is shaped into a loop shape to match the shape of the outer peripheral side of the plate body. ) There is a so-called shrink fitting method (also called a hot band method) in which a metal plate is heated to expand and then fitted into the plate body.
 ところが、従来の多重フープ方式は、(1)プレート本体に対する拘束力が焼嵌め方式に比べ弱く(約1/2程度)、(2)プレート本体の亀裂/破壊抑制効果が小さい、(3)プレートの多数回繰り返し使用時にフープが外れてプレート本体が崩壊する、等の問題があった。
 その対策として、例えば特許文献1には「プレート(プレート本体と同意)の周側面上の一部に溝部を設け、この溝部に鋼帯(帯状薄鉄板と同意)の先端折曲部を嵌合し、鋼帯の残部をプレートの周側面周りに緊締巻付け固着したスライディングノズル用プレート」が提案されている。
 この特許文献1は鋼帯(帯状薄鉄板)を引っ張りながらプレート本体に巻き付ける際に、少なくとも1層目の鋼帯(帯状薄鉄板)のプレート本体への固定が不十分なことから生じるフープの緩みや締付不良等を解消しようとするものである。
 しかし、この提案の方法によっても、プレート本体に対する拘束力は十分とはいえないレベルであり、多重フープ方式が抱える上述の問題は依然として残されたままであった。そのため、直近はほとんどが焼嵌め方式に移行されている。
However, with the conventional multiple hoop method, (1) the restraining force on the plate body is weaker than that of the shrink-fitting method (about 1/2), (2) the effect of suppressing cracks/destruction of the plate body is small, and (3) the plate body There were problems such as the hoop coming off and the plate body collapsing when used many times.
As a countermeasure, for example, Patent Document 1 states, ``A groove is provided in a part of the circumferential surface of the plate (same as the plate body), and the bent end portion of the steel strip (same as the strip-shaped thin iron plate) is fitted into this groove. A plate for a sliding nozzle has been proposed in which the remainder of the steel strip is tightly wound and fixed around the circumferential side of the plate.
Patent Document 1 discloses that when a steel strip (strip-shaped thin iron plate) is stretched around a plate body, the hoop loosens due to insufficient fixation of at least the first layer of steel strip (strip-shaped thin iron plate) to the plate body. This is an attempt to eliminate problems such as tightening and poor tightening.
However, even with this proposed method, the restraining force on the plate body was still at a level that could not be said to be sufficient, and the above-mentioned problems of the multiple hoop system still remained. For this reason, most of them have recently shifted to the shrink-fitting method.
 ところで、プレート本体の外周側面形状は、上記特許文献1のほか特許文献2等にも示されているように、全ての外周側面が真円又はほぼ真円ではなく、屈曲部や直線若しくはほぼ直線部分を有し、又は長円形となっている。このような真円又はほぼ真円ではない形状では、プレート本体は帯状金属板により締め付けられ拘束されてはいるものの、全体に均一な締付力すなわち拘束力にはなり得ず、屈曲部付近には直線や緩やかな曲線部分よりも強い拘束力が働く。焼嵌め方式で用いる約3mm以上の厚さの帯状金属板では特に、その変形能が小さいこともあって、プレート本体に局部的な応力を発生させ、プレート本体に亀裂や破壊を生じやすい。
 また、焼嵌め方式では、帯状金属板をプレート本体の外周側面形状に合わせてループ状にしていても、帯状金属板の熱膨張/収縮による変形がプレート本体の外周側面形状に追随しないので、プレート本体に対する拘束力は均一にはならない。プレート本体の外周側面形状に屈曲部を有する場合は特に、プレート本体の屈曲部近傍で部位ごとに密着度や拘束程度が異なってプレート本体の外周側面全体を均一な力で拘束することができず、また焼嵌め時や操業における使用時の温度変化に対する帯状金属板の部位ごとの挙動(具体的には膨張/収縮の程度)が異なるため、耐火物からなるプレート本体内部に不均一な応力を生じてプレート本体に亀裂や破壊を生じやすい。
 更に、焼嵌め方式では、個々のプレート本体の外周側面形状に合致させるループ状金属板の製作やプレート本体への設置作業においては微妙な調整が困難であって、精度が低い、自動化が困難であるか、自動化を実現するためには大がかりな装置等が必要になって、材料・設置作業費等のコストが高くなる、等の問題もある。
By the way, as shown in Patent Document 2 as well as the above-mentioned Patent Document 1, the shape of the outer circumferential side of the plate body is not entirely circular or nearly perfect, but has bent portions, straight lines, or almost straight lines. It has a section or is oval in shape. In such a shape that is not a perfect circle or almost a perfect circle, although the plate body is tightened and restrained by the band-shaped metal plate, the tightening force or restraint force cannot be uniform throughout, and there is has a stronger restraining force than straight lines or gently curved parts. Particularly in a band-shaped metal plate having a thickness of about 3 mm or more used in the shrink-fitting method, its deformability is small, so local stress is generated in the plate body, and the plate body is likely to crack or break.
In addition, in the shrink-fitting method, even if the band-shaped metal plate is looped to match the shape of the outer peripheral side of the plate body, the deformation due to thermal expansion/contraction of the band-shaped metal plate does not follow the shape of the outer peripheral side of the plate body. The restraining force on the main body is not uniform. Especially when the shape of the outer peripheral side of the plate body has a bent part, the degree of adhesion and degree of restraint differs depending on the part near the bent part of the plate body, making it impossible to restrain the entire outer peripheral side of the plate body with a uniform force. In addition, since the behavior of each part of the strip metal plate (specifically, the degree of expansion/contraction) differs in response to temperature changes during shrink fitting and during use during operation, uneven stress may be applied to the inside of the plate body made of refractory material. This tends to cause cracks and destruction in the plate body.
Furthermore, with the shrink-fitting method, it is difficult to make delicate adjustments when manufacturing loop-shaped metal plates that match the outer peripheral side shape of each plate body and installing them on the plate body, resulting in low precision and difficulty in automation. However, there are also problems such as the need for large-scale equipment to achieve automation, which increases the cost of materials, installation work, etc.
実願昭59-173615号(実開昭61-87652号)のマイクロフィルムMicrofilm of Utility Application No. 59-173615 (Utility Application No. 61-87652) 特公昭58-48835号公報Special Publication No. 58-48835
 以上に鑑み本発明が解決しようとする課題は、プレート本体の亀裂や破壊を抑制することができ、併せてプレート本体に対する拘束力を従来の多重フープ方式に比べて強くすることもできるスライディングノズル装置用のプレート並びにその製造方法及び製造装置を提供することにある。 In view of the above, the problem to be solved by the present invention is to provide a sliding nozzle device that can suppress cracks and destruction of the plate body, and can also strengthen the restraining force on the plate body compared to the conventional multiple hoop system. An object of the present invention is to provide a plate for use in the manufacturing process, a method for manufacturing the same, and a manufacturing device for the same.
 上記課題を解決するために本発明者らは、実操業における各種プレート本体の亀裂や破壊の発生状況を詳細に観察しその原因について解析した。その結果、実操業においてプレート本体の亀裂や破壊を抑制するには、プレート本体の外周側面に設置する帯状金属板によるプレート本体に対する拘束力の均一性を向上させることが肝要であるとことがわかった。そこで、本発明者らはプレート本体の外周側面に設置する帯状金属板の設置方式として、焼嵌め方式ではなく多重フープ方式を採用することとした。
 一方、多重フープ方式では、プレート本体に対する拘束力が焼嵌め方式に比べ弱く、プレート本体の亀裂/破壊抑制効果が小さいといった問題が指摘されていた。そこで本発明者らは、実操業における各種プレート本体の亀裂や破壊の発生状況と、プレート本体に対する拘束力との関係についても詳しく解析した。その結果、多重フープ方式の実操業においてプレート本体の亀裂や破壊を抑制するには、プレート本体に対する拘束力の大きさと相関のあるプレート本体の内孔内周面の最大圧縮歪みを、従来の多重フープ方式と比べて大きくした特定の範囲内とすればよいことがわかった。具体的には、プレート本体の内孔内周面の最大圧縮歪みを特定の範囲内とするために、帯状薄鉄板がプレート本体の外周側面に倣うように帯状薄鉄板を抑える押え治具を用いた方法及び装置の検討も含めて、本発明を完成させるに至った。
In order to solve the above problems, the present inventors closely observed the occurrence of cracks and fractures in various plate bodies during actual operations and analyzed the causes thereof. As a result, it was found that in order to suppress cracks and destruction of the plate body in actual operation, it is important to improve the uniformity of the restraining force on the plate body by the band-shaped metal plate installed on the outer peripheral side of the plate body. Ta. Therefore, the present inventors decided to adopt a multi-hoop method instead of a shrink-fitting method as an installation method for the band-shaped metal plate to be installed on the outer peripheral side surface of the plate body.
