WO2024057525A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2024057525A1
WO2024057525A1 PCT/JP2022/034740 JP2022034740W WO2024057525A1 WO 2024057525 A1 WO2024057525 A1 WO 2024057525A1 JP 2022034740 W JP2022034740 W JP 2022034740W WO 2024057525 A1 WO2024057525 A1 WO 2024057525A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
inter
candidate
mobility
mobility procedure
Prior art date
Application number
PCT/JP2022/034740
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
守 奥村
聡 永田
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/034740 priority Critical patent/WO2024057525A1/en
Publication of WO2024057525A1 publication Critical patent/WO2024057525A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • inter-cell mobility including non-serving cells, or multiple transmission/reception points (e.g. , it is assumed that communication is controlled based on inter-cell mobility using Multi-TRP (MTRP).
  • MTRP Multi-TRP
  • inter-cell mobility when inter-cell mobility is applied, the problem is how to control UL transmission (for example, timing advance control, cell switching, etc.). If inter-cell mobility cannot be performed appropriately, the quality of communication may deteriorate.
  • the present disclosure has been made in view of these points, and one of the objectives is to provide a terminal, a wireless communication method, and a base station that can appropriately control communication even when performing inter-cell mobility. Let's do one.
  • a terminal includes a receiving unit that receives at least one of first instruction information that instructs an L1/L2 inter-cell mobility procedure and second instruction information that instructs an L3 mobility procedure. , a control unit that controls the L1/L2 inter-cell mobility procedure based on the first instruction information and controls the L3 mobility procedure based on the second instruction information, the control unit , the L1/L2 inter-cell mobility procedure and the L3 mobility procedure are controlled not to be performed simultaneously.
  • communication can be appropriately controlled even when performing inter-cell mobility.
  • FIGS. 1A and 1B are diagrams illustrating an example of inter-cell mobility.
  • FIG. 2 is a diagram illustrating an example of switching between a serving cell and an additional cell using L1/L2 signaling.
  • FIG. 3 is a diagram illustrating an example of setting example 1-3 when candidate cells are supported.
  • FIGS. 4A to 4C are diagrams illustrating an example in which candidate cells/candidate cell groups are switched by L1/L2 signaling in setting example 1-3 in which candidate cells are supported.
  • FIG. 5 is a diagram illustrating an example of a timing advance group (TAG) to which cells included in a cell group belong.
  • FIG. 6 is a diagram illustrating an example of a MAC CE for timing advance commands.
  • FIGS. 1A and 1B are diagrams illustrating an example of inter-cell mobility.
  • FIG. 2 is a diagram illustrating an example of switching between a serving cell and an additional cell using L1/L2 signaling.
  • FIG. 3 is a diagram illustrating an example of setting example
  • FIG. 7A and 7B are diagrams illustrating an example of TAG IDs set in a serving cell and a candidate cell.
  • FIG. 8 is a diagram illustrating an example of a case where the L1/L2 inter-cell mobility according to the first embodiment is successful.
  • FIG. 9 is a diagram illustrating another example in which the L1/L2 inter-cell mobility according to the first embodiment is successful.
  • FIG. 10 is a diagram illustrating an example of a case where mobility between L1/L2 cells according to the first embodiment fails.
  • FIG. 11 is a diagram illustrating another example of a case in which the L1/L2 inter-cell mobility according to the first embodiment fails.
  • 12A and 12B are diagrams illustrating an example of application of L1/L2 inter-cell mobility and L3 mobility according to the second embodiment.
  • FIG. 13A and 13B are diagrams showing other examples of application of L1/L2 inter-cell mobility and L3 mobility according to the second embodiment.
  • FIG. 14 is a diagram illustrating an example of activation of TCI states for a serving cell and a candidate cell that are set to the same frequency.
  • FIG. 15 is a diagram illustrating an example of activation of TCI states of a serving cell and a candidate cell according to the third embodiment.
  • FIG. 16 is a diagram illustrating an example of cell switching between frequencies according to the third embodiment.
  • FIG. 17 is a diagram illustrating another example of activation of the TCI states of a serving cell and a candidate cell according to the third embodiment.
  • FIG. 14 is a diagram illustrating an example of activation of TCI states for a serving cell and a candidate cell that are set to the same frequency.
  • FIG. 15 is a diagram illustrating an example of activation of TCI states of a serving cell and a candidate cell according to the third embodiment.
  • FIG. 16 is a diagram illustrating
  • FIG. 18 is a diagram illustrating another example of activation of the TCI states of a serving cell and a candidate cell according to the third embodiment.
  • FIG. 19 is a diagram illustrating another example of activation of TCI states of a serving cell and a candidate cell according to the third embodiment.
  • FIG. 20 is a diagram for explaining setting example #1 according to the third embodiment.
  • FIG. 21 is a diagram for explaining setting example #2 according to the third embodiment.
  • FIG. 22 is a diagram illustrating an example of intra-cell multi-TRP settings and inter-cell multi-TRP settings for serving cells/candidate cells according to the fourth embodiment.
  • FIG. 23 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 24 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 25 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 26 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 27 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the UE performs reception processing (e.g., reception, demapping, demodulation, Controlling at least one of decoding), transmission processing (eg, at least one of transmission, mapping, precoding, modulation, and encoding) is being considered.
  • reception processing e.g., reception, demapping, demodulation, Controlling at least one of decoding
  • transmission processing e.g, at least one of transmission, mapping, precoding, modulation, and encoding
  • the TCI states may represent those that apply to downlink signals/channels. What corresponds to the TCI state applied to uplink signals/channels may be expressed as a spatial relation.
  • the TCI state is information regarding quasi-co-location (QCL) of signals/channels, and may also be called spatial reception parameters, spatial relation information, etc.
  • the TCI state may be set in the UE on a per-channel or per-signal basis.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, the Doppler shift, Doppler spread, and average delay are calculated between these different signals/channels. ), delay spread, and spatial parameters (e.g., spatial Rx parameters) can be assumed to be the same (QCL with respect to at least one of these). You may.
  • the spatial reception parameters may correspond to the UE's reception beam (eg, reception analog beam), and the beam may be identified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be defined for QCL.
  • QCL types A-D may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be referred to as QCL parameters) are shown below: ⁇ QCL type A (QCL-A): Doppler shift, Doppler spread, average delay and delay spread, ⁇ QCL type B (QCL-B): Doppler shift and Doppler spread, ⁇ QCL type C (QCL-C): Doppler shift and average delay, - QCL type D (QCL-D): Spatial reception parameters.
  • Control Resource Set CORESET
  • channel or reference signal is in a particular QCL (e.g. QCL type D) relationship with another CORESET, channel or reference signal, It may also be called a QCL assumption.
  • QCL Control Resource Set
  • the UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for the signal/channel based on the TCI state or QCL assumption of the signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information regarding the QCL between a target channel (in other words, a reference signal (RS) for the channel) and another signal (for example, another RS). .
  • the TCI state may be set (indicated) by upper layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • target channel/RS target channel/reference signal
  • reference RS reference reference signal
  • source RS source RS
  • Channels for which TCI states or spatial relationships are set are, for example, the Physical Downlink Shared Channel (PDSCH), the Physical Downlink Control Channel (PDCCH), and the Uplink Shared Channel (PDSCH).
  • the channel may be at least one of a Physical Uplink Shared Channel (PUSCH) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the RS that has a QCL relationship with the channel is, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding Reference Signal (SRS)), tracking CSI-RS (also called Tracking Reference Signal (TRS)), QCL detection reference signal (also called QRS), demodulation reference signal (DeModulation Reference Signal (DMRS)), etc. It may be one.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • SRS Sounding Reference Signal
  • TRS Tracking Reference Signal
  • QRS QCL detection reference signal
  • DMRS Demodulation reference signal
  • the SSB is a signal block that includes at least one of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • An RS of QCL type X in a TCI state may mean an RS that has a QCL type You can.
  • TRPs transmission/reception points
  • MTRPs Multi-TRPs
  • the UE receives channels/signals from multiple cells/TRPs in inter-cell mobility (eg, L1/L2 inter-cell mobility) (see FIGS. 1A, B).
  • inter-cell mobility eg, L1/L2 inter-cell mobility
  • FIG. 1A shows an example of inter-cell mobility (for example, Single-TRP inter-cell mobility) including non-serving cells.
  • the UE may be configured with one TRP (or single TRP) in each cell.
  • the UE receives channels/signals from the base station/TRP of cell #1, which is the serving cell, and the base station/TRP of cell #3, which is not the serving cell (non-serving cell). It shows. For example, this corresponds to the case where the UE switches/switches from cell #1 to cell #3 (for example, fast cell switch).
  • port (for example, antenna port)/TRP selection may be performed dynamically. This may be done based on port (eg, antenna port)/TRP selection or TCI status indicated or updated by the DCI/MAC CE.
  • port for example, antenna port
  • TCI status indicated or updated by the DCI/MAC CE.
  • different physical cell ID for example, PCI
  • FIG. 1B shows an example of a multi-TRP scenario (for example, multi-TRP inter-cell mobility when using multi-TRP).
  • the UE may be configured with multiple (eg, two) TRPs (or different CORESET pool indices) in each cell.
  • TRP #1 corresponds to physical cell ID (PCI) #1
  • TRP #2 corresponds to PCI #2.
  • PCI physical cell ID
  • the multi-TRPs may be connected by an ideal/non-ideal backhaul, and information, data, etc. may be exchanged.
  • the same or different code words (CWs) and the same or different layers may be transmitted from each TRP of the multi-TRP.
  • CWs code words
  • CWs code words
  • NCJT non-coherent joint transmission
  • FIG. 1B a case is shown in which NCJT is performed between TPRs corresponding to different PCIs. Note that the same serving cell configuration may be applied/configured for TRP #1 and TRP #2.
  • the multiple PDSCHs (multi-PDSCHs) that are NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from TRP#1 and the second PDSCH from TRP#2 may overlap in at least one of the time and frequency resources. The first PDSCH and the second PDSCH may be used to transmit the same TB or different TBs.
  • first PDSCH and second PDSCH may be assumed not to be in a quasi-co-location (QCL) relationship.
  • Reception of multiple PDSCHs may also be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (for example, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI (S-DCI), single PDCCH) (single master mode).
  • DCI single DCI
  • S-DCI single DCI
  • PDCCH single PDCCH
  • One DCI may be transmitted from one TRP of multiple TRPs.
  • a configuration that uses one DCI in multi-TRP may be called single DCI-based multi-TRP (mTRP/MTRP).
  • Multiple PDSCHs from multiple TRPs may be scheduled using multiple DCIs (multiple DCI (M-DCI), multiple PDCCH (multiple PDCCH)) (multimaster mode).
  • M-DCI multiple DCI
  • PDCCH multiple PDCCH
  • a plurality of DCIs may be transmitted from multiple TRPs.
  • a configuration that uses multiple DCIs in multi-TRP may be referred to as multi-DCI-based multi-TRP (mTRP/MTRP).
  • CSI feedback may be called separate feedback, separate CSI feedback, or the like.
  • "separate” may be mutually read as “independent.”
  • serving cell switching e.g., instruction to change the serving cell to a cell with a different PCI
  • L1/L2 signaling e.g., DCI/MAC CE
  • FIG. 2 shows a case in which a UE switches cells from a serving cell to an additional cell (also referred to as a candidate cell or target cell) based on a cell switching instruction from a base station.
  • candidate cell In inter-cell mobility, it is also assumed that one or more candidate cells are configured/managed for each serving cell.
  • one or more candidate cells with limited information may be configured in a predetermined upper layer parameter (for example, ServingCellConfig) (Alt. 1). It may be set similarly to inter-cell beam management (inter-cell BM) of existing systems (for example, Rel. 17).
  • a predetermined upper layer parameter for example, ServingCellConfig
  • Inter-cell BM inter-cell beam management
  • a complete configuration (eg, ServingCellConfig) of one or more candidate cells may be configured, and the candidate cell may be associated with each serving cell (Alt. 2).
  • a carrier aggregation configuration framework eg, CA configuration framework
  • CHO Conditional Handover
  • CPC Conditional PSCell Change
  • activation/deactivation of candidate cells may be controlled by MAC CE/DCI.
  • At least one of the following Setting Examples 1 to 3 may be applied (see FIG. 3).
  • SpCell #0, SCell #1, and SCell #2 are configured as serving cells, and an example of configuration/association of candidate cells (or additional cells) with respect to the serving cell/cell group is shown.
  • Setting examples 1 to 3 below are just examples, and the number of cells, association of each cell, etc. are not limited to these and may be changed as appropriate.
  • other setting examples may be supported/applied in addition to/in place of setting examples 1 to 3.
  • Configuration example 1 shows a case where one or more candidate cells are associated/configured with each serving cell (see FIG. 3). Specifically, candidate cells #0-1, #0-2, #0-3 are associated with SpCell #0, candidate cells #1-1 are associated with SCell #1, and candidate cells #1-1 are associated with SCell #2. A case is shown in which candidate cells #2-1 and #2-2 are associated with. Information regarding the association may be set/instructed from the base station to the UE by RRC/MAC CE/DCI.
  • Configuration example 2 shows a case where a candidate cell is associated/configured with a MAC entity/MCG/SCG (see FIG. 3). Specifically, a case is shown in which candidate cells #3 to #8 are associated with a MAC entity/MCG/SCG. In this case, candidate cells are configured for MAC entities or cell groups (eg, MCG/SCG) rather than being associated with each serving cell. Information regarding candidate cells configured in each cell may be configured/instructed from the base station to the UE by RRC/MAC CE/DCI.
  • one or more candidate cell groups may be set (see FIG. 3). Specifically, candidate cell group #1 having candidate cells #0 to #2, candidate cell group #2 having candidate cells #0 and #1, and candidate cell group #3 having candidate cell #0 are set. It shows the case.
  • a candidate cell group has one or more candidate cells.
  • Candidate cells included in the candidate cell group may be associated with at least one serving cell. Information regarding candidate cells may be set/instructed from the base station to the UE using RRC/MAC CE/DCI.
  • L1 beam indication eg, indication by the TCI status field of the DCI
  • TCI status associated with the additional PCI (or additional cell).
  • new L1/L2 signals eg, DCI/MAC CE
  • serving cell switching eg, serving cell switch
  • the implicit indication may, for example, mean that a certain CORESET is updated to the TCI state associated with additional PCIs by the MAC CE.
  • An explicit instruction may mean that cell switching is directly instructed by the DCI/MAC CE.
  • a predetermined candidate cell may be designated as the serving cell (or switching with the serving cell may be instructed) via L1/L2 signaling.
  • FIG. 4A shows a case where candidate cell #0-2 becomes SpCell of MCG/SCG (SpCell #0 and candidate cell #0-2 are switched) by L1/L2 signaling. Furthermore, a case is shown in which candidate cell #2-1 becomes an MCG/SCG SCell (SCell #2 and candidate cell #2-1 are switched) by L1/L2 signaling.
  • a predetermined candidate cell may be designated as the serving cell (or switching with the serving cell may be instructed) via L1/L2 signaling.
  • FIG. 4B shows a case where candidate cell #4 becomes SpCell of MCG/SCG (SpCell #0 and candidate cell #4 are switched) by L1/L2 signaling.
  • a predetermined candidate cell group (or one or more candidate cells included in the predetermined candidate cell group) is changed/updated to a serving cell group via L1/L2 signaling.
  • candidate cell group #1 (or candidate cells #0 to #2 included in candidate cell group #1) becomes the serving cell group due to L1/L2 signaling (the serving cell group and candidate cell group #1 are switched Indicates the case where the
  • TRPs Transmission Advance Group
  • the distances between the UE and each TRP may be different.
  • Multiple TRPs may be included in the same cell (eg, serving cell).
  • a certain TRP may correspond to a serving cell, and other TRPs may correspond to non-serving cells. In this case, it is also assumed that the distances between each TRP and the UE are different.
  • the transmission timing of an UL (Uplink) channel and/or a UL signal (UL channel/signal) is adjusted by a timing advance (TA).
  • TA timing advance
  • the reception timing of UL channels/signals from different user terminals (UE) is adjusted on the radio base station (TRP: Transmission and Reception Point, gNB: gNodeB, etc.) side.
  • the UE may control the timing of UL transmission by applying timing advances (multiple timing advances) to each timing advance group (TAG) set in advance.
  • TAG timing advance group
  • TAGs support timing advance groups classified by transmission timing.
  • the UE may control the UL transmission timing in each TAG assuming that the same TA offset (or TA value) is applied for each TAG. That is, the TA offset may be set independently for each TAG.
  • the UE When multiple timing advance is applied, the UE independently adjusts the transmission timing of cells belonging to each TAG, so that even when multiple cells are used, the radio base station receives uplink signal reception timing from the UE. can be matched.
  • the TAG (for example, serving cells belonging to the same TAG) may be configured by upper layer parameters.
  • the same timing advance value may be applied to serving cells belonging to the same TAG (for example, serving cells to which UL is configured).
  • a timing advance group including the MAC entity SpCell may be referred to as a primary timing advance group (PTAG), and other TAGs may be referred to as a secondary timing advance group (STAG).
  • FIG. 5 shows a case where three TAGs are set for a cell group including SpCell and SCells #1 to #4.
  • SpCell and SCell #1 belong to the first TAG (PTAG or TAG #0)
  • SCell #2 and SCell #3 belong to the second TAG (TAG #1)
  • SCell #4 belongs to the third TAG. This shows the case where it belongs to TAG (TAG #2).
  • a timing advance command may be notified to the UE using a MAC control element (for example, MAC CE).
  • the TA command is a command indicating an uplink channel transmission timing value, and is included in the MAC control element.
  • the TA command is signaled from the radio base station to the UE at the MAC layer.
  • the UE controls a predetermined timer (eg, TA timer) based on reception of the TA command.
  • the MAC CE for timing advance commands may include a field for timing advance group index (eg, TAG ID) and a field for timing advance commands (see FIG. 6).
  • TAG ID field is used to indicate the TAG ID of the addressed TAG.
  • the field of the timing advance command may indicate an index value T A (0, 1, 2...63) that is utilized to control the amount of timing adjustment that the MAC entity must apply.
  • the parameters corresponding to each TAG ID may be set by upper layer parameters.
  • parameters such as a time alignment timer (for example, timeAlignmentTimer) that corresponds to each TAG ID may be set.
  • the TAG ID may be set for each serving cell by an upper layer parameter (for example, tag-ID included in ServingCellConfig). Note that the TAG ID/parameter may be updated by the MAC CE after being set using the upper layer parameters.
  • a time alignment timer may be maintained for UL time alignment. Rel. At 17, a time alignment timer may be set/associated for each TAG.
  • a timing advance command e.g., TAC MAC CE
  • the UE starts or restarts the time alignment timer respectively associated with the indicated timing advance group (e.g., TAG).
  • the MAC entity If the MAC entity receives the TAC MAC CE and maintains a predetermined value (N TA ) with the indicated TAG, the MAC entity applies a timing advance command for the indicated TAG, or Start or restart the time alignment timer associated with the TAG.
  • the predetermined value (N TA ) may be a timing advance between DL and UL.
  • TAG timing advance group
  • PTAG primary timing advance group
  • STAG secondary timing advance group
  • the following operations eg, predetermined PTAG operation/predetermined STAG operation
  • predetermined PTAG operation/predetermined STAG operation may be performed.
  • Predetermined PTAG operation If the time alignment timer is associated with PTAG, - Flush all HARQ buffers of all serving cells. - If configured, notify RRC to release PUCCH for all serving cells. - If set, notify RRC to release SRS. - Clear all set DL assignments and set UL assignments. - Clear the PUSCH resource for semi-persistent CSI reporting. ⁇ Let all time alignment timers expire while running. - Maintain NTA for all TAGs.
  • Predetermined STAG operation When a time alignment timer is associated with a STAG, for all serving cells belonging to the TAG, - Flush all HARQ buffers. - If set, notify RRC to release PUCCH. - If set, notify RRC to release SRS. - Clear all set DL assignments and UL assignments. - Clear the PUSCH resource for semi-persistent CSI reporting. - Maintain the NTA of the TAG.
  • FIGS. 7A and 7B show an example of TAG (or TAG ID setting) for each cell group in an existing system (for example, before Rel. 17), and FIG. 7B shows an example of TAG ID setting for each candidate cell. There is.
  • RACH Random access procedure
  • inter-cell mobility e.g. switching/switching from the serving cell to the candidate cell (or additional cell/target cell)
  • inter-cell mobility e.g. switching/switching from the serving cell to the candidate cell (or additional cell/target cell)
  • how to control such cases has not been sufficiently studied. If switching between a serving cell and a candidate cell (for example, inter-cell mobility) is not performed appropriately, communication quality may deteriorate.
  • the present inventors focused on inter-cell mobility (e.g. cell switching) when a candidate cell (or additional cell, target cell) is configured/supported, and studied an appropriate control method for the inter-cell mobility. and came up with the idea of this embodiment.
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages RRC messages
  • upper layer parameters information elements (IEs), settings, etc.
  • IEs information elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described.
  • SRS resource indicator SRI
  • control resource set CONtrol REsource SET (CORESET)
  • Physical Downlink Shared Channel PDSCH
  • codeword CW
  • Transport Block Transport Block
  • TB transport Block
  • RS reference signal
  • antenna port e.g. demodulation reference signal (DMRS) port
  • antenna port group e.g.
  • DMRS port group groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
  • groups e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups
  • resources e.g., reference signal resources, SRS resource
  • resource set for example, reference signal resource set
  • CORESET pool downlink Transmission Configuration Indication state (TCI state) (DL TCI state), up
  • spatial relationship information identifier (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably.
  • “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
  • “plurality” and “two” may be read interchangeably.
  • “TAG” and “TAG ID” may be read interchangeably.
  • “cell”, “CC”, and “carrier” may be read interchangeably.
  • L1/L2 inter-cell mobility may be applied to communication control other than inter-cell mobility.
  • L1/L2 inter-cell mobility may be read as at least one of cell switching, cell switching, and cell changing.
  • the base station may set information regarding the configuration of multiple candidate cells to the UE through upper layer signaling.
  • the upper layer signaling may be RRC reconfiguration signaling, a cell-related upper layer parameter, or another upper layer parameter.
  • the base station may use the MAC CE/DCI to instruct the UE to change or switch the serving cell.
  • the UE performs a cell switching procedure/switching operation based on a cell switching instruction instructed by the MAC CE/DCI.
  • the cell switching indication may be referred to as cell switching indication signaling or L1/L2 intercell mobility indication.
  • the MAC CE/DCI includes at least one of information regarding the candidate cell to be the switching destination (for example, candidate cell index or physical cell ID (PCI)), information regarding the serving cell to be the switching source, and information regarding other candidate cells. You may be
  • serving cell change may be read as serving cell switching, serving cell switching, or L1/L2 cell switch (for example, L1/L2 cell switch).
  • instructing a serving cell change may be read as activating/validating a serving cell change.
  • the UE may assume that L1/L2 intercell mobility is enabled when a serving cell change is instructed.
  • the UE When the UE receives information instructing to change the serving cell (or change to a candidate cell), the UE changes the serving cell configuration to the target cell (or candidate cell) based on the cell configuration preset by upper layer parameters. May be changed.
  • the UE may receive DL transmissions from the target cell assuming new beam/TCI states/spatial relationships. Information regarding the new beam/TCI state/spatial relationship may be configured/instructed from the base station to the UE in advance using higher layer parameters (eg, higher layer parameters related to candidate cells).
  • the UE may assume a predetermined beam/TCI state/spatial relationship.
  • the predetermined beam/TCI state/spatial relationship may be determined based on the target cell's (or candidate cell's) PRACH transmission. For example, the UE may determine/assume a certain beam/TCI state/spatial relationship based on the latest PRACH transmission associated with the target cell's SSB.
  • the UE when the UE detects a MAC CE/DCI that instructs a change in the serving cell (or a change to a candidate cell), the UE updates the RRC settings of the cell to be updated (for example, the RRC settings of the candidate cell) after a predetermined period. You may change to the configured serving cell.
  • the predetermined period may be read as a predetermined offset.
  • the predetermined period may be Xms or X symbols after the detected MAC CE/DCI.
  • the predetermined period may be Yms/Y symbols after the HARQ-ACK feedback for the detected MAC CE/DCI.
  • X and Y may be determined based on the UE capability/UE type, may be defined in specifications, or may be set from the base station to the UE.
  • Option 1A-1 through Option 1A-3 represent examples of successful cell switching (e.g., L1/L2 intercell mobility), and Option 1B-1 through Option 1B-2 represent examples of successful cell switching (e.g., L1/L2 intercell mobility).
  • An example of a failure of L2 intercell mobility is shown.
  • HARQ-ACK When the UE transmits HARQ-ACK in response to the serving cell switching instruction, it means that the cell switching is successful, and the UE operation/base station operation may be controlled.
  • HARQ-ACK may mean ACK (ACKnowledgement) (see FIG. 8) or ACK/NACK.
  • FIG. 8 shows that cell switching is successful when a serving cell switching instruction (for example, L1/L2 cell switch indication signaling) is transmitted from the base station to the UE, and the UE transmits an ACK in response to the switching instruction.
  • a serving cell switching instruction for example, L1/L2 cell switch indication signaling
  • the UE transmits an ACK in response to the switching instruction.
