WO2024009521A1 - Wireless base station, terminal, and wireless communication system - Google Patents

Wireless base station, terminal, and wireless communication system Download PDF

Info

Publication number
WO2024009521A1
WO2024009521A1 PCT/JP2022/027170 JP2022027170W WO2024009521A1 WO 2024009521 A1 WO2024009521 A1 WO 2024009521A1 JP 2022027170 W JP2022027170 W JP 2022027170W WO 2024009521 A1 WO2024009521 A1 WO 2024009521A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
layer
base station
mobility
terminal
Prior art date
Application number
PCT/JP2022/027170
Other languages
French (fr)
Japanese (ja)
Inventor
天楊 閔
翔貴 井上
眞人 谷口
壮輝 渡邊
零 中村
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/027170 priority Critical patent/WO2024009521A1/en
Publication of WO2024009521A1 publication Critical patent/WO2024009521A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present disclosure relates to a wireless base station, a terminal, and a wireless communication system.
  • the 3rd Generation Partnership Project (3GPP: registered trademark) specifies the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)), and furthermore specifies the next generation called Beyond 5G, 5G Evolution or 6G. Generation specifications are also being developed.
  • 5G also known as New Radio (NR) or Next Generation (NG)
  • NG Next Generation
  • 6G Next Generation
  • Non-Patent Document 1 the mobility of terminals (User Equipment, UE) is planned to be expanded (Non-Patent Document 1).
  • mobility control at Layer 1 and/or Layer 2 (which may be referred to as L1/L2 Mobility) aims at lower latency, smaller overhead, and shorter downtime than the existing mobility at Layer 3. ) are being considered.
  • a radio base station includes a central unit (CU) and a distributed unit (DU: Distributed Unit), and the UE is connected between multiple DUs (intercells) connected to the same CU.
  • DU Distributed Unit
  • the UE is connected between multiple DUs (intercells) connected to the same CU.
  • the handover transition
  • the medium access control layer (MAC) and/or the radio link control layer (RLC) cannot be reset, and the handover may fail.
  • the following disclosure was made in view of this situation, and aims to provide a wireless base station, a terminal, and a wireless communication system that can realize more reliable L1/L2 Mobility.
  • One aspect of the present disclosure includes a communication unit (wireless communication unit 110) that performs communication with a terminal (UE 200) via a wireless communication device (DU) connected to the same base station device (CU), and a control for establishing a state in which the terminal is connected to both the first cell and the second cell using a layer 1 function when the terminal transitions from a first cell to a second cell formed by the device; (control unit 140).
  • a communication unit wireless communication unit 110
  • DU wireless communication device
  • CU base station device
  • control unit 240 that controls measurement of a cell including a serving cell
  • a transmission unit (measurement report unit 220) that transmits a report of the measurement
  • control unit This is a terminal (UE 200) that controls measurements in layer 1 of the serving cell and neighboring cells.
  • a wireless communication system including a terminal and a wireless base station
  • the terminal includes a control unit (control unit 240) that performs measurement of a serving cell, and a control unit (control unit 240) that performs measurement of a serving cell.
  • the wireless base station includes a transmitting unit (measurement reporting unit 220) that transmits a report
  • the radio base station includes a receiving unit (measurement setting unit 130) that receives the report
  • the control unit controls the layer of the serving cell and neighboring cells. 1, and the receiving unit receives the report including the measurement results of the serving cell and the neighboring cells.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10.
  • FIG. 2 is a diagram illustrating a configuration example of Inter-DU inter-cell handover.
  • FIG. 3 is a diagram illustrating a configuration example of intra-DU inter-cell handover.
  • FIG. 4 is a functional block diagram of the gNB 100.
  • FIG. 5 is a functional block diagram of the UE 200.
  • FIG. 6 is a diagram illustrating an operation example from a user plane perspective when Intra-DU L1/L2 Mobility or Inter-DU L1/L2 Mobility is applied.
  • FIG. 7 is a diagram illustrating a configuration example (dual connectivity connection) of a cell and a radio link control layer when an L1/L2 Mobility procedure is executed.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10.
  • FIG. 2 is a diagram illustrating a configuration example of Inter-DU inter-cell handover.
  • FIG. 3 is a diagram illustrating a configuration example of intra-DU inter-cell handover.
  • FIG. 8 is a diagram illustrating a configuration example of a radio link control layer and a packet data convergence protocol layer (user plane) during dual connectivity.
  • FIG. 9 is a diagram illustrating a sequence example of an Inter-DU L1/L2 Mobility procedure based on dual connectivity.
  • FIG. 10 is a diagram illustrating a sequence example of an intra-DU L1/L2 Mobility procedure based on carrier aggregation.
  • FIG. 11 is a diagram illustrating an example of forwarding downlink (DL) data (packets) when the Inter-DU L1/L2 Mobility procedure is executed.
  • FIG. 12 is a diagram illustrating an example of forwarding uplink (UL) data (packets) when the Inter-DU L1/L2 Mobility procedure is executed.
  • FIG. DL forwarding downlink
  • UL forwarding uplink
  • FIG. 13 is a diagram illustrating a sequence example of an Inter-DU L1/L2 Mobility procedure based on dual connectivity (part 1 when setting multiple candidate cells to the UE without DC connection in advance).
  • FIG. 14 is a diagram illustrating a sequence example of the Inter-DU L1/L2 Mobility procedure based on dual connectivity (case 2 when setting multiple candidate cells to the UE without DC connection in advance).
  • FIG. 15 is a diagram illustrating an example of the configuration of a cell and a radio link control layer (in a case where a plurality of candidate cells are set in a UE) when an L1/L2 Mobility procedure is executed.
  • FIG. 16 is a diagram illustrating a sequence example of an intra-DU L1/L2 Mobility procedure based on carrier aggregation (part 1 when setting multiple candidate cells to the UE without CA connection in advance).
  • FIG. 17 is a diagram illustrating a sequence example of an intra-DU L1/L2 Mobility procedure based on carrier aggregation (case 2 in which multiple candidate cells are configured in the UE without CA connection in advance).
  • FIG. 18 is a diagram showing an example of the hardware configuration of the gNB 100 and the UE 200.
  • FIG. 19 is a diagram showing an example of the configuration of vehicle 2001.
  • FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10 according to the present embodiment.
  • the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200 (User Equipment 200, hereinafter referred to as UE 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network 20
  • UE 200 User Equipment 200
  • the wireless communication system 10 may be a wireless communication system that follows a method called Beyond 5G, 5G Evolution, or 6G, or may include a wireless communication system that follows a method called Long Term Evolution (LTE) or 4G. good.
  • the wireless communication system 10 may support functions related to Industrial Internet of Things (IIoT) and URLLC (Ultra-Reliable and Low Latency Communications).
  • IIoT Industrial Internet of Things
  • URLLC Ultra-Reliable and Low Latency Communications
  • NG-RAN 20 includes a radio base station 100 (hereinafter referred to as gNB 100).
  • gNB 100 radio base station 100
  • the gNB100 may adopt a fronthaul (FH) interface specified by O-RAN (Open Radio Access Network Alliance).
  • gNB100 may include O-DU (O-RAN Distributed Unit) and O-RU (O-RAN Radio Unit).
  • gNB100 can function as a type of NG-RAN node.
  • NG-RAN20 actually includes multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is connected to a 5G-compliant core network (5GC, not shown).
  • 5GC may introduce the concept of CUPS (Control and User Plane Separation), which clearly separates the functions of the user plane and control plane.
  • Access and Mobility Management Function which is included in the 5G system architecture and provides access and mobility management functions for UE200
  • Session Management Function which provides session management functions
  • NG-RAN20 is connected to NG-RAN20.
  • UDM/UDR Unified Data Management/User Data Repository
  • NG-RAN20 and 5GC may be simply expressed as "networks”.
  • gNB100 is a radio base station that complies with NR, and performs radio communication with UE200 that complies with NR.
  • the gNB 100 may be configured with a CU (Central Unit) and a DU (Distributed Unit), and the DU may be separated from the CU and installed in a geographically different location.
  • the gNBs 100 gNB-CUs
  • gNB100 and UE200 utilize Massive MIMO, which generates a highly directional beam by controlling radio signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which uses multiple component carriers (CC) in a bundle, It is also possible to support dual connectivity (DC), which allows simultaneous communication between the UE and multiple NG-RAN nodes.
  • Massive MIMO which generates a highly directional beam by controlling radio signals transmitted from multiple antenna elements
  • Carrier Aggregation which uses multiple component carriers (CC) in a bundle
  • DC dual connectivity
  • L3 Mobility may be interpreted as mobility control at the Radio Resource Control Layer (RRC).
  • RRC Radio Resource Control Layer
  • L1/L2 Mobility is interpreted as mobility control at the physical layer (PHY), medium access control layer (MAC), radio link control layer (RLC) and packet data convergence protocol layer (PDCP). Good too.
  • Layer 1 may be interpreted to include lower layers such as PHY.
  • Layer 3 is a layer higher than layer 1.
  • the upper layer may include RRC, and may include at least one of MAC, RLC, and PDCP.
  • the mobility of the UE 200 may mean the ease of movement and maneuverability of the UE 200 in a broad sense, but in this embodiment, it may mean transition between cells. Transitions between cells may include handovers and cell selection (including cell reselection). Note that the mobility of the UE 200 may mean minimizing call drops, wireless link (including beam) failures, unnecessary handovers, ping-pong situations, and the like.
  • L1/L2 Mobility which is a lower layer than L3 Mobility, can achieve lower delay, smaller overhead, shorter interruption time, etc. than L3 Mobility.
  • Figure 2 shows an example of the configuration of Inter-DU inter-cell handover.
  • FIG. 3 shows a configuration example of intra-DU inter-cell handover.
  • the gNB 100 can adopt the CU-DU configuration. As shown in FIG. 2, a plurality of DUs may be connected to one CU, and as shown in FIG. 3, one DU may be connected to one CU. A DU may form one or more cells, specifically cell C1 and cell C2.
  • one DU may form the cell C1, and the other DU may form the cell C2.
  • one DU may form cell C1 and cell C2.
  • Handover between cells as shown in FIG. 2 may be referred to as Inter-DU inter-cell handover.
  • handover between cells as shown in FIG. 3 may be referred to as intra-DU inter-cell handover.
  • the MAC and RLC may be reset and PDCP reconfiguration or data recovery may be performed.
  • the MAC and/or RLC do not necessarily need to be reset (some may be reset).
  • FIG. 4 is a functional block diagram of the gNB 100.
  • FIG. 5 is a functional block diagram of the UE 200.
  • the gNB 100 includes a wireless communication section 110, a handover processing section 120, a measurement setting section 130, and a control section 140.
  • the wireless communication unit 110 transmits a downlink signal (DL signal) according to NR. Furthermore, the wireless communication unit 110 receives an uplink signal (UL signal) according to the NR.
  • DL signal downlink signal
  • UL signal uplink signal
  • the wireless communication unit 110 may constitute a communication unit that communicates with a terminal via a wireless communication device connected to the same base station device. Specifically, the wireless communication unit 110 can communicate with the UE 200 via DUs connected to the same CU.
  • the CU may be called a central device, aggregation device, etc.
  • the DU may be called a distribution device, an overhang device, etc.
  • the handover processing unit 120 executes handover of the UE 200. Specifically, handover processing unit 120 executes handover from the serving cell of UE 200 to another nearby cell.
  • the serving cell may simply be interpreted as the cell to which the UE 200 is connected, but more precisely, in the case of an RRC_CONNECTED UE for which carrier aggregation (CA) is not set, there is only one serving cell that constitutes the primary cell. Only one.
  • CA carrier aggregation
  • the serving cell may be interpreted to refer to a set of one or more cells including the primary cell and all secondary cells.
  • handover may include conditional handover (CHO).
  • the CHO can perform a UE 200-initiated handover when certain execution conditions are met. If CHO is not applicable, normal handover may be performed (may be referred to as CHO recovery). In CHO recovery, the UE 200 performs cell selection after CHO failure, but if a CHO candidate cell is selected, it is possible to reconnect by directly applying the conditional RRCReconfiguration of the cell without sending an RRCRestablishmentRequest to the candidate target cell.
  • the execution condition may be composed of one or two trigger conditions (CHO events A3/A5 specified in 3GPP TS38.331).
  • a single reference signal (RS) type is triggered and up to two different trigger quantities (e.g. Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ) ), RSRP and Signal-to-Interference plus Noise power Ratio (SINR), etc.) may be configured at the same time.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal-to-Interference plus Noise power Ratio
  • the measurement setting unit 130 executes settings for quality measurement of the serving cell and neighboring cells (measurement settings) by the UE 200. Specifically, the measurement configuration unit 130 may perform measurement configuration at layer 3, or measurement configuration at layer 1 and/or layer 2.
  • the measurement setting unit 130 can notify the UE 200 of the contents of the measurement settings. UE 200 may measure the quality of the serving cell and/or neighboring cells based on the notified measurement settings.
  • the measurement setting unit 130 can receive a measurement report indicating the measurement result of the cell quality from the UE 200.
  • the measurement setting section 130 constitutes a receiving section that receives the measurement report.
  • the control unit 140 controls each functional block that configures the gNB 100.
  • the control unit 140 can perform control regarding the mobility of the UE 200.
  • control unit 140 may execute control regarding L3 Mobility and/or control regarding L1/L2 Mobility.
  • control unit 140 controls the layer 1 (and/or layer 2) may be used to establish a state in which the terminal is connected to both the first cell and the second cell.
  • the state in which the terminal is connected to both the first cell and the second cell may mean dual connectivity (DC) or carrier aggregation (CA).
  • DC dual connectivity
  • CA carrier aggregation
  • the control unit 140 may execute DC-based L1/L2 Mobility. Furthermore, in the case of Intra-CU intra-DU HO, the control unit 140 may execute L1/L2 Mobility based on CA. The control unit 140 may determine handover (HO) after receiving the layer 1 measurement report from the UE 200.
  • the type of DC may be Multi-RAT Dual Connectivity (MR-DC), which uses multiple radio access technologies, or NR-NR Dual Connectivity (NR-DC), which uses only NR.
  • MR-DC may be E-UTRA-NR Dual Connectivity (EN-DC), where the eNB constitutes the master node (MN) and the gNB constitutes the secondary node (SN), or vice versa.
  • E-UTRA Dual Connectivity (NE-DC) may also be used.
  • a master cell group (MCG) and a secondary cell group (SCG) may be set in the DC.
  • the MCG may include a primary cell (PCell), and the SCG may include a secondary cell (SCell).
  • the control unit 140 may put the SCG in an active state and switch between PCell and PSCell, release the SCG after HO is completed, or put it in a deactivated state. Furthermore, the control unit 140 may activate PDCP duplication to operate two PDCPs simultaneously at the time of HO.
  • the SCell may include a primary/secondary cell (PSCell).
  • PSCell is a type of SCell, but may be interpreted as a special SCell that has functions equivalent to PCell. Similar to PCell, PSCell may perform functions such as PUCCH (Physical Uplink Control Channel) transmission, contention-based random access procedure (CBRA), and Radio Link Monitoring (downlink radio quality monitoring) functions. .
  • PUCCH Physical Uplink Control Channel
  • CBRA contention-based random access procedure
  • Radio Link Monitoring downlink radio quality monitoring
  • the RA procedure may be simply read as the Random Access Channel (RACH).
  • the RA procedure may include a 2-step RACH and a 4-step RACH.
  • the RA procedure may include 2-step RACH and 4-step RACH.
  • messages MSG
  • MSGs 1 to 4 Random Access Preamble, Random Access Response, Scheduled Transmission, Contention Resolution
  • the channels include a control channel and a data channel.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), PBCH (Physical Broadcast Channel), and the like.
  • data channels include PDSCH (Physical Downlink Shared Channel), PUSCH (Physical Uplink Shared Channel), and the like.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • Reference signals include Demodulation reference signal (DMRS), Sounding Reference Signal (SRS), Phase Tracking Reference Signal (PTRS), Channel State Information-Reference Signal (CSI-RS), etc. Contains channels and reference signals. Data may also refer to data transmitted via a data channel.
  • DMRS Demodulation reference signal
  • SRS Sounding Reference Signal
  • PTRS Phase Tracking Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • control unit 140 causes the PDCP on the CU (base station device) side to transmit unacknowledged data in the RLC (first radio link control layer) on the first cell side of the DU, and
  • the PDCP may cause the RLC (second radio link control layer) on the second cell side of the DU to transmit the data.
  • Un-Acked data may be interpreted as data for which the gNB 100 has not received an acknowledgment.
  • the data may be read as a packet, a protocol data unit (PDU), or the like.
  • the RLC (first radio link control layer) on the first cell side of the DU transmits the data to the RLC (second radio link control layer) on the second cell side of the DU. You may resend it.
  • the data may be retransmitted to the second radio link control layer without resetting the first radio link control layer, and after the data is retransmitted, the first radio link control layer may be reset. Note that there may be a time when both the RLC on the first cell side of the DU and the RLC on the second cell side of the DU are set.
  • the UE 200 includes a wireless communication section 210, a measurement reporting section 220, a handover execution section 230, and a control section 240.
  • the wireless communication unit 210 transmits an uplink signal (UL signal) according to NR. Furthermore, the wireless communication unit 210 receives an uplink signal (DL signal) according to NR.
  • UL signal uplink signal
  • DL signal uplink signal
  • the measurement reporting unit 220 can measure the quality of the serving cell of the UE 200 and the neighboring cells of the serving cell, and can report the measurement results (Measurement Report) to the network.
  • the measurement reporting unit 220 may perform measurement reporting of the source cell and target cell upon handover.
  • the measurement report section 220 constitutes a transmitter that transmits a measurement report.
  • the quality of the measurement target may be, for example, the quality included in the Measurement Report specified in 3GPP TS38.331 (for example, Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ)), etc.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the measurement reporting unit 220 may perform not only measurements at layer 3 but also measurements at layer 1 (and/or layer 2) of the serving cell and neighboring cells. Measurement at layer 1 and/or layer 2 is interpreted as measurement using layer functions in at least one of PHY, MAC, RLC, PDCP, and reporting of the measurement results, similar to L1/L2 Mobility. good.
  • the handover execution unit 230 executes handover of the UE 200. Specifically, the handover execution unit 230 may execute the handover to the transition destination cell (NG-RAN node) based on the control by the gNB 100.
  • NG-RAN node transition destination cell
  • the handover execution unit 230 can execute processing related to normal handover (legacy handover) and conditional handover (CHO).
  • the handover execution unit 230 may transition to a candidate cell when an execution condition is met.
  • the execution conditions may be determined based on the quality of the reference signal (RS), specifically, the value of RSRP, RSRQ, or SINR.
  • RS reference signal
  • the transition destination of CHO may not be accompanied by an SCG, or may be accompanied by an SCG.
  • the cell to which the CHO transitions may be a single cell, or may be composed of a plurality of cells (which may be read as a cell group) according to the DC.