On the other hand, it has been pointed out that the multi-hoop method has a weaker restraining force on the plate body than the shrink-fitting method, and that the effect of suppressing cracks/destruction of the plate body is small. Therefore, the present inventors also analyzed in detail the relationship between the occurrence of cracks and fractures in various plate bodies in actual operation and the restraining force on the plate bodies. As a result, in order to suppress cracks and destruction of the plate body in actual operation of the multiple hoop system, it is necessary to It has been found that it is sufficient to set it within a specific range that is larger than that of the hoop method. Specifically, in order to keep the maximum compressive strain on the inner peripheral surface of the inner hole of the plate body within a specific range, a holding jig is used to hold the thin iron strip so that it follows the outer peripheral surface of the plate body. The present invention was completed by considering methods and devices that were previously used.
 すなわち、本発明の一観点によれば、次のスライディングノズル装置用のプレートが提供される。
 耐火物からなるプレート本体の外周側面に、帯状薄鉄板を複数層巻回してなるフープが設置されているスライディングノズル装置用のプレートであって、
 前記フープを切断した際に解放される歪みを歪みゲージで測定する方法による、前記プレート本体の内孔内周面の最大圧縮歪みが200με以上1500με以下である、スライディングノズル装置用のプレート。
That is, according to one aspect of the present invention, the following plate for a sliding nozzle device is provided.
A plate for a sliding nozzle device, in which a hoop made of a plurality of layers of strip-shaped thin iron plates is installed on the outer peripheral side of a plate body made of a refractory material,
A plate for a sliding nozzle device, wherein the maximum compressive strain of the inner circumferential surface of the inner hole of the plate body is 200 με or more and 1500 με or less, as measured by a method of measuring the strain released when the hoop is cut using a strain gauge.
 また、本発明の他の観点によれば、次のスライディングノズル装置用のプレートの製造方法が提供される。
 耐火物からなるプレート本体の外周側面に、帯状薄鉄板を複数層巻回してなるフープが設置されているスライディングノズル装置用のプレートの製造方法であって、
 前記プレート本体の外周側面に、帯状薄鉄板を加熱しながらかつ引張力を付加しながら巻締をする巻締工程を含み、
 前記巻締工程は、前記帯状薄鉄板が前記プレート本体の外周側面に接し始める部分において前記プレート本体の外周側面に倣うように、当該プレート本体の外周側面に沿って変位する押え治具によって前記帯状薄鉄板を抑える工程を含む、スライディングノズル装置用のプレートの製造方法。
According to another aspect of the present invention, the following method of manufacturing a plate for a sliding nozzle device is provided.
A method for manufacturing a plate for a sliding nozzle device, in which a hoop made of a plurality of layers of strip-shaped thin iron plates is installed on the outer peripheral side of a plate body made of a refractory material, the method comprising:
a seaming step of seaming the strip-shaped thin iron plate while heating and applying tensile force to the outer peripheral side surface of the plate body;
In the seaming step, the band-shaped thin iron plate is tightened by a holding jig that is displaced along the outer circumferential side of the plate body so that the band-shaped thin iron plate follows the outer circumferential side of the plate body at a portion where the thin iron plate begins to contact the outer circumferential side of the plate body. A method of manufacturing a plate for a sliding nozzle device, including a process of suppressing a thin iron plate.
 また、本発明の更に他の観点によれば、次のスライディングノズル装置用のプレートの製造装置が提供される。
 耐火物からなるプレート本体の外周側面に、帯状薄鉄板を複数層巻回してなるフープが設置されているスライディングノズル装置用のプレートの製造装置であって、
 前記プレート本体の外周側面に、帯状薄鉄板を加熱しながらかつ引張力を付加しながら巻締をする巻締機構を備え、
 前記巻締機構は、前記帯状薄鉄板が前記プレート本体の外周側面に接し始める部分において前記プレート本体の外周側面に倣うように、当該プレート本体の外周側面に沿って変位しながら当該帯状薄鉄板を抑える押え治具を含む、スライディングノズル装置用のプレートの製造装置。
According to still another aspect of the present invention, the following plate manufacturing apparatus for a sliding nozzle device is provided.
A manufacturing device for a plate for a sliding nozzle device, in which a hoop made of a plurality of layers of strip-shaped thin iron plates is installed on the outer peripheral side of a plate body made of a refractory material,
A seaming mechanism is provided on the outer circumferential side of the plate body for seaming the belt-shaped thin iron plate while heating it and applying a tensile force,
The seaming mechanism moves the strip-shaped thin iron plate while being displaced along the outer circumferential side of the plate body so that the strip-shaped thin iron plate follows the outer circumferential side of the plate body at a portion where the strip-shaped thin iron plate begins to contact the outer circumferential side of the plate body. A manufacturing device for plates for sliding nozzle devices, including a holding jig.
 本発明によれば、スライディングノズル装置用のプレートにおいてプレート本体の亀裂や破壊を抑制することができる。また、プレート本体に対する拘束力を従来の多重フープ方式に比べて強くすることもできる。 According to the present invention, it is possible to suppress cracks and destruction of the plate body in a plate for a sliding nozzle device. Furthermore, the restraint force on the plate body can be made stronger than in the conventional multiple hoop system.
本発明に係るスライディングノズル装置用のプレートの製造装置の構成例を示す図で、上段は平面図、下段は正面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating a configuration example of an apparatus for manufacturing a plate for a sliding nozzle device according to the present invention, with the upper stage being a plan view and the lower stage being a front view. プレート本体の外周側面に帯状薄鉄板の巻始端部を固定した状態の模式図。FIG. 2 is a schematic diagram showing a state in which the winding start end of a strip-shaped thin iron plate is fixed to the outer circumferential side of a plate body. 帯状薄鉄板の巻始端部の固定方法の一例を示す模式図。The schematic diagram which shows an example of the fixing method of the winding start end part of a strip-shaped thin iron plate. 帯状薄鉄板の巻始端部の固定方法の他の例を示す模式図。The schematic diagram which shows the other example of the fixing method of the winding start end part of a strip-shaped thin iron plate. プレート本体の外周側面の一部に設ける凹部の形状例を示す模式図。FIG. 3 is a schematic diagram showing an example of the shape of a recess provided in a part of the outer peripheral side surface of the plate body. 帯状薄鉄板がプレート本体の外周側面に倣うように帯状薄鉄板を抑える押え治具を用いた巻締工程を示す模式図。FIG. 3 is a schematic diagram showing a seaming process using a presser jig that holds down the strip-shaped thin iron plate so that the strip-shaped thin iron plate follows the outer circumferential surface of the plate body. 2層目の帯状薄鉄板を巻回する工程を示す模式図。The schematic diagram which shows the process of winding the strip-shaped thin iron plate of a 2nd layer. フープと固定部材とを一体化した構成例を示す模式図。The schematic diagram which shows the example of a structure which integrated the hoop and the fixing member. 実施例、比較例及び参考例に用いたプレート本体の形状及び寸法を示す図。The figure which shows the shape and dimension of the plate main body used for an Example, a comparative example, and a reference example. プレート本体の内孔内周面の最大圧縮歪みの測定方法を示す模式図。The schematic diagram which shows the measuring method of the maximum compressive strain of the inner peripheral surface of the inner hole of a plate main body. 実施例、比較例及び参考例のプレートにおけるプレート本体の内孔内周面の最大圧縮歪みの測定結果を示すグラフ。3 is a graph showing the measurement results of the maximum compressive strain of the inner circumferential surface of the inner hole of the plate body in the plates of Examples, Comparative Examples, and Reference Examples. 帯状薄鉄板の加熱温度と最大圧縮歪みとの関係を示すグラフ。Graph showing the relationship between heating temperature and maximum compressive strain of a strip-shaped thin iron plate. 帯状薄鉄板に付加する引張力と最大圧縮歪みとの関係を示すグラフ。A graph showing the relationship between the tensile force applied to a strip-shaped thin iron plate and the maximum compressive strain.
 まず、本発明に係るスライディングノズル装置用のプレートの製造装置(以下「プレート製造装置」という。)について説明する。図1に、プレート製造装置の構成例を示しており、上段は平面図、下段は正面図である。 First, a manufacturing device for a plate for a sliding nozzle device (hereinafter referred to as "plate manufacturing device") according to the present invention will be described. FIG. 1 shows an example of the configuration of a plate manufacturing apparatus, with the upper diagram showing a plan view and the lower diagram showing a front view.
 同図に示すプレート製造装置は、スライディングノズル装置用のプレート(以下、単に「プレート」という。)の本体であるプレート本体A1を保持するプレート保持機構1と、プレート本体A1の外周側面に複数層巻回されてフープを構成する帯状薄鉄板Bを保持する鉄板保持機構2と、プレート本体の外周側面に、帯状薄鉄板Bを加熱しながらかつ引張力を付加しながら巻締をする巻締機構3とを備えている。 The plate manufacturing apparatus shown in the figure includes a plate holding mechanism 1 that holds a plate main body A1, which is the main body of a plate for a sliding nozzle device (hereinafter simply referred to as "plate"), and a plurality of layers on the outer peripheral side of the plate main body A1. An iron plate holding mechanism 2 that holds the band-shaped thin iron plate B that is wound to form a hoop; and a seaming mechanism that tightens the band-shaped thin iron plate B while heating and applying tensile force to the outer peripheral side of the plate body. 3.
