WO2024009585A1 - Metallized film and film capacitor - Google Patents

Metallized film and film capacitor Download PDF

Info

Publication number
WO2024009585A1
WO2024009585A1 PCT/JP2023/015361 JP2023015361W WO2024009585A1 WO 2024009585 A1 WO2024009585 A1 WO 2024009585A1 JP 2023015361 W JP2023015361 W JP 2023015361W WO 2024009585 A1 WO2024009585 A1 WO 2024009585A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal vapor
metallized
width
electrode
Prior art date
Application number
PCT/JP2023/015361
Other languages
French (fr)
Japanese (ja)
Inventor
智久 内田
智生 稲倉
甲児 ▲高▼垣
晃 奥村
Original Assignee
株式会社指月電機製作所
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社指月電機製作所, 株式会社村田製作所 filed Critical 株式会社指月電機製作所
Publication of WO2024009585A1 publication Critical patent/WO2024009585A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • the present invention relates to metallized films and film capacitors.
  • Patent Document 1 describes a metallized film in which a metal layer is formed on at least one surface of a polymer film, and a metallized film capacitor made of the metallized film.
  • the metallized film described in Patent Document 1 has a portion on one end of one surface of the metallized film where no metal layer is formed, a portion where a metal layer is formed, and a portion where the metal layer is formed.
  • the boundary with the unformed portion has a wavy shape.
  • Patent Document 1 The metallized film and metallized film capacitor described in Patent Document 1 still have room for improvement in terms of suppressing short circuits while suppressing a decrease in capacitance.
  • the present invention provides a metallized film and a film capacitor that can suppress short circuits while suppressing a decrease in capacitance.
  • the metallized film according to one aspect of the present invention is dielectric film; a metal vapor-deposited electrode formed on the surface of the dielectric film; Equipped with The metal vapor-deposited electrode is arranged such that an insulating margin extending in the longitudinal direction of the dielectric film is provided at one end in the width direction of the dielectric film,
  • the metal vapor deposited electrode has a plurality of convex portions facing the insulation margin at an end facing the insulation margin, The plurality of convex portions have flat portions along the direction in which the insulating margin extends.
  • the film capacitor according to one embodiment of the present invention is A rolled body constituted by the above-mentioned metallized film, a pair of end face electrodes disposed at both ends of the metallized film; Equipped with
  • a metallized film and a film capacitor are provided that can suppress a short circuit while suppressing a decrease in capacitance.
  • FIG. 1 A perspective view showing a film capacitor according to Embodiment 1 of the present invention Schematic diagram showing a metallized film according to Embodiment 1 of the present invention An enlarged view of area E1 in FIG. 2A A diagram showing simulation results of displacement of a metallized film having a metal vapor-deposited electrode with no convex portions formed. An enlarged view of region R1 in FIG. 3A A diagram showing the simulation results of the amount of displacement of a metallized film having a metal vapor-deposited electrode with a convex portion formed therein. An enlarged view of region R2 in FIG. 3C A diagram schematically showing a cross section of the film capacitor in Figure 1.
  • FIG. 4A A schematic cross-sectional view showing a state in which the metal vapor-deposited electrode and dielectric film of the film capacitor 1 in FIG. 4A are shrunk.
  • Schematic diagram showing a metallized film according to Modification 2 of Embodiment 1 An enlarged view of area E2 in FIG.
  • Film capacitors are known, which are formed by winding or laminating metallized films in which metal vapor-deposited electrodes are formed on the surface of dielectric films.
  • a voltage is applied to the film capacitor, the temperature of the metal vapor-deposited electrode formed on the surface of the dielectric film increases.
  • the metal-deposited electrode which has risen in temperature, is cooled down, the metal-deposited electrode contracts, creating gaps between the laminated dielectric films, and reducing the capacitance of the film capacitor.
  • the dielectric film vibrates when a voltage is applied due to the gap between the dielectric films, resulting in so-called "squeal".
  • the boundary between the part of the polymer film where the metal layer is formed and the part where the metal layer is not formed is It is formed in a wavy shape.
  • the boundary has a wave-like shape, the electric field is concentrated at the top of the wave due to the edge effect.
  • the distance between the top portion of the waveform and the end face electrode of the film capacitor is smaller than other portions. Therefore, there is a problem in that a short circuit occurs between the corrugated top portion of the metal layer where the electric field is concentrated and the end electrode.
  • the present inventors have studied metallized films and film capacitors that can suppress the occurrence of short circuits while suppressing a decrease in capacitance of film capacitors, and have arrived at the following invention.
  • FIG. 1 is a perspective view showing a film capacitor 1 according to Embodiment 1 of the present invention.
  • FIG. 2A is a schematic diagram showing the metallized film 11 according to the first embodiment of the present invention.
  • FIG. 2B is an enlarged view of region E1 in FIG. 2A.
  • the film capacitor 1 includes a wound body 10 and a pair of end surface electrodes 20 formed at both ends of the wound body 10.
  • the wound body 10 is formed by laminating or winding metallized films 11, which will be described later with reference to FIGS. 2A and 2B.
  • the pair of end electrodes 20 are formed by spraying a metal such as aluminum or zinc onto both ends of the wound body 10.
  • the metallized film 11 is a film in which a metal vapor-deposited electrode 13 is formed on the surface of a dielectric film 12.
  • the dielectric film 12 is, for example, a plastic film containing a thermoplastic resin such as polyethylene terephthalate, polypropylene, polyphenylene sulfide, or polyethylene naphthalate, or a hydroxyl group (OH group) possessed by the first organic material and an isocyanate possessed by the second organic material. It is formed from a plastic film containing a thermosetting resin such as a cured product obtained by reacting with a group (NCO group).
  • the metal vapor deposited electrode 13 is made of metal such as aluminum or zinc, for example.
  • the metal vapor-deposited electrode 13 is an electrode connected to one of the first end electrodes 21 of the end electrodes 20 of the film capacitor 1 .
  • the metal vapor-deposited electrode 13 is arranged such that an insulating margin 16 extending in the longitudinal direction L of the dielectric film 12 is provided at one end 12a of the dielectric film 12 in the width direction W.
  • the insulation margin 16 is a portion of the surface of the dielectric film 12 where the metal vapor-deposited electrode 13 is not formed.
  • the insulating margin 16 is provided for the purpose of preventing the end surface electrode 20 from coming into contact with the other second end surface electrode 22 and from short circuiting.
  • the convex portion 14 is formed in a rectangular shape.
  • each of the plurality of convex portions 14 has a flat portion 14a that is flat along the direction in which the insulating margin 16 extends (longitudinal direction L).
  • the flat portion 14a is a portion of the convex portion 14 facing the insulation margin 16.
  • the plurality of convex portions 14 are arranged at intervals along the longitudinal direction L.
  • the intervals between the plurality of convex portions 14 may be equal or different.
  • a plurality of convex portions 14 are arranged at equal intervals.
  • the plurality of convex portions 14 are arranged at intervals cl.
  • the length d1 of the flat portion 14a of each convex portion 14 is the same length d1.
  • the length d1 of the flat portion 14a can be formed, for example, from 0.7 mm to 1.5 mm along the longitudinal direction L of the dielectric film 12.
  • the lengths d1 of the flat portions 14a may not all be the same length, and may be different lengths within the range of 0.7 mm or more and 1.5 mm or less.
  • FIG. 3A is a diagram showing the simulation results of the amount of displacement of the metallized film 11 having the metal vapor-deposited electrode 13 without the convex portion 14 formed therein.
  • FIG. 3B is an enlarged view of region R1 in FIG. 3A.
  • FIG. 3C is a diagram showing a simulation result of the amount of displacement of the metallized film 11 having the metal vapor-deposited electrode 13 in which the convex portion 14 is formed.
  • FIG. 3D is an enlarged view of region R2 in FIG. 3C.
  • a metal vapor deposited electrode 13 is formed on the right side of the drawing, and an insulating margin 16 is provided on the left side of the drawing.
  • 3A to 3D show the results of a simulation regarding the amount of displacement of the metallized film 11 with respect to temperature when a voltage is applied to the metallized film 11.
  • analysis simulation software Femtet (registered trademark) manufactured by Murata Software Co., Ltd. was used.
  • the calculation item was applied analysis to calculate the amount of displacement with respect to temperature, the mode was steady analysis, and calculations were made for the case where the temperature was changed from -40°C to 125°C.
  • FIG. 4A is a diagram schematically showing a local cross section of the film capacitor 1 of FIG. 1.
  • FIG. 4B is a schematic cross-sectional view showing a state in which the metal vapor deposited electrode 13 and the dielectric film 12 of the film capacitor 1 of FIG. 4A are contracted.
  • a pair of metallized films 11 are stacked.
  • the metal vapor deposited electrode 213 of one metallized film 211 is connected to the first end face electrode 21, and the metal vapor deposited electrode 313 of the other metallized film 311 is connected to the other second end face electrode 22.
  • a portion where the two metal vapor-deposited electrodes 213, 313 overlap is an effective electrode portion that is effective as an electrode of the film capacitor 1, and has an effective electrode width EW1.
  • the temperature of the metal vapor-deposited electrodes 213, 313, especially the ends 213a, 313a increases.
  • the metal vapor deposited electrodes 213 and 313 contract in the direction of arrow S1 in FIG. 4A.
  • a strong force due to thermal contraction of the metal vapor deposited electrodes 213, 313 is applied near the ends 213a, 313a of the metal vapor deposited electrodes 213, 313 shown in region R1 of FIG. 4A.
  • the dielectric film 12 is pulled by the force of contraction of the metal vapor deposited electrodes 213, 313.
  • a gap Sp is formed between the pair of metallized films 11, as shown in FIG. 4B. If a gap Sp is formed between the metallized films 11, the effective electrode width of the effective electrode portion of the film capacitor 1 becomes a width EW2 smaller than the width EW1, resulting in a decrease in the capacitance of the film capacitor 1.
  • FIG. 5 is a table showing the results of how much the effective electrode width changed before and after applying voltage in the film capacitor 1 formed of the metallized films of the comparative example and the example.
  • the amount of change in the effective electrode width indicates the ratio of how much the effective electrode width EW2 after applying the electrode to the film capacitor 1 has decreased with respect to the effective electrode width EW1 before applying the voltage to the film capacitor 1. .
  • C 0 be the reference capacitance of the film capacitor 1 at a temperature of 25° C.
  • C 1 be the capacitance when the temperature is changed
  • a metallized film having a metal vapor-deposited electrode without a protrusion was used.
  • the end of the metal vapor-deposited electrode on the insulation margin side is formed into a straight line.
  • an insulation margin of 2.0 mm width is provided in the comparative metallized film.
  • the metallized film 11 described in Embodiment 1 and having the metal vapor-deposited electrode 13 on which a plurality of convex portions 14 were formed was used.
  • the height h1 (see FIG. 2B), the length d1 (see FIG. 2B) of the convex portion 14, and the distance between the flat portion 14a of the convex portion 14 and one end 12a of the dielectric film 12 are determined.
  • the margin width md (see FIG. 2A) and the interval cl between adjacent convex portions 14 were changed.
  • Example 1-1 the height h1 of the convex part 14 is 0.10 mm, the length d1 of the flat part 14a of the convex part 14 is 0.7 mm, the margin width md is 1.90 mm, and the interval cl between the convex parts 14.
  • a metallized film 11 with a diameter of 1.4 mm was used.
  • Example 1-2 the height h1 of the convex part 14 is 0.30 mm, the length d1 of the flat part 14a of the convex part 14 is 1.5 mm, the margin width md is 1.70 mm, and the interval cl between the convex parts 14.
  • a metallized film 11 with a diameter of 0.6 mm was used.
  • Example 1-3 the height h1 of the convex part 14 is 0.15 mm, the length d1 of the flat part 14a of the convex part 14 is 1.0 mm, the margin width md is 1.35 mm, and the interval cl between the convex parts 14.
  • a metallized film 11 with a diameter of 1.1 mm was used.
  • the reduction rate of the effective electrode width (1-EW2/EW1) is 1.8% in the comparative example, whereas in Examples 1-1 to 1-3, , 0.05% to 0.30%, which is smaller than that of the comparative example.
  • the concentration of heat on the end portion 13a of the metal vapor deposited electrode 13 is suppressed, and the degree of contraction of the metal vapor deposited electrode 13 is reduced, so that the gap is reduced.
  • the generation of Sp can be suppressed. Therefore, in Examples 1-1 to 1-3, the decrease in capacitance of the film capacitor 1 can be suppressed compared to the comparative example.
  • the metallized film 11 includes a dielectric film 12 and a metal vapor-deposited electrode 13.
  • the metal vapor-deposited electrode 13 is formed on the surface of the dielectric film 12, and is arranged so that an insulation margin 16 extending in the longitudinal direction L of the dielectric film 12 is provided at one end 12a of the dielectric film 12 in the width direction W. ing.
  • the metal vapor deposited electrode 13 has a plurality of protrusions 14 facing the insulation margin 16 at an end 13 a of the metal vapor deposition electrode 13 facing the insulation margin 16 , and the plurality of protrusions 14 extend along the direction in which the insulation margin 16 extends. It has a flat flat portion 14a.
  • the plurality of convex portions 14 are arranged at intervals in the longitudinal direction L of the dielectric film 12.
  • the length d1 of the flat portion 14a is 0.7 mm or more and 1.5 mm or less.
  • the effect of suppressing short circuits can be further improved.
  • concentration of the electric field can be suppressed and occurrence of short circuit can be suppressed.
  • concentration of heat can be suppressed, and generation of a gap Sp between the dielectric films 12 can be suppressed.
  • the film capacitor 1 includes a wound body 10 made of the metallized film 11 described above, and a pair of end surface electrodes 20 arranged at both ends of the wound body 10.
  • FIG. 6 is a schematic diagram showing a metallized film 111 according to Modification 1 of Embodiment 1.
  • the metal vapor deposition electrode 113 may include a plurality of divided electrodes 113b.
  • the plurality of divided electrodes 113b are formed by dividing the metal vapor deposited electrode 113 using slits 117 provided along the width direction W of the dielectric film 112.
  • Each of the plurality of divided electrodes 113b has one protrusion 114.
  • one convex portion 114 that protrudes toward one end 112a of the dielectric film 112 is provided at the end 113a of each divided electrode 113b on the insulating margin 116 side.
  • the metal vapor-deposited electrode 113 has a strip-shaped connection portion 118 extending in the longitudinal direction at the other end 112b of the dielectric film 112 in the width direction W.
  • the connecting portion 118 is a portion used to electrically connect the end face electrode of the film capacitor and the metal vapor deposited electrode 113.
  • Each of the plurality of divided electrodes 113b is electrically connected to the connection portion 118 via a fuse 119.
  • a film capacitor formed using the metallized film 111 can have a safety function, and safety can be improved.
  • FIG. 7 is a table showing the results of how much the effective electrode width changed before and after applying voltage in the film capacitor formed by the metallized film 111 of Modification 1.
  • the height h2 and width d2 of the protrusion 114, the margin width md2 between the flat part 114a of the protrusion 114 and one end 112a of the dielectric film 12, the interval between adjacent protrusions cl2, and the slit width s2 are changed.
  • the amount of change in effective electrode width was measured.
  • the effective electrode width was calculated using the method described in Embodiment 1.
  • the comparative example is similar to that described in Embodiment 1.
  • Example 2-1 the height h2 of the convex part 114 is 0.10 mm, the length d1 of the flat part 114a of the convex part 114 is 0.7 mm, the margin width md2 is 1.90 mm, and the interval cl2 of the convex part 114 is A metallized film 11 with a diameter of 1.4 mm and a slit width s2 of 0.1 mm was used.
  • Example 2-2 the height h2 of the convex portion 114 is 0.30 mm, the length d1 of the flat portion 114a of the convex portion 114 is 1.5 mm, the margin width md2 is 1.70 mm, and the interval cl2 between the convex portions 114 is A metallized film 11 with a diameter of 0.6 mm and a slit width s2 of 0.1 mm was used.
  • Example 2-3 the height h2 of the convex part 114 is 0.15 mm, the length d1 of the flat part 114a of the convex part 114 is 1.0 mm, the margin width md2 is 1.35 mm, and the interval cl2 of the convex part 114 is A metallized film 11 with a diameter of 1.1 mm and a slit width s2 of 0.1 mm was used.
  • the reduction rate of the effective electrode width is the smallest compared to the comparative example, and it is possible to suppress the decrease in capacitance of the film capacitor. .
  • FIG. 8A is a schematic diagram showing a metallized film 411 according to Modification 2 of Embodiment 1.
  • FIG. 8B is an enlarged view of region E2 in FIG. 8A.
  • the convex portion 414 of the metal vapor-deposited electrode 413 is formed so that the width becomes wider toward the flat portion 414a at the tip. That is, the width da1 of the convex portion 414 on the flat portion 414a side is formed larger than the width db1 of the metal vapor deposited electrode 413 on the end portion 413a side.
  • FIG. 9 is a table showing the results of how much the effective electrode width changed before and after applying voltage in the film capacitor formed by the metallized film 411 of Modification 2.
  • the amount of change in effective electrode width was measured.
  • the effective electrode width was calculated using the method described in Embodiment 1.
  • the comparative example is similar to that described in Embodiment 1.
  • Example 3-1 the height h3 is 0.10 mm, the width da1 on the flat portion 414a side is 1.0 mm, the width db1 on the end portion 413a side is 0.88 mm, the margin width md3 is 1.90 mm, and the interval cl3.
  • a metallized film 11 with a diameter of 1.1 mm was used.
  • Example 3-2 the height h3 is 0.30 mm, the width da1 on the flat portion 414a side is 1.0 mm, the width db1 on the end portion 413a side is 0.65 mm, the margin width md3 is 1.70 mm, and the interval cl3.
  • a metallized film 11 with a diameter of 1.1 mm was used.
  • Example 3-3 the height h3 is 0.15 mm, the width da1 on the flat portion 414a side is 1.0 mm, the width db1 on the end portion 413a side is 0.83 mm, the margin width md3 is 1.35 mm, and the interval cl3.
  • a metallized film 11 with a diameter of 1.1 mm was used.
  • the reduction rate of the effective electrode width is the smallest compared to the comparative example, and it is possible to suppress the decrease in capacitance of the film capacitor. .
  • FIG. 10A is a schematic diagram showing a metallized film 511 according to Modification 3 of Embodiment 1.
  • FIG. 10B is an enlarged view of region E3 in FIG. 10A.
  • the convex portion 514 of the metal vapor-deposited electrode 513 is formed so that the width becomes narrower toward the flat portion 514a at the tip. That is, the width da2 of the convex portion 514 on the flat portion 514a side is formed to be larger than the width db2 of the metal vapor deposited electrode 513 on the end portion 513a side.
  • FIG. 11 is a table showing the results of how much the effective electrode width changed before and after applying voltage in the film capacitor formed by the metallized film 511 of Modification 3.
  • the amount of change in effective electrode width was measured.
  • the effective electrode width was calculated using the method described in Embodiment 1.
  • the comparative example is similar to that described in Embodiment 1.
  • Example 4-1 the height h4 is 0.10 mm, the width da2 on the flat portion 514a side is 1.0 mm, the width db2 on the end portion 513 side is 1.1 mm, the margin width md4 is 1.90 mm, and the interval cl4 A metallized film 11 with a diameter of 1.1 mm was used.
  • Example 4-2 the height h4 is 0.30 mm, the width da2 on the flat portion 514a side is 1.0 mm, the width db2 on the end portion 513 side is 1.3 mm, the margin width md4 is 1.70 mm, and the interval cl4 A metallized film 11 with a diameter of 1.1 mm was used.
  • Example 4-3 the height h4 is 0.15 mm, the width da2 on the flat portion 514a side is 1.0 mm, the width db2 on the end portion 513 side is 1.2 mm, the margin width md4 is 1.35 mm, and the interval cl4 A metallized film 11 with a diameter of 1.1 mm was used.
  • Example 4-4 the height h4 is 0.10 mm, the width da2 on the flat portion 514a side is 1.0 mm, the width db2 on the end portion 513 side is 2.1 mm, the margin width md4 is 1.90 mm, and the interval cl4 A metallized film 11 with a diameter of 1.1 mm was used.
  • the reduction rate of the effective electrode width is the smallest compared to the comparative example, and it is possible to suppress the decrease in capacitance of the film capacitor. .
  • the shape of the convex portion 14 is not limited to a rectangular shape.
  • the corners of the convex portion 14 may be chamfered.
  • the metallized film of the present invention includes a dielectric film and a metal vapor-deposited electrode formed on the surface of the dielectric film, and the metal vapor-deposited electrode is provided with a dielectric film at one end in the width direction of the dielectric film.
  • the metal vapor-deposited electrode has a plurality of protrusions facing the insulating margin at an end facing the insulating margin, and the plurality of protrusions are arranged so as to provide an insulating margin extending in the longitudinal direction of the insulating margin. It has a flat portion along the extending direction.
  • the plurality of convex portions may be arranged at intervals from each other in the longitudinal direction of the dielectric film.
  • the length of the flat portion may be 0.7 mm or more and 1.5 mm or less.
  • the metallized electrode includes a plurality of divided electrodes divided by slits provided along the width direction of the dielectric film, and a plurality of divided electrodes. Each of the divided electrodes may have one of the protrusions.
  • the metallized electrode has a strip-shaped connection portion extending in the longitudinal direction at the other end in the width direction of the dielectric film, and each of the plurality of divided electrodes has a connection portion. It may be electrically connected to.
  • the film capacitor of the present invention includes a wound body made of the metallized film of any one of (1) to (5), and end face electrodes arranged at both ends of the metallized film.
  • the present invention can be broadly applied to film capacitors and metallized films for forming film capacitors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The metallized film of the present invention comprises a dielectric film and a metal vapor-deposited electrode formed on the surface of the dielectric film, wherein the metal vapor-deposited electrode is arranged such that an insulating margin extending in the longitudinal direction of the dielectric film is provided at one end in the width direction of the dielectric film, the metal vapor-deposited electrode has a plurality of protrusions facing the insulating margin at an end facing the insulating margin, and the plurality of protrusions have flat portions along the extension direction of the insulating margin.