  • a serving cell switching instruction for example, L1/L2 cell switch indication signaling
  • HARQ-ACK means ACK, even if the UE sends a NACK (before sending the ACK), it does not need to mean that the cell switching was successful. That is, there may be NACK feedback or retransmission of L1/L2 signaling before ACK transmission.
  • the serving cell switching may be defined as successful if the HARQ-ACK feedback for the PDSCH transmitting the MAC CE is ACK.
  • the definition of ACK may differ depending on whether the DCI includes DL assignment/UL assignment (for example, DL assignment/UL assignment).
  • serving cell switching is defined as successful if the HARQ-ACK feedback for the PDSCH scheduled by the DCI is ACK. You can.
  • HARQ-ACK feedback for the DCI is not an ACK. It may be defined that the serving cell switching is successful in a certain case.
  • the CRC added to the DCI may be scrambled with a predetermined RNTI (eg, RNTI other than C-RNTI).
  • the PUSCH scheduled by the DCI may be considered as HARQ-ACK feedback with ACK.
  • the serving cell switching may be defined as successful if the base station reschedules the PUSCH with the same HPN (the same HPN with NDI toggled).
  • the cell switching is successful if the UE receives a DL from the new target cell (or candidate cell to be changed to) within a certain window/timer (e.g. certain window/timer).
  • UE operation/base station operation may be controlled (see FIG. 9).
  • DL received by the UE may be read as at least one of DL transmission, DL signal, and DL channel.
  • a specific window/timer may be started, for example, after the transmission of a HARQ-ACK (eg, ACK) in response to a serving cell switching instruction, or after a predetermined period (eg, Y) has elapsed after the transmission of the HARQ-ACK.
  • a HARQ-ACK eg, ACK
  • a predetermined period eg, Y
  • the specific window/timer start time is not limited to this.
  • a specific window/timer e.g., disclosure time (start slot, start symbol, etc.) and/or length) may be defined in the specification and may be determined by the base station using RRC parameters/MAC CE/DCI.
  • the setting/instruction may be made to the UE from the UE.
  • the DL received by the UE may be at least one of the following options 1A-2-1 to 1A-2-3.
  • the DL received by the UE may be a DL reference signal (eg, DL-RS).
  • DL-RS DL reference signal
  • the DL reference signal may be at least one of an SSB, a CSI-RS, and a source RS in an indicated TCI state transmitted from a new target cell.
  • the DL received by the UE may be a DL channel (eg, PDCCH/PDSCH) or downlink control information (eg, DCI).
  • a DL channel eg, PDCCH/PDSCH
  • DCI downlink control information
  • the DL channel eg, PDCCH/PDSCH
  • DCI may be a PDCCH/PDSCH corresponding to a predetermined format/type.
  • the UE may mean that the serving cell switching has been successful.
  • the common search space for example, CSS
  • the serving cell switch was successful if the UE received a PDCCH/PDSCH with the same HARQ process ID as the previous L1/L2 cell switch signaling (e.g., previous L1/L2 cell switch signaling). good. Previous L1/L2 cell switch signaling may have NDI toggled (assuming no MAC reset).
  • the DL received by the UE may be an explicit instruction to confirm (or activate, enable) serving cell switching.
  • the explicit instruction may be, for example, RRC parameters/MAC CE/DCI corresponding to the explicit instruction.
  • RACH transmission (or RACH procedure) to the new target cell is completed before cell switching, and transmission to the new target cell is completed before cell switching.
  • TA may have been acquired.
  • UE operation/base station operation may be controlled.
  • RACH transmission (or RACH procedure) to the new target cell may not be performed or TA may not be obtained before cell switching.
  • the UE may perform the RACH procedure after switching to the new serving cell.
  • Option 1B-1 (after the UE sends a HARQ-ACK (e.g. ACK) for a serving cell switching indication or after the UE applies switching to a new target cell), before the end/expiration of a specific window/timer. If a predetermined DL cannot be received (or within a certain window/timer), it may mean that cell switching has failed (see FIGS. 10 and 11).
  • the specific window/timer and predetermined DL may be the window/timer and DL shown in option 1A-2.
  • FIG. 10 shows that after the UE transmits a HARQ-ACK (e.g., ACK) in response to a serving cell switching instruction, a predetermined This shows a case where DL could not be received.
  • Figure 11 illustrates the case where the UE fails to receive a given DL before the end/expiration of a particular window/timer (or within a particular window/timer) after applying a switch to a new target cell. It shows.
  • a HARQ-ACK e.g., ACK
  • the UE declares/notifies/reports that cell switching (e.g. L1/L2 intercell mobility) has failed or that a cell switching (e.g. L1/L2 intercell mobility) failure has occurred. You may.
  • cell switching e.g. L1/L2 intercell mobility
  • a cell switching e.g. L1/L2 intercell mobility
  • the specific window/timer period (e.g. start time/length, etc.) may be set from the base station to the UE via RRC parameters, or may be set by the base station in the MAC CE/DCI that instructs cell switching. It may be instructed to the UE.
  • the opening time may be a starting slot or a starting symbol.
  • the UE fails to complete the random access procedure (or RACH procedure) to the new target cell before the end/expiry of the specific window/timer (or within the specific window/timer), the UE It may also mean that the switch has failed. In this case, the UE declares/notifies/reports that cell switching (e.g. L1/L2 intercell mobility) has failed or that a cell switching (e.g. L1/L2 intercell mobility) failure has occurred. You may.
  • cell switching e.g. L1/L2 intercell mobility
  • the UE may apply the UE behavior shown in at least one of Option 1-1 to Option 1-3 below.
  • the UE may return to the original serving cell (eg, the serving cell from which it switched) and monitor DL transmissions (eg, PDCCH) applying the last TCI state in that cell.
  • the original serving cell eg, the serving cell from which it switched
  • monitor DL transmissions eg, PDCCH
  • the UE After the UE sends the HARQ-ACK (e.g. ACK) for the serving cell switching indication, the DL cannot be received within a certain window/timer (Option 1B-1) or the RACH procedure is not completed (Option 1B-2) In this case, at least the ACK transmission was successful. In this case, the channel quality of the original serving cell is good, and there is a possibility that communication (for example, DL reception) can be performed appropriately.
  • the HARQ-ACK e.g. ACK
  • the UE may perform RACH transmission (or random access procedure) to a specific cell (eg, certain cell).
  • the specific cell may be at least one of an original serving cell (eg, a serving cell from which to switch) and a new target cell. For example, random access procedures during radio link failure (RLF) may be reused.
  • RLF radio link failure
  • the UE may perform RACH transmission (or random access procedure) to any cell (eg, ayn cell).
  • a random access procedure performed by a UE in an idle state may be reused.
  • UE capabilities may be introduced for different UE behavior after cell switching (e.g. L1/L2 inter-cell mobility) failure.
  • cell switching e.g. L1/L2 inter-cell mobility
  • the second embodiment describes an example of UE operation/base station operation when different mobility procedures (or cell change procedures) are supported.
  • L1/L2 intercell mobility for example, R18 L1/L2 intercell mobility
  • L3 mobility for example, legacy L3 mobility
  • L3 mobility may be, for example, handover, CHO (for example, Conditional Handover), or CPC (Conditional PSCell Change).
  • handover for example, handover
  • CHO for example, Conditional Handover
  • CPC Conditional PSCell Change
  • the mobility procedure may be read as a cell change procedure, cell switching procedure, cell switching procedure, or cell update procedure.
  • first mobility for example, L1/L2 inter-cell mobility
  • second mobility for example, L3 mobility
  • the L3 mobility procedure may reuse a procedure (eg, handover procedure) of an existing system (eg, Rel. 17 or earlier).
  • a first mobility procedure eg, a cell switching procedure between L1/L2 cells
  • the cell switching procedure between L1/L2 cells may be ongoing when, for example, the UE has received signaling for an L1/L2 cell switching instruction (and before the cell switching is completed).
  • the UE may not expect to receive the second mobility indication/perform the second mobility procedure before the L1/L2 cell switching procedure is completed (or successful) (see Figure 12A).
  • the L1/L2 cell switching procedure is completed (or successful) may mean before the cell switching succeeds or fails as described in the first embodiment.
  • a second mobility procedure (eg, L3 mobility procedure) is in progress.
  • the UE may assume that it does not receive the first mobility indication (e.g. L1/L2 cell switching indication signaling) before the L3 mobility procedure (e.g. handover/CHO/CPC) is completed. (See Figure 12B).
  • the first mobility indication e.g. L1/L2 cell switching indication signaling
  • the L3 mobility procedure e.g. handover/CHO/CPC
  • a first mobility procedure e.g. a cell switching procedure between L1/L2 cells
  • the receipt/receipt of a second mobility instruction may occur before the L1/L2 cell switching procedure is completed (or successful).
  • Execution of a second mobility procedure may be allowed/supported. That is, collisions between the first mobility procedure and the second mobility procedure may be tolerated/supported.
  • the mobility procedure to apply may be selected based on the priority corresponding to the mobility procedure.
  • the priority corresponding to each mobility procedure may be defined in the specifications, or may be set from the base station to the UE using upper layer parameters or the like.
  • the UE may perform a first mobility procedure (eg, a cell switching procedure between L1/L2 cells). That is, the UE may perform the first mobility procedure with priority over the second mobility procedure. In this case, the second mobility procedure may be controlled not to be performed (or to be canceled).
  • a first mobility procedure eg, a cell switching procedure between L1/L2 cells. That is, the UE may perform the first mobility procedure with priority over the second mobility procedure.
  • the second mobility procedure may be controlled not to be performed (or to be canceled).
  • the UE may perform a second mobility procedure (eg, an L3 mobility procedure). That is, the UE may perform the second mobility procedure with priority over the first mobility procedure. In this case, the first mobility procedure may be controlled not to be performed (or to be canceled).
  • a second mobility procedure eg, an L3 mobility procedure. That is, the UE may perform the second mobility procedure with priority over the first mobility procedure.
  • the first mobility procedure may be controlled not to be performed (or to be canceled).
  • the mobility procedure to apply may be selected based on the instruction (or initiation) timing/order of the mobility procedure.
  • a mobility procedure that is instructed (or started) later may be performed with priority. If the reception of the second mobility instruction/execution of the second mobility procedure occurs while the first mobility procedure is in progress, the UE cancels or stops the first mobility procedure in progress and It may be controlled to perform the instructed second mobility procedure (see FIG. 13A).
  • the mobility procedure that is instructed (or started) first may be performed with priority. If the reception of the second mobility instruction/execution of the second mobility procedure occurs while the first mobility is in progress, the UE shall continue with the first mobility procedure in progress and The second mobility procedure may be controlled not to be executed.
  • the UE may autonomously select the mobility procedure to perform.
  • the first mobility instruction e.g. L1/L2 cell Reception/execution of the first mobility procedure (switching indication signaling) may be allowed/supported.
  • the first mobility procedure for example, L1/L2 cell switching instruction signaling
  • the second mobility procedure is completed (or successful)
  • the following options 2-4-1 to 2-4 -3 may be applied.
  • the mobility procedure to apply may be selected based on the priority corresponding to the mobility procedure.
  • the priority corresponding to each mobility procedure may be defined in the specifications, or may be set from the base station to the UE using upper layer parameters or the like.
  • the UE may perform a first mobility procedure (eg, a cell switching procedure between L1/L2 cells). That is, the UE may perform the first mobility procedure with priority over the second mobility procedure. In this case, the second mobility procedure may be controlled not to be performed (or to be canceled).
  • a first mobility procedure eg, a cell switching procedure between L1/L2 cells. That is, the UE may perform the first mobility procedure with priority over the second mobility procedure.
  • the second mobility procedure may be controlled not to be performed (or to be canceled).
  • the UE may perform a second mobility procedure (eg, an L3 mobility procedure). That is, the UE may perform the second mobility procedure with priority over the first mobility procedure. In this case, the first mobility procedure may be controlled not to be performed (or to be canceled).
  • a second mobility procedure eg, an L3 mobility procedure. That is, the UE may perform the second mobility procedure with priority over the first mobility procedure.
  • the first mobility procedure may be controlled not to be performed (or to be canceled).
  • the mobility procedure to apply may be selected based on the instruction (or initiation) timing/order of the mobility procedure.
  • a mobility procedure that is instructed (or started) later may be performed with priority. If a first mobility instruction is received while a second mobility is in progress, the UE cancels or stops the second mobility procedure in progress and performs a later instructed first mobility procedure. It may be controlled to do so (see FIG. 13B).
  • the mobility procedure that is instructed (or started) first may be performed with priority. If a first mobility indication is received while a second mobility is in progress, the UE continues to perform the second mobility procedure in progress and does not perform a later indicated first mobility procedure. It may be controlled as follows.
  • the UE may autonomously select the mobility procedure to perform.
  • Option 2-1 to Option 2-4 show cases where L3 mobility includes a handover procedure (for example, L3 handover command procedure) and a CHO/CPC procedure (for example, L3 CHO/CPC procedure).
  • a handover procedure for example, L3 handover command procedure
  • a CHO/CPC procedure for example, L3 CHO/CPC procedure
  • the handover procedure for example, L3 handover command procedure
  • the CHO/CPC procedure for example, L3 CHO/CPC procedure
  • an additional PCI may be read as an additional cell, a candidate cell, or a target cell.
  • a MAC CE can activate up to 8 TCI states, and some TCI states can be combined with additional PCIs (e.g., additional PCIs). Supported to be associated. However, it is limited to the same frequency as the serving cell (see FIG. 14).
  • FIG. 14 shows Rel.
  • ICBM inter-cell beam management
  • a maximum of seven additional PCIs or candidate cells, target cells, additional cells
  • the MAC CE may direct activation of TCI state on the same frequency. Frequency may be read as frequency domain or frequency band.
  • the TCI state activated by the MAC CE may be associated with an additional PCI on the same frequency as the serving cell.
  • the MAC CE may be a MAC CE for dynamic beam pointing.
  • FIG. 15 shows an example where the TCI state activated by the MAC CE is associated with an additional PCI corresponding to the same frequency as the serving cell.
  • SpCell #0 is set to the first frequency (for example, f0), and the TCI states activated by the MAC CE for the SpCell #0 are SpCell #0, Cell #0-1, Cell #0. -2, cells #0-3, and cells #0-4 are shown.
  • SCell #1 is set to the second frequency (for example, f1), and the TCI state activated by the MAC CE for the SCell #1 is the SCell #1, Cell #1-1, Cell #1- 2, the case where it is associated with cells #1-3 is shown.
  • f1 the second frequency
  • the MAC CE may activate the TCI state for the same frequency.
  • L1/L2 cell switching may be performed within a frequency or between frequencies. Whether intra-frequency cell switching or inter-frequency cell switching is applied may be configured from the base station to the UE through upper layer signaling. Alternatively, instead of (or in addition to) higher layer signaling, it may be determined whether intra-frequency cell switching or inter-frequency cell switching is applied based on UE capability information.
  • FIG. 16 shows an example of cell switching between frequencies.
  • a new target cell with a different frequency from the current serving cell may be instructed to the serving cell.
  • the TCI state corresponding to the target cell may be activated by a MAC CE of a different frequency.
  • the UE may be instructed to switch cells from SpCell #0 to candidate cells #1-1 to #1-3 that correspond to a frequency different from that of the SpCell.
  • the UE may assume that the TCI state corresponding to the cell after switching (for example, candidate cell #1-1) is the TCI state activated in the MAC CE corresponding to SCell #1. .
  • the TCI state activated by the MAC CE for the serving cell may be associated with at least one of an additional PCI on the same frequency as the serving cell and an additional PCI on a different frequency.
  • the MAC CE may be a MAC CE for dynamic beam pointing.
  • FIG. 17 shows an example where the MAC CE supports activating a TCI state associated with an additional PCI corresponding to the same frequency as the serving cell and a TCI state associated with an additional PCI corresponding to a different frequency. It shows.
  • candidate cells #0-1, #0-2, and #0-3 are set at the same frequency (f0) as SpCell #0, and candidate cells #1-1 and #1-2 are set at a different frequency f1.
  • f0 frequency
  • candidate cells #1-1 and #1-2 are set at a different frequency f1.
  • the TCI states activated by MAC CE are SpCell #0, candidate cells #0-1, #0-2, #0-3, #1-1, #1-2, The case where it is associated with #2-1 and #2-2 is shown. More specifically, the TCI state of SpCell #0 (here, TCI #0) and the TCI state of candidate cell #0-1 (here, TCI #1), TCI state of candidate cell #0-2 (here, TCI #2), TCI state of candidate cell #0-3 (here, TCI #3), TCI state of candidate cell #1-1 (Here, TCI #4), TCI state of candidate cell #1-2 (Here, TCI #5), TCI state of candidate cell #2-1 (Here, TCI #6), Candidate cell #2- A case is shown in which TCI state No. 2 (here, TCI #7) is activated.
  • TCI state No. 2 here, TCI #7
  • the multiple serving cells may have activated TCI states by one or more MAC CEs (e.g. one or more MAC CEs corresponding to different frequencies/cells). It may be shared (see FIG. 18).
  • SpCell #0, candidate cells #0-1, #0-2, #0-3 are set in the first frequency domain (f0), and SCell #1, candidate cells #0-1, #0-3 are set in the second frequency domain (f1).
  • candidate cells #1-1 and #1-2 are set, and SCell #2 and candidate cells #2-1 and #2-2 are set in the third frequency region (f2).
  • SpCell #0, candidate cells #0-1, #0-2, #0-3 correspond to PCI #0
  • SCell #1, candidate cells #1-1, #1-2 correspond to PCI #1.
  • SCell #2, candidate cells #2-1 and #2-2 correspond to PCI #2 is shown.
  • the TCI states activated by MAC CE for SpCell #0, SCell #1, and SCell #2 are SpCell #0, candidate cells #0-1, #0-2, #0-3, #1. -1, #1-2, #2-1, and #2-2 are shown.
  • a certain MAC CE may activate the TCI state of each cell with a different frequency.
  • serving cells/candidate cells that share a MAC CE may be grouped.
  • the group of cells whose TCI state is activated by a common MAC CE may be configured by upper layer signaling or may be defined by the specification.
  • the TCI state activated by the MAC CE for dynamic beam pointing (or cell switching) is associated with an additional PCI of the same frequency, and the actual frequency (or PCI) to apply is the frequency of the source serving cell or target cell. (or cell index, reference signal resource index (for example, resource RS index)).
  • FIG. 19 shows an example where the TCI state activated by the MAC CE is associated with an additional PCI corresponding to the same frequency as the serving cell.
  • SpCell #0 candidate cells #0-1, #0-2, #0-3, #0-4 are set to the first frequency (for example, f0), and the SpCell #0 (or f0 ), the case is shown in which the TCI state activated by the MAC CE is associated with the SpCell #0, cell #0-1, cell #0-2, cell #0-3, and cell #0-4.
  • the same TCI state ID (or the same cell ID/resource RS index for each frequency) may be applied to the frequency of SCell #1.
  • an association between cell indexes of different frequencies may be set/defined.
  • the association may be implicit (for example, Implicit association) or explicit (for example, Explicit association).
  • cell index #x of f0 e.g., cell(re-)index #x
  • cell index #x of f1 e.g., cell(re-)index #x
  • candidate cell #0-2 of f0 may be associated with candidate cell #1-2 of f1.
  • multiple cells that apply the same TCI state at different frequencies may be associated by upper layer signaling.
  • UE capabilities regarding support for association between cells of different frequencies may be introduced. Also, for additional PCI cell scenarios, UE capabilities regarding whether to support the application of the TCI states described above may be introduced.
  • TCI state candidates (also referred to as a TCI state pool) that can be set in a serving cell/candidate cell may be cell (or CC) specific. If the TCI state pool is CC-specific, the TCI state ID for each CC/frequency may start at a predetermined value (eg, 0). Also, the resource RS (eg, QCL type A/D RS) may have a BWP/CC ID for each frequency.
  • TCI state #3 includes resources from candidate cell #0-2 (e.g., SSB #2), and for f1, TCI state #3 includes resources from candidate cell #1-1 (e.g., SSB #3). ) (see FIG. 20).
  • FIG. 20 shows a case where SpCell #0, candidate cells #0-1, and #0-2 are set for f0, and SCell #1, candidate cells #1-1, and #1-2 are set for f1. There is. Additionally, TCI status ID #3 is set for candidate cell #0-2 (SSB #2 is transmitted) by upper layer parameters, and TCI state ID #3 is set for candidate cell #1-1 (SSB #3 is transmitted). This shows a case where TCI status ID #3 is set by upper layer parameters.
  • the MAC CE activates at least TCI state #3, it may mean that for each frequency (each TCI state pool of different CCs/frequencies) TCI state #3 is activated.
  • the TCI of frequency f1 corresponding to the candidate cell #1-1 Status ID #3 may be applied.
  • the same TCI state ID of each CC has different resource RS and cell ID.
  • the TCI state candidates (also referred to as TCI state pool) that can be set in the serving cell/candidate cell may be cell (or CC) common/common. If the TCI state pool is CC common, the TCI state ID may be set for the reference BWP/CC.
  • TCI state ID #3 includes resources (for example, SSB #2) from candidate cell #0-2 (see FIG. 21).
  • SpCell#0, candidate cells#0-1, and #0-2 are set to f0
  • SCell#1, candidate cells#1-1, and #1-2 are set to f1.
  • TCI state ID#3 is set for candidate cell#0-2 (to which SSB#2 is transmitted) by higher layer parameters.
  • the MAC CE activates at least TCI state #3 and the L1/L2 cell switching signaling indicates candidate cell #1-1 as the target cell and TCI state ID #3 as the TCI state, the following At least one of options B-1 to B-2 may be applied.
  • the QCL resource RS ID may be SSB #2 from candidate cell #1-1. That is, the same resource RS index from the target cell (or candidate cell) may correspond to the CL resource RS ID.
  • the association between candidate cell #0-2 and candidate cell #1-2 may be set implicitly/explicitly. In this case, only candidate cells #1-2 are available in f1 for TCI state ID #3. If L1/L2 cell switching signaling indicates candidate cell #1-2 as the target cell and TCI state ID #3 as the TCI state, the QCL resource RS ID is the SSB# from candidate cell #1-2. It becomes 2.
  • the TCI state ID of the reference CC (or cell) is different from the cell with the associated cell ID as the target cell. may have a resource RS.
  • ⁇ Fourth embodiment> an example of synchronous (Sync) and asynchronous (Async) settings in consideration of intra-cell multi-TRP/inter-cell multi-TRP in L1/L2 intra-cell mobility (for example, cell switching) will be described.
  • TA settings for each TRP will be supported for multi-DCI-based multi-TRPs (for example, mDCI MTRP) in 18 and later.
  • Multi-TRP may be supported both intra-cell and inter-cell.
  • the configuration of two timing advance groups (TAGs) belonging to the serving cell is supported.
  • different TAGs may be configured for serving cells/candidate cells.
  • intra-cell multi-TRP for example, the case where two TRPs share the same PCI
  • inter-cell multi-TRP for example, the case where two TRPs have different PCIs (Rel.17/18) may be supported.
  • FIG. 22 shows an example of intra-cell multi-TRP and inter-cell multi-TRP.
  • multi-TRP here, two TRPs
  • SCell #2 the number of TRPs
  • multi-TRP here, two TRPs
  • SCell #1 the number of TRPs
  • Information regarding the serving cell/candidate cell where multi-TRP is configured may be configured/instructed from the base station to the UE using upper layer parameters/MAC CE/DCI, etc.
  • the two TRPs corresponding to each cell may each correspond to two TCI states associated with one PCI.
  • two TRPs corresponding to different cells may each correspond to two TCI states respectively associated with two PCIs.
  • At least one of the following options 4-1 to 4-10 is applied as support/configuration of intra-cell multi-TRP and inter-cell multi-TRP, and synchronous/asynchronous settings. You can.
  • the serving cell may support configuration of intra-cell multi-TRP (eg, intra-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may be supported for intra-cell multi-TRP.
  • intra-cell multi-TRP eg, intra-cell MTRP
  • synchronous/asynchronous (eg, sync/async) settings may be supported for intra-cell multi-TRP.
  • synchronization When synchronization is set for multi-TRPs within a cell, it may mean that multiple (eg, two) TRPs within the cell are synchronized (eg, belonging to the same TAG).
  • asynchronous When asynchronous is set for intra-cell multi-TRP, it may mean that multiple (for example, two) TRPs within the cell are asynchronous (for example, belong to different TAGs).
  • the intra-cell multi-TRP setting may be set from the base station to the UE using upper layer parameters, etc.
  • Information regarding synchronization/asynchronization (for example, belonging to the same TAG/belonging to different TAGs) between multiple TRPs within a cell may be indicated by a random access response or by RRC/MAC CE/DCI. good.
  • the serving cell may support configuration of inter-cell multi-TRP (eg, inter-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may be supported for inter-cell multi-TRP.
  • synchronization when synchronization is set for inter-cell multi-TRPs, it may mean that multiple (for example, two) TRPs between cells are synchronized (for example, belonging to the same TAG).
  • asynchronous when asynchronous is set for inter-cell multi-TRP, it may mean that multiple (for example, two) TRPs between cells are asynchronous (for example, they belong to different TAGs).
  • the inter-cell multi-TRP setting may be set from the base station to the UE using upper layer parameters, etc.
  • Information regarding synchronization/asynchronization between multiple TRPs between cells may be indicated by a random access response or by RRC/MAC CE/DCI. good.
  • Both option 4-1 and option 4-2 may be supported.