 プレート保持機構1は、プレート本体A1を載置する載置台11と、この載置台11を水平面内で回転させるモーター12とを含む。具体的にはモーター12が、載置台11の下面から鉛直下方に伸びている回転軸111をその軸芯周りに回転させることで、載置台11が水平面内で回転する。本実施形態においてモーター12は、インバーターによる回転速度の制御が可能であり、またその回転数の制御も可能である。 The plate holding mechanism 1 includes a mounting table 11 on which the plate main body A1 is placed, and a motor 12 that rotates this mounting table 11 in a horizontal plane. Specifically, the motor 12 rotates the rotating shaft 111 extending vertically downward from the lower surface of the mounting table 11 around its axis, thereby rotating the mounting table 11 in a horizontal plane. In this embodiment, the rotational speed of the motor 12 can be controlled by an inverter, and the number of rotations thereof can also be controlled.
 図1の上段に表れているように載置台11には、プレート本体A1を載置台11に固定するための固定手段として固定治具13が複数箇所(本実施形態では10箇所)に組み込まれている。これら固定治具13はプレート本体A1の外周側面に対して進退可能に組み込まれており、プレート本体A1を載置台11に固定する際には、これら固定治具13の先端がプレート本体A1の外周側面に突き当たる位置まで前進させてその位置でクランプする。なお、本実施形態では、これら固定治具13の先端がプレート本体A1の外周側面に帯状薄鉄板Bを巻回する際に邪魔にならないように、これら固定治具13の先端はプレート本体A1の外周側面の下端側(例えばプレート本体A1の下端面から数mmの高さ位置)に突き当たるようにしている。
 なお、プレート本体A1を載置台11に固定するための固定手段の態様としては、本実施形態のような固定治具13には限定されず、磁石や真空による吸着力を利用する態様や、プレート本体A1の内孔A1a内に固定治具を装着して固定する態様などとすることができる。
As shown in the upper part of FIG. 1, fixing jigs 13 are incorporated in the mounting table 11 at multiple locations (10 locations in this embodiment) as fixing means for fixing the plate main body A1 to the mounting table 11. There is. These fixing jigs 13 are built in so that they can move forward and backward relative to the outer peripheral side surface of the plate main body A1, and when fixing the plate main body A1 to the mounting table 11, the tips of these fixing jigs 13 Advance it until it hits the side and clamp it at that position. In addition, in this embodiment, the tips of these fixing jigs 13 are attached to the plate body A1 so that the tips of these fixing jigs 13 do not get in the way when winding the strip-shaped thin iron plate B around the outer peripheral side of the plate body A1. It abuts against the lower end side of the outer circumferential side (for example, at a height of several mm from the lower end surface of the plate main body A1).
Note that the mode of the fixing means for fixing the plate main body A1 to the mounting table 11 is not limited to the fixing jig 13 as in this embodiment, but may be a mode that uses attraction force by a magnet or a vacuum, or a mode that uses the attraction force of a magnet or vacuum, or A fixing jig may be installed in the inner hole A1a of the main body A1 to fix the main body A1.
 鉄板保持機構2は、コイル状に巻かれた帯状薄鉄板Bを保持する保持台21と、この保持台21の下面から鉛直下方に伸びている回転軸211をその軸芯周りに回転可能に支持する軸受部22とを含む。保持台21に保持されているコイル状の帯状薄鉄板Bは、保持台21が水平面内で回転することで払い出される。実際には、帯状薄鉄板Bをプレート本体A1の外周側面に巻回する際に帯状薄鉄板Bが引っ張られることにより保持台21が回転し、それに伴い帯状薄鉄板Bが払い出される。
 本実施形態において軸受部22はブレーキ機構としてエアブレーキ221を含んでいる。このエアブレーキ221は、回転軸211に対してエア圧に応じたブレーキ力を作用させる。その結果、保持台21の回転にブレーキ力が作用する。本実施形態では、このブレーキ力により帯状薄鉄板Bに対して引張力を付加する。そしてこのブレーキ力の強弱はエアブレーキ221のエア圧の高低により調整可能であり、これにより帯状薄鉄板Bに付加する引張力が変更可能である。
 なお、図示していないが、鉄板保持機構2は保持台21から払い出された帯状薄鉄板Bの鉛直方向の位置(高さ)を調整する手段を含むことができる。
The iron plate holding mechanism 2 includes a holding stand 21 that holds a strip-shaped thin iron plate B wound into a coil, and a rotary shaft 211 extending vertically downward from the lower surface of this holding stand 21 so as to be rotatable around its axis. A bearing part 22 is included. The coiled strip-shaped thin iron plate B held on the holding stand 21 is dispensed by the holding stand 21 rotating within a horizontal plane. Actually, when the strip-shaped thin iron plate B is wound around the outer circumferential side of the plate main body A1, the holding table 21 is rotated by pulling the strip-shaped thin iron plate B, and the strip-shaped thin iron plate B is accordingly discharged.
In this embodiment, the bearing section 22 includes an air brake 221 as a brake mechanism. This air brake 221 applies a braking force to the rotating shaft 211 according to air pressure. As a result, a braking force acts on the rotation of the holding table 21. In this embodiment, a tensile force is applied to the strip-shaped thin iron plate B by this braking force. The strength of this braking force can be adjusted by adjusting the air pressure of the air brake 221, and thereby the tensile force applied to the strip-shaped thin iron plate B can be changed.
Although not shown, the iron plate holding mechanism 2 can include means for adjusting the vertical position (height) of the strip-shaped thin iron plate B delivered from the holding table 21.
 巻締機構3は押え治具31を含む。詳細は後述するが押え治具31は、帯状薄鉄板Bがプレート本体A1の外周側面に接し始める部分において、帯状薄鉄板Bがプレート本体A1の外周側面に倣うように帯状薄鉄板Bを抑える。本実施形態において押え治具31は、その中間部がピン311周りに回転可能に取り付けられている。また、押え治具31の基端部は、エアシリンダー312のシリンダーロッド312aに接続されている。すなわちエアシリンダー312のシリンダーロッド312aが進退することにより、押え治具31がピン311周りに回転する。これにより、押え治具31の先端の押え部31aが、プレート本体A1の外周側面に倣うように変位可能となっている。なお、本実施形態において押え部31aは、プレート本体A1の外周側面に沿って転動するローラーによって構成されている。 The seaming mechanism 3 includes a presser jig 31. Although the details will be described later, the holding jig 31 holds down the strip-shaped thin iron plate B so that the strip-shaped thin iron plate B follows the outer circumferential surface of the plate main body A1 at the portion where the strip-shaped thin iron plate B starts to contact the outer circumferential surface of the plate main body A1. In this embodiment, the presser jig 31 is attached such that its intermediate portion is rotatable around the pin 311. Further, a base end portion of the presser jig 31 is connected to a cylinder rod 312a of an air cylinder 312. That is, as the cylinder rod 312a of the air cylinder 312 moves back and forth, the presser jig 31 rotates around the pin 311. Thereby, the holding part 31a at the tip of the holding jig 31 can be displaced so as to follow the outer circumferential side surface of the plate main body A1. In addition, in this embodiment, the presser part 31a is comprised by the roller which rolls along the outer peripheral side of plate main body A1.
 本実施形態において巻締機構3は、2つの押圧治具32A,32Bを更に含む。詳細は後述するが、2つの押圧治具32A,32Bはそれぞれ、帯状薄鉄板Bをプレート本体A1の外周側面に巻回する際に、その帯状薄鉄板Bの巻始端部近傍をプレート本体A1の外周側面に押圧して固定する。また、2つの押圧治具32A,32Bはそれぞれ、帯状薄鉄板Bの巻始端部近傍をプレート本体A1の外周側面に押圧して固定する固定位置と、帯状薄鉄板Bの巻始端部近傍上に2層目の帯状薄鉄板を巻回する際に、その2層目の帯状薄鉄板の巻回の障害とならない退避位置とに移動可能である。本実施形態において2つの押圧治具32A,32Bはそれぞれ、水平方向及び鉛直方向に移動可能であり、この水平方向及び鉛直方向の移動の組合せにより上述の固定位置と退避位置とに移動可能となっている。 In this embodiment, the seaming mechanism 3 further includes two pressing jigs 32A and 32B. Although the details will be described later, the two pressing jigs 32A and 32B each touch the vicinity of the winding start end of the strip-shaped thin iron plate B to the plate body A1 when winding the strip-shaped thin iron plate B around the outer peripheral side of the plate body A1. Press it against the outer circumferential side to fix it. In addition, the two pressing jigs 32A and 32B are placed at a fixing position where the vicinity of the winding start end of the strip-shaped thin iron plate B is pressed against the outer peripheral side surface of the plate body A1, and at a fixed position where the vicinity of the winding start end of the strip-shaped thin iron plate B is pressed and fixed. When winding the second layer of strip-shaped thin iron plate, it can be moved to a retracted position that does not interfere with the winding of the second layer of strip-shaped thin iron plate. In this embodiment, the two pressing jigs 32A and 32B are movable in the horizontal and vertical directions, respectively, and by a combination of horizontal and vertical movements, they can be moved to the above-mentioned fixed position and retracted position. ing.