Description

金属化フィルムおよびフィルムコンデンサMetallized films and film capacitors
 本発明は、金属化フィルムおよびフィルムコンデンサに関する。 The present invention relates to metallized films and film capacitors.
 特許文献1には、高分子フィルムの少なくとも一方の面に金属層が形成されている金属化フィルム、および当該金属化フィルムで構成された金属化フィルムコンデンサが記載されている。特許文献1に記載の金属化フィルムは、金属化フィルムの一方の面の一方の端部に、金属層が形成されていない部分を有し、金属層が形成されている部分と、金属層が形成されていない部分との境界が波型形状である。 Patent Document 1 describes a metallized film in which a metal layer is formed on at least one surface of a polymer film, and a metallized film capacitor made of the metallized film. The metallized film described in Patent Document 1 has a portion on one end of one surface of the metallized film where no metal layer is formed, a portion where a metal layer is formed, and a portion where the metal layer is formed. The boundary with the unformed portion has a wavy shape.
特開2009-188001号公報Japanese Patent Application Publication No. 2009-188001
 特許文献1に記載の金属化フィルムおよび金属化フィルムコンデンサでは、静電容量の低下を抑えつつショートを抑制する点で未だ改善の余地がある。 The metallized film and metallized film capacitor described in Patent Document 1 still have room for improvement in terms of suppressing short circuits while suppressing a decrease in capacitance.
 本発明は、静電容量の低下を抑えつつショートを抑制することのできる金属化フィルムおよびフィルムコンデンサを提供する。 The present invention provides a metallized film and a film capacitor that can suppress short circuits while suppressing a decrease in capacitance.
 本発明の一態様にかかる金属化フィルムは、
 誘電体フィルムと、
 前記誘電体フィルムの表面に形成された金属蒸着電極と、
を備え、
 前記金属蒸着電極は、前記誘電体フィルムの幅方向の一方端部に前記誘電体フィルムの長手方向に延びる絶縁マージンが設けられるよう配置され、
 前記金属蒸着電極は、前記絶縁マージンに向き合う端部に、前記絶縁マージンに向かう複数の凸部を有し、
 前記複数の凸部は、前記絶縁マージンの延びる方向に沿って平らな平坦部を有する。
The metallized film according to one aspect of the present invention is
dielectric film;
a metal vapor-deposited electrode formed on the surface of the dielectric film;
Equipped with
The metal vapor-deposited electrode is arranged such that an insulating margin extending in the longitudinal direction of the dielectric film is provided at one end in the width direction of the dielectric film,
The metal vapor deposited electrode has a plurality of convex portions facing the insulation margin at an end facing the insulation margin,
The plurality of convex portions have flat portions along the direction in which the insulating margin extends.
 本発明の一態様にかかるフィルムコンデンサは、
 上述の金属化フィルムにより構成された巻回体と、
 前記金属化フィルムの両端に配置された一対の端面電極と、
を備える。
The film capacitor according to one embodiment of the present invention is
A rolled body constituted by the above-mentioned metallized film,
a pair of end face electrodes disposed at both ends of the metallized film;
Equipped with
 本発明によると、静電容量の低下を抑えつつショートを抑制することのできる金属化フィルムおよびフィルムコンデンサを提供する。 According to the present invention, a metallized film and a film capacitor are provided that can suppress a short circuit while suppressing a decrease in capacitance.
本発明の実施の形態1にかかるフィルムコンデンサを示す斜視図A perspective view showing a film capacitor according to Embodiment 1 of the present invention 本発明の実施の形態1にかかる金属化フィルムを示す概略図Schematic diagram showing a metallized film according to Embodiment 1 of the present invention 図2Aの領域E1を拡大した図An enlarged view of area E1 in FIG. 2A 凸部の形成されてない金属蒸着電極を有する金属化フィルムの変位量のシミュレーション結果を示す図A diagram showing simulation results of displacement of a metallized film having a metal vapor-deposited electrode with no convex portions formed. 図3Aの領域R1を拡大した図An enlarged view of region R1 in FIG. 3A 凸部の形成された金属蒸着電極を有する金属化フィルムの変位量のシミュレーション結果を示す図A diagram showing the simulation results of the amount of displacement of a metallized film having a metal vapor-deposited electrode with a convex portion formed therein. 図3Cの領域R2を拡大した図An enlarged view of region R2 in FIG. 3C 図1のフィルムコンデンサの断面を概略的に示す図A diagram schematically showing a cross section of the film capacitor in Figure 1. 図4Aのフィルムコンデンサ1の金属蒸着電極および誘電体フィルムが収縮した状態を示す概略断面図A schematic cross-sectional view showing a state in which the metal vapor-deposited electrode and dielectric film of the film capacitor 1 in FIG. 4A are shrunk. 比較例および実施例の金属化フィルムにより形成されたフィルムコンデンサにおいて、電圧を印加する前後において有効電極幅がどの程度変化したかの結果を示す表A table showing the extent to which the effective electrode width changed before and after applying voltage in film capacitors formed from metallized films of comparative examples and examples. 実施の形態1の変形例1にかかる金属化フィルムを示す概略図Schematic diagram showing a metallized film according to Modification 1 of Embodiment 1 変形例1の金属化フィルムにより形成されたフィルムコンデンサにおいて、電圧を印加する前後において有効電極幅がどの程度変化したかの結果を示す表Table showing the results of how much the effective electrode width changed before and after applying voltage in the film capacitor formed by the metallized film of Modification Example 1 実施の形態1の変形例2にかかる金属化フィルムを示す概略図Schematic diagram showing a metallized film according to Modification 2 of Embodiment 1 図8Aの領域E2を拡大した図An enlarged view of area E2 in FIG. 8A 変形例2の金属化フィルムにより形成されたフィルムコンデンサにおいて、電圧を印加する前後において有効電極幅がどの程度変化したかの結果を示す表Table showing the results of how much the effective electrode width changed before and after applying voltage in the film capacitor formed by the metallized film of Modification Example 2. 実施の形態1の変形例3にかかる金属化フィルムを示す概略図Schematic diagram showing a metallized film according to Modification 3 of Embodiment 1 図10Aの領域E3を拡大した図An enlarged view of area E3 in FIG. 10A 変形例3の金属化フィルムにより形成されたフィルムコンデンサにおいて、電圧を印加する前後において有効電極幅がどの程度変化したかの結果を示す表Table showing the results of how much the effective electrode width changed before and after applying voltage in the film capacitor formed by the metallized film of Modification 3
(本発明に至った経緯)
 誘電体フィルムの表面に金属蒸着電極を形成した金属化フィルムを巻回または積層することにより形成されたフィルムコンデンサが知られている。フィルムコンデンサに電圧をかけると、誘電体フィルムの表面に形成された金属蒸着電極の温度が上昇する。温度の上昇した金属蒸着電極が冷却されるときに、金属蒸着電極が収縮し、積層された誘電体フィルムの間に隙間が発生して、フィルムコンデンサの静電容量が低下してしまう、という問題がある。また、誘電体フィルムの間に隙間が発生したことで電圧印加時に誘電体フィルムが振動して、所謂「鳴き」が発生するという問題もある。
(How the present invention was achieved)
2. Description of the Related Art Film capacitors are known, which are formed by winding or laminating metallized films in which metal vapor-deposited electrodes are formed on the surface of dielectric films. When a voltage is applied to the film capacitor, the temperature of the metal vapor-deposited electrode formed on the surface of the dielectric film increases. The problem is that when the metal-deposited electrode, which has risen in temperature, is cooled down, the metal-deposited electrode contracts, creating gaps between the laminated dielectric films, and reducing the capacitance of the film capacitor. There is. Furthermore, there is also the problem that the dielectric film vibrates when a voltage is applied due to the gap between the dielectric films, resulting in so-called "squeal".
 特許文献1に記載の金属化フィルムおよび金属化フィルムコンデンサでは、「鳴き」を低減するために、高分子フィルムの金属層が形成されている部分と金属層が形成されていない部分との境界が波型形状に形成されている。しかし、境界が波型形状の場合、端縁効果により波型の頂部となる部分に電界が集中する。波型の頂部となる部分は、フィルムコンデンサの端面電極との間隔が他の部分よりも小さい。このため、電界の集中した金属層の波型の頂部の部分と端面電極との間でショートが発生してしまうという課題がある。 In the metallized film and metallized film capacitor described in Patent Document 1, in order to reduce "squeal", the boundary between the part of the polymer film where the metal layer is formed and the part where the metal layer is not formed is It is formed in a wavy shape. However, when the boundary has a wave-like shape, the electric field is concentrated at the top of the wave due to the edge effect. The distance between the top portion of the waveform and the end face electrode of the film capacitor is smaller than other portions. Therefore, there is a problem in that a short circuit occurs between the corrugated top portion of the metal layer where the electric field is concentrated and the end electrode.
 本発明者(ら)は、フィルムコンデンサの静電容量の低下を抑えつつ、ショートの発生を抑制することのできる金属化フィルムおよびフィルムコンデンサについて検討し、以下の発明に至った。 The present inventors have studied metallized films and film capacitors that can suppress the occurrence of short circuits while suppressing a decrease in capacitance of film capacitors, and have arrived at the following invention.
 以下、本発明にかかる実施の形態1について、添付の図面を参照しながら説明する。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。 Embodiment 1 of the present invention will be described below with reference to the accompanying drawings. Furthermore, in each figure, each element is exaggerated for ease of explanation.
(実施の形態1)
[全体構成]
 図1は、本発明の実施の形態1にかかるフィルムコンデンサ1を示す斜視図である。図2Aは、本発明の実施の形態1にかかる金属化フィルム11を示す概略図である。図2Bは、図2Aの領域E1を拡大した図である。
(Embodiment 1)
[overall structure]
FIG. 1 is a perspective view showing a film capacitor 1 according to Embodiment 1 of the present invention. FIG. 2A is a schematic diagram showing the metallized film 11 according to the first embodiment of the present invention. FIG. 2B is an enlarged view of region E1 in FIG. 2A.