  • two TRPs belong to the same TAG
  • two TRPs belong to different TAGs.
  • the serving cell may not support the configuration of intra-cell multi-TRP (eg, intra-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may not be supported for intra-cell multi-TRP.
  • the serving cell may not support the configuration of inter-cell multi-TRP (e.g., inter-cell MTRP). Also, the synchronous/asynchronous (e.g., sync/async) configuration may not be supported for the inter-cell multi-TRP.
  • inter-cell multi-TRP e.g., inter-cell MTRP
  • synchronous/asynchronous (e.g., sync/async) configuration may not be supported for the inter-cell multi-TRP.
  • Options 4-1 to 4-4 may be applied in combination as appropriate.
  • a configuration (option 4-1 + option 4-2) may be used in which both (sync/async) intra-cell multi-TRP settings and (sync/async) inter-cell multi-TRP settings are supported.
  • a configuration may be used (option 4-1 + option 4-4) in which (sync/async) intra-cell multi-TRP settings are supported, but (sync/async) inter-cell multi-TRP settings are not supported.
  • a configuration may be used (option 4-2 + option 4-3) in which the (sync/async) intra-cell multi-TRP setting is not supported, but the (sync/async) inter-cell multi-TRP setting is supported.
  • the candidate cell may support configuration of intra-cell multi-TRP (eg, intra-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may be supported for intra-cell multi-TRP.
  • intra-cell multi-TRP eg, intra-cell MTRP
  • synchronous/asynchronous (eg, sync/async) settings may be supported for intra-cell multi-TRP.
  • synchronization when synchronization is set for intra-cell multi-TRPs, it may mean that multiple (for example, two) TRPs within the candidate cell are synchronized (for example, belonging to the same TAG).
  • asynchronous when asynchronous is set for intra-cell multi-TRP, it may mean that multiple (for example, two) TRPs within the candidate cell are asynchronous (for example, belong to different TAGs).
  • the intra-cell multi-TRP setting may be set from the base station to the UE using upper layer parameters, etc.
  • Information regarding synchronization/asynchronization (for example, belonging to the same TAG/belonging to different TAGs) between multiple TRPs in a candidate cell may be indicated by a random access response or may be indicated by RRC/MAC CE/DCI. Good too.
  • the candidate cell may support configuration of inter-cell multi-TRP (eg, inter-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may be supported for inter-cell multi-TRP.
  • inter-cell multi-TRP eg, inter-cell MTRP
  • synchronous/asynchronous (eg, sync/async) settings may be supported for inter-cell multi-TRP.
  • synchronization when synchronization is set for inter-cell multi-TRPs, it may mean that multiple (for example, two) TRPs between candidate cells are synchronized (for example, belonging to the same TAG).
  • asynchronous when asynchronous is set for inter-cell multi-TRP, it may mean that multiple (for example, two) TRPs between candidate cells are asynchronous (for example, belong to different TAGs).
  • the inter-cell multi-TRP setting may be set from the base station to the UE using upper layer parameters, etc.
  • Information regarding synchronization/asynchronization (for example, belonging to the same TAG/belonging to different TAGs) between multiple TRPs between candidate cells may be indicated by a random access response, or may be indicated by RRC/MAC CE/DCI. Good too.
  • Both option 4-6 and option 4-7 may be supported.
  • two TRPs in a candidate cell belong to the same TAG
  • two TRPs between candidate cells belong to different TAGs may be supported.
  • the candidate cell may not support configuration of intra-cell multi-TRP (eg, intra-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may not be supported for intra-cell multi-TRP.
  • intra-cell multi-TRP eg, intra-cell MTRP
  • synchronous/asynchronous (eg, sync/async) settings may not be supported for intra-cell multi-TRP.
  • the candidate cell may not support configuration of inter-cell multi-TRP (eg, inter-cell MTRP). Further, synchronous/asynchronous (eg, sync/async) settings may not be supported for inter-cell multi-TRP.
  • inter-cell multi-TRP eg, inter-cell MTRP
  • synchronous/asynchronous (eg, sync/async) settings may not be supported for inter-cell multi-TRP.
  • Options 4-6 to 4-9 may be applied in combination as appropriate.
  • candidate cell/cell group switching a configuration in which both (sync/async) intra-cell multi-TRP settings and (sync/async) inter-cell multi-TRP settings are supported (Option 4-6 + Option 4 -7) may be used.
  • (sync/async) intra-cell multi-TRP settings are supported, but (sync/async) inter-cell multi-TRP settings are not supported (Option 4-6 + Option 4-9)
  • the candidate cell may be distinguished as to whether it is a candidate cell for SpCell switching or a candidate cell for SCell switching.
  • the presence or absence of setting of intra-cell multi-TRP/inter-cell multi-TRP (or synchronous/asynchronous) is set separately for the candidate cell corresponding to SpCell and the candidate cell corresponding to SCell (or each SCell). Good too.
  • the presence or absence of setting of intra-cell multi-TRP/inter-cell multi-TRP may be set in common for the candidate cell corresponding to SpCell and the candidate cell corresponding to SCell (or each SCell). good.
  • a UE capability for synchronization may be supported as a basic UE capability, and a UE capability for asynchronization may be supported separately from (or in addition to) a UE capability for synchronization.
  • ⁇ Supplement> At least one of the embodiments described above may apply only to UEs that have reported or support a particular UE capability.
  • the particular UE capability may indicate at least one of the following: - supporting specific UE behavior in case of cell switching failure; - supporting collisions between L1/L2 intercell mobility procedures/operations and L3 mobility procedures/operations; - supporting intra-frequency cell switching when the TCI state activated by the MAC CE is associated with serving cells/candidate cells corresponding to the same frequency region; - supporting inter-frequency cell switching when the TCI state activated by the MAC CE is associated with serving cells/candidate cells corresponding to the same frequency region; - the TCI states activated by the MAC CE are associated with serving cells/candidate cells corresponding to different frequency regions, in such cases the maximum number of frequency regions, the maximum number of candidate cells, the maximum number of cells per frequency; ⁇ Intra-cell multi-TRP/inter-cell multi-TRP configuration is supported for the serving cell; - Intra-cell multi-TRP/inter-cell multi-TRP settings are supported for candidate cells.
  • the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency) or a capability that is applied across all frequencies (e.g., cell, band, band combination, BWP, component carrier, etc.). or a combination of these), or by frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2).
  • FR1 Frequency Range 1
  • FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
  • it may be a capability for each subcarrier spacing (SCS), or a capability for each Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • SCS subcarrier spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • At least one of the embodiments described above may be applied when the UE is configured with specific information related to the embodiment described above by upper layer signaling.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16/17 operations may be applied.
  • a receiving unit that receives at least one of downlink control information and a MAC Control Element (MAC CE) including cell switching instruction information from a serving cell to a candidate cell; transmitting an ACK (ACKnowledgement) for the cell switching instruction information; control for determining success or failure of switching from the serving cell to the candidate cell based on at least one of: receiving a DL transmission from the candidate cell in a specific window or timer period after receiving switching instruction information; A terminal having a section and a terminal.
  • MAC CE MAC Control Element
  • Appendix 2-1 a receiving unit that receives at least one of first instruction information instructing an L1/L2 inter-cell mobility procedure and second instruction information instructing an L3 mobility procedure; a control unit that controls the L1/L2 inter-cell mobility procedure and controls the L3 mobility procedure based on the second instruction information, the control unit controlling the L1/L2 inter-cell mobility procedure and A terminal that controls not to perform the L3 mobility procedures at the same time.
  • the control unit assumes that the second instruction information is not received when the L1/L2 inter-cell mobility procedure is in progress, and receives the first instruction information when the L3 mobility procedure is in progress. Terminals listed in Appendix 2-1 that are assumed not to be used.
  • a receiving unit that receives a MAC Control Element (MAC CE) including information regarding an active transmission configuration indicator (TCI) state respectively associated with a serving cell and one or more candidate cells corresponding to the serving cell; a control unit that determines a TCI state corresponding to the serving cell and a TCI state corresponding to the candidate cell based on the MAC CE, and the TCI state activated by the MAC CE is at least in the same frequency region as the serving cell.
  • MAC CE MAC Control Element
  • TCI transmission configuration indicator
  • Appendix 3-2 The terminal according to appendix 3-1, wherein the TCI state activated by the MAC CE is associated with a candidate cell corresponding to the same frequency region as the serving cell and a candidate cell corresponding to a different frequency region from the serving cell.
  • Appendix 3-3 When a plurality of serving cells are configured, at least one of an active TCI state associated with the plurality of serving cells by one MAC CE and an active TCI state associated with one or more candidate cells respectively corresponding to the plurality of serving cells is indicated. The terminal described in Appendix 3-1 or 3-2.
  • the control unit determines a TCI state corresponding to at least one of a serving cell and a candidate cell corresponding to another frequency region based on a TCI state ID instructed to a serving cell corresponding to a certain frequency region by the MAC CE.
  • a terminal comprising: a control unit; and at least one of the serving cell and the candidate cell is configured with at least one of an intra-cell multi-transmission/reception point and an inter-cell multi-transmission/reception point.
  • MAC CE MAC Control Element
  • Appendix 4-2 The terminal according to appendix 4-1, wherein when the intra-cell multi-transmission/reception points are set, a plurality of transmission/reception points included in at least one of the serving cell and the candidate cell are set synchronously or asynchronously.
  • Appendix 4-3 When the inter-cell multi-transmission/reception points are set, at least one of the plurality of transmission/reception points included in each of the plurality of serving cells and the plurality of transmission/reception points included in each of the plurality of candidate cells is set to be synchronous or asynchronous. 1 or the terminal described in Appendix 4-2.
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 23 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • Core Network 30 is, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management (SMF), Unified Data Management. T (UDM), ApplicationFunction (AF), Data Network (DN), Location Management Network Functions (NF) such as Function (LMF) and Operation, Administration and Maintenance (Management) (OAM) may also be included.
  • UPF User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management
  • UDM Unified Data Management.
  • AF ApplicationFunction
  • DN Data Network
  • NF Location Management Network Functions
  • NF Location Management Network Functions
  • LMF Location Management Network Functions
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 24 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 is the receiving power (for example, Reference Signal Received Power (RSRP)), Receive Quality (eg, Reference Signal Received Quality (RSRQ), Signal To InterfERENCE PLUS NOI. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20.
  • signals backhaul signaling
  • devices included in the core network 30 for example, network nodes providing NF, other base stations 10, etc.
  • User data user plane data
  • control plane data etc. may be acquired and transmitted.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 may transmit to the terminal at least one of downlink control information including cell switching instruction information from a serving cell to a candidate cell and a MAC CE (MAC Control Element).
  • the control unit 110 may determine whether the switching from the serving cell to the candidate cell is successful or unsuccessful based on an ACK (ACKnowledgement) for cell switching instruction information transmitted from the terminal.
  • the transmitter/receiver 120 may transmit at least one of first instruction information that instructs the L1/L2 inter-cell mobility procedure and second instruction information that instructs the L3 mobility procedure.
  • the control unit 110 may control the transmission of the first instruction information and the second instruction information so that the L1/L2 inter-cell mobility procedure and the L3 mobility procedure do not conflict.
  • the transmitter/receiver 120 may transmit a MAC CE (MAC Control Element) that includes information regarding active transmission configuration indicators (TCI) states respectively associated with the serving cell and one or more candidate cells corresponding to the serving cell.
  • the control unit 110 may instruct the TCI state corresponding to the serving cell and the TCI state corresponding to the candidate cell based on the MAC CE.
  • the TCI state activated by the MAC CE may be associated with a candidate cell that corresponds to at least the same frequency region as the serving cell.
  • the transmitter/receiver 120 may transmit at least one of downlink control information including cell switching instruction information from a serving cell to a candidate cell and a MAC CE (MAC Control Element).
  • the control unit 110 may instruct a cell switching operation using the cell switching instruction information.
  • At least one of the serving cell and the candidate cell may be configured with at least one of an intra-cell multi-transmission/reception point and an inter-cell multi-transmission/reception point.
  • FIG. 25 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitting/receiving unit 220 may receive at least one of downlink control information including cell switching instruction information from a serving cell to a candidate cell and a MAC CE (MAC Control Element).
  • the control unit 210 transmits an ACK (ACKnowledgement) in response to the cell switching instruction information, and receives DL transmission from the candidate cell in a specific window or timer period after receiving the cell switching instruction information. , the success or failure of switching from the serving cell to the candidate cell may be determined.
  • a particular window or timer may be started after an ACK is sent or after a predetermined period of time after said ACK is sent.
  • the control unit 210 may determine that the switching from the serving cell to the candidate cell has failed if the DL transmission from the candidate cell cannot be received/the random access procedure is not completed within a specific window or timer period. If the switching from the serving cell to the candidate cell fails, the control unit 210 may perform control to perform a random access procedure on at least one of the serving cell and the candidate cell.
  • the transmitting/receiving unit 220 may receive at least one of first instruction information instructing an L1/L2 inter-cell mobility procedure and second instruction information instructing an L3 mobility procedure.
  • the control unit 210 may control the L1/L2 inter-cell mobility procedure based on the first instruction information, and may control the L3 mobility procedure based on the second instruction information.
  • the control unit 210 may control (or assume) not to perform the L1/L2 inter-cell mobility procedure and the L3 mobility procedure at the same time.
  • the controller 210 may assume that the second instruction information is not received when the L1/L2 inter-cell mobility procedure is in progress.
  • the controller 210 may assume that the first instruction information is not received when the L3 mobility procedure is in progress.
  • control unit 210 may give priority to a specific procedure.
  • control unit 210 may give priority to the procedure instructed later.
  • the transmitting/receiving unit 220 may receive a MAC CE (MAC Control Element) that includes information regarding active transmission configuration indicators (TCI) states respectively associated with the serving cell and one or more candidate cells corresponding to the serving cell.
  • the control unit 210 may determine the TCI state corresponding to the serving cell and the TCI state corresponding to the candidate cell based on the MAC CE.
  • the TCI state activated by the MAC CE may be associated with a candidate cell that corresponds to at least the same frequency region as the serving cell.
  • the TCI state activated by the MAC CE may be associated with a candidate cell corresponding to the same frequency region as the serving cell and a candidate cell corresponding to a different frequency region than the serving cell.
  • At least one of an active TCI state associated with multiple serving cells and an active TCI state associated with one or more candidate cells each corresponding to the multiple serving cells is indicated by one MAC CE. Good too.
  • the control unit 210 determines the TCI state corresponding to at least one of the serving cell and candidate cell corresponding to another frequency region based on the TCI state ID instructed by the MAC CE to the serving cell corresponding to a certain frequency region. You may.
  • the transmitting/receiving unit 220 may receive at least one of downlink control information including cell switching instruction information from a serving cell to a candidate cell and a MAC CE (MAC Control Element).
  • the control unit 210 may control the cell switching operation based on the cell switching instruction information.
  • At least one of the serving cell and the candidate cell may be configured with at least one of an intra-cell multi-transmission/reception point and an inter-cell multi-transmission/reception point.
  • intra-cell multi-transmission/reception points are set, multiple transmission/reception points included in at least one of the serving cell and the candidate cell may be set synchronously or asynchronously.
  • At least one of the plurality of transmission/reception points included in each of the plurality of serving cells and the plurality of transmission/reception points included in each of the plurality of candidate cells may be set to be synchronous or asynchronous. If both intra-cell multi-transmission/reception points and inter-cell multi-transmission/reception points are supported, multiple transmission/reception points in one cell are set to the same timing advance group, and multiple transmission/reception points in different cells are set to the same timing advance group. It may be supported to be set to different timing advance groups.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 26 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 27 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced by a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified,
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • the i-th (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest” can be interpreted as “the i-th highest”). may be read interchangeably).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to an aspect of the present disclosure includes: a reception unit that receives at least one of first instruction information instructing an L1/L2 inter-cell mobility procedure or second instruction information instructing an L3 mobility procedure; and a control unit that controls the L1/L2 inter-cell mobility procedure on the basis of the first instruction information and controls the L3 mobility procedure on the basis of the second instruction information, wherein the control unit applies such control that the L1/L2 inter-cell mobility procedure and the L3 mobility procedure are not performed at the same time.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates, lower delays, etc. (Non-Patent Document 1). Additionally, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (for example, also referred to as 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 or later) are also being considered. .
 将来の無線通信システム(例えば、Rel.16/5Gより後の無線通信システム)では、非サービングセル(non-serving cell)を含む複数セル間モビリティ(inter-cell mobility)、又は複数の送受信ポイント(例えば、マルチTRP(Multi-TRP(MTRP))を利用したセル間モビリティに基づいて通信を制御することが想定される。 In future wireless communication systems (e.g., wireless communication systems after Rel. 16/5G), inter-cell mobility, including non-serving cells, or multiple transmission/reception points (e.g. , it is assumed that communication is controlled based on inter-cell mobility using Multi-TRP (MTRP).
 しかし、セル間モビリティを適用する場合、UL送信の制御(例えば、タイミングアドバンスの制御、セルの切り替え等)をどのように行うかが問題となる。セル間モビリティを適切に行うことができない場合、通信の品質が劣化するおそれがある。 However, when inter-cell mobility is applied, the problem is how to control UL transmission (for example, timing advance control, cell switching, etc.). If inter-cell mobility cannot be performed appropriately, the quality of communication may deteriorate.
 本開示はかかる点に鑑みてなされたものであり、セル間モビリティを行う場合であっても通信を適切に制御することが可能な端末、無線通信方法及び基地局を提供することを目的の一つとする。 The present disclosure has been made in view of these points, and one of the objectives is to provide a terminal, a wireless communication method, and a base station that can appropriately control communication even when performing inter-cell mobility. Let's do one.
 本開示の一態様に係る端末は、L1/L2セル間モビリティ手順を指示する第1の指示情報と、L3モビリティ手順を指示する第2の指示情報と、の少なくとも一つを受信する受信部と、前記第1の指示情報に基づいて前記L1/L2セル間モビリティ手順を制御し、前記第2の指示情報に基づいて前記L3モビリティ手順を制御する制御部と、を有し、前記制御部は、前記L1/L2セル間モビリティ手順と前記L3モビリティ手順を同時に行わないように制御する。 A terminal according to an aspect of the present disclosure includes a receiving unit that receives at least one of first instruction information that instructs an L1/L2 inter-cell mobility procedure and second instruction information that instructs an L3 mobility procedure. , a control unit that controls the L1/L2 inter-cell mobility procedure based on the first instruction information and controls the L3 mobility procedure based on the second instruction information, the control unit , the L1/L2 inter-cell mobility procedure and the L3 mobility procedure are controlled not to be performed simultaneously.
 本開示の一態様によれば、セル間モビリティを行う場合であっても通信を適切に制御することができる。 According to one aspect of the present disclosure, communication can be appropriately controlled even when performing inter-cell mobility.
図1A及び図1Bは、セル間モビリティの一例を示す図である。FIGS. 1A and 1B are diagrams illustrating an example of inter-cell mobility. 図2は、L1/L2シグナリングによるサービングセルと追加セル間の切り替えの一例を示す図である。FIG. 2 is a diagram illustrating an example of switching between a serving cell and an additional cell using L1/L2 signaling. 図3は、候補セルがサポートされる場合の設定例1-3の一例を示す図である。FIG. 3 is a diagram illustrating an example of setting example 1-3 when candidate cells are supported. 図4A-図4Cは、候補セルがサポートされる場合の設定例1-3においてL1/L2シグナリングによる候補セル/候補セルグループの切り替えが行われる場合の一例を示す図である。FIGS. 4A to 4C are diagrams illustrating an example in which candidate cells/candidate cell groups are switched by L1/L2 signaling in setting example 1-3 in which candidate cells are supported. 図5は、セルグループに含まれるセルが属するタイミングアドバンスグループ(TAG)の一例を示す図である。FIG. 5 is a diagram illustrating an example of a timing advance group (TAG) to which cells included in a cell group belong. 図6は、タイミングアドバンスコマンド用のMAC CEの一例を示す図である。FIG. 6 is a diagram illustrating an example of a MAC CE for timing advance commands. 図7A及び図7Bは、サービングセルと候補セルに設定されるTAG IDの一例を示す図である。FIGS. 7A and 7B are diagrams illustrating an example of TAG IDs set in a serving cell and a candidate cell. 図8は、第1の実施形態にかかるL1/L2セル間モビリティが成功となる場合の一例を示す図である。FIG. 8 is a diagram illustrating an example of a case where the L1/L2 inter-cell mobility according to the first embodiment is successful. 図9は、第1の実施形態にかかるL1/L2セル間モビリティが成功となる場合の他の例を示す図である。FIG. 9 is a diagram illustrating another example in which the L1/L2 inter-cell mobility according to the first embodiment is successful. 図10は、第1の実施形態にかかるL1/L2セル間モビリティが失敗となる場合の一例を示す図である。FIG. 10 is a diagram illustrating an example of a case where mobility between L1/L2 cells according to the first embodiment fails. 図11は、第1の実施形態にかかるL1/L2セル間モビリティが失敗となる場合の他の例を示す図である。FIG. 11 is a diagram illustrating another example of a case in which the L1/L2 inter-cell mobility according to the first embodiment fails. 図12A及び図12Bは、第2の実施形態にかかるL1/L2セル間モビリティとL3モビリティの適用の一例を示す図である。12A and 12B are diagrams illustrating an example of application of L1/L2 inter-cell mobility and L3 mobility according to the second embodiment. 図13A及び図13Bは、第2の実施形態にかかるL1/L2セル間モビリティとL3モビリティの適用の他の例を示す図である。13A and 13B are diagrams showing other examples of application of L1/L2 inter-cell mobility and L3 mobility according to the second embodiment. 図14は、同じ周波数に設定されるサービングセルと候補セルに対するTCI状態のアクティブ化の一例を示す図である。FIG. 14 is a diagram illustrating an example of activation of TCI states for a serving cell and a candidate cell that are set to the same frequency. 図15は、第3の実施形態にかかるサービングセルと候補セルのTCI状態のアクティブ化の一例を示す図である。FIG. 15 is a diagram illustrating an example of activation of TCI states of a serving cell and a candidate cell according to the third embodiment. 図16は、第3の実施形態にかかる周波数間のセル切り替えの一例を示す図である。FIG. 16 is a diagram illustrating an example of cell switching between frequencies according to the third embodiment. 図17は、第3の実施形態にかかるサービングセルと候補セルのTCI状態のアクティブ化の他の例を示す図である。FIG. 17 is a diagram illustrating another example of activation of the TCI states of a serving cell and a candidate cell according to the third embodiment. 図18は、第3の実施形態にかかるサービングセルと候補セルのTCI状態のアクティブ化の他の例を示す図である。FIG. 18 is a diagram illustrating another example of activation of the TCI states of a serving cell and a candidate cell according to the third embodiment. 図19は、第3の実施形態にかかるサービングセルと候補セルのTCI状態のアクティブ化の他の例を示す図である。FIG. 19 is a diagram illustrating another example of activation of TCI states of a serving cell and a candidate cell according to the third embodiment. 図20は、第3の実施形態にかかる設定例#1を説明するための図である。FIG. 20 is a diagram for explaining setting example #1 according to the third embodiment. 図21は、第3の実施形態にかかる設定例#2を説明するための図である。FIG. 21 is a diagram for explaining setting example #2 according to the third embodiment. 図22は、第4の実施形態にかかるサービングセル/候補セルに対するセル内マルチTRPの設定とセル間マルチTRPの設定の一例を示す図である。FIG. 22 is a diagram illustrating an example of intra-cell multi-TRP settings and inter-cell multi-TRP settings for serving cells/candidate cells according to the fourth embodiment. 図23は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 23 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図24は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 24 is a diagram illustrating an example of the configuration of a base station according to an embodiment. 図25は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 25 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. 図26は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 26 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. 図27は、一実施形態に係る車両の一例を示す図である。FIG. 27 is a diagram illustrating an example of a vehicle according to an embodiment.
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
(TCI, spatial relations, QCL)
In NR, the UE performs reception processing (e.g., reception, demapping, demodulation, Controlling at least one of decoding), transmission processing (eg, at least one of transmission, mapping, precoding, modulation, and encoding) is being considered.
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。 The TCI states may represent those that apply to downlink signals/channels. What corresponds to the TCI state applied to uplink signals/channels may be expressed as a spatial relation.
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。 The TCI state is information regarding quasi-co-location (QCL) of signals/channels, and may also be called spatial reception parameters, spatial relation information, etc. The TCI state may be set in the UE on a per-channel or per-signal basis.
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。 QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, the Doppler shift, Doppler spread, and average delay are calculated between these different signals/channels. ), delay spread, and spatial parameters (e.g., spatial Rx parameters) can be assumed to be the same (QCL with respect to at least one of these). You may.
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。 Note that the spatial reception parameters may correspond to the UE's reception beam (eg, reception analog beam), and the beam may be identified based on the spatial QCL. QCL (or at least one element of QCL) in the present disclosure may be read as sQCL (spatial QCL).
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
A plurality of types (QCL types) may be defined for QCL. For example, four QCL types A-D may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be referred to as QCL parameters) are shown below:
・QCL type A (QCL-A): Doppler shift, Doppler spread, average delay and delay spread,
・QCL type B (QCL-B): Doppler shift and Doppler spread,
・QCL type C (QCL-C): Doppler shift and average delay,
- QCL type D (QCL-D): Spatial reception parameters.