 本実施形態においてプレート製造装置は、帯状薄鉄板Bを加熱する加熱手段として誘導加熱コイル4を備えている。この誘導加熱コイル4は、鉄板保持機構2からプレート保持機構1へ向けて水平方向に移動する帯状薄鉄板Bを誘導加熱により加熱する。また、誘導加熱コイル4には、誘導加熱コイル4により加熱された帯状薄鉄板Bの温度を計測する温度計として放射温度計41が付属している。本実施形態において誘導加熱コイル4は、放射温度計41で計測される温度が予め設定された目標温度となるように帯状薄鉄板Bを加熱する。ここで、上記目標温度は設定変更可能であり、目標温度の設定を変更することにより帯状薄鉄板Bの加熱温度を変更することができる。
 なお、帯状薄鉄板Bを加熱する加熱手段の加熱方式は誘導加熱には限定されず、通電加熱やガスバーナー加熱とすることもできる。また、温度計の方式も放射温度計には限定されず、赤外線温度計などその他の非接触温度計を用いてもよい。
In this embodiment, the plate manufacturing apparatus includes an induction heating coil 4 as a heating means for heating the strip-shaped thin iron plate B. The induction heating coil 4 heats the strip-shaped thin iron plate B, which moves horizontally from the iron plate holding mechanism 2 toward the plate holding mechanism 1, by induction heating. Further, a radiation thermometer 41 is attached to the induction heating coil 4 as a thermometer for measuring the temperature of the strip-shaped thin iron plate B heated by the induction heating coil 4. In this embodiment, the induction heating coil 4 heats the strip-shaped thin iron plate B so that the temperature measured by the radiation thermometer 41 becomes a preset target temperature. Here, the target temperature can be set and changed, and by changing the setting of the target temperature, the heating temperature of the strip-shaped thin iron plate B can be changed.
Note that the heating method of the heating means for heating the strip-shaped thin iron plate B is not limited to induction heating, and may also be electrical heating or gas burner heating. Further, the thermometer type is not limited to a radiation thermometer, and other non-contact thermometers such as an infrared thermometer may be used.
 次に、図1のプレート製造装置を用いたプレートの製造方法について説明する。
 まず、図2に模式的に示しているように、載置台11に固定したプレート本体A1の外周側面の所定箇所に帯状薄鉄板Bの巻始端部を固定する。本実施形態においてプレート本体A1は、その外周側面の一部に凹部A1bを有し、この凹部A1bのある箇所に帯状薄鉄板Bの巻始端部を固定する。
Next, a method for manufacturing a plate using the plate manufacturing apparatus shown in FIG. 1 will be described.
First, as schematically shown in FIG. 2, the winding start end of the strip-shaped thin iron plate B is fixed to a predetermined location on the outer peripheral side surface of the plate main body A1 fixed to the mounting table 11. In this embodiment, the plate main body A1 has a recess A1b in a part of its outer circumferential side surface, and the winding start end of the strip-shaped thin iron plate B is fixed to the location where the recess A1b is located.
 図3に、その固定方法の一例を示している。この例では帯状薄鉄板Bの巻始端部を、凹部A1bを覆うように配置し(図3(a))、その後、溶接機5を使用して帯状薄鉄板Bの巻始端部の外側から凹部A1b内に向けて貫通溶接する(図3(b)~(c))。その結果、帯状薄鉄板Bの溶融物が凹部A1b内に侵入し固化して固定部材A1cとなり、この固定部材A1cに帯状薄鉄板Bの巻始端部が固定される。 FIG. 3 shows an example of the fixing method. In this example, the winding start end of the strip-shaped thin iron plate B is placed so as to cover the recess A1b (FIG. 3(a)), and then the welding machine 5 is used to open the recess from the outside of the winding start end of the strip-shaped thin iron plate B. Penetration welding is performed toward the inside of A1b (Fig. 3(b) to (c)). As a result, the molten material of the strip-shaped thin iron plate B enters into the recess A1b and solidifies to become a fixing member A1c, and the winding start end of the strip-shaped thin iron plate B is fixed to this fixing member A1c.
 図4に、帯状薄鉄板Bの巻始端部の固定方法の他の例を示している。この例では凹部A1b内に予め鉄などからなる固定部材A1cを入れておく(図4(a))。あとは図3の例と同様に、帯状薄鉄板Bの巻始端部を、凹部A1bを覆うように配置し(図4(b))、その後、溶接機5を使用して帯状薄鉄板Bの巻始端部の外側から凹部A1b内に向けて貫通溶接する(図4(c)~(d))。その結果、凹部A1b内の固定部材A1cと帯状薄鉄板Bの巻始端部とが溶接されて、固定部材A1cに帯状薄鉄板Bの巻始端部が固定される。 FIG. 4 shows another example of a method for fixing the winding start end of the strip-shaped thin iron plate B. In this example, a fixing member A1c made of iron or the like is placed in advance in the recess A1b (FIG. 4(a)). The rest is similar to the example shown in FIG. 3, and the winding start end of the strip-shaped thin iron plate B is placed so as to cover the concave portion A1b (FIG. 4(b)), and then the welding machine 5 is used to weld the strip-shaped thin iron plate B. Penetration welding is performed from the outside of the winding start end into the recess A1b (FIGS. 4(c) to (d)). As a result, the fixing member A1c in the recess A1b and the winding start end of the strip-shaped thin iron plate B are welded, and the winding start end of the strip-shaped thin iron plate B is fixed to the fixing member A1c.
 図3及び図4のいずれにおいても得られたプレートの構成としては、プレート本体A1は、その外周側面の一部に凹部A1bを有すると共に、凹部A1b内に固定部材A1cを有し、帯状薄鉄板Bの巻始端部が固定部材A1cに固定されている構成である。このように、帯状薄鉄板Bの巻始端部を凹部A1b内の固定部材A1cに固定することで、プレート本体Aの外周側面に帯状薄鉄板Bを巻回する際に、帯状薄鉄板Bの巻始端部が位置ズレすることを抑制することができ、プレート本体Aに対する拘束力の強化に寄与できる。
 なお、図3及び図4に示している溶接機5は、図1では図示を省略している。
 また、帯状薄鉄板Bの巻始端部と凹部A1b内の固定部材A1cとを固定する手段は溶接には限定されず、ねじ込み、打ち込みといった機械的手段、あるいは接着とすることもできる。
As for the configuration of the plate obtained in both FIGS. 3 and 4, the plate main body A1 has a recess A1b in a part of its outer circumferential side surface, a fixing member A1c in the recess A1b, and a strip-shaped thin iron plate. The winding start end of B is fixed to the fixing member A1c. In this way, by fixing the winding start end of the strip thin iron plate B to the fixing member A1c in the recess A1b, when winding the strip thin iron plate B around the outer peripheral side of the plate body A, the winding of the strip thin iron plate B can be easily fixed. It is possible to prevent the starting end from shifting in position, and it can contribute to strengthening the restraining force on the plate main body A.
Note that the welding machine 5 shown in FIGS. 3 and 4 is not shown in FIG. 1.
Furthermore, the means for fixing the winding start end of the strip-shaped thin iron plate B and the fixing member A1c in the recess A1b is not limited to welding, but may also be mechanical means such as screwing or driving, or adhesive.
 ここで凹部A1bの形状は、帯状薄鉄板Bの巻始端部が位置ズレすることを抑制する観点から、図5に例示しているように帯状薄鉄板Bの引張方向(図5中の矢印方向)に対して鋭角をなす内壁面A1b1を含む形状であることが好ましい。 Here, the shape of the recess A1b is determined in the tensile direction of the strip-shaped thin iron plate B (in the direction of the arrow in FIG. ) is preferably a shape including an inner wall surface A1b1 forming an acute angle with respect to the inner wall surface A1b1.
 帯状薄鉄板Bの巻始端部と凹部A1b内の固定部材A1cとの固定が完了したら、図2に模式的に示しているように、2つの押圧治具32A,32Bをそれぞれ固定位置へ移動させる。これにより、帯状薄鉄板Bの巻始端部近傍が2箇所(2つの押圧治具32A,32B)でプレート本体の外周側面に押圧されて固定される。なお、図2では帯状薄鉄板Bの巻始端部近傍を2箇所で固定するようにしているが、少なくとも1箇所(2つの押圧治具32A,32Bの少なくとも一方)で固定するようにすればよい。このように、帯状薄鉄板Bの巻始端部近傍を少なくとも1箇所でプレート本体A1の外周側面に押圧して固定することで、帯状薄鉄板Bの巻始端部が位置ズレすることを抑制することができ、プレート本体Aに対する拘束力の強化に寄与できる。 Once the winding start end of the strip-shaped thin iron plate B has been fixed to the fixing member A1c in the recess A1b, the two pressing jigs 32A and 32B are moved to the fixing positions, respectively, as schematically shown in FIG. . As a result, the vicinity of the winding start end of the strip-shaped thin iron plate B is pressed and fixed to the outer peripheral side surface of the plate body at two locations (two pressing jigs 32A, 32B). In addition, in FIG. 2, the vicinity of the winding start end of the strip-shaped thin iron plate B is fixed at two places, but it may be fixed at at least one place (at least one of the two pressing jigs 32A and 32B). . In this way, by pressing and fixing the vicinity of the winding start end of the strip-shaped thin iron plate B to the outer circumferential side surface of the plate body A1 at at least one location, it is possible to suppress the positional shift of the winding start end of the strip-shaped thin iron plate B. This can contribute to strengthening the restraining force on the plate body A.