 図1に示すように、フィルムコンデンサ1は、巻回体10と、巻回体10の両端に形成された一対の端面電極20と、を備える。巻回体10は、図2A~図2Bを参照して後述する金属化フィルム11を積層または巻回することにより形成される。一対の端面電極20は、巻回体10の両端部に、アルミニウムまたは亜鉛等の金属を溶射することにより形成される。 As shown in FIG. 1, the film capacitor 1 includes a wound body 10 and a pair of end surface electrodes 20 formed at both ends of the wound body 10. The wound body 10 is formed by laminating or winding metallized films 11, which will be described later with reference to FIGS. 2A and 2B. The pair of end electrodes 20 are formed by spraying a metal such as aluminum or zinc onto both ends of the wound body 10.
 図2Aに示すように、金属化フィルム11は、誘電体フィルム12の表面に金属蒸着電極13が形成されたフィルムである。 As shown in FIG. 2A, the metallized film 11 is a film in which a metal vapor-deposited electrode 13 is formed on the surface of a dielectric film 12.
 誘電体フィルム12は、例えば、ポリエチレンテレフタレート、ポリプロピレン、ポリフェニレンサルファイド、もしくはポリエチレンナフタレート等の熱可塑性樹脂を含むプラスチックフィルム、または第1有機材料が有する水酸基(OH基)と第2有機材料が有するイソシアネート基(NCO基)とが反応して得られる硬化物等の熱硬化性樹脂を含むプラスチックフィルムにより形成される。金属蒸着電極13は、例えば、アルミニウムまたは亜鉛等の金属により形成される。 The dielectric film 12 is, for example, a plastic film containing a thermoplastic resin such as polyethylene terephthalate, polypropylene, polyphenylene sulfide, or polyethylene naphthalate, or a hydroxyl group (OH group) possessed by the first organic material and an isocyanate possessed by the second organic material. It is formed from a plastic film containing a thermosetting resin such as a cured product obtained by reacting with a group (NCO group). The metal vapor deposited electrode 13 is made of metal such as aluminum or zinc, for example.
 金属蒸着電極13は、フィルムコンデンサ1の端面電極20の一方の第1端面電極21に接続される電極である。金属蒸着電極13は、誘電体フィルム12の幅方向Wの一方端部12aに、誘電体フィルム12の長手方向Lに延びる絶縁マージン16が設けられるよう配置されている。絶縁マージン16は、誘電体フィルム12の表面のうち、金属蒸着電極13が形成されていない部分である。絶縁マージン16は、端面電極20の他方の第2端面電極22との接触、短絡を防止する目的で設けられている。 The metal vapor-deposited electrode 13 is an electrode connected to one of the first end electrodes 21 of the end electrodes 20 of the film capacitor 1 . The metal vapor-deposited electrode 13 is arranged such that an insulating margin 16 extending in the longitudinal direction L of the dielectric film 12 is provided at one end 12a of the dielectric film 12 in the width direction W. The insulation margin 16 is a portion of the surface of the dielectric film 12 where the metal vapor-deposited electrode 13 is not formed. The insulating margin 16 is provided for the purpose of preventing the end surface electrode 20 from coming into contact with the other second end surface electrode 22 and from short circuiting.
 絶縁マージン16に向き合う金属蒸着電極13の端部13aには、絶縁マージン16に向かって、すなわち図2Aに示す突出方向Pに突出した複数の凸部14が設けられている。すなわち、絶縁マージン16に向き合う金属蒸着電極13の端部13aは、凹凸形状を有する。本実施の形態では、凸部14は、矩形状に形成されている。複数の凸部14のそれぞれは、図2Bに示すように、絶縁マージン16の延びる方向(長手方向L)に沿って平らな平坦部14aを有する。平坦部14aは、凸部14の絶縁マージン16に向き合う部分である。 A plurality of convex portions 14 protruding toward the insulating margin 16, that is, in the protruding direction P shown in FIG. 2A, are provided on the end portion 13a of the metal vapor-deposited electrode 13 facing the insulating margin 16. That is, the end portion 13a of the metal vapor deposited electrode 13 facing the insulating margin 16 has an uneven shape. In this embodiment, the convex portion 14 is formed in a rectangular shape. As shown in FIG. 2B, each of the plurality of convex portions 14 has a flat portion 14a that is flat along the direction in which the insulating margin 16 extends (longitudinal direction L). The flat portion 14a is a portion of the convex portion 14 facing the insulation margin 16.
 本実施の形態では、複数の凸部14は、長手方向Lに沿って間隔をあけて配置されている。複数の凸部14の間隔は、等間隔であってもよいし、異なる間隔であってもよい。本実施の形態では、図2Aに示すように、複数の凸部14が等間隔に配置されている。言い換えると、複数の凸部14は、それぞれ間隔clをあけて配置されている。 In this embodiment, the plurality of convex portions 14 are arranged at intervals along the longitudinal direction L. The intervals between the plurality of convex portions 14 may be equal or different. In this embodiment, as shown in FIG. 2A, a plurality of convex portions 14 are arranged at equal intervals. In other words, the plurality of convex portions 14 are arranged at intervals cl.
 本実施の形態では、それぞれの凸部14の平坦部14aの長さd1は、いずれも同じ長さd1を有する。平坦部14aの長さd1は、例えば、誘電体フィルム12の長手方向Lに沿って、0.7mm以上1.5mm以下に形成することができる。平坦部14aの長さd1は、すべて同じ長さでなくてもよく、0.7mm以上1.5mm以下の範囲内で異なる長さであってもよい。 In this embodiment, the length d1 of the flat portion 14a of each convex portion 14 is the same length d1. The length d1 of the flat portion 14a can be formed, for example, from 0.7 mm to 1.5 mm along the longitudinal direction L of the dielectric film 12. The lengths d1 of the flat portions 14a may not all be the same length, and may be different lengths within the range of 0.7 mm or more and 1.5 mm or less.
 図3Aは、凸部14の形成されてない金属蒸着電極13を有する金属化フィルム11の変位量のシミュレーション結果を示す図である。図3Bは図3Aの領域R1を拡大した図である。図3Cは、凸部14の形成された金属蒸着電極13を有する金属化フィルム11の変位量のシミュレーション結果を示す図である。図3Dは、図3Cの領域R2を拡大した図である。図3A~図3Dにおいて、図面の右側に金属蒸着電極13が形成され、図面の左側に絶縁マージン16が設けられている。図3A~図3Dは、金属化フィルム11に電圧を印加した際の金属化フィルム11の温度に対する変位量についてシミュレーションした結果を示している。 FIG. 3A is a diagram showing the simulation results of the amount of displacement of the metallized film 11 having the metal vapor-deposited electrode 13 without the convex portion 14 formed therein. FIG. 3B is an enlarged view of region R1 in FIG. 3A. FIG. 3C is a diagram showing a simulation result of the amount of displacement of the metallized film 11 having the metal vapor-deposited electrode 13 in which the convex portion 14 is formed. FIG. 3D is an enlarged view of region R2 in FIG. 3C. In FIGS. 3A to 3D, a metal vapor deposited electrode 13 is formed on the right side of the drawing, and an insulating margin 16 is provided on the left side of the drawing. 3A to 3D show the results of a simulation regarding the amount of displacement of the metallized film 11 with respect to temperature when a voltage is applied to the metallized film 11.
 シミュレーションには、ムラタソフトウェア株式会社製の解析シミュレーションソフトFemtet(登録商標)を使用した。計算項目は、温度に対する変位量を計算する応用解析であり、モードは定常解析であり、-40℃から125℃まで温度を変化させた場合について計算した。 For the simulation, analysis simulation software Femtet (registered trademark) manufactured by Murata Software Co., Ltd. was used. The calculation item was applied analysis to calculate the amount of displacement with respect to temperature, the mode was steady analysis, and calculations were made for the case where the temperature was changed from -40°C to 125°C.
 図3Aおよび図3Bに示すように、金属蒸着電極13の絶縁マージン16に対向する端部に凸部14が設けられていない場合、金属化フィルム11の変位量はV0となる。これは、金属蒸着電極13の端部13aに熱が集中し、温度上昇が発生しているためである。金属蒸着電極13の端部が直線状に真っすぐ形成されていると、フィルムコンデンサに電圧を印加したときに金属蒸着電極13の端部13aに熱が集中しやすい。 As shown in FIGS. 3A and 3B, when the convex portion 14 is not provided at the end of the metal vapor-deposited electrode 13 facing the insulating margin 16, the amount of displacement of the metallized film 11 is V0. This is because heat is concentrated at the end portion 13a of the metal vapor deposited electrode 13, causing a temperature rise. If the end of the metal vapor deposited electrode 13 is formed straight, heat tends to concentrate on the end 13a of the metal vapor deposited electrode 13 when a voltage is applied to the film capacitor.
 一方で、図3Cおよび図3Dに示すように、金属蒸着電極13の端部13aに凸部14が設けられている場合、金属化フィルム11の変位量はV1であり、図3Aおよび図3Bの場合の変位量V0よりも小さい。これは、金属蒸着電極13の端部13aに熱が集中せずに分散して、温度の上昇幅を小さくすることができるためである。 On the other hand, as shown in FIGS. 3C and 3D, when the convex portion 14 is provided at the end 13a of the metallized electrode 13, the amount of displacement of the metallized film 11 is V1, and the amount of displacement in FIGS. 3A and 3B is It is smaller than the displacement amount V0 in case. This is because heat is not concentrated on the end portion 13a of the metal vapor-deposited electrode 13 but is dispersed, thereby making it possible to reduce the amount of increase in temperature.
 図4Aは、図1のフィルムコンデンサ1の局所的な断面を概略的に示す図である。図4Bは、図4Aのフィルムコンデンサ1の金属蒸着電極13および誘電体フィルム12が収縮した状態を示す概略断面図である。 FIG. 4A is a diagram schematically showing a local cross section of the film capacitor 1 of FIG. 1. FIG. 4B is a schematic cross-sectional view showing a state in which the metal vapor deposited electrode 13 and the dielectric film 12 of the film capacitor 1 of FIG. 4A are contracted.