  • the control unit 240 controls each functional block that configures the UE 200. Specifically, the control unit 240 can perform control regarding registration of the UE 200 with the network (standby in a specific cell), measurement reporting, and handover of the UE 200.
  • the control unit 240 controls measurement of cells including the serving cell. Specifically, the control unit 240 can control measurements at layer 1 (and/or layer 2) of the serving cell and neighboring cells. In other words, the control unit 240 can perform measurements of the serving cell and neighboring cells (which may also be referred to as L1 measurements) using the layer 1 (and/or layer 2) functions.
  • the control unit 240 may notify the RRC of its own station of the failure information.
  • the failure information may be notified to a layer other than RRC (for example, MAC, RLC, PDCP).
  • the failure information includes, but is not limited to, the identification information (ID) of the source cell (handover source), the identification information (ID) of the target cell (handover destination), and/or the quality of the cell (or beam). May be included.
  • MAC and RLC may not be reset, or may be partially reset, and normal handover may not be possible.
  • the problem is which part should be reset.
  • FIG. 6 shows an operation example from a user plane perspective when Intra-DU L1/L2 Mobility or Inter-DU L1/L2 Mobility is applied.
  • some functions (procedures) of the MAC may be reset in Intra-DU L1/L2 Mobility or Inter-DU L1/L2 Mobility. Furthermore, not only the MAC but also some functions (procedures) of the RLC may be reset.
  • Intra-CU inter-DU HO Intra-CU inter-DU HO
  • DC based L1/L2 Mobility may be performed.
  • CA based L1/L2 Mobility may be executed.
  • a DC state may be established between the source DU and candidate target DU.
  • the candidate target DU may be interpreted as a DU (cell) that can be a candidate for handover.
  • a candidate target cell may be added as an SCell within the DU.
  • the candidate target cell configuration may be preset in the UE without establishing a DC state.
  • the configuration may be instructed to the UE by a message such as MAC or RRC, or may be set in the UE in advance.
  • the SCG and/or SCell may be placed in a deactivated state.
  • the inactive state may be interpreted as a state in which the settings of the cell (or cell group) are released, or a state in which all settings are not released and some settings are maintained.
  • the SCG may be set to the DRX (Discontinuous Reception) state, or may not be set to the deactivated state or the DRX state.
  • DRX Continuous Reception
  • the Source DU may determine the HO after receiving the quality measurement result (L1 measurement report) from the UE.
  • L1/L2 Mobility (HO) may be performed by any of the following.
  • L1/L2 Mobility (HO) is executed using the L1L2 mobility command This may be done at the same time as receiving the L1L2 mobility command or satisfying event X, or within a predetermined time after receiving the L1L2 mobility command or satisfying event X.
  • the predetermined execution condition (event X) may be, for example, any of the following.
  • the quality of the target cell is better than the source cell by the offset -
  • the quality of the target cell is better than a predetermined threshold -
  • the quality of the source cell is worse than a predetermined threshold and the quality of the target cell is better than a predetermined threshold
  • PDCP duplication may be activated during HO.
  • the RLC of the source DU may transfer unacknowledged data to the PDCP on the CU side, and the PDCP on the CU side may transfer the data to the RLC of the target DU.
  • the source RLC may resend unacknowledged data after being reset, or the source RLC may transfer unacknowledged data to the target RLC without resetting immediately and then reset. good.
  • the RLC of the source DU and the RLC of the target DU may be in a state of duplication (both active) temporarily.
  • the RLC of the source DU may be reset after receiving the transmission completion indication from the CU to the target RLC.
  • the CU refers to the highest delivered sequence number/highest transmitted sequence number (highest delivered/highest transmitted) based on the DDDS (Downlink Data Delivery status) feedback from the Source DU, and the delivery to the UE is not successful.
  • the PDU may be determined.
  • the CU may retransmit PDUs that are not successfully delivered by the source DU to the target DU. After HO is completed, the SCG may be released or placed in a deactivated state.
  • the UE may retain the configuration of the candidate target cell without resetting it, or may retain the configuration of the source cell without resetting it. This has the advantage that if the quality of the target cell is poor immediately after handover to the target cell, it can be immediately handed over to the source cell or another candidate target cell.
  • the UE may release the configuration of the candidate target cell or the source cell after receiving an instruction to release the configuration of the candidate target cell or the source cell through layer 1 and/or layer 2 signaling or an RRC message from the network.
  • FIG. 7 shows an example of the configuration of the cell and radio link control layer (dual connectivity connection) when executing the L1/L2 Mobility procedure.
  • RLC for each cell is configured, and among them, RLC for PCell may be activated.
  • the UE may perform HO to the PSCell or SCell.
  • PCell and PSCell, and PSCell and SCell may be switched as described above.
  • FIG. 8 shows an example of the configuration of the radio link control layer and packet data convergence protocol layer (user plane) during dual connectivity.
  • the PDCP of the gNB 100 may receive measurement reports from the UE via the source RLC.
  • the PDCP may retransmit unacknowledged data via the target RLC.
  • Figure 9 shows a sequence example of the Inter-DU L1/L2 Mobility procedure based on dual connectivity.
  • the CU establishes an Intra-CU DC in response to a measurement report from the UE, and puts the PSCell in a deactivated state (S1).
  • the UE transmits the L1 measurement report, and the gNB100 (CU and DU) switches the PSCell to the PCell, switches the PCell to the PSCell, and completes L1/L2 Mobility (S2). Note that when switching a PSCell to a PCell and a PCell to a PSCell, the MAC entity may be partially reset, or the MAC entity may not be reset.
  • FIG. 10 shows a sequence example of the Intra-DU L1/L2 Mobility procedure based on carrier aggregation.
  • SCell may be switched to PCell (PSCell), and PCell (PSCell) may be switched to SCell.
  • PSCell PCell
  • SCell may be switched to SCell.
  • the MAC entity may be partially reset, or the MAC entity may not be reset.
  • FIG. 11 shows an example of forwarding downlink (DL) data (packets) when the Inter-DU L1/L2 Mobility procedure is executed.
  • the example in FIG. 11 shows a state in which "3" packets (which may also be PDUs) are not delivered to the UE.
  • PDCP of the gNB 100 may forward packet “3” to the target RLC. Packet "3" is sent to the UE via the target DU.
  • PDCP data recovery may be executed in the PDCP of the gNB to recover the un-Acked "3" packet and forward it to the target RLC.
  • FIG. 12 shows an example of uplink (UL) data (packet) transfer when the Inter-DU L1/L2 Mobility procedure is executed.
  • UL uplink
  • packet packet
  • the PDCP of the UE 200 may forward packet "3" to the RLC for the target DU. Packet “3” is transmitted to gNB 100 via RLC for target DU.
  • PDCP data recovery may be executed in the PDCP of the UE to recover the un-Acked "3" packet, and the "3" packet may be forwarded to the RLC for the target DU.
  • FIG. 13 shows a sequence example of the Inter-DU L1/L2 Mobility procedure based on dual connectivity (Part 1 when setting multiple candidate cells to the UE without DC connection in advance). Specifically, as shown in FIG. 13, multiple candidate cells (multiple candidate cells config) are configured in the UE without DC connection in advance. Such an operation has some similarities with CHO and may be interpreted as CHO.
  • the L1L2 mobility completed command indicating completion of L1/L2 mobility may be a layer 1 or layer 2 message.
  • it may be PUCCH or MAC CE (Control Element).
  • HARQ hybrid automatic repeat request
  • Ack may be used.
  • FIG. 14 shows a sequence example of the Inter-DU L1/L2 Mobility procedure based on dual connectivity (case 2 when setting multiple candidate cells to the UE without DC connection in advance).
  • the UE may monitor the execution conditions (event In this case, as in FIG. 13, the L1L2 mobility completed command may be PUCCH or MAC CE.
  • FIG. 15 shows an example of the configuration of cells and radio link control layers (when multiple candidate cells are set in the UE) when executing the L1/L2 Mobility procedure.
  • RLCs for a source cell and a plurality of candidate cells are configured, and the RLC for the source cell may be activated.
  • FIG. 16 shows a sequence example of an intra-DU L1/L2 Mobility procedure based on carrier aggregation (part 1 when setting multiple candidate cells to the UE without CA connection in advance).
  • multiple candidate cells are configured in the UE without DC connection in advance.
  • the L1L2 mobility completed command indicating completion of L1/L2 Mobility may be a layer 1 or layer 2 message.
  • it may be PUCCH or MAC CE (Control Element).
  • HARQ hybrid automatic repeat request
  • Ack may be used.
  • FIG. 17 shows a sequence example of the Intra-DU L1/L2 Mobility procedure based on carrier aggregation (case 2 when multiple candidate cells are set in the UE without CA connection in advance).
  • the UE monitors the execution condition (event In this case, as in FIG. 16, the L1L2 mobility completed command may be PUCCH or MAC CE.
  • the CU-DU configuration is adopted and the measurement at layer 1 and/or layer 2 is performed.
  • UE mobility control can be achieved more reliably. Thereby, lower delay, less overhead and shorter downtime may be achieved with respect to UE mobility control, especially in the U-plane.
  • L1 measurement may be able to measure not only the serving cell but also neighboring cells.
  • measObject which is a parameter indicating the measurement target, may specify the frequency of L1 measurement.
  • IE new information element
  • Cell ID may be specified by PCI (Physical Cell ID) at the time of measurement report.
  • a resource block, resource block group, subcarrier, BWP (Bandwidth part), subchannel, etc. may be specified.
  • the UE may report L1 RSRP after averaging the measured RSRP values.
  • the MAC entity may manage the event.
  • Event X Neighbor becomes amount of offset better than Pcell/PScell (expressed by formula: Mn > Mp + Off) Note that event X may be, for example, any of the following.
  • the quality of the target cell is better than the source cell by the offset -
  • the quality of the target cell is better than a predetermined threshold -
  • the quality of the source cell is worse than a predetermined threshold and the quality of the target cell is better than a predetermined threshold Note that "Neighbor" may be called a target cell or a Candidate target cell.
  • PCell/PSCell may also be called a source cell.
  • Timer T304 is started when an RRCReconfiguration message with reconfigurationWithSync is received, or when performing a conditional reconfiguration, i.e. when applying a stored RRCReconfiguration message with reconfigurationWithSync, and the successful completion of a random access on the corresponding SpCell. May be stopped upon completion.
  • the MAC entity may manage the timer.
  • the CU may start the timer when receiving the L1L2 mobility command from the source DU and stop it when the random access (RACH) with the target DU is successful.
  • RACH random access
  • L1/L2 Mobility failure information may be notified to RRC.
  • any of the PHY, MAC, RLC, or PDCP may notify the RRC of the failure information.
  • the failure information may include the identification information (ID) of the source cell (handover source), the identification information (ID) of the target cell (handover destination), and/or the quality of the cell (for example, SIR). .
  • the RRC reestablishment procedure may be triggered directly.
  • reconnection may be performed using the PCI of the source cell (PCell) and C-RNTI (Cell Radio Network Temporary Identifier).
  • C-RNTI Cell Radio Network Temporary Identifier
  • reconnection may be performed using the PCI and C-RNTI of the target cell (PSCell).
  • the UE selects a cell, and if the UE has the configuration of the selected cell, the UE directly applies the configuration of the cell without sending an RRC reestablishment request to the network. You may.
  • the UE performs RACH in the source cell (SCG) and activates the SCG. You may also do so. This allows you to avoid RRC reestablishment.
  • the CU obtains the transmission timing difference between the target cell and the source cell and the TA (Timing Advance) value of the target cell from the DU, and performs RACH-less with the UE.
  • the UE may be connected to the target cell.
  • the timing difference and TA values of the target cell and source cell may be sent from the target DU to the CU, and if possible, from the source DU to the CU. .
  • the CU may also send the timing difference and TA value to the source DU.
  • the UE at layer 1 and/or layer 2 can be mobility control can be achieved more reliably. Thereby, lower delay, less overhead and shorter downtime can be achieved for UE mobility control.
  • L1/L2 Mobility was used, but L1/L2 Mobility may be a provisional name or may be called by another similar name (for example, lower layer mobility). Furthermore, resetting the RLC may be interpreted as synonymous with stopping, restarting, initializing, and the like.
  • the words configure, activate, update, indicate, enable, specify, and select may be used interchangeably. good.
  • link, associate, correspond, and map may be used interchangeably; allocate, assign, and monitor.
  • map may also be read interchangeably.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • FIG. 18 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the device may include one or more of the devices shown in the figure, or may not include some of the devices.
  • Each functional block of the device (see FIGS. 4 and 5) is realized by any hardware element of the computer device or a combination of hardware elements.
  • each function in the device is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations, controls communication by the communication device 1004, and controls the memory This is realized by controlling at least one of data reading and writing in the storage 1002 and the storage 1003.
  • predetermined software programs
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be done.
  • Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store programs (program codes), software modules, etc. that can execute a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 1003 may also be called auxiliary storage.
  • the above-mentioned recording medium may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, network controller, network card, communication module, etc.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor 1001 may be implemented using at least one of these hardwares.
  • information notification is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • information notification can be performed using physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination thereof.
  • RRC signaling may also be referred to as RRC messages, such as RRC Connection Setup (RRC Connection Setup). ) message, RRC Connection Reconfiguration message, etc.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate systems and next-generation systems enhanced based on these.
  • a combination of multiple systems for example, a combination of at least one of LTE and LTE-A with 5G
  • 5G 5th generation mobile communication system
  • FPA Future Radio Access
  • NR New Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi
  • the specific operations performed by the base station in this disclosure may be performed by its upper node.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this can be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.).
  • MME mobile phone
  • S-GW network node
  • Information, signals can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information that is input and output may be overwritten, updated, or additionally written. The output information may be deleted. The input information may be sent to other devices.
  • Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of the foregoing. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, cell, frequency carrier, etc.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (Remote Radio Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Communication services
  • cell refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions that the mobile station has.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe.
  • a subframe may further be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • TTI is not limited to this.
  • the TTI may be a unit of transmission time such as a channel-coded data packet (transport block), a code block, or a codeword, or may be a unit of processing such as scheduling or link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI e.g., normal TTI, subframe, etc.
  • short TTI e.g., shortened TTI, etc.
  • TTI with a time length of less than the long TTI and 1ms. It may also be read as a TTI having a TTI length of the above length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the new merology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs are classified into physical resource blocks (Physical RBs: PRBs), sub-carrier groups (Sub-Carrier Groups: SCGs), resource element groups (Resource Element Groups: REGs), PRB pairs, RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of contiguous common resource blocks for a certain numerology in a certain carrier. good.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured within one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • FIG. 19 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, Equipped with various sensors 2021 to 2029, an information service section 2012, and a communication module 2013.
  • the drive unit 2002 includes, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 includes a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2027 provided in the vehicle are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2028 include current signals from current sensor 2021 that senses motor current, front and rear wheel rotation speed signals obtained by rotation speed sensor 2022, and front wheel rotation speed signals obtained by air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal acquired by vehicle speed sensor 2024, acceleration signal acquired by acceleration sensor 2025, accelerator pedal depression amount signal acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028.
  • the Information Services Department 2012 provides various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 1 using information acquired from an external device via the communication module 2013 and the like.
  • the driving support system unit 2030 includes millimeter wave radar, LiDAR (Light Detection and Ranging), cameras, positioning locators (e.g. GNSS, etc.), map information (e.g. high definition (HD) maps, autonomous vehicle (AV) maps, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. It consists of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • GPS Light Detection and Ranging
  • map information e.g. high definition (HD) maps, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g., IMU (Inertial Measurement Unit), INS (Iner
  • the communication module 2013 can communicate with the microprocessor 2031 and the components of the vehicle 1 via the communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, which are included in the vehicle 2001, through the communication port 2033.
  • Data is transmitted and received between the axle 2009, the microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and the sensors 2021 to 2028.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • Communication module 2013 may be located either inside or outside electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also receives the front wheel and rear wheel rotational speed signals acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor, which are input to the electronic control unit 2010.
  • the shift lever operation signal acquired by the sensor 2027, the detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service section 2012 provided in the vehicle. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, and left and right rear wheels provided in the vehicle 2001. 2008, axle 2009, sensors 2021 to 2028, etc. may be controlled.
  • various information traffic information, signal information, inter-vehicle information, etc.
  • Wireless communication system 20 NG-RAN 40 OAM/RIC 100 gNB 110 Wireless communication section 120 Handover processing section 130 Measurement setting section 140 Control section 200 UE 210 Wireless communication section 220 Measurement report section 230 Handover execution section 240 Control section 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive section 2003 Steering section 2004 Accelerator pedal 2005 Brake pedal 2006 shift lever 2007 left and right front wheels 2008 left and right back and right rear wheels 2009 axle 2010 axle control department 2012 information service department 2012 communication modules 2021 Current sensor 2022 rotation sensor 2023 air pressure sensor 2024 vehicle speed sensor 2025 acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 object detection Sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 communication port