 帯状薄鉄板Bの巻始端部及び巻始端部近傍の固定が完了したら、プレート本体A1の外周側面に、帯状薄鉄板Bを加熱しながらかつ引張力を付加しながら巻締をする巻締工程を行う。具体的には載置台11に固定したプレート本体A1をモーター12の駆動により水平面内で回転させることにより、プレート本体A1の外周側面に帯状薄鉄板Bを巻回及び巻締をする。そしてこの巻締工程は、図6に模式的に示しているように、帯状薄鉄板Bがプレート本体A1の外周側面に接し始める部分において、帯状薄鉄板Bがプレート本体A1の外周側面に倣うように、押え治具31によって帯状薄鉄板Bを抑える工程を含む。
 また、この巻締工程において帯状薄鉄板Bには、上述のエアブレーキ221のブレーキ力により所定の引張力が付加され、またその帯状薄鉄板Bは上述の誘導加熱コイル4により所定の温度に加熱されている。
 このように本実施形態において巻締工程では、プレート本体A1の外周側面に、帯状薄鉄板Bを加熱しながらかつ引張力を付加しながら巻締をし、更にその際、帯状薄鉄板Bがプレート本体A1の外周側面に倣うように押え治具31によって帯状薄鉄板Bを抑える。これにより、プレート本体A1に対する拘束力を従来の多重フープ方式に比べて強くすることができる。
After the fixation of the winding start end and the vicinity of the winding start end of the belt-shaped thin iron plate B is completed, a seaming process is performed in which the belt-shaped thin iron plate B is tightened while heating and applying tensile force to the outer peripheral side of the plate body A1. conduct. Specifically, by rotating the plate body A1 fixed to the mounting table 11 in a horizontal plane by driving the motor 12, the band-shaped thin iron plate B is wound and tightened around the outer peripheral side of the plate body A1. As schematically shown in FIG. 6, this seaming process is performed so that the strip-shaped thin iron plate B follows the outer circumferential surface of the plate main body A1 at the portion where the strip-shaped thin iron plate B starts to contact the outer circumferential surface of the plate main body A1. The step includes a step of holding down the strip-shaped thin iron plate B with a holding jig 31.
In addition, in this seaming step, a predetermined tensile force is applied to the strip-shaped thin iron plate B by the braking force of the air brake 221 mentioned above, and the strip-shaped thin iron plate B is heated to a predetermined temperature by the above-mentioned induction heating coil 4. has been done.
In this way, in the seaming process of the present embodiment, seaming is performed while heating and applying tensile force to the strip-shaped thin iron plate B on the outer circumferential side of the plate body A1. The strip-shaped thin iron plate B is held down by the holding jig 31 so as to follow the outer peripheral side surface of the main body A1. As a result, the restraining force on the plate body A1 can be made stronger than in the conventional multiple hoop system.
 ここでプレート本体A1に対する拘束力は、帯状薄鉄板Bの加熱温度、帯状薄鉄板Bに付加する引張力、及び帯状薄鉄板Bの層数のうち少なくとも1つを変更することにより調整することができる。
 このうち、帯状薄鉄板Bの加熱温度は上述の通り、誘導加熱コイル4による加熱の目標温度の設定を変更することにより変更することができ、例えば200~800℃の範囲内で変更することができる。
 また、帯状薄鉄板Bに付加する引張力は上述の通り、エアブレーキ221のブレーキ力の強さを変更することにより変更することができ、例えば30~400kgf(約0.3~4kN)の範囲内で変更することができる。
 更に帯状薄鉄板Bの層数は、モーター12の回転数すなわち帯状薄鉄板Bの巻回数を変更することにより変更することができ、例えば2~10層の範囲内で変更することができる。
Here, the restraining force on the plate body A1 can be adjusted by changing at least one of the heating temperature of the strip-shaped thin iron plate B, the tensile force applied to the strip-shaped thin iron plate B, and the number of layers of the strip-shaped thin iron plate B. can.
Of these, the heating temperature of the strip-shaped thin iron plate B can be changed by changing the setting of the target temperature for heating by the induction heating coil 4, for example, within the range of 200 to 800°C, as described above. can.
Further, as mentioned above, the tensile force applied to the strip-shaped thin iron plate B can be changed by changing the strength of the braking force of the air brake 221, for example, in the range of 30 to 400 kgf (approximately 0.3 to 4 kN). It can be changed within.
Furthermore, the number of layers of the strip-shaped thin iron plate B can be changed by changing the rotation speed of the motor 12, that is, the number of turns of the strip-shaped thin iron plate B, and can be changed, for example, within the range of 2 to 10 layers.
 次に、2層目の帯状薄鉄板Bを巻回する工程について説明する。図2を参照して説明したように1層目の帯状薄鉄板Bを巻回する際には、その帯状薄鉄板Bの巻始端部近傍を少なくとも1箇所(2つの押圧治具32A,32Bの少なくとも一方)で固定したうえで巻締を行う。その後、1層目の帯状薄鉄板Bの巻始端部近傍上に2層目の帯状薄鉄板Bを巻回する際にも図7に模式的に示しているように、帯状薄鉄板Bの巻始端部近傍を少なくとも1箇所(2つの押圧治具32A,32Bの少なくとも一方)でプレート本体A1の外周側面に押圧して固定しながら2層目の帯状薄鉄板Bを巻回する。具体的には図7(a)~(e)に順次示しているように、帯状薄鉄板Bの巻始端部近傍上に2層目の帯状薄鉄板Bを巻回する際、2つの押圧治具32A,32Bを順次、上述の固定位置と退避位置とに移動させることにより、帯状薄鉄板Bの巻始端部近傍を少なくとも1箇所でプレート本体A1の外周側面に押圧して固定しながら2層目の帯状薄鉄板Bを巻回する。なお、図7では、2つの押圧治具32A,32Bのうち固定位置に移動させた押圧治具のみを図示し、退避位置に移動させた押圧治具を図示しないことにより、固定位置に移動させた押圧治具と退避位置に移動させた押圧治具とを区別している。 Next, the process of winding the second layer of strip-shaped thin iron plate B will be explained. As explained with reference to FIG. 2, when winding the first layer of strip-shaped thin iron plate B, at least one place near the winding start end of the strip-shaped thin iron plate B (two pressing jigs 32A, 32B) is wound. At least one side) is fixed before seaming. Thereafter, when winding the second layer of strip thin iron plate B near the winding start end of the first layer of strip thin iron plate B, as schematically shown in FIG. The second layer of strip-shaped thin iron plate B is wound while pressing and fixing the vicinity of the starting end to the outer peripheral side surface of the plate body A1 at at least one location (at least one of the two pressing jigs 32A, 32B). Specifically, as shown in FIGS. 7(a) to 7(e), when winding the second layer of strip-shaped thin iron plate B near the winding start end of strip-shaped thin iron plate B, two pressing jigs are applied. By sequentially moving the tools 32A and 32B to the above-mentioned fixed position and retracted position, two layers are formed while pressing and fixing the vicinity of the winding start end of the strip-shaped thin iron plate B to the outer circumferential side of the plate body A1 at at least one place. Wind the strip-shaped thin iron plate B. Note that in FIG. 7, of the two pressing jigs 32A and 32B, only the pressing jig that has been moved to the fixed position is shown, and the pressing jig that has been moved to the retracted position is not shown. A distinction is made between the pressing jig that has been moved to the retracted position and the pressing jig that has been moved to the retracted position.
