WO2024009822A1 - メタマテリアル、フォトニックデバイス、装置、メタマテリアルの製造方法、及びメタマテリアルの設計方法 - Google Patents

メタマテリアル、フォトニックデバイス、装置、メタマテリアルの製造方法、及びメタマテリアルの設計方法 Download PDF

Info

Publication number
WO2024009822A1
WO2024009822A1 PCT/JP2023/023578 JP2023023578W WO2024009822A1 WO 2024009822 A1 WO2024009822 A1 WO 2024009822A1 JP 2023023578 W JP2023023578 W JP 2023023578W WO 2024009822 A1 WO2024009822 A1 WO 2024009822A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
light
wavelength
refractive index
structural units
Prior art date
Application number
PCT/JP2023/023578
Other languages
English (en)
French (fr)
Inventor
シシュウ トウ
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024009822A1 publication Critical patent/WO2024009822A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements

Definitions

  • the present disclosure relates to a metamaterial, a photonic device and apparatus having the metamaterial, a method for manufacturing the metamaterial, and a method for designing the metamaterial.
  • zero refractive index materials Unlike conventional materials with a positive refractive index, zero refractive index materials have unique refractive properties and exhibit an infinite wavelength. Therefore, zero refractive index materials are expected to be applied to various situations, such as, for example, miniaturization of optical circuits, improvement of efficiency of quantum networks, and improvement of resolution or viewing angle of beam steering elements.
  • Non-Patent Document 1 discloses a waveguide based on Dirac Cone dispersion. The document shows that the waveguide exhibits zero refractive index and infinite wavelength.
  • zero refractive index materials examples include zero refractive index materials using metals, optically doped, or metal metamaterials.
  • these zero refractive index materials have an ohmic loss due to the material, and there is a problem that the efficiency is very low when used in, for example, a photonic device.
  • DCZIM Dirac cone zero-index metamaterial
  • the present disclosure aims to provide a more practical or useful metamaterial.
  • the present disclosure also aims to provide a method for obtaining such a metamaterial.
  • This disclosure has a structure in which structural units having air holes are arranged, the arrangement period of the structural units is approximately the same as the wavelength of light propagated within the structure; Provide metamaterials.
  • the metamaterial may exhibit zero refractive index.
  • the air hole may have a circular shape or a divided circular shape.
  • the metamaterial may have a fractional bandwidth of 2% or more.
  • the metamaterial may exhibit a zero refractive index for infrared light.
  • the metamaterial may be formed from a dielectric material or a semiconductor material.
  • the arrangement period of the structural units may be 300 nm to 2500 nm.
  • the air hole may have a radius of 15 nm to 300 nm.
  • the metamaterial may exhibit a zero refractive index for near-infrared light, and may have a fractional bandwidth of 2% to 15%.
  • the arrangement period of the structural units may be 800 nm or more.
  • the metamaterial may exhibit a zero refractive index for near-infrared light, and may have a fractional bandwidth of 2% to 6%.
  • the arrangement period of the structural units may be 800 nm or less.
  • the structural units may be arranged one-dimensionally.
  • the structural units may be arranged to form a ring.
  • the present disclosure also provides a photonic device having the metamaterial.
  • the photonic device may be a beam steering element.
  • the metamaterial There is also a device comprising one or more of a light source section that emits light incident on the metamaterial, an optical waveguide that guides the light to the metamaterial, and a light receiving section that receives the light emitted from the metamaterial.
  • the device may be a splitter, a multiplexer, a laser, a sensor, or a chiral sensing or enhancement device.
  • the present disclosure comprising a structure forming step of forming a structure in which structural units having air holes are arranged, and in the structure forming step, the arrangement period of the structural units is approximately the same as the wavelength of light propagated within the structure.
  • the structure is formed as follows. A method for producing a metamaterial is also provided.
  • the present disclosure includes a structural design process of designing a structure in which structural units having air holes are arranged, In the structural design step, the structure is designed such that the arrangement period of the structural units is approximately the same as the wavelength of light propagated within the structure.
  • a method for designing metamaterials is also provided.
  • FIG. 2 is a schematic diagram showing an example of a structure of a metamaterial according to the present disclosure.
  • FIG. 2 is a schematic diagram showing an example of a structure of a metamaterial according to the present disclosure.
  • FIG. 2 is a schematic diagram illustrating an example of a metamaterial according to the present disclosure, which has a structure in which structural units are arranged to form a ring.
  • FIG. 3 is a schematic diagram for explaining the emission of light from an air hole.
  • FIG. 3 is a diagram showing simulation results of magnetic field distribution. It is a diagram for explaining that a zero refractive index occurs even in a waveguide as a part of a structure in which the Dirac Cone mode does not appear.
  • FIG. 1 is a schematic diagram showing an example of a structure of a metamaterial according to the present disclosure.
  • FIG. 2 is a schematic diagram showing an example of a structure of a metamaterial according to the present disclosure.
  • FIG. 2 is a schematic diagram illustrating an example of a metamaterial according
  • FIG. 2 is a diagram showing a schematic configuration example of a metamaterial according to the present disclosure.
  • FIG. 3 is a diagram for explaining the thickness of a metamaterial.
  • FIG. 2 is a diagram showing a schematic configuration example of a metamaterial according to the present disclosure.
  • FIG. 2 is a schematic diagram showing an example of the structure of a ring-shaped resonator according to the present disclosure.
  • FIG. 2 is a schematic diagram showing a configuration example of a ring-shaped resonator according to the present disclosure. It is an example of a flow diagram of a method for creating a metamaterial.
  • FIG. 3 is a diagram for explaining the thickness of a metamaterial.
  • FIG. 2 is a diagram showing a schematic configuration example of a metamaterial according to the present disclosure.
  • FIG. 2 is a schematic diagram showing
  • FIG. 2 is a schematic illustration of chromatic aberration reduction that may be achieved by photonic devices formed from metamaterials according to the present disclosure.
  • FIG. 2 is a diagram for explaining the refractive index of a metamaterial according to the present disclosure.
  • FIG. 3 is a diagram for explaining beam steering.
  • FIG. 2 is a diagram for explaining a configuration example of a duplexer having a ring-shaped resonator according to the present disclosure.
  • 1 is a block diagram showing a configuration example of a WDM system.
  • FIG. 2 is a block diagram of a configuration example of a laser light source.
  • FIG. 2 is a schematic diagram for explaining an example of a laser generator.
  • FIG. 2 is a schematic diagram for explaining an example of a laser generator.
  • FIG. 1 is a schematic illustration of chromatic aberration reduction that may be achieved by photonic devices formed from metamaterials according to the present disclosure.
  • FIG. 2 is a diagram for explaining the refractive index of a metamaterial according to
  • FIG. 2 is a block diagram of a configuration example of a biosensor.
  • FIG. 3 is a diagram for explaining destruction caused by constructive interference.
  • FIG. 2 is a diagram for explaining a magnetic field dipole.
  • FIG. 1 is a block diagram of an example configuration of an apparatus used for chiral sensing or chiral enhancement.
  • FIG. 2 is a diagram showing a metamaterial that is a subject of simulation.
  • FIG. 3 is a diagram for explaining the phase of a magnetic field. It is a graph showing the refractive index specified by simulation.
  • FIG. 6 is a diagram showing the results of a simulation regarding the occurrence of zero refractive index. It is a figure which shows the analysis result which shows the development of a zero refractive index.
  • FIG. 1 is a block diagram of an example configuration of an apparatus used for chiral sensing or chiral enhancement.
  • FIG. 2 is a diagram showing a metamaterial that is a subject of simulation.
  • FIG. 3 is a diagram for explaining the
  • FIG. 3 is a diagram showing simulation results of refractive index and fractional bandwidth at various incident light wavelengths.
  • FIG. 6 is a diagram showing calculation results of the slope of change in refractive index.
  • FIG. 3 is a diagram showing simulation results of magnetic field distribution.
  • FIG. 3 is a diagram showing simulation results of magnetic field distribution.
  • FIG. 3 is a diagram showing simulation results of magnetic field distribution.
  • FIG. 3 is a diagram showing simulation results regarding the wavelength ⁇ WG of light propagated within a waveguide.
  • FIG. 2 is a schematic diagram of a ring resonator that was the subject of simulation. It is a figure which shows the result of the simulation regarding a ring resonator.
  • FIG. 3 is a schematic diagram for explaining the direction of light emitted from a zero refractive index material.
  • FIG. 3 is a schematic diagram for explaining a change in the radiation direction of light depending on the wavelength.
  • FIG. 3 is a schematic diagram for explaining a change in the radiation direction of light depending on the wavelength.
  • FIG. 3 is a schematic diagram for explaining a change in the radiation direction of light depending on the wavelength.
  • Example 4.1 Expression of zero refractive index in waveguide 4.2 Expression of zero refractive index in ring resonator 4.3 Variations in array period and air hole radius 4.4 Fractional bandwidth 4.5 Change in refractive index 4.6 Reference example 4.7 Relationship between the wavelength of incident light and the wavelength ⁇ WG of light propagated in the waveguide 4.8 Simulation regarding ring resonator
  • the structure designed in this way is required to satisfy various conditions (for example, the relationship between the air hole structure radius, period, thickness, and driving wavelength) for the expression of the Dirac Cone mode. Structures designed in this way are often impractical because they are difficult to realize in terms of manufacturing processes. Therefore, a more practical zero refractive index waveguide is required.
  • the material of the conventional zero refractive index waveguide is limited to Si only, and the bandwidth of the driving wavelength is also limited.
  • options for applying zero refractive index waveguides are also limited.
  • dielectric materials such as Ge. Therefore, it is considered desirable to widen the bandwidth.
  • other materials can be used, there is a possibility that the bandwidth of the driving wavelength can be widened. It is also believed that expanding the bandwidth and increasing the choice of materials will enable zero-index waveguides to be applied in a wider range of applications.
  • a metamaterial configured such that the wavelength of light propagating within the waveguide matches the structural unit period of the waveguide (for example, air hole period) can exhibit a zero refractive index. Ta.
  • band calculation for expressing Dirac Cone mode which is essential in conventional methods, is not necessary. Therefore, the metamaterial can be designed more easily.
  • the structural unit period only needs to match the wavelength of light propagating within the waveguide. Therefore, conditions considered in conventional methods (such as the relationship between air hole radius and period) do not need to be considered in the design of metamaterials according to the present disclosure, and there is no need to consider the conditions that are considered in conventional methods, such as the relationship between air hole radius and period, and zero refraction at any air hole radius. rate can be expressed. Therefore, the metamaterial according to the present disclosure is more practical and is also advantageous in terms of manufacturing process.
  • materials other than conventionally used Si can be used, for example, even if various dielectric materials or semiconductor materials are used, the metamaterial according to the present disclosure can be easily designed. Furthermore, zero refractive index can be achieved even if various materials are used.
  • wavelength range in which zero refractive index is expressed depending on the type of dielectric material or semiconductor material, making it possible to realize a bandwidth suitable for various applications.
  • various dielectric or semiconductor materials may be utilized in the present disclosure. For example, when Ge is used as the dielectric material, zero refractive index is achieved in a narrower band than when using Si. Furthermore, when Si 3 N 4 is used, zero refractive index can be achieved over a wider band than when using Si.
  • the metamaterial according to the present disclosure may be used as a ring-shaped resonator in which one-dimensionally arranged structural units form a ring. That is, a zero index waveguide designed according to the present disclosure may be utilized as a ring resonator.
  • the ring resonator is capable of oscillating coherent light from the center of the ring, and may be used, for example, as a photonic device (particularly an optical circuit element) such as a single mode laser and a multiplexer.
  • FIG. 1 An example of a structure of a metamaterial according to the present disclosure will be described with reference to FIG. 1.
  • the figure shows an example of the structure of the metamaterial 10 according to the present disclosure and an enlarged view of the structural units forming the metamaterial.
  • the metamaterial 10 shown in the figure has a structure in which structural units 12 having air holes 11-1 and 11-2 are arranged one-dimensionally.
  • the structural unit has a rectangular shape provided with two semicircular air holes 11-1 and 11-2.
  • the two air holes 11-1 and 11-2 are provided on two opposing sides of the rectangle, respectively.
  • the structural units are arranged one-dimensionally, and may be arranged to form a straight line, for example. Alternatively, the structural units may be arranged to form a curve.
  • the structural units 12 of the metamaterial 10 are arranged such that the air holes 11-1 and 11-2 are lined up on the sides of the straight line or curve.
  • incident light for example, is incident on the metamaterial 10 from one end. Then, the light is propagated within the metamaterial along the arrangement direction of the structural units. The wavelength of the incident light becomes shorter while the light is propagated within the metamaterial compared to before the incident light.
  • the arrangement period P may mean the size of the structural unit in the light propagation direction within the metamaterial.
  • the arrangement period P may mean, for example, the interval between the same portions of the plurality of arranged structural units.
  • the wavelength ⁇ WG is the wavelength of light propagating within the metamaterial.
  • the wavelength ⁇ WG is typically shorter than the light incident on the metamaterial (ie, the light before reaching the metamaterial).
  • the arrangement period P and the wavelength ⁇ WG are "substantially the same”, it means that these values are exactly the same, and also that these values are such that the metamaterial has a zero refractive index. (In particular, these values are close so that the metamaterial can exhibit a zero refractive index for light of a certain wavelength.) It includes that.
  • the wavelength ⁇ WG is also abbreviated as the distance DI between the centers of the air holes (i.e., the distance between the centers of the air holes each of two adjacent structural units has). Match.
  • the distance DI between the centers of the air holes also corresponds to the arrangement period P. That is, the metamaterial of the present disclosure may be configured such that the distance DI between the centers of the air holes is approximately the same as the wavelength ⁇ WG of light propagating within the metamaterial.
  • the interval DI may mean the distance between the centers of two air holes aligned in the arrangement direction of the structural units (ie, the light propagation direction).
  • the interval DI may be a distance between the centers of two semicircular air holes arranged in the arrangement direction of the structural units.
  • the expression that the arrangement period P and the interval DI are "substantially the same” means that these values are exactly the same, and that these values are such that the metamaterial has a zero refractive index. (In particular, these values are close so that the metamaterial can exhibit a zero refractive index for light of a certain wavelength.) It includes that.
  • the structural units may be arranged one-dimensionally or two-dimensionally, particularly one-dimensionally.
  • a metamaterial in which the structural units are arranged one-dimensionally may be used, for example, as a waveguide. That is, the present disclosure also provides a waveguide in which the structural units are arranged one-dimensionally.
  • the waveguide exhibits zero refractive index for incident light having a specific wavelength.
  • FIG. 3 shows an example of a metamaterial having a structure in which the structural units are arranged to form a ring.
  • the metamaterial 20 shown in the figure is also called a resonator. That is, the present disclosure also provides a ring-type resonator in which the structural units are arranged to form a ring.
  • the light propagates within the metamaterial of the present disclosure, the light is emitted from each air hole.
  • a schematic diagram for explaining the emission of light from the air hole is shown in FIG. As shown in the figure, the light that has entered the metamaterial 10 is propagated within the metamaterial 10 in the direction of arrow A1.
  • the light is propagated in the direction in which the structural units are arranged.
  • the light is emitted from the air holes 11-1 and 11-2 provided in each structural unit.
  • the ring-shaped resonator the light emitted from each air hole has the same phase, so that constructive interference is achieved.
  • the constructive interference is as shown, for example, in the simulation results of the magnetic field distribution shown in FIG. Such constructive interference can be used in various devices.
  • the metamaterial B1 is a part of the structure that exhibits the Dirac Cone mode as indicated by B3.
  • metamaterial A1 is part of the structure indicated by A3, but the structure of A3 does not exhibit the Dirac Cone mode.
  • metamaterial C1 is also part of the structure indicated by C3, but this structure C3 does not exhibit the Dirac Cone mode. In this way, by designing the metamaterial to satisfy the above conditions, it is possible to cause the metamaterial to exhibit a zero refractive index without performing a structural design based on the expression of the Dirac Cone mode.
  • a metamaterial according to the present disclosure may be a metamaterial that exhibits a zero refractive index, particularly a metamaterial that exhibits a zero refractive index for light of a particular wavelength.
  • zero refractive index means that the absolute value of the refractive index n is less than 0.1, that is, it is expressed by the following formula (1).
  • the wavelength bandwidth in which the metamaterial according to the present disclosure exhibits a zero refractive index may be, for example, 20 nm or more, preferably 30 nm or more, more preferably 40 nm or more, 50 nm or more, or 60 nm or more, and even more. Preferably, it may be 70 nm or more, 75 nm or more, or 80 nm or more.
  • the bandwidth may further be greater than or equal to 100 nm, greater than or equal to 110 nm, greater than or equal to 120 nm, or greater than or equal to 130 nm.
  • the upper limit of the wavelength bandwidth at which the metamaterial according to the present disclosure exhibits a zero refractive index does not need to be particularly specified, but may be, for example, 300 nm or less, 250 nm or less, 200 nm or less, 190 nm or less, 180 nm or less, or 170 nm or less. It's good.
  • the wavelength bandwidth in which the metamaterial according to the present disclosure exhibits a zero refractive index may be selected from the upper and lower limits listed above, for example, 20 nm or more and 200 nm or less, 30 nm or more and 190 nm or less, or 40 nm or more. Moreover, it may be 180 nm or less.
  • the wavelength bandwidth in which the metamaterial exhibits a zero refractive index is specified based on the refractive index n measured when light of each wavelength is incident.
  • the bandwidth is a wavelength range in which the refractive index n satisfies the above formula (1).
  • Refractive index measurement method 1 When structural units are arranged one-dimensionally, when the structural units are arranged one-dimensionally (for example, when the metamaterial is a one-dimensional waveguide), the refractive index n is such that light enters from one end instead of from both ends.
  • the method described in Non-Patent Document 1 Direct Observation of Phase-Free Propagation in a Silicon Waveguide, Orad Reshef et al., ACS Photonics, 2017, 4(10), 2385-2389
  • the refractive index n of the metamaterial can be determined by detecting standing waves generated from both ends of the one-dimensional array (particularly, both ends of the waveguide).
  • the inter-node distance ⁇ z of the standing wave observed by this method satisfies the relationship of the following equation (2), where ⁇ 0 is the wavelength in free space.
  • Refractive index measurement method 2 When structural units are arranged two-dimensionally
  • the refractive index n (referred to as "n 1 " in this measurement method) is monolithic. Measured according to the method described in CMOS-compatible zero-index metamaterials, DARYL I. VULIS et al., Optics Express, 2017, 25(11), 12381-12399.
  • the refractive index n 1 is determined from the following equation (3).
  • the specific bandwidth of the wavelength at which the metamaterial according to the present disclosure exhibits a zero refractive index is, for example, 2% or more, preferably 3% or more, more preferably 4% or more, 4.5% or more, or 5%. or more, and even more preferably 6% or more, 7% or more, 8% or more, or 9% or more.
  • the upper limit of the specific bandwidth of the wavelength at which the metamaterial according to the present disclosure exhibits a zero refractive index may not be particularly limited, but may be, for example, 20% or less, 19% or less, 18% or less, 17% or less, 16%. Below, it may be 15% or less, 14% or less, or 13% or less.
  • the specific bandwidth of the wavelength at which the metamaterial according to the present disclosure exhibits a zero refractive index may be selected from the upper and lower limits listed above, for example, 2% or more and 20% or less, 3% or more and 18% or less. , or may be 4% or more and 15% or less.
  • Fractional bandwidth measurement method The fractional bandwidth is calculated based on the wavelength bandwidth in which the metamaterial described above exhibits a zero refractive index. Specifically, it is calculated from the following formula (4). The method for identifying the wavelength bandwidth that exhibits zero refractive index is as described above.
  • the light for which the metamaterial according to the present disclosure exhibits a zero refractive index may be, for example, infrared light, particularly near-infrared light, mid-infrared light, or far-infrared light, preferably near-infrared light. It may be external light or mid-infrared light.
  • a metamaterial according to the present disclosure may exhibit a zero refractive index with respect to such light, and in particular may exhibit a zero refractive index when such light is incident.
  • the light for which a metamaterial according to the present disclosure exhibits a zero refractive index may be near-infrared light, i.e., light having a wavelength of 800 nm to 2500 nm, preferably a wavelength of 900 nm to 2400 nm.
  • the light may have a wavelength of 1000 nm to 2000 nm, more preferably a wavelength of 1000 nm to 2000 nm.
  • the light that exhibits a zero refractive index may be, for example, light having a wavelength of 1200 nm to 1800 nm, more preferably light having a wavelength of 1300 nm to 1700 nm, even more preferably 1400 nm to 1700 nm.
  • the light may have a wavelength of 1450 nm to 1650 nm.
  • the light for which a metamaterial according to the present disclosure exhibits zero refractive index may be mid-infrared light, such as from 2500 nm to 4000 nm. Such light is suitable for causing the metamaterial according to the present disclosure to develop a zero refractive index. That is, the metamaterial according to the present disclosure may have the property of exhibiting zero refractive index when such light is incident.
  • the metamaterial according to the present disclosure may exhibit a zero refractive index for the light (especially infrared light) as described above when the light is incident on the metamaterial.
  • the wavelength of the light becomes shorter than the wavelength described above while being propagated within the metamaterial. That is, the metamaterial according to the present disclosure propagates the incident light as light having a wavelength shorter than the wavelength of the incident light.
  • Zero refractive index is expressed because the arrangement period of the structural units (or the distance between the centers of air holes) of the metamaterial of the present disclosure is approximately the same as the short wavelength.
  • the figure shows a schematic configuration example of the metamaterial of the present disclosure.
  • the metamaterial 10 shown in the figure includes a plurality of structural units 12 (metamaterial parts surrounded by dotted lines 12-1 to 12-4), and these structural units are arranged one-dimensionally.
  • the number of structural units included in the metamaterial according to the present disclosure is not limited to the number shown in the figure (four), and may be, for example, two or more, preferably three or more, four or more, or five or more. It's okay.
  • the periodic arrangement of the structural units contributes to the development of zero refractive index.
  • the upper limit of the number of structural units arranged is not necessarily limited, but may be, for example, 10,000 or less, 5,000 or less, 1,000 or less, 500 or less, or 100 or less.
  • a portion of the structural unit in which no air hole is formed may exist at the end of the metamaterial (waveguide).
  • the metamaterial according to the present disclosure is configured as a waveguide in which structural units are arranged one-dimensionally, air holes may not be formed at both ends of the waveguide.
  • Each structural unit 12 may have a rectangular shape, as shown in the figure.
  • the rectangle may be a square or a rectangle.
  • Each structural unit is provided with two air holes 11-1 and 11-2 each having a semicircular shape, that is, the rectangular structure is missing two places in the semicircular shape.