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This wireless base station performs communication with a terminal via a wireless communication device connected to the same base station device. When the terminal transitions from a first cell to a second cell that are formed by the wireless communication device, the wireless base station uses Layer 1 functionality to establish a state in which the terminal is connected to both the first cell and the second cell.

Description

無線基地局、端末及び無線通信システムWireless base stations, terminals and wireless communication systems
 本開示は、無線基地局、端末及び無線通信システムに関する。 The present disclosure relates to a wireless base station, a terminal, and a wireless communication system.
 3rd Generation Partnership Project(3GPP:登録商標)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP: registered trademark) specifies the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)), and furthermore specifies the next generation called Beyond 5G, 5G Evolution or 6G. Generation specifications are also being developed.
 例えば、3GPP Release 18では、端末(User Equipment, UE)のモビリティの拡張が予定されている(非特許文献1)。具体的には、既存のレイヤ3におけるモビリティよりも、より低遅延、小さいオーバヘッド及び短い断時間を目的として、レイヤ1及び/またはレイヤ2でのモビリティ制御(L1/L2 Mobilityと呼ばれてもよい)が検討されている。 For example, in 3GPP Release 18, the mobility of terminals (User Equipment, UE) is planned to be expanded (Non-Patent Document 1). Specifically, mobility control at Layer 1 and/or Layer 2 (which may be referred to as L1/L2 Mobility) aims at lower latency, smaller overhead, and shorter downtime than the existing mobility at Layer 3. ) are being considered.
 しかしながら、L1/L2 Mobilityを実現する場合、次のような課題があると考えられる。例えば、無線基地局(gNB)が、中央装置(CU:Central Unit)と、分散装置(DU:Distributed Unit)とを含み、UEが、同一のCUに接続される複数のDU間(セル間)においてハンドオーバ(遷移)する場合、媒体アクセス制御レイヤ(MAC)及び/または無線リンク制御レイヤ(RLC)をリセットできず、ハンドオーバーが失敗する可能性がある。 However, when realizing L1/L2 Mobility, there are the following issues. For example, a radio base station (gNB) includes a central unit (CU) and a distributed unit (DU: Distributed Unit), and the UE is connected between multiple DUs (intercells) connected to the same CU. In the case of handover (transition), the medium access control layer (MAC) and/or the radio link control layer (RLC) cannot be reset, and the handover may fail.
 また、既存のハンドオーバーは、UEからのレイヤ3における測定報告に基づいてトリガされるが、L1/L2 Mobilityの場合、このような測定報告をトリガにしたハンドオーバーが実行できない。 Furthermore, existing handovers are triggered based on measurement reports in layer 3 from the UE, but in the case of L1/L2 Mobility, handovers triggered by such measurement reports cannot be performed.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、より確実なL1/L2 Mobilityを実現し得る無線基地局、端末及び無線通信システムの提供を目的とする。 Therefore, the following disclosure was made in view of this situation, and aims to provide a wireless base station, a terminal, and a wireless communication system that can realize more reliable L1/L2 Mobility.
 本開示の一態様は、同一の基地局装置(CU)に接続される無線通信装置(DU)を介して端末(UE200)と通信を実行する通信部(無線通信部110)と、前記無線通信装置によって形成される第1セルから第2セルに前記端末が遷移する場合、レイヤ1の機能を用いて、前記第1セル及び前記第2セルの両方と前記端末を接続した状態を設立する制御部(制御部140)とを備える無線基地局(gNB100)である。 One aspect of the present disclosure includes a communication unit (wireless communication unit 110) that performs communication with a terminal (UE 200) via a wireless communication device (DU) connected to the same base station device (CU), and a control for establishing a state in which the terminal is connected to both the first cell and the second cell using a layer 1 function when the terminal transitions from a first cell to a second cell formed by the device; (control unit 140).
 本開示の一態様は、サービングセルを含むセルの測定を制御する制御部(制御部240)と、前記測定の報告を送信する送信部(測定報告部220)とを備え、前記制御部は、前記サービングセル及び近隣セルのレイヤ1における測定を制御する端末(UE200)である。 One aspect of the present disclosure includes a control unit (control unit 240) that controls measurement of a cell including a serving cell, and a transmission unit (measurement report unit 220) that transmits a report of the measurement, and the control unit This is a terminal (UE 200) that controls measurements in layer 1 of the serving cell and neighboring cells.
 本開示の一態様は、端末と無線基地局とを含む無線通信システム(無線通信システム10)であって、前記端末は、サービングセルの測定を実行する制御部(制御部240)と、前記測定の報告を送信する送信部(測定報告部220)とを備え、前記無線基地局は、前記報告を受信する受信部(測定設定部130)を備え、前記制御部は、前記サービングセル及び近隣セルのレイヤ1における測定を実行し、前記受信部は、前記サービングセル及び前記近隣セルの測定結果を含む前記報告を受信する。 One aspect of the present disclosure is a wireless communication system (wireless communication system 10) including a terminal and a wireless base station, wherein the terminal includes a control unit (control unit 240) that performs measurement of a serving cell, and a control unit (control unit 240) that performs measurement of a serving cell. The wireless base station includes a transmitting unit (measurement reporting unit 220) that transmits a report, the radio base station includes a receiving unit (measurement setting unit 130) that receives the report, and the control unit controls the layer of the serving cell and neighboring cells. 1, and the receiving unit receives the report including the measurement results of the serving cell and the neighboring cells.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10. 図2は、Inter-DU inter-cell handoverの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of Inter-DU inter-cell handover. 図3は、Intra-DU inter-cell handoverの構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of intra-DU inter-cell handover. 図4は、gNB100の機能ブロック構成図である。FIG. 4 is a functional block diagram of the gNB 100. 図5は、UE200の機能ブロック構成図である。FIG. 5 is a functional block diagram of the UE 200. 図6は、Intra-DU L1/L2 MobilityまたはInter-DU L1/L2 Mobilityを適用する場合におけるユーザプレーン観点の動作例を示す図である。FIG. 6 is a diagram illustrating an operation example from a user plane perspective when Intra-DU L1/L2 Mobility or Inter-DU L1/L2 Mobility is applied. 図7は、L1/L2 Mobility手順の実行時におけるセル及び無線リンク制御レイヤの構成例(デュアルコネクティビティ接続)を示す図である。FIG. 7 is a diagram illustrating a configuration example (dual connectivity connection) of a cell and a radio link control layer when an L1/L2 Mobility procedure is executed. 図8は、デュアルコネクティビティ時の無線リンク制御レイヤ及びパケット・データ・コンバージェンス・プロトコル・レイヤ(ユーザプレーン)の構成例を示す図である。FIG. 8 is a diagram illustrating a configuration example of a radio link control layer and a packet data convergence protocol layer (user plane) during dual connectivity. 図9は、デュアルコネクティビティをベースとしたInter-DU L1/L2 Mobility手順のシーケンス例を示す図である。FIG. 9 is a diagram illustrating a sequence example of an Inter-DU L1/L2 Mobility procedure based on dual connectivity. 図10は、キャリアアグリゲーションをベースとしたIntra-DU L1/L2 Mobility手順のシーケンス例を示す図である。FIG. 10 is a diagram illustrating a sequence example of an intra-DU L1/L2 Mobility procedure based on carrier aggregation. 図11は、Inter-DU L1/L2 Mobility手順を実行した場合における下りリンク(DL)データ(パケット)の転送例を示す図である。FIG. 11 is a diagram illustrating an example of forwarding downlink (DL) data (packets) when the Inter-DU L1/L2 Mobility procedure is executed. 図12は、Inter-DU L1/L2 Mobility手順を実行した場合における上りリンク(UL)データ(パケット)の転送例を示す図である。FIG. 12 is a diagram illustrating an example of forwarding uplink (UL) data (packets) when the Inter-DU L1/L2 Mobility procedure is executed. 図13は、デュアルコネクティビティをベースとしたInter-DU L1/L2 Mobility手順のシーケンス例(事前にDC接続せず、複数の候補セルをUEに設定する場合、その1)を示す図である。FIG. 13 is a diagram illustrating a sequence example of an Inter-DU L1/L2 Mobility procedure based on dual connectivity (part 1 when setting multiple candidate cells to the UE without DC connection in advance). 図14は、デュアルコネクティビティをベースとしたInter-DU L1/L2 Mobility手順のシーケンス例(事前にDC接続せず、複数の候補セルをUEに設定する場合、その2)を示す図である。FIG. 14 is a diagram illustrating a sequence example of the Inter-DU L1/L2 Mobility procedure based on dual connectivity (case 2 when setting multiple candidate cells to the UE without DC connection in advance). 図15は、L1/L2 Mobility手順の実行時におけるセル及び無線リンク制御レイヤの構成例(複数の候補セルをUEに設定する場合)を示す図である。FIG. 15 is a diagram illustrating an example of the configuration of a cell and a radio link control layer (in a case where a plurality of candidate cells are set in a UE) when an L1/L2 Mobility procedure is executed. 図16は、キャリアアグリゲーションをベースとしたIntra-DU L1/L2 Mobility手順のシーケンス例(事前にCA接続せず、複数の候補セルをUEに設定する場合、その1)を示す図である。FIG. 16 is a diagram illustrating a sequence example of an intra-DU L1/L2 Mobility procedure based on carrier aggregation (part 1 when setting multiple candidate cells to the UE without CA connection in advance). 図17は、キャリアアグリゲーションをベースとしたIntra-DU L1/L2 Mobility手順のシーケンス例(事前にCA接続せず、複数の候補セルをUEに設定する場合、その2)を示す図である。FIG. 17 is a diagram illustrating a sequence example of an intra-DU L1/L2 Mobility procedure based on carrier aggregation (case 2 in which multiple candidate cells are configured in the UE without CA connection in advance). 図18は、gNB100及びUE200のハードウェア構成の一例を示す図である。FIG. 18 is a diagram showing an example of the hardware configuration of the gNB 100 and the UE 200. 図19は、車両2001の構成例を示す図である。FIG. 19 is a diagram showing an example of the configuration of vehicle 2001.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. Note that the same functions and configurations are given the same or similar symbols, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(User Equipment 200、以下、UE200)を含む。
(1) Overall schematic configuration of wireless communication system FIG. 1 is an overall schematic configuration diagram of a wireless communication system 10 according to the present embodiment. The radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter referred to as NG-RAN 20) and a terminal 200 (User Equipment 200, hereinafter referred to as UE 200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよいし、Long Term Evolution(LTE)或いは4Gと呼ばれる方式に従った無線通信システムが含まれてもよい。無線通信システム10は、Industrial Internet of Things(IIoT)及びURLLC(Ultra-Reliable and Low Latency Communications)に関する機能をサポートしてよい。 Note that the wireless communication system 10 may be a wireless communication system that follows a method called Beyond 5G, 5G Evolution, or 6G, or may include a wireless communication system that follows a method called Long Term Evolution (LTE) or 4G. good. The wireless communication system 10 may support functions related to Industrial Internet of Things (IIoT) and URLLC (Ultra-Reliable and Low Latency Communications).
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB(eNBなどでもよい)及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN 20 includes a radio base station 100 (hereinafter referred to as gNB 100). Note that the specific configuration of the wireless communication system 10, including the number of gNBs (eNBs or the like) and UEs, is not limited to the example shown in FIG. 1.
 また、gNB100は、O-RAN(Open Radio Access Network Alliance)によって規定されているフロントホール(FH)インターフェースを採用してもよい。gNB100は、O-DU(O-RAN Distributed Unit)及びO-RU(O-RAN Radio Unit)を含んでよい。gNB100は、NG-RANノードの一種として機能できる。 Additionally, the gNB100 may adopt a fronthaul (FH) interface specified by O-RAN (Open Radio Access Network Alliance). gNB100 may include O-DU (O-RAN Distributed Unit) and O-RU (O-RAN Radio Unit). gNB100 can function as a type of NG-RAN node.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。5GCでは、ユーザプレーンと制御プレーンとの機能が明確に分離されたCUPS(Control and User Plane Separation)のコンセプトが導入されてよい。 NG-RAN20 actually includes multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is connected to a 5G-compliant core network (5GC, not shown). 5GC may introduce the concept of CUPS (Control and User Plane Separation), which clearly separates the functions of the user plane and control plane.
 NG-RAN20には、5Gのシステムアーキテクチャに含まれ、UE200のアクセス及びモビリティの管理機能を提供するAccess and Mobility Management Function(AMF)、セッションの管理機能の提供するSession Management Function(SMF)などが接続される。また、AMF及び/またはSMFには、UDM/UDR(Unified Data Management/User Data Repository)が接続されてもよい。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 Access and Mobility Management Function (AMF), which is included in the 5G system architecture and provides access and mobility management functions for UE200, and Session Management Function (SMF), which provides session management functions, are connected to NG-RAN20. be done. Further, a UDM/UDR (Unified Data Management/User Data Repository) may be connected to the AMF and/or the SMF. Note that NG-RAN20 and 5GC may be simply expressed as "networks".
 gNB100は、NRに従った無線基地局であり、UE200とNRに従った無線通信を実行する。なお、gNB100は、CU(Central Unit)とDU(Distributed Unit)とによって構成されてもよく、DUは、CUから分離して地理的に異なる場所に設置されてもよい。また、gNB100(gNB-CU)間は、Xnインターフェースによって接続されてよい。 gNB100 is a radio base station that complies with NR, and performs radio communication with UE200 that complies with NR. Note that the gNB 100 may be configured with a CU (Central Unit) and a DU (Distributed Unit), and the DU may be separated from the CU and installed in a geographically different location. Furthermore, the gNBs 100 (gNB-CUs) may be connected by an Xn interface.
 gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 gNB100 and UE200 utilize Massive MIMO, which generates a highly directional beam by controlling radio signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which uses multiple component carriers (CC) in a bundle, It is also possible to support dual connectivity (DC), which allows simultaneous communication between the UE and multiple NG-RAN nodes.
 また、無線通信システム10では、レイヤ3でのUE200のモビリティ制御(L3 Mobilityと呼ばれてもよい)だけでなく、レイヤ1及び/またはレイヤ2でのモビリティ制御(L1/L2 Mobility)が適用されてもよい。L3 Mobilityは、無線リソース制御レイヤ(RRC)でのモビリティ制御と解釈されてもよい。一方、L1/L2 Mobilityは、物理レイヤ(PHY)、媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)でのモビリティ制御と解釈されてもよい。 In addition, in the wireless communication system 10, not only mobility control of the UE 200 at layer 3 (also referred to as L3 Mobility) but also mobility control at layer 1 and/or layer 2 (L1/L2 Mobility) is applied. You can. L3 Mobility may be interpreted as mobility control at the Radio Resource Control Layer (RRC). On the other hand, L1/L2 Mobility is interpreted as mobility control at the physical layer (PHY), medium access control layer (MAC), radio link control layer (RLC) and packet data convergence protocol layer (PDCP). Good too.
 レイヤ1とは、PHYなどの下位レイヤが含まれると解釈されてよい。レイヤ3とは、レイヤ1よりも上位レイヤである。上位レイヤには、RRCが含まれてもよく、MAC、RLC及びPDCPの少なくとも何れかが含まれてもよい。 Layer 1 may be interpreted to include lower layers such as PHY. Layer 3 is a layer higher than layer 1. The upper layer may include RRC, and may include at least one of MAC, RLC, and PDCP.
 UE200のモビリティとは、広義には、UE200の動き易さ、機動性を意味してよいが、本実施形態では、セル間の遷移を意味してよい。セル間の遷移には、ハンドオーバー及びセル選択(セル再選択を含む)が含まれてよい。なお、UE200のモビリティは、呼損(call drop)、無線リンク(ビームを含む)障害、不要なハンドオーバー、ピンポン状態などの最小化を意味してもよい。 The mobility of the UE 200 may mean the ease of movement and maneuverability of the UE 200 in a broad sense, but in this embodiment, it may mean transition between cells. Transitions between cells may include handovers and cell selection (including cell reselection). Note that the mobility of the UE 200 may mean minimizing call drops, wireless link (including beam) failures, unnecessary handovers, ping-pong situations, and the like.
 L3 Mobilityよりも下位レイヤのL1/L2 Mobilityによれば、L3 Mobilityよりも低遅延、小さいオーバヘッド及び短い断時間などを実現し得る。 L1/L2 Mobility, which is a lower layer than L3 Mobility, can achieve lower delay, smaller overhead, shorter interruption time, etc. than L3 Mobility.
 図2は、Inter-DU inter-cell handoverの構成例を示す。図3は、Intra-DU inter-cell handoverの構成例を示す。 Figure 2 shows an example of the configuration of Inter-DU inter-cell handover. FIG. 3 shows a configuration example of intra-DU inter-cell handover.
 上述したように、gNB100は、CU-DU構成を採用できる。図2に示すように、1つのCUには、複数のDUが接続されてもよいし、図3に示すように、1つのCUに1つのDUが接続されてもよい。DUは、1つまたは複数のセル、具体的には、セルC1及びセルC2を形成してよい。 As mentioned above, the gNB 100 can adopt the CU-DU configuration. As shown in FIG. 2, a plurality of DUs may be connected to one CU, and as shown in FIG. 3, one DU may be connected to one CU. A DU may form one or more cells, specifically cell C1 and cell C2.
 例えば、図2に示すように、一方のDUがセルC1を形成し、他方のDUがセルC2を形成してもよい。或いは、図3に示すように、1つのDUがセルC1及びセルC2を形成してよもよい。 For example, as shown in FIG. 2, one DU may form the cell C1, and the other DU may form the cell C2. Alternatively, as shown in FIG. 3, one DU may form cell C1 and cell C2.
 図2のようなセル間のハンドオーバーは、Inter-DU inter-cell handoverと呼ばれてよい。また、図3のようなセル間のハンドオーバーは、Intra-DU inter-cell handoverと呼ばれてよい。 Handover between cells as shown in FIG. 2 may be referred to as Inter-DU inter-cell handover. Furthermore, handover between cells as shown in FIG. 3 may be referred to as intra-DU inter-cell handover.
 L3 Mobilityの場合、このようなハンドオーバーが実行されると、MAC及びRLCはリセットされ、PDCPの再設定またはデータリカバリーが実行されてよい。L1/L2 Mobilityの場合、MAC及び/またはRLCは、必ずしもリセットされなくてもよい(一部はリセットされてもよい)。 In the case of L3 Mobility, when such handover is performed, the MAC and RLC may be reset and PDCP reconfiguration or data recovery may be performed. In the case of L1/L2 Mobility, the MAC and/or RLC do not necessarily need to be reset (some may be reset).
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、gNB100及びUE200の機能ブロック構成について説明する。図4は、gNB100の機能ブロック構成図である。図5は、UE200の機能ブロック構成図である。
(2) Functional block configuration of wireless communication system Next, the functional block configuration of the wireless communication system 10 will be explained. Specifically, the functional block configurations of gNB 100 and UE 200 will be explained. FIG. 4 is a functional block diagram of the gNB 100. FIG. 5 is a functional block diagram of the UE 200.
 (2.1)gNB100
 図4に示すように、gNB100は、無線通信部110、ハンドオーバー処理部120、測定設定部130及び制御部140を備える。
(2.1) gNB100
As shown in FIG. 4, the gNB 100 includes a wireless communication section 110, a handover processing section 120, a measurement setting section 130, and a control section 140.
 無線通信部110は、NRに従った下りリンク信号(DL信号)を送信する。また、無線通信部110は、NRに従った上りリンク信号(UL信号)を受信する。 The wireless communication unit 110 transmits a downlink signal (DL signal) according to NR. Furthermore, the wireless communication unit 110 receives an uplink signal (UL signal) according to the NR.
 本実施形態では、無線通信部110は、同一の基地局装置に接続される無線通信装置を介して端末と通信を実行する通信部を構成してよい。具体的には、無線通信部110は、同一のCUに接続されるDUを介してUE200と通信を実行できる。 In this embodiment, the wireless communication unit 110 may constitute a communication unit that communicates with a terminal via a wireless communication device connected to the same base station device. Specifically, the wireless communication unit 110 can communicate with the UE 200 via DUs connected to the same CU.
 なお、CUは、中央装置、集約装置などと呼ばれてもよく、DUは、分散装置、張出装置などと呼ばれてもよい。 Note that the CU may be called a central device, aggregation device, etc., and the DU may be called a distribution device, an overhang device, etc.
 ハンドオーバー処理部120は、UE200のハンドオーバーを実行する。具体的には、ハンドオーバー処理部120は、UE200のサービングセルから近隣の他のセルへのハンドオーバーを実行する。 The handover processing unit 120 executes handover of the UE 200. Specifically, handover processing unit 120 executes handover from the serving cell of UE 200 to another nearby cell.