 このように、1層目の帯状薄鉄板Bの巻始端部近傍上に2層目の帯状薄鉄板Bを巻回する際に、1層目の帯状薄鉄板Bの巻始端部近傍を少なくとも1箇所(2つの押圧治具32A,32Bの少なくとも一方)でプレート本体A1の外周側面に押圧して固定しながら2層目の帯状薄鉄板Bを巻回することで、1層目の帯状薄鉄板Bの巻始端部近傍上に2層目の帯状薄鉄板Bを巻回する際に1層目の帯状薄鉄板Bに緩みが生じることを抑制することができ、プレート本体Aに対する拘束力の強化に寄与できる。また、2層目の帯状薄鉄板Bの巻始端部近傍上に3層目の帯状薄鉄板Bを巻回する際にも、2層目の帯状薄鉄板Bの巻始端部近傍を少なくとも1箇所(2つの押圧治具32A,32Bの少なくとも一方)でプレート本体A1の外周側面側に押圧して固定しながら3層目の帯状薄鉄板Bを巻回することができる。これにより、2層目の帯状薄鉄板Bの巻始端部近傍上に3層目の帯状薄鉄板Bを巻回する際に1層目及び2層目の帯状薄鉄板Bに緩みが生じることを抑制することができ、プレート本体Aに対する拘束力の強化に寄与できる。 In this way, when winding the second layer of strip thin iron plate B near the winding start end of the first layer strip thin iron plate B, the vicinity of the winding start end of the first layer strip thin iron plate B is wound at least once. By winding the second layer strip-shaped thin iron plate B while pressing and fixing it to the outer circumferential side of the plate main body A1 at a location (at least one of the two pressing jigs 32A, 32B), the first layer strip-shaped thin iron plate When winding the second layer of strip-shaped thin iron plate B near the winding start end of B, it is possible to suppress loosening of the first layer of strip-shaped thin iron plate B, and strengthen the binding force on the plate body A. can contribute to Also, when winding the third layer of the strip thin iron plate B near the winding start end of the second layer strip thin iron plate B, at least one place near the winding start end of the second layer strip thin iron plate B is wound. The third layer of strip-shaped thin iron plate B can be wound while pressing and fixing it against the outer circumferential side of the plate main body A1 using (at least one of the two pressing jigs 32A and 32B). This prevents loosening of the first and second layer thin iron strips B when winding the third layer thin iron strip B near the winding start end of the second layer thin iron strip B. This can contribute to strengthening the restraining force on the plate main body A.
 このようにして、プレート本体の外周側面に、帯状薄鉄板を複数層巻回してなるフープが設置されたプレートを得ることができる。そしてこのプレートによれば、後述の実施例で示すようにプレート本体に対する拘束力を従来の多重フープ方式に比べて強くすることができる。より具体的には、フープを切断した際に解放される歪みを歪みゲージで測定する方法による、プレート本体の内孔内周面の最大圧縮歪みを200με以上1500με以下とすることができ、これによりプレート本体の亀裂や破壊を抑制することができる。なお、上述の最大圧縮歪みの上限値(1500με)は、従来のホットバンド方式の実績値等を考慮して設定した。 In this way, it is possible to obtain a plate in which a hoop formed by winding a plurality of layers of strip-shaped thin iron plates is installed on the outer circumferential side of the plate body. According to this plate, the restraining force on the plate body can be made stronger than in the conventional multiple hoop system, as shown in the embodiments described later. More specifically, the maximum compressive strain on the inner peripheral surface of the inner hole of the plate body can be set to 200 με or more and 1500 με or less by measuring the strain released when the hoop is cut using a strain gauge. Cracks and destruction of the plate body can be suppressed. Note that the above-mentioned upper limit value (1500 με) of the maximum compressive strain was set in consideration of the actual results of the conventional hot band method, etc.
 ここで、図8に模式的に示しているように、プレート本体A1の外周側面に帯状薄鉄板Bを複数層巻回してなるフープA2には、例えば図3及び図4で説明したように溶接機5を使用してフープA2の外側から凹部A1b内に向けて貫通溶接することで、フープA2の最外層から固定部材A1cまで達する孔A2aを設けると共に、この孔A2aにフープA2と固定部材A1cとを一体化する材料(図8の例では帯状薄鉄板Bの溶融物)が充填された構成とすることもできる。このような構成とすることで、フープA2に緩みが生じることを抑制することができ、プレート本体Aに対する拘束力の強化に寄与できる。 Here, as schematically shown in FIG. 8, a hoop A2 formed by winding a plurality of layers of strip-shaped thin iron plates B on the outer circumferential side of a plate body A1 is welded, for example, as explained in FIGS. 3 and 4. By performing penetration welding from the outside of the hoop A2 toward the inside of the recess A1b using the machine 5, a hole A2a reaching from the outermost layer of the hoop A2 to the fixing member A1c is provided, and the hoop A2 and the fixing member A1c are inserted into this hole A2a. It is also possible to have a structure filled with a material (in the example of FIG. 8, a melt of the strip-shaped thin iron plate B) that integrates the two. With such a configuration, loosening of the hoop A2 can be suppressed, and the restraining force on the plate body A can be strengthened.
 なお、上述の製造装置及び製造方法において最も重要な技術的特徴は、図6に示したように、巻締の際に帯状薄鉄板Bがプレート本体A1の外周側面に倣うように押え治具31によって帯状薄鉄板Bを抑えることにある。すなわち、本発明の製造装置及び製造方法において、図3~5、図7及び図8に示した技術的特徴は省略可能である。 The most important technical feature of the manufacturing apparatus and manufacturing method described above is that, as shown in FIG. The purpose is to suppress the strip-shaped thin iron plate B by using the following method. That is, in the manufacturing apparatus and manufacturing method of the present invention, the technical features shown in FIGS. 3 to 5, FIG. 7, and FIG. 8 can be omitted.
 本発明の実施例として上述の製造装置及び製造方法により多重フープ方式のプレートを複数作製した。また、比較例として上記特許文献2に開示されている従来の製造方法により多重フープ方式のプレートを複数作製した。更に、参考例としてホットバンド方式のプレートも複数作製した
 図9に、これら実施例、比較例及び参考例に用いたプレート本体A1の形状及び寸法を示している。このプレート本体A1は耐火物からなり、その耐火物の弾性率は46~53GPaの範囲内であった。
 また、実施例及び比較例に用いた帯状薄鉄板の材質は一般構造用圧延鋼材SS400とし、寸法は1mm厚×30mm幅とした。更に実施例及び比較例の多重フープ方式において、帯状薄鉄板の加熱温度は700℃、引張力は150kgfとした。また、帯状薄鉄板の層数は実施例では3~6層、比較例では6~8層とした。
 一方、ホットバンド方式である参考例に用いた金属板(HB)の材質も一般構造用圧延鋼材SS400とし、寸法は3~6mm厚×30mm幅とした。また、ホットバンド方式において金属板(HB)の加熱温度は400~600℃とした。
As an example of the present invention, a plurality of multi-hoop type plates were manufactured using the above-described manufacturing apparatus and manufacturing method. Further, as a comparative example, a plurality of multi-hoop type plates were manufactured using the conventional manufacturing method disclosed in Patent Document 2 mentioned above. Furthermore, a plurality of hot band type plates were also produced as reference examples. FIG. 9 shows the shape and dimensions of the plate main body A1 used in these examples, comparative examples, and reference examples. This plate body A1 was made of a refractory material, and the elastic modulus of the refractory material was within the range of 46 to 53 GPa.
Furthermore, the material of the strip-shaped thin iron plates used in the Examples and Comparative Examples was general structural rolled steel SS400, and the dimensions were 1 mm thick x 30 mm wide. Furthermore, in the multiple hoop method of the examples and comparative examples, the heating temperature of the strip-shaped thin iron plate was 700° C., and the tensile force was 150 kgf. Further, the number of layers of the strip-shaped thin iron plate was 3 to 6 layers in the examples, and 6 to 8 layers in the comparative examples.
On the other hand, the material of the metal plate (HB) used in the reference example of the hot band method was also general structural rolled steel SS400, and the dimensions were 3 to 6 mm thick x 30 mm wide. Further, in the hot band method, the heating temperature of the metal plate (HB) was set at 400 to 600°C.
 実施例、比較例及び参考例として作製した各プレートについて、プレート本体に対する拘束力の大きさと相関のあるプレート本体の内孔内周面の最大圧縮歪みを測定した。図10に、この最大圧縮歪みの測定方法を模式的に示している。同図に示すように、プレート本体A1の内孔A1aの内周面の摺動面A1d側の4箇所にそれぞれ歪みゲージC1~4を均等に貼り、その後フープA2を切断し、このとき解放される歪みを歪みゲージC1~4で測定し、その最大値を最大圧縮歪みとする。ここで、歪みゲージC1~4の種類は「箔歪みゲージ」とし、その大きさは内孔A1aの内周面の摺動面A1d側の4箇所に均等に貼り付けることができる程度の大きさとする。具体的に今回の実施例、比較例及び参考例においてはゲージ長が5mm、ゲージ幅が1.4mmのものを用いた。 For each plate produced as an example, a comparative example, and a reference example, the maximum compressive strain of the inner peripheral surface of the inner hole of the plate body, which is correlated with the magnitude of the restraining force on the plate body, was measured. FIG. 10 schematically shows a method for measuring this maximum compressive strain. As shown in the figure, strain gauges C1 to C4 are evenly pasted at four locations on the sliding surface A1d side of the inner circumferential surface of the inner hole A1a of the plate body A1, and then the hoop A2 is cut, and at this time, the released The strain is measured using strain gauges C1 to C4, and the maximum value is taken as the maximum compressive strain. Here, the types of strain gauges C1 to C4 are "foil strain gauges", and their sizes are such that they can be evenly pasted at four locations on the sliding surface A1d side of the inner peripheral surface of the inner hole A1a. do. Specifically, in the present Examples, Comparative Examples, and Reference Examples, gauges having a gauge length of 5 mm and a gauge width of 1.4 mm were used.