  • These two air holes are provided on two of the four sides of the rectangle that are parallel to the direction in which light is propagated. Furthermore, these two air holes are arranged at symmetrical positions across the central axis AA' of the waveguide.
  • the air holes in the structural unit of the metamaterial according to the present disclosure have a circular or divided circular shape, particularly a divided circular shape.
  • the divided circular shape may be, for example, a substantially semicircular shape.
  • circular may be a perfect circle or an ellipse.
  • Approximately semicircular shape refers to a semicircular shape that is a perfect circle or ellipse divided into two halves, and a metamaterial in which the structural unit includes the approximately semicircular air hole has zero refraction. It also includes a semicircular shape divided into approximately two equal parts so that the ratio can be expressed.
  • the shape of the air hole may be a divided circular shape.
  • the shape of the air hole is a circular shape (for example, the shape of the divided circular shape before division, or the shape of the divided circular shape before division). It may be a shape in which two of the two circular shapes are combined so that the divided surfaces are in contact with each other.
  • the arrangement period P of the structural units is preferably 300 nm or more, more preferably 350 nm or more, and even more preferably 400 nm or more, 450 nm or more, or 500 nm or more, and in some embodiments, 600 nm or more, 700 nm or more. or more, or 800 nm or more.
  • the arrangement period P of the structural units is preferably 2500 nm or less, more preferably 2000 nm or less, even more preferably 1500 nm or less, 1400 nm or less, 1300 nm or less, 1200 nm or less, 1100 nm or less, or 1000 nm or less.
  • the numerical range of the array period P may be selected from the upper and lower limits listed above, and may be, for example, 300 nm to 2500 nm, 350 nm to 2000 nm, or 400 nm to 1500 nm.
  • the arrangement period P is the dimension of the structural unit in the arrangement direction (the length of one side of the square or the length of the long side or short side of the rectangle). It can be equivalent to in this specification, "the shape of a structural unit” means the shape of a structural unit assuming the state where an air hole is not provided.
  • the explanation regarding the numerical range described above regarding the arrangement period P also applies.
  • the dimension of the structural unit in the orthogonal direction may be the length of one side of the square or the length of the short side or long side of the rectangle.
  • the radius R of the air holes 12-1 and 12-2 may be, for example, 15 nm or more, preferably 20 nm or more, more preferably 30 nm or more, 40 nm or more, or 50 nm or more, still more preferably 60 nm or more, 70 nm or more, Or it may be 80 nm or more.
  • the radius R of the air holes 12-1 and 12-2 may be, for example, 300 nm or less, preferably 290 nm or less, more preferably 280 nm or less, 270 nm or less, or 260 nm or less, still more preferably 250 nm or less, 240 nm or less, It may be 230 nm or less, 220 nm or less, 210 nm or less, or 200 nm or less.
  • the numerical range of the radius R of the air holes 12-1 and 12-2 may be selected from the upper and lower limits listed above, and may be, for example, 15 nm to 300 nm, 30 nm to 280 nm, or 50 nm to 250 nm.
  • the distance DI between the centers of two air holes adjacent in the arrangement direction is preferably 300 nm or more, more preferably 350 nm or more, and even more preferably 400 nm or more, 450 nm or more, or 500 nm or more.
  • the spacing D I may be preferably 2500 nm or less, more preferably 2000 nm or less, even more preferably 1500 nm or less, 1400 nm or less, 1300 nm or less, 1200 nm or less, 1100 nm or less, or 1000 nm or less.
  • the spacing D I may be selected from the upper and lower limits listed above and may be, for example, from 300 nm to 2500 nm, from 350 nm to 2000 nm, or from 400 nm to 1500 nm.
  • the interval DI may be approximately the same as the array period P, as described above. Furthermore, as described above, the interval DI may be approximately the same as the wavelength ⁇ WG of light propagating within the metamaterial.
  • a metamaterial according to the present disclosure may be provided, for example, on a substrate, as shown in FIG. 8, and the metamaterial may have a thickness T.
  • the thickness T is the thickness in the direction perpendicular to the plane of the structural unit of the metamaterial (Z-axis direction in the figure).
  • the thickness T is preferably 50 nm or more, more preferably 60 nm or more, even more preferably 70 nm or more, 80 nm or more, 90 nm or more, or 100 nm or more, particularly preferably 110 nm or more, 120 nm or more, 130 nm or more. , 140 nm or more, or 150 nm or more.
  • the thickness T may preferably be 1000 nm or less, more preferably 950 nm or less, even more preferably 900 nm or less, 850 nm or less, 800 nm or less, 750 nm or less, or 700 nm or less.
  • the thickness T may be selected from the upper and lower limits listed above, and may be, for example, from 50 nm to 1000 nm, from 100 nm to 900 nm, or from 150 nm to 800 nm.
  • Metamaterials according to the present disclosure may be formed from a variety of dielectric or semiconductor materials, such as any of the following materials: Si-based materials (materials containing Si as one of the main components), such as Si, Si 3 N 4 , or SiO 2 ; Ge-based materials (materials containing Ge as one of the main components), such as Ge; Ca-based materials (materials containing Ca as one of the main components), such as CaF2 ; Sn-based materials (materials containing Sn as one of the main components), such as Sn; Ga-based materials (materials containing Ga as one of the main components), such as GaN and GaAs; In-based materials (materials containing In as one of the main components), such as InN and InP; Cd-based materials (materials containing Cd as one of the main components), such as CdSe and CdS; A Zn-based material (a material containing Zn as one of its main components), such as ZnSe, or a Ti-based material (a material containing Ti as
  • the metamaterial according to the present disclosure may have a structure in which the structural units are arranged one-dimensionally.
  • a metamaterial 100 according to the present disclosure may be provided, for example, on a substrate 101, and in particular on a film 102 laminated on the substrate 101.
  • materials for the substrate and the film materials commonly used in the technical field may be employed, and these may be appropriately selected by those skilled in the art.
  • the metamaterial can be used, for example, as a waveguide.
  • the waveguide may be formed from a metamaterial as described in 1.1 above, and the explanation regarding the metamaterial also applies to the waveguide of this configuration example.
  • the waveguide can be used in various photonic devices as described below.
  • the present disclosure provides that the fractional bandwidth is, for example, from 2% to 20%, preferably from 2% to 15%, more preferably from 3% to 15%, from 4% to 15%, even more preferably from 5% to 15%.
  • the waveguide may be made of a metamaterial as described in 1.1 above.
  • the fractional bandwidth of the waveguide may be, in particular, 6% or more, 7% or more, or 8% or more.
  • the fractional bandwidth of the waveguide may be, for example, 20% or less, 19% or less, 18% or less, 17% or less, 16% or less, 15% or less, 14% or less, or 13% or less.
  • the present disclosure provides a waveguide with such a wide fractional bandwidth.
  • the arrangement period P of the metamaterial forming the waveguide is, for example, 400 nm or more, preferably 500 nm or more, more preferably 600 nm or more, 700 nm or more, or 800 nm or more.
  • the arrangement period P of the structural units is preferably 2500 nm or less, more preferably 2000 nm or less, even more preferably 1500 nm or less, 1400 nm or less, 1300 nm or less, 1200 nm or less, 1100 nm or less, or 1000 nm or less.
  • the numerical range of the array period P may be selected from the upper and lower limits listed above, and may be, for example, 800 nm to 2500 nm, 800 nm to 2000 nm, or 800 nm to 1500 nm.
  • An array period P of such size contributes to the waveguide exhibiting zero refractive index, and particularly contributes to exhibiting zero refractive index over a wide bandwidth.
  • the air hole radius R of each structural unit of the metamaterial forming the waveguide may be, for example, 50 nm or more, preferably 100 nm or more, more preferably 110 nm or more, 120 nm or more, or 130 nm or more. , 140 nm or more, or 150 nm or more.
  • the radius R may be, for example, 300 nm or less, preferably 290 nm or less, more preferably 280 nm or less, 270 nm or less, or 260 nm or less, still more preferably 250 nm or less, 240 nm or less, 230 nm or less, It may be 220 nm or less, 210 nm or less, or 200 nm or less.
  • the numerical range of the radius R may be selected from the upper and lower limits listed above, and may be, for example, 50 nm to 300 nm, 100 nm to 250 nm, or 150 nm to 200 nm.
  • a radius R of such size when combined with the arrangement period P, contributes to the waveguide exhibiting a zero refractive index, and particularly to exhibiting a zero refractive index over a wide bandwidth. To contribute.
  • the thickness T of the metamaterial may be, for example, 100 nm or more, preferably 200 nm or more, more preferably 300 nm or more, even more preferably 400 nm or more, and especially 500 nm or more. You can.
  • the thickness T may preferably be 1000 nm or less, more preferably 950 nm or less, even more preferably 900 nm or less, 850 nm or less, 800 nm or less, 750 nm or less, or 700 nm or less.
  • the thickness T may be selected from the upper and lower limits listed above, and may be, for example, from 100 nm to 1000 nm, from 200 nm to 900 nm, or from 300 nm to 800 nm.
  • the metamaterial may be formed from a dielectric material or a semiconductor material as mentioned above, and in particular from a dielectric material.
  • the metamaterial may be formed from, for example, a Si-based material or a Ge-based material.
  • the present disclosure provides a waveguide with a fractional bandwidth, for example between 2% and 6%, preferably between 2.5% and 5.5%, especially between 3% and 5%.
  • the waveguide may be made of a metamaterial as described in 1.1 above.
  • the present disclosure also provides such fractional bandwidth waveguides.
  • the arrangement period P of the metamaterial forming the waveguide is preferably 300 nm or more, more preferably 350 nm or more, and even more preferably 400 nm or more.
  • the arrangement period P of the structural units is preferably 1500 nm or less, more preferably 1000 nm or less, and even more preferably 900 nm or less, 850 nm or less, or 800 nm or less.
  • the numerical range of the arrangement period P may be selected from the upper and lower limits listed above, and may be, for example, 300 nm to 1000 nm, 350 nm to 900 nm, or 400 nm to 800 nm.
  • the arrangement period P having such a size contributes to the waveguide exhibiting a zero refractive index.
  • the radius R of the air hole included in each structural unit of the metamaterial forming the waveguide may be, for example, 50 nm or more, preferably 60 nm or more, more preferably 70 nm or more, 80 nm or more, or 90 nm or more. or more, particularly preferably 100 nm or more.
  • the radius R may be, for example, 300 nm or less, preferably 290 nm or less, more preferably 280 nm or less, 270 nm or less, or 260 nm or less, still more preferably 250 nm or less, 240 nm or less, 230 nm or less, It may be 220 nm or less, 210 nm or less, or 200 nm or less.
  • the numerical range of the radius R may be selected from the upper and lower limits listed above, and may be, for example, 50 nm to 300 nm, 80 nm to 250 nm, or 100 nm to 200 nm. Such a radius R, when combined with the arrangement period P, contributes to the waveguide exhibiting a zero refractive index.
  • the thickness T of the metamaterial may be, for example, 100 nm or more, preferably 120 nm or more, more preferably 140 nm or more, even more preferably 160 nm or more, or 180 nm or more.
  • the thickness T may preferably be 500 nm or less, more preferably 400 nm or less, even more preferably 300 nm or less.
  • the thickness T may be selected from the upper and lower limits listed above, and may be, for example, from 100 nm to 500 nm, from 120 nm to 400 nm, or from 140 nm to 300 nm.
  • the metamaterial may be formed from a dielectric material or a semiconductor material as mentioned above, and in particular from a dielectric material.
  • the metamaterial may be formed from, for example, a Si-based material or a Ge-based material.
  • the metamaterial according to the present disclosure may have a structure in which the structural units are arranged to form a ring.
  • Said metamaterial may be provided, for example, on a substrate, in particular on e.g. a substrate 101, as explained above with respect to the waveguide with reference to FIG. It may be provided on the membrane 102.
  • the metamaterial can be used, for example, as a resonator.
  • the resonator may be formed from a metamaterial as described in 1.1 above, and the explanation regarding the metamaterial also applies to the resonator of this configuration example. Further, the resonator may be formed from a waveguide as described in 1.2 above, and the explanation regarding the waveguide also applies to the resonator of this configuration example.
  • the ring-shaped resonator can be used in various photonic devices as described later.
  • the arrangement period P of the metamaterial forming the waveguide is preferably 300 nm or more, more preferably 350 nm or more, and even more preferably 400 nm or more.
  • the arrangement period P of the structural units is preferably 1500 nm or less, more preferably 1000 nm or less, and even more preferably 900 nm or less, 850 nm or less, or 800 nm or less.
  • the numerical range of the arrangement period P may be selected from the upper and lower limits listed above, and may be, for example, 300 nm to 1000 nm, 350 nm to 900 nm, or 400 nm to 800 nm.
  • the arrangement period P having such a size contributes to the waveguide exhibiting a zero refractive index.
  • the arrangement period P regarding the ring-shaped resonator may mean a period approximately halfway between the inner diameter and the outer diameter of the ring.
  • the radius R of the air hole included in each structural unit of the metamaterial forming the waveguide may be, for example, 50 nm or more, preferably 60 nm or more, more preferably 70 nm or more, 80 nm or more, or 90 nm or more. or more, particularly preferably 100 nm or more.
  • the radius R may be, for example, 300 nm or less, preferably 290 nm or less, more preferably 280 nm or less, 270 nm or less, or 260 nm or less, still more preferably 250 nm or less, 240 nm or less, 230 nm or less, It may be 220 nm or less, 210 nm or less, or 200 nm or less.
  • the numerical range of the radius R may be selected from the upper and lower limits listed above, and may be, for example, 50 nm to 300 nm, 80 nm to 250 nm, or 100 nm to 200 nm. Such a radius R, when combined with the arrangement period P, contributes to the waveguide exhibiting a zero refractive index.
  • the thickness T of the metamaterial may be, for example, 100 nm or more, preferably 120 nm or more, more preferably 140 nm or more, even more preferably 160 nm or more, or 180 nm or more.
  • the thickness T may preferably be 500 nm or less, more preferably 400 nm or less, even more preferably 300 nm or less.
  • the thickness T may be selected from the upper and lower limits listed above, and may be, for example, from 100 nm to 500 nm, from 120 nm to 400 nm, or from 140 nm to 300 nm.
  • the metamaterial may be formed from a dielectric material or a semiconductor material as mentioned above, and in particular from a dielectric material.
  • the metamaterial may be formed from, for example, a Si-based material or a Ge-based material.
  • the radius R RING of the ring of the ring resonator may be, for example, 1000 nm or more, preferably 1500 nm or more, more preferably 2000 nm or more, particularly preferably 2500 nm or more, 3000 nm or more, or 3500 nm or more.
  • the radius R RING of the ring of the ring resonator may be, for example, 20,000 nm or less, preferably 15,000 nm or less, more preferably 10,000 nm or less, 8,000 nm or less, or 60,000 nm or less.
  • the numerical range of the radius R may be selected from the upper and lower limits listed above, and may be, for example, 1000 nm to 20000 nm, 2000 nm to 15000 nm, or 3000 nm to 10000 nm.
  • the structural units may be arranged to form a perfect circle, for example like the metamaterial 20 shown in FIG. 10, but the arrangement of the structural units is not limited to this.
  • a ring-shaped metamaterial has a structural unit that is an ellipse (A in the figure), a partially missing perfect circle (B), or a partially missing ellipse (C). They may be arranged to form.
  • one or more other perfect circles or ellipses may be arranged around the perfect circle or ellipse shown in FIG. 10 so as to surround the perfect circle or ellipse. That is, the metamaterial of the present disclosure may form a multi-circular structure. For example, as shown in FIG.
  • structural units may be arranged to form a double circle. (D in the same figure). Moreover, a part of each circle constituting the double circle may be missing (E). Further, each of the circles constituting the double circle may be an ellipse instead of a perfect circle, and each ellipse may be partially missing (F).
  • the present disclosure also provides photonic devices that include metamaterials according to the present disclosure.
  • the photonic device may be a device that utilizes light control by the metamaterial, and particularly may be a device that utilizes the property that the metamaterial exhibits a zero refractive index.
  • the metamaterial included in the photonic device is as described in 1. above. It may be any of the metamaterials mentioned in , and it may be a metamaterial in which the structural units are arranged one-dimensionally or two-dimensionally, such as one-dimensionally arranged metamaterials (particularly waveguides or It may be a ring-shaped resonator, more particularly a waveguide). Also provided are devices including metamaterials according to the present disclosure.
  • the device includes one or more of a light source section that emits light incident on the metamaterial, an optical waveguide that guides the light to the metamaterial, and a light receiving section that receives the light emitted from the metamaterial. good.
  • the device may be, for example, a device that utilizes light control by the metamaterial, particularly a device that utilizes the property of the metamaterial to respond to light of a specific wavelength or the resonance property of the metamaterial. good.
  • the metamaterial included in the device is as described in 1. above.
  • metamaterials may be any of the metamaterials mentioned in , and it may be a metamaterial in which the structural units are arranged one-dimensionally or two-dimensionally, such as one-dimensionally arranged metamaterials (particularly waveguides or (a ring-shaped resonator, more particularly a ring-shaped resonator).
  • the present disclosure provides a photonic device (eg, a component that utilizes or controls light) comprising a metamaterial according to the present disclosure.
  • the photonic device includes, for example, an optical component, an optical communication component, or an optical transmission component, but is not limited thereto.
  • the photonic device may be, for example, a photonic device that utilizes the properties of a metamaterial according to the present disclosure. Since the metamaterial according to the present disclosure has the property of exhibiting a zero refractive index for light in a predetermined wavelength range, the occurrence of chromatic aberration can be prevented using this property.
  • the present disclosure provides a photonic device without chromatic aberration, and the photonic device may have the structural units arranged one-dimensionally.
  • Such a component may be, for example, one in which a metamaterial according to the present disclosure is provided on a substrate (particularly a flat substrate).
  • the metamaterial meets the above 1.
  • the metamaterial described in 1.1 above may be used, and in particular, it may be a metamaterial with a wide wavelength bandwidth that exhibits a zero refractive index (particularly the metamaterial described in 1.1 above).
  • the metamaterial meets the above 1. It may be a metamaterial explained in , and in particular has a wide fractional bandwidth (for example, the fractional bandwidth is 2% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8%). or 9% or more).
  • such a metamaterial exhibits a zero refractive index over a wide range of wavelengths of light. Therefore, in an optical device having the metamaterial, chromatic aberration does not occur over a wide wavelength range, and it is thought that reduction of chromatic aberration as shown in the schematic diagram of FIG. 14, for example, is realized.
  • the horizontal axis indicates the wavelength of light incident on the component (particularly the metamaterial), and the vertical axis indicates aberration.
  • the present disclosure also provides an apparatus including a photonic device according to this embodiment.
  • the photonic device reduces chromatic aberration.
  • metamaterials according to the present disclosure When light is propagated within a metamaterial according to the present disclosure (particularly a waveguide according to the present disclosure), the light (electromagnetic waves) is also radiated into free space.
  • a metamaterial according to the present disclosure may be used to control its direction of emission.
  • metamaterials according to the present disclosure may be used for beam steering, eg, in beam steering devices. That is, the present disclosure provides a beam steering element having the metamaterial.
  • the metamaterial meets the above 1. It may be the metamaterial described in .
  • the metamaterial may be configured as a waveguide, in particular a waveguide having a relatively narrow wavelength bandwidth that exhibits a zero refractive index (the waveguide described in 1.2.2 above).
  • the waveguide has a large change in refractive index with respect to wavelength, that is, a large slope when the refractive index is plotted against wavelength. Therefore, as shown in FIG. 16, it is easy to change the direction of light emitted from the waveguide. As shown in the figure, the direction of the emitted light can be different depending on whether the light with the wavelength ⁇ 1 is incident or the light with the wavelength ⁇ 3 is incident.
  • the waveguide may be used in a device that performs beam steering, as described above.
  • An example of such a device is, for example, a distance measuring device (particularly a device using LiDAR technology).
  • the present disclosure also provides a device including the ring resonator described in 1.3 above.
  • the device may be, for example, a device that utilizes resonance of the ring resonator with respect to light of a predetermined wavelength, or a device that utilizes the fact that the resonance occurs under specific conditions.
  • the light When light is propagated in the ring-shaped resonator, the light is also radiated from the air hole.
  • the wavelength of the light is a wavelength that resonates with the ring-shaped resonator, all the lights emitted from the air hole have the same phase, so that constructive interference is realized. Due to the constructive interference, intense light is emitted from the center of the ring resonator. Emission of light from such a ring-shaped resonator may be utilized in a device according to the present disclosure.
  • the device may be, for example, a demultiplexer or a multiplexer.
  • the device according to the present disclosure may be configured as a duplexer or a multiplexer.
  • the demultiplexer and the multiplexer may be used, for example, for wavelength division multiplexing (WDM) communication.
  • WDM wavelength division multiplexing
  • the duplexer and the multiplexer will be described with reference to FIG. 17A.
  • the figure shows a plurality (three) of ring-shaped resonators according to the present disclosure arranged on a substrate (eg, a chip).
  • the device may include an optical waveguide (not shown) provided on a chip and a plurality of ring resonators RA, RB, and RC provided on the chip.
  • the optical waveguide guides light that is a combination of light with wavelength ⁇ 1, light with wavelength ⁇ 2, and light with wavelength ⁇ 3. The combined light then reaches the region where the three resonators are provided.
  • Each resonator may be configured to resonate with light of different wavelengths.
  • each resonator may have a different air hole radius, a different arrangement period of structural units, or a different air hole radius and Both structural unit sequence periods may be different.
  • the resonators RA to RC may have the following structure, that is, they may have different air hole radii. Due to the difference in air hole radius, the resonant wavelength of each resonator also differs as follows.
  • the resonator RA resonates with a wavelength of 1500 nm among the light traveling within the optical waveguide.
  • the number of resonators shown in the figure is three, the number of resonators provided on the chip is not limited to this, and may be, for example, one or more, two or more, or three or more. . Also, in the same figure, only one resonator that resonates with light of a certain wavelength is shown, but multiple resonators that resonate with light of a certain specific wavelength are provided on the optical waveguide. You can.
  • light that is a combination of light of multiple types of wavelengths enters the optical waveguide.
  • light having the same wavelength as the resonant wavelength of one of the resonators couples with the resonator and is emitted from the resonator.
  • light with a wavelength of 1500 nm is emitted from the center of the resonator RA.
  • light with a wavelength of 1550 nm is emitted from the center of the resonator RB
  • light with a wavelength of 1600 nm is emitted from the center of the resonator RC.
  • light having a specific wavelength is emitted from each resonator, and the light is demultiplexed.
  • the ring resonator of the present disclosure may be included in a wavelength division multiplexing system.
  • the device of the present disclosure may be configured as a wavelength division multiplexing system as a component demultiplexer or multiplexer.
  • the branching filter may include, for example, the ring resonator of the present disclosure and an optical waveguide that guides light to the resonator. As described above, light having a specific wavelength is emitted from the corresponding resonator by the optical waveguide and the resonator. Further, a configuration example of a wavelength division multiplexing system is shown in FIG. 17B.
  • the system 40 shown in the figure includes, for example, a light source section 41 that emits multiplexed light, an optical waveguide 42 that allows the light to reach a resonator 43, a resonator 43 that demultiplexes the light, and a resonator 43 that demultiplexes the light. It may include a detection section 44 that detects the light.
  • the light source section includes, for example, one or more LEDs or lasers.
  • the multiplexed light may be multiplexed, for example, by a multiplexer.