 図4Aに示すように、フィルムコンデンサ1においては、例えば一対の金属化フィルム11を重ねる。一方の金属化フィルム211の金属蒸着電極213を第1端面電極21に接続し、他方の金属化フィルム311の金属蒸着電極313を他方の第2端面電極22に接続している。金属化フィルム211、311のそれぞれに絶縁マージン216、316を設けることにより、一方の金属化フィルム211の金属蒸着電極213が他方の第2端面電極22に接続されないようにすることができる。金属化フィルム211、311の厚さ方向において、2つの金属蒸着電極213、313が重なっている部分がフィルムコンデンサ1の電極として有効な有効電極部であり、有効電極幅EW1を有する。 As shown in FIG. 4A, in the film capacitor 1, for example, a pair of metallized films 11 are stacked. The metal vapor deposited electrode 213 of one metallized film 211 is connected to the first end face electrode 21, and the metal vapor deposited electrode 313 of the other metallized film 311 is connected to the other second end face electrode 22. By providing insulating margins 216, 316 on each of the metallized films 211, 311, it is possible to prevent the metal deposited electrode 213 of one metallized film 211 from being connected to the second end electrode 22 of the other metallized film 211. In the thickness direction of the metallized films 211, 311, a portion where the two metal vapor-deposited electrodes 213, 313 overlap is an effective electrode portion that is effective as an electrode of the film capacitor 1, and has an effective electrode width EW1.
 フィルムコンデンサ1に電圧を印加すると金属蒸着電極213、313の、特に端部213a、313aの温度が上昇する。このとき、金属蒸着電極213、313は、図4Aの矢印S1の方向に収縮する。このとき、図4Aの領域R1に示す金属蒸着電極213、313の端部213a、313a付近に、金属蒸着電極213。313の熱収縮による力が強くかかる。金属蒸着電極213、313が収縮する力により、誘電体フィルム12が引っ張られてしまう。その結果、図4Bに示すように、一対の金属化フィルム11の間に隙間Spが形成される。金属化フィルム11の間に隙間Spが形成されてしまうと、フィルムコンデンサ1の有効電極部の有効電極幅は、幅EW1よりも小さい幅EW2となり、フィルムコンデンサ1の静電容量の低下を招く。 When a voltage is applied to the film capacitor 1, the temperature of the metal vapor-deposited electrodes 213, 313, especially the ends 213a, 313a increases. At this time, the metal vapor deposited electrodes 213 and 313 contract in the direction of arrow S1 in FIG. 4A. At this time, a strong force due to thermal contraction of the metal vapor deposited electrodes 213, 313 is applied near the ends 213a, 313a of the metal vapor deposited electrodes 213, 313 shown in region R1 of FIG. 4A. The dielectric film 12 is pulled by the force of contraction of the metal vapor deposited electrodes 213, 313. As a result, a gap Sp is formed between the pair of metallized films 11, as shown in FIG. 4B. If a gap Sp is formed between the metallized films 11, the effective electrode width of the effective electrode portion of the film capacitor 1 becomes a width EW2 smaller than the width EW1, resulting in a decrease in the capacitance of the film capacitor 1.
 本実施の形態では、図2Aに示すように、金属蒸着電極13の端部13aに複数の凸部14を設けることにより、金属蒸着電極13の端部13aへの熱の集中を抑制して、金属蒸着電極13の熱収縮を抑えることができる。このため、金属化フィルム11の間への隙間Spの発生を抑制することができる。また、凸部14が平坦部14aを有していることで、電界の集中が抑えられて、一方の金属化フィルム11の金属蒸着電極13と他方の端面電極20とがショートしてしまうことを抑制することもできる。 In this embodiment, as shown in FIG. 2A, by providing a plurality of convex portions 14 on the end portion 13a of the metal vapor deposited electrode 13, concentration of heat on the end portion 13a of the metal vapor deposited electrode 13 is suppressed. Thermal shrinkage of the metal vapor deposited electrode 13 can be suppressed. Therefore, generation of gaps Sp between the metallized films 11 can be suppressed. Furthermore, since the convex portion 14 has the flat portion 14a, concentration of the electric field is suppressed, and short-circuiting between the metal vapor deposited electrode 13 of one metallized film 11 and the end surface electrode 20 of the other side is prevented. It can also be suppressed.
[実施例]
 実施の形態1にかかる金属化フィルム11を用いて、凸部14の寸法を変えることによる隙間の大きさの変化率を測定した。図5は、比較例および実施例の金属化フィルムにより形成されたフィルムコンデンサ1において、電圧を印加する前後において有効電極幅がどの程度変化したかの結果を示す表である。有効電極幅の変化量は、フィルムコンデンサ1に電圧を印加する前の有効電極幅EW1に対して、フィルムコンデンサ1に電極を印加した後の有効電極幅EW2がどの程度減少したかの割合を示す。フィルムコンデンサ1の温度25℃における基準静電容量をC、温度を変えたときの静電容量をCとしたときの静電容量の変化をΔC=C-Cとする。また誘電体フィルム12の温度25℃における基準誘電率をε、温度を変えたときの誘電率をεとしたときの誘電率の変化をΔε=ε-εとする。この場合、有効電極幅の変化量を示すEW2/EW1は、EW2/EW1=(1-ΔC/C)×(1-Δε/ε)の式により計算される。
[Example]
Using the metallized film 11 according to Embodiment 1, the rate of change in the size of the gap was measured by changing the dimensions of the convex portions 14. FIG. 5 is a table showing the results of how much the effective electrode width changed before and after applying voltage in the film capacitor 1 formed of the metallized films of the comparative example and the example. The amount of change in the effective electrode width indicates the ratio of how much the effective electrode width EW2 after applying the electrode to the film capacitor 1 has decreased with respect to the effective electrode width EW1 before applying the voltage to the film capacitor 1. . Let C 0 be the reference capacitance of the film capacitor 1 at a temperature of 25° C., and C 1 be the capacitance when the temperature is changed, and the change in capacitance is ΔC=C 0 −C 1 . Further, when the reference dielectric constant of the dielectric film 12 at a temperature of 25° C. is ε 0 and the dielectric constant when the temperature is changed is ε 1 , the change in the dielectric constant is Δε=ε 0 −ε 1 . In this case, EW2/EW1 indicating the amount of change in effective electrode width is calculated by the formula EW2/EW1=(1-ΔC/C 0 )×(1-Δε/ε 0 ).
 比較例として、凸部の形成されていない金属蒸着電極を有する金属化フィルムを使用した。比較例の金属化フィルムにおいて、金属蒸着電極の絶縁マージン側の端部が直線状に形成されている。比較例の金属化フィルムでは、2.0mm幅の絶縁マージンが設けられている。 As a comparative example, a metallized film having a metal vapor-deposited electrode without a protrusion was used. In the metallized film of the comparative example, the end of the metal vapor-deposited electrode on the insulation margin side is formed into a straight line. In the comparative metallized film, an insulation margin of 2.0 mm width is provided.
 実施例として、実施の形態1で説明した、複数の凸部14が形成された金属蒸着電極13を有する金属化フィルム11を使用した。それぞれの実施例において、凸部14の高さh1(図2B参照)、長さd1(図2B参照)、および凸部14の平坦部14aと誘電体フィルム12の一方端部12aとの間のマージン幅md(図2A参照)、および隣接する凸部14の間隔clを変化させた。 As an example, the metallized film 11 described in Embodiment 1 and having the metal vapor-deposited electrode 13 on which a plurality of convex portions 14 were formed was used. In each example, the height h1 (see FIG. 2B), the length d1 (see FIG. 2B) of the convex portion 14, and the distance between the flat portion 14a of the convex portion 14 and one end 12a of the dielectric film 12 are determined. The margin width md (see FIG. 2A) and the interval cl between adjacent convex portions 14 were changed.
 実施例1-1では、凸部14の高さh1が0.10mm、凸部14の平坦部14aの長さd1が0.7mm、マージン幅mdが1.90mm、および凸部14の間隔clが1.4mmの金属化フィルム11を使用した。 In Example 1-1, the height h1 of the convex part 14 is 0.10 mm, the length d1 of the flat part 14a of the convex part 14 is 0.7 mm, the margin width md is 1.90 mm, and the interval cl between the convex parts 14. A metallized film 11 with a diameter of 1.4 mm was used.
 実施例1-2では、凸部14の高さh1が0.30mm、凸部14の平坦部14aの長さd1が1.5mm、マージン幅mdが1.70mm、および凸部14の間隔clが0.6mmの金属化フィルム11を使用した。 In Example 1-2, the height h1 of the convex part 14 is 0.30 mm, the length d1 of the flat part 14a of the convex part 14 is 1.5 mm, the margin width md is 1.70 mm, and the interval cl between the convex parts 14. A metallized film 11 with a diameter of 0.6 mm was used.
 実施例1-3では、凸部14の高さh1が0.15mm、凸部14の平坦部14aの長さd1が1.0mm、マージン幅mdが1.35mm、および凸部14の間隔clが1.1mmの金属化フィルム11を使用した。 In Example 1-3, the height h1 of the convex part 14 is 0.15 mm, the length d1 of the flat part 14a of the convex part 14 is 1.0 mm, the margin width md is 1.35 mm, and the interval cl between the convex parts 14. A metallized film 11 with a diameter of 1.1 mm was used.
 図5に示すように、有効電極幅の減少率を示す(1-EW2/EW1)が、比較例において1.8%であるのに対して、実施例1-1~実施例1-3では、0.05%~0.30%となり、比較例よりも小さくなったことがわかる。金属蒸着電極13の端部13aに複数の凸部14を設けることで、金属蒸着電極13の端部13aへの熱の集中が抑制されて、金属蒸着電極13の収縮度合いが小さくなるため、隙間Spの発生を抑制することができる。このため、実施例1-1~実施例1-3では、比較例と比べてフィルムコンデンサ1の静電容量の低下を抑制することができる。 As shown in FIG. 5, the reduction rate of the effective electrode width (1-EW2/EW1) is 1.8% in the comparative example, whereas in Examples 1-1 to 1-3, , 0.05% to 0.30%, which is smaller than that of the comparative example. By providing a plurality of convex portions 14 on the end portion 13a of the metal vapor deposited electrode 13, the concentration of heat on the end portion 13a of the metal vapor deposited electrode 13 is suppressed, and the degree of contraction of the metal vapor deposited electrode 13 is reduced, so that the gap is reduced. The generation of Sp can be suppressed. Therefore, in Examples 1-1 to 1-3, the decrease in capacitance of the film capacitor 1 can be suppressed compared to the comparative example.
[効果]
 上述した実施の形態によると、以下の効果を奏することができる。
[effect]
According to the embodiment described above, the following effects can be achieved.