 なお、サービングセルとは、単にUE200が接続中のセルと解釈されてもよいが、もう少し厳密には、キャリアアグリゲーション(CA)が設定されていないRRC_CONNECTEDのUEの場合、プライマリーセルを構成するサービングセルは1つだけである。CAを用いて構成されたRRC_CONNECTEDのUEの場合、サービングセルは、プライマリーセルと全てのセカンダリセルとを含む1つまたは複数のセルのセットを示すと解釈されてもよい。 Note that the serving cell may simply be interpreted as the cell to which the UE 200 is connected, but more precisely, in the case of an RRC_CONNECTED UE for which carrier aggregation (CA) is not set, there is only one serving cell that constitutes the primary cell. Only one. For an RRC_CONNECTED UE configured with CA, the serving cell may be interpreted to refer to a set of one or more cells including the primary cell and all secondary cells.
 また、ハンドオーバーには、条件付きハンドオーバー(CHO:Conditional Handover)が含まれてもよい。CHOは、特定の実行条件(execution condition)が満たされたときに、UE200主導のハンドオーバーを実行できる。CHOが適用できない場合、通常のハンドオーバーが実行されてよい(CHO recoveryと呼ばれてもよい)。CHO recoveryでは、CHO failure後にUE200がセル選択を実行するが、CHO candidate cellを選択した場合、RRCRestablishmentRequestをcandidate target cellに送信せずに、直接当該セルのconditional RRCReconfigurationを適用し再接続できる。 Additionally, handover may include conditional handover (CHO). The CHO can perform a UE 200-initiated handover when certain execution conditions are met. If CHO is not applicable, normal handover may be performed (may be referred to as CHO recovery). In CHO recovery, the UE 200 performs cell selection after CHO failure, but if a CHO candidate cell is selected, it is possible to reconnect by directly applying the conditional RRCReconfiguration of the cell without sending an RRCRestablishmentRequest to the candidate target cell.
 実行条件は、1つまたは2つのトリガ条件(3GPP TS38.331において規定されるCHOイベントA3/A5)によって構成されてよい。単一の参照信号(RS)タイプがトリガされ、単一候補セルのCHO実行条件の評価のために、最大2つの異なるトリガ量(例えば、Reference Signal Received Power(RSRP)とReference Signal Received Quality(RSRQ)、RSRPとSignal-to-Interference plus Noise power Ratio(SINR)など)が同時に設定されてよい。 The execution condition may be composed of one or two trigger conditions (CHO events A3/A5 specified in 3GPP TS38.331). A single reference signal (RS) type is triggered and up to two different trigger quantities (e.g. Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ) ), RSRP and Signal-to-Interference plus Noise power Ratio (SINR), etc.) may be configured at the same time.
 測定設定部130は、UE200によるサービングセル及び近隣セルの品質測定の設定(測定設定)を実行する。具体的には、測定設定部130は、レイヤ3における測定設定(measurement configuration)を実行してもよいし、レイヤ1及び/またはレイヤ2での測定設定を実行してもよい。 The measurement setting unit 130 executes settings for quality measurement of the serving cell and neighboring cells (measurement settings) by the UE 200. Specifically, the measurement configuration unit 130 may perform measurement configuration at layer 3, or measurement configuration at layer 1 and/or layer 2.
 測定設定部130は、測定設定の内容をUE200に通知できる。UE200は、通知された測定設定に基づいて、サービングセル及び/または近隣セルの品質を測定してよい。測定設定部130は、UE200から当該セル品質の測定結果を示す測定報告(measurement report)を受信できる。本実施形態において、測定設定部130は、当該測定の報告を受信する受信部を構成する。 The measurement setting unit 130 can notify the UE 200 of the contents of the measurement settings. UE 200 may measure the quality of the serving cell and/or neighboring cells based on the notified measurement settings. The measurement setting unit 130 can receive a measurement report indicating the measurement result of the cell quality from the UE 200. In this embodiment, the measurement setting section 130 constitutes a receiving section that receives the measurement report.
 制御部140は、gNB100を構成する各機能ブロックを制御する。特に、本実施形態では、制御部140は、UE200のモビリティに関する制御を実行できる。 The control unit 140 controls each functional block that configures the gNB 100. In particular, in this embodiment, the control unit 140 can perform control regarding the mobility of the UE 200.
 具体的には、制御部140は、L3 Mobilityに関する制御及び/またはL1/L2 Mobilityに関する制御を実行してよい。例えば、L1/L2 Mobilityに関して、制御部140は、DU(無線通信装置)によって形成される第1セル(例えば、セルC1)から第2セル(例えば、セルC2)にUE200が遷移する場合、レイヤ1(及び/またはレイヤ2)の機能を用いて、第1セル及び第2セルの両方と端末を接続した状態を設立してよい。 Specifically, the control unit 140 may execute control regarding L3 Mobility and/or control regarding L1/L2 Mobility. For example, regarding L1/L2 Mobility, the control unit 140 controls the layer 1 (and/or layer 2) may be used to establish a state in which the terminal is connected to both the first cell and the second cell.
 ここで、第1セル及び第2セルの両方と端末を接続した状態とは、デュアルコネクティビティ(DC)を意味してもよいし、キャリアアグリゲーション(CA)を意味してもよい。 Here, the state in which the terminal is connected to both the first cell and the second cell may mean dual connectivity (DC) or carrier aggregation (CA).
 より具体的には、制御部140は、Intra-CU inter-DU HOの場合、DCをベースとしたL1/L2 Mobilityを実行してもよい。また、制御部140は、Intra-CU intra-DU HOの場合、CAをベースとしたL1/L2 Mobilityを実行してもよい。制御部140は、UE200からレイヤ1の測定報告を受信後、ハンドオーバー(HO)を決定してもよい。 More specifically, in the case of Intra-CU inter-DU HO, the control unit 140 may execute DC-based L1/L2 Mobility. Furthermore, in the case of Intra-CU intra-DU HO, the control unit 140 may execute L1/L2 Mobility based on CA. The control unit 140 may determine handover (HO) after receiving the layer 1 measurement report from the UE 200.
 DCの種類は、複数の無線アクセス技術を利用するMulti-RAT Dual Connectivity(MR-DC)でもよいし、NRのみを利用するNR-NR Dual Connectivity(NR-DC)でもよい。また、MR-DCには、eNBがマスターノード(MN)を構成し、gNBがセカンダリーノード(SN)を構成するE-UTRA-NR Dual Connectivity(EN-DC)でもよいし、その逆であるNR-E-UTRA Dual Connectivity(NE-DC)でもよい。 The type of DC may be Multi-RAT Dual Connectivity (MR-DC), which uses multiple radio access technologies, or NR-NR Dual Connectivity (NR-DC), which uses only NR. In addition, MR-DC may be E-UTRA-NR Dual Connectivity (EN-DC), where the eNB constitutes the master node (MN) and the gNB constitutes the secondary node (SN), or vice versa. -E-UTRA Dual Connectivity (NE-DC) may also be used.
 DCでは、マスターセルグループ(MCG)及びセカンダリーセルグループ(SCG)が設定されてよい。MCGには、プライマリーセル(PCell)が含まれ、SCGには、セカンダリーセル(SCell)が含まれてよい。 A master cell group (MCG) and a secondary cell group (SCG) may be set in the DC. The MCG may include a primary cell (PCell), and the SCG may include a secondary cell (SCell).
 制御部140は、SCGをアクティブ状態にし、PCellとPSCellとを切り替えてもよく、HO完了後にSCGを解放してもよいし、非アクティブ(deactivated)状態にしてもよい。また、制御部140は、HO時に、2つのPDCPを同時に動作させるPDCP duplicationを起動してもよい。 The control unit 140 may put the SCG in an active state and switch between PCell and PSCell, release the SCG after HO is completed, or put it in a deactivated state. Furthermore, the control unit 140 may activate PDCP duplication to operate two PDCPs simultaneously at the time of HO.
 また、SCellには、プライマリー・セカンダリーセル(PSCell)が含まれてよい。PSCellは、SCellの一種であるが、PCellと同等の機能を有する特別なSCellと解釈されてよい。PSCellでは、PCellと同様に、PUCCH(Physical Uplink Control Channel、上り制御チャネル)の送信、コンテンション型のランダムアクセス手順(CBRA)、Radio Link Monitoring(下りの無線品質監視)機能などが実行されてよい。 Additionally, the SCell may include a primary/secondary cell (PSCell). PSCell is a type of SCell, but may be interpreted as a special SCell that has functions equivalent to PCell. Similar to PCell, PSCell may perform functions such as PUCCH (Physical Uplink Control Channel) transmission, contention-based random access procedure (CBRA), and Radio Link Monitoring (downlink radio quality monitoring) functions. .
 RA手順は、単にランダムアクセスチャネル(RACH)と読み替えられてもよい。RA手順(RACH)には、2ステップRACH及び4ステップRACHが含まれてよい。 The RA procedure may be simply read as the Random Access Channel (RACH). The RA procedure (RACH) may include a 2-step RACH and a 4-step RACH.
 RA手順(RACH)には、2ステップRACH及び4ステップRACHが含まれてよい。2ステップRACHでは、メッセージ(MSG)A, B(Random Access Preamble, Contention Resolution/Random Access Response)が送受信されてよい。4ステップRACHでは、MSG1~4(Random Access Preamble, Random Access Response、Scheduled Transmission, Contention Resolution)が送受信されてよい。 The RA procedure (RACH) may include 2-step RACH and 4-step RACH. In the two-step RACH, messages (MSG) A and B (Random Access Preamble, Contention Resolution/Random Access Response) may be sent and received. In the 4-step RACH, MSGs 1 to 4 (Random Access Preamble, Random Access Response, Scheduled Transmission, Contention Resolution) may be transmitted and received.
 なお、本実施形態では、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、PRACH(Physical Random Access Channel)、及びPBCH(Physical Broadcast Channel)などが含まれる。 Note that in this embodiment, the channels include a control channel and a data channel. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), PBCH (Physical Broadcast Channel), and the like.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。 Additionally, data channels include PDSCH (Physical Downlink Shared Channel), PUSCH (Physical Uplink Shared Channel), and the like.
 なお、参照信号には、Demodulation reference signal(DMRS)、Sounding Reference Signal(SRS)、Phase Tracking Reference Signal (PTRS)、及びChannel State Information-Reference Signal(CSI-RS)などが含まれ、信号には、チャネル及び参照信号が含まれる。また、データとは、データチャネルを介して送信されるデータを意味してよい。 Reference signals include Demodulation reference signal (DMRS), Sounding Reference Signal (SRS), Phase Tracking Reference Signal (PTRS), Channel State Information-Reference Signal (CSI-RS), etc. Contains channels and reference signals. Data may also refer to data transmitted via a data channel.
 また、制御部140は、DUの第1セル側のRLC(第1無線リンク制御レイヤ)における確認未了のデータ(un-Acked data)をCU(基地局装置)側のPDCPに送信させ、CUのPDCPは、DUの第2セル側のRLC(第2無線リンク制御レイヤ)に当該データを送信させるようにしてもよい。un-Acked dataとは、gNB100が肯定応答(Acknowledgement)を受信していないデータと解釈されてよい。データは、パケット或いはプロトコル・データユニット(PDU)などに読み替えられてもよい。 Further, the control unit 140 causes the PDCP on the CU (base station device) side to transmit unacknowledged data in the RLC (first radio link control layer) on the first cell side of the DU, and The PDCP may cause the RLC (second radio link control layer) on the second cell side of the DU to transmit the data. Un-Acked data may be interpreted as data for which the gNB 100 has not received an acknowledgment. The data may be read as a packet, a protocol data unit (PDU), or the like.
 さらに、DUの第1セル側のRLC(第1無線リンク制御レイヤ)は、第1無線リンク制御レイヤをリセット後、DUの第2セル側のRLC(第2無線リンク制御レイヤ)に当該データを再送してもよい。または、第1無線リンク制御レイヤをリセットせずに第2無線リンク制御レイヤにデータを再送し、データを再送後、第1無線リンク制御レイヤをリセットしてもよい。なお、DUの第1セル側のRLCと、DUの第2セル側のRLCとは、過渡的に両方設定されている時間があっても構わない。 Furthermore, after resetting the first radio link control layer, the RLC (first radio link control layer) on the first cell side of the DU transmits the data to the RLC (second radio link control layer) on the second cell side of the DU. You may resend it. Alternatively, the data may be retransmitted to the second radio link control layer without resetting the first radio link control layer, and after the data is retransmitted, the first radio link control layer may be reset. Note that there may be a time when both the RLC on the first cell side of the DU and the RLC on the second cell side of the DU are set.
 (2.2)UE200
 図5に示すように、UE200は、無線通信部210、測定報告部220、ハンドオーバー実行部230及び制御部240を備える。
(2.2) UE200
As shown in FIG. 5, the UE 200 includes a wireless communication section 210, a measurement reporting section 220, a handover execution section 230, and a control section 240.
 無線通信部210は、NRに従った上りリンク信号(UL信号)を送信する。また、無線通信部210は、NRに従った上りリンク信号(DL信号)を受信する。 The wireless communication unit 210 transmits an uplink signal (UL signal) according to NR. Furthermore, the wireless communication unit 210 receives an uplink signal (DL signal) according to NR.
 測定報告部220は、UE200のサービングセル、及び当該サービングセルの近隣セル(Neighbor cell)の品質を測定し、測定結果(Measurement Report)をネットワークに報告できる。測定報告部220は、ハンドオーバーに際して、ソースセル及びターゲットセルの測定報告を実行してよい。本実施形態において、測定報告部220は、測定の報告を送信する送信部を構成する。 The measurement reporting unit 220 can measure the quality of the serving cell of the UE 200 and the neighboring cells of the serving cell, and can report the measurement results (Measurement Report) to the network. The measurement reporting unit 220 may perform measurement reporting of the source cell and target cell upon handover. In this embodiment, the measurement report section 220 constitutes a transmitter that transmits a measurement report.
 測定対象の品質とは、例えば、3GPP TS38.331において規定されているMeasurement Reportに含まれる品質(例えば、Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ))などでよい。 The quality of the measurement target may be, for example, the quality included in the Measurement Report specified in 3GPP TS38.331 (for example, Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ)), etc.
 測定報告部220は、レイヤ3における測定だけでなく、サービングセル及び近隣セルのレイヤ1(及び/またはレイヤ2)における測定を実行してよい。レイヤ1及び/またはレイヤ2における測定とは、L1/L2 Mobilityと同様に、PHY, MAC, RLC, PDCPの少なくとも何れかにレイヤの機能を用いた測定、及び当該測定結果の報告と解釈されてよい。 The measurement reporting unit 220 may perform not only measurements at layer 3 but also measurements at layer 1 (and/or layer 2) of the serving cell and neighboring cells. Measurement at layer 1 and/or layer 2 is interpreted as measurement using layer functions in at least one of PHY, MAC, RLC, PDCP, and reporting of the measurement results, similar to L1/L2 Mobility. good.
 ハンドオーバー実行部230は、UE200のハンドオーバーを実行する。具体的には、ハンドオーバー実行部230は、gNB100による制御に基づいて、遷移先のセル(NG-RANノード)へのハンドオーバーを実行してよい。 The handover execution unit 230 executes handover of the UE 200. Specifically, the handover execution unit 230 may execute the handover to the transition destination cell (NG-RAN node) based on the control by the gNB 100.
 また、ハンドオーバー実行部230は、通常のハンドオーバー(レガシー・ハンドオーバー)、及び条件付きハンドオーバー(CHO)に関する処理を実行できる。 Furthermore, the handover execution unit 230 can execute processing related to normal handover (legacy handover) and conditional handover (CHO).
 ハンドオーバー実行部230は、CHOの場合、実行条件(execution condition)が満たされたときに候補セルに遷移してよい。実行条件は、上述したように、参照信号(RS)の品質、具体的には、RSRP、RSRQ、或いはSINRの値に基づいて決定されてよい。 In the case of CHO, the handover execution unit 230 may transition to a candidate cell when an execution condition is met. As described above, the execution conditions may be determined based on the quality of the reference signal (RS), specifically, the value of RSRP, RSRQ, or SINR.
 また、CHOは、遷移先がSCGを伴っていなくてもよいし、SCGを伴っていてもよい。換言すると、CHOによる遷移先のセルとしては、単一のセルでもよいし、DCに従った複数のセル(セルグループと読み替えてもよい)によって構成されていてもよい。 Furthermore, the transition destination of CHO may not be accompanied by an SCG, or may be accompanied by an SCG. In other words, the cell to which the CHO transitions may be a single cell, or may be composed of a plurality of cells (which may be read as a cell group) according to the DC.
 制御部240は、UE200を構成する各機能ブロックを制御する。具体的には、制御部240は、UE200のネットワークへの登録(特定セルでの待ち受け)、測定報告、及びUE200のハンドオーバーに関する制御を実行できる。 The control unit 240 controls each functional block that configures the UE 200. Specifically, the control unit 240 can perform control regarding registration of the UE 200 with the network (standby in a specific cell), measurement reporting, and handover of the UE 200.
 制御部240は、サービングセルを含むセルの測定を制御する。具体的には、制御部240は、サービングセル及び近隣セルのレイヤ1(及び/またはレイヤ2)における測定を制御できる。つまり、制御部240は、レイヤ1(及び/またはレイヤ2)の機能を用いて、サービングセル及び近隣セルの測定(L1 measurementと呼ばれてもよい)を実行できる。 The control unit 240 controls measurement of cells including the serving cell. Specifically, the control unit 240 can control measurements at layer 1 (and/or layer 2) of the serving cell and neighboring cells. In other words, the control unit 240 can perform measurements of the serving cell and neighboring cells (which may also be referred to as L1 measurements) using the layer 1 (and/or layer 2) functions.
 制御部240は、レイヤ1(及び/またはレイヤ2)における障害が発生した場合、当該障害の情報を、自局のRRCに通知してよい。なお、障害情報は、RRC以外のレイヤ(例えば、MAC, RLC, PDCP)に通知されてもよい。障害情報は、特に限定されないが、ソースセル(ハンドオーバー元)の識別情報(ID)、ターゲットセル(ハンドオーバー先)の識別情報(ID)及び/または当該セル(或いはビームでもよい)の品質が含まれてよい。 When a failure occurs in layer 1 (and/or layer 2), the control unit 240 may notify the RRC of its own station of the failure information. Note that the failure information may be notified to a layer other than RRC (for example, MAC, RLC, PDCP). The failure information includes, but is not limited to, the identification information (ID) of the source cell (handover source), the identification information (ID) of the target cell (handover destination), and/or the quality of the cell (or beam). May be included.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、レイヤ1及び/またはレイヤ2でのモビリティ制御(L1/L2 Mobility)に関する動作について説明する。
(3) Operation of wireless communication system Next, the operation of the wireless communication system 10 will be explained. Specifically, operations related to mobility control (L1/L2 Mobility) at layer 1 and/or layer 2 will be described.
 (3.1)動作例1
 (3.1.1)課題
 従来のL3 Mobilityに従ったintra-CU inter-cell handover(intra-DU inter-cell handover (HO)またはinter-DU inter-cell handover (HO))では、MACとRLCとがリセットされ、PDCPについては、PDCP再設立(re-establishment)またはPDCP data recoveryが実行される。PDCP data recoveryとは、送信側PDCPが、再設立または解放されたAM(Acknowledged Mode) RLCエンティティに以前に送信され、下位レイヤによって正常な配信が確認されていないPDCPデータPDUの再送信を、関連するCOUNT値の昇順に従って実行することと解釈されてよい。
(3.1) Operation example 1
(3.1.1) Issues In intra-CU inter-cell handover (intra-DU inter-cell handover (HO) or inter-DU inter-cell handover (HO)) according to conventional L3 Mobility, MAC and RLC is reset, and for PDCP, PDCP re-establishment or PDCP data recovery is performed. PDCP data recovery refers to the related retransmission of PDCP data PDUs that were previously sent to a re-established or released AM (Acknowledged Mode) RLC entity and whose successful delivery has not been acknowledged by lower layers. This may be interpreted as executing in ascending order of the COUNT values.
 L1/L2 Mobilityの場合、Intra-DU/inter-DU inter-cell HOでは、MAC及びRLCがリセットされず、或いは一部がリセットされ、正常なハンドオーバーができない可能性がある。特に、当該レイヤの一部がリセットされる場合、何れの部分を対象としてリセットするかが問題となる。 In the case of L1/L2 Mobility, in Intra-DU/inter-DU inter-cell HO, MAC and RLC may not be reset, or may be partially reset, and normal handover may not be possible. In particular, when a part of the layer is to be reset, the problem is which part should be reset.
 (3.1.2)解決策
 以下では、上述した課題を解決するユーザプレーン(Uプレーン)観点の解決策の例を示す。
(3.1.2) Solution Below, we will show an example of a solution from the user plane (U plane) perspective that solves the above-mentioned problems.
 (3.1.2.1)Intra-DU L1/L2 MobilityまたはInter-DU L1/L2 Mobility
 図6は、Intra-DU L1/L2 MobilityまたはInter-DU L1/L2 Mobilityを適用する場合におけるユーザプレーン観点の動作例を示す。
(3.1.2.1) Intra-DU L1/L2 Mobility or Inter-DU L1/L2 Mobility
FIG. 6 shows an operation example from a user plane perspective when Intra-DU L1/L2 Mobility or Inter-DU L1/L2 Mobility is applied.
 図6に示すように、Intra-DU L1/L2 MobilityまたはInter-DU L1/L2 Mobilityでは、MACの一部の機能(手順)がリセットされてよい。また、MACだけでなく、RLCの一部の機能(手順)がリセットされてもよい。 As shown in FIG. 6, some functions (procedures) of the MAC may be reset in Intra-DU L1/L2 Mobility or Inter-DU L1/L2 Mobility. Furthermore, not only the MAC but also some functions (procedures) of the RLC may be reset.
 MACの一部の機能をリセットする場合、例えば、以下に示すMACの機能(手順)のうち、[]で括った機能(手順)以外がリセットされてもよい。 When resetting some functions of the MAC, for example, among the functions (procedures) of the MAC shown below, functions (procedures) other than those enclosed in [] may be reset.
  ・[initialize Bj for each logical channel to zero;]
  ・stop (if running) all timers;
  ・consider all timeAlignmentTimers as expired and perform the corresponding actions in clause 5.2;
  ・[set the NDIs for all uplink HARQ processes to the value 0]
  ・stop, if any, ongoing RACH procedure;
  ・discard explicitly signalled contention-free Random Access Resources, if any
  ・[flush Msg3 buffer;]
  ・cancel, if any, triggered Scheduling Request procedure;