  • the optical waveguide may include, for example, an optical fiber.
  • the resonator may be configured to split the light as described above, and may be configured as an element of a splitter. That is, the system may include a duplexer with a resonator according to the present disclosure.
  • the detection unit may include one or more photodetectors, cameras, or the like.
  • the present disclosure also provides a laser light source comprising a ring-shaped resonator according to the present disclosure.
  • Light emitted from the air hole of the ring-shaped resonator has the same phase. Moreover, the amplitudes are also almost the same. Therefore, the ring-shaped resonator can be used in a laser light source, particularly in a laser generator.
  • FIG. 18 shows a schematic block diagram of the components included in the laser light source.
  • the laser light source 50 includes, for example, a light source section 52 (also referred to as an excitation source) that emits excitation light in addition to a laser generator 51, which will be described below with reference to the drawings. It's okay.
  • the laser generator 51 will be explained below.
  • the excitation source 52 may be appropriately selected by those skilled in the art depending on, for example, the type of gain medium.
  • the laser generator may include a gain medium provided with the ring resonator.
  • a schematic diagram of an example of a laser generator in this embodiment is shown in FIG. 19A.
  • a laser generator 51A shown in the figure includes a ring resonator 53 of the present disclosure embedded in a gain medium 56.
  • the ring resonator 53 may be as described above.
  • the gain medium may be provided on the base material 55, for example, on the SiO 2 film 54 on the base material 55.
  • the gain medium may be, for example, perovskite, but is not limited thereto.
  • the laser light source may have a ring-shaped resonator formed from a gain medium.
  • FIG. 19B A schematic diagram of an example of a laser generator in this embodiment is shown in FIG. 19B.
  • the ring-shaped resonator 57 itself may be formed of a gain medium.
  • the ring-shaped resonator 57 formed from a gain medium may be provided on the base material 55, for example, on the SiO 2 film 54 on the base material 55.
  • the gain medium may be, for example, perovskite, but is not limited thereto.
  • light at a wavelength absorbed by the gain medium is incident on the ring resonator. When the power of the incident light exceeds the laser threshold, the laser light is emitted.
  • Ring-shaped resonators according to the present disclosure may be used in sensors, particularly in biosensors. That is, the present disclosure also provides a sensor (particularly a biosensor) including the ring-shaped resonator.
  • a sensor particularly a biosensor
  • constructive interference by the ring resonator is no longer realized due to a change in the surface state of the ring resonator.
  • the change in the state of the surface may be, for example, a slight change such as binding or cleavage of biomolecules or a change in the structure of biomolecules. Even such slight changes can destroy the constructive interference. Therefore, the above change can be detected by detecting the destruction of the constructive interference.
  • a biosensor according to the present disclosure may be configured to detect changes in constructive interference of the ring resonator.
  • FIG. 20 shows a schematic block diagram of the components included in the biosensor.
  • the biosensor 60 shown in the figure includes a light source section 61, an optical waveguide 62, a reaction section 63, and a detection section 64.
  • the light source section 61 may include, for example, one or more LEDs or lasers.
  • the light emitted from the light source section reaches the optical waveguide 62.
  • the optical waveguide 62 guides the light to the reaction section 62.
  • the optical waveguide 62 may include, for example, an optical fiber.
  • the light emitted from the light source section 61 may be adjusted so that the constructive interference is achieved.
  • the light may be, for example, light that resonates with the ring-shaped resonator when it is incident on the ring-shaped resonator.
  • the reaction section 62 may be configured so that the change described above occurs, and further may be configured so that the change can be detected.
  • the reaction section may include a ring-shaped resonator according to the present disclosure and a biomolecule reaction layer (also referred to as a biolayer) provided on the ring-shaped resonator.
  • the biomolecule reaction layer may be a layer containing a detection substance that interacts with the biomolecule to be detected.
  • the detection substance may be immobilized on the layer.
  • the detection substance may be, for example, a substance that binds to the biomolecule, a substance that is cleaved by the biomolecule, or a substance that undergoes a structural change by the biomolecule, and more specifically, a substance that is a pharmaceutical ingredient (for example, they may be pharmaceutical compounds or drug candidate compounds) or biological components (such as proteins, nucleic acids, peptides, sugars, or lipids).
  • the detection unit 63 may include, for example, a photodetector or an image sensor (such as a camera) that detects the light emitted from the ring-shaped resonator. Further, the detection unit 63 may include a spectrometer. The detection unit 63 may be configured to be able to detect destruction of the constructive interference. More specifically, with the destruction of the constructive interference, the light that reaches the detection unit changes (the light decreases, or the characteristics of the light (for example, wavelength, phase, etc.) change). The detection unit may be configured to detect the change. Information such as the refractive index or absorption wavelength or thickness of the biolayer may be obtained by the change.
  • a in FIG. 21 shows the light detected before the constructive interference is destroyed, and B in the same figure shows the state after the constructive interference is destroyed. As shown in the figure, the originally detected light disappears due to the destruction of constructive interference.
  • a biosensor according to the present disclosure may be configured to detect an interaction between a biomolecule and a detection molecule by detecting such quenching.
  • a ring resonator according to the present disclosure may be used in a device for chiral sensing or chiral enhancement. That is, the present disclosure also provides a chiral detection device or a chiral enhancement device including the ring-shaped resonator.
  • phase-advanced propagation e.g., refractive index n ⁇ 0.05
  • phase-delayed propagation e.g., refractive index n ⁇ -0.05
  • phase-forward propagation for example, refractive index n ⁇ 0.05
  • the phase of the light emitted from the air hole is slightly shifted forward compared to the propagation direction, so it is generates a magnetic field dipole, which is observed to rotate clockwise, as shown on the left of FIG. 22A.
  • the phase of the light emitted from the air hole is slightly delayed compared to the propagation direction, so the ring-shaped resonator A magnetic field dipole is generated at the center, which is observed to be rotating counterclockwise, as shown on the right side of FIG. 22A.
  • a certain right-handed molecule can resonate with a counterclockwise magnetic field dipole.
  • the right-handed molecule if the right-handed molecule is coated on the ring-shaped resonator and light of a wavelength that causes phase delay propagation is incident on the ring-shaped resonator, the right-handed molecule will resonate in a dipole.
  • the right-handed molecule can resonate with a counterclockwise magnetic field, but cannot resonate when light with a wavelength that causes phase-forward propagation is incident on the ring-shaped resonator.
  • chiral molecules can resonate only with an electromagnetic field in a specific direction of rotation, so chiral sensing can be realized by detecting the presence or absence of resonance.
  • FIG. 22B shows a schematic block diagram of the components included in the device.
  • the device 70 shown in the figure includes a light source section 71, an optical waveguide 72, a reaction section 73, and a detection section 74.
  • the light source section 71 may include, for example, one or more LEDs or lasers.
  • the light emitted from the light source section reaches the optical waveguide 72.
  • the optical waveguide 72 guides the light to the reaction section 72.
  • the optical waveguide 72 may include, for example, an optical fiber.
  • the light emitted from the light source section 71 is light that causes resonance when irradiated with a predetermined molecule (particularly a right-handed molecule or a left-handed molecule). That is, when predetermined molecules are present in the reaction part 72, the light irradiation can cause resonance.
  • the reaction section 72 may be configured to generate predetermined molecules, or may be configured so that predetermined molecules are immobilized.
  • the detection unit 73 may be configured to be able to detect the resonance, for example, may be configured to detect light generated by the resonance.
  • the detection unit may include, for example, a photodetector or an imaging device (such as a camera) as an element that detects the resonance.
  • the detection section may include a spectrometer.
  • the present disclosure also provides a method for manufacturing a metamaterial.
  • the manufacturing method includes a structure forming step of forming a structure in which structural units having air holes are arranged.
  • the structure is formed such that the arrangement period of the structural units is approximately the same as the wavelength of light propagated within the structure.
  • the manufacturing method may further include a structural design step of designing a structure in which structural units having air holes are arranged.
  • the structure is designed such that the arrangement period of the structural units is approximately the same as the wavelength of light propagated within the structure.
  • a simulation as described in a later example may be performed, or a simulation may be performed to determine the propagation inside the structure when light of a predetermined wavelength is incident on a predetermined metamaterial. Measurements of the wavelength of light may also be made. Based on the results of the simulation or the measurement, the structure may be adjusted so that the arrangement period of the structural units is approximately the same as the wavelength of light propagated within the structure. That is, the present disclosure also provides a method for designing a metamaterial.
  • the design method may include the structural design process described above.
  • structural design based on the expression of Dirac Cone mode does not need to be performed.
  • the design method according to the present disclosure does not need to include the step of confirming the expression of Dirac Cone mode.
  • the structure may be formed by, for example, an electron beam lithography method. Further, in the structure forming step, a lithography technique known in the art may be applied, and those skilled in the art can appropriately select a manufacturing method depending on the desired metamaterial.
  • FIG. 12A is an example of a flow diagram of the creation method.
  • FIG. 12B is a schematic diagram for explaining the creation method.
  • a substrate 101 having a SiO 2 film 102 is prepared.
  • the substrate 101 may be, for example, a silicon substrate, but may also be a resin substrate.
  • the thickness of the membrane 102 may be, for example, 1 ⁇ m to 5 ⁇ m, particularly 2 ⁇ m to 4 ⁇ m.
  • the material of the film 102 is not limited to SiO 2 .
  • the film 102 may be formed of, for example, a material that exhibits a low refractive index and low absorption for light in a desired wavelength range.
  • the film 102 may be made of, for example, any one of CaF 2 , Al 2 O 3 , and various metal oxides. These embodiments are suitable for example for zero refractive index development in near-infrared and mid-infrared light.
  • a resist film 103 is formed on the film 102.
  • the resist film is formed by, for example, applying an electron beam resist dissolved in a solvent to a predetermined film thickness by spin coating, and then forming the film.
  • the film thickness after the film formation may be, for example, 200 nm to 600 nm, preferably 300 nm to 500 nm.
  • the electron beam resist may be, for example, a resist containing a polymer of ⁇ -chloroacrylic acid ester and ⁇ -methylstyrene.
  • ZEP520A Natural Zeon Co., Ltd.
  • the solvent may be, for example, N-amyl acetate.
  • the resist film may be cleaned with, for example, methyl isobutyl ketone and isopropyl alcohol. After cleaning in this manner, the next pattern is drawn.
  • step S3 a pattern is drawn using an electron beam so that the structure of the metamaterial according to the present disclosure is drawn.
  • the pattern drawing may be formed to form a structure of a metamaterial according to the present disclosure, particularly such that the structural units are arranged one-dimensionally or two-dimensionally.
  • a waveguide structure 104 in which the structural units are arranged one-dimensionally is depicted.
  • a dielectric or semiconductor film 105 is laminated by vapor deposition.
  • the thickness of the film 105 after formation may be, for example, 100 nm to 300 nm, preferably 150 nm to 250 nm.
  • the dielectric material forming the film 105 may be, for example, Si, but is not limited thereto.
  • the film 105 may be formed of, for example, a material that exhibits a low refractive index and low absorption for light in a desired wavelength range.
  • the dielectric forming film 105 may be, for example, Ge, Si 3 N 4 , ZnS, or GaN.
  • the resist film in the waveguide structure 104 portion has been removed by the pattern drawing in step S3.
  • step S4 for example, Si is deposited on the portion where the resist film has been removed so as to form the waveguide structure 104.
  • a lift-off process using dimethylacetamide is performed on the laminated substrate at room temperature.
  • a metamaterial according to the present disclosure is manufactured.
  • the metamaterial may be formed from a material such as a dielectric or a semiconductor, and may be formed from, for example, a Si-based material or a Ge-based material.
  • An example of such a material may be Si, as mentioned above, and it may also be Ge, Si 3 N 4 , ZnS, or GaN.
  • the metamaterial according to the present disclosure may also be provided on a substrate, as described above, and more particularly on a film provided on a substrate.
  • the refractive index of the metamaterial (waveguide) shown in FIG. 23 was simulated under the conditions shown in Table 1 below. The simulation was performed using FullWAVE (Synopsys Optical Solutions Group) using a finite-difference time-domain method.
  • the waveguide WG shown in the figure was assumed to exist on the SiO 2 substrate S.
  • the substrate S had a thickness of 3 ⁇ m and a refractive index of n ⁇ 1.44.
  • the refractive index when TE polarized light (electric field is in the horizontal (x-axis) direction) is incident on the waveguide WG along the y-axis was simulated.
  • the light was introduced from one side (the left end in the figure) of the waveguide WG toward the arrangement direction.
  • the refractive index was measured as follows. When light propagates in a zero-index waveguide, at the same time light (ie, electromagnetic waves) is radiated into free space. To represent electromagnetic waves, the phase (Hz phase) of the magnetic field is shown, for example, as shown in FIG. 24. Based on the state of the magnetic field, the refractive index is measured as follows. First, the effective wavelength ( ⁇ eff ) is calculated. ⁇ eff is the distance between the same phases of the radiated waves, i.e. it is specified as the distance between two nodes of the waves, as shown in FIG. The effective refractive index n eff was calculated using Equation 5 below. In Equation 5, ⁇ is the wavelength of the incident light.
  • ⁇ eff is the distance between the same phases of the radiation waves, as described above. Note that when light is propagated so that the radiated wave propagates in the opposite direction to the incident light, n eff becomes a negative number. For example, from the magnetic field phase diagram of the simulation result shown in FIG. 24, the distance ⁇ eff between the two nodes is specified.
  • Table 1 below shows simulation results under each condition.
  • material indicates the material of the waveguide.
  • the “period” is the arrangement period P of the structural units of the waveguide.
  • Rivius is the radius R of the air hole that each structural unit of the waveguide has. Ru.
  • Thiickness is the thickness T of the waveguide.
  • the fractional bandwidth is the fractional bandwidth specified as described above.
  • Widelength of propagated light is the wavelength ⁇ WG of the light incident on the waveguide when it is propagated within the waveguide, and this means that the phase of the magnetic field is the same within the waveguide. It is the distance between two locations.
  • the fractional bandwidth when the material is Si is about 4.8%, and that zero refractive index occurs over a very wide range of incident light wavelengths.
  • the effective refractive index neff can be set to 0 when the incident light wavelength is 1550 nm. That is, by matching the arrangement period P and wavelength ⁇ WG , and further adjusting the material selection and air hole radius R, zero refractive index can be achieved at a desired incident light wavelength.
  • the ring-shaped resonator also exhibited a zero refractive index when the arrangement period P of the structural units and the wavelength ⁇ WG of the propagated light were the same.
  • a zero refractive index was expressed in any case where the arrangement period P was 640 nm, 660 nm, or 680 nm (see especially the part surrounded by the ellipse). The occurrence of zero refractive index was also confirmed from the analysis results, as shown in FIG. 27, for example. Further, in any case where the arrangement period P was 640 nm, 660 nm, or 680 nm, the wavelength range of the incident light in which the zero refractive index was expressed was wide, that is, the fractional bandwidth was wide.
  • the range of incident light wavelengths that exhibited a zero refractive index also changed. That is, by adjusting the air hole radius R, the wavelength of incident light that exhibits a zero refractive index can be adjusted.
  • the air hole radius R was 0.125 ⁇ m and the arrangement period P was 640 nm, 660 nm, or 680 nm
  • zero refractive index was expressed over a wide range of incident light wavelengths. That is, zero refractive index was achieved even when various arrangement periods were adopted for one specific air hole radius.
  • the air hole radius R was changed to 0.150 ⁇ m or 0.175 ⁇ m, zero refractive index was exhibited over a wide range of incident light wavelengths with respect to various arrangement periods P.
  • a zero refractive index occurs only at one specific ratio of the air hole radius to the array period.
  • a zero refractive index is achieved with respect to one specific air hole radius even if various arrangement periods are employed.
  • This figure is a plot with the horizontal axis representing the incident light wavelength and the refractive index representing the vertical axis. As shown in the plot, the fractional bandwidth was about 3.9% for the waveguide formed from Ge. The fractional bandwidth of the waveguide formed from Si was approximately 5.0. Further, the fractional bandwidth of the waveguide formed from Si 3 N 4 was about 9.7%.
  • the fractional bandwidth was wide for all materials, and even the Ge waveguide with the smallest fractional bandwidth was about 3.9%. Furthermore, regarding Si 3 N 4 , which has the largest specific bandwidth, it was about 9.7%, which was about twice that of Si. That is, the waveguide according to the present disclosure can be configured to have such a wide fractional bandwidth.
  • the slope of the change in refractive index with the wavelength of the incident light was calculated using the plot mentioned in 4.4 above. The calculation results are shown in FIG. As shown in the figure, the slope was ⁇ 0.00406 for the waveguide made of Ge. For waveguides formed from Si, the slope was -0.003. Further, for the waveguide formed from Si 3 N 4 , the slope was -0.00146.
  • the slope changes depending on the material.
  • Ge has the largest absolute value of the slope among the above three materials.
  • the direction of light emitted from the waveguide (for example, the direction in the yz plane as shown in the figure) changes greatly depending on the change in the wavelength of the incident light.
  • the arrangement direction of the structural units in the waveguide is the y direction
  • the direction perpendicular to the base material surface is the z direction
  • the radiation direction of light in the yz plane changes depending on the wavelength of light incident on the waveguide.
  • the radiation direction can be, for example, forward from the waveguide, directly above the waveguide, or from the waveguide in the yz plane. It can be changed backwards.
  • Waveguides with such properties are particularly suitable for performing beam steering, for example. That is, the waveguide may be used, for example, in a device that performs beam steering, and may be used, for example, in a ranging device, in particular in a LiDAR sensor.
  • the absolute value of the slope may be, for example, 0.001 or more, particularly 0.002 or more, 0.003 or more, or 0.004 or more. good.
  • the metamaterial having a small inclination is suitable for suppressing chromatic aberration.
  • using the metamaterial it is possible to realize an optical device without chromatic aberration. It is considered that when incident light in a predetermined wavelength range enters, chromatic aberration reduction as shown in FIG. 14, for example, is realized.
  • FIG. 36 when light L of a specific wavelength (indicated by an arrow in the figure) is emitted from a metamaterial ZIM that exhibits a zero refractive index for light of a specific wavelength, the light is The light is emitted perpendicularly from the surface of the metamaterial.
  • the absolute value of the slope may be, for example, 0.005 or less, particularly 0.004 or less, 0.003 or less, or 0.002 or less. good.
  • FIG. 30 shows simulation results of magnetic field distribution when the arrangement period P and the wavelength ⁇ WG of the propagated light are the same.
  • FIG. 31 shows simulation results when the array period P is larger than the wavelength ⁇ WG of the propagated light.
  • FIG. 32 shows simulation results when the array period P is smaller than the wavelength ⁇ WG of the propagated light.
  • the wavelength ⁇ WG of the light propagated in the waveguide becomes shorter, and conversely, as the wavelength of the incident light becomes longer, the wavelength of light propagated in the waveguide becomes shorter.
  • the wavelength ⁇ WG of the light also becomes longer. Therefore, it can be seen that for a waveguide having a specific arrangement period P, zero refractive index can be achieved by adjusting the wavelength of the incident light.
  • the degree of change in the wavelength ⁇ WG of light propagated in the waveguide is also different between the Si 3 N 4 waveguide and the Si waveguide.
  • the wavelength ⁇ WG of the propagated light becomes 77 nm shorter or 80 nm longer.
  • the wavelength ⁇ WG of the propagated light becomes 95 nm shorter or 116 nm longer.
  • the degree of change in the wavelength ⁇ WG of light propagated within the waveguide varies depending on the material of the waveguide. That is, by selecting the material forming the waveguide, the wavelength ⁇ WG of light propagated within the waveguide can be adjusted. Furthermore, by selecting the material, the degree of change in the wavelength ⁇ WG depending on the wavelength of the incident light can be adjusted.
  • the ring-shaped resonator has excellent wavelength selectivity. Therefore, for example, the ring-shaped resonator can be used in a duplexer or a multiplexer. It is also believed that the ring-shaped resonator can be used in biosensors, chiral sensing, chiral amplification, and the like.
  • the present disclosure can also adopt the following configuration.
  • [1] It has a structure in which structural units having air holes are arranged, the arrangement period of the structural units is approximately the same as the wavelength of light propagated within the structure; Metamaterial.
  • [2] The metamaterial according to [1], wherein the metamaterial exhibits a zero refractive index.
  • [3] The metamaterial according to [1] or [2], wherein the air hole has a circular or divided circular shape.
  • [5] The metamaterial according to any one of [1] to [4], wherein the metamaterial exhibits a zero refractive index for infrared light.
  • the metamaterial according to [9] wherein the arrangement period of the structural units is 800 nm or more.
  • a photonic device comprising the metamaterial according to any one of [1] to [3].
  • the photonic device according to [15], wherein the photonic device is a beam steering element.
  • the metamaterial according to any one of [1] to [14], An apparatus comprising one or more of a light source section that emits light incident on the metamaterial, an optical waveguide that guides the light to the metamaterial, and a light receiving section that receives light emitted from the metamaterial.
  • [18] comprising a structure forming step of forming a structure in which structural units having air holes are arranged, and in the structure forming step, the arrangement period of the structural units is approximately the same as the wavelength of light propagated within the structure.
  • the structure is formed as follows.
  • Method of manufacturing metamaterials comprising a structural design step of designing a structure in which structural units having air holes are arranged, and in the structural designing step, the arrangement period of the structural units is approximately the same as the wavelength of light propagated within the structure.
  • the structure is designed so that How to design metamaterials.
  • the configurations, methods, processes, shapes, materials, numerical values, etc. mentioned in the above-mentioned embodiments and examples are merely examples, and different configurations, methods, processes, shapes, materials, and values may be used as necessary. Numerical values etc. may also be used. Further, the configurations, methods, processes, shapes, materials, numerical values, etc. of the embodiments and examples described above can be combined with each other without departing from the gist of the present disclosure.
  • a numerical range indicated using “ ⁇ ” indicates a range that includes the numerical values written before and after " ⁇ " as the minimum value and maximum value, respectively.
  • the upper limit or lower limit of the numerical range of one step may be replaced with the upper limit or lower limit of the numerical range of another step.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本開示は、より実用的な又はより有用なメタマテリアルを提供することを目的とする。 本開示は、エアホールを有する構造単位が配列されている構造を有し、前記構造単位の配列周期が、当該構造内を伝搬される光の波長と略同一である、メタマテリアルを提供する。本開示は、前記メタマテリアルを有するフォトニックデバイスも提供する。前記メタマテリアルと、前記メタマテリアルへ入射する光を出射する光源部、前記メタマテリアルへ光を導く光導波路、及び、前記メタマテリアルから出射した光を受光する受光部のうちの1つ以上とを備えている装置も提供する。