 図11に、その測定結果を示している。なお、同図において1つのプロットが1つのプレートの測定結果である。
 同図より従来の多重フープ方式である比較例では最大圧縮歪みは200με未満であった。これに対して、実施例ではいずれも最大圧縮歪みが200με以上1500με以下であり、参考例であるホットバンド方式と同等の拘束力が得られた。
 なお、実施例では帯状薄鉄板の層数を増やすに従い最大圧縮歪みが大きくなる傾向が見られたが、比較例では帯状薄鉄板の層数を増やしても最大圧縮歪みは必ずしも大きくならなかった。その理由は、比較例では巻締の際に実施例のように押え治具を使用していないことから、1、2層目が緩んでしまい、その上から層数を重ねたとしても拘束力は強くならず、結果として最大圧縮歪みが大きくならないためである。
 また、参考例では実施例に比べ、最大圧縮歪みのバラツキが大きくなっている。ここで、最大圧縮歪みのバラツキは、プレート本体の形状、材質(弾性率)等のバラツキやフープを設置するときの加熱温度等の条件のバラツキなどに起因するが、参考例であるホットバンド方式ではフープ自体の寸法のバラツキもあることから、最大圧縮歪みのバラツキが大きくなっている。
 以上より、本発明の多重フープ方式によれば、ホットバンド方式に比べてプレート本体に対する拘束力の均一性が向上し、しかも従来の多重フープ方式に比べて拘束力を強くすることができ、その結果、スライディングノズル装置用のプレートにおいてプレート本体の亀裂や破壊を抑制することができるといえる。
FIG. 11 shows the measurement results. In addition, in the same figure, one plot is the measurement result of one plate.
As can be seen from the figure, in the comparative example using the conventional multiple hoop method, the maximum compressive strain was less than 200 με. On the other hand, in all Examples, the maximum compressive strain was 200 με or more and 1500 με or less, and a restraining force equivalent to that of the hot band method as a reference example was obtained.
In addition, in the examples, there was a tendency for the maximum compressive strain to increase as the number of layers of the strip-shaped thin iron plate increased, but in the comparative example, even if the number of layers of the strip-shaped thin iron plate was increased, the maximum compressive strain did not necessarily increase. The reason for this is that in the comparative example, a presser jig was not used during seaming as in the example, so the first and second layers were loosened, and even if layers were stacked on top of them, the binding force was still strong. This is because the maximum compressive strain does not increase as a result.
Further, in the reference example, the variation in maximum compressive strain is larger than in the example. Here, variations in the maximum compressive strain are due to variations in the shape and material (modulus of elasticity) of the plate body, and variations in conditions such as heating temperature when installing the hoop. Since there are variations in the dimensions of the hoop itself, there is a large variation in the maximum compressive strain.
From the above, according to the multiple hoop method of the present invention, the uniformity of the restraint force on the plate body is improved compared to the hot band method, and the restraint force can be made stronger than the conventional multiple hoop method. As a result, it can be said that cracking and destruction of the plate body in a plate for a sliding nozzle device can be suppressed.
 次に、本発明の多重フープ方式において、プレート本体に対する拘束力を調整する調整例を例示する。
 本調整例で用いたプレート本体A1の形状及び寸法は先の実施例と同じとし(図9参照)、耐火物の弾性率も先の実施例と同じ46~53GPaの範囲内とした。一方、帯状薄鉄板の層数は5層とした。そして、調整例1では帯状薄鉄板の加熱温度、調整例2では帯状薄鉄板に付加する引張力を変化させ、それぞれ最大圧縮歪みを測定した。
Next, an example of adjustment for adjusting the restraining force on the plate body in the multiple hoop system of the present invention will be illustrated.
The shape and dimensions of the plate body A1 used in this adjustment example were the same as in the previous example (see FIG. 9), and the elastic modulus of the refractory was also within the same range of 46 to 53 GPa as in the previous example. On the other hand, the number of layers of the strip-shaped thin iron plate was five. Then, in Adjustment Example 1, the heating temperature of the strip-shaped thin iron plate was changed, and in Adjustment Example 2, the tensile force applied to the strip-shaped thin iron plate was varied, and the maximum compressive strain was measured for each.
 図12及び図13に、それぞれ調整例1及び調整例2における最大圧縮歪みの測定結果を示している。図12及び図13より、帯状薄鉄板の加熱温度、帯状薄鉄板に付加する引張力を変化させることにより、最大圧縮歪み、すなわちプレート本体に対する拘束力を調整できることがわかる。 12 and 13 show the measurement results of the maximum compressive strain in Adjustment Example 1 and Adjustment Example 2, respectively. From FIGS. 12 and 13, it can be seen that the maximum compressive strain, that is, the restraining force on the plate body, can be adjusted by changing the heating temperature of the thin iron strip and the tensile force applied to the thin iron strip.
 A プレート
 A1 プレート本体
 A1a 内孔
 A1b 凹部
 A1b1 帯状薄鉄板の引張方向に対して鋭角をなす内壁面
 A1c 固定部材
 A1d 摺動面
 A2 フープ
 A2a 孔
 B 帯状薄鉄板
 C1~4 歪みゲージ
 1 プレート保持機構
 11 載置台
 111 回転軸
 12 モーター
 13 固定治具(固定手段)
 2 鉄板保持機構
 21 保持台
 211 回転軸
 22 軸受部
 221 エアブレーキ(ブレーキ機構)
 3 巻締機構
 31 押え治具
 31a 押え部(ローラー)
 311 ピン
 312 エアシリンダー
 312a シリンダーロッド
 32A,32B 押圧治具
 4 誘導加熱コイル(加熱手段)
 41 放射温度計(温度計)
 5 溶接機
A Plate A1 Plate body A1a Inner hole A1b Recess A1b1 Inner wall surface forming an acute angle with respect to the tension direction of the thin steel strip A1c Fixed member A1d Sliding surface A2 Hoop A2a Hole B Thin steel strip C1-4 Strain gauge 1 Plate holding mechanism 11 Mounting table 111 Rotating shaft 12 Motor 13 Fixing jig (fixing means)
2 Steel plate holding mechanism 21 Holding stand 211 Rotating shaft 22 Bearing portion 221 Air brake (brake mechanism)
3 Sealing mechanism 31 Presser jig 31a Presser part (roller)
311 Pin 312 Air cylinder 312a Cylinder rod 32A, 32B Pressing jig 4 Induction heating coil (heating means)
41 Radiation thermometer (thermometer)
5 Welding machine

Claims (9)

  1.  耐火物からなるプレート本体の外周側面に、帯状薄鉄板を複数層巻回してなるフープが設置されているスライディングノズル装置用のプレートであって、
     前記フープを切断した際に解放される歪みを歪みゲージで測定する方法による、前記プレート本体の内孔内周面の最大圧縮歪みが200με以上1500με以下である、スライディングノズル装置用のプレート。
    A plate for a sliding nozzle device, in which a hoop made of a plurality of layers of strip-shaped thin iron plates is installed on the outer peripheral side of a plate body made of a refractory material,
    A plate for a sliding nozzle device, wherein the maximum compressive strain of the inner circumferential surface of the inner hole of the plate body is 200 με or more and 1500 με or less, as measured by a method of measuring the strain released when the hoop is cut using a strain gauge.
  2.  前記プレート本体の外周側面の一部に凹部を有すると共に、前記凹部内に固定部材を有し、前記帯状薄鉄板の巻始端部が前記固定部材に固定されている、請求項1に記載のスライディングノズル装置用のプレート。 The sliding device according to claim 1, wherein the plate main body has a recess in a part of the outer circumferential side, and a fixing member is provided in the recess, and a winding start end of the strip-shaped thin iron plate is fixed to the fixing member. Plate for nozzle device.
  3.  前記フープには当該フープの最外層から前記固定部材まで達する孔があり、前記孔には前記フープと前記固定部材とを一体化する材料が充填されている、請求項2に記載のスライディングノズル装置用のプレート。 The sliding nozzle device according to claim 2, wherein the hoop has a hole extending from the outermost layer of the hoop to the fixing member, and the hole is filled with a material that integrates the hoop and the fixing member. plate for.