 金属化フィルム11は、誘電体フィルム12と、金属蒸着電極13と、を備える。金属蒸着電極13は、誘電体フィルム12の表面に形成され、誘電体フィルム12の幅方向Wの一方端部12aに、誘電体フィルム12の長手方向Lに延びる絶縁マージン16が設けられるよう配置されている。金属蒸着電極13は、絶縁マージン16に向き合う金属蒸着電極13の端部13aに、絶縁マージン16に向かう複数の凸部14を有し、複数の凸部14は、絶縁マージン16の延びる方向に沿って平らな平坦部14aを有する。 The metallized film 11 includes a dielectric film 12 and a metal vapor-deposited electrode 13. The metal vapor-deposited electrode 13 is formed on the surface of the dielectric film 12, and is arranged so that an insulation margin 16 extending in the longitudinal direction L of the dielectric film 12 is provided at one end 12a of the dielectric film 12 in the width direction W. ing. The metal vapor deposited electrode 13 has a plurality of protrusions 14 facing the insulation margin 16 at an end 13 a of the metal vapor deposition electrode 13 facing the insulation margin 16 , and the plurality of protrusions 14 extend along the direction in which the insulation margin 16 extends. It has a flat flat portion 14a.
 このような構成により、金属蒸着電極13への熱の集中を抑制して静電容量の低下を抑えつつ、凸部14に平坦部14aを設けたことによりショートを抑制することができる。 With such a configuration, it is possible to suppress the concentration of heat on the metal vapor-deposited electrode 13 to suppress a decrease in capacitance, and also to suppress short circuits by providing the flat portion 14a on the convex portion 14.
 複数の凸部14は、誘電体フィルム12の長手方向Lに互いに間隔をあけて配置されている。 The plurality of convex portions 14 are arranged at intervals in the longitudinal direction L of the dielectric film 12.
 このような構成により、金属蒸着電極13の端部13aへの熱の集中をさらに抑制することができる。 With such a configuration, concentration of heat on the end portion 13a of the metal vapor-deposited electrode 13 can be further suppressed.
 平坦部14aの長さd1は、0.7mm以上1.5mm以下である。 The length d1 of the flat portion 14a is 0.7 mm or more and 1.5 mm or less.
 このような構成により、よりショートを抑制する効果を向上させることができる。平坦部14aの長さd1を0.7mm以上とすることで、電界の集中を抑制してショートの発生を抑制することができる。さらに、平坦部14aの長さを1.5mm以下にすることで、熱の集中を抑制して、誘電体フィルム12の間に隙間Spが発生するのを抑えることができる。 With such a configuration, the effect of suppressing short circuits can be further improved. By setting the length d1 of the flat portion 14a to 0.7 mm or more, concentration of the electric field can be suppressed and occurrence of short circuit can be suppressed. Further, by setting the length of the flat portion 14a to 1.5 mm or less, concentration of heat can be suppressed, and generation of a gap Sp between the dielectric films 12 can be suppressed.
 フィルムコンデンサ1は、上述の金属化フィルム11により構成された巻回体10と、巻回体10の両端に配置された一対の端面電極20と、を備える。 The film capacitor 1 includes a wound body 10 made of the metallized film 11 described above, and a pair of end surface electrodes 20 arranged at both ends of the wound body 10.
 このような構成により、静電容量の低下を抑制しつつショートを抑制することのできるフィルムコンデンサを提供することができる。 With such a configuration, it is possible to provide a film capacitor that can suppress a short circuit while suppressing a decrease in capacitance.
[変形例]
 図6は、実施の形態1の変形例1にかかる金属化フィルム111を示す概略図である。図6に示すように、金属蒸着電極113は、複数の分割電極113bを含んでもよい。複数の分割電極113bは、誘電体フィルム112の幅方向Wに沿って設けられたスリット117により、金属蒸着電極113を分割することにより形成されている。複数の分割電極113bは、それぞれ1つの凸部114を有する。言い換えると、それぞれの分割電極113bの絶縁マージン116側の端部113aに、誘電体フィルム112の一方端部112aに向かって突出する1つの凸部114が設けられている。
[Modified example]
FIG. 6 is a schematic diagram showing a metallized film 111 according to Modification 1 of Embodiment 1. As shown in FIG. 6, the metal vapor deposition electrode 113 may include a plurality of divided electrodes 113b. The plurality of divided electrodes 113b are formed by dividing the metal vapor deposited electrode 113 using slits 117 provided along the width direction W of the dielectric film 112. Each of the plurality of divided electrodes 113b has one protrusion 114. In other words, one convex portion 114 that protrudes toward one end 112a of the dielectric film 112 is provided at the end 113a of each divided electrode 113b on the insulating margin 116 side.
 また金属蒸着電極113は、誘電体フィルム112の幅方向Wの他方端部112bに、長手方向に延びる帯状の接続部118を有する。接続部118は、フィルムコンデンサの端面電極と金属蒸着電極113を電気的に接続するために使用される部分である。複数の分割電極113bのそれぞれは、ヒューズ119を介して接続部118に電気的に接続されている。 Further, the metal vapor-deposited electrode 113 has a strip-shaped connection portion 118 extending in the longitudinal direction at the other end 112b of the dielectric film 112 in the width direction W. The connecting portion 118 is a portion used to electrically connect the end face electrode of the film capacitor and the metal vapor deposited electrode 113. Each of the plurality of divided electrodes 113b is electrically connected to the connection portion 118 via a fuse 119.
 このような構成により、実施の形態1の金属化フィルム11と同様の効果を奏することができる。さらに、金属化フィルム111を使用して形成されたフィルムコンデンサに保安機能を持たせることができ、安全性を向上させることができる。 With such a configuration, the same effects as the metallized film 11 of Embodiment 1 can be achieved. Furthermore, a film capacitor formed using the metallized film 111 can have a safety function, and safety can be improved.
 図7は、変形例1の金属化フィルム111により形成されたフィルムコンデンサにおいて、電圧を印加する前後において有効電極幅がどの程度変化したかの結果を示す表である。凸部114の高さh2および幅d2、凸部114の平坦部114aと誘電体フィルム12の一方端部112aとの間のマージン幅md2、隣接する凸部cl2の間隔、およびスリット幅s2を変化させて、有効電極幅の変化量を測定した。有効電極幅は、実施の形態1で説明した方法で計算した。比較例は、実施の形態1で説明したものと同様である。 FIG. 7 is a table showing the results of how much the effective electrode width changed before and after applying voltage in the film capacitor formed by the metallized film 111 of Modification 1. The height h2 and width d2 of the protrusion 114, the margin width md2 between the flat part 114a of the protrusion 114 and one end 112a of the dielectric film 12, the interval between adjacent protrusions cl2, and the slit width s2 are changed. The amount of change in effective electrode width was measured. The effective electrode width was calculated using the method described in Embodiment 1. The comparative example is similar to that described in Embodiment 1.
 実施例2-1では、凸部114の高さh2が0.10mm、凸部114の平坦部114aの長さd1が0.7mm、マージン幅md2が1.90mm、凸部114の間隔cl2が1.4mm、およびスリット幅s2が0.1mmの金属化フィルム11を使用した。 In Example 2-1, the height h2 of the convex part 114 is 0.10 mm, the length d1 of the flat part 114a of the convex part 114 is 0.7 mm, the margin width md2 is 1.90 mm, and the interval cl2 of the convex part 114 is A metallized film 11 with a diameter of 1.4 mm and a slit width s2 of 0.1 mm was used.
 実施例2-2では、凸部114の高さh2が0.30mm、凸部114の平坦部114aの長さd1が1.5mm、マージン幅md2が1.70mm、凸部114の間隔cl2が0.6mm、およびスリット幅s2が0.1mmの金属化フィルム11を使用した。 In Example 2-2, the height h2 of the convex portion 114 is 0.30 mm, the length d1 of the flat portion 114a of the convex portion 114 is 1.5 mm, the margin width md2 is 1.70 mm, and the interval cl2 between the convex portions 114 is A metallized film 11 with a diameter of 0.6 mm and a slit width s2 of 0.1 mm was used.
 実施例2-3では、凸部114の高さh2が0.15mm、凸部114の平坦部114aの長さd1が1.0mm、マージン幅md2が1.35mm、凸部114の間隔cl2が1.1mm、およびスリット幅s2が0.1mmの金属化フィルム11を使用した。 In Example 2-3, the height h2 of the convex part 114 is 0.15 mm, the length d1 of the flat part 114a of the convex part 114 is 1.0 mm, the margin width md2 is 1.35 mm, and the interval cl2 of the convex part 114 is A metallized film 11 with a diameter of 1.1 mm and a slit width s2 of 0.1 mm was used.
 図7に示すように、実施例2-1~実施例2-3においても、比較例と比べて最も有効電極幅の減少率が小さく、フィルムコンデンサの静電容量の低下を抑制することができる。 As shown in FIG. 7, in Examples 2-1 to 2-3, the reduction rate of the effective electrode width is the smallest compared to the comparative example, and it is possible to suppress the decrease in capacitance of the film capacitor. .
 図8Aは、実施の形態1の変形例2にかかる金属化フィルム411を示す概略図である。図8Bは、図8Aの領域E2を拡大した図である。図8A~図8Bに示すように、変形例2の金属化フィルム411では、金属蒸着電極413の凸部414は、幅が先端の平坦部414aに向かって広くなるよう形成されている。すなわち、凸部414の平坦部414a側の幅da1が、金属蒸着電極413の端部413a側の幅db1よりも大きく形成されている。 FIG. 8A is a schematic diagram showing a metallized film 411 according to Modification 2 of Embodiment 1. FIG. 8B is an enlarged view of region E2 in FIG. 8A. As shown in FIGS. 8A and 8B, in the metallized film 411 of Modification 2, the convex portion 414 of the metal vapor-deposited electrode 413 is formed so that the width becomes wider toward the flat portion 414a at the tip. That is, the width da1 of the convex portion 414 on the flat portion 414a side is formed larger than the width db1 of the metal vapor deposited electrode 413 on the end portion 413a side.
 図9は、変形例2の金属化フィルム411により形成されたフィルムコンデンサにおいて、電圧を印加する前後において有効電極幅がどの程度変化したかの結果を示す表である。凸部414の高さh3、凸部414の平坦部414a側の幅da1、凸部414の端部413a側の幅db1、マージン幅md3、隣接する凸部414の平坦部414a側の間隔cl3を変化させて、有効電極幅の変化量を測定した。有効電極幅は、実施の形態1で説明した方法で計算した。比較例は、実施の形態1で説明したものと同様である。 FIG. 9 is a table showing the results of how much the effective electrode width changed before and after applying voltage in the film capacitor formed by the metallized film 411 of Modification 2. The height h3 of the protrusion 414, the width da1 of the protrusion 414 on the flat part 414a side, the width db1 of the protrusion 414 on the end 413a side, the margin width md3, and the interval cl3 of the adjacent protrusion 414 on the flat part 414a side. The amount of change in effective electrode width was measured. The effective electrode width was calculated using the method described in Embodiment 1. The comparative example is similar to that described in Embodiment 1.