  ・cancel, if any, triggered Buffer Status Reporting procedure;
  ・cancel, if any, triggered Power Headroom Reporting procedure;
  ・[flush the soft buffers for all DL HARQ processes;]
  ・[for each DL HARQ process, consider the next received transmission for a TB as the very first transmission;]
  ・release, if any, Temporary C-RNTI;
  ・reset BFI_COUNTER.
 []で括った機能(手順)は、Uプレーン系の機能(手順)と解釈され、[]で括っていない機能(手順)は、制御プレーン(Cプレーン)系の機能(手順)と解釈されてもよい。つまり、Cプレーン系の機能(手順)は、リセットされてもよい。
・[initialize Bj for each logical channel to zero;]
・stop (if running) all timers;
・consider all timeAlignmentTimers as expired and perform the corresponding actions in clause 5.2;
・[set the NDIs for all uplink HARQ processes to the value 0]
・stop, if any, ongoing RACH procedure;
・discard explicitly signaled contention-free Random Access Resources, if any
・[flush Msg3 buffer;]
・cancel, if any, triggered Scheduling Request procedure;
・cancel, if any, triggered Buffer Status Reporting procedure;
・cancel, if any, triggered Power Headroom Reporting procedure;
・[flush the soft buffers for all DL HARQ processes;]
・[for each DL HARQ process, consider the next received transmission for a TB as the very first transmission;]
・release, if any, Temporary C-RNTI;
・reset BFI_COUNTER.
Functions (procedures) enclosed in [ ] are interpreted as U-plane functions (procedures), and functions (procedures) not enclosed in [ ] are interpreted as control-plane (C-plane) functions (procedures). You can. In other words, the C-plane functions (procedures) may be reset.
 (3.1.2.2)Intra-CU inter-DU HOまたはIntra-CU intra-DU HO
 Intra-CU inter-DU HO(図2参照)の場合、DC based L1/L2 Mobilityが実行されてもよい。また、Intra-CU intra-DU HO(図3参照)の場合、CA based L1/L2 Mobilityが実行されてもよい。
(3.1.2.2) Intra-CU inter-DU HO or Intra-CU intra-DU HO
In the case of Intra-CU inter-DU HO (see Figure 2), DC based L1/L2 Mobility may be performed. Furthermore, in the case of Intra-CU intra-DU HO (see FIG. 3), CA based L1/L2 Mobility may be executed.
 具体的には、source DUと、candidate target DUとの間には、DC状態が設立されてよい。candidate target DUとは、ハンドオーバー先の候補となり得るDU(セル)と解釈されてよい。 Specifically, a DC state may be established between the source DU and candidate target DU. The candidate target DU may be interpreted as a DU (cell) that can be a candidate for handover.
 Intra-DU HOの場合、DU内において、candidate target cellがSCellとして追加されてもよい。或いは、DC状態を設立せずに、candidate target cellのconfigurationが、UEに予め設定されてもよい。当該configurationは、MACまたはRRCなどのメッセージによってUEに指示されてもよいし、UEに予め設定されていてもよい。 In the case of Intra-DU HO, a candidate target cell may be added as an SCell within the DU. Alternatively, the candidate target cell configuration may be preset in the UE without establishing a DC state. The configuration may be instructed to the UE by a message such as MAC or RRC, or may be set in the UE in advance.
 また、省電力及びリソース有効利用のため、SCG及び/またはSCellが、非アクティブ(deactivated)状態にされてもよい。非アクティブ状態とは、当該セル(またはセルグループ)の設定が解放されている状態、或いは全ての設定が解放されておらず、一部の設定が維持されている状態と解釈されてもよい。 Furthermore, in order to save power and use resources effectively, the SCG and/or SCell may be placed in a deactivated state. The inactive state may be interpreted as a state in which the settings of the cell (or cell group) are released, or a state in which all settings are not released and some settings are maintained.
 SCGは、DRX(Discontinuous Reception)状態に設定されてもよいし、deactivated状態またはDRX状態にされなくてもよい。 The SCG may be set to the DRX (Discontinuous Reception) state, or may not be set to the deactivated state or the DRX state.
 また、Source DUが、UEからの品質測定結果(L1 measurement report)を受信してからHOを決定してもよい。具体的には、次の何れかによってL1/L2 Mobility(HO)が実行されてもよい。 Additionally, the Source DU may determine the HO after receiving the quality measurement result (L1 measurement report) from the UE. Specifically, L1/L2 Mobility (HO) may be performed by any of the following.
  ・UEがgNBからL1L2 mobility commandを受信した後
  ・UEがgNBからHO指示を受信せず、所定の実行条件(event X)を満足した場合
 L1/L2 Mobility(HO)の実行は、L1L2 mobility command受信またはevent Xを満足したと同時でもよいし、L1L2 mobility command受信またはevent Xを満足してから所定時間内でもよい。
- After the UE receives the L1L2 mobility command from the gNB - When the UE does not receive the HO instruction from the gNB and satisfies the predetermined execution conditions (event X) L1/L2 Mobility (HO) is executed using the L1L2 mobility command This may be done at the same time as receiving the L1L2 mobility command or satisfying event X, or within a predetermined time after receiving the L1L2 mobility command or satisfying event X.
 所定の実行条件(event X)は、例えば、次の何れかでよい。 The predetermined execution condition (event X) may be, for example, any of the following.
  ・ターゲットセルの品質がソースセルよりもオフセットの分良好である
  ・ターゲットセルの品質が所定閾値より良好である
  ・ソースセルの品質が所定閾値より悪く、ターゲットセルの品質が所定閾値より良好である
 また、DC based L1/L2 Mobilityの場合、HO時に、SCGをactivated状態にし、PCellとPSCellとを切り替えてもよい。CA based L1/L2 Mobilityの場合は、HO時に、セルをactivated状態にし、PCellとSCellとを切り替え、或いはPSCellとSCellとを切り替えてもよい。
- The quality of the target cell is better than the source cell by the offset - The quality of the target cell is better than a predetermined threshold - The quality of the source cell is worse than a predetermined threshold and the quality of the target cell is better than a predetermined threshold Furthermore, in the case of DC based L1/L2 Mobility, at the time of HO, the SCG may be brought into an activated state to switch between PCell and PSCell. In the case of CA based L1/L2 Mobility, at the time of HO, the cell may be brought into the activated state and switched between PCell and SCell, or between PSCell and SCell.
 この場合、HO時にPDCP duplicationが起動されてもよい。また、Source DUのRLCは、未AckのdataをCU側のPDCPに転送し、CU側のPDCPは、当該dataをtarget DUのRLCに転送してもよい。具体的には、Source RLCは、リセットされた後に未Ackのdataを再送してもよいし、source RLCは、すぐリセットせず、未Ackのdataをtarget RLCに転送してからリセットされてもよい。 In this case, PDCP duplication may be activated during HO. Further, the RLC of the source DU may transfer unacknowledged data to the PDCP on the CU side, and the PDCP on the CU side may transfer the data to the RLC of the target DU. Specifically, the source RLC may resend unacknowledged data after being reset, or the source RLC may transfer unacknowledged data to the target RLC without resetting immediately and then reset. good.
 ここで、Source DUのRLCと、target DUのRLCとは、過渡的にduplication(両方アクティブ)の状態となっても構わない。Source DUのRLCは、CUからtarget RLCへの送信完了の指示を受信後にリセットしてもよい。 Here, the RLC of the source DU and the RLC of the target DU may be in a state of duplication (both active) temporarily. The RLC of the source DU may be reset after receiving the transmission completion indication from the CU to the target RLC.
 また、CUは、Source DUからのDDDS(Downlink Data Delivery status)フィードバックによって、最大配信済みシーケンス番号/最大送信済みシーケンス番号(highest delivered/highest transmitted)を参照し、UEへの配信が成功していないPDUを決定してもよい。CUは、source DUによる配信が成功していないPDUをtarget DUに再送してもよい。HO完了後、SCGは、解放されてもよいし、deactivated状態にされてもよい。 In addition, the CU refers to the highest delivered sequence number/highest transmitted sequence number (highest delivered/highest transmitted) based on the DDDS (Downlink Data Delivery status) feedback from the Source DU, and the delivery to the UE is not successful. The PDU may be determined. The CU may retransmit PDUs that are not successfully delivered by the source DU to the target DU. After HO is completed, the SCG may be released or placed in a deactivated state.
 UEは、L1/L2 Mobility完了後に、candidate target cellのconfigurationをリセットせずに保持してもよいし、ソースセルのconfigurationをリセットせずに保持してもよい。これにより、ターゲットセルにハンドオーバーした直後に当該セルの品質が悪かった場合、即座にソースセルまたは他のcandidate target cellにハンドオーバーできるメリットがある。UEは、ネットワークからレイヤ1及び/またはレイヤ2のシグナリング、或いはRRCのメッセージによって、candidate target cellまたはソースセルのconfigurationを解放する指示を受信した後、当該configurationを解放してもよい。 After completing L1/L2 Mobility, the UE may retain the configuration of the candidate target cell without resetting it, or may retain the configuration of the source cell without resetting it. This has the advantage that if the quality of the target cell is poor immediately after handover to the target cell, it can be immediately handed over to the source cell or another candidate target cell. The UE may release the configuration of the candidate target cell or the source cell after receiving an instruction to release the configuration of the candidate target cell or the source cell through layer 1 and/or layer 2 signaling or an RRC message from the network.
 図7は、L1/L2 Mobility手順の実行時におけるセル及び無線リンク制御レイヤの構成例(デュアルコネクティビティ接続)を示す。図7に示すように、gNB100では、各セル用のRLCが設定され、そのうち、PCell用のRLCがアクティブとされてよい。UEは、PSCellまたはSCellへのHOを実行してよい。PCellとPSCell、PSCellとSCellとは、上述したように切り替えられてよい。 FIG. 7 shows an example of the configuration of the cell and radio link control layer (dual connectivity connection) when executing the L1/L2 Mobility procedure. As shown in FIG. 7, in the gNB 100, RLC for each cell is configured, and among them, RLC for PCell may be activated. The UE may perform HO to the PSCell or SCell. PCell and PSCell, and PSCell and SCell may be switched as described above.
 図8は、デュアルコネクティビティ時の無線リンク制御レイヤ及びパケット・データ・コンバージェンス・プロトコル・レイヤ(ユーザプレーン)の構成例を示す。図8に示すように、gNB100のPDCPは、ソースRLCを介して、UEから測定報告を受信してよい。当該PDCPは、ターゲットRLCを介して、未Ackのdataを再送してよい。 FIG. 8 shows an example of the configuration of the radio link control layer and packet data convergence protocol layer (user plane) during dual connectivity. As shown in FIG. 8, the PDCP of the gNB 100 may receive measurement reports from the UE via the source RLC. The PDCP may retransmit unacknowledged data via the target RLC.
 図9は、デュアルコネクティビティをベースとしたInter-DU L1/L2 Mobility手順のシーケンス例を示す。図9に示すように、CUは、UEからのMeasurement reportに応じて、Intra-CU DCを設立し、PSCellをdeactivated状態にする(S1)。 Figure 9 shows a sequence example of the Inter-DU L1/L2 Mobility procedure based on dual connectivity. As shown in FIG. 9, the CU establishes an Intra-CU DC in response to a measurement report from the UE, and puts the PSCell in a deactivated state (S1).
 UEは、L1 measurement reportを送信し、gNB100(CU及びDU)は、PSCellをPCellにスイッチし、PCellをPSCellにスイッチし、L1/L2 Mobilityを完了する(S2)。なお、PSCellをPCellにスイッチし、PCellをPSCellにスイッチする際、MAC entityは、一部リセット(partial reset)されてもよいし、MAC entityはリセットされなくてもよい。 The UE transmits the L1 measurement report, and the gNB100 (CU and DU) switches the PSCell to the PCell, switches the PCell to the PSCell, and completes L1/L2 Mobility (S2). Note that when switching a PSCell to a PCell and a PCell to a PSCell, the MAC entity may be partially reset, or the MAC entity may not be reset.
 図10は、キャリアアグリゲーションをベースとしたIntra-DU L1/L2 Mobility手順のシーケンス例を示す。図10に示すように、CA based Intra-DU L1/L2 Mobilityの場合、SCellをPCell(PSCell)にスイッチし、PCell(PSCell)をSCellにスイッチしてよい。なお、SCellをPCell(PSCell)にスイッチし、PCell(PSCell)をSCellにスイッチする際、MAC entityは、一部リセット(partial reset)されてもよいし、MAC entityはリセットされなくてもよい。 FIG. 10 shows a sequence example of the Intra-DU L1/L2 Mobility procedure based on carrier aggregation. As shown in FIG. 10, in the case of CA based Intra-DU L1/L2 Mobility, SCell may be switched to PCell (PSCell), and PCell (PSCell) may be switched to SCell. Note that when switching SCell to PCell (PSCell) and switching PCell (PSCell) to SCell, the MAC entity may be partially reset, or the MAC entity may not be reset.
 図11は、Inter-DU L1/L2 Mobility手順を実行した場合における下りリンク(DL)データ(パケット)の転送例を示す。図11の例では、「3」のパケット(PDUでもよい)がUEに配信されていない状態が示されている。gNB100(CU)のPDCPは、「3」のパケットをターゲットRLCに転送してよい。「3」のパケットは、ターゲットDUを介してUEに送信される。または、gNBのPDCPにおいてPDCP data recoveryを実行し、un-Ackedの「3」のパケットを回復させて、ターゲットRLCに転送してよい。 FIG. 11 shows an example of forwarding downlink (DL) data (packets) when the Inter-DU L1/L2 Mobility procedure is executed. The example in FIG. 11 shows a state in which "3" packets (which may also be PDUs) are not delivered to the UE. PDCP of the gNB 100 (CU) may forward packet “3” to the target RLC. Packet "3" is sent to the UE via the target DU. Alternatively, PDCP data recovery may be executed in the PDCP of the gNB to recover the un-Acked "3" packet and forward it to the target RLC.
 図12は、Inter-DU L1/L2 Mobility手順を実行した場合における上りリンク(UL)データ(パケット)の転送例を示す。図12の例では、図11と同様に、「3」のパケット(PDUでもよい)がgNB100に配信されていない状態が示されている。UE200のPDCPは、「3」のパケットをターゲットDU向けのRLCに転送してよい。「3」のパケットは、ターゲットDU向けのRLCを介してgNB100に送信される。または、UEのPDCPにおいてPDCP data recoveryを実行し、un-Ackedの「3」のパケットを回復させて、「3」のパケットをターゲットDU向けのRLCに転送してよい。 FIG. 12 shows an example of uplink (UL) data (packet) transfer when the Inter-DU L1/L2 Mobility procedure is executed. In the example of FIG. 12, similarly to FIG. 11, a state is shown in which "3" packets (which may be PDUs) are not delivered to the gNB 100. The PDCP of the UE 200 may forward packet "3" to the RLC for the target DU. Packet “3” is transmitted to gNB 100 via RLC for target DU. Alternatively, PDCP data recovery may be executed in the PDCP of the UE to recover the un-Acked "3" packet, and the "3" packet may be forwarded to the RLC for the target DU.
 図13は、デュアルコネクティビティをベースとしたInter-DU L1/L2 Mobility手順のシーケンス例(事前にDC接続せず、複数の候補セルをUEに設定する場合、その1)を示す。具体的には、図13に示すように、事前にDC接続せず、複数の候補セル(multiple candidate cells config)をUEに設定される。このような動作は、CHOと類似している部分があり、CHOと解釈されてもよい。 FIG. 13 shows a sequence example of the Inter-DU L1/L2 Mobility procedure based on dual connectivity (Part 1 when setting multiple candidate cells to the UE without DC connection in advance). Specifically, as shown in FIG. 13, multiple candidate cells (multiple candidate cells config) are configured in the UE without DC connection in advance. Such an operation has some similarities with CHO and may be interpreted as CHO.
 なお、L1/L2 Mobilityの完了を示すL1L2 mobility completedコマンドは、レイヤ1またはレイヤ2のメッセージとしてよい。例えば、PUCCHまたはMAC CE(Control Element)でもよい。或いは、HARQ(hybrid automatic repeat request)のAckが利用されてもよい。 Note that the L1L2 mobility completed command indicating completion of L1/L2 mobility may be a layer 1 or layer 2 message. For example, it may be PUCCH or MAC CE (Control Element). Alternatively, HARQ (hybrid automatic repeat request) Ack may be used.
 図14は、デュアルコネクティビティをベースとしたInter-DU L1/L2 Mobility手順のシーケンス例(事前にDC接続せず、複数の候補セルをUEに設定する場合、その2)を示す。図14に示すように、UEは、実行条件(event X)を監視し、当該条件を満足した場合、RACHを送信、つまり、RA手順を実行してもよい。この場合も、図13と同様に、L1L2 mobility completedコマンドは、PUCCHまたはMAC CEとしてよい。 FIG. 14 shows a sequence example of the Inter-DU L1/L2 Mobility procedure based on dual connectivity (case 2 when setting multiple candidate cells to the UE without DC connection in advance). As shown in FIG. 14, the UE may monitor the execution conditions (event In this case, as in FIG. 13, the L1L2 mobility completed command may be PUCCH or MAC CE.
 図15は、L1/L2 Mobility手順の実行時におけるセル及び無線リンク制御レイヤの構成例(複数の候補セルをUEに設定する場合)を示す。図15に示すように、gNB100では、ソースセル用及び複数の候補セル用のRLCが設定され、そのうち、ソースセル用のRLCがアクティブとされてよい。 FIG. 15 shows an example of the configuration of cells and radio link control layers (when multiple candidate cells are set in the UE) when executing the L1/L2 Mobility procedure. As shown in FIG. 15, in the gNB 100, RLCs for a source cell and a plurality of candidate cells are configured, and the RLC for the source cell may be activated.
 図16は、キャリアアグリゲーションをベースとしたIntra-DU L1/L2 Mobility手順のシーケンス例(事前にCA接続せず、複数の候補セルをUEに設定する場合、その1)を示す。図16に示すように、事前にDC接続せず、複数の候補セル(multiple candidate cells config)をUEに設定される。 FIG. 16 shows a sequence example of an intra-DU L1/L2 Mobility procedure based on carrier aggregation (part 1 when setting multiple candidate cells to the UE without CA connection in advance). As shown in FIG. 16, multiple candidate cells (multiple candidate cells config) are configured in the UE without DC connection in advance.
 なお、図13と同様に、L1/L2 Mobilityの完了を示すL1L2 mobility completedコマンドは、レイヤ1またはレイヤ2のメッセージとしてよい。例えば、PUCCHまたはMAC CE(Control Element)でもよい。或いは、HARQ(hybrid automatic repeat request)のAckが利用されてもよい。 Note that, similarly to FIG. 13, the L1L2 mobility completed command indicating completion of L1/L2 Mobility may be a layer 1 or layer 2 message. For example, it may be PUCCH or MAC CE (Control Element). Alternatively, HARQ (hybrid automatic repeat request) Ack may be used.
 図17は、キャリアアグリゲーションをベースとしたIntra-DU L1/L2 Mobility手順のシーケンス例(事前にCA接続せず、複数の候補セルをUEに設定する場合、その2)を示す。 FIG. 17 shows a sequence example of the Intra-DU L1/L2 Mobility procedure based on carrier aggregation (case 2 when multiple candidate cells are set in the UE without CA connection in advance).
 図17に示すように、UEは、実行条件(event X)を監視し、当該条件を満足した場合、RACHを送信、つまり、RA手順を実行してもよい。この場合も、図16と同様に、L1L2 mobility completedコマンドは、PUCCHまたはMAC CEとしてよい。 As shown in FIG. 17, the UE monitors the execution condition (event In this case, as in FIG. 16, the L1L2 mobility completed command may be PUCCH or MAC CE.
 以上説明した動作例1によれば、レイヤ1での測定、レイヤ1及び/またはレイヤ2でのメッセージを適用することによって、CU-DU構成を採用しつつ、レイヤ1及び/またはレイヤ2でのUEのモビリティ制御をより確実に実現できる。これにより、UEのモビリティ制御に関して、特に、Uプレーンにおいて、より低遅延、小さいオーバヘッド及び短い断時間を達成し得る。 According to operation example 1 explained above, by applying measurements at layer 1 and messages at layer 1 and/or layer 2, the CU-DU configuration is adopted and the measurement at layer 1 and/or layer 2 is performed. UE mobility control can be achieved more reliably. Thereby, lower delay, less overhead and shorter downtime may be achieved with respect to UE mobility control, especially in the U-plane.
 (3.2)動作例2
 動作例1では、主にUプレーン観点の動作について説明したが、以下では、主にCプレーン観点の動作について説明する。
(3.2) Operation example 2
In operation example 1, the operation was mainly explained from the U-plane perspective, but below, the operation from the C-plane perspective will be mainly explained.
 (3.2.1)課題
 L1/L2 MobilityのCプレーンに関しては、次のような課題について検討が必要と考えられる。
(3.2.1) Issues Regarding the C-plane of L1/L2 Mobility, the following issues need to be considered.
  ・L1 measurement対象の周波数の指定方法
  ・L1 measurement報告時における平均化の要否
  ・L1/L2 Mobilityをトリガするイベントの要否
  ・L1/L2 Mobilityを管理するタイマの設定
  ・障害時におけるRRCへの通知
  ・障害時における再接続の要否、或いはRRCでの障害認識の要否
  ・DC based L1/L2 Mobilityの障害時における再接続の要否
  ・RACH-less L1/L2 Mobility時におけるCU-DU間シグナリングの要否
・How to specify the frequency for L1 measurement ・Whether or not averaging is required when reporting L1 measurement ・Whether or not an event that triggers L1/L2 Mobility is necessary ・Timer settings to manage L1/L2 Mobility ・Requirements for RRC in the event of a failure Notification - Necessity of reconnection in the event of a failure or necessity of failure recognition in RRC - Necessity of reconnection in the event of a DC based L1/L2 Mobility failure - CU-DU connection during RACH-less L1/L2 Mobility Necessity of signaling?
 (3.2.2)解決策
 従来のL1 measurementでは、基本的にサービングセル(PCell, PSCell及びSCellを含んでよい)の測定しかサポートされていない。測定報告時のセル識別情報(Cell ID)は、RRCのパラメータであるservCellIndexによって指定される。
(3.2.2) Solution Conventional L1 measurement basically only supports measurement of serving cells (which may include PCell, PSCell, and SCell). Cell identification information (Cell ID) at the time of measurement reporting is specified by servCellIndex, which is an RRC parameter.
 L1/L2 Mobility、具体的には、L1L2 inter-cell mobilityをサポートするため、L1 measurementは、サービングセルだけでなく、近隣セル(neighbor cell)の測定ができるようにしてもよい。 In order to support L1/L2 mobility, specifically L1L2 inter-cell mobility, L1 measurement may be able to measure not only the serving cell but also neighboring cells.