Description

メタマテリアル、フォトニックデバイス、装置、メタマテリアルの製造方法、及びメタマテリアルの設計方法
 本開示は、メタマテリアル、メタマテリアルを有するフォトニックデバイス及び装置、メタマテリアルの製造方法、並びにメタマテリアルの設計方法に関する。
 ゼロ屈折率材料は、正の屈折率を有する従来材料と異なり、その特異な屈折特性および無限大の波長を発現するという特徴を有する。そのため、ゼロ屈折率材料は、例えば光回路の超小型化、量子ネットワークの効率向上、及び、ビームステアリング素子の解像度又は視野角向上など、各種局面への応用が期待されている。
 ゼロ屈折率材料の例として、金属、光ドープ、又は金属メタマテリアルを用いたゼロ屈折率材料がこれまで報告されている。また、Dirac coneモードを用いたゼロ屈折率材料も報告されている。例えば、下記非特許文献1には、Dirac Cone分散に基づく導波路が開示されている。当該文献には、当該導波路が、ゼロ屈折率及び無限大の波長を発現することが示されている。
Direct Observation of Phase-Free Propagation in a Silicon Waveguide, Orad Reshef et al., ACS Photonics, 2017, 4 (10), 2385-2389
 ゼロ屈折率材料の例として、金属、光ドープ、又は金属メタマテリアルを用いたゼロ屈折率材料が挙げられる。しかしながら、これらゼロ屈折率材料は、材料に起因するオーミック損失を有し、例えばフォトニックデバイスにおいて利用する際の効率が非常に低いという課題がある。
 当該課題を解決するためのゼロ屈折率材料として、近年、Dirac coneモードを用いたゼロ屈折率材料が報告されている。当該ゼロ屈折率材料は、Dirac coneゼロ屈折率メタマテリアル(DCZIM:Dirac cone zero-index metamaterial)とも呼ばれる。DCZIMは、例えば誘電体あるいは半導体から形成されることができ、このためオーミック損失を有さず、光集積回路への適合性が高いという有用性を持つ。
 しかしながら、DCZIMに関する先行研究の多くは2次元結晶構造に基づくものであり、例えば光回路としての実装上有用な1次元導波路への適用は非常に限られている。
 本開示は、より実用的な又はより有用なメタマテリアルを提供することを目的とする。また、本開示は、そのようなメタマテリアルを得るための手法を提供することも目的とする。
 本開示は、
 エアホールを有する構造単位が配列されている構造を有し、
 前記構造単位の配列周期が、当該構造内を伝搬される光の波長と略同一である、
 メタマテリアルを提供する。
 前記メタマテリアルは、ゼロ屈折率を発現するメタマテリアルであってよい。
 前記エアホールは、円形又は分割された円形の形状を有しうる。
 前記メタマテリアルの比帯域幅は2%以上であってよい。
 前記メタマテリアルは、赤外光に対してゼロ屈折率を発現するものであってよい。
 前記メタマテリアルは、誘電体材料又は半導体材料から形成されていてよい。
 前記構造単位の配列周期は、300nm~2500nmであってよい。
 前記エアホールの半径は、15nm~300nmであってよい。
 前記メタマテリアルは、近赤外光に対してゼロ屈折率を発現し、且つ、比帯域幅が2%~15%であってよい。
 前記構造単位の配列周期は、800nm以上であってよい。
 前記メタマテリアルは、近赤外光に対してゼロ屈折率を発現し、且つ、比帯域幅が2%~6%であってよい。
 前記構造単位の配列周期は、800nm以下であってよい。
 前記構造単位が、一次元的に配列されていてよい。
 前記構造単位が、リングを形成するように配列されていてよい。
 また、本開示は、前記メタマテリアルを有するフォトニックデバイスも提供する。
 前記フォトニックデバイスは、ビームステアリング素子であってよい。
 また、本開示は、
 前記メタマテリアルと、
 前記メタマテリアルへ入射する光を出射する光源部、前記メタマテリアルへ光を導く光導波路、及び、前記メタマテリアルから出射した光を受光する受光部のうちの1つ以上と を備えている装置も提供する。
 前記装置は、分波器、合波器、レーザ、センサ、又は、キラルセンシング装置若しくはキラルエンハンスメント装置であってよい。
 また、本開示は、
 エアホールを有する構造単位が配列されている構造を形成する構造形成工程を含み、 前記構造形成工程において、前記構造単位の配列周期が、前記構造内を伝搬される光の波長と略同一となるように前記構造が形成される、
 メタマテリアルの製造方法も提供する。
 また、本開示は、エアホールを有する構造単位が配列されている構造を設計する構造設計工程を含み、
 前記構造設計工程において、前記構造単位の配列周期が、前記構造内を伝搬される光の波長と略同一となるように前記構造が設計される、
 メタマテリアルの設計方法も提供する。
本開示に従うメタマテリアルの構造の例を示す模式図である。 本開示に従うメタマテリアルの構造の例を示す模式図である。 構造単位がリングを形成するように配列された構造を有する、本開示に従うメタマテリアルの例を示す模式図である。 エアホールからの光の射出を説明するための模式図である。 磁界分布のシミュレーション結果を示す図である。 Dirac Coneモードが発現しない構造の一部としての導波路においてもゼロ屈折率が発現することを説明するための図である 本開示に従うメタマテリアルの模式的な構成例を示す図である。 メタマテリアルの厚さについて説明するための図である。 本開示に従うメタマテリアルの模式的な構成例を示す図である。 本開示に従うリング型共振器の構造の例を示す模式図である。 本開示に従うリング型共振器の構成例を示す模式図である。 メタマテリアルの作成方法のフロー図の一例である。 作成方法を説明するための模式図である。 本開示に従うメタマテリアルが発現するゼロ屈折率を説明するためのグラフである。 本開示に従うメタマテリアルから形成されたフォトニックデバイスにより実現されると考えられる色収差低減の模式図である。 本開示に従うメタマテリアルの屈折率を説明するための図である。 ビームステアリングを説明するための図である。 本開示に従うリング型共振器を有する分波器の構成例を説明するための図である。 WDMシステムの構成例を示すブロック図である。 レーザ光源の構成例のブロック図である。 レーザ発生装置の例を説明するための模式図である。 レーザ発生装置の例を説明するための模式図である。 バイオセンサの構成例のブロック図である。 建設的干渉が破壊を説明するための図である。 磁場ダイポールを説明するための図である。 キラルセンシング又はキラルエンハンスメントのために用いられる装置の構成例のブロック図である。 シミュレーションの対象となったメタマテリアルを示す図である。 磁場の位相を説明するための図である。 シミュレーションによって特定された屈折率を示すグラフである。 ゼロ屈折率が発現に関するシミュレーションの結果を示す図である。 ゼロ屈折率の発現を示す解析結果を示す図である。 種々の入射光波長における屈折率のシミュレーション結果及び比帯域幅を示す図である。 屈折率の変化の傾きの算出結果を示す図である。 磁界分布のシミュレーション結果を示す図である。 磁界分布のシミュレーション結果を示す図である。 磁界分布のシミュレーション結果を示す図である。 導波路内を伝搬される光の波長λWGについてのシミュレーション結果を示す図である。 シミュレーションの対象となったリング共振器の模式図である。 リング共振器に関するシミュレーションの結果を示す図である。 ゼロ屈折率材料から出射する光の方向を説明するための模式図である。 波長に応じた光の放射方向の変化を説明するための模式図である。 波長に応じた光の放射方向の変化を説明するための模式図である。 波長に応じた光の放射方向の変化を説明するための模式図である。
 以下、本開示を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本開示の代表的な実施形態を示したものであり、本開示の範囲はこれらの実施形態のみに限定されない。
 本開示について、以下の順序で説明を行う。
1.第1の実施形態(メタマテリアル)
1.1 本開示の概要
1.2 構成例(導波路)
1.2.1 広帯域ゼロ屈折率導波路
1.2.2 狭帯域ゼロ屈折率導波路
1.3 リング型共振器
2.第2の実施形態(フォトニックデバイス及び装置)
2.1 色収差発生が無いことを利用したフォトニックデバイス
2.2 放射方向の制御を利用したフォトニックデバイス
2.3 リング型共振器を利用した装置
2.3.1 波長分割多重
2.3.2 レーザ
2.3.3 センサ
2.3.4 キラルセンシング又はキラルエンハンスメント
3.第3の実施形態(製造方法及び設計方法)
3.1 製造方法
3.2 構造形成工程の例
4.実施例
4.1 導波路におけるゼロ屈折率の発現
4.2 リング型共振器におけるゼロ屈折率の発現
4.3 配列周期とエアホール半径のバリエーション
4.4 比帯域幅
4.5 屈折率の変化の傾き
4.6 参考例
4.7 入射光波長と導波路内を伝搬される光の波長λWGとの間の関係
4.8 リング型共振器に関するシミュレーション
1.第1の実施形態(メタマテリアル)
1.1 本開示の概要
 DCZIMを用いたゼロ屈折率導波路を設計するために、Dirac Coneモードを発現する2次元結晶構造をまず設計し、そして、これを1次元構造化することが考えられる。ここで、Dirac Coneモードを発現する2次元結晶構造の設計のためには複雑且つ正確なバンド計算が必要であり、その設計はしばしば困難である。そこで、ゼロ屈折率導波路をより簡便に設計することができれば、ゼロ屈折率導波路をより利用しやすくなると考えられる。
 また、このように設計された構造はDirac Coneモード発現のための各種条件(例えばエアホール構造半径、周期、厚み、及び駆動波長の間における関係性など)を満たすことが求められる。このように設計される構造は、製造プロセス上実現困難なものであったりするなど、しばしば非実用的である。そこで、より実用的なゼロ屈折率導波路が求められている。
 また、従来のゼロ屈折率導波路はその材料がSiのみに限定されており、駆動波長の帯域幅も限定されている。これに伴い、ゼロ屈折率導波路が応用される選択肢も限定されている。例えばGeなどの誘電体材料への適用例は存在しない。そこで、前記帯域幅を広げることが望ましいと考えられる。また、他の材料を用いることができれば駆動波長の帯域幅を広げられる可能性も出てくる。また、帯域幅の拡大や材料の選択肢の増加は、ゼロ屈折率導波路をより広い用途に応用することも可能とすると考えられる。
 本発明者は、導波路内を伝搬する光の波長と導波路の構造単位周期(例えばエアホール周期)が一致するように構成されたメタマテリアルにより、ゼロ屈折率を発現させることができることを見出した。当該メタマテリアルの設計において、従来手法で必須とされていたDirac Coneモード発現のためのバンド計算は不要である。そのため、当該メタマテリアルは、より簡便に設計することができる。
 また、当該メタマテリアルにおいてゼロ屈折率を発現させるためには、構造単位周期が、導波路内を伝搬する光の波長と一致すればよい。そのため、従来手法において考慮されていた条件(例えばエアホール半径と周期との間の関係など)は、本開示に従うメタマテリアルの設計において考慮される必要が無く、任意のエアホール半径にてゼロ屈折率を発現させることができる。そのため、本開示に従うメタマテリアルはより実用的であり、さらに、製造プロセスの観点においても有利である。
 加えて、本開示において、従来用いられてきたSi以外の材料を用いることができ、例えば各種の誘電体材料又は半導体材料を用いても、本開示に従うメタマテリアルは簡便に設計することができ、さらに種々の材料が用いられてもゼロ屈折率を発現することができる。
 また、誘電体材料又は半導体材料の種類に応じて、ゼロ屈折率を発現する波長範囲(帯域幅)を自由に制御することが可能となり、各種の応用に応じた帯域幅の実現が可能となる。例えば、本開示において、種々の誘電体材料又は半導体材料を利用することができる。例えば誘電体材料としてGeが用いられる場合は、Siの場合と比べ、より狭帯域でゼロ屈折率が実現される。また、Siが用いられる場合は、Siの場合と比べ、より広帯域でゼロ屈折率を実現することができる。
 また、本開示に従うメタマテリアルは、一次元的に配列された構造単位がリングを形成しているリング型共振器として利用されてもよい。すなわち、本開示に従い設計されたゼロ屈折率導波路はリング共振器として利用されてよい。当該リング共振器は、リング中央からのコヒーレント光を発振することが可能であり、例えばシングルモードレーザ及び合波器などのフォトニックデバイス(特には光回路素子)として利用されてよい。
 本開示に従うメタマテリアルの構造の例を、図1を参照しながら説明する。同図には、本開示に従うメタマテリアル10の構造の例と、当該メタマテリアルを形成する構造単位の拡大図が示されている。同図に示されるメタマテリアル10は、エアホール11―1及び11-2を有する構造単位12が一次元的に配列された構造を有する。
 当該構造単位は、半円形状の2つのエアホール11―1及び11-2が設けられた矩形の形状を有する。当該2つのエアホール11―1及び11-2は、当該矩形の対向する2つの辺にそれぞれ設けられている。
 メタマテリアル10は、同図に示されるように、当該構造単位は一次元的に配列されており、例えば直線を形成するように配列されてよい。代替的には、当該構造単位は、曲線を形成するように配列されてもよい。メタマテリアル10の構造単位12は、前記エアホール11-1及び11-2が当該直線又は曲線の側面に並ぶように、当該構造単位は配列されている。
 メタマテリアル10には、同図に示されるように、例えば光(incident light)が一方の端から入射される。そして、当該光は、前記構造単位の配列方向に沿って、当該メタマテリアル内を伝搬される。当該入射した光の波長は、当該光が当該メタマテリアル内を伝搬される間は、入射する前と比べて短くなる。
 本発明者は、前記構造単位の配列周期を、前記メタマテリアル内を伝搬する光の波長と一致させることによって、前記メタマテリアルにおいてゼロ屈折率が発現することを見出した。すなわち、図2に示されるように、前項構造単位の配列周期P(Period)が、前記メタマテリアル内を伝搬する光の波長λWGと略同一であることによって、前記メタマテリアルはゼロ屈折率を発現する。すなわち、「配列周期P=波長λWG」の条件を満たすことによって、ゼロ屈折率が発現する。
 ここで、前記配列周期Pは、前記メタマテリアル内における前記光の伝搬方向における前記構造単位のサイズを意味してよい。前記配列周期Pは、例えば配列された複数の前記構造単位の同じ部位の間隔を意味してよい。
 前記波長λWGは、前記メタマテリアル内を伝搬する光の波長である。当該波長λWGは、通常は、前記メタマテリアルへの入射光(すなわち前記メタマテリアルに到達する前の光)よりも短い。
 本明細書内において、前記配列周期Pと前記波長λWGとが「略同一」であるとは、これらの値が全く同じであることに加え、これらの値が、メタマテリアルがゼロ屈折率を発現することができるようにこれらの値が近いこと(特には特定の波長の光に対してメタマテリアルがゼロ屈折率を発現することができるようにこれらの値が近いこと)これらの値が近いということを包含する。
 また、上記のとおりにゼロ屈折率が発現する場合において、波長λWGは、前記エアホールの中心の間隔D(すなわち、隣り合う2つの構造単位が夫々有するエアホールの中心の距離)とも略一致している。前記エアホールの中心の間隔Dは、配列周期Pに相当するものでもある。すなわち、本開示のメタマテリアルは、前記エアホールの中心の間隔Dが、前記メタマテリアル内を伝搬する光の波長λWGと略同一であるように構成されていてもよい。「波長λWG=前記間隔D」の条件が満たされることによって、ゼロ屈折率が発現する。本開示のメタマテリアルは、「配列周期P=波長λWG=前記間隔D」を満たすように構成されてよい。
 前記間隔Dは、構造単位の配列方向(すなわち光の伝搬方向)に並ぶ2つのエアホールの中心の距離を意味してよい。前記エアホールが半円形状を有する場合は、前記間隔Dは、構造単位の配列方向に並ぶ2つの半円形状のエアホールの中心の距離であってよい。
 本明細書内において、前記配列周期Pと前記間隔Dとが「略同一」であるとは、これらの値が全く同じであることに加え、これらの値が、メタマテリアルがゼロ屈折率を発現することができるようにこれらの値が近いこと(特には特定の波長の光に対してメタマテリアルがゼロ屈折率を発現することができるようにこれらの値が近いこと)これらの値が近いということを包含する。
 前記メタマテリアルにおいて、前記構造単位は一次元的又は二次元的に配列されてよく、特には一次元的に配列されてよい。前記構造単位が一次元的に配列されたメタマテリアルは、例えば導波路として用いられてよい。すなわち、本開示は、前記構造単位が一次元的に配列された導波路も提供する。当該導波路は、特定の波長を有する入射光に対してゼロ屈折率を発現するものである。
 また、前記メタマテリアルにおいて、前記構造単位はリングを形成するように配列されていてもよい。図3に、前記構造単位がリングを形成するように配列された構造を有するメタマテリアルの例が示されている。同図にしめされるメタマテリアル20は、共振器とも呼ばれる。すなわち、本開示は、前記構造単位がリングを形成するように配列されたリング型共振器も提供する。
 ここで、当該光が、本開示のメタマテリアル内を伝搬するときに、当該光は、各エアホールから射出される。エアホールからの光の射出を説明するための模式図が図4に示されている。同図に示されるとおり、メタマテリアル10内に入射した光は、メタマテリアル10内を矢印A1の方向へ伝搬される。すなわち、当該光は、構造単位の配列方向へと伝搬される。当該光がこのように伝搬されるときに、当該光は、各構造単位に設けられたエアホール11-1及び11-2から射出される。
 前記リング型共振器に関して、各エアホールから射出された光は同じ位相を有するので建設的干渉が実現される。当該建設的干渉は、例えば図5に示される磁界分布のシミュレーション結果に示されるとおりである。当該建設的干渉は、各種の装置において利用できる。
 また、本発明者は、Dirac Coneモードが発現しない構造の一部としての導波路においても、ゼロ屈折率が発現することを見出した。これについて図6を参照しながら説明する。
 同図のA1、B1、及びC1のメタマテリアル(導波路)はいずれも、本開示に従うメタマテリアルであり、すなわち「配列周期P=波長λWG」の条件を満たすものである。これらのメタマテリアルはいずれもA2、B2、及びC2に示されるように特定の波長範囲の光が入射したときにゼロ屈折率を発現する(特に符号NZIで示されている部分を参照)。
 メタマテリアルA1~C1のうち、メタマテリアルB1は、B3により示されるとおりのDirac Coneモードを発現する構造の一部である。一方で、メタマテリアルA1は、A3により示される構造の一部であるが、A3の構造はDirac Coneモードを発現しない。同様に、メタマテリアルC1も、C3により示される構造の一部であるが、この構造C3はDirac Coneモードを発現しない。
 このように、上記条件を満たすように設計することによって、Dirac Coneモードの発現に基づく構造設計を行うことなく、メタマテリアルにゼロ屈折率を発現させることができる。
(ゼロ屈折率)
 本開示に従うメタマテリアルは、ゼロ屈折率を発現するメタマテリアルであってよく、特には特定の波長の光に対してゼロ屈折率を発現するメタマテリアルであってよい。
 本明細書内において、「ゼロ屈折率」とは、屈折率nの絶対値が0.1未満であることを意味し、すなわち、以下の数式(1)により表される。
 