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。 For the UE to assume that one Control Resource Set (CORESET), channel or reference signal is in a particular QCL (e.g. QCL type D) relationship with another CORESET, channel or reference signal, It may also be called a QCL assumption.
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。 The UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for the signal/channel based on the TCI state or QCL assumption of the signal/channel.
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。 The TCI state may be, for example, information regarding the QCL between a target channel (in other words, a reference signal (RS) for the channel) and another signal (for example, another RS). . The TCI state may be set (indicated) by upper layer signaling, physical layer signaling, or a combination thereof.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 The MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like. Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。 The physical layer signaling may be, for example, downlink control information (DCI).
 なお、TCI状態の適用対象となるチャネル/信号は、ターゲットチャネル/参照信号(target channel/RS)、単にターゲットなどと呼ばれてもよく、上記別の信号はリファレンス参照信号(reference RS)、ソースRS(source RS)、単にリファレンスなどと呼ばれてもよい。 Note that the channel/signal to which the TCI state is applied may also be referred to as a target channel/reference signal (target channel/RS), or simply a target, and the other signals mentioned above may be referred to as a reference reference signal (reference RS), source It may also be called RS (source RS) or simply reference.
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下りリンク共有チャネル(Physical Downlink Shared Channel(PDSCH))、下りリンク制御チャネル(Physical Downlink Control Channel(PDCCH))、上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))、上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。 Channels for which TCI states or spatial relationships are set (designated) are, for example, the Physical Downlink Shared Channel (PDSCH), the Physical Downlink Control Channel (PDCCH), and the Uplink Shared Channel (PDSCH). The channel may be at least one of a Physical Uplink Shared Channel (PUSCH) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)、復調用参照信号(DeModulation Reference Signal(DMRS))、などの少なくとも1つであってもよい。 In addition, the RS that has a QCL relationship with the channel is, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding Reference Signal (SRS)), tracking CSI-RS (also called Tracking Reference Signal (TRS)), QCL detection reference signal (also called QRS), demodulation reference signal (DeModulation Reference Signal (DMRS)), etc. It may be one.
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。 The SSB is a signal block that includes at least one of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH). SSB may be called SS/PBCH block.
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。 An RS of QCL type X in a TCI state may mean an RS that has a QCL type You can.
(セル間モビリティ)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(Multi-TRP(MTRP)))が、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
(intercell mobility)
In NR, it is being considered that one or more transmission/reception points (TRPs) (Multi-TRPs (MTRPs)) perform DL transmission to UEs. Further, it is being considered that the UE performs UL transmission for one or more TRPs.
 UEは、セル間モビリティ(例えば、L1/L2 inter cell mobility)において、複数のセル/TRPからのチャネル/信号を受信することが考えられる(図1A、B参照)。 It is conceivable that the UE receives channels/signals from multiple cells/TRPs in inter-cell mobility (eg, L1/L2 inter-cell mobility) (see FIGS. 1A, B).
 図1Aは、ノンサービングセルを含むセル間モビリティ(例えば、Single-TRP inter-cell mobility)の一例を示している。UEは、各セルにおいて1つのTRP(又は、シングルTRP)が設定されてもよい。ここでは、UEは、サービングセルとなるセル#1の基地局/TRPと、サービングセルでない(非サービングセル/Non-serving cellとなる)セル#3の基地局/TRPとからチャネル/信号を受信する場合を示している。例えば、UEがセル#1からセル#3にスイッチ/切り替えする場合(例えば、fast cell switch)に相当する。 FIG. 1A shows an example of inter-cell mobility (for example, Single-TRP inter-cell mobility) including non-serving cells. The UE may be configured with one TRP (or single TRP) in each cell. Here, the UE receives channels/signals from the base station/TRP of cell #1, which is the serving cell, and the base station/TRP of cell #3, which is not the serving cell (non-serving cell). It shows. For example, this corresponds to the case where the UE switches/switches from cell #1 to cell #3 (for example, fast cell switch).
 この場合、ポート(例えば、アンテナポート)/TRPの選択又がダイナミックに行われてもよい。ポート(例えば、アンテナポート)/TRPの選択又は、DCI/MAC CEにより指示又はアップデートされるTCI状態に基づいて行われてもよい。ここでは、セル#1とセル#3に対して、異なる物理セルID(例えば、PCI)の設定がサポートされる場合を示している。 In this case, port (for example, antenna port)/TRP selection may be performed dynamically. This may be done based on port (eg, antenna port)/TRP selection or TCI status indicated or updated by the DCI/MAC CE. Here, a case is shown in which different physical cell ID (for example, PCI) settings are supported for cell #1 and cell #3.
 図1Bは、マルチTRPシナリオ(例えば、マルチTRPを利用する場合のセル間モビリティ(Multi-TRP inter-cell mobility))の一例を示している。UEは、各セルにおいて複数(例えば、2個)のTRP(又は、異なるCORESETプールインデックス)が設定されてもよい。ここでは、UEは、TRP#1とTRP2からチャネル/信号を受信する場合を示している。また、ここでは、TRP#1が物理セルID(PCI)#1に対応し、TRP#2がPCI#2に対応する場合を示している。 FIG. 1B shows an example of a multi-TRP scenario (for example, multi-TRP inter-cell mobility when using multi-TRP). The UE may be configured with multiple (eg, two) TRPs (or different CORESET pool indices) in each cell. Here, a case is shown in which the UE receives channels/signals from TRP #1 and TRP2. Further, here, a case is shown in which TRP #1 corresponds to physical cell ID (PCI) #1 and TRP #2 corresponds to PCI #2.
 マルチTRP(TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ同一又は異なるコードワード(Code Word(CW))と、同一又は異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、図1Bに示すように、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。ここでは、異なるPCIに対応するTPR間でNCJTが行われる場合を示している。なお、TRP#1とTRP#2に対して、同じサービングセル設定が適用/設定されてもよい。 The multi-TRPs (TRP #1, #2) may be connected by an ideal/non-ideal backhaul, and information, data, etc. may be exchanged. The same or different code words (CWs) and the same or different layers may be transmitted from each TRP of the multi-TRP. As one form of multi-TRP transmission, non-coherent joint transmission (NCJT) may be used, as shown in FIG. 1B. Here, a case is shown in which NCJT is performed between TPRs corresponding to different PCIs. Note that the same serving cell configuration may be applied/configured for TRP #1 and TRP #2.
 NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、TRP#1からの第1のPDSCHと、TRP#2からの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。第1のPDSCHと第2のPDSCHは、同じTBの送信に利用されてもよいし、異なるTBの送信に利用されてもよい。 The multiple PDSCHs (multi-PDSCHs) that are NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from TRP#1 and the second PDSCH from TRP#2 may overlap in at least one of the time and frequency resources. The first PDSCH and the second PDSCH may be used to transmit the same TB or different TBs.
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。 These first PDSCH and second PDSCH may be assumed not to be in a quasi-co-location (QCL) relationship. Reception of multiple PDSCHs may also be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (for example, QCL type D).
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI(S-DCI)、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード)。1つのDCIは、マルチTRPの1つのTRPから送信されてもよい。マルチTRPにおいて1つのDCIを利用する構成は、シングルDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。 Multiple PDSCHs from multiple TRPs (may be referred to as multiple PDSCHs) may be scheduled using one DCI (single DCI (S-DCI), single PDCCH) (single master mode). ). One DCI may be transmitted from one TRP of multiple TRPs. A configuration that uses one DCI in multi-TRP may be called single DCI-based multi-TRP (mTRP/MTRP).
 マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI(M-DCI)、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード)。複数のDCIは、マルチTRPからそれぞれ送信されてもよい。マルチTRPにおいて複数のDCIを利用する構成は、マルチDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。 Multiple PDSCHs from multiple TRPs may be scheduled using multiple DCIs (multiple DCI (M-DCI), multiple PDCCH (multiple PDCCH)) (multimaster mode). A plurality of DCIs may be transmitted from multiple TRPs. A configuration that uses multiple DCIs in multi-TRP may be referred to as multi-DCI-based multi-TRP (mTRP/MTRP).
 UEは、異なるTRPに対して、それぞれのTRPに関する別々のCSI報告(CSIレポート)を送信すると想定してもよい。このようなCSIフィードバックは、セパレートフィードバック、セパレートCSIフィードバックなどと呼ばれてもよい。本開示に置いて、「セパレート」は、「独立した(independent)」と互いに読み替えられてもよい。 It may be assumed that the UE sends separate CSI reports for each TRP for different TRPs. Such CSI feedback may be called separate feedback, separate CSI feedback, or the like. In the present disclosure, "separate" may be mutually read as "independent."
 Rel.17 NRでは、MAC CE/DCIにより、異なるPCIに関連付けられたTCI状態へのビーム指示がサポートされることが想定される。一方で、Rel.18 NR以降では、L1/L2シグナリング(例えば、DCI/MAC CE)により、サービングセル切り替え(例えば、異なるPCIを有するセルへのサービングセルの変更指示)がサポートされることが想定される(図2参照)。 Rel. In 17 NR, it is assumed that the MAC CE/DCI supports beam direction to TCI states associated with different PCIs. On the other hand, Rel. After 18 NR, it is assumed that serving cell switching (e.g., instruction to change the serving cell to a cell with a different PCI) will be supported by L1/L2 signaling (e.g., DCI/MAC CE) (see Figure 2). .
 図2では、基地局からのセル切り替え指示に基づいて、UEがサービングセルから追加セル(又は、候補セル、ターゲットセルとも呼ぶ)へセルの切り替えを行う場合を示している。 FIG. 2 shows a case in which a UE switches cells from a serving cell to an additional cell (also referred to as a candidate cell or target cell) based on a cell switching instruction from a base station.
(候補セル)
 セル間モビリティにおいて、サービングセル毎に1又は複数の候補セルが設定/管理されることも想定される。
(Candidate cell)
In inter-cell mobility, it is also assumed that one or more candidate cells are configured/managed for each serving cell.
 例えば、所定の上位レイヤパラメータ(例えば、ServingCellConfig)において、情報が制限された(例えば、一部のパラメータのみUEに通知された)1以上の候補セルが設定されてもよい(Alt.1)。既存システム(例えば、Rel.17))のセル間ビームマネジメント(inter-cell BM)と同様に設定されてもよい。 For example, one or more candidate cells with limited information (for example, only some parameters are notified to the UE) may be configured in a predetermined upper layer parameter (for example, ServingCellConfig) (Alt. 1). It may be set similarly to inter-cell beam management (inter-cell BM) of existing systems (for example, Rel. 17).
 あるいは、1以上の候補セルの完全な設定(例えば、ServingCellConfig)が設定され、当該候補セルが各サービングセルと関連付けられてもよい(Alt.2)。例えば、キャリアアグリゲーション設定のフレームワーク(例えば、CA configuration framework)、又はCHO(Conditional Handover)/CPC(Conditional PSCell Change)設定のフレームワークが再利用されてもよい。 Alternatively, a complete configuration (eg, ServingCellConfig) of one or more candidate cells may be configured, and the candidate cell may be associated with each serving cell (Alt. 2). For example, a carrier aggregation configuration framework (eg, CA configuration framework) or a CHO (Conditional Handover)/CPC (Conditional PSCell Change) configuration framework may be reused.
 Alt.1/2において、MAC CE/DCIにより、候補セルのアクティベーション/ディアクティベーションが制御されてもよい。 Alt. In 1/2, activation/deactivation of candidate cells may be controlled by MAC CE/DCI.
 候補セルの設定として、以下の設定例1~設定例3の少なくとも一つが適用されてもよい(図3参照)。ここでは、サービングセルとして、SpCell#0、SCell#1、SCell#2が設定され、サービングセル/セルグループに対する候補セル(又は、追加セル)の設定/関連づけの一例を示す。以下の設定例1~設定例3は、一例であり、セル数、各セルの関連づけ等は、これに限られず適宜変更されてもよい。あるいは、設定例1~設定例3に加えて/代えて他の設定例がサポート/適用されてもよい。 As the candidate cell settings, at least one of the following Setting Examples 1 to 3 may be applied (see FIG. 3). Here, SpCell #0, SCell #1, and SCell #2 are configured as serving cells, and an example of configuration/association of candidate cells (or additional cells) with respect to the serving cell/cell group is shown. Setting examples 1 to 3 below are just examples, and the number of cells, association of each cell, etc. are not limited to these and may be changed as appropriate. Alternatively, other setting examples may be supported/applied in addition to/in place of setting examples 1 to 3.
 設定例1では、各サービングセルに対して、1以上の候補セルがそれぞれ関連付けられる/設定される場合を示している(図3参照)。具体的には、SpCell#0に対して候補セル#0-1、#0-2、#0-3が関連付けられ、SCell#1に対して候補セル#1-1が関連付けられ、SCell#2に対して候補セル#2-1、#2-2が関連づけられる場合を示している。当該関連づけに関する情報は、RRC/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。 Configuration example 1 shows a case where one or more candidate cells are associated/configured with each serving cell (see FIG. 3). Specifically, candidate cells #0-1, #0-2, #0-3 are associated with SpCell #0, candidate cells #1-1 are associated with SCell #1, and candidate cells #1-1 are associated with SCell #2. A case is shown in which candidate cells #2-1 and #2-2 are associated with. Information regarding the association may be set/instructed from the base station to the UE by RRC/MAC CE/DCI.
 設定例2では、MACエンティティ/MCG/SCGに対して、候補セルが関連付けられる/設定される場合を示している(図3参照)。具体的には、MACエンティティ/MCG/SCGに対して、候補セル#3-#8が関連付けられる場合を示している。この場合、各サービングセルに対して候補セルが関連付けられるのではなく、MACエンティティ又はセルグループ(例えば、MCG/SCG)に対して候補セルが設定される。各セルに設定される候補セルに関する情報は、RRC/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。 Configuration example 2 shows a case where a candidate cell is associated/configured with a MAC entity/MCG/SCG (see FIG. 3). Specifically, a case is shown in which candidate cells #3 to #8 are associated with a MAC entity/MCG/SCG. In this case, candidate cells are configured for MAC entities or cell groups (eg, MCG/SCG) rather than being associated with each serving cell. Information regarding candidate cells configured in each cell may be configured/instructed from the base station to the UE by RRC/MAC CE/DCI.
 設定例3では、1以上の候補セルグループが設定されてもよい(図3参照)。具体的には、候補セル#0-#2を有する候補セルグループ#1、候補セル#0、#1を有する候補セルグループ#2、候補セル#0を有する候補セルグループ#3が設定される場合を示している。候補セルグループは、1以上の候補セルを有している。候補セルグループに含まれる候補セルは、サービングセルの少なくとも一つに関連付けられてもよい。候補セルに関する情報は、RRC/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。 In setting example 3, one or more candidate cell groups may be set (see FIG. 3). Specifically, candidate cell group #1 having candidate cells #0 to #2, candidate cell group #2 having candidate cells #0 and #1, and candidate cell group #3 having candidate cell #0 are set. It shows the case. A candidate cell group has one or more candidate cells. Candidate cells included in the candidate cell group may be associated with at least one serving cell. Information regarding candidate cells may be set/instructed from the base station to the UE using RRC/MAC CE/DCI.
 既存システム(例えば、Rel.17)では、追加PCI(又は、追加セル)に関連するTCI状態へのL1ビーム指示(例えば、DCIのTCI状態フィールドによる指示)がサポートされる。 Existing systems (eg, Rel. 17) support L1 beam indication (eg, indication by the TCI status field of the DCI) to the TCI status associated with the additional PCI (or additional cell).
 Rel.18以降では、サービングセルの切り替え(例えば、serving cell switch)を指示する新規のL1/L2信号(例えば、DCI/MAC CE)がサポートされることが想定される。当該指示として、暗示的な指示と明示的な指示の少なくとも一つがサポートされることが想定される。暗示的な指示は、例えば、あるCORESETが、MAC CEにより追加のPCIに関連づけられたTCI状態に更新されることを意味してもよい。明示的な指示は、DCI/MAC CEによりセルの切り替えが直接指示されることを意味してもよい。 Rel. 18 and later, it is assumed that new L1/L2 signals (eg, DCI/MAC CE) that instruct serving cell switching (eg, serving cell switch) will be supported. It is assumed that at least one of an implicit instruction and an explicit instruction is supported as the instruction. The implicit indication may, for example, mean that a certain CORESET is updated to the TCI state associated with additional PCIs by the MAC CE. An explicit instruction may mean that cell switching is directly instructed by the DCI/MAC CE.
 例えば、候補セルの設定例1において、L1/L2シグナリングを介して、所定の候補セルがサービングセルに指定(又は、サービングセルとの切り替えが指示)されてもよい。図4Aでは、L1/L2シグナリングにより、候補セル#0-2がMCG/SCGのSpCellとなる(SpCell#0と候補セル#0-2が切り替えられる)場合を示している。また、L1/L2シグナリングにより、候補セル#2-1がMCG/SCGのSCellとなる(SCell#2と候補セル#2-1が切り替えられる)場合を示している。 For example, in candidate cell configuration example 1, a predetermined candidate cell may be designated as the serving cell (or switching with the serving cell may be instructed) via L1/L2 signaling. FIG. 4A shows a case where candidate cell #0-2 becomes SpCell of MCG/SCG (SpCell #0 and candidate cell #0-2 are switched) by L1/L2 signaling. Furthermore, a case is shown in which candidate cell #2-1 becomes an MCG/SCG SCell (SCell #2 and candidate cell #2-1 are switched) by L1/L2 signaling.
 あるいは、候補セルの設定例2において、L1/L2シグナリングを介して、所定の候補セルがサービングセルに指定(又は、サービングセルとの切り替えが指示)されてもよい。図4Bでは、L1/L2シグナリングにより、候補セル#4がMCG/SCGのSpCellとなる(SpCell#0と候補セル#4が切り替えられる)場合を示している。 Alternatively, in candidate cell configuration example 2, a predetermined candidate cell may be designated as the serving cell (or switching with the serving cell may be instructed) via L1/L2 signaling. FIG. 4B shows a case where candidate cell #4 becomes SpCell of MCG/SCG (SpCell #0 and candidate cell #4 are switched) by L1/L2 signaling.
 あるいは、候補セルの設定例3において、L1/L2シグナリングを介して、所定の候補セルグループ(又は、当該所定の候補セルグループに含まれる1以上の候補セル)がサービングセルグループに変更/更新されてもよい。図4Cでは、L1/L2シグナリングにより、候補セルグループ#1(又は、候補セルグループ#1に含まれる候補セル#0-#2)がサービングセルグループとなる(サービングセルグループと候補セルグループ#1が切り替えられる)場合を示している。 Alternatively, in candidate cell configuration example 3, a predetermined candidate cell group (or one or more candidate cells included in the predetermined candidate cell group) is changed/updated to a serving cell group via L1/L2 signaling. Good too. In FIG. 4C, candidate cell group #1 (or candidate cells #0 to #2 included in candidate cell group #1) becomes the serving cell group due to L1/L2 signaling (the serving cell group and candidate cell group #1 are switched Indicates the case where the
(タイミングアドバンスグループ)
 複数のTRPを利用する場合にはUEと各TRP間との距離がそれぞれ異なるケースも生じる。複数のTRPは、同じセル(例えば、サービングセル)に含まれてもよい。あるいは、複数のTRPのうち、あるTRPがサービングセルに相当し、他のTRPが非サービングセルに相当してもよい。この場合、各TRPとUE間の距離が異なることも想定される。
(Timing Advance Group)
When using multiple TRPs, there may be cases where the distances between the UE and each TRP are different. Multiple TRPs may be included in the same cell (eg, serving cell). Alternatively, among a plurality of TRPs, a certain TRP may correspond to a serving cell, and other TRPs may correspond to non-serving cells. In this case, it is also assumed that the distances between each TRP and the UE are different.
 既存システムでは、UL(Uplink)チャネル及び/又はUL信号(ULチャネル/信号)の送信タイミングは、タイミングアドバンス(TA:Timing Advance)によって調整される。異なるユーザ端末(UE:User Terminal)からのULチャネル/信号の受信タイミングは、無線基地局(TRP:Transmission and Reception Point、gNB:gNodeB等ともいう)側で調整される。 In existing systems, the transmission timing of an UL (Uplink) channel and/or a UL signal (UL channel/signal) is adjusted by a timing advance (TA). The reception timing of UL channels/signals from different user terminals (UE) is adjusted on the radio base station (TRP: Transmission and Reception Point, gNB: gNodeB, etc.) side.
 UEは、あらかじめ設定されたタイミングアドバンスグループ(TAG:Timing Advance Group)毎に、タイミングアドバンス(マルチプルタイミングアドバンス)を適用してUL送信のタイミング制御を行ってもよい。 The UE may control the timing of UL transmission by applying timing advances (multiple timing advances) to each timing advance group (TAG) set in advance.
 マルチプルタイミングアドバンスを適用する場合、送信タイミングで分類されるタイミングアドバンスグループ(TAG:Timing Advance Group)をサポートする。UEは、TAG毎に同じTAオフセット(又は、TA値)が適用されると想定して各TAGにおけるUL送信タイミングを制御してもよい。つまり、TAオフセットは、TAG毎にそれぞれ独立して設定されてもよい。 When applying multiple timing advances, support timing advance groups (TAGs) classified by transmission timing. The UE may control the UL transmission timing in each TAG assuming that the same TA offset (or TA value) is applied for each TAG. That is, the TA offset may be set independently for each TAG.
 マルチプルタイミングアドバンスを適用する場合、UEが各TAGに属するセルの送信タイミングを独立に調整することにより、複数のセルを利用する場合であっても、無線基地局においてUEからの上りリンク信号受信タイミングを合わせることができる。 When multiple timing advance is applied, the UE independently adjusts the transmission timing of cells belonging to each TAG, so that even when multiple cells are used, the radio base station receives uplink signal reception timing from the UE. can be matched.
 TAG(例えば、同じTAGに属するサービングセル)は、上位レイヤパラメータにより設定されてもよい。同じTAGに属するサービングセル(例えば、ULが設定されるサービングセル)に対して、同じタイミングアドバンス値が適用されてもよい。MACエンティティのSpCellを含むタイミングアドバンスグループはプライマリタイミングアドバンスグループ(PTAG)と呼ばれ、それ以外のTAGはセカンダリタイミングアドバンスグループ(STAG)と呼ばれてもよい。また、TAGの最大数は、セルグループ(例えば、MCG/SCG)毎にX個(例えば、X=4)であってもよい。 The TAG (for example, serving cells belonging to the same TAG) may be configured by upper layer parameters. The same timing advance value may be applied to serving cells belonging to the same TAG (for example, serving cells to which UL is configured). A timing advance group including the MAC entity SpCell may be referred to as a primary timing advance group (PTAG), and other TAGs may be referred to as a secondary timing advance group (STAG). Additionally, the maximum number of TAGs may be X (eg, X=4) for each cell group (eg, MCG/SCG).
 既存システム(例えば、Rel.16 NR)では、セルグループ(例えば、MCG/SCG)毎に最大4個のTAGの設定がサポートされる(図5参照)。図5では、SpCellとSCell#1~#4を含むセルグループに対して、3個のTAGが設定される場合を示している。ここでは、SpCellとSCell#1が第1のTAG(PTAG又はTAG#0)に属し、SCell#2とSCell#3が第2のTAG(TAG#1)に属し、SCell#4が第3のTAG(TAG#2)に属する場合を示している。 In existing systems (eg, Rel. 16 NR), the configuration of up to 4 TAGs per cell group (eg, MCG/SCG) is supported (see FIG. 5). FIG. 5 shows a case where three TAGs are set for a cell group including SpCell and SCells #1 to #4. Here, SpCell and SCell #1 belong to the first TAG (PTAG or TAG #0), SCell #2 and SCell #3 belong to the second TAG (TAG #1), and SCell #4 belongs to the third TAG. This shows the case where it belongs to TAG (TAG #2).
 タイミングアドバンスコマンド(TA command)がMAC制御要素(例えば、MAC CE)を利用してUEに通知されてもよい。TAコマンドは、上りチャネルの送信タイミング値を示すコマンドであり、MAC制御要素に含まれる。TAコマンドは、無線基地局からUEに対してMACレイヤでシグナリングされる。UEは、TAコマンドの受信に基づいて所定タイマ(例えば、TAタイマ)を制御する。 A timing advance command (TA command) may be notified to the UE using a MAC control element (for example, MAC CE). The TA command is a command indicating an uplink channel transmission timing value, and is included in the MAC control element. The TA command is signaled from the radio base station to the UE at the MAC layer. The UE controls a predetermined timer (eg, TA timer) based on reception of the TA command.
 タイミングアドバンスコマンド用のMAC CEは、タイミングアドバンスグループインデックス(例えば、TAG ID)用のフィールドと、タイミングアドバンスコマンド用のフィールドと、を含む構成であってもよい(図6参照)。TAG IDのフィールドは、アドレス指定されたTAGのTAG IDの指示に利用される。タイミングアドバンスコマンドのフィールドは、MACエンティティが適用しなければならないタイミング調整の量の制御に利用されるインデックス値T(0、1、2・・・63)を示してもよい。 The MAC CE for timing advance commands may include a field for timing advance group index (eg, TAG ID) and a field for timing advance commands (see FIG. 6). The TAG ID field is used to indicate the TAG ID of the addressed TAG. The field of the timing advance command may indicate an index value T A (0, 1, 2...63) that is utilized to control the amount of timing adjustment that the MAC entity must apply.