 この場合、測定対象を指示するパラメータであるmeasObjectは、L1 measurementの周波数指定をしてもよい。或いはL1 measurementの周波数を指定する新規な情報要素(IE)が設定されてもよい。セル識別情報(Cell ID)は、測定報告時に、PCI(Physical Cell ID)によって指定されてよい。 In this case, measObject, which is a parameter indicating the measurement target, may specify the frequency of L1 measurement. Alternatively, a new information element (IE) that specifies the frequency of L1 measurement may be set. Cell identification information (Cell ID) may be specified by PCI (Physical Cell ID) at the time of measurement report.
 なお、周波数に代えて、リソースブロック、リソースブロックグループ、サブキャリア、BWP(Bandwidth part)、サブチャネルなどが指定されてもよい。 Note that instead of the frequency, a resource block, resource block group, subcarrier, BWP (Bandwidth part), subchannel, etc. may be specified.
 L1 RSRPの場合、値の変動が激しいため、ピンポン状態(HOの繰り返し)が発生する恐れがある。そこで、このような状態を防ぐため、UEは、測定したRSRPの値の平均化処理を施した後、L1 RSRPを報告してもよい。 In the case of L1 RSRP, the value fluctuates rapidly, so there is a risk of a ping-pong situation (repeated HO). Therefore, in order to prevent such a situation, the UE may report L1 RSRP after averaging the measured RSRP values.
 また、L1/L2 Mobility用として、例えば、次のような新たなイベントが規定されてもよい。MAC entityが当該eventを管理してもよい。 Additionally, for example, the following new events may be defined for L1/L2 Mobility. The MAC entity may manage the event.
  ・Event X: Neighbour becomes amount of offset better than Pcell/PScell(式による表記:Mn > Mp + Off)
 なお、event Xは、例えば、次の何れかでもよい。
・Event X: Neighbor becomes amount of offset better than Pcell/PScell (expressed by formula: Mn > Mp + Off)
Note that event X may be, for example, any of the following.
  ・ターゲットセルの品質がソースセルよりもオフセットの分良好である
  ・ターゲットセルの品質が所定閾値より良好である
  ・ソースセルの品質が所定閾値より悪く、ターゲットセルの品質が所定閾値より良好である
 なお、”Neighbour”は、target cellと呼ばれてもよいし、Candidate target cellと呼ばれてもよい。PCell/PSCellは、ソースセルと呼ばれてもよい。
- The quality of the target cell is better than the source cell by the offset - The quality of the target cell is better than a predetermined threshold - The quality of the source cell is worse than a predetermined threshold and the quality of the target cell is better than a predetermined threshold Note that "Neighbor" may be called a target cell or a Candidate target cell. PCell/PSCell may also be called a source cell.
 或いは、L1/L2 Mobility用として、新たなタイマが規定されてもよい。このようなタイマは、既存のタイヤT304と類似していてもよい。タイマT304は、reconfigurationWithSyncを含むRRCReconfigurationメッセージを受信したとき、または条件付き再設定の実行時、つまり、reconfigurationWithSyncを含む格納されたRRCReconfigurationメッセージを適用したときに開始され、対応するSpCellでランダムアクセスの正常な完了時に停止されてよい。 Alternatively, a new timer may be defined for L1/L2 Mobility. Such a timer may be similar to the existing tire T304. Timer T304 is started when an RRCReconfiguration message with reconfigurationWithSync is received, or when performing a conditional reconfiguration, i.e. when applying a stored RRCReconfiguration message with reconfigurationWithSync, and the successful completion of a random access on the corresponding SpCell. May be stopped upon completion.
 MAC entityが当該タイマを管理してもよい。CUは、L1L2 mobility commandをsource DUから受信したときに当該タイマを開始し、ターゲットDUとのランダムアクセス(RACH)が成功したときに停止してもよい。当該タイマが満了したとき、L1/L2 Mobilityが障害と判定されてよい。 The MAC entity may manage the timer. The CU may start the timer when receiving the L1L2 mobility command from the source DU and stop it when the random access (RACH) with the target DU is successful. When the timer expires, L1/L2 Mobility may be determined to be faulty.
 L1/L2 Mobilityの障害情報は、RRCに通知されてもよい。具体的には、PHY, MAC, RLCまたはPDCPの何れかは、当該障害情報をRRCに通知してもよい。当該障害情報には、ソースセル(ハンドオーバー元)の識別情報(ID)、ターゲットセル(ハンドオーバー先)の識別情報(ID)及び/または当該セルの品質(例えば、SIR)が含まれてよい。 L1/L2 Mobility failure information may be notified to RRC. Specifically, any of the PHY, MAC, RLC, or PDCP may notify the RRC of the failure information. The failure information may include the identification information (ID) of the source cell (handover source), the identification information (ID) of the target cell (handover destination), and/or the quality of the cell (for example, SIR). .
 また、L1/L2 Mobilityの障害が発生した場合、直接RRC reestablishment procedureがトリガされてもよい。具体的には、DC based L1/L2 Mobility障害時には、ソースセル(PCell)のPCIとC-RNTI(Cell Radio Network Temporary Identifier)とを用いて再接続が実行されてもよい。或いは、ターゲットセル(PSCell)のPCIとC-RNTIとを用いて再接続が実行されてもよい。 Additionally, when an L1/L2 Mobility failure occurs, the RRC reestablishment procedure may be triggered directly. Specifically, in the event of a DC based L1/L2 Mobility failure, reconnection may be performed using the PCI of the source cell (PCell) and C-RNTI (Cell Radio Network Temporary Identifier). Alternatively, reconnection may be performed using the PCI and C-RNTI of the target cell (PSCell).
 L1/L2 Mobilityの障害が発生した場合、UEがセル選択し、選択したセルのconfigurationをUEが有していれば、UEは、RRC reestablishment requestをネットワークに送信せず直接当該セルのconfigurationを適用してもよい。 When an L1/L2 Mobility failure occurs, the UE selects a cell, and if the UE has the configuration of the selected cell, the UE directly applies the configuration of the cell without sending an RRC reestablishment request to the network. You may.
 或いは、L1/L2 Mobilityの障害が発生した場合、従来のL3 Mobilityの手順にフォールバックしてもよい。 Alternatively, if an L1/L2 Mobility failure occurs, it may fall back to the conventional L3 Mobility procedure.
 また、DC based L1/L2 Mobilityにおいて、ターゲットセル(MCG)での障害が発生し、ソースセル(SCG)がdeactivated状態の場合、UEは、ソースセル(SCG)においてRACHを実行し、SCGをアクティブにしてもよい。これにより、RRC reestablishmentを回避できる。 In addition, in DC based L1/L2 Mobility, if a failure occurs in the target cell (MCG) and the source cell (SCG) is in the deactivated state, the UE performs RACH in the source cell (SCG) and activates the SCG. You may also do so. This allows you to avoid RRC reestablishment.
 或いは、CUは、ターゲットセルとソースセルとにおける送信タイミングの時間差(timing difference、及びターゲットセルのTA(Timing Advance)値をDUから取得し、UEとのRACHを実行せず(RACH-less)に、UEをターゲットセルに接続させてもよい。ターゲットセル及びソースセルのtiming difference及びTA値は、ターゲットDUからCUに送信されてよいが、可能ならば、ソースDUからCUに送信されてもよい。また、CUは、当該timing difference及びTA値をソースDUに送信してもよい。 Alternatively, the CU obtains the transmission timing difference between the target cell and the source cell and the TA (Timing Advance) value of the target cell from the DU, and performs RACH-less with the UE. , the UE may be connected to the target cell. The timing difference and TA values of the target cell and source cell may be sent from the target DU to the CU, and if possible, from the source DU to the CU. .The CU may also send the timing difference and TA value to the source DU.
 以上説明した動作例2によれば、CプレーンにおけるL1/L2 Mobilityに関する測定及び障害時の動作を明確にすることによって、CU-DU構成を採用しつつ、レイヤ1及び/またはレイヤ2でのUEのモビリティ制御をより確実に実現できる。これにより、UEのモビリティ制御に関して、より低遅延、小さいオーバヘッド及び短い断時間を達成し得る。 According to the operation example 2 explained above, by clarifying the measurement related to L1/L2 Mobility in the C plane and the operation in the event of a failure, the UE at layer 1 and/or layer 2 can be mobility control can be achieved more reliably. Thereby, lower delay, less overhead and shorter downtime can be achieved for UE mobility control.
 なお、上述した動作例では、L1/L2 Mobilityの名称が用いられていたが、L1/L2 Mobilityは、仮称でよく、類似した他の名称(例えば、下位レイヤモビリティ)で呼ばれてもよい。また、RLCのリセットとは、停止、再起動、初期化などと同義と解釈されてもよい。 Note that in the operation example described above, the name L1/L2 Mobility was used, but L1/L2 Mobility may be a provisional name or may be called by another similar name (for example, lower layer mobility). Furthermore, resetting the RLC may be interpreted as synonymous with stopping, restarting, initializing, and the like.
 (4)作用・効果
 上述した実施形態によれば、L1/L2 Mobilityを適用した場合におけるUプレーン及びCプレーンのUE及びネットワークの詳細動作が明確になり、L1/L2 Mobilityをより確実に実現し得る。
(4) Effects and Effects According to the embodiment described above, the detailed operations of the UE and network in the U-plane and C-plane when L1/L2 Mobility is applied are clarified, and L1/L2 Mobility can be realized more reliably. obtain.
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that the embodiments are not limited to the description of the embodiments, and that various modifications and improvements can be made.
 例えば、上述した記載において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 For example, in the above description, the words configure, activate, update, indicate, enable, specify, and select may be used interchangeably. good. Similarly, link, associate, correspond, and map may be used interchangeably; allocate, assign, and monitor. , map may also be read interchangeably.
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Further, the terms "specific", "dedicated", "UE specific", and "UE individual" may be interchanged. Similarly, common, shared, group-common, UE-common, and UE-shared may be interchanged.
 また、上述した実施形態の説明に用いたブロック構成図(図4,5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Furthermore, the block configuration diagrams (FIGS. 4 and 5) used to explain the embodiments described above show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図18は、当該装置のハードウェア構成の一例を示す図である。図18に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the gNB 100 and UE 200 (the devices) described above may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 18 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 18, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the device may include one or more of the devices shown in the figure, or may not include some of the devices.
 当該装置の各機能ブロック(図4,5参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIGS. 4 and 5) is realized by any hardware element of the computer device or a combination of hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the device is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations, controls communication by the communication device 1004, and controls the memory This is realized by controlling at least one of data reading and writing in the storage 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic device, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Further, the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be done. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store programs (program codes), software modules, etc. that can execute a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, such as an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. Storage 1003 may also be called auxiliary storage. The above-mentioned recording medium may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, network controller, network card, communication module, etc.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, information notification can be performed using physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination thereof. RRC signaling may also be referred to as RRC messages, such as RRC Connection Setup (RRC Connection Setup). ) message, RRC Connection Reconfiguration message, etc.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate systems and next-generation systems enhanced based on these. may be applied to. Furthermore, a combination of multiple systems (for example, a combination of at least one of LTE and LTE-A with 5G) may be applied.
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operations performed by the base station in this disclosure may be performed by its upper node. In a network consisting of one or more network nodes including a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this can be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of multiple other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information that is input and output may be overwritten, updated, or additionally written. The output information may be deleted. The input information may be sent to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of the foregoing. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms that have the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may also be called a carrier frequency, cell, frequency carrier, etc.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "base station (BS)", "wireless base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " The terms "carrier", "component carrier", etc. may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (Remote Radio Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the base station has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions that the mobile station has.
A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in an LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a unit of transmission time such as a channel-coded data packet (transport block), a code block, or a codeword, or may be a unit of processing such as scheduling or link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (e.g., normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1ms, and short TTI (e.g., shortened TTI, etc.) may be interpreted as TTI with a time length of less than the long TTI and 1ms. It may also be read as a TTI having a TTI length of the above length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the new merology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on newerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs are classified into physical resource blocks (Physical RBs: PRBs), sub-carrier groups (Sub-Carrier Groups: SCGs), resource element groups (Resource Element Groups: REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of contiguous common resource blocks for a certain numerology in a certain carrier. good. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be configured within one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, refer to any connection or coupling, direct or indirect, between two or more elements and to each other. It can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges, and the like.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (e.g., accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" refer to resolving, selecting, choosing, establishing, comparing, etc. as "judgment" and "decision". may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 図19は、車両2001の構成例を示す。図19に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。 FIG. 19 shows an example of the configuration of the vehicle 2001. As shown in FIG. 19, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, Equipped with various sensors 2021 to 2029, an information service section 2012, and a communication module 2013.
 駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。
操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。
The drive unit 2002 includes, for example, an engine, a motor, or a hybrid of an engine and a motor.
The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
The electronic control unit 2010 includes a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2027 provided in the vehicle are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 Signals from various sensors 2021 to 2028 include current signals from current sensor 2021 that senses motor current, front and rear wheel rotation speed signals obtained by rotation speed sensor 2022, and front wheel rotation speed signals obtained by air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal acquired by vehicle speed sensor 2024, acceleration signal acquired by acceleration sensor 2025, accelerator pedal depression amount signal acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The Information Services Department 2012 provides various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 1 using information acquired from an external device via the communication module 2013 and the like.
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能または自動運転機能を実現する。 The driving support system unit 2030 includes millimeter wave radar, LiDAR (Light Detection and Ranging), cameras, positioning locators (e.g. GNSS, etc.), map information (e.g. high definition (HD) maps, autonomous vehicle (AV) maps, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. It consists of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and the components of the vehicle 1 via the communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, which are included in the vehicle 2001, through the communication port 2033. Data is transmitted and received between the axle 2009, the microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and the sensors 2021 to 2028.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. Communication module 2013 may be located either inside or outside electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などについても無線通信を介して外部装置へ送信する。 The communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication. In addition, the communication module 2013 also receives the front wheel and rear wheel rotational speed signals acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor, which are input to the electronic control unit 2010. A vehicle speed signal obtained by the acceleration sensor 2024, an acceleration signal obtained by the acceleration sensor 2025, an accelerator pedal depression amount signal obtained by the accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by the brake pedal sensor 2026, and a shift lever. The shift lever operation signal acquired by the sensor 2027, the detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service section 2012 provided in the vehicle. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, and left and right rear wheels provided in the vehicle 2001. 2008, axle 2009, sensors 2021 to 2028, etc. may be controlled.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
 10無線通信システム
 20 NG-RAN
 40 OAM/RIC 
 100 gNB
 110 無線通信部
 120 ハンドオーバー処理部
 130 測定設定部
 140 制御部
 200 UE
 210 無線通信部
 220 測定報告部
 230 ハンドオーバー実行部
 240 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 2001 車両
 2002 駆動部
 2003 操舵部
 2004 アクセルペダル
 2005 ブレーキペダル
 2006 シフトレバー
 2007 左右の前輪
 2008 左右の後輪
 2009 車軸
 2010 電子制御部
 2012 情報サービス部
 2013 通信モジュール
 2021 電流センサ
 2022 回転数センサ
 2023 空気圧センサ
 2024 車速センサ
 2025 加速度センサ
 2026 ブレーキペダルセンサ
 2027 シフトレバーセンサ
 2028 物体検出センサ
 2029 アクセルペダルセンサ
 2030 運転支援システム部
 2031 マイクロプロセッサ
 2032 メモリ(ROM, RAM)
 2033 通信ポート
10 Wireless communication system 20 NG-RAN
40 OAM/RIC
100 gNB
110 Wireless communication section 120 Handover processing section 130 Measurement setting section 140 Control section 200 UE
210 Wireless communication section 220 Measurement report section 230 Handover execution section 240 Control section 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive section 2003 Steering section 2004 Accelerator pedal 2005 Brake pedal 2006 shift lever 2007 left and right front wheels 2008 left and right back and right rear wheels 2009 axle 2010 axle control department 2012 information service department 2012 communication modules 2021 Current sensor 2022 rotation sensor 2023 air pressure sensor 2024 vehicle speed sensor 2025 acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 object detection Sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 communication port