  4.  耐火物からなるプレート本体の外周側面に、帯状薄鉄板を複数層巻回してなるフープが設置されているスライディングノズル装置用のプレートの製造方法であって、
     前記プレート本体の外周側面に、帯状薄鉄板を加熱しながらかつ引張力を付加しながら巻締をする巻締工程を含み、
     前記巻締工程は、前記帯状薄鉄板が前記プレート本体の外周側面に接し始める部分において前記プレート本体の外周側面に倣うように、当該プレート本体の外周側面に沿って変位する押え治具によって前記帯状薄鉄板を抑える工程を含む、スライディングノズル装置用のプレートの製造方法。
    A method for manufacturing a plate for a sliding nozzle device, in which a hoop made of a plurality of layers of strip-shaped thin iron plates is installed on the outer peripheral side of a plate body made of a refractory material, the method comprising:
    a seaming step of seaming the strip-shaped thin iron plate while heating and applying tensile force to the outer peripheral side surface of the plate body;
    In the seaming step, the band-shaped thin iron plate is tightened by a holding jig that is displaced along the outer circumferential side of the plate body so that the band-shaped thin iron plate follows the outer circumferential side of the plate body at a portion where the thin iron plate begins to contact the outer circumferential side of the plate body. A method of manufacturing a plate for a sliding nozzle device, including a process of suppressing a thin iron plate.
  5.  前記巻締工程は、前記帯状薄鉄板の巻始端部近傍を少なくとも1箇所で前記プレート本体の外周側面に押圧して固定する工程と、前記帯状薄鉄板の巻始端部近傍上に2層目の帯状薄鉄板を巻回する際に、前記帯状薄鉄板の巻始端部近傍を少なくとも1箇所で前記プレート本体の外周側面に押圧して固定しながら前記2層目の帯状薄鉄板を巻回する工程を含む、請求項4に記載のスライディングノズル装置用のプレートの製造方法。 The seaming step includes a step of pressing and fixing the vicinity of the winding start end of the strip-shaped thin iron plate to the outer circumferential side surface of the plate body at least at one place, and a step of fixing the belt-shaped thin iron plate near the winding start end. When winding the belt-shaped thin iron plate, the second layer of the belt-shaped thin iron plate is wound while pressing and fixing the vicinity of the winding start end of the belt-shaped thin iron plate to the outer circumferential side of the plate main body at least at one location. A method for manufacturing a plate for a sliding nozzle device according to claim 4, comprising:
  6.  前記巻締工程では、前記帯状薄鉄板の加熱温度、前記帯状薄鉄板に付加する引張力、及び前記帯状薄鉄板の層数のうち少なくとも1つを変更することにより、前記プレート本体に対する拘束力を調整する、請求項4又は5に記載のスライディングノズル装置用のプレートの製造方法。 In the seaming step, the binding force on the plate body is increased by changing at least one of the heating temperature of the thin iron strip, the tensile force applied to the thin iron strip, and the number of layers of the thin iron strip. The method for manufacturing a plate for a sliding nozzle device according to claim 4 or 5, wherein the plate is adjusted.
  7.  耐火物からなるプレート本体の外周側面に、帯状薄鉄板を複数層巻回してなるフープが設置されているスライディングノズル装置用のプレートの製造装置であって、
     前記プレート本体の外周側面に、帯状薄鉄板を加熱しながらかつ引張力を付加しながら巻締をする巻締機構を備え、
     前記巻締機構は、前記帯状薄鉄板が前記プレート本体の外周側面に接し始める部分において前記プレート本体の外周側面に倣うように、当該プレート本体の外周側面に沿って変位しながら当該帯状薄鉄板を抑える押え治具を含む、スライディングノズル装置用のプレートの製造装置。
    A manufacturing device for a plate for a sliding nozzle device, in which a hoop made of a plurality of layers of strip-shaped thin iron plates is installed on the outer peripheral side of a plate body made of a refractory material,
    A seaming mechanism is provided on the outer circumferential side of the plate body for seaming the belt-shaped thin iron plate while heating it and applying a tensile force,
    The seaming mechanism moves the strip-shaped thin iron plate while being displaced along the outer circumferential side of the plate body so that the strip-shaped thin iron plate follows the outer circumferential side of the plate body at a portion where the strip-shaped thin iron plate begins to contact the outer circumferential side of the plate body. A manufacturing device for plates for sliding nozzle devices, including a holding jig.
  8.  前記巻締機構は、前記帯状薄鉄板の巻始端部近傍を前記プレート本体の外周側面に押圧して固定するための押圧治具を少なくとも2つ含み、各押圧治具は、前記帯状薄鉄板の巻始端部近傍を前記プレート本体の外周側面に押圧して固定する固定位置と、前記帯状薄鉄板の巻始端部近傍上に2層目の帯状薄鉄板を巻回する際に、前記2層目の帯状薄鉄板の巻回の障害とならない退避位置とに移動可能である、請求項7に記載のスライディングノズル装置用のプレートの製造装置。 The seaming mechanism includes at least two pressing jigs for pressing and fixing the vicinity of the winding start end of the belt-shaped thin iron plate against the outer peripheral side surface of the plate body, and each pressing jig is configured to press and fix the vicinity of the winding start end of the belt-shaped thin iron plate, and each pressing jig is configured to A fixing position in which the vicinity of the winding start end is pressed against the outer peripheral side surface of the plate body, and a fixing position in which the second layer of the thin iron strip is wound on the vicinity of the winding start end of the strip thin iron plate. 8. The apparatus for manufacturing a plate for a sliding nozzle device according to claim 7, which is movable to a retracted position that does not interfere with winding of the strip-shaped thin iron plate.
  9.  前記帯状薄鉄板の加熱温度、前記帯状薄鉄板に付加する引張力、及び前記帯状薄鉄板の層数のうち少なくとも1つを変更する手段を含む、請求項7又は8に記載のスライディングノズル装置用のプレートの製造装置。 The sliding nozzle device according to claim 7 or 8, comprising means for changing at least one of the heating temperature of the strip-shaped thin iron plate, the tensile force applied to the strip-shaped thin iron plate, and the number of layers of the strip-shaped thin iron plate. plate manufacturing equipment.
PCT/JP2023/023719 2022-07-06 2023-06-27 Plate for sliding nozzle device, and manufacturing method and manufacturing device for manufacturing same WO2024009837A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022109295A JP7169483B1 (en) 2022-07-06 2022-07-06 PLATE FOR SLIDING NOZZLE DEVICE AND METHOD AND APPARATUS FOR MANUFACTURING SAME
JP2022-109295 2022-07-06

Publications (1)

Publication Number Publication Date
WO2024009837A1 true WO2024009837A1 (en) 2024-01-11

Family

ID=83995282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023719 WO2024009837A1 (en) 2022-07-06 2023-06-27 Plate for sliding nozzle device, and manufacturing method and manufacturing device for manufacturing same

Country Status (3)

Country Link
JP (1) JP7169483B1 (en)
TW (1) TW202406645A (en)
WO (1) WO2024009837A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848835B2 (en) * 1975-05-13 1983-10-31 クロサキヨウギヨウ カブシキガイシヤ How to strengthen refractories
JPS6187652U (en) * 1984-11-14 1986-06-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848835B2 (en) * 1975-05-13 1983-10-31 クロサキヨウギヨウ カブシキガイシヤ How to strengthen refractories
JPS6187652U (en) * 1984-11-14 1986-06-07

Also Published As

Publication number Publication date
JP7169483B1 (en) 2022-11-10
TW202406645A (en) 2024-02-16
JP2024007902A (en) 2024-01-19

Similar Documents

Publication Publication Date Title
EP2985088B1 (en) Method and device for producing rolling roll
EP2883629B1 (en) Spinning molding device and molding method
CA2726132C (en) Method for producing a large steel tube
US20080066517A1 (en) Method for bending metal material, bending machine, bending-equipment line, and bent product
WO2024009837A1 (en) Plate for sliding nozzle device, and manufacturing method and manufacturing device for manufacturing same
US10549468B2 (en) Spinning forming method and spinning forming apparatus
JP2823260B2 (en) Roll forming method for large diameter square steel pipe
JP5573139B2 (en) Straightening device for uneven metal band coil
WO2015079628A1 (en) Spinning and shaping device and spinning and shaping method
JP3520698B2 (en) Internal clamp device with gap filling means
JPH0364214B2 (en)
JP5540677B2 (en) Straightening device for uneven metal band coil
JP3624017B2 (en) Hot bending method for metal pipe
JP2007196268A (en) Tension reel having gripper, and method and apparatus for taking up metallic strip
EP3678800B1 (en) Method and apparatus for shaft diameter enlargement
KR20210028445A (en) Jig device for deformation correction
JP2001194280A (en) Device for measuring leveling strength of disk saw
IT202100005096A1 (en) FRICTION STIR WELDING TOOL, WELDING METHOD AND WELDING MACHINE FOR SHEET METAL
JP2024029100A (en) Shaft enlargement processing method and shaft enlargement processing device
JP2014077588A (en) Reinforcement tool for boiler tube, manufacturing method thereof and reinforcement method of boiler tube
JPH03297517A (en) Method for bending pipe
JP2024063260A (en) Correction device and correction method
JP3215805B2 (en) METHOD AND APPARATUS FOR MANUFACTURING TUBE OR CONTAINER HAVING FLANGE ON PERIPHERAL OF TUBULAR PART
KR101166207B1 (en) Back pressure control method in pipe bending
WO2016136022A1 (en) Forming method for disk-shaped component and forming device for disk-shaped component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835370

Country of ref document: EP

Kind code of ref document: A1