 各TAG IDに対応するパラメータは、上位レイヤパラメータにより設定されてもよい。例えば、各TAG IDにそれぞれ対応するタイムアライメントタイマ(例えば、timeAlignmentTimer)等のパラメータが設定されてもよい。あるいは、各サービングセルに対してTAG IDが上位レイヤパラメータ(例えば、ServingCellConfigに含まれるtag-ID)により設定されてもよい。なお、上位レイヤパラメータで設定された後に、MAC CEによりTAG ID/パラメータが更新されてもよい。 The parameters corresponding to each TAG ID may be set by upper layer parameters. For example, parameters such as a time alignment timer (for example, timeAlignmentTimer) that corresponds to each TAG ID may be set. Alternatively, the TAG ID may be set for each serving cell by an upper layer parameter (for example, tag-ID included in ServingCellConfig). Note that the TAG ID/parameter may be updated by the MAC CE after being set using the upper layer parameters.
 タイムアライメントタイマは、ULタイムアライメントに対して維持されてもよい。Rel.17において、タイムアライメントタイマは、TAG毎に設定/関連付けられてもよい。UEは、タイミングアドバンスコマンド用のMAC CE(例えば、TAC MAC CE)を受信した場合、指示されたタイミングアドバンスグループ(例えば、TAG)にそれぞれ関連するタイムアライメントタイマを開始又は再開(リスタート)する。 A time alignment timer may be maintained for UL time alignment. Rel. At 17, a time alignment timer may be set/associated for each TAG. When the UE receives a MAC CE for a timing advance command (e.g., TAC MAC CE), the UE starts or restarts the time alignment timer respectively associated with the indicated timing advance group (e.g., TAG).
 MACエンティティは、TAC MAC CEを受信し、かつ指示されたTAGとの間で所定値(NTA)が維持されている場合、指示されたTAGに対するタイミングアドバンスコマンドを適用する、あるいは、指示されたTAGに関連するタイムアライメントタイマを開始又は再起動(リスタート)する。所定値(NTA)は、DLとUL間のタイミングアドバンスであってもよい。 If the MAC entity receives the TAC MAC CE and maintains a predetermined value (N TA ) with the indicated TAG, the MAC entity applies a timing advance command for the indicated TAG, or Start or restart the time alignment timer associated with the TAG. The predetermined value (N TA ) may be a timing advance between DL and UL.
 タイムアライメントタイマが満了(expire)した場合の動作は、PTAGとSTAGでそれぞれ別々に定義されてもよい。なお、MACエンティティのSpCellを含むタイミングアドバンスグループ(TAG)をプライマリタイミングアドバンスグループ(PTAG)と呼び、それ以外のTAGをセカンダリタイミングアドバンスグループ(STAG)と呼んでもよい。 The operation when the time alignment timer expires may be defined separately in PTAG and STAG. Note that a timing advance group (TAG) including the MAC entity SpCell may be referred to as a primary timing advance group (PTAG), and other TAGs may be referred to as a secondary timing advance group (STAG).
 例えば、Rel.17において、PTAGに対応するタイミングアドバンスタイマが満了した場合、所定のPTAG用動作が適用され、STAGに対応するタイミングアドバンスタイマが満了した場合、所定のSTAG用動作が適用されることがサポートされている。 For example, Rel. In 17, it is supported that when a timing advance timer corresponding to a PTAG expires, a predetermined operation for PTAG is applied, and when a timing advance timer corresponding to a STAG expires, a predetermined operation for STAG is applied. There is.
 例えば、タイムアライメントタイマが満了した場合、以下の動作(例えば、所定のPTAG用動作/所定のSTAG用動作)が行われてもよい。 For example, when the time alignment timer expires, the following operations (eg, predetermined PTAG operation/predetermined STAG operation) may be performed.
[所定のPTAG用動作]
 タイムアライメントタイマがPTAGと関連づけられている場合、
・全てのサービングセルの全てのHARQバッファをフラッシュする。
・もし設定されている場合、全てのサービングセルに対してPUCCHをリリースするようにRRCに通知する。
・もし設定されている場合、SRSをリリースするようにRRCに通知する。
・設定されたDL割当てと設定されたUL割当てを全てクリアする。
・セミパーシステントCSI報告用のPUSCHリソースをクリアする。
・ランニング中のタイムアライメントタイマを全て満了させる。
・全てのTAGのNTAを維持する。
[Predetermined PTAG operation]
If the time alignment timer is associated with PTAG,
- Flush all HARQ buffers of all serving cells.
- If configured, notify RRC to release PUCCH for all serving cells.
- If set, notify RRC to release SRS.
- Clear all set DL assignments and set UL assignments.
- Clear the PUSCH resource for semi-persistent CSI reporting.
・Let all time alignment timers expire while running.
- Maintain NTA for all TAGs.
[所定のSTAG用動作]
 タイムアライメントタイマがSTAGと関連づけられている場合、当該TAGに属する全てのサービングセルに対して、
・全てのHARQバッファをフラッシュする。
・もし設定されている場合、PUCCHをリリースするようにRRCに通知する。
・もし設定されている場合、SRSをリリースするようにRRCに通知する。
・設定されたDLの割当てとULの割当てを全てクリアする。
・セミパーシステントCSI報告用のPUSCHリソースをクリアする。
・当該TAGのNTAを維持する。
[Predetermined STAG operation]
When a time alignment timer is associated with a STAG, for all serving cells belonging to the TAG,
- Flush all HARQ buffers.
- If set, notify RRC to release PUCCH.
- If set, notify RRC to release SRS.
- Clear all set DL assignments and UL assignments.
- Clear the PUSCH resource for semi-persistent CSI reporting.
- Maintain the NTA of the TAG.
 上述したように、候補セルが設定/定義される場合、各候補セルがTAGに関連づけられることが想定される(図7A、B参照)。図7Aは、既存システム(例えば、Rel.17以前)のセルグループ毎のTAG(又は、TAG IDの設定)の一例を示し、図7Bは、各候補セルに対するTAG IDの設定の一例を示している。 As described above, when candidate cells are set/defined, it is assumed that each candidate cell is associated with a TAG (see FIGS. 7A and 7B). FIG. 7A shows an example of TAG (or TAG ID setting) for each cell group in an existing system (for example, before Rel. 17), and FIG. 7B shows an example of TAG ID setting for each candidate cell. There is.
 また、候補セルが設定/適用/サポートされる場合、図7Bに示すように異なるサービングセル/異なる候補セルが同じTAGに関連づけられることが想定される。 Additionally, when candidate cells are configured/applied/supported, it is assumed that different serving cells/different candidate cells are associated with the same TAG, as shown in FIG. 7B.
 候補セルのTAを取得する場合、候補セルへのRACH(又は、ランダムアクセス手順)がサポートされてもよい。 When obtaining the TA of a candidate cell, RACH (or random access procedure) to the candidate cell may be supported.
 このように、候補セルが設定/適用/サポートされる場合、セル間モビリティ(例えば、サービングセルから候補セル(又は、追加セル/ターゲットセル)への切り替え/スイッチング)が行われることが想定されるが、かかる場合にどのように制御するかについて十分に検討されていない。サービングセルと候補セルの切り替え(例えば、セル間モビリティ)が適切に行われない場合、通信品質が劣化するおそれがある。 Thus, when candidate cells are configured/applied/supported, it is assumed that inter-cell mobility (e.g. switching/switching from the serving cell to the candidate cell (or additional cell/target cell)) will take place. , how to control such cases has not been sufficiently studied. If switching between a serving cell and a candidate cell (for example, inter-cell mobility) is not performed appropriately, communication quality may deteriorate.
 本発明者等は、候補セル(又は、追加セル、ターゲットセル)が設定/サポートされる場合のセル間モビリティ(例えば、セルの切り替え)に着目し、当該セル間モビリティの適切な制御方法について検討し、本実施の形態を着想した。 The present inventors focused on inter-cell mobility (e.g. cell switching) when a candidate cell (or additional cell, target cell) is configured/supported, and studied an appropriate control method for the inter-cell mobility. and came up with the idea of this embodiment.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。なお、以下の各態様(例えば、各ケース)はそれぞれ単独で用いられてもよいし、少なくとも2つを組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. Note that each of the following aspects (for example, each case) may be used alone, or may be applied in combination of at least two.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably. Furthermore, in the present disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In the present disclosure, "activate", "deactivate", "indicate", "select", "configure", "update", "determine", etc. may be used interchangeably. In this disclosure, supporting, controlling, being able to control, operating, capable of operating, etc. may be read interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In the present disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, upper layer parameters, information elements (IEs), settings, etc. may be read interchangeably. In the present disclosure, the terms Medium Access Control Element (CE), update command, activation/deactivation command, etc. may be read interchangeably.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like. Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, an index, an identifier (ID), an indicator, a resource ID, etc. may be read interchangeably. In this disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。 In this disclosure, a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described. )), spatial relationship, SRS resource indicator (SRI), control resource set (CONtrol REsource SET (CORESET)), Physical Downlink Shared Channel (PDSCH), codeword (CW), transport Block (Transport Block (TB)), reference signal (RS), antenna port (e.g. demodulation reference signal (DMRS) port), antenna port group (e.g. DMRS port group), groups (e.g., spatial relationship groups, Code Division Multiplexing (CDM) groups, reference signal groups, CORESET groups, Physical Uplink Control Channel (PUCCH) groups, PUCCH resource groups), resources (e.g., reference signal resources, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI Unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be read interchangeably.
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。 Additionally, the spatial relationship information identifier (ID) (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably. “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
 以下の実施形態において、「複数」及び「2つ」は互いに読み替えられてもよい。また、「TAG」と「TAG ID」は互いに読み替えられてもよい。また、「セル」と「CC」と「キャリア」は互いに読み替えられてもよい。 In the following embodiments, "plurality" and "two" may be read interchangeably. Furthermore, "TAG" and "TAG ID" may be read interchangeably. Further, "cell", "CC", and "carrier" may be read interchangeably.
 以下の説明は、セル間モビリティ(例えば、L1/L2 inter cell mobility)において適用されてもよいし、セル間モビリティ以外の通信制御において適用されてもよい。L1/L2セル間モビリティは、セル切り替え、セルスイッチ及びセル変更の少なくとも一つと読み替えられてもよい。 The following description may be applied to inter-cell mobility (for example, L1/L2 inter-cell mobility), or may be applied to communication control other than inter-cell mobility. L1/L2 inter-cell mobility may be read as at least one of cell switching, cell switching, and cell changing.
(無線通信方法)
<第1の実施形態>
 第1の実施形態では、セル切り替えの指示を受信した場合(又は、受信後)のUE動作/基地局動作の一例について説明する。
(Wireless communication method)
<First embodiment>
In the first embodiment, an example of UE operation/base station operation when (or after receiving) a cell switching instruction will be described.
 基地局は、上位レイヤシグナリングにより複数の候補セルの構成に関する情報をUEに設定してもよい。当該上位レイヤシグナリングは、RRC再設定シグナリング(例えば、RRC reconfiguration signaling)であってもよいし、セルに関する上位レイヤパラメータでああってもよいし、他の上位レイヤパラメータであってもよい。 The base station may set information regarding the configuration of multiple candidate cells to the UE through upper layer signaling. The upper layer signaling may be RRC reconfiguration signaling, a cell-related upper layer parameter, or another upper layer parameter.
 また、基地局は、MAC CE/DCIを利用して、サービングセルの変更又は切り替えをUEに指示してもよい。UEは、MAC CE/DCIにより指示されるセル切り替え指示に基づいて、セルの切り替え手順/切り替え動作を行う。セル切り替え指示は、セル切り替え指示シグナリング、又はL1/L2インターセルモビリティ指示と呼ばれてもよい。 Additionally, the base station may use the MAC CE/DCI to instruct the UE to change or switch the serving cell. The UE performs a cell switching procedure/switching operation based on a cell switching instruction instructed by the MAC CE/DCI. The cell switching indication may be referred to as cell switching indication signaling or L1/L2 intercell mobility indication.
 切り替え先となる候補セルに関する情報(例えば、候補セルインデックス、又は物理セルID(PCI))、切り替え元となるサービングセルに関する情報、及び他の候補セルに関する情報の少なくとも一つが、MAC CE/DCIに含まれてもよい。 The MAC CE/DCI includes at least one of information regarding the candidate cell to be the switching destination (for example, candidate cell index or physical cell ID (PCI)), information regarding the serving cell to be the switching source, and information regarding other candidate cells. You may be
 本開示において、サービングセルの変更は、サービングセルの切り替え、サービングセルのスイッチング、又はL1/L2セルスイッチ(例えば、L1/L2 cell switch)と読み替えられてもよい。本開示において、サービングセルの変更を指示することは、サービングセルの変更をアクティブ化/有効化すると読み替えられてもよい。 In the present disclosure, serving cell change may be read as serving cell switching, serving cell switching, or L1/L2 cell switch (for example, L1/L2 cell switch). In the present disclosure, instructing a serving cell change may be read as activating/validating a serving cell change.
 UEは、サービングセルの変更が指示された場合、L1/L2インターセルモビリティが有効に設定されると想定してもよい。 The UE may assume that L1/L2 intercell mobility is enabled when a serving cell change is instructed.
 UEは、サービングセルの変更(又は、候補セルへの変更)を指示する情報を受信した場合、上位レイヤパラメータによりあらかじめ設定されたセル設定に基づいて、サービングセル設定をターゲットセル(又は、候補セル)に変更してもよい。UEは、新規のビーム/TCI状態/空間関係を想定して、ターゲットセルからDL送信を受信してもよい。新規のビーム/TCI状態/空間関係に関する情報は、基地局からUEにあらかじめ上位レイヤパラメータ(例えば、候補セルに関する上位レイヤパラメータ)を利用して設定/指示されてもよい。 When the UE receives information instructing to change the serving cell (or change to a candidate cell), the UE changes the serving cell configuration to the target cell (or candidate cell) based on the cell configuration preset by upper layer parameters. May be changed. The UE may receive DL transmissions from the target cell assuming new beam/TCI states/spatial relationships. Information regarding the new beam/TCI state/spatial relationship may be configured/instructed from the base station to the UE in advance using higher layer parameters (eg, higher layer parameters related to candidate cells).
 新規のビーム/TCI状態/空間関係に関する情報が設定/指示されていない場合、UEは、所定のビーム/TCI状態/空間関係を想定してもよい。所定のビーム/TCI状態/空間関係は、ターゲットセル(又は、候補セル)のPRACH送信に基づいて決定されてもよい。例えば、UEは、ターゲットセルのSSBに関連づけられた最新のPRACH送信に基づいて所定のビーム/TCI状態/空間関係を判断/想定してもよい。 If no information regarding a new beam/TCI state/spatial relationship is set/indicated, the UE may assume a predetermined beam/TCI state/spatial relationship. The predetermined beam/TCI state/spatial relationship may be determined based on the target cell's (or candidate cell's) PRACH transmission. For example, the UE may determine/assume a certain beam/TCI state/spatial relationship based on the latest PRACH transmission associated with the target cell's SSB.
 また、UEは、サービングセルの変更(又は、候補セルへの変更)を指示するMAC CE/DCIを検出した場合、所定期間後に、更新されるセルのRRC設定(例えば、候補セルのRRC設定)で設定されたサービングセルに変更してもよい。本開示において、所定期間は、所定オフセットと読み替えられてもよい。 In addition, when the UE detects a MAC CE/DCI that instructs a change in the serving cell (or a change to a candidate cell), the UE updates the RRC settings of the cell to be updated (for example, the RRC settings of the candidate cell) after a predetermined period. You may change to the configured serving cell. In the present disclosure, the predetermined period may be read as a predetermined offset.
 所定期間は、検出されたMAC CE/DCIからXms又はXシンボル後であってもよい。あるいは、所定期間は、検出したMAC CE/DCIに対するHARQ-ACKフィードバックからYms/Yシンボル後であってもよい。X、Yは、UE能力/UEタイプに基づいて決定されてもよいし、仕様で定義されてもよいし、基地局からUEに設定されてもよい。 The predetermined period may be Xms or X symbols after the detected MAC CE/DCI. Alternatively, the predetermined period may be Yms/Y symbols after the HARQ-ACK feedback for the detected MAC CE/DCI. X and Y may be determined based on the UE capability/UE type, may be defined in specifications, or may be set from the base station to the UE.
 このように、セルの切り替え(例えば、L1/L2インターセルモビリティ)が成功した場合に、ターゲットセルをサービングセルとして送受信動作を制御することが考えられる。この場合、セルの切り替えの成功/失敗は以下のように定義されてもよい。オプション1A-1~オプション1A-3は、セルの切り替え(例えば、L1/L2インターセルモビリティ)の成功の一例を示し、オプション1B-1~オプション1B-2は、セルの切り替え(例えば、L1/L2インターセルモビリティ)の失敗の一例を示している。 In this way, when cell switching (for example, L1/L2 intercell mobility) is successful, it is possible to control transmission and reception operations using the target cell as the serving cell. In this case, success/failure of cell switching may be defined as follows. Option 1A-1 through Option 1A-3 represent examples of successful cell switching (e.g., L1/L2 intercell mobility), and Option 1B-1 through Option 1B-2 represent examples of successful cell switching (e.g., L1/L2 intercell mobility). An example of a failure of L2 intercell mobility is shown.
[オプション1A-1]
 サービングセルの切り替え指示に対して、UEがHARQ-ACKを送信した場合に、セルの切り替えが成功したことを意味し、UE動作/基地局動作が制御されてもよい。HARQ-ACKは、ACK(ACKnowledgement)を意味してもよいし(図8参照)、ACK/NACKを意味してもよい。
[Option 1A-1]
When the UE transmits HARQ-ACK in response to the serving cell switching instruction, it means that the cell switching is successful, and the UE operation/base station operation may be controlled. HARQ-ACK may mean ACK (ACKnowledgement) (see FIG. 8) or ACK/NACK.
 図8は、基地局からUEにサービングセルの切り替え指示(例えば、L1/l2 cell switch indication signaling)が送信され、当該切り替え指示に対してUEがACKを送信する場合にセルの切り替えが成功したことを意味する場合を示している。この場合、セルの切り替えが成功した後(例えば、ACK送信後)の所定期間(例えば、Y)後に、新規のサービングセルへの切り替えが制御される場合を示している。 FIG. 8 shows that cell switching is successful when a serving cell switching instruction (for example, L1/L2 cell switch indication signaling) is transmitted from the base station to the UE, and the UE transmits an ACK in response to the switching instruction. Indicates the meaning. In this case, a case is shown in which switching to a new serving cell is controlled after a predetermined period (for example, Y) after successful cell switching (for example, after ACK transmission).
 HARQ-ACKがACKを意味する場合、UEが(ACK送信前に)NACKを送信してもセルの切り替えが成功したことは意味しなくてもよい。つまり、ACK送信前にNACKフィードバック、又はL1/L2シグナリングの再送信が存在してもよい。 If HARQ-ACK means ACK, even if the UE sends a NACK (before sending the ACK), it does not need to mean that the cell switching was successful. That is, there may be NACK feedback or retransmission of L1/L2 signaling before ACK transmission.
 例えば、サービングセルの切り替え指示がMAC CEで指示される場合、当該MAC CEを伝送するPDSCHに対するHARQ-ACKフィードバックがACKである場合にサービングセルの切り替えが成功したと定義されてもよい。 For example, when a serving cell switching instruction is given by a MAC CE, the serving cell switching may be defined as successful if the HARQ-ACK feedback for the PDSCH transmitting the MAC CE is ACK.
 サービングセルの切り替え指示がDCIで指示される場合、当該DCIにDL割当て/UL割当て(例えば、DL assignment/UL assignment)が含まれるか否かによりACKの定義が異なってもよい。 When a serving cell switching instruction is given by DCI, the definition of ACK may differ depending on whether the DCI includes DL assignment/UL assignment (for example, DL assignment/UL assignment).
 DL割当て(例えば、DL assignment)が含まれるDCIがサービングセルの切り替え指示に利用される場合、当該DCIによりスケジュールされるPDSCHに対するHARQ-ACKフィードバックがACKである場合にサービングセルの切り替えが成功したと定義されてもよい。 When a DCI that includes DL assignment (for example, DL assignment) is used to instruct serving cell switching, serving cell switching is defined as successful if the HARQ-ACK feedback for the PDSCH scheduled by the DCI is ACK. You can.
 DL割当て/UL割当て(例えば、DL assignment/UL assignment)が含まれないDCIがサービングセルの切り替え指示に利用される場合、当該DCI(又は、当該DCIを伝送するPDCCH)に対するHARQ-ACKフィードバックがACKである場合にサービングセルの切り替えが成功したと定義されてもよい。この場合、DCIに付加されるCRCが所定のRNTI(例えば、C-RNTI以外のRNTI)によりスクランブルされてもよい。 When a DCI that does not include DL assignment/UL assignment (for example, DL assignment/UL assignment) is used to instruct serving cell switching, HARQ-ACK feedback for the DCI (or PDCCH that transmits the DCI) is not an ACK. It may be defined that the serving cell switching is successful in a certain case. In this case, the CRC added to the DCI may be scrambled with a predetermined RNTI (eg, RNTI other than C-RNTI).
 UL割当て(例えば、UL assignment)が含まれるDCIがサービングセルの切り替え指示に利用される場合、当該DCIによりスケジュールされるPUSCHがACKを有するHARQ-ACKフィードバックとみなしてもよい。つまり、当該PUSCHのフィードバックによりサービングセルの切り替えが成功したと定義されてもよい。あるいは、基地局が、同じHPN(NDIがトグルされた同じHPN)を有するPUSCHを再スケジュールした場合に、サービングセルの切り替えが成功したと定義されてもよい。 When a DCI that includes UL assignment (for example, UL assignment) is used to instruct serving cell switching, the PUSCH scheduled by the DCI may be considered as HARQ-ACK feedback with ACK. In other words, it may be defined that the serving cell switching was successful based on the feedback of the PUSCH. Alternatively, the serving cell switching may be defined as successful if the base station reschedules the PUSCH with the same HPN (the same HPN with NDI toggled).
[オプション1A-2]
 UEが特定のウィンドウ/タイマ(例えば、certain window/timer)内において新規のターゲットセル(又は、変更先の対象となる候補セル)からDLを受信した場合に、セルの切り替えが成功したことを意味し、UE動作/基地局動作が制御されてもよい(図9参照)。UEが受信するDLは、DL送信、DL信号及びDLチャネルの少なくとも一つに読み替えられてもよい。
[Option 1A-2]
The cell switching is successful if the UE receives a DL from the new target cell (or candidate cell to be changed to) within a certain window/timer (e.g. certain window/timer). However, UE operation/base station operation may be controlled (see FIG. 9). DL received by the UE may be read as at least one of DL transmission, DL signal, and DL channel.
 特定のウィンドウ/タイマは、例えば、サービングセルの切り替え指示に対するHARQ-ACK(例えば、ACK)の送信後、又は当該HARQ-ACK送信後の所定期間(例えば、Y)経過後に開始されてもよい。もちろん、特定のウィンドウ/タイマの開始時間はこれに限られない。特定のウィンドウ/タイマ(例えば、開示時間(開始スロット、開始シンボル等)及び長さの少なくとも一つ)は、仕様で定義されてもよいし、RRCパラメータ/MAC CE/DCIを利用して基地局からUEに設定/指示されてもよい。 A specific window/timer may be started, for example, after the transmission of a HARQ-ACK (eg, ACK) in response to a serving cell switching instruction, or after a predetermined period (eg, Y) has elapsed after the transmission of the HARQ-ACK. Of course, the specific window/timer start time is not limited to this. A specific window/timer (e.g., disclosure time (start slot, start symbol, etc.) and/or length) may be defined in the specification and may be determined by the base station using RRC parameters/MAC CE/DCI. The setting/instruction may be made to the UE from the UE.
 UEが受信するDLは、以下のオプション1A-2-1~オプション1A-2-3の少なくとも一つであってもよい。 The DL received by the UE may be at least one of the following options 1A-2-1 to 1A-2-3.
《オプション1A-2-1》
 UEが受信するDLは、DL参照信号(例えば、DL-RS)であってもよい。例えば、UEが新規のターゲットセルから送信されるDL参照信号を受信(又は、測定)した場合にサービングセルの切り替えが成功したことを意味してもよい。DL参照信号は、SSB、CSI-RS、新規ターゲットセルから送信される指示されたTCI状態のソースRS(source RS)の少なくとも一つであってもよい。
《Option 1A-2-1》
The DL received by the UE may be a DL reference signal (eg, DL-RS). For example, it may mean that the serving cell switching has been successful when the UE receives (or measures) a DL reference signal transmitted from a new target cell. The DL reference signal may be at least one of an SSB, a CSI-RS, and a source RS in an indicated TCI state transmitted from a new target cell.
《オプション1A-2-2》
 UEが受信するDLは、DLチャネル(例えば、PDCCH/PDSCH)又は下り制御情報(例えば、DCI)であってもよい。例えば、UEが新規のターゲットセルから送信されるDLチャネル/DCIを受信(又は、復号/検出/モニタ)した場合にサービングセルの切り替えが成功したことを意味してもよい。DLチャネル(例えば、PDCCH/PDSCH)又はDCIは、所定フォーマット/タイプに対応するPDCCH/PDSCHであってもよい。
《Option 1A-2-2》
The DL received by the UE may be a DL channel (eg, PDCCH/PDSCH) or downlink control information (eg, DCI). For example, it may mean that the serving cell switching has been successful if the UE receives (or decodes/detects/monitors) a DL channel/DCI transmitted from a new target cell. The DL channel (eg, PDCCH/PDSCH) or DCI may be a PDCCH/PDSCH corresponding to a predetermined format/type.