Claims (6)

  1.  同一の基地局装置に接続される無線通信装置を介して端末と通信を実行する通信部と、
     前記無線通信装置によって形成される第1セルから第2セルに前記端末が遷移する場合、レイヤ1の機能を用いて、前記第1セル及び前記第2セルの両方と前記端末を接続した状態を設立する制御部と
    を備える無線基地局。
    a communication unit that communicates with the terminal via a wireless communication device connected to the same base station device;
    When the terminal transitions from a first cell to a second cell formed by the wireless communication device, a state in which the terminal is connected to both the first cell and the second cell using layer 1 functions is established. A wireless base station comprising a control unit to be established.
  2.  前記制御部は、
     前記第1セル側の第1無線リンク制御レイヤにおける確認未了のデータを前記基地局装置側のパケット・データ・コンバージェンス・プロトコル・レイヤに送信させ、
     前記パケット・データ・コンバージェンス・プロトコル・レイヤは、前記第2セル側の第2無線リンク制御レイヤに前記データを送信させる請求項1に記載の無線基地局。
    The control unit includes:
    transmitting unconfirmed data in a first radio link control layer on the first cell side to a packet data convergence protocol layer on the base station device side;
    The radio base station according to claim 1, wherein the packet data convergence protocol layer causes a second radio link control layer on the second cell side to transmit the data.
  3.  前記第1無線リンク制御レイヤは、前記第1無線リンク制御レイヤをリセット後、前記第2無線リンク制御レイヤに前記データを再送する、または前記第1無線リンク制御レイヤをリセットせずに前記第2無線リンク制御レイヤに前記データを再送し、前記データを再送後、前記第1無線リンク制御レイヤをリセットする請求項2に記載の無線基地局。 The first radio link control layer is configured to retransmit the data to the second radio link control layer after resetting the first radio link control layer, or to transmit the data to the second radio link control layer without resetting the first radio link control layer. The radio base station according to claim 2, wherein the radio base station retransmits the data to a radio link control layer, and resets the first radio link control layer after retransmitting the data.
  4.  サービングセルを含むセルの測定を制御する制御部と、
     前記測定の報告を送信する送信部と
    を備え、
     前記制御部は、前記サービングセル及び近隣セルのレイヤ1における測定を制御する端末。
    a control unit that controls cell measurements including a serving cell;
    and a transmitter that transmits the measurement report,
    The control unit is a terminal that controls measurements in layer 1 of the serving cell and neighboring cells.
  5.  前記制御部は、前記レイヤ1における障害が発生した場合、前記障害の情報を無線リソース制御レイヤに通知する請求項4に記載の端末。 The terminal according to claim 4, wherein when a failure occurs in the layer 1, the control unit notifies the radio resource control layer of information about the failure.
  6.  端末と無線基地局とを含む無線通信システムであって、
     前記端末は、
     サービングセルの測定を実行する制御部と、
     前記測定の報告を送信する送信部と
    を備え、
     前記無線基地局は、前記報告を受信する受信部を備え、
     前記制御部は、前記サービングセル及び近隣セルのレイヤ1における測定を実行し、
     前記受信部は、前記サービングセル及び前記近隣セルの測定結果を含む前記報告を受信する無線通信システム。
    A wireless communication system including a terminal and a wireless base station,
    The terminal is
    a control unit that performs measurement of the serving cell;
    and a transmitter that transmits the measurement report,
    The wireless base station includes a receiving unit that receives the report,
    The control unit performs layer 1 measurements of the serving cell and neighboring cells,
    The receiving unit is a wireless communication system that receives the report including measurement results of the serving cell and the neighboring cells.
PCT/JP2022/027170 2022-07-08 2022-07-08 Wireless base station, terminal, and wireless communication system WO2024009521A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027170 WO2024009521A1 (en) 2022-07-08 2022-07-08 Wireless base station, terminal, and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027170 WO2024009521A1 (en) 2022-07-08 2022-07-08 Wireless base station, terminal, and wireless communication system