 本開示に従うメタマテリアルがゼロ屈折率を発現する波長の帯域幅は、例えば20nm以上であり、好ましくは30nm以上であり、より好ましくは40nm以上、50nm以上、又は60nm以上であってよく、さらにより好ましくは70nm以上、75nm以上、又は80nm以上であってもよい。前記帯域幅は、さらには、100nm以上、110nm以上、120nm以上、又は130nm以上であってよい。
 また、本開示に従うメタマテリアルがゼロ屈折率を発現する波長の帯域幅の上限値は特に特定されなくてよいが、例えば300nm以下、250nm以下、200nm以下、190nm以下、180nm以下、又は170nm以下であってよい。
 本開示に従うメタマテリアルがゼロ屈折率を発現する波長の帯域幅は、上記で挙げた上限値及び下限値から選択されてよく、例えば20nm以上且つ200nm以下、30nm以上且つ190nm以下、又は、40nm以上且つ180nm以下であってよい。
 前記メタマテリアルがゼロ屈折率を発現する波長の帯域幅は、各波長の光を入射させた場合に測定される屈折率nに基づき特定される。前記帯域幅は、屈折率nが上記数式(1)を満たす範囲となる波長の範囲である。
 前記屈折率nの測定方法として、原則的には後段の実施例において記載された方法が採用される。しかしながら、例えば当該方法が適用できない場合などの必要な場合には、以下で説明する測定方法1又は2が採用されてもよい。
(屈折率測定方法1:構造単位が一次元的に配列されている場合)
 前記メタマテリアルにおいて、前記構造単位が一次元的に配列されている場合(例えば前記メタマテリアルが一次元導波路である場合)、屈折率nは、光を両端から入射するのでなく一端から入射すること以外は、上記非特許文献1(Direct Observation of Phase-Free Propagation in a Silicon Waveguide, Orad Reshef et al., ACS Photonics, 2017, 4(10), 2385-2389)に記載された方法と同様の方法によって測定される。すなわち、一次元的配列の両端(特には導波路両端)より発生する定在波の検出によってメタマテリアル(特には導波路媒質)の屈折率nを求めることができる。当該方法によって観測される定在波のノード間距離Δzは、自由空間における波長をλとした場合に下記数式(2)の関係を満たす。
 
(屈折率測定方法2:構造単位が二次元的に配列されている場合)
 前記メタマテリアルにおいて、構造単位が二次元的に配列されている場合(例えば前記メタマテリアルが二次元アレイ材料である場合)、屈折率n(この測定方法においては「n」という)は、Monolithic CMOS-compatible zero-index metamaterials, DARYL I. VULIS et al., Optics Express, 2017, 25(11), 12381-12399、に記載された方法に従い測定される。当該方法において、測定対象材料(メタマテリアル)の屈折率をnとし且つ当該測定対象材料に隣接する材料の屈折率をnとし、入射角をθ及び出射角をθとすると、スネルの法則により、以下の数式(3)から屈折率nが決定される。
 