 実施例3-1では、高さh3が0.10mm、平坦部414a側の幅da1が1.0mm、端部413a側の幅db1が0.88mm、マージン幅md3が1.90mm、および間隔cl3が1.1mmの金属化フィルム11を使用した。 In Example 3-1, the height h3 is 0.10 mm, the width da1 on the flat portion 414a side is 1.0 mm, the width db1 on the end portion 413a side is 0.88 mm, the margin width md3 is 1.90 mm, and the interval cl3. A metallized film 11 with a diameter of 1.1 mm was used.
 実施例3-2では、高さh3が0.30mm、平坦部414a側の幅da1が1.0mm、端部413a側の幅db1が0.65mm、マージン幅md3が1.70mm、および間隔cl3が1.1mmの金属化フィルム11を使用した。 In Example 3-2, the height h3 is 0.30 mm, the width da1 on the flat portion 414a side is 1.0 mm, the width db1 on the end portion 413a side is 0.65 mm, the margin width md3 is 1.70 mm, and the interval cl3. A metallized film 11 with a diameter of 1.1 mm was used.
 実施例3-3では、高さh3が0.15mm、平坦部414a側の幅da1が1.0mm、端部413a側の幅db1が0.83mm、マージン幅md3が1.35mm、および間隔cl3が1.1mmの金属化フィルム11を使用した。 In Example 3-3, the height h3 is 0.15 mm, the width da1 on the flat portion 414a side is 1.0 mm, the width db1 on the end portion 413a side is 0.83 mm, the margin width md3 is 1.35 mm, and the interval cl3. A metallized film 11 with a diameter of 1.1 mm was used.
 図9に示すように、実施例3-1~実施例3-3においても、比較例と比べて最も有効電極幅の減少率が小さく、フィルムコンデンサの静電容量の低下を抑制することができる。 As shown in FIG. 9, in Examples 3-1 to 3-3, the reduction rate of the effective electrode width is the smallest compared to the comparative example, and it is possible to suppress the decrease in capacitance of the film capacitor. .
 図10Aは、実施の形態1の変形例3にかかる金属化フィルム511を示す概略図である。図10Bは、図10Aの領域E3を拡大した図である。図10A~図10Bに示すように、変形例3の金属化フィルム511では、金属蒸着電極513の凸部514は、幅が先端の平坦部514aに向かって狭くなるよう形成されている。すなわち、凸部514の平坦部514a側の幅da2が、金属蒸着電極513の端部513a側の幅db2よりも大きく形成されている。 FIG. 10A is a schematic diagram showing a metallized film 511 according to Modification 3 of Embodiment 1. FIG. 10B is an enlarged view of region E3 in FIG. 10A. As shown in FIGS. 10A and 10B, in the metallized film 511 of Modification 3, the convex portion 514 of the metal vapor-deposited electrode 513 is formed so that the width becomes narrower toward the flat portion 514a at the tip. That is, the width da2 of the convex portion 514 on the flat portion 514a side is formed to be larger than the width db2 of the metal vapor deposited electrode 513 on the end portion 513a side.
 図11は、変形例3の金属化フィルム511により形成されたフィルムコンデンサにおいて、電圧を印加する前後において有効電極幅がどの程度変化したかの結果を示す表である。凸部514の高さh4、凸部514の平坦部514a側の幅da2、凸部514の端部513a側の幅db2、マージン幅md4、隣接する凸部514の平坦部514a側の間隔cl4を変化させて、有効電極幅の変化量を測定した。有効電極幅は、実施の形態1で説明した方法で計算した。比較例は、実施の形態1で説明したものと同様である。 FIG. 11 is a table showing the results of how much the effective electrode width changed before and after applying voltage in the film capacitor formed by the metallized film 511 of Modification 3. The height h4 of the protrusion 514, the width da2 of the protrusion 514 on the flat part 514a side, the width db2 of the protrusion 514 on the end 513a side, the margin width md4, and the interval cl4 of the adjacent protrusion 514 on the flat part 514a side. The amount of change in effective electrode width was measured. The effective electrode width was calculated using the method described in Embodiment 1. The comparative example is similar to that described in Embodiment 1.
 実施例4-1では、高さh4が0.10mm、平坦部514a側の幅da2が1.0mm、端部513側の幅db2が1.1mm、マージン幅md4が1.90mm、および間隔cl4が1.1mmの金属化フィルム11を使用した。 In Example 4-1, the height h4 is 0.10 mm, the width da2 on the flat portion 514a side is 1.0 mm, the width db2 on the end portion 513 side is 1.1 mm, the margin width md4 is 1.90 mm, and the interval cl4 A metallized film 11 with a diameter of 1.1 mm was used.
 実施例4-2では、高さh4が0.30mm、平坦部514a側の幅da2が1.0mm、端部513側の幅db2が1.3mm、マージン幅md4が1.70mm、および間隔cl4が1.1mmの金属化フィルム11を使用した。 In Example 4-2, the height h4 is 0.30 mm, the width da2 on the flat portion 514a side is 1.0 mm, the width db2 on the end portion 513 side is 1.3 mm, the margin width md4 is 1.70 mm, and the interval cl4 A metallized film 11 with a diameter of 1.1 mm was used.
 実施例4-3では、高さh4が0.15mm、平坦部514a側の幅da2が1.0mm、端部513側の幅db2が1.2mm、マージン幅md4が1.35mm、および間隔cl4が1.1mmの金属化フィルム11を使用した。 In Example 4-3, the height h4 is 0.15 mm, the width da2 on the flat portion 514a side is 1.0 mm, the width db2 on the end portion 513 side is 1.2 mm, the margin width md4 is 1.35 mm, and the interval cl4 A metallized film 11 with a diameter of 1.1 mm was used.
 実施例4-4では、高さh4が0.10mm、平坦部514a側の幅da2が1.0mm、端部513側の幅db2が2.1mm、マージン幅md4が1.90mm、および間隔cl4が1.1mmの金属化フィルム11を使用した。 In Example 4-4, the height h4 is 0.10 mm, the width da2 on the flat portion 514a side is 1.0 mm, the width db2 on the end portion 513 side is 2.1 mm, the margin width md4 is 1.90 mm, and the interval cl4 A metallized film 11 with a diameter of 1.1 mm was used.
 図11に示すように、実施例4-1~実施例4-4においても、比較例と比べて最も有効電極幅の減少率が小さく、フィルムコンデンサの静電容量の低下を抑制することができる。 As shown in FIG. 11, in Examples 4-1 to 4-4, the reduction rate of the effective electrode width is the smallest compared to the comparative example, and it is possible to suppress the decrease in capacitance of the film capacitor. .
 なお、上述した実施の形態では、凸部14が矩形状である例について説明したが、凸部14の形状は矩形状に限定されない。例えば、凸部14の角部が面取りされている形状であってもよい。 Note that in the embodiment described above, an example in which the convex portion 14 has a rectangular shape has been described, but the shape of the convex portion 14 is not limited to a rectangular shape. For example, the corners of the convex portion 14 may be chamfered.
(実施の形態の概要)
(1)本発明の金属化フィルムは、誘電体フィルムと、誘電体フィルムの表面に形成された金属蒸着電極と、を備え、金属蒸着電極は、誘電体フィルムの幅方向の一方端部に誘電体フィルムの長手方向に延びる絶縁マージンが設けられるよう配置され、金属蒸着電極は、絶縁マージンに向き合う端部に、絶縁マージンに向かう複数の凸部を有し、複数の凸部は、絶縁マージンの延びる方向に沿って平らな平坦部を有する。
(Summary of embodiment)
(1) The metallized film of the present invention includes a dielectric film and a metal vapor-deposited electrode formed on the surface of the dielectric film, and the metal vapor-deposited electrode is provided with a dielectric film at one end in the width direction of the dielectric film. The metal vapor-deposited electrode has a plurality of protrusions facing the insulating margin at an end facing the insulating margin, and the plurality of protrusions are arranged so as to provide an insulating margin extending in the longitudinal direction of the insulating margin. It has a flat portion along the extending direction.
(2)(1)の金属化フィルムにおいて、複数の凸部は、前記誘電体フィルムの長手方向に互いに間隔をあけて配置されていてもよい。 (2) In the metallized film of (1), the plurality of convex portions may be arranged at intervals from each other in the longitudinal direction of the dielectric film.
(3)(1)または(2)の金属化フィルムにおいて、平坦部の長さは、0.7mm以上1.5mm以下であってもよい。 (3) In the metallized film of (1) or (2), the length of the flat portion may be 0.7 mm or more and 1.5 mm or less.
(4)(1)から(3)のいずれか1つの金属化フィルムにおいて、金属蒸着電極は、誘電体フィルムの幅方向に沿って設けられたスリットにより分割された複数の分割電極を含み、複数の分割電極は、それぞれ1つの前記凸部を有してもよい。 (4) In any one of the metallized films (1) to (3), the metallized electrode includes a plurality of divided electrodes divided by slits provided along the width direction of the dielectric film, and a plurality of divided electrodes. Each of the divided electrodes may have one of the protrusions.
(5)(4)の金属化フィルムにおいて、金属蒸着電極は、誘電体フィルムの幅方向の他方端部に長手方向に延びる帯状の接続部を有し、複数の分割電極のそれぞれは、接続部と電気的に接続されていてもよい。 (5) In the metallized film of (4), the metallized electrode has a strip-shaped connection portion extending in the longitudinal direction at the other end in the width direction of the dielectric film, and each of the plurality of divided electrodes has a connection portion. It may be electrically connected to.
(6)本発明のフィルムコンデンサは、(1)から(5)のいずれか1つの金属化フィルムにより構成された巻回体と、金属化フィルムの両端に配置された端面電極と、を備える。 (6) The film capacitor of the present invention includes a wound body made of the metallized film of any one of (1) to (5), and end face electrodes arranged at both ends of the metallized film.
 本発明は、フィルムコンデンサ、およびフィルムコンデンサを形成するための金属化フィルムに対して広く適用することができる。 The present invention can be broadly applied to film capacitors and metallized films for forming film capacitors.
1 フィルムコンデンサ
10 巻回体
11、111、211、311、411、511 金属化フィルム
12、112 誘電体フィルム
12a、112a 一方端部
13、113、213、313、413、513 金属蒸着電極
13a、113a、213a、313a、413a、513a 端部
14、114、414、514 凸部
14a、114a、414a、514a 平坦部
16、116、216、416、516 絶縁マージン
20 端面電極
117 スリット
118 接続部
1 Film capacitor 10 Winding body 11, 111, 211, 311, 411, 511 Metallized film 12, 112 Dielectric film 12a, 112a One end 13, 113, 213, 313, 413, 513 Metal evaporated electrode 13a, 113a , 213a, 313a, 413a, 513a End portions 14, 114, 414, 514 Convex portions 14a, 114a, 414a, 514a Flat portions 16, 116, 216, 416, 516 Insulation margin 20 End surface electrode 117 Slit 118 Connection portion