 例えば、UEがコモンサーチスペース(例えば、CSS)においてDCIを受信した場合にサービングセルの切り替えが成功したことを意味してもよい。 For example, if the UE receives DCI in the common search space (for example, CSS), it may mean that the serving cell switching has been successful.
 あるいは、UEが以前のL1/L2セルスイッチシグナリング(例えば、previous L1/L2 cell switch signaling)と同じHARQプロセスIDを有するPDCCH/PDSCHを受信した場合にサービングセルの切り替えが成功したことを意味してもよい。以前のL1/L2セルスイッチシグナリングはトグルされたNDIを有してもよい(MACリセットがないと想定)。 Alternatively, it may mean that the serving cell switch was successful if the UE received a PDCCH/PDSCH with the same HARQ process ID as the previous L1/L2 cell switch signaling (e.g., previous L1/L2 cell switch signaling). good. Previous L1/L2 cell switch signaling may have NDI toggled (assuming no MAC reset).
《オプション1A-2-3》
 UEが受信するDLは、サービングセルの切り替えを確認(又は、アクティブ化、有効化)するための明示的な指示であってもよい。明示的な指示は、例えば、当該明示的な指示に対応するRRCパラメータ/MAC CE/DCIであってもよい。
《Option 1A-2-3》
The DL received by the UE may be an explicit instruction to confirm (or activate, enable) serving cell switching. The explicit instruction may be, for example, RRC parameters/MAC CE/DCI corresponding to the explicit instruction.
 オプション1A-2―1~オプション1A-2-3の少なくとも一つにおいて、セル切り替え前に新規のターゲットセルへのRACH送信(又は、RACH手順)が終了し、セル切り替え前に新規のターゲットセルへのTAが取得されていてもよい。 In at least one of Options 1A-2-1 to Option 1A-2-3, RACH transmission (or RACH procedure) to the new target cell is completed before cell switching, and transmission to the new target cell is completed before cell switching. TA may have been acquired.
[オプション1A-3]
 UEが特定のウィンドウ/タイマ(例えば、certain window/timer)内において新規のターゲットセル(又は、変更先の対象となる候補セル)に対するランダムアクセス手順(又は、RACH手順)を完了した場合に、セルの切り替えが成功したことを意味し、UE動作/基地局動作が制御されてもよい。
[Option 1A-3]
If the UE completes a random access procedure (or RACH procedure) for a new target cell (or candidate cell to be changed to) within a certain window/timer, UE operation/base station operation may be controlled.
 オプション1A-3において、セル切り替え前に新規のターゲットセルへのRACH送信(又は、RACH手順)が行われていない、又は、TAが取得されていなくてもよい。この場合、UEは、新規のサービングセルに切り替えた後、RACH手順を行ってもよい。 In option 1A-3, RACH transmission (or RACH procedure) to the new target cell may not be performed or TA may not be obtained before cell switching. In this case, the UE may perform the RACH procedure after switching to the new serving cell.
[オプション1B-1]
 (サービングセルの切り替え指示に対してUEがHARQ-ACK(例えば、ACK)を送信した後、又はUEが新規のターゲットセルへの切り替えを適用した後)、特定のウィンドウ/タイマの終了/満了前に(又は、特定のウィンドウ/タイマ内で)、所定のDLを受信できなかった場合、セルの切り替えが失敗したことを意味してもよい(図10、図11参照)。特定のウィンドウ/タイマ及び所定のDLは、オプション1A-2で示したウィンドウ/タイマ及びDLであってもよい。
[Option 1B-1]
(after the UE sends a HARQ-ACK (e.g. ACK) for a serving cell switching indication or after the UE applies switching to a new target cell), before the end/expiration of a specific window/timer. If a predetermined DL cannot be received (or within a certain window/timer), it may mean that cell switching has failed (see FIGS. 10 and 11). The specific window/timer and predetermined DL may be the window/timer and DL shown in option 1A-2.
 図10は、サービングセルの切り替え指示に対してUEがHARQ-ACK(例えば、ACK)を送信した後、特定のウィンドウ/タイマの終了/満了前に(又は、特定のウィンドウ/タイマ内で)所定のDLを受信できなかった場合を示している。図11は、UEが新規のターゲットセルへの切り替えを適用した後、特定のウィンドウ/タイマの終了/満了前に(又は、特定のウィンドウ/タイマ内で)所定のDLを受信できなかった場合を示している。 FIG. 10 shows that after the UE transmits a HARQ-ACK (e.g., ACK) in response to a serving cell switching instruction, a predetermined This shows a case where DL could not be received. Figure 11 illustrates the case where the UE fails to receive a given DL before the end/expiration of a particular window/timer (or within a particular window/timer) after applying a switch to a new target cell. It shows.
 この場合、UEは、セルの切り替え(例えば、L1/L2インターセルモビリティ)が失敗したこと、又はセルの切り替え(例えば、L1/L2インターセルモビリティ)障害が発生したこと、を宣言/通知/報告してもよい。 In this case, the UE declares/notifies/reports that cell switching (e.g. L1/L2 intercell mobility) has failed or that a cell switching (e.g. L1/L2 intercell mobility) failure has occurred. You may.
 特定のウィンドウ/タイマの期間(例えば、開始時間/長さ等)は、RRCパラメータにより基地局からUEに設定されてもよいし、セルの切り替えを指示するMAC CE/DCIに含めて基地局からUEに指示されてもよい。開示時間は、開始スロット、又は開始シンボルであってもよい。 The specific window/timer period (e.g. start time/length, etc.) may be set from the base station to the UE via RRC parameters, or may be set by the base station in the MAC CE/DCI that instructs cell switching. It may be instructed to the UE. The opening time may be a starting slot or a starting symbol.
[オプション1B-2]
 UEは、特定のウィンドウ/タイマの終了/満了前に(又は、特定のウィンドウ/タイマ内で)、新規のターゲットセルへのランダムアクセス手順(又は、RACH手順)を完了できなかった場合、セルの切り替えが失敗したことを意味してもよい。この場合、UEは、セルの切り替え(例えば、L1/L2インターセルモビリティ)が失敗したこと、又はセルの切り替え(例えば、L1/L2インターセルモビリティ)障害が発生したこと、を宣言/通知/報告してもよい。
[Option 1B-2]
If the UE fails to complete the random access procedure (or RACH procedure) to the new target cell before the end/expiry of the specific window/timer (or within the specific window/timer), the UE It may also mean that the switch has failed. In this case, the UE declares/notifies/reports that cell switching (e.g. L1/L2 intercell mobility) has failed or that a cell switching (e.g. L1/L2 intercell mobility) failure has occurred. You may.
 セルの切り替えが失敗した場合(例えば、オプション1B-1又はオプション1B-2)、UEは、以下のオプション1-1~オプション1-3の少なくとも一つに示すUE動作を適用してもよい。 If cell switching fails (eg, Option 1B-1 or Option 1B-2), the UE may apply the UE behavior shown in at least one of Option 1-1 to Option 1-3 below.
《オプション1―1》
 UEは、オリジナルサービングセル(例えば、切り替え元のサービングセル)に戻り、当該セルにおける最後のTCI状態を適用してDL送信(例えば、PDCCH)をモニタしてもよい。
《Option 1-1》
The UE may return to the original serving cell (eg, the serving cell from which it switched) and monitor DL transmissions (eg, PDCCH) applying the last TCI state in that cell.
 UEが、サービングセルの切り替え指示に対するHARQ-ACK(例えば、ACK)を送信した後に、特定のウィンドウ/タイマ内でDLを受信できない(オプション1B-1)又はRACH手順が完了しない(オプション1B-2)場合、少なくともACK送信には成功している。この場合、オリジナルサービングセルのチャネル品質は良好であり、通信(例えば、DL受信)を適切に行うことができる可能性がある。 After the UE sends the HARQ-ACK (e.g. ACK) for the serving cell switching indication, the DL cannot be received within a certain window/timer (Option 1B-1) or the RACH procedure is not completed (Option 1B-2) In this case, at least the ACK transmission was successful. In this case, the channel quality of the original serving cell is good, and there is a possibility that communication (for example, DL reception) can be performed appropriately.
《オプション1―2》
 UEは、特定のセル(例えば、certain cell)に対してRACH送信(又は、ランダムアクセス手順)を行ってもよい。特定のセルは、オリジナルサービングセル(例えば、切り替え元のサービングセル)、及び新規のターゲットセルの少なくとも一つであってもよい。例えば、無線リンク障害(RLF)時のランダムアクセス手順がリユースされてもよい。
《Option 1-2》
The UE may perform RACH transmission (or random access procedure) to a specific cell (eg, certain cell). The specific cell may be at least one of an original serving cell (eg, a serving cell from which to switch) and a new target cell. For example, random access procedures during radio link failure (RLF) may be reused.
《オプション1―3》
 UEは、任意のセル(例えば、ayn cell)に対してRACH送信(又は、ランダムアクセス手順)を行ってもよい。例えば、アイドル状態のUE(UE in IDLE)が行うランダムアクセス手順がリユースされてもよい。
《Option 1-3》
The UE may perform RACH transmission (or random access procedure) to any cell (eg, ayn cell). For example, a random access procedure performed by a UE in an idle state (UE in IDLE) may be reused.
 セルの切り替え(例えば、L1/L2インターセルモビリティ)障害後の異なるUE動作についてUE能力(UE capability)が導入されてもよい。 UE capabilities may be introduced for different UE behavior after cell switching (e.g. L1/L2 inter-cell mobility) failure.
<第2の実施形態>
 第2の実施形態では、異なるモビリティ手順(又は、セル変更手順)がサポートされる場合のUE動作/基地局動作の一例について説明する。
<Second embodiment>
The second embodiment describes an example of UE operation/base station operation when different mobility procedures (or cell change procedures) are supported.
 Rel.18以降において、L1/L2セル間モビリティ(例えば、R18 L1/L2 inter cell mobility)と、L3モビリティ(例えば、legacy L3 mobility)と、がサポートされるケースも想定される。L3モビリティは、例えば、ハンドオーバー、CHO(例えば、Conditional Handover)、又はCPC(Conditional PSCell Change)であってもよい。かかる場合、複数(ここでは、2つ)の手順の相互作用(又は、衝突有無/衝突時の動作)を適切に制御する必要がある。 Rel. In R18 and later, cases are also assumed in which L1/L2 intercell mobility (for example, R18 L1/L2 intercell mobility) and L3 mobility (for example, legacy L3 mobility) are supported. L3 mobility may be, for example, handover, CHO (for example, Conditional Handover), or CPC (Conditional PSCell Change). In such a case, it is necessary to appropriately control the interaction (or presence/absence of collision/operation at the time of collision) of multiple (in this case, two) procedures.
 複数のモビリティ手順がサポートされる場合、以下のオプション2-1~オプション2-4の少なくとも一つが適用されてもよい。モビリティ手順は、セル変更手順、セル切り替え手順、セルスイッチング手順、又はセル更新手順と読み替えられてもよい。また、以下の説明では、複数のモビリティ手順として、第1のモビリティ(例えば、L1/L2セル間モビリティ)と、第2のモビリティ(例えば、L3モビリティ)と、を例に挙げるが、モビリティ種別/タイプはこれに限られない。L3モビリティ手順は、既存システム(例えば、Rel.17以前)の手順(例えば、ハンドオーバ手順)をリユースしてもよい。 If multiple mobility procedures are supported, at least one of the following options 2-1 to 2-4 may be applied. The mobility procedure may be read as a cell change procedure, cell switching procedure, cell switching procedure, or cell update procedure. In addition, in the following explanation, first mobility (for example, L1/L2 inter-cell mobility) and second mobility (for example, L3 mobility) are taken as an example of multiple mobility procedures, but mobility types/ The type is not limited to this. The L3 mobility procedure may reuse a procedure (eg, handover procedure) of an existing system (eg, Rel. 17 or earlier).
[オプション2-1]
 第1のモビリティ手順(例えば、L1/L2セル間のセル切り替え手順)が進行中の場合を想定する。L1/L2セル間のセル切り替え手順が進行中(ongoing)とは、例えば、UEが、L1/L2セル切り替え指示のシグナリングを受信済みの場合(且つ、セル切り替え完了前)であってもよい。
[Option 2-1]
Assume that a first mobility procedure (eg, a cell switching procedure between L1/L2 cells) is in progress. The cell switching procedure between L1/L2 cells may be ongoing when, for example, the UE has received signaling for an L1/L2 cell switching instruction (and before the cell switching is completed).
 この場合、L1/L2セル切り替え手順が完了(又は、成功)する前において、UEは、第2のモビリティ指示の受信/第2のモビリティ手順の実行を想定しなくてもよい(図12A参照)。L1/L2セル切り替え手順が完了(又は、成功)する前とは、第1の実施形態で示したセル切り替えの成功又は失敗の前を意味してもよい。 In this case, the UE may not expect to receive the second mobility indication/perform the second mobility procedure before the L1/L2 cell switching procedure is completed (or successful) (see Figure 12A). . Before the L1/L2 cell switching procedure is completed (or successful) may mean before the cell switching succeeds or fails as described in the first embodiment.
 これにより、第1のモビリティ(例えば、L1/L2セル間のセル切り替え手順)が進行中において、第2のモビリティが行われない構成となるため、2つのモビリティ手順が同時に生じるケースを回避することができる。 This creates a configuration in which the second mobility is not performed while the first mobility (for example, cell switching procedure between L1/L2 cells) is in progress, thereby avoiding the case where two mobility procedures occur simultaneously. Can be done.
[オプション2-2]
 第2のモビリティ手順(例えば、L3モビリティ手順)が進行中の場合を想定する。この場合、UEは、L3モビリティ手順(例えば、ハンドオーバー/CHO/CPC)が完了する前において、第1のモビリティ指示(例えば、L1/L2セル切り替え指示シグナリング)を受信しないと想定してもよい(図12B参照)。
[Option 2-2]
Assume that a second mobility procedure (eg, L3 mobility procedure) is in progress. In this case, the UE may assume that it does not receive the first mobility indication (e.g. L1/L2 cell switching indication signaling) before the L3 mobility procedure (e.g. handover/CHO/CPC) is completed. (See Figure 12B).
 これにより、第2のモビリティ(例えば、ハンドオーバ手順)が進行中において、第1のモビリティ(例えば、L1/L2セル間のセル切り替え手順)が行われない構成となるため、2つのモビリティ手順が同時に生じるケースを回避することができる。 This results in a configuration in which the first mobility (e.g., cell switching procedure between L1/L2 cells) is not performed while the second mobility (e.g., handover procedure) is in progress, thereby making it possible to avoid cases in which two mobility procedures occur simultaneously.
[オプション2-3]
 第1のモビリティ手順(例えば、L1/L2セル間のセル切り替え手順)が進行中の場合、当該L1/L2セル切り替え手順が完了(又は、成功)する前において、第2のモビリティ指示の受信/第2のモビリティ手順の実行が許容/サポートされてもよい。つまり、第1のモビリティ手順と第2のモビリティ手順の衝突が許容/サポートされてもよい。
[Option 2-3]
If a first mobility procedure (e.g. a cell switching procedure between L1/L2 cells) is in progress, the receipt/receipt of a second mobility instruction may occur before the L1/L2 cell switching procedure is completed (or successful). Execution of a second mobility procedure may be allowed/supported. That is, collisions between the first mobility procedure and the second mobility procedure may be tolerated/supported.
 L1/L2セル切り替え手順が完了(又は、成功)する前において、L3ハンドオーバーコマンドを受信した場合(又は、UEがCHO/CPCの条件を満たすと判断した場合)、以下のオプション2-3-1~オプション2-3-3の少なくとも一つが適用されてもよい。 If an L3 handover command is received (or the UE determines that the CHO/CPC conditions are met) before the L1/L2 cell switching procedure is completed (or successful), the following option 2-3- At least one of options 1 to 2-3-3 may be applied.
《オプション2-3-1》
 モビリティ手順に対応する優先度に基づいて、適用するモビリティ手順が選択されてもよい。各モビリティ手順に対応する優先度は、仕様で定義されてもよいし、上位レイヤパラメータ等で基地局からUEに設定されてもよい。
《Option 2-3-1》
The mobility procedure to apply may be selected based on the priority corresponding to the mobility procedure. The priority corresponding to each mobility procedure may be defined in the specifications, or may be set from the base station to the UE using upper layer parameters or the like.
 例えば、UEは、第1のモビリティ手順(例えば、L1/L2セル間のセル切り替え手順)を実行してもよい。つまり、UEは、第2のモビリティ手順より第1のモビリティ手順を優先して実行してもよい。この場合、第2のモビリティ手順は実行しないように(又は、キャンセルするように)制御してもよい。 For example, the UE may perform a first mobility procedure (eg, a cell switching procedure between L1/L2 cells). That is, the UE may perform the first mobility procedure with priority over the second mobility procedure. In this case, the second mobility procedure may be controlled not to be performed (or to be canceled).
 あるいは、UEは、第2のモビリティ手順(例えば、L3モビリティ手順)を実行してもよい。つまり、UEは、第1のモビリティ手順より第2のモビリティ手順を優先して実行してもよい。この場合、第1のモビリティ手順は実行しないように(又は、キャンセルするように)制御してもよい。 Alternatively, the UE may perform a second mobility procedure (eg, an L3 mobility procedure). That is, the UE may perform the second mobility procedure with priority over the first mobility procedure. In this case, the first mobility procedure may be controlled not to be performed (or to be canceled).
《オプション2-3-2》
 モビリティ手順の指示(又は、開始)タイミング/順序に基づいて、適用するモビリティ手順が選択されてもよい。
《Option 2-3-2》
The mobility procedure to apply may be selected based on the instruction (or initiation) timing/order of the mobility procedure.
 例えば、後から指示(又は、開始)されたモビリティ手順が優先して行われてもよい。第1のモビリティが進行中の場合に第2のモビリティ指示の受信/第2のモビリティ手順の実行が生じた場合、UEは、進行中の第1のモビリティ手順をキャンセル又は停止して、後から指示された第2のモビリティ手順を実行するように制御してもよい(図13A参照)。 For example, a mobility procedure that is instructed (or started) later may be performed with priority. If the reception of the second mobility instruction/execution of the second mobility procedure occurs while the first mobility procedure is in progress, the UE cancels or stops the first mobility procedure in progress and It may be controlled to perform the instructed second mobility procedure (see FIG. 13A).
 あるいは、最初に指示(又は、開始)されたモビリティ手順が優先して行われてもよい。第1のモビリティが進行中の場合に第2のモビリティ指示の受信/第2のモビリティ手順の実行が生じた場合、UEは、進行中の第1のモビリティ手順を継続して行い、後から指示された第2のモビリティ手順を実行しないように制御してもよい。 Alternatively, the mobility procedure that is instructed (or started) first may be performed with priority. If the reception of the second mobility instruction/execution of the second mobility procedure occurs while the first mobility is in progress, the UE shall continue with the first mobility procedure in progress and The second mobility procedure may be controlled not to be executed.
《オプション2-3-3》
 UEが実行するモビリティ手順を自律的に選択してもよい。
《Option 2-3-3》
The UE may autonomously select the mobility procedure to perform.
[オプション2-4]
 第2のモビリティ手順(例えば、L3モビリティ手順)が進行中の場合、当該L3モビリティ手順(例えば、ハンドオーバー/CHO/CPC)が完了する前において、第1のモビリティ指示(例えば、L1/L2セル切り替え指示シグナリング)の受信/第1のモビリティ手順の実行が許容/サポートされてもよい。
[Option 2-4]
If a second mobility procedure (e.g. L3 mobility procedure) is in progress, the first mobility instruction (e.g. L1/L2 cell Reception/execution of the first mobility procedure (switching indication signaling) may be allowed/supported.
 第2のモビリティ手順が完了(又は、成功)する前において、第1のモビリティ手順(例えば、L1/L2セル切り替え指示シグナリング)を受信した場合、以下のオプション2-4-1~オプション2-4-3の少なくとも一つが適用されてもよい。 If the first mobility procedure (for example, L1/L2 cell switching instruction signaling) is received before the second mobility procedure is completed (or successful), the following options 2-4-1 to 2-4 -3 may be applied.
《オプション2-4-1》
 モビリティ手順に対応する優先度に基づいて、適用するモビリティ手順が選択されてもよい。各モビリティ手順に対応する優先度は、仕様で定義されてもよいし、上位レイヤパラメータ等で基地局からUEに設定されてもよい。
《Option 2-4-1》
The mobility procedure to apply may be selected based on the priority corresponding to the mobility procedure. The priority corresponding to each mobility procedure may be defined in the specifications, or may be set from the base station to the UE using upper layer parameters or the like.
 例えば、UEは、第1のモビリティ手順(例えば、L1/L2セル間のセル切り替え手順)を実行してもよい。つまり、UEは、第2のモビリティ手順より第1のモビリティ手順を優先して実行してもよい。この場合、第2のモビリティ手順は実行しないように(又は、キャンセルするように)制御してもよい。 For example, the UE may perform a first mobility procedure (eg, a cell switching procedure between L1/L2 cells). That is, the UE may perform the first mobility procedure with priority over the second mobility procedure. In this case, the second mobility procedure may be controlled not to be performed (or to be canceled).
 あるいは、UEは、第2のモビリティ手順(例えば、L3モビリティ手順)を実行してもよい。つまり、UEは、第1のモビリティ手順より第2のモビリティ手順を優先して実行してもよい。この場合、第1のモビリティ手順は実行しないように(又は、キャンセルするように)制御してもよい。 Alternatively, the UE may perform a second mobility procedure (eg, an L3 mobility procedure). That is, the UE may perform the second mobility procedure with priority over the first mobility procedure. In this case, the first mobility procedure may be controlled not to be performed (or to be canceled).
《オプション2-4-2》
 モビリティ手順の指示(又は、開始)タイミング/順序に基づいて、適用するモビリティ手順が選択されてもよい。
《Option 2-4-2》
The mobility procedure to apply may be selected based on the instruction (or initiation) timing/order of the mobility procedure.
 例えば、後から指示(又は、開始)されたモビリティ手順が優先して行われてもよい。第2のモビリティが進行中の場合に第1のモビリティ指示を受信した場合、UEは、進行中の第2のモビリティ手順をキャンセル又は停止して、後から指示された第1のモビリティ手順を実行するように制御してもよい(図13B参照)。 For example, a mobility procedure that is instructed (or started) later may be performed with priority. If a first mobility instruction is received while a second mobility is in progress, the UE cancels or stops the second mobility procedure in progress and performs a later instructed first mobility procedure. It may be controlled to do so (see FIG. 13B).
 あるいは、最初に指示(又は、開始)されたモビリティ手順が優先して行われてもよい。第2のモビリティが進行中の場合に第1のモビリティ指示を受信した場合、UEは、進行中の第2のモビリティ手順を継続して行い、後から指示された第1のモビリティ手順を実行しないように制御してもよい。 Alternatively, the mobility procedure that is instructed (or started) first may be performed with priority. If a first mobility indication is received while a second mobility is in progress, the UE continues to perform the second mobility procedure in progress and does not perform a later indicated first mobility procedure. It may be controlled as follows.
《オプション2-4-3》
 UEが実行するモビリティ手順を自律的に選択してもよい。
《Option 2-4-3》
The UE may autonomously select the mobility procedure to perform.
 オプション2-1~オプション2-4において、L3モビリティとして、ハンドオーバー手順(例えば、L3 handover command procedure)と、CHO/CPC手順(例えば、L3 CHO/CPC procedure)と、が含まれる場合を示したが、これに限られない。ハンドオーバー手順(例えば、L3 handover command procedure)と、CHO/CPC手順(例えば、L3 CHO/CPC procedure)と、は別々の手順として適用されてもよい。 Option 2-1 to Option 2-4 show cases where L3 mobility includes a handover procedure (for example, L3 handover command procedure) and a CHO/CPC procedure (for example, L3 CHO/CPC procedure). However, it is not limited to this. The handover procedure (for example, L3 handover command procedure) and the CHO/CPC procedure (for example, L3 CHO/CPC procedure) may be applied as separate procedures.
 第1のモビリティと第2のモビリティの相互作用に関して、上記オプション毎に異なるUE能力が導入/サポートされてもよい。 Regarding the interaction of the first mobility and the second mobility, different UE capabilities may be introduced/supported for each of the above options.
<第3の実施形態>
 第3の実施形態では、追加PCI(に関連するTCI状態の指示/アクティブ化の一例について説明する。本開示において、追加PCIは、追加セル、候補セル、ターゲットセルと読み替えられてもよい。
<Third embodiment>
In the third embodiment, an example of indicating/activating a TCI state related to an additional PCI will be described. In this disclosure, an additional PCI may be read as an additional cell, a candidate cell, or a target cell.
 Rel.17のセル間ビーム管理(例えば、Rel-17 inter-cell beam management)では、MAC CEが最大8個のTCI状態をアクティブ化でき、一部のTCI状態は、追加PCI(例えば、additional PCIs)と関連づけられることがサポートされる。ただし、サービングセルと同じ周波数に限定される(図14参照)。 Rel. In Rel-17 inter-cell beam management, a MAC CE can activate up to 8 TCI states, and some TCI states can be combined with additional PCIs (e.g., additional PCIs). Supported to be associated. However, it is limited to the same frequency as the serving cell (see FIG. 14).