(比帯域幅)
 本開示に従うメタマテリアルがゼロ屈折率を発現する波長の比帯域幅は、例えば2%以上であり、好ましくは3%以上であり、より好ましくは4%以上、4.5%以上、又は5%以上であり、さらにより好ましくは6%以上、7%以上、8%以上、又は9%以上であってもよい。
 また、本開示に従うメタマテリアルがゼロ屈折率を発現する波長の比帯域幅の上限値は特に限定されなくてよいが、例えば20%以下、19%以下、18%以下、17%以下、16%以下、15%以下、14%以下、又は13%以下であってよい。
 本開示に従うメタマテリアルがゼロ屈折率を発現する波長の比帯域幅は、上記で挙げた上限値及び下限値から選択されてよく、例えば2%以上且つ20%以下、3%以上且つ18%以下、又は、4%以上且つ15%以下であってよい。
(比帯域幅測定方法)
 前記比帯域幅は、上記で述べた前記メタマテリアルがゼロ屈折率を発現する波長の帯域幅に基づき算出される。具体的には、以下の数式(4)から算出される。ゼロ屈折率を発現する波長の帯域幅の特定方法は、上記で述べたとおりである。
(ゼロ屈折率が発現される光の波長)
 本開示に従うメタマテリアルがゼロ屈折率を発現する光は、例えば赤外光であってよく、特には近赤外光、中赤外光、又は遠赤外光であってよく、好ましくは近赤外光又は中赤外光であってよい。本開示に従うメタマテリアルは、このような光に対してゼロ屈折率を発現するものであってよく、特には、このような光が入射した場合にゼロ屈折率を発現するものであってよい。
 一実施態様において、本開示に従うメタマテリアルがゼロ屈折率を発現する光は近赤外光であってよく、すなわち800nm~2500nmの波長を有する光であってよく、好ましくは900nm~2400nmの波長を有する光、より好ましくは1000nm~2000nmの波長を有する光であってよい。
 一実施態様において、前記ゼロ屈折率を発現する光は、例えば1200nm~1800nmの波長を有する光であってよく、より好ましくは1300nm~1700nmの波長を有する光であり、さらにより好ましくは1400nm~1700nmの波長を有する光であり、特には1450nm~1650nmの波長を有する光であってよい。
 他の実施態様において、本開示に従うメタマテリアルがゼロ屈折率を発現する光は中赤外光であってよく、例えば2500nm~4000nmであってもよい。
 このような光は、本開示に従うメタマテリアルにゼロ屈折率を発現させるために適している。すなわち、本開示に従うメタマテリアルは、このような光が入射した場合にゼロ屈折率を発現するという特性を有するものであってよい。
 本開示に従うメタマテリアルは、上記で述べたとおりの光(特には赤外光)が当該メタマテリアルへ入射した場合に、当該光に対してゼロ屈折率を発現するものであってよい。そして、当該光の波長は、メタマテリアル内を伝搬される間においては、以上で述べた波長よりも短くなる。すなわち、本開示に従うメタマテリアルは、入射した入射光を、当該入射光の波長よりも短い波長を有する光として伝搬する。本開示のメタマテリアルの構造単位の配列周期(又はエアホールの中心間の距離)が、当該短い波長と略同一であることによって、ゼロ屈折率が発現される。
(メタマテリアルの構造の例)
 本開示に従うメタマテリアルの構造の例について、以下で図7を参照しながら説明する。同図は、本開示のメタマテリアルの模式的な構成例を示す。
 同図に示されるメタマテリアル10は、複数の構造単位12(12-1~12-4の点線で囲まれたメタマテリアル部分)を含み、これら構造単位は一次元的に配列されている。本開示に従うメタマテリアルに含まれる構造単位の数は、同図に示される数(4つ)に限定されず、例えば2以上であってよく、好ましくは3以上、4以上、又は5以上であってよい。当該構造単位が、周期的に配列されることが、ゼロ屈折率の発現に貢献する。配列される構造単位の数の上限は、限定される必要はないが、例えば10,000以下、5,000以下、1,000以下、500以下、又は100以下であってよい。
 また、同図のメタマテリアル10の左側端に示される通り、構造単位のうちのエアホールが形成されていない部分が、メタマテリアル(導波路)の端に存在してもよい。例えば、本開示に従うメタマテリアルが、構造単位が一次元的に配列された導波路として構成される場合において、当該導波路の両端には、エアホールが形成されていなくてよい。
 各構造単位12は、同図に示されるように、矩形を有してよい。当該矩形は正方形であってよく、又は、長方形であってもよい。各構造単位には、半円形状を有する2つのエアホール11-1及び11-2が設けられており、すなわち矩形の構造体のうちの2か所が半円形状に欠けている。これら2つのエアホールは、当該矩形を構成する4辺のうち、光が伝搬される方向と平行な2つの辺に設けられている。また、これら2つのエアホールは、導波路の中心軸A-A’を挟んで線対称な位置に配置されている。
 このように、本開示に従うメタマテリアルの構造単位におけるエアホールは、円形又は分割された円形の形状を有し、特には分割された円形の形状を有数。当該分割された円形の形状は、例えば略半円形状であってよい。
 本明細書内において、「円形」は、正円であってよく、又は、楕円であってもよい。 略半円形状とは、正円又は楕円が完全に2等分するように分割された半円形状に加え、当該略半円形状のエアホールが構造単位に含まれるところのメタマテリアルがゼロ屈折率を発現することができるようにほぼ2等分するように分割された半円形状も包含する。 本開示に従うメタマテリアルが、一次元的に配列された構造単位を有する場合は、前記エアホールの形状は分割された円形の形状であってよい。
 本開示に従うメタマテリアルが、二次元的に配列された構造単位を有する場合は、前記エアホールの形状は円形の形状(例えば前記分割された円形の形状の分割前の形状、又は、前記分割された円形の形状の2つが、分割面が接するように合体した形状)であってよい。
 構造単位の配列周期Pは、好ましくは300nm以上、より好ましくは350nm以上であり、さらにより好ましくは400nm以上、450nm以上、又は500nm以上であってよく、いくつかの実施態様においては600nm以上、700nm以上、又は800nm以上であってもよい。
 構造単位の配列周期Pは、好ましくは2500nm以下、より好ましくは2000nm以下、さらにより好ましくは1500nm以下、1400nm以下、1300nm以下、1200nm以下、1100nm以下、又は1000nm以下であってよい。
 配列周期Pの数値範囲は、上記で挙げた上限値及び下限値から選択されてよく、例えば300nm~2500nmであり、350nm~2000nm、又は400nm~1500nmであってよい。
 例えば前記構造単位の形状が正方形又は長方形である場合は、前記配列周期Pは、配列方向における当該構造単位の寸法(当該正方形の一辺の長さ又は当該長方形の長辺若しくは短辺の長さ)に相当しうる。
 なお、本明細書内において「構造単位の形状」は、エアホールが設けられていない状態を想定した構造単位の形状を意味する。
 配列方向と直行する方向における構造単位の寸法についても、上記配列周期Pについて述べた数値範囲に関する説明があてはまる。
 例えば前記構造単位の形状が正方形又は長方形である場合は、前記直行する方向における構造単位の寸法は、当該正方形の一辺の長さ又は当該長方形の短辺若しくは長辺の長さであってよい。
 エアホール12-1及び12-2の半径Rは、例えば15nm以上、好ましくは20nm以上、より好ましくは30nm以上、40nm以上、又は50nm以上であってよく、さらにより好ましくは60nm以上、70nm以上、又は80nm以上であってよい。 エアホール12-1及び12-2の半径Rは、例えば300nm以下、好ましくは290nm以下、より好ましくは280nm以下、270nm以下、又は260nm以下であってよく、さらにより好ましくは250nm以下、240nm以下、230nm以下、220nm以下、210nm以下、又は200nm以下であってよい。
 エアホール12-1及び12-2の半径Rの数値範囲は、上記で挙げた上限値及び下限値から選択されてよく、例えば15nm~300nm、30nm~280nm、又は50nm~250nmであってよい。
 配列方向において隣り合う2つのエアホールの中心の間隔Dは、好ましくは300nm以上、より好ましくは350nm以上であり、さらにより好ましくは400nm以上、450nm以上、又は500nm以上であってよい。
 間隔Dは、好ましくは2500nm以下、より好ましくは2000nm以下、さらにより好ましくは1500nm以下、1400nm以下、1300nm以下、1200nm以下、1100nm以下、又は1000nm以下であってよい。
 間隔Dは、上記で挙げた上限値及び下限値から選択されてよく、例えば300nm~2500nmであり、350nm~2000nm、又は400nm~1500nmであってよい。
 間隔Dは、上記で述べたように、配列周期Pと略同一であってよい。また、間隔Dは、上記で述べたように、前記メタマテリアル内を伝搬する光の波長λWGと略同一であってよい。
 本開示に従うメタマテリアルは、図8に示されるように、例えば基材上に設けられてよく、さらに、当該メタマテリアルは厚さTを有してよい。厚さTは、メタマテリアルの構造単位の平面に対して直行する方向(同図におけるZ軸方向)における厚さである。
 厚さTは、好ましくは50nm以上、より好ましくは60nm以上であり、さらにより好ましくは70nm以上、80nm以上、90nm以上、又は100nm以上であってよく、特に好ましくは110nm以上、120nm以上、130nm以上、140nm以上、又は150nm以上であってもよい。
 厚さTは、好ましくは1000nm以下、より好ましくは950nm以下、さらにより好ましくは900nm以下、850nm以下、800nm以下、750nm以下、又は700nm以下であってよい。
 厚さTは、上記で挙げた上限値及び下限値から選択されてよく、例えば50nm~1000nmであり、100nm~900nm、又は150nm~800nmであってよい。
 本開示に従うメタマテリアルは、種々の誘電体材料又は半導体材料から形成されてよく、例えば以下のいずれかの材料から形成されてよい:
Si系材料(Siを主成分の一つとする材料)、例えばSi、Si、又はSiOなど;
Ge系材料(Geを主成分の一つとする材料)、例えばGeなど;
Ca系材料(Caを主成分の一つとする材料)、例えばCaFなど;
Sn系材料(Snを主成分の一つとする材料)、例えばSnなど;
Ga系材料(Gaを主成分の一つとする材料)、例えばGaN及びGaAsなど;
In系材料(Inを主成分の一つとする材料)、例えばInN及びInPなど;
Cd系材料(Cdを主成分の一つとする材料)、例えばCdSe及びCdSなど;
Zn系材料(Znを主成分の一つとする材料)、例えばZnSeなど、又は
Ti系材料(Tiを主成分の一つとする材料)、例えばTiOなど。
 本開示のメタマテリアルの材料は、例えば所望の帯域幅に応じて選択されてよい。
 好ましい実施態様において、前記メタマテリアルは、前記Si系材料又は前記Ge系材料から形成されてよい。
1.2 構成例(導波路)
 本開示に従うメタマテリアルは、前記構造単位が一次元的に配列された構造を有してよい。例えば図9に示されるように、本開示に従うメタマテリアル100は、例えば基材101上に設けられてよく、特には基板101に積層された膜102上に設けられてよい。当該基板及び当該膜の材料として、当技術分野において一般的に用いられる材料が採用されてよく、これらは当業者により適宜選択されてよい。当該メタマテリアルは例えば導波路として用いられうる。当該導波路は、上記1.1において述べたとおりのメタマテリアルから形成されてよく、当該メタマテリアルに関する説明が、本構成例の導波路についても当てはまる。当該導波路は、後述するとおり、各種フォトニックデバイスにおいて利用されうる。
1.2.1 広帯域ゼロ屈折率導波路
 一実施態様において、本開示は、比帯域幅が例えば2%~20%、好ましくは2%~15%、より好ましくは3%~15%、4%~15%、さらにより好ましくは5%~15%である導波路を提供する。当該導波路は、上記1.1で述べたとおりのメタマテリアルによって構成されてよい。
 前記導波路の比帯域幅は、特には6%以上、7%以上、又は8%以上であってもよい。 前記導波路の比帯域幅は、例えば20%以下、19%以下、18%以下、17%以下、16%以下、15%以下、14%以下、又は13%以下であってもよい。
 本開示により、このように比帯域幅の広い導波路が提供される。
 この実施態様において、前記導波路を形成するメタマテリアルの配列周期Pは、例えば400nm以上であり、好ましくは500nm以上、より好ましくは600nm以上、700nm以上、又は800nm以上である。
 構造単位の配列周期Pは、好ましくは2500nm以下、より好ましくは2000nm以下、さらにより好ましくは1500nm以下、1400nm以下、1300nm以下、1200nm以下、1100nm以下、又は1000nm以下であってよい。
 配列周期Pの数値範囲は、上記で挙げた上限値及び下限値から選択されてよく、例えば800nm~2500nmであり、800nm~2000nm、又は800nm~1500nmであってよい。
 このようなサイズの配列周期Pは、前記導波路がゼロ屈折率を発現することに貢献し、特には広い帯域幅にわたってゼロ屈折率を発現することに貢献する。
 この実施態様において、前記導波路を形成するメタマテリアルの各構造単位が有するエアホールの半径Rは、例えば50nm以上であってよく、好ましくは100nm以上、より好ましくは110nm以上、120nm以上、130nm以上、140nm以上、又は150nm以上であってよい。
 前記半径Rは、例えば300nm以下であってよく、好ましくは290nm以下であり、より好ましくは280nm以下、270nm以下、又は260nm以下であってよく、さらにより好ましくは250nm以下、240nm以下、230nm以下、220nm以下、210nm以下、又は200nm以下であってよい。
 前記半径Rの数値範囲は、上記で挙げた上限値及び下限値から選択されてよく、例えば50nm~300nm、100nm~250nm、又は150nm~200nmであってよい。
 このようなサイズの半径Rは、上記配列周期Pとの組合せられた場合に、前記導波路がゼロ屈折率を発現することに貢献し、特には広い帯域幅にわたってゼロ屈折率を発現することに貢献する。
 この実施態様において、当該メタマテリアルの厚さTは、例えば100nm以上であってよく、好ましくは200nm以上、より好ましくは300nm以上、さらにより好ましくは400nm以上であってよく、特には500nm以上であってもよい。
 厚さTは、好ましくは1000nm以下、より好ましくは950nm以下、さらにより好ましくは900nm以下、850nm以下、800nm以下、750nm以下、又は700nm以下であってよい。
 厚さTは、上記で挙げた上限値及び下限値から選択されてよく、例えば100nm~1000nmであり、200nm~900nm、又は300nm~800nmであってよい。
 この実施態様において、当該メタマテリアルは、上記で述べた誘電体材料又は半導体材料から形成されてよく、特には誘電体材料から形成されてよい。当該メタマテリアルは、例えばSi系材料又はGe系材料から形成されてよい。
1.2.2 狭帯域ゼロ屈折率導波路
 一実施態様において、本開示は、比帯域幅が例えば2%~6%、好ましく2.5%~5.5%、特には3%~5%である導波路を提供する。当該導波路は、上記1.1で述べたとおりのメタマテリアルによって構成されてよい。
 本開示により、このような比帯域幅の導波路も提供される。
 この実施態様において、前記導波路を形成するメタマテリアルの配列周期Pは、構造単位の配列周期Pは、好ましくは300nm以上、より好ましくは350nm以上であり、さらにより好ましくは400nm以上であってよい。
 構造単位の配列周期Pは、好ましくは1500nm以下であり、より好ましくは1000nm以下であり、さらにより好ましくは900nm以下、850nm以下、又は800nm以下であってよい。
 配列周期Pの数値範囲は、上記で挙げた上限値及び下限値から選択されてよく、例えば300nm~1000nmであり、350nm~900nm、又は400nm~800nmであってよい。
 このようなサイズの配列周期Pは、前記導波路がゼロ屈折率を発現することに貢献する。
 この実施態様において、前記導波路を形成するメタマテリアルの各構造単位が有するエアホールの半径Rは、例えば50nm以上であってよく、好ましくは60nm以上、より好ましくは70nm以上、80nm以上、又は90nm以上であり、特に好ましくは100nm以上であってよい。
 前記半径Rは、例えば300nm以下であってよく、好ましくは290nm以下であり、より好ましくは280nm以下、270nm以下、又は260nm以下であってよく、さらにより好ましくは250nm以下、240nm以下、230nm以下、220nm以下、210nm以下、又は200nm以下であってよい。
 前記半径Rの数値範囲は、上記で挙げた上限値及び下限値から選択されてよく、例えば50nm~300nm、80nm~250nm、又は100nm~200nmであってよい。
 このようなサイズの半径Rは、上記配列周期Pとの組合せられた場合に、前記導波路がゼロ屈折率を発現することに貢献する。
 この実施態様において、当該メタマテリアルの厚さTは、例えば100nm以上であってよく、好ましくは120nm以上、より好ましくは140nm以上、さらにより好ましくは160nm以上、又は180nm以上であってよい。
 厚さTは、好ましくは500nm以下、より好ましくは400nm以下、さらにより好ましくは300nm以下であってよい。
 厚さTは、上記で挙げた上限値及び下限値から選択されてよく、例えば100nm~500nmであり、120nm~400nm、又は140nm~300nmであってよい。
 この実施態様において、当該メタマテリアルは、上記で述べた誘電体材料又は半導体材料から形成されてよく、特には誘電体材料から形成されてよい。当該メタマテリアルは、例えばSi系材料又はGe系材料から形成されてよい。
1.3 リング型共振器
 一実施態様において、本開示に従うメタマテリアルは、前記構造単位がリングを形成するように配列された構造を有してよい。前記メタマテリアルは、上記で図9を参照して導波路に関して説明したように、例えば基材上に、特には例えば基材101上に設けられてよく、特には基板101に積層されたSiO膜102上に設けられてよい。当該メタマテリアルは例えば共振器として用いられうる。当該共振器は、上記1.1において述べたとおりのメタマテリアルから形成されてよく、当該メタマテリアルに関する説明が、本構成例の共振器についても当てはまる。また、当該共振器は、上記1.2において述べたとおりの導波路から形成されてよく、当該導波路に関する説明が、本構成例の共振器についても当てはまる。当該リング型共振器は、後述するとおり、各種フォトニックデバイスにおいて利用されうる。
 この実施態様において、前記導波路を形成するメタマテリアルの配列周期Pは、構造単位の配列周期Pは、好ましくは300nm以上、より好ましくは350nm以上であり、さらにより好ましくは400nm以上であってよい。
 構造単位の配列周期Pは、好ましくは1500nm以下であり、より好ましくは1000nm以下であり、さらにより好ましくは900nm以下、850nm以下、又は800nm以下であってよい。
 配列周期Pの数値範囲は、上記で挙げた上限値及び下限値から選択されてよく、例えば300nm~1000nmであり、350nm~900nm、又は400nm~800nmであってよい。
 このようなサイズの配列周期Pは、前記導波路がゼロ屈折率を発現することに貢献する。
 なお、リング型共振器に関する配列周期Pは、当該リングの内径と外径との間の略中間における周期を意味してよい。
 この実施態様において、前記導波路を形成するメタマテリアルの各構造単位が有するエアホールの半径Rは、例えば50nm以上であってよく、好ましくは60nm以上、より好ましくは70nm以上、80nm以上、又は90nm以上であり、特に好ましくは100nm以上であってよい。
 前記半径Rは、例えば300nm以下であってよく、好ましくは290nm以下であり、より好ましくは280nm以下、270nm以下、又は260nm以下であってよく、さらにより好ましくは250nm以下、240nm以下、230nm以下、220nm以下、210nm以下、又は200nm以下であってよい。
 前記半径Rの数値範囲は、上記で挙げた上限値及び下限値から選択されてよく、例えば50nm~300nm、80nm~250nm、又は100nm~200nmであってよい。
 このようなサイズの半径Rは、上記配列周期Pとの組合せられた場合に、前記導波路がゼロ屈折率を発現することに貢献する。
 この実施態様において、当該メタマテリアルの厚さTは、例えば100nm以上であってよく、好ましくは120nm以上、より好ましくは140nm以上、さらにより好ましくは160nm以上、又は180nm以上であってよい。
 厚さTは、好ましくは500nm以下、より好ましくは400nm以下、さらにより好ましくは300nm以下であってよい。
 厚さTは、上記で挙げた上限値及び下限値から選択されてよく、例えば100nm~500nmであり、120nm~400nm、又は140nm~300nmであってよい。
 この実施態様において、当該メタマテリアルは、上記で述べた誘電体材料又は半導体材料から形成されてよく、特には誘電体材料から形成されてよい。当該メタマテリアルは、例えばSi系材料又はGe系材料から形成されてよい。
 前記リング型共振器のリングの半径RRINGは、例えば1000nm以上、好ましくは1500nm以上、より好ましくは2000nm以上であり、特に好ましくは2500nm以上、3000nm以上、又は3500nm以上であってよい。
 前記リング型共振器のリングの半径RRINGは、例えば20000nm以下であってよく、好ましくは15000nm以下であり、より好ましくは10000nm以下、8000nm以下、又は60000nm以下であってよい。
 前記半径Rの数値範囲は、上記で挙げた上限値及び下限値から選択されてよく、例えば1000nm~20000nm、2000nm~15000nm、又は3000nm~10000nmであってよい。
 この実施態様において、構造単位は、例えば図10に示されるメタマテリアル20のように正円を形成するように配列されてよいが、構造単位の配列の仕方はこれに限定されない。例えば図11に示されるように、リング型メタマテリアルは、構造単位が、楕円(同図のA)、一部が欠けた正円(B)、又は、一部が欠けた楕円(C)を形成するように配列されていてもよい。
 また、図10に示される正円又は楕円の周囲に、当該正円又は楕円を囲むように他の1以上の正円又は楕円が配置されてもよい。すなわち、本開示のメタマテリアルは多重円構造を形成してもよい。例えば図11に示されるように、本開示のメタマテリアルは、二重円を形成するように構造単位が配列されてよい。(同図のD)。また、当該二重円を構成する各円の一部が欠けていてもよい(E)。また、当該二重円を構成する各円は、正円でなく、楕円であってよく、さらに、当該各楕円の一部が欠けていてもよい(F)。
2.第2の実施形態(フォトニックデバイス及び装置)
 本開示は、本開示に従うメタマテリアルを含むフォトニックデバイスも提供する。前記フォトニックデバイスは、前記メタマテリアルによる光制御を利用したデバイスであってよく、特には前記メタマテリアルがゼロ屈折率を発現するという特性を利用したデバイスであってよい。前記フォトニックデバイスに含まれるメタマテリアルは、上記1.において述べたメタマテリアルのいずれかであってよく、構造単位が一次元的又は二次元的に配列されたメタマテリアルであってよく、例えば一次元的に配列されたメタマテリアル(特には導波路又はリング型共振器、より特には導波路)であってよい。
 また、本開示に従うメタマテリアルを含む装置も提供する。当該装置は、前記メタマテリアルへ入射する光を出射する光源部、前記メタマテリアルへ光を導く光導波路、及び、前記メタマテリアルから出射した光を受光する受光部のうちの1つ以上を含んでよい。当該装置は、例えば、前記メタマテリアルによる光制御を利用した装置であってよく、特には前記メタマテリアルが特定の波長の光に応答する特性又は前記メタマテリアルの共振特性を利用した装置であってよい。前記装置に含まれるメタマテリアルは、上記1.において述べたメタマテリアルのいずれかであってよく、構造単位が一次元的又は二次元的に配列されたメタマテリアルであってよく、例えば一次元的に配列されたメタマテリアル(特には導波路又はリング型共振器、より特にはリング型共振器)であってよい。
2.1 色収差発生が無いことを利用したフォトニックデバイス
 一実施態様において、本開示は、本開示に従うメタマテリアルを備えたフォトニックデバイス(例えば光を利用又は制御する部品)を提供する。前記フォトニックデバイスは、例えば光学部品、光通信用部品、又は光伝送用部品などを包含するが、これらに限定されない。前記フォトニックデバイスは、例えば本開示に従うメタマテリアルの特性を利用したフォトニックデバイスであってよい。本開示に従うメタマテリアルは、所定の波長範囲の光に対してゼロ屈折率を発現する特性を有するので、当該特性を利用して色収差の発生を防ぐことができる。例えば、本開示は、色収差の無いフォトニックデバイスを提供し、当該フォトニックデバイスは、前記構造単位が一次元的に配列されたものであってよい。このような部品は、例えば本開示に従うメタマテリアルが基材(特には平板状基材)上に設けられたものであってよい。
 この実施態様において、前記メタマテリアルは、上記1.において説明したメタマテリアルであってよく、特にはゼロ屈折率を発現する波長の帯域幅が広いメタマテリアル(特には上記1.1におい述べたメタマテリアル)であってよい。
 この実施態様において、前記メタマテリアルは、上記1.において説明したメタマテリアルであってよく、特には比帯域幅が広い(例えば前記比帯域幅が2%以上、3%以上、4%以上、5%以上、6%以上、7%以上、8%以上、又は9%以上である)メタマテリアルであってよい。
 このようなメタマテリアルは、図13に示されるように、広い範囲の波長の光に渡ってゼロ屈折率を発現する。そのため、当該メタマテリアルを有する光デバイスは、広い波長範囲にわたって色収差が発生せず、例えば図14の模式図に示されるような色収差低減が実現されると考えられる。同図において、横軸は前記部品(特にはメタマテリアル)に入射する光の波長を示し、縦軸は収差を示す。
 また、本開示は、この実施態様に従うフォトニックデバイスを含む装置も提供する。例えば、当該フォトニックデバイスによって色収差が低減される。
2.2 放射方向の制御を利用したフォトニックデバイス
 本開示に従うメタマテリアル(特には本開示に従う導波路)内を光が伝搬されるときに、光(電磁波)は自由空間へも放射される。本開示に従うメタマテリアルは、その放射方向を制御するために用いられてもよい。例えば、本開示に従うメタマテリアルは、ビームステアリングのために用いられてよく、例えばビームステアリングデバイスにおいて用いられてよい。すなわち、本開示は、前記メタマテリアルを有するビームステアリング素子を提供する。
 この実施態様において、前記メタマテリアルは、上記1.において説明したメタマテリアルであってよい。前記メタマテリアルは、導波路として構成されてよく、特にはゼロ屈折率を発現する波長の帯域幅が比較的狭い導波路(上記1.2.2において述べた導波路)であってよい。
 前記導波路は、図15に示されるように、波長に対する屈折率の変化が大きく、すなわち、波長に対して屈折率をプロットした場合の傾きが大きい。そのため、図16に示されるように、導波路から放射される光の方向を変化させやすい。同図に示されるように、波長λ1の光が入射した場合及び波長λ3の光が入射した場合とで、射出される光の方向は異なりうる。そのため、前記導波路は、上記のとおり、ビームステアリングを実行する装置において用いられてよい。当該デバイスの例として、例えば測距装置(特にはLiDAR技術を利用する装置)が挙げられる。
2.3 リング型共振器を利用した装置
 本開示は、上記1.3において述べたリング型共振器を備えた装置も提供する。当該装置は、例えば所定の波長の光に対する前記リング型共振器の共振を利用する装置又は当該共振が特定条件下で発生することを利用する装置であってよい。
2.3.1 波長分割多重
 光が前記リング型共振器中を伝搬されるとき、当該光は、エアホールからも射出される(radiation)。ここで、当該光の波長が、前記リング型共振器と共振する波長である場合、前記エアホールから射出される光は全て同じ位相であるので、建設的干渉が実現される。当該建設的干渉によって、強い光が前記リング型共振器の中心部から射出される。本開示に従う装置において、このようなリング型共振器からの光の射出が利用されてよい。当該装置は、例えば分波器又は合波器であってよい。
 すなわち、本開示に従う装置は、分波器又は合波器として構成されてよい。当該分波器及び当該合波器は、例えば波長分割多重方式(WDM、wavelength division multiplexing)の通信のために用いられてよい。
 当該分波器及び当該合波器について、図17A参照しながら説明する。同図には、基板(例えばチップ)上に配置された複数(3つ)の本開示に従うリング型共振器が示されている。
 前記装置は、チップ上に設けられた光導波路(図示されていない)及び当該チップ上に設けられた複数のリング型共振器RA、RB、及びRCと、を備えていてよい。当該光導波路は、波長λ1の光、波長λ2の光、及び波長λ3の光が合波された光を導光する。そして、当該合波された光が、上記の3つの共振器が設けられた領域に到達する。
 各共振器は、互いに異なる波長の光に共振できるように構成されていてよい。互いに異なる波長の光に共振できるようにするために、例えば、各共振器は、エアホールの半径が異なっていてよく、又は、構造単位の配列周期が異なっていてよく、又は、エアホール半径及び構造単位配列周期の両方が異なっていてもよい。
 一例として、共振器RA~RCは、以下のような構造であってよく、すなわち、異なるエアホール半径を有するものであってよい。エアホール半径の違いに起因して、各共振器の共振波長も以下のとおりに異なる。
 リング型共振器RA:構造単位配列周期=660nm、エアホール半径=125nm、厚さ=220nm、共振波長=1500 nm
NZIリング共振器RA:周期=660 nm, エアホール半径=150 nm, 厚さ=220nm, 共振波長=1550 nm
NZIリング共振器RC:周期=660 nm, エアホール半径=175 nm, 厚さ=220nm, 共振波長=1600 nm
 例えば、共振器RAは、前記光導波路内を進行する光のうち、波長1500nmの波長に対して共振する。
 なお、同図において示されている共振器の数は3つであるが、チップ上に設けられる共振器の数はこれに限定されず、例えば1以上、2以上、又は3以上であってよい。また、同図においては、或る特定の波長の光に共振する共振器が1つだけ示されているが、或る特定の波長の光に共振する複数の共振器が光導波路上に設けられてもよい。
 例えば複数種の波長の光が合波された光が、前記光導波路へと入射する。当該光導波路中を伝搬された光のうち、いずれかの共振器の共振波長と同じ波長の光が、当該共振器とカップリングして、当該共振器から射出される。例えば、波長1500nmの光は、共振器RAの中心部から出射する。同様に、波長1550nmの光は共振器RBの中心部から出射し、波長1600nmの光は共振器RCの中心部から出射する。このようにして、各共振器から特定の波長を有する光が出射されて、光が分波される。
 このように、本開示のリング型共振器は、波長分割多重方式システムにおいて含まれてよい。例えば、本開示の装置は、波長分割多重方式システムを構成分波器又は合波器として構成されてよい。当該分波器は、例えば、本開示リング共振器と、当該共振器へ光を導く光導波路と、を備えていてよい。当該光導波路と当該共振器とによって上記のとおり、特定の波長を有する光が、対応する共振器から射出される。
 また、波長分割多重方式システムの構成例を図17Bに示す。同図に示されるシステム40は、例えば合波された光を出射する光源部41、当該光を共振器43へと到達させる光導波路42、当該光を分波する共振器43、及び分波された光を検出する検出部44を有してよい。
 当該光源部は、例えば1以上のLED又はレーザを含む。当該合波された光は、例えば合波器によって合波されてよい。当該光導波路は、例えば光ファイバなどを含んでよい。当該共振器は、当該光を、上記で述べたとおり分波するように構成されてよく、分波器の一要素として構成されてよい。すなわち、前記システムは、本開示に従う共振器を備えた分波器を有してよい。また、当該検出部は、1以上の光検出器又はカメラなどを含んでよい。
2.3.2 レーザ
 本開示は、本開示に従うリング型共振器を備えているレーザ光源も提供する。前記リング型共振器のエアホールから射出される光は、同じ位相を有する。また、振幅もほぼ同じである。そのため、当該リング型共振器は、レーザ光源、特にはレーザ発生装置において利用されうる。
 当該レーザ光源に含まれる構成要素に関して、図18に模式的なブロック図を示す。同図に示されるように、前記レーザ光源50は、例えば、以下で図を参照して説明するレーザ発生装置51に加えて、励起光を出射する光源部52(励起源ともいう)を有してよい。レーザ発生装置51について、以下で説明する。なお、励起源52は、例えば利得媒質の種類に応じて当業者により適宜選択されてよい。
 一実施態様において、前記レーザ発生装置は、前記リング型共振器が設けられた利得媒質を有してよい。この実施態様におけるレーザ発生装置の例の模式図を図19Aに示す。同図に示されるレーザ発生装置51Aは、利得媒質56中に埋め込まれた本開示のリング共振器53を有する。当該リング共振器53は、上記で述べたとおりのものであってよい。当該利得媒質は、基材55上に設けられてよく、例えば基材55上のSiO膜54上に設けられてよい。当該利得媒質は、例えばペロブスカイトであってよいが、これに限定されない。
 代替的な実施態様において、前記レーザ光源は、利得媒質から形成されたリング型共振器を有してもよい。この実施態様におけるレーザ発生装置の例の模式図を図19Bに示す。同図に示されるレーザ発生装置51Bは、リング型共振器57自体が利得媒質によって形成されてよい。利得媒質から形成されたリング型共振器57は、基材55上に設けられてよく、例えば基材55上のSiO膜54上に設けられてよい。当該利得媒質は、例えばペロブスカイトであってよいが、これに限定されない。
 これらの実施態様において、前記利得媒質の吸収波長の光が、前記リング型共振器へ入射する。当該入射した光のパワーがレーザ閾値を超えたら、レーザ光が出射する。
2.3.3 センサ
 本開示に従うリング型共振器は、センサにおいて用いられてよく、特にはバイオセンサにおいて用いられてよい。すなわち、本開示は、前記リング型共振器を備えているセンサ(特にはバイオセンサ)も提供する。
 例えば、前記リング型共振器による建設的干渉は、当該リング型共振器表面の状態の変化によって、実現されなくなる。当該表面の状態の変化は、例えば生体分子などの結合若しくは切断又は生体分子の構造変化などのわずかな変化であってよい。このようなわずかな変化によっても、前記建設的干渉が破壊されうる。そのため、当該建設的干渉の破壊を検出することで、上記の変化を検出することができる。
 本開示に従うバイオセンサは、前記リング型共振器の建設的干渉の変化を検出するように構成されてよい。当該バイオセンサに含まれる構成要素に関して、図20に模式的なブロック図を示す。同図に示されるバイオセンサ60は、光源部61、光導波路62、反応部63、及び検出部64を有する。
 光源部61は、例えば1以上のLED又はレーザを含んでよい。当該光源部から出射された光は、光導波路62へ到達する。そして、光導波路62が、当該光を、反応部62へと導く。光導波路62は、例えば光ファイバなどを含んでよい。光源部61から出射される光は、前記建設的干渉が実現されるように調整されてよい。当該光は、例えば、前記リング型共振器へ入射した場合に、当該リング型共振器と共振する光であってよい。
 反応部62は、上記で説明した変化が起こるように構成されてよく、さらに、当該変化を検出できるように構成されてよい。例えば、当該反応部は、本開示に従うリング型共振器と、当該リング型共振器上に設けられた生体分子反応層(バイオレイヤーともいう)と、を備えていてよい。当該生体分子反応層は、前記検出されるべき生体分子と相互作用する検出用物質を有する層であってよい。当該層は、例えば、当該検出用物質が固定化されていてよい。当該検出用物質は、例えば当該生体分子にと結合する物質、当該生体分子により切断される物質、又は当該生体分子によって構造変化が起こる物質などであってよく、より具体的には医薬的成分(例えば医薬的化合物若しくは医薬候補化合物など)若しくは生体成分(例えばタンパク質、核酸、ペプチド、糖、又は脂質)などであってよい。
 検出部63は、例えば、前記リング型共振器から出射された光を検出する光検出器又は撮像素子(例えばカメラなど)を含んでよい。また、検出部63は、分光器を含んでもよい。
 検出部63は、前記建設的干渉の破壊を検出することができるように構成されていてよい。より具体的には、前記建設的干渉の破壊に伴い当該検出部に到達する光が変化する(当該光が減少する、又は、当該光の特性(例えば波長や位相など)が変化する)ので、当該検出部は、当該変化を検出するように構成されてよい。当該変化によって、前記バイオレイヤーの屈折率又は吸収波長又は厚さなどの情報が取得されてもよい。
 図21のAに、建設的干渉が破壊される前に検出される光を示し、同図のBに建設的干渉が破壊された後の状態を示す。同図に示されるように、建設的干渉が破壊されることで、元々検出されていた光が消失している。本開示に従うバイオセンサは、このような消光を検出することによって、生体分子と検出用分子との間の相互作用を検出するように構成されてよい。
2.3.4 キラルセンシング又はキラルエンハンスメント
 本開示に従うリング型共振器は、キラルセンシング又はキラルエンハンスメントのための装置において用いられてもよい。すなわち、本開示は、前記リング型共振器を備えているキラル検出装置又はキラルエンハンスメント装置も提供する。
 本開示に従うリング型共振器へ入射する入射光の波長が共振波長でない(屈折率n≠0)場合は、位相前倒し伝搬(例えば、屈折率n~0.05)又は位相遅延伝搬(例えば、屈折率n~-0.05)が発生する。
 位相前倒し伝搬の場合(例えば、屈折率n~0.05)は、エアホールから射出(radiation)する光は位相が伝搬方向に比べて少し前にずれているので、当該リング型共振器の中心部には、磁場ダイポールが発生し、これは、図22Aの左に示されるように、時計回りに回転しているように観察される。
 一方、位相前遅延伝搬の場合(例えば、屈折率n~-0.05)は、エアホールから射出(radiation)する光は位相が伝搬方向に比べて少し後にずれているので、当該リング型共振器の中心部は磁場ダイポールが発生するが、これは、図22Aの右に示されるように、反時計回りに回転しているように観察される。
 例えば、或る右手分子が反時計回りの磁場ダイポールと共振できる場合を想定する。この場合において、当該右手分子が当該リング型共振器にコーティングされ、そして、当該リング型共振器へ位相遅延伝搬を発生させる波長の光が入射すれば、当該右手分子はダイポール共振する。当該右手分子は反時計回りの磁場と共振することができるが、当該リング型共振器へ、位相前倒し伝搬を発生させる波長の光が入射した場合は共振できない。このように、キラル分子は、特定の回転方向の電磁場とだけ共振できるので、当該共振の有無を検出することによって、キラルセンシングを実現することができる。
 本開示に従うキラル検出装置又はキラルエンハンスメント装置は、上記のキラルセンシングを実行するように構成されてよい。当該装置に含まれる構成要素に関して、図22Bに模式的なブロック図を示す。同図に示される装置70は、光源部71、光導波路72、反応部73、及び検出部74を有する。
 光源部71は、例えば1以上のLED又はレーザを含んでよい。当該光源部から出射された光は、光導波路72へ到達する。そして、光導波路72が、当該光を、反応部72へと導く。光導波路72は、例えば光ファイバなどを含んでよい。光源部71から出射される光は、所定の分子(特には右手分子又は左手分子)に照射された場合に共振を起こす光である。すなわち、反応部72に所定の分子が存在する場合に、前記光照射は、共振を引き起こしうる。
 反応部72は、例えば、所定の分子が生成するように構成されてよく、又は、所定の分子が固定されるように構成されてもよい。
 検出部73は、当該共振を検出することができるように構成されてよく、例えば当該共振によって生じた光を検出するように構成されてよい。例えば、当該検出部は、当該共振を検出する要素として、例えば、光検出器又は撮像素子(例えばカメラなど)を含んでよい。また、当該検出部は、分光器を含んでもよい。
3.第3の実施形態(製造方法及び設計方法)
3.1 製造方法
 本開示は、メタマテリアルの製造方法も提供する。前記製造方法は、エアホールを有する構造単位が配列されている構造を形成する構造形成工程を含む。ここで、前記構造形成工程において、前記構造単位の配列周期が、前記構造内を伝搬される光の波長と略同一となるように前記構造が形成される。このように前記構造が形成されることで、当該メタマテリアルは、ゼロ屈折率を発現することができる。構造形成工程のより具体的な例は、以下3.2で説明する。
 前記製造方法は、エアホールを有する構造単位が配列されている構造を設計する構造設計工程をさらに含んでよい。当該構造設計工程において、前記構造単位の配列周期が、前記構造内を伝搬される光の波長と略同一となるように前記構造が設計される。
 このように構造を設計するために、後段の実施例において説明するようなシミュレーションが行われてよく、又は、所定のメタマテリアルに所定の波長の光を入射した場合における前記構造内を伝搬される光の波長の測定が行われてもよい。当該シミュレーション又は当該測定の結果に基づき、前記構造単位の配列周期が、前記構造内を伝搬される光の波長と略同一となるように前記構造が調整されてよい。
 すなわち、本開示はメタマテリアルの設計方法も提供する。当該設計方法は、上記で述べた構造設計工程を含んでよい。
 また、前記構造設計工程において、Dirac Coneモードの発現に基づく構造設計は行われなくてよい。上記で述べたとおり、特定の条件を満たすことで、Dirac Coneモードの発現に基づく構造設計を行うことなく、メタマテリアルにゼロ屈折率を発現させることができる。すなわち、本開示に従う設計方法は、Dirac Coneモードの発現を確認する工程を含まなくてよい。
3.2 構造形成工程の例
 前記構造形成工程において、例えば電子ビーム描画法によって、前記構造が形成されてよい。また、当該構造形成工程において、当技術分野で既知のリソグラフィ技術が適用されてよく、当業者は所望のメタマテリアルに応じて、適宜製造手法を選択することができる。
 電子ビーム描画法を用いたメタマテリアルの作成方法を以下で図12A及び図12Bを参照しながら説明する。図12Aは、当該作成方法の
フロー図の一例である。図12Bは、当該作成方法を説明するための模式図である。
 ステップS1において、SiOの膜102を有する基板101が用意される。基板101は、例えばシリコン基板であってよいが、樹脂基板であってもよい。膜102の膜厚は、例えば1μm~5μm、特には2μm~4μmであってよい。膜102の材料は、SiOに限られない。膜102は、例えば所望の波長範囲の光に対して低屈折率及び低吸収を示す材料から形成されてよい。膜102は、例えばCaF、Al、及び各種金属酸化物のうちのいずれかの材料の膜であってもよい。これらの具体例は、例えば近赤外光及び中赤外光におけるゼロ屈折率発現のために適している。
 ステップS2において、膜102上にレジスト膜103が形成される。当該レジスト膜は、例えば溶媒に溶解した電子線レジストを、スピンコート法により所定の成膜後膜厚となるように塗布し、そして、成膜することによって形成される。当該成膜後膜厚は、例えば200nm~600nm、好ましくは300nm~500nmであってよい。前記電子線レジストは、例えばα-クロロアクリル酸エステルとα-メチルスチレンとの重合体を含むレジストであってよい。そのようなレジストとして、ZEP520A(日本ゼオン株式会社)を挙げることができるがこれに限定されない。前記溶媒は、例えばN-酢酸アミルであってよい。当該成膜後に、当該レジスト膜は、例えばメチルイソブチルケトン及びイソプロピルアコールにより洗浄されてよい。このように洗浄された後に、次のパターン描画が行われる。
 ステップS3において、本開示に従うメタマテリアルの構造が描かれるように、電子ビームよりパターン描画が行われる。当該パターン描画は、本開示に従うメタマテリアルの構造を形成するように、特には前記構造単位が一次元的に又は二次元的に配列されるように形成されてよい。同図においては、前記構造単位が一次元的に配列された導波路構造104が描かれている。
 ステップS4において、蒸着法によって誘電体又は半導体の膜105を積層する。膜105の成膜後膜厚は、例えば100nm~300nm、好ましくは150nm~250nmであってよい。膜105を形成する誘電体は、例えばSiであってよいが、これに限定されない。膜105は、例えば所望の波長範囲の光に対して低屈折率及び低吸収を示す材料から形成されてよい。膜105を形成する誘電体は、例えばGe、Si、ZnS、又はGaNであってもよい。
 前記ステップS3におけるパターン描画によって、導波路構造104の部分のレジスト膜が除去されている。そして、ステップS4において、レジスト膜が除去された部分に、導波路構造104を形成するように、例えばSiが蒸着する。
 ステップS5において、積層基板に対して室温にてジメチルアセトアミドを用いたリフトオフプロセスが実施される。このようにして、本開示に従うメタマテリアルが製造される。
 以上のとおり、本開示において、メタマテリアルは、例えば誘電体又は半導体などの材料から形成されてよく、例えばSi系材料又はGe系材料から形成されてよい。このような材料の一例として、上記で述べたとおり、Siを挙げることができ、また、当該材料は、Ge、Si、ZnS、又はGaNであってもよい。
 また、本開示に従うメタマテリアルは、上記のとおり、基板上に設けられてよく、より特には、基板上に設けられた膜上に設けられてよい。
4.実施例
4.1 導波路におけるゼロ屈折率の発現
 図23に示されるとおりのメタマテリアル(導波路)について、以下表1に示されるとおりの条件で屈折率をシミュレーションした。当該シミュレーションは、FullWAVE(Synopsys Optical Solutions Group)を用いて、有限差分時間領域(finite-difference time-domain)法により行われた。同図に示される導波路WGは、SiOの基板S上に存在すると想定された。当該基板Sは、厚さ=3μmであり、且つ、屈折率n~1.44であった。環境媒質は空気であり、その屈折率n=1とした。
 同図に示されるとおり、TE偏光(電場が横(x軸)方向)の光が、前記導波路WGにy軸に沿って入射された場合の屈折率がシミュレーションされた。前記光は、当該導波路WGの一方の側(同図においては左側の端)から、配列方向に向かって導入された。
 屈折率は以下のとおりに測定された。
 光がゼロ屈折率導波路中を伝搬するとき、同時に、光(すなわち電磁波)が自由空間に放射する。電磁波を示すため、磁場の位相(Hz phase)は、例えば図24のように示される。当該磁場の状態に基づき、屈折率が以下のとおりに測定される。
 まず、実効波長(λeff)を計算する。λeffは放射波の同じ位相の間の距離であり、すなわち図24に示されるように、波の二つのノードの間の距離として特定される。
 実効屈折率neffは以下の数式5により計算された。
 