Claims (6)

  1.  誘電体フィルムと、
     前記誘電体フィルムの表面に形成された金属蒸着電極と、
    を備え、
     前記金属蒸着電極は、前記誘電体フィルムの幅方向の一方端部に前記誘電体フィルムの長手方向に延びる絶縁マージンが設けられるよう配置され、
     前記金属蒸着電極は、前記絶縁マージンに向き合う端部に、前記絶縁マージンに向かう複数の凸部を有し、
     前記複数の凸部は、前記絶縁マージンの延びる方向に沿って平らな平坦部を有する、
     金属化フィルム。
    dielectric film;
    a metal vapor-deposited electrode formed on the surface of the dielectric film;
    Equipped with
    The metal vapor-deposited electrode is arranged such that an insulating margin extending in the longitudinal direction of the dielectric film is provided at one end in the width direction of the dielectric film,
    The metal vapor deposited electrode has a plurality of convex portions facing the insulation margin at an end facing the insulation margin,
    The plurality of convex portions have flat portions along the direction in which the insulating margin extends.
    metallized film.
  2.  前記複数の凸部は、前記誘電体フィルムの長手方向に互いに間隔をあけて配置されている、
     請求項1に記載の金属化フィルム。
    The plurality of convex portions are arranged at intervals from each other in the longitudinal direction of the dielectric film,
    A metallized film according to claim 1.
  3.  前記平坦部の長さは、0.7mm以上1.5mm以下である、
     請求項1または2に記載の金属化フィルム。
    The length of the flat part is 0.7 mm or more and 1.5 mm or less,
    A metallized film according to claim 1 or 2.
  4.  前記金属蒸着電極は、前記誘電体フィルムの幅方向に沿って設けられたスリットにより分割された複数の分割電極を含み、前記複数の分割電極は、それぞれ1つの前記凸部を有する、
     請求項1から3のいずれか1項に記載の金属化フィルム。
    The metal vapor deposited electrode includes a plurality of divided electrodes divided by slits provided along the width direction of the dielectric film, and each of the plurality of divided electrodes has one of the protrusions.
    A metallized film according to any one of claims 1 to 3.
  5.  前記金属蒸着電極は、前記誘電体フィルムの幅方向の他方端部に長手方向に延びる帯状の接続部を有し、
     前記複数の分割電極のそれぞれは、前記接続部と電気的に接続されている、
     請求項4に記載の金属化フィルム。
    The metal vapor-deposited electrode has a strip-shaped connection portion extending in the longitudinal direction at the other end in the width direction of the dielectric film,
    Each of the plurality of divided electrodes is electrically connected to the connection part,
    5. A metallized film according to claim 4.
  6.  請求項1から5のいずれか1項に記載の金属化フィルムにより構成された巻回体と、
     前記金属化フィルムの両端に配置された一対の端面電極と、
    を備える、
     フィルムコンデンサ。
    A rolled body constituted by the metallized film according to any one of claims 1 to 5,
    a pair of end face electrodes disposed at both ends of the metallized film;
    Equipped with
    Film capacitor.
PCT/JP2023/015361 2022-07-07 2023-04-17 Metallized film and film capacitor WO2024009585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022109943 2022-07-07
JP2022-109943 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024009585A1 true WO2024009585A1 (en) 2024-01-11