 図14は、Rel.17でサポートされるセル間ビーム管理(ICBM)において、サービングセルと同じ周波数において最大7個の追加PCI(又は、候補セル、ターゲットセル、追加セル)が設定される場合を示している。MAC CEは、同じ周波数のTCI状態のアクティブ化を指示することができる。周波数は、周波数領域又は周波数帯域と読み替えられてもよい。 FIG. 14 shows Rel. In inter-cell beam management (ICBM) supported in 17, a maximum of seven additional PCIs (or candidate cells, target cells, additional cells) are configured on the same frequency as the serving cell. The MAC CE may direct activation of TCI state on the same frequency. Frequency may be read as frequency domain or frequency band.
 Rel.18以降のL1/L2セル間モビリティでは、周波数間シナリオを考慮して、MAC CEが追加PCIに関連づけられたTCI状態を、サービングセルと異なる周波数でアクティブ化することがサポートされることも想定される。L1/L2セル間モビリティにおけるTCI状態の指示/アクティブ化として、以下のオプション3-1~オプション3-3の少なくとも一つが適用されてもよい。 Rel. In L1/L2 inter-cell mobility after 18, it is also assumed that considering inter-frequency scenarios, it will be supported for the MAC CE to activate the TCI state associated with the additional PCI on a different frequency than the serving cell. . At least one of the following options 3-1 to 3-3 may be applied as the indication/activation of the TCI state in L1/L2 inter-cell mobility.
[オプション3-1]
 L1/L2セル間モビリティにおいて、サービングセルに対して、MAC CEがアクティブ化するTCI状態は、サービングセルと同じ周波数の追加PCIに関連づけられてもよい。MAC CEは、動的ビーム指示用のMAC CEであってもよい。
[Option 3-1]
In L1/L2 inter-cell mobility, for the serving cell, the TCI state activated by the MAC CE may be associated with an additional PCI on the same frequency as the serving cell. The MAC CE may be a MAC CE for dynamic beam pointing.
 図15は、MAC CEがアクティブ化するTCI状態が、サービングセルと同じ周波数に対応する追加PCIに関連づけられる場合の一例を示している。 FIG. 15 shows an example where the TCI state activated by the MAC CE is associated with an additional PCI corresponding to the same frequency as the serving cell.
 ここでは、第1の周波数(例えば、f0)にSpCell#0が設定され、当該SpCell#0について、MAC CEがアクティブ化するTCI状態が、当該SpCell#0、セル#0-1、セル#0-2、セル#0-3、セル#0-4に関連づけられる場合を示している。 Here, SpCell #0 is set to the first frequency (for example, f0), and the TCI states activated by the MAC CE for the SpCell #0 are SpCell #0, Cell #0-1, Cell #0. -2, cells #0-3, and cells #0-4 are shown.
 また、第2の周波数(例えば、f1)にSCell#1が設定され、当該SCell#1について、MAC CEがアクティブ化するTCI状態が、当該SCell#1、セル#1-1、セル#1-2、セル#1-3に関連づけられる場合を示している。 Further, SCell #1 is set to the second frequency (for example, f1), and the TCI state activated by the MAC CE for the SCell #1 is the SCell #1, Cell #1-1, Cell #1- 2, the case where it is associated with cells #1-3 is shown.
 異なる周波数のセルでは、セル設定と周波数が異なるため、これらのセル間の動的ビーム指示がサポートされる場合、UE動作が複雑化する可能性がある。この場合、各サービングセルについて、MAC CEは、同じ周波数のTCI状態をアクティブ化することができる。 Cells with different frequencies have different cell configurations and frequencies, which may complicate UE operation if dynamic beam pointing between these cells is supported. In this case, for each serving cell, the MAC CE may activate the TCI state for the same frequency.
 また、L1/L2セル切り替えは、周波数内で行われてもよいし、周波数間で行われてもよい。周波数内のセル切り替えと周波数間のセル切り替えのいずれか適用されるかについて、上位レイヤシグナリングにより基地局からUEに設定されてもよい。あるいは、周波数内のセル切り替えと周波数間のセル切り替えのいずれか適用されるかについて、上位レイヤシグナリングに代えて(又は、加えて)、UE能力情報に基づいて決定されてもよい。 Additionally, L1/L2 cell switching may be performed within a frequency or between frequencies. Whether intra-frequency cell switching or inter-frequency cell switching is applied may be configured from the base station to the UE through upper layer signaling. Alternatively, instead of (or in addition to) higher layer signaling, it may be determined whether intra-frequency cell switching or inter-frequency cell switching is applied based on UE capability information.
 図16は、周波数間のセル切り替えの一例を示している。ここでは、L1/L2セル切り替えシグナリングによりセル切り替えが指示される場合、サービングセルに対して、現在のサービングセルと異なる周波数の新しいターゲットセルが指示されてもよい。この場合、ターゲットセルに対応するTCI状態は、異なる周波数のMAC CEによりアクティブ化されてもよい。 FIG. 16 shows an example of cell switching between frequencies. Here, when cell switching is instructed by L1/L2 cell switching signaling, a new target cell with a different frequency from the current serving cell may be instructed to the serving cell. In this case, the TCI state corresponding to the target cell may be activated by a MAC CE of a different frequency.
 例えば、UEは、SpCell#0から、当該SpCellと異なる周波数に対応する候補セル#1-1~#1-3へのセルの切り替えが指示されてもよい。この場合、UEは、切り替え後のセル(例えば、候補セル#1-1)に対応するTCI状態は、SCell#1に対応するMAC CEでアクティブ化されたTCI状態であると想定してもよい。 For example, the UE may be instructed to switch cells from SpCell #0 to candidate cells #1-1 to #1-3 that correspond to a frequency different from that of the SpCell. In this case, the UE may assume that the TCI state corresponding to the cell after switching (for example, candidate cell #1-1) is the TCI state activated in the MAC CE corresponding to SCell #1. .
[オプション3-2]
 L1/L2セル間モビリティにおいて、サービングセルに対して、MAC CEがアクティブ化するTCI状態は、サービングセルと同じ周波数の追加PCI及び異なる周波数の追加PCIの少なくとも一つに関連づけられてもよい。MAC CEは、動的ビーム指示用のMAC CEであってもよい。
[Option 3-2]
In L1/L2 inter-cell mobility, the TCI state activated by the MAC CE for the serving cell may be associated with at least one of an additional PCI on the same frequency as the serving cell and an additional PCI on a different frequency. The MAC CE may be a MAC CE for dynamic beam pointing.
 図17は、MAC CEが、サービングセルと同じ周波数に対応する追加PCIに関連づけられるTCI状態と、異なる周波数に対応する追加PCIに関連づけられるTCI状態と、をアクティブ化することをサポートする場合の一例を示している。 FIG. 17 shows an example where the MAC CE supports activating a TCI state associated with an additional PCI corresponding to the same frequency as the serving cell and a TCI state associated with an additional PCI corresponding to a different frequency. It shows.
 図17では、SpCell#0と同じ周波数(f0)において候補セル#0-1、#0-2、#0-3が設定され、異なる周波数f1において候補セル#1-1、#1-2が設定され、異なる周波数f2において候補セル#2-1、#2-2が設定される場合を示している。また、SpCell#0、候補セル#0-1、#0-2、#0-3がPCI#0に対応し、候補セル#1-1、#1-2がPCI#1に対応し、候補セル#2-1、#2-2がPCI#2に対応する場合を示している。 In FIG. 17, candidate cells #0-1, #0-2, and #0-3 are set at the same frequency (f0) as SpCell #0, and candidate cells #1-1 and #1-2 are set at a different frequency f1. This shows a case where candidate cells #2-1 and #2-2 are set at different frequencies f2. Also, SpCell #0, candidate cells #0-1, #0-2, #0-3 correspond to PCI #0, candidate cells #1-1, #1-2 correspond to PCI #1, and candidate cells A case is shown in which cells #2-1 and #2-2 correspond to PCI #2.
 ここでは、SpCell#0について、MAC CEによりアクティブ化されるTCI状態が、SpCell#0、候補セル#0-1、#0-2、#0-3、#1-1、#1-2、#2-1、#2-2に関連づけられる場合を示している。より具体的には、MAC CE(例えば、SpCell#0に対応するMAC CE)により、SpCell#0のTCI状態(ここでは、TCI#0)、候補セル#0-1のTCI状態(ここでは、TCI#1)、候補セル#0-2のTCI状態(ここでは、TCI#2)、候補セル#0-3のTCI状態(ここでは、TCI#3)、候補セル#1-1のTCI状態(ここでは、TCI#4)、候補セル#1-2のTCI状態(ここでは、TCI#5)、候補セル#2-1のTCI状態(ここでは、TCI#6)、候補セル#2-2のTCI状態(ここでは、TCI#7)がアクティブ化される場合を示している。 Here, for SpCell #0, the TCI states activated by MAC CE are SpCell #0, candidate cells #0-1, #0-2, #0-3, #1-1, #1-2, The case where it is associated with #2-1 and #2-2 is shown. More specifically, the TCI state of SpCell #0 (here, TCI #0) and the TCI state of candidate cell #0-1 (here, TCI #1), TCI state of candidate cell #0-2 (here, TCI #2), TCI state of candidate cell #0-3 (here, TCI #3), TCI state of candidate cell #1-1 (Here, TCI #4), TCI state of candidate cell #1-2 (Here, TCI #5), TCI state of candidate cell #2-1 (Here, TCI #6), Candidate cell #2- A case is shown in which TCI state No. 2 (here, TCI #7) is activated.
 複数のサービングセルが設定される場合(例えば、キャリアアグリゲーション)の場合、複数のサービングセルは、1以上のMAC CE(例えば、異なる周波数/セルに対応する1以上のMAC CE)がアクティブ化したTCI状態を共有してもよい(図18参照)。 If multiple serving cells are configured (e.g. carrier aggregation), the multiple serving cells may have activated TCI states by one or more MAC CEs (e.g. one or more MAC CEs corresponding to different frequencies/cells). It may be shared (see FIG. 18).
 図18では、第1の周波数領域(f0)においてSpCell#0、候補セル#0-1、#0-2、#0-3が設定され、第2の周波数領域(f1)においてSCell#1、候補セル#1-1、#1-2が設定され、第3の周波数領域(f2)においてSCell#2、候補セル#2-1、#2-2が設定される場合を示している。また、SpCell#0、候補セル#0-1、#0-2、#0-3がPCI#0に対応し、SCell#1、候補セル#1-1、#1-2がPCI#1に対応し、SCell#2、候補セル#2-1、#2-2がPCI#2に対応する場合を示している。 In FIG. 18, SpCell #0, candidate cells #0-1, #0-2, #0-3 are set in the first frequency domain (f0), and SCell #1, candidate cells #0-1, #0-3 are set in the second frequency domain (f1). The case is shown in which candidate cells #1-1 and #1-2 are set, and SCell #2 and candidate cells #2-1 and #2-2 are set in the third frequency region (f2). Also, SpCell #0, candidate cells #0-1, #0-2, #0-3 correspond to PCI #0, and SCell #1, candidate cells #1-1, #1-2 correspond to PCI #1. Correspondingly, the case where SCell #2, candidate cells #2-1 and #2-2 correspond to PCI #2 is shown.
 ここでは、SpCell#0、SCell#1、SCell#2について、MAC CEによりアクティブ化されるTCI状態が、SpCell#0、候補セル#0-1、#0-2、#0-3、#1-1、#1-2、#2-1、#2-2に関連づけられる場合を示している。 Here, the TCI states activated by MAC CE for SpCell #0, SCell #1, and SCell #2 are SpCell #0, candidate cells #0-1, #0-2, #0-3, #1. -1, #1-2, #2-1, and #2-2 are shown.
 あるMAC CEにより、周波数が異なる各セルのTCI状態がアクティブ化されてもよい。あるいは、MAC CEを共有するサービングセル/候補セルがグループ化されてもよい。共通のMAC CEによりTCI状態がアクティブ化されるセルのグループは、上位レイヤシグナリングにより設定されてもよいし、仕様で定義されてもよい。 A certain MAC CE may activate the TCI state of each cell with a different frequency. Alternatively, serving cells/candidate cells that share a MAC CE may be grouped. The group of cells whose TCI state is activated by a common MAC CE may be configured by upper layer signaling or may be defined by the specification.
[オプション3-3]
 ダイナミックビーム指示(又は、セル切り替え)のためのMAC CEがアクティブ化するTCI状態は、同じ周波数の追加PCIに関連づけられ、適用する実際の周波数(又は、PCI)は、ソースサービングセル又はターゲットセルの周波数(又は、セルインデックス、参照信号リソースインデックス(例えば、resource RS index))に従ってもよい。
[Option 3-3]
The TCI state activated by the MAC CE for dynamic beam pointing (or cell switching) is associated with an additional PCI of the same frequency, and the actual frequency (or PCI) to apply is the frequency of the source serving cell or target cell. (or cell index, reference signal resource index (for example, resource RS index)).
 図19は、MAC CEがアクティブ化するTCI状態が、サービングセルと同じ周波数に対応する追加PCIに関連づけられる場合の一例を示している。 FIG. 19 shows an example where the TCI state activated by the MAC CE is associated with an additional PCI corresponding to the same frequency as the serving cell.
 ここでは、第1の周波数(例えば、f0)にSpCell#0、候補セル#0-1、#0-2、#0-3、#0-4が設定され、当該SpCell#0(又は、f0)について、MAC CEがアクティブ化するTCI状態が、当該SpCell#0、セル#0-1、セル#0-2、セル#0-3、セル#0-4に関連づけられる場合を示している。 Here, SpCell #0, candidate cells #0-1, #0-2, #0-3, #0-4 are set to the first frequency (for example, f0), and the SpCell #0 (or f0 ), the case is shown in which the TCI state activated by the MAC CE is associated with the SpCell #0, cell #0-1, cell #0-2, cell #0-3, and cell #0-4.
 アクティブ化されたTCI状態をSCell#1に対応する周波数に適用する場合、同じTCI状態ID(又は、周波数毎の同じセルID/リソースRSインデックス)がSCell#1の周波数に適用されてもよい。 When applying the activated TCI state to the frequency corresponding to SCell #1, the same TCI state ID (or the same cell ID/resource RS index for each frequency) may be applied to the frequency of SCell #1.
 この場合、異なる周波数のセルインデックス間の関連づけが設定/定義されてもよい。関連づけは、暗示的(例えば、Implicit association)であってもよいし、明示的(例えば、Explicit association)であってもよい。 In this case, an association between cell indexes of different frequencies may be set/defined. The association may be implicit (for example, Implicit association) or explicit (for example, Explicit association).
 暗示的な関連づけとして、例えば、f0のセルインデックス#x(例えば、cell(re-)index #x)は、f1のセルインデックス#x(例えば、cell(re-)index #x)と関連づけられてもよい。一例として、f0の候補セル#0-2が、f1の候補セル#1-2と関連づけられてもよい。 As an implicit association, for example, cell index #x of f0 (e.g., cell(re-)index #x) is associated with cell index #x of f1 (e.g., cell(re-)index #x). Good too. As an example, candidate cell #0-2 of f0 may be associated with candidate cell #1-2 of f1.
 明示的な関連づけとして、異なる周波数において同じTCI状態を適用する複数のセル(例えば、異なる周波数のセル)間を上位レイヤシグナリングにより関連づけてもよい。 As an explicit association, multiple cells that apply the same TCI state at different frequencies (for example, cells with different frequencies) may be associated by upper layer signaling.
 異なる周波数のセル間の関連づけのサポートに関するUE能力が導入されてもよい。また、追加PCIセルシナリオに対して、上述したTCI状態の適用をサポートするかに関するUE能力が導入されてもよい。 UE capabilities regarding support for association between cells of different frequencies may be introduced. Also, for additional PCI cell scenarios, UE capabilities regarding whether to support the application of the TCI states described above may be introduced.
《設定例#1》
 サービングセル/候補セルに設定可能となるTCI状態の候補(TCI状態プールとも呼ぶ)は、セル(又は、CC)固有であってもよい。TCI状態プールがCC固有である場合、各CC/周波数に対するTCI状態IDは、所定値(例えば、0)から開始されてもよい。また、リソースRS(例えばQCLタイプA/D RS)は、各周波数のBWP/CC IDを有してもよい。
Setting example #1》
TCI state candidates (also referred to as a TCI state pool) that can be set in a serving cell/candidate cell may be cell (or CC) specific. If the TCI state pool is CC-specific, the TCI state ID for each CC/frequency may start at a predetermined value (eg, 0). Also, the resource RS (eg, QCL type A/D RS) may have a BWP/CC ID for each frequency.
 例えば、f0について、TCI状態#3が候補セル#0-2からのリソース(例えば、SSB#2)を含み、f1について、TCI状態#3が候補セル#1-1からのリソース(SSB#3)を含む場合を想定する(図20参照)。 For example, for f0, TCI state #3 includes resources from candidate cell #0-2 (e.g., SSB #2), and for f1, TCI state #3 includes resources from candidate cell #1-1 (e.g., SSB #3). ) (see FIG. 20).
 図20では、f0にSpCell#0、候補セル#0-1、#0-2が設定され、f1にSCell#1、候補セル#1-1、#1-2が設定される場合を示している。また、候補セル#0-2(SSB#2が送信される)に対して上位レイヤパラメータによりTCI状態ID#3が設定され、候補セル#1-1(SSB#3が送信される)に対して上位レイヤパラメータによりTCI状態ID#3が設定される場合を示している。 FIG. 20 shows a case where SpCell #0, candidate cells #0-1, and #0-2 are set for f0, and SCell #1, candidate cells #1-1, and #1-2 are set for f1. There is. Additionally, TCI status ID #3 is set for candidate cell #0-2 (SSB #2 is transmitted) by upper layer parameters, and TCI state ID #3 is set for candidate cell #1-1 (SSB #3 is transmitted). This shows a case where TCI status ID #3 is set by upper layer parameters.
 この場合、MAC CEが少なくともTCI状態#3をアクティブ化する場合、各周波数(異なるCC/周波数の各TCI状態プール)について、TCI状態#3がアクティブ化されることを意味してもよい。 In this case, if the MAC CE activates at least TCI state #3, it may mean that for each frequency (each TCI state pool of different CCs/frequencies) TCI state #3 is activated.
 また、L1/L2セル切り替えシグナリングが、ターゲットセルとして候補セル#1-1を指示し、TCI状態としてTCI状態ID#3を指示する場合、当該候補セル#1-1に対応する周波数f1のTCI状態ID#3が適用されてもよい。 Furthermore, when L1/L2 cell switching signaling indicates candidate cell #1-1 as the target cell and TCI state ID #3 as the TCI state, the TCI of frequency f1 corresponding to the candidate cell #1-1 Status ID #3 may be applied.
 図20に示す例において、各CCの同じTCI状態IDが異なるリソースRSとセルIDを有することがサポートされてもよい。 In the example shown in FIG. 20, it may be supported that the same TCI state ID of each CC has different resource RS and cell ID.
《設定例#2》
 サービングセル/候補セルに設定可能となるTCI状態の候補(TCI状態プールとも呼ぶ)は、セル(又は、CC)共通/コモンであってもよい。TCI状態プールがCCコモンである場合、TCI状態IDは、レファレンスBWP/CCに対して設定されてもよい。
Setting example #2》
The TCI state candidates (also referred to as TCI state pool) that can be set in the serving cell/candidate cell may be cell (or CC) common/common. If the TCI state pool is CC common, the TCI state ID may be set for the reference BWP/CC.
 例えば、f0について、TCI状態ID#3が候補セル#0-2からのリソース(例えば、SSB#2)を含む場合を想定する(図21参照)。 For example, assume that for f0, TCI state ID #3 includes resources (for example, SSB #2) from candidate cell #0-2 (see FIG. 21).
 図21では、f0にSpCell#0、候補セル#0-1、#0-2が設定され、f1にSCell#1、候補セル#1-1、#1-2が設定される場合を示している。また、候補セル#0-2(SSB#2が送信される)に対して上位レイヤパラメータによりTCI状態ID#3が設定される場合を示している。 In FIG. 21, SpCell#0, candidate cells#0-1, and #0-2 are set to f0, and SCell#1, candidate cells#1-1, and #1-2 are set to f1. Also, a case is shown in which TCI state ID#3 is set for candidate cell#0-2 (to which SSB#2 is transmitted) by higher layer parameters.
 この場合、MAC CEが少なくともTCI状態#3をアクティブ化し、L1/L2セル切り替えシグナリングが、ターゲットセルとして候補セル#1-1を指示し、TCI状態としてTCI状態ID#3を指示する場合、以下のオプションB-1~オプションB-2の少なくとも一つが適用されてもよい。 In this case, if the MAC CE activates at least TCI state #3 and the L1/L2 cell switching signaling indicates candidate cell #1-1 as the target cell and TCI state ID #3 as the TCI state, the following At least one of options B-1 to B-2 may be applied.
[[オプションB-1]]
 QCLリソースRS IDは、候補セル#1-1からのSSB#2であってもよい。つまり、ターゲットセル(又は、候補セル)から同じリソースRSインデックスがCLリソースRS IDに対応してもよい。
[[Option B-1]]
The QCL resource RS ID may be SSB #2 from candidate cell #1-1. That is, the same resource RS index from the target cell (or candidate cell) may correspond to the CL resource RS ID.
[[オプションB-2]]
 候補セル#0-2と候補セル#1-2との関連づけが暗示的/明示的に設定されてもよい。この場合、TCI状態ID#3に対して、f1では候補セル#1-2のみが対応可能となる。L1/L2セル切り替えシグナリングが、ターゲットセルとして候補セル#1-2を指示し、TCI状態としてTCI状態ID#3を指示する場合、QCLリソースRS IDは、候補セル#1-2からのSSB#2となる。
[[Option B-2]]
The association between candidate cell #0-2 and candidate cell #1-2 may be set implicitly/explicitly. In this case, only candidate cells #1-2 are available in f1 for TCI state ID #3. If L1/L2 cell switching signaling indicates candidate cell #1-2 as the target cell and TCI state ID #3 as the TCI state, the QCL resource RS ID is the SSB# from candidate cell #1-2. It becomes 2.
 異なる周波数の候補セルが関連づけられるケースにおいて、ターゲットセルに対してTCI状態IDが指示される場合、リファレンスCC(又は、セル)のTCI状態IDは、ターゲットセルとして関連づけられたセルIDを有するセルからのリソースRSを有してもよい。 In the case where candidate cells of different frequencies are associated, if a TCI state ID is indicated for the target cell, the TCI state ID of the reference CC (or cell) is different from the cell with the associated cell ID as the target cell. may have a resource RS.
<第4の実施形態>
 第4の実施形態では、L1/L2セル内モビリティ(例えば、セル切り替え)において、セル内マルチTRP/セル間マルチTRPを考慮した同期(Sync)と非同期(Async)の設定の一例について説明する。
<Fourth embodiment>
In the fourth embodiment, an example of synchronous (Sync) and asynchronous (Async) settings in consideration of intra-cell multi-TRP/inter-cell multi-TRP in L1/L2 intra-cell mobility (for example, cell switching) will be described.
 Rel.18以降において、マルチDCIベースのマルチTRP(例えば、mDCI MTRP)に対してTRP毎のTAの設定がサポートされることが想定される。マルチTRPは、セル内(intra-cell)とセル間(inter-cell)の両方がサポートされてもよい。例えば、複数(例えば、2つ)のTAがサポートされるマルチDCIベースのマルチTRPオペレーションについて、サービングセルに属する2つのタイミングアドバンスグループ(TAG)の設定がサポートされる。 Rel. It is assumed that TA settings for each TRP will be supported for multi-DCI-based multi-TRPs (for example, mDCI MTRP) in 18 and later. Multi-TRP may be supported both intra-cell and inter-cell. For example, for multi-DCI-based multi-TRP operations where multiple (eg, two) TAs are supported, the configuration of two timing advance groups (TAGs) belonging to the serving cell is supported.
 L1/L2インターセルモビリティ(例えば、L1/L2 inter-cell mobility)において、サービングセル/候補セルに対して異なるTAGが設定されてもよい。 In L1/L2 inter-cell mobility (for example, L1/L2 inter-cell mobility), different TAGs may be configured for serving cells/candidate cells.
 L1/L2インターセルモビリティにおいて、セル内マルチTRP(例えば、2つのTRPが同じPCIを共有するケース)と、セル間マルチTRP(例えば、2つのTRPが異なるPCIを有するケース(Rel.17/18のマルチDCIベースのマルチTRPと同様))と、の少なくとも一方がサポートされてもよい。 In L1/L2 inter-cell mobility, intra-cell multi-TRP (for example, the case where two TRPs share the same PCI) and inter-cell multi-TRP (for example, the case where two TRPs have different PCIs (Rel.17/18) may be supported.