 数式5において、λは入射光の波長である。λeffは、上記のとおり、放射波の同じ位相の間の距離である。なお、放射波が、入射光と逆伝搬するように光が伝搬される場合は、neffは負数になる。例えば図24に示されるシミュレーション結果の磁場位相図から、二つのノードの間の距離λeffが特定される。
 ゼロ屈折率導波路パラメータ及び材料は以下のとおりであり:周期P=660nm、エアホール半径R=150nm、厚さT=220nm、導波路材料:Si;これに関して計算された屈折率は図25に示されるとおりであった。
 以下表1に、各条件でのシミュレーション結果を示す。同表において、「材料」は、当該導波路の材料を示す。「周期」は、当該導波路の構造単位の配列周期Pである。「半径」は、当該導波路の各構造単位が有するエアホールの半径Rである。る。「厚さ」は、当該導波路の厚さTである。入射光波長λneff=0は、実行屈折率(neff)が0になる場合の入射光の波長である。比帯域幅は、上記で述べたとおりに特定された比帯域幅である。「伝搬される光の波長」は、当該導波路に入射した光が当該導波路内において伝搬されるときの当該光の波長λWGであり、これは、導波路内において、磁場の位相が同じ二つの位置の間の距離である。
 
 同表に示されるとおり、材料Siに関して、構造単位の配列周期Pが660nmであり且つ伝搬される光の波長λWGも同じ660nmである場合に、ゼロ屈折率が発現した。
 また、ゼロ屈折率が発現した場合の入射光波長λneff=0は、エアホールの半径Rに応じて変化していることも分かる。例えば、入射光の波長がより長い場合において、エアホールの半径をより小さくすることによってゼロ屈折率を発現させることができることも分かる。すなわち、入射光の波長に応じてエアホールの半径を調整することでゼロ屈折率を発現させることができる。
 また、材料がSiである場合の比帯域幅は約4.8%であり、非常に広い範囲の入射光波長に対してゼロ屈折率が発現することも分かる。
 また、材料をSiからGe又はSiに変更した場合においても、ゼロ屈折率が発現されることも確認された。すなわち配列周期P及び波長λWGを一致させることによるゼロ屈折率の発現は、種々の材料において観察されることが分かる。
 また、Si、Ge、及びSiのいずれについても、エアホール半径Rを調整することによって、入射光波長が1550nmである場合に実行屈折率neff=0とすることができる。すなわち、配列周期P及び波長λWGを一致させ、さらに、材料の選択及びエアホール半径Rの調整によって、所望の入射光波長においてゼロ屈折率を発現させることができる。
4.2 リング型共振器におけるゼロ屈折率の発現
 リング型共振器についても、上記4.1と同様にシミュレーションを行った。以下表2に、当該シミュレーションの条件及びシミュレーション結果を示す。同表において、「材料」は、当該リング型共振器の材料を示す。「周期」は、当該リング型共振器の構造単位の配列周期Pである。「半径」は、当該リング型共振器の各構造単位が有するエアホールの半径Rである。「厚さ」は、当該導波路の厚さTである。「リング半径」は、当該リングの半径である。入射光波長は、実行屈折率(neff)が0になる場合の入射光の波長である。比帯域幅は、上記で述べたとおりに特定された比帯域幅である。「伝搬される光の波長」は、当該導波路に入射した光が当該導波路内において伝搬されるときの当該光の波長λWGであり、これは、導波路内において、磁場の位相が同じ二つの位置の間の距離である。
 