Publications (1)

Publication Number Publication Date
WO2024009521A1 true WO2024009521A1 (en) 2024-01-11

Family

ID=89453150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027170 WO2024009521A1 (en) 2022-07-08 2022-07-08 Wireless base station, terminal, and wireless communication system

Country Status (1)

Country Link
WO (1) WO2024009521A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159376A1 (en) * 2018-02-19 2019-08-22 株式会社Nttドコモ User terminal and wireless communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159376A1 (en) * 2018-02-19 2019-08-22 株式会社Nttドコモ User terminal and wireless communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Discussions on L1/L2-centric inter-cell mobility", 3GPP DRAFT; R3-212510, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. E-meeting; 20210517 - 20210527, 7 May 2021 (2021-05-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052002557 *
NOKIA, NOKIA SHANGHAI BELL: "Discussion about RAN1 LS on L1/L2 mobility", 3GPP DRAFT; R2-2103639, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20210412 - 20210420, 1 April 2021 (2021-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051992185 *
SAMSUNG (MODERATOR): "Summary of offline discussion on CB: # 3_L1-L2-Mobility", 3GPP DRAFT; R3-212601, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20210517 - 20210528, 4 June 2021 (2021-06-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052021412 *

Similar Documents

Publication Publication Date Title
WO2022044908A1 (en) Terminal and wireless communication system
WO2024009521A1 (en) Wireless base station, terminal, and wireless communication system
WO2022180778A1 (en) Terminal and wireless communication method
WO2024043188A1 (en) Terminal and wireless communication method
WO2024029091A1 (en) Terminal and wireless communication method
WO2024154206A1 (en) Terminal
WO2023195081A1 (en) Radio base station and radio communication method
WO2024171418A1 (en) Wireless base station and wireless communication method
WO2023067722A1 (en) Wireless base station, wireless communication system, and wireless communication method
WO2024171315A1 (en) Wireless base station and wireless communication method
WO2024034029A1 (en) Terminal and wireless communication method
WO2024171311A1 (en) Wireless base station and wireless communication method
WO2024024111A1 (en) Terminal and base station
WO2024024112A1 (en) Base station
WO2024080247A1 (en) Terminal and radio communication method
WO2024034031A1 (en) Terminal and wireless communication method
WO2024080250A1 (en) User equipment, wireless base station, and wireless communication method
WO2023062836A1 (en) Wireless base station, wireless communication system, and wireless communication method
WO2024057524A1 (en) Terminal, wireless communication method, and base station
WO2024043154A1 (en) Wireless base station
WO2024057522A1 (en) Terminal, wireless communication method, and base station
WO2024171419A1 (en) Wireless base station and wireless communication method
WO2024057523A1 (en) Terminal, wireless communication method, and base station
WO2024057525A1 (en) Terminal, wireless communication method, and base station
WO2023127150A1 (en) Terminal, base station, radio communication system, and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950314

Country of ref document: EP

Kind code of ref document: A1