 図22は、セル内マルチTRPと、セル間マルチTRPの一例を示している。ここでは、SpCell#0、SCell#2にマルチTRP(ここでは、2つのTRP)が設定され、SCell#1と同じ周波数領域に対応する候補セルにマルチTRP(ここでは、2つのTRP)が設定される場合を示している。マルチTRPが設定されるサービングセル/候補セルに関する情報は、上位レイヤパラメータ/MAC CE/DCI等を利用して基地局からUEに設定/指示されてもよい。 FIG. 22 shows an example of intra-cell multi-TRP and inter-cell multi-TRP. Here, multi-TRP (here, two TRPs) is set for SpCell #0 and SCell #2, and multi-TRP (here, two TRPs) is set for the candidate cell corresponding to the same frequency region as SCell #1. Indicates the case where Information regarding the serving cell/candidate cell where multi-TRP is configured may be configured/instructed from the base station to the UE using upper layer parameters/MAC CE/DCI, etc.
 セル内マルチTRPのケースにおいて、各セルに対応する2つのTRPは、1つのPCIに関連づけられる2つのTCI状態にそれぞれ対応してもよい。セル間マルチTRPのケースにおいて、異なるセルに対応する2つのTRPは、2つのPCIにそれぞれ関連づけられる2つのTCI状態にそれぞれ対応してもよい。 In the case of intra-cell multi-TRP, the two TRPs corresponding to each cell may each correspond to two TCI states associated with one PCI. In the case of inter-cell multi-TRP, two TRPs corresponding to different cells may each correspond to two TCI states respectively associated with two PCIs.
 L1/L2インターセルモビリティに対して、セル内マルチTRPとセル間マルチTRPのサポート/設定の有無、同期/非同期の設定として、以下のオプション4-1~オプション4-10の少なくとも一つが適用されてもよい。 For L1/L2 intercell mobility, at least one of the following options 4-1 to 4-10 is applied as support/configuration of intra-cell multi-TRP and inter-cell multi-TRP, and synchronous/asynchronous settings. You can.
[オプション4-1]
 サービングセル(例えば、SpCell/SCell)は、セル内マルチTRP(例えば、intra-cell MTRP)の設定がサポートされてもよい。また、セル内マルチTRPに対して、同期/非同期(例えば、sync/async)の設定がサポートされてもよい。
[Option 4-1]
The serving cell (eg, SpCell/SCell) may support configuration of intra-cell multi-TRP (eg, intra-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may be supported for intra-cell multi-TRP.
 セル内マルチTRPに対して同期が設定される場合、セル内の複数(例えば、2つ)のTRPが同期する(例えば、同じTAGに属する)ことを意味してもよい。セル内マルチTRPに対して非同期が設定される場合、セル内の複数(例えば、2つ)のTRPが非同期となる(例えば、異なるTAGに属する)ことを意味してもよい。 When synchronization is set for multi-TRPs within a cell, it may mean that multiple (eg, two) TRPs within the cell are synchronized (eg, belonging to the same TAG). When asynchronous is set for intra-cell multi-TRP, it may mean that multiple (for example, two) TRPs within the cell are asynchronous (for example, belong to different TAGs).
 セル内マルチTRPの設定は、上位レイヤパラメータ等により基地局からUEに設定されてもよい。セル内の複数のTRP間の同期/非同期(例えば、同じTAGに属する/異なるTAGに属する)に関する情報は、ランダムアクセスレスポンスにより指示されてもよいし、RRC/MAC CE/DCIにより指示されてもよい。 The intra-cell multi-TRP setting may be set from the base station to the UE using upper layer parameters, etc. Information regarding synchronization/asynchronization (for example, belonging to the same TAG/belonging to different TAGs) between multiple TRPs within a cell may be indicated by a random access response or by RRC/MAC CE/DCI. good.
[オプション4-2]
 サービングセル(例えば、SpCell/SCell)は、セル間マルチTRP(例えば、inter-cell MTRP)の設定がサポートされてもよい。また、セル間マルチTRPに対して、同期/非同期(例えば、sync/async)の設定がサポートされてもよい。
[Option 4-2]
The serving cell (eg, SpCell/SCell) may support configuration of inter-cell multi-TRP (eg, inter-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may be supported for inter-cell multi-TRP.
 セル間マルチTRPに対して同期が設定される場合、セル間の複数(例えば、2つ)のTRPが同期する(例えば、同じTAGに属する)ことを意味してもよい。セル間マルチTRPに対して非同期が設定される場合、セル間の複数(例えば、2つ)のTRPが非同期となる(例えば、異なるTAGに属する)ことを意味してもよい。 When synchronization is set for inter-cell multi-TRPs, it may mean that multiple (for example, two) TRPs between cells are synchronized (for example, belonging to the same TAG). When asynchronous is set for inter-cell multi-TRP, it may mean that multiple (for example, two) TRPs between cells are asynchronous (for example, they belong to different TAGs).
 セル間マルチTRPの設定は、上位レイヤパラメータ等により基地局からUEに設定されてもよい。セル間の複数のTRP間の同期/非同期(例えば、同じTAGに属する/異なるTAGに属する)に関する情報は、ランダムアクセスレスポンスにより指示されてもよいし、RRC/MAC CE/DCIにより指示されてもよい。 The inter-cell multi-TRP setting may be set from the base station to the UE using upper layer parameters, etc. Information regarding synchronization/asynchronization between multiple TRPs between cells (for example, belonging to the same TAG/belonging to different TAGs) may be indicated by a random access response or by RRC/MAC CE/DCI. good.
 オプション4-1とオプション4-2の両方がサポートされてもよい。例えば、セル内マルチTRPの場合、2つのTRPが同じTAGに属し、セル間マルチTRPの場合、2つのTRPが異なるTAGに属するケースがサポートされてもよい。 Both option 4-1 and option 4-2 may be supported. For example, in case of intra-cell multi-TRP, two TRPs belong to the same TAG, and in case of inter-cell multi-TRP, the case where two TRPs belong to different TAGs may be supported.
[オプション4-3]
 サービングセル(例えば、SpCell/SCell)は、セル内マルチTRP(例えば、intra-cell MTRP)の設定がサポートされなくてもよい。また、セル内マルチTRPに対して、同期/非同期(例えば、sync/async)の設定がサポートされなくてもよい。
[Option 4-3]
The serving cell (eg, SpCell/SCell) may not support the configuration of intra-cell multi-TRP (eg, intra-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may not be supported for intra-cell multi-TRP.
[オプション4-4]
 サービングセル(例えば、SpCell/SCell)は、セル間マルチTRP(例えば、inter-cell MTRP)の設定がサポートされなくてもよい。また、セル間マルチTRPに対して、同期/非同期(例えば、sync/async)の設定がサポートされなくてもよい。
[Option 4-4]
The serving cell (e.g., SpCell/SCell) may not support the configuration of inter-cell multi-TRP (e.g., inter-cell MTRP). Also, the synchronous/asynchronous (e.g., sync/async) configuration may not be supported for the inter-cell multi-TRP.
[オプション4-5]
 オプション4-1~オプション4-4が適宜組み合わされて適用されてもよい。例えば、(sync/async)セル内マルチTRPの設定と、(sync/async)セル間マルチTRPの設定と、の両方がサポートされる構成(オプション4-1+オプション4-2)としてもよい。あるいは、(sync/async)セル内マルチTRPの設定はサポートされ、(sync/async)セル間マルチTRPの設定はサポートされない構成(オプション4-1+オプション4-4)としてもよい。あるいは、(sync/async)セル内マルチTRPの設定はサポートされず、(sync/async)セル間マルチTRPの設定はサポートされる構成(オプション4-2+オプション4-3)としてもよい。
[Option 4-5]
Options 4-1 to 4-4 may be applied in combination as appropriate. For example, a configuration (option 4-1 + option 4-2) may be used in which both (sync/async) intra-cell multi-TRP settings and (sync/async) inter-cell multi-TRP settings are supported. Alternatively, a configuration may be used (option 4-1 + option 4-4) in which (sync/async) intra-cell multi-TRP settings are supported, but (sync/async) inter-cell multi-TRP settings are not supported. Alternatively, a configuration may be used (option 4-2 + option 4-3) in which the (sync/async) intra-cell multi-TRP setting is not supported, but the (sync/async) inter-cell multi-TRP setting is supported.
[オプション4-6]
 候補セルは、セル内マルチTRP(例えば、intra-cell MTRP)の設定がサポートされてもよい。また、セル内マルチTRPに対して、同期/非同期(例えば、sync/async)の設定がサポートされてもよい。
[Option 4-6]
The candidate cell may support configuration of intra-cell multi-TRP (eg, intra-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may be supported for intra-cell multi-TRP.
 セル内マルチTRPに対して同期が設定される場合、候補セル内の複数(例えば、2つ)のTRPが同期する(例えば、同じTAGに属する)ことを意味してもよい。セル内マルチTRPに対して非同期が設定される場合、候補セル内の複数(例えば、2つ)のTRPが非同期となる(例えば、異なるTAGに属する)ことを意味してもよい。 When synchronization is set for intra-cell multi-TRPs, it may mean that multiple (for example, two) TRPs within the candidate cell are synchronized (for example, belonging to the same TAG). When asynchronous is set for intra-cell multi-TRP, it may mean that multiple (for example, two) TRPs within the candidate cell are asynchronous (for example, belong to different TAGs).
 セル内マルチTRPの設定は、上位レイヤパラメータ等により基地局からUEに設定されてもよい。候補セル内の複数のTRP間の同期/非同期(例えば、同じTAGに属する/異なるTAGに属する)に関する情報は、ランダムアクセスレスポンスにより指示されてもよいし、RRC/MAC CE/DCIにより指示されてもよい。 The intra-cell multi-TRP setting may be set from the base station to the UE using upper layer parameters, etc. Information regarding synchronization/asynchronization (for example, belonging to the same TAG/belonging to different TAGs) between multiple TRPs in a candidate cell may be indicated by a random access response or may be indicated by RRC/MAC CE/DCI. Good too.
[オプション4-7]
 候補セルは、セル間マルチTRP(例えば、inter-cell MTRP)の設定がサポートされてもよい。また、セル間マルチTRPに対して、同期/非同期(例えば、sync/async)の設定がサポートされてもよい。
[Option 4-7]
The candidate cell may support configuration of inter-cell multi-TRP (eg, inter-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may be supported for inter-cell multi-TRP.
 セル間マルチTRPに対して同期が設定される場合、候補セル間の複数(例えば、2つ)のTRPが同期する(例えば、同じTAGに属する)ことを意味してもよい。セル間マルチTRPに対して非同期が設定される場合、候補セル間の複数(例えば、2つ)のTRPが非同期となる(例えば、異なるTAGに属する)ことを意味してもよい。 When synchronization is set for inter-cell multi-TRPs, it may mean that multiple (for example, two) TRPs between candidate cells are synchronized (for example, belonging to the same TAG). When asynchronous is set for inter-cell multi-TRP, it may mean that multiple (for example, two) TRPs between candidate cells are asynchronous (for example, belong to different TAGs).
 セル間マルチTRPの設定は、上位レイヤパラメータ等により基地局からUEに設定されてもよい。候補セル間の複数のTRP間の同期/非同期(例えば、同じTAGに属する/異なるTAGに属する)に関する情報は、ランダムアクセスレスポンスにより指示されてもよいし、RRC/MAC CE/DCIにより指示されてもよい。 The inter-cell multi-TRP setting may be set from the base station to the UE using upper layer parameters, etc. Information regarding synchronization/asynchronization (for example, belonging to the same TAG/belonging to different TAGs) between multiple TRPs between candidate cells may be indicated by a random access response, or may be indicated by RRC/MAC CE/DCI. Good too.
 オプション4-6とオプション4-7の両方がサポートされてもよい。例えば、セル内マルチTRPの場合、候補セル内の2つのTRPが同じTAGに属し、セル間マルチTRPの場合、候補セル間の2つのTRPが異なるTAGに属するケースがサポートされてもよい。 Both option 4-6 and option 4-7 may be supported. For example, in the case of intra-cell multi-TRP, two TRPs in a candidate cell belong to the same TAG, and in the case of inter-cell multi-TRP, the case where two TRPs between candidate cells belong to different TAGs may be supported.
[オプション4-8]
 候補セルは、セル内マルチTRP(例えば、intra-cell MTRP)の設定がサポートされなくてもよい。また、セル内マルチTRPに対して、同期/非同期(例えば、sync/async)の設定がサポートされなくてもよい。
[Option 4-8]
The candidate cell may not support configuration of intra-cell multi-TRP (eg, intra-cell MTRP). Furthermore, synchronous/asynchronous (eg, sync/async) settings may not be supported for intra-cell multi-TRP.
[オプション4-9]
 候補セルは、セル間マルチTRP(例えば、inter-cell MTRP)の設定がサポートされなくてもよい。また、セル間マルチTRPに対して、同期/非同期(例えば、sync/async)の設定がサポートされなくてもよい。
[Option 4-9]
The candidate cell may not support configuration of inter-cell multi-TRP (eg, inter-cell MTRP). Further, synchronous/asynchronous (eg, sync/async) settings may not be supported for inter-cell multi-TRP.
[オプション4-10]
 オプション4-6~オプション4-9が適宜組み合わされて適用されてもよい。例えば、候補セル/セルグループ切り替えについて、(sync/async)セル内マルチTRPの設定と、(sync/async)セル間マルチTRPの設定と、の両方がサポートされる構成(オプション4-6+オプション4-7)としてもよい。あるいは、候補セル/セルグループ切り替えについて、(sync/async)セル内マルチTRPの設定はサポートされ、(sync/async)セル間マルチTRPの設定はサポートされない構成(オプション4-6+オプション4-9)としてもよい。あるいは、候補セル/セルグループ切り替えについて、(sync/async)セル内マルチTRPの設定はサポートされず、(sync/async)セル間マルチTRPの設定はサポートされる構成(オプション4-7+オプション4-8)としてもよい。
[Option 4-10]
Options 4-6 to 4-9 may be applied in combination as appropriate. For example, regarding candidate cell/cell group switching, a configuration in which both (sync/async) intra-cell multi-TRP settings and (sync/async) inter-cell multi-TRP settings are supported (Option 4-6 + Option 4 -7) may be used. Alternatively, regarding candidate cell/cell group switching, (sync/async) intra-cell multi-TRP settings are supported, but (sync/async) inter-cell multi-TRP settings are not supported (Option 4-6 + Option 4-9) You can also use it as Alternatively, for candidate cell/cell group switching, (sync/async) intra-cell multi-TRP settings are not supported, and (sync/async) inter-cell multi-TRP settings are supported (Option 4-7 + Option 4- 8) may be used.
[バリエーション]
 オプション4-6~オプション4-10において、候補セルは、SpCell切り替えに対する候補セルであるか、SCell切り替えに対する候補セルであるかが区別されてもよい。この場合、SpCellに対応する候補セルと、SCell(又は、各SCell)に対応する候補セルについて、セル内マルチTRP/セル間マルチTRP(又は、同期/非同期)の設定有無が別々に設定されてもよい。
[variation]
In options 4-6 to 4-10, the candidate cell may be distinguished as to whether it is a candidate cell for SpCell switching or a candidate cell for SCell switching. In this case, the presence or absence of setting of intra-cell multi-TRP/inter-cell multi-TRP (or synchronous/asynchronous) is set separately for the candidate cell corresponding to SpCell and the candidate cell corresponding to SCell (or each SCell). Good too.
 あるいは、SpCellに対応する候補セルと、SCell(又は、各SCell)に対応する候補セルについて、セル内マルチTRP/セル間マルチTRP(又は、同期/非同期)の設定有無が共通に設定されてもよい。 Alternatively, the presence or absence of setting of intra-cell multi-TRP/inter-cell multi-TRP (or synchronous/asynchronous) may be set in common for the candidate cell corresponding to SpCell and the candidate cell corresponding to SCell (or each SCell). good.
 オプション4-1~オプション4-10において、同期と非同期の一方(例えば、同期)のみサポートされてもよい。例えば、基本的なUE能力として同期に関するUE能力がサポートされ、非同期に関するUE能力は、同期に関するUE能力とは別に(又は、同期に関するUE能力に加えて)サポートされてもよい。 In options 4-1 to 4-10, only one of synchronous and asynchronous (for example, synchronous) may be supported. For example, a UE capability for synchronization may be supported as a basic UE capability, and a UE capability for asynchronization may be supported separately from (or in addition to) a UE capability for synchronization.
<補足>
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
<Supplement>
At least one of the embodiments described above may apply only to UEs that have reported or support a particular UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
・セル切り替えが失敗となった場合に特定のUE動作をサポートすること、
・L1/L2インターセルモビリティ手順/動作とL3モビリティ手順/動作の衝突をサポートすること、
・MAC CEによりアクティブ化されるTCI状態が、同じ周波数領域に対応するサービングセル/候補セルに関連づけられる場合に周波数内セル切り替えをサポートすること、
・MAC CEによりアクティブ化されるTCI状態が、同じ周波数領域に対応するサービングセル/候補セルに関連づけられる場合に周波数間セル切り替えをサポートすること、
・MAC CEによりアクティブ化されるTCI状態が、異なる周波数領域に対応するサービングセル/候補セルに関連づけられること、かかる場合の周波数領域の最大数、候補セルの最大数、周波数毎のセルの最大数、
・サービングセルに対してセル内マルチTRP/セル間マルチTRPの設定がサポートされること、
・候補セルに対してセル内マルチTRP/セル間マルチTRPの設定がサポートされること。
The particular UE capability may indicate at least one of the following:
- supporting specific UE behavior in case of cell switching failure;
- supporting collisions between L1/L2 intercell mobility procedures/operations and L3 mobility procedures/operations;
- supporting intra-frequency cell switching when the TCI state activated by the MAC CE is associated with serving cells/candidate cells corresponding to the same frequency region;
- supporting inter-frequency cell switching when the TCI state activated by the MAC CE is associated with serving cells/candidate cells corresponding to the same frequency region;
- the TCI states activated by the MAC CE are associated with serving cells/candidate cells corresponding to different frequency regions, in such cases the maximum number of frequency regions, the maximum number of candidate cells, the maximum number of cells per frequency;
・Intra-cell multi-TRP/inter-cell multi-TRP configuration is supported for the serving cell;
- Intra-cell multi-TRP/inter-cell multi-TRP settings are supported for candidate cells.
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。 Further, the specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency) or a capability that is applied across all frequencies (e.g., cell, band, band combination, BWP, component carrier, etc.). or a combination of these), or by frequency range (for example, Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2). Alternatively, it may be a capability for each subcarrier spacing (SCS), or a capability for each Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex). The capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。 Also, at least one of the embodiments described above may be applied when the UE is configured with specific information related to the embodiment described above by upper layer signaling.
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16/17の動作を適用してもよい。 If the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16/17 operations may be applied.
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1-1]
 サービングセルから候補セルへのセル切り替え指示情報を含む下り制御情報及びMAC CE(MAC Control Element)の少なくとも一つを受信する受信部と、前記セル切り替え指示情報に対するACK(ACKnowledgement)の送信、及び前記セル切り替え指示情報を受信した後の特定のウィンドウ又はタイマ期間における前記候補セルからのDL送信の受信、の少なくとも一つに基づいて、前記サービングセルから前記候補セルへの切り替えの成功又は失敗を判断する制御部と、を有する端末。
[付記1-2]
 前記特定のウィンドウ又はタイマは、前記ACK送信後又は前記ACK送信後の所定期間後に開始される付記1-1に記載の端末。
[付記1-3]
 前記制御部は、前記特定のウィンドウ又はタイマ期間において、前記候補セルからのDL送信を受信できない場合/ランダムアクセス手順が完了しない場合、前記サービングセルから前記候補セルへの切り替えが失敗したと判断する付記1-1又は付記1-2に記載の端末。
[付記1-4]
 前記制御部は、前記サービングセルから前記候補セルへの切り替えが失敗した場合、前記サービングセル及び前記候補セルの少なくとも一つに対してランダムアクセス手順を行うように制御する付記1-1から付記1-3のいずれかに記載の端末。
(Additional note)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Appendix 1-1]
a receiving unit that receives at least one of downlink control information and a MAC Control Element (MAC CE) including cell switching instruction information from a serving cell to a candidate cell; transmitting an ACK (ACKnowledgement) for the cell switching instruction information; control for determining success or failure of switching from the serving cell to the candidate cell based on at least one of: receiving a DL transmission from the candidate cell in a specific window or timer period after receiving switching instruction information; A terminal having a section and a terminal.
[Appendix 1-2]
The terminal according to appendix 1-1, wherein the specific window or timer is started after the ACK transmission or after a predetermined period after the ACK transmission.
[Appendix 1-3]
Additional note that the control unit determines that the switching from the serving cell to the candidate cell has failed if the DL transmission from the candidate cell cannot be received/the random access procedure is not completed in the specific window or timer period. 1-1 or the terminal described in Appendix 1-2.
[Appendix 1-4]
Supplementary Notes 1-1 to 1-3, wherein the control unit controls to perform a random access procedure for at least one of the serving cell and the candidate cell when switching from the serving cell to the candidate cell fails. A device listed in any of the above.
[付記2-1]
 L1/L2セル間モビリティ手順を指示する第1の指示情報と、L3モビリティ手順を指示する第2の指示情報と、の少なくとも一つを受信する受信部と、前記第1の指示情報に基づいて前記L1/L2セル間モビリティ手順を制御し、前記第2の指示情報に基づいて前記L3モビリティ手順を制御する制御部と、を有し、前記制御部は、前記L1/L2セル間モビリティ手順と前記L3モビリティ手順を同時に行わないように制御する端末。
[付記2-2]
 前記制御部は、前記L1/L2セル間モビリティ手順が進行中の場合に前記第2の指示情報を受信しないと想定し、前記L3モビリティ手順が進行中の場合に前記第1の指示情報を受信しないと想定する付記2-1に記載の端末。
[付記2-3]
 前記制御部は、前記L1/L2セル間モビリティ手順と前記L3モビリティ手順が衝突する場合、特定の手順を優先する付記2-1又は付記2-2に記載の端末。
[付記2-4]
 前記制御部は、前記L1/L2セル間モビリティ手順と前記L3モビリティ手順が衝突する場合、後から指示された手順を優先する付記2-1から付記2-3のいずれかに記載の端末。
[Appendix 2-1]
a receiving unit that receives at least one of first instruction information instructing an L1/L2 inter-cell mobility procedure and second instruction information instructing an L3 mobility procedure; a control unit that controls the L1/L2 inter-cell mobility procedure and controls the L3 mobility procedure based on the second instruction information, the control unit controlling the L1/L2 inter-cell mobility procedure and A terminal that controls not to perform the L3 mobility procedures at the same time.
[Appendix 2-2]
The control unit assumes that the second instruction information is not received when the L1/L2 inter-cell mobility procedure is in progress, and receives the first instruction information when the L3 mobility procedure is in progress. Terminals listed in Appendix 2-1 that are assumed not to be used.
[Appendix 2-3]
The terminal according to attachment 2-1 or attachment 2-2, wherein the control unit gives priority to a specific procedure when the L1/L2 inter-cell mobility procedure and the L3 mobility procedure conflict.
[Appendix 2-4]
The terminal according to any one of attachments 2-1 to 2-3, wherein the control unit gives priority to a procedure instructed later when the L1/L2 inter-cell mobility procedure and the L3 mobility procedure conflict.
[付記3-1]
 サービングセルと、前記サービングセルに対応する1以上の候補セルと、にそれぞれ関連付けられるアクティブ送信コンフィグレーション指標(TCI)状態に関する情報を含むMAC CE(MAC Control Element)を受信する受信部と、前記MAC CEに基づいて、前記サービングセルに対応するTCI状態及び前記候補セルに対応するTCI状態を判断する制御部と、を有し、前記MAC CEによりアクティブ化されるTCI状態は、少なくとも前記サービングセルと同じ周波数領域に対応する候補セルに関連づけられる端末。
[付記3-2]
 前記MAC CEによりアクティブ化されるTCI状態は、前記サービングセルと同じ周波数領域に対応する候補セル及び前記サービングセルと異なる周波数領域に対応する候補セルに関連づけられる付記3-1に記載の端末。
[付記3-3]
 複数のサービングセルが設定される場合、1つのMAC CEにより前記複数のサービングセルに関連づけられるアクティブTCI状態、及び前記複数のサービングセルにそれぞれ対応する1以上の候補セルに関連づけられるアクティブTCI状態の少なくとも一つが指示される付記3-1又は付記3-2に記載の端末。
[付記3-4]
 前記制御部は、前記MAC CEによりある周波数領域に対応するサービングセルに対して指示されたTCI状態IDに基づいて、他の周波数領域に対応するサービングセル及び候補セルの少なくとも一つに対応するTCI状態を判断する付記3-1から付記3-3のいずれかに記載の端末。
[Appendix 3-1]
a receiving unit that receives a MAC Control Element (MAC CE) including information regarding an active transmission configuration indicator (TCI) state respectively associated with a serving cell and one or more candidate cells corresponding to the serving cell; a control unit that determines a TCI state corresponding to the serving cell and a TCI state corresponding to the candidate cell based on the MAC CE, and the TCI state activated by the MAC CE is at least in the same frequency region as the serving cell. A terminal associated with the corresponding candidate cell.
[Appendix 3-2]
The terminal according to appendix 3-1, wherein the TCI state activated by the MAC CE is associated with a candidate cell corresponding to the same frequency region as the serving cell and a candidate cell corresponding to a different frequency region from the serving cell.
[Appendix 3-3]
When a plurality of serving cells are configured, at least one of an active TCI state associated with the plurality of serving cells by one MAC CE and an active TCI state associated with one or more candidate cells respectively corresponding to the plurality of serving cells is indicated. The terminal described in