 同表に示されるとおり、リング型共振器に関しても、構造単位の配列周期Pと伝搬される光の波長λWGとが同じである場合に、ゼロ屈折率が発現した。
4.3 配列周期とエアホール半径のバリエーション
 上記4.1では、配列周期Pが660nmである場合に、ゼロ屈折率が発現した場合の入射光波長λneff=0がエアホールの半径Rに応じて変化することが示された。そこで、配列周期Pが他の値である場合においても、同様にゼロ屈折率が発現されるかを確認した。具体的には、配列周期Pが640nmである場合又は680nmである場合においても、660nmである場合と同様に、種々のエアホール半径においてゼロ屈折率が発現されるかをシミュレーションした。
 当該シミュレーションの結果が図26に示されている。同図に示されるとおり、配列周期Pが640nm、660nm、又は680nmである場合のいずれにおいても、ゼロ屈折率が発現した(特に楕円によって囲まれている部分を参照)。ゼロ屈折率の発現は、例えば図27に示されるように、解析結果からも確認された。
 また、配列周期Pが640nm、660nm、又は680nmである場合のいずれにおいても、ゼロ屈折率が発現する入射光の波長範囲は広く、すなわち比帯域幅は広かった。 加えて、配列周期Pが640nm、660nm、又は680nmである場合のいずれにおいても、エアホール半径Rの変化に伴い、ゼロ屈折率を発現する入射光波長の範囲も変化した。すなわち、エアホール半径Rの調整により、ゼロ屈折率を発現する入射光波長を調節することができる。
 また、エアホール半径Rが0.125μmである場合において、配列周期Pが640nm、660nm、又は680nmである場合のいずれにおいても、広い入射光波長範囲にわたってゼロ屈折率が発現した。すなわち、1つの特定のエアホール半径に対して、種々の配列周期が採用された場合においても、ゼロ屈折率が発現した。エアホール半径Rを0.150μm又は0.175μmに変更した場合においても同様に、種々の配列周期Pに関して、広い入射光波長範囲にわたってゼロ屈折率が発現した。
 従来のディラックコーンタイプのフォトニッククリスタルの導波路では、1つの特定のエアホール半径と配列周期との比率においてだけゼロ屈折率が発現する。しかしながら、本開示に従い配列周期Pと伝搬される光の波長λWGを略同一とすることによって、1つの特定のエアホール半径に関して、種々の配列周期が採用されてもゼロ屈折率が発現する。
4.4 比帯域幅
 上記4.1においてシミュレーションされたGe、Si、およびSiの導波路に関して、種々の入射光波長における屈折率を測定し、測定された屈折率に基づき比帯域幅を算出した。測定結果が、図28に示されている。
 同図は、入射光波長を横軸とし且つ縦軸を屈折率とするプロットである。当該プロットに示されるとおり、Geから形成された導波路について、比帯域幅は約3.9%であった。Siから形成された導波路の比帯域幅は約5.0であたった。また、Siから形成された導波路の比帯域幅は約9.7%であった。
 いずれの材料についても比帯域幅は広く、比帯域幅が最も小さいGeの導波路でさえ、約3.9%であった。また、最も比帯域幅が大きいSiに関しては、約9.7%であり、Siの約2倍であった。すなわち本開示に従う導波路は、このように広い比帯域幅を有するものとして構成されることができる。
4.5 屈折率の変化の傾き
 上記4.4において言及したプロットによって、入射光波長に伴う屈折率の変化の傾きを算出した。算出結果が図29に示されている。同図に示されるとおり、Geから形成された導波路について、当該傾きは-0.00406であった。Siから形成された導波路について、当該傾きは-0.003であった。また、Siから形成された導波路について、当該傾きは-0.00146であった。
 このように、材料によって、当該傾きが変化する。例えば、Geは、上記3種の材料のうちで最も傾きの絶対値が大きい。これは、導波路から射出される光の方向(例えば同図に示されるようにyz平面における方向)が、入射光波長の変化によって大きく変化することを意味する。例えば、図37A~Cに示されるように、導波路における構造単位の配列方向をy方向とし且つ基材面(xy平面、導波路の配列面)に対する垂直な方向をz方向とした場合において、yz平面における光の放射方向は、導波路の入射する光の波長に応じて変化する。これらの図に示されるように、当該放射方向は、導波路の入射する光の波長を変化させることで、例えば当該yz平面において、導波路から前方へ、導波路の直上へ、又は導波路から後方へと変化させることができる。このような特性を有する導波路は、例えばビームステアリングを行うために特に適している。すなわち、当該導波路は、例えばビームステアリングを実行する装置において用いられてよく、例えば測距装置、特にはLiDARセンサにおいて用いられてよい。
 このような用途において用いられる本開示の導波路は、当該傾きの絶対値が例えば0.001以上であってよく、特には0.002以上、0.003以上、又は0.004以上であってよい。
 また、当該傾きが小さいメタマテリアルは、色収差を抑制するために適している。例えば、当該メタマテリアルによって、色収差の無い光デバイスを実現することができる。所定波長範囲の入射光が入射した場合に、例えば図14に示されるような色収差低減が実現されると考えられる。
 図36に示されるように、特定の波長の光に対してゼロ屈折率を示すメタマテリアルZIMから当該波長の光L(同図において矢印によって示されている)が出射するとき、当該光は、当該メタマテリアルの面から垂直に出射する。そのため、当該メタマテリアルの光の出射面を調整することによって、上記の色収差が低減された(又は色収差の無い)光デバイスを形成することができる。
 このような用途において用いられる本開示の導波路は、当該傾きの絶対値が例えば0.005以下であってよく、特には0.004以下、0.003以下、又は0.002以下であってよい。
4.6 参考例
 上記4.1において説明した配列周期Pと伝搬される光の波長λWGとが同じである場合に加え、配列周期Pと伝搬される光の波長λWGとが同じでない場合についてもシミュレーションした。図30は、配列周期Pと伝搬される光の波長λWGとが同じである場合の磁界分布のシミュレーション結果を示す。図31は、配列周期Pが伝搬される光の波長λWGよりも大きい場合のシミュレーション結果を示す。図32は、配列周期Pが伝搬される光の波長λWGよりも小さい場合のシミュレーション結果を示す。
 図30におけるシミュレーションではゼロ屈折率が発現したが、図31におけるシミュレーションではゼロ屈折率は発現せず、この場合において、屈折率nはn>0であった。図32におけるシミュレーションにおいてもゼロ屈折率は発現せず、屈折率nはn<0であった。
4.7 入射光波長と導波路内を伝搬される光の波長λWGとの間の関係
 入射光の波長を変更した場合における導波路内を伝搬される光の波長λWGへの影響を調査した。具体的には、2種の材料(Si及びSi)の導波路のそれぞれに、1400nm、1500nm、又は1600nmの波長の光が入射した場合における、当該導波路内を伝搬される光の波長λWGを、シミュレーションにより得た。その結果が図33に示されている。
 同図に示されるとおり、入射光波長がより短くなるにつれて、導波路内を伝搬される光の波長λWGも短くなり、反対に、入射光波長がより長くなるにつれて、導波路内を伝搬される光の波長λWGも長くなる。そのため、特定の配列周期Pを有する導波路に関して、入射光波長を調節することでゼロ屈折率を発現できることが分かる。
 また、Siの導波路及びSiの導波路の間では、導波路内を伝搬される光の波長λWGの変化の程度も異なる。
 例えば、Siの導波路では、入射光波長を1500nmから1400nmへ変化させる又は1500nmから1600nmへ変化させると、これに伴い、伝搬される光の波長λWGは77nm短くなり又は80nm長くなる。
 一方で、Siの導波路では、入射光波長を1500nmから1400nmへ変化させる又は1500nmから1600nmへ変化させると、これに伴い、伝搬される光の波長λWGは95nm短くなり又は116nm長くなる。
 このように、導波路の材料によって、導波路内を伝搬される光の波長λWGの変化の程度が異なる。すなわち、導波路を形成する材料を選択することで、導波路内を伝搬される光の波長λWGを調節することができる。さらに、当該材料の選択によって、入射光波長に応じた波長λWGの変化の程度を調節することもできる。
4.8 リング型共振器に関するシミュレーション
 図34の左に示されるリング型共振器に関して、種々の波長の入射光が入射した場合における磁界分布及びリングから射出する光についてシミュレーションを行った。当該シミュレーションにおいて、同図の右に示されるように、2つの面を観察した。すなわち、モニター1において、リング共振器の中央を観察した。また、モニター2において、リング共振器から3μm上部の面をモニターした。当該シミュレーションの結果が図35に示されている。
 同図に示されるとおり、入射光波長が1554nmである場合においてのみ、リング中心から光が射出され、入射光波長が他の値である場合には、光が射出されない又は弱い光がリング中心から外れた位置から射出された。これらの結果より、当該リング型共振器は、波長選択性に優れていることが分かる。そのため、例えば、当該リング型共振器は、分波器又は合波器において利用することができると考えられる。また、当該リング型共振器は、バイオセンサ又はキラルセンシング若しくはキラル増幅などにおいても利用できると考えられる。
 本開示は、以下のような構成を採用することもできる。
[1]
 エアホールを有する構造単位が配列されている構造を有し、
 前記構造単位の配列周期が、当該構造内を伝搬される光の波長と略同一である、
 メタマテリアル。
[2]
 前記メタマテリアルは、ゼロ屈折率を発現するメタマテリアルである、[1]に記載のメタマテリアル。
[3]
 前記エアホールは、円形又は分割された円形の形状を有する、[1]又は[2]に記載のメタマテリアル。
[4]
 前記メタマテリアルの比帯域幅は2%以上である、[1]~[3]のいずれか一つに記載のメタマテリアル。
[5]
 前記メタマテリアルは、赤外光に対してゼロ屈折率を発現するものである、[1]~[4]のいずれか一つに記載のメタマテリアル。
[6]
 前記メタマテリアルは、誘電体材料又は半導体材料から形成されている、[1]~[5]のいずれか一つに記載のメタマテリアル。
[7]
 前記構造単位の配列周期は、300nm~2500nmである、[1]~[6]のいずれか一つに記載のメタマテリアル。
[8]
 前記エアホールの半径は、15nm~300nmである、[1]~[7]のいずれか一つに記載のメタマテリアル。
[9]
 近赤外光に対してゼロ屈折率を発現し、且つ、比帯域幅が2%~15%である、[1]~[8]のいずれか一つに記載のメタマテリアル。
[10]
 前記構造単位の配列周期は、800nm以上である、[9]に記載のメタマテリアル。[11]
 近赤外光に対してゼロ屈折率を発現し、且つ、比帯域幅が2%~6%である、[1]~[10]のいずれか一つに記載のメタマテリアル。
[12]
 前記構造単位の配列周期は、800nm以下である、[11]に記載のメタマテリアル。
[13]
 前記構造単位が、一次元的に配列されている、[1]~[12]のいずれか一つに記載のメタマテリアル。
[14]
 前記構造単位が、リングを形成するように配列されている、[1]~[13]のいずれか一つに記載のメタマテリアル。
[15]
 [1]~[3]のいずれか一つに記載のメタマテリアルを有するフォトニックデバイス。
[16]
 前記フォトニックデバイスは、ビームステアリング素子である、[15]に記載のフォトニックデバイス。
[17]
 [1]~[14]のいずれか一つに記載のメタマテリアルと、
 前記メタマテリアルへ入射する光を出射する光源部、前記メタマテリアルへ光を導く光導波路、及び、前記メタマテリアルから出射した光を受光する受光部のうちの1つ以上と を備えている装置。
[18]
 前記装置は、分波器、合波器、レーザ、センサ、又は、キラルセンシング装置若しくはキラルエンハンスメント装置である、[17]に記載の装置。
[18]
 エアホールを有する構造単位が配列されている構造を形成する構造形成工程を含み、 前記構造形成工程において、前記構造単位の配列周期が、前記構造内を伝搬される光の波長と略同一となるように前記構造が形成される、
 メタマテリアルの製造方法。
[20]
 エアホールを有する構造単位が配列されている構造を設計する構造設計工程を含み、 前記構造設計工程において、前記構造単位の配列周期が、前記構造内を伝搬される光の波長と略同一となるように前記構造が設計される、
 メタマテリアルの設計方法。
 以上、本開示の実施形態及び実施例について具体的に説明したが、本開示は、上述の実施形態及び実施例に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態及び実施例において挙げた構成、方法、工程、形状、材料、及び数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料、及び数値等を用いてもよい。また、上述の実施形態及び実施例の構成、方法、工程、形状、材料、及び数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値または下限値は、他の段階の数値範囲の上限値または下限値に置き換えてもよい。
10 メタマテリアル
11 エアホール
12、構造単位 

Claims (20)

  1.  エアホールを有する構造単位が配列されている構造を有し、
     前記構造単位の配列周期が、当該構造内を伝搬される光の波長と略同一である、
     メタマテリアル。
  2.  前記メタマテリアルは、ゼロ屈折率を発現するメタマテリアルである、請求項1に記載のメタマテリアル。
  3.  前記エアホールは、円形又は分割された円形の形状を有する、請求項1に記載のメタマテリアル。
  4.  前記メタマテリアルの比帯域幅は2%以上である、請求項1に記載のメタマテリアル。
  5.  前記メタマテリアルは、赤外光に対してゼロ屈折率を発現するものである、請求項1に記載のメタマテリアル。
  6.  前記メタマテリアルは、誘電体材料又は半導体材料から形成されている、請求項1に記載のメタマテリアル。
  7.  前記構造単位の配列周期は、300nm~2500nmである、請求項1に記載のメタマテリアル。
  8.  前記エアホールの半径は、15nm~300nmである、請求項1に記載のメタマテリアル。
  9.  近赤外光に対してゼロ屈折率を発現し、且つ、比帯域幅が2%~15%である、請求項1に記載のメタマテリアル。
  10.  前記構造単位の配列周期は、800nm以上である、請求項9に記載のメタマテリアル。
  11.  近赤外光に対してゼロ屈折率を発現し、且つ、比帯域幅が2%~6%である、請求項1に記載のメタマテリアル。
  12.  前記構造単位の配列周期は、800nm以下である、請求項11に記載のメタマテリアル。
  13.  前記構造単位が、一次元的に配列されている、請求項1に記載のメタマテリアル。
  14.  前記構造単位が、リングを形成するように配列されている、請求項1に記載のメタマテリアル。
  15.  請求項1に記載のメタマテリアルを有するフォトニックデバイス。
  16.  前記フォトニックデバイスは、ビームステアリング素子である、請求項15に記載のフォトニックデバイス。
  17.  請求項1に記載のメタマテリアルと、
     前記メタマテリアルへ入射する光を出射する光源部、前記メタマテリアルへ光を導く光導波路、及び、前記メタマテリアルから出射した光を受光する受光部のうちの1つ以上と を備えている装置。
  18.  前記装置は、分波器、合波器、レーザ、センサ、又は、キラルセンシング装置若しくはキラルエンハンスメント装置である、請求項17に記載の装置。
  19.  エアホールを有する構造単位が配列されている構造を形成する構造形成工程を含み、 前記構造形成工程において、前記構造単位の配列周期が、前記構造内を伝搬される光の波長と略同一となるように前記構造が形成される、
     メタマテリアルの製造方法。
  20.  エアホールを有する構造単位が配列されている構造を設計する構造設計工程を含み、 前記構造設計工程において、前記構造単位の配列周期が、前記構造内を伝搬される光の波長と略同一となるように前記構造が設計される、
     メタマテリアルの設計方法。
      
PCT/JP2023/023578 2022-07-07 2023-06-26 メタマテリアル、フォトニックデバイス、装置、メタマテリアルの製造方法、及びメタマテリアルの設計方法 WO2024009822A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-109728 2022-07-07
JP2022109728 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024009822A1 true WO2024009822A1 (ja) 2024-01-11

Family

ID=89453296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023578 WO2024009822A1 (ja) 2022-07-07 2023-06-26 メタマテリアル、フォトニックデバイス、装置、メタマテリアルの製造方法、及びメタマテリアルの設計方法

Country Status (1)

Country Link
WO (1) WO2024009822A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112942A (ja) * 2009-11-27 2011-06-09 Toyota Central R&D Labs Inc 光偏向素子
JP2013505479A (ja) * 2009-09-18 2013-02-14 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 勾配付き屈折率を有する平面的な光学的メタマテリアル
US20130098673A1 (en) * 2011-03-18 2013-04-25 Ruopeng Liu Metamaterial for deflecting an electromagnetic wave
US20170160473A1 (en) * 2014-01-31 2017-06-08 President And Fellows Of Harvard College Integrated Impedance-Matched Photonic Zero-Index Metamaterials
CN111736405A (zh) * 2020-06-22 2020-10-02 清华大学 一种基于圆形空气洞超构材料的纠缠光子对产生系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505479A (ja) * 2009-09-18 2013-02-14 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 勾配付き屈折率を有する平面的な光学的メタマテリアル
JP2011112942A (ja) * 2009-11-27 2011-06-09 Toyota Central R&D Labs Inc 光偏向素子
US20130098673A1 (en) * 2011-03-18 2013-04-25 Ruopeng Liu Metamaterial for deflecting an electromagnetic wave
US20170160473A1 (en) * 2014-01-31 2017-06-08 President And Fellows Of Harvard College Integrated Impedance-Matched Photonic Zero-Index Metamaterials
CN111736405A (zh) * 2020-06-22 2020-10-02 清华大学 一种基于圆形空气洞超构材料的纠缠光子对产生系统

Similar Documents

Publication Publication Date Title
Barclay et al. Integration of fiber-coupled high-Q SiNx microdisks with atom chips
CN108731806B (zh) 光学滤波器、光谱仪和光学设备
US6657731B2 (en) Coated optical microcavity resonator chemical sensor
Scheuer et al. InGaAsP annular Bragg lasers: theory, applications, and modal properties
Dietrich et al. Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators
US9143702B2 (en) Lens-free planar imager using an optical resonator
Stella et al. Enhanced directional light emission assisted by resonant Bloch surface waves in circular cavities
Knipper et al. Observation of giant infrared circular dichroism in plasmonic 2D-metamaterial arrays
US9207358B2 (en) Surface electromagnetic waves in photonic band gap multilayers
CN102326108A (zh) 光学微谐振器系统
CN110873911A (zh) 包括亚波长反射器的光学滤波器和光谱仪以及电子装置
JP7132243B2 (ja) 移植可能な光学センサ
Momeni et al. Silicon nanophotonic devices for integrated sensing
Deng et al. Light switching with a metal-Free chiral-sensitive metasurface at telecommunication wavelengths
CN106772703A (zh) 一种基于绝缘体上硅薄膜(soi)的1×8高性能光子晶体并行复用传感器阵列结构
Shahbaz et al. Breakthrough in silicon photonics technology in telecommunications, biosensing, and gas sensing
Levi et al. Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing
Hillmer et al. Miniaturized interferometric sensors with spectral tunability for optical fiber technology—A comparison of size requirements, performance, and new concepts
Komlenok et al. Laser ablated nanocrystalline diamond membrane for infrared applications
Koseki et al. Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides
WO2024009822A1 (ja) メタマテリアル、フォトニックデバイス、装置、メタマテリアルの製造方法、及びメタマテリアルの設計方法
GB2386966A (en) Optical element using one-dimensional photonic crystal and phase modulation unit
Wang et al. Nanogap enabled trajectory splitting and 3D optical coupling in self-assembled microtubular cavities
JP4042426B2 (ja) 光学素子およびそれを用いた分光装置
US11092547B2 (en) Device and method for observing a fluorescent sample

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835356

Country of ref document: EP

Kind code of ref document: A1