Family

ID=89453009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015361 WO2024009585A1 (en) 2022-07-07 2023-04-17 Metallized film and film capacitor

Country Status (1)

Country Link
WO (1) WO2024009585A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286988A (en) * 2005-03-31 2006-10-19 Nippon Chemicon Corp Metallization film capacitor
JP2009188001A (en) * 2008-02-04 2009-08-20 Toray Ind Inc Metallized film, and metallized film capacitor
JP2009200191A (en) * 2008-02-21 2009-09-03 Soshin Electric Co Ltd Film capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286988A (en) * 2005-03-31 2006-10-19 Nippon Chemicon Corp Metallization film capacitor
JP2009188001A (en) * 2008-02-04 2009-08-20 Toray Ind Inc Metallized film, and metallized film capacitor
JP2009200191A (en) * 2008-02-21 2009-09-03 Soshin Electric Co Ltd Film capacitor

Similar Documents

Publication Publication Date Title
US7027286B2 (en) Metallized film capacitor
US6052272A (en) Laminated capacitor
US7663864B2 (en) Electrolytic capacitor
JP5025924B2 (en) Metallized film capacitors
JP4698474B2 (en) Film capacitor
US20110181998A1 (en) Deposited film and film capacitor using the same
JP6380450B2 (en) Metallized film capacitor, manufacturing method thereof, and metallized film laminate
WO2024009585A1 (en) Metallized film and film capacitor
JP4893399B2 (en) Metallized film capacitors
JP4957308B2 (en) Metallized film capacitors
JP2005085870A (en) Metallized film capacitor
US5157583A (en) Series wound capacitive structure
WO2024009844A1 (en) Metallized film manufacturing device, metallized film, and film capacitor
US3390312A (en) Metallized film capactor
US20220406525A1 (en) Multilayer ceramic capacitor
KR100495226B1 (en) A film condenser with a correct pattern
WO2022259899A1 (en) Film capacitor
JP2013219305A (en) Metalization film capacitor
JP5954280B2 (en) Metallized film
JPH02222129A (en) Film capacitor and manufacture thereof
WO2024009644A1 (en) Film capacitor and method for producing film capacitor
JP2004087653A (en) Metallized film capacitor
JP2004200591A (en) Metallized film capacitor
JP2002324719A (en) Metallized film capacitor
JP2009071091A (en) Film capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835126

Country of ref document: EP

Kind code of ref document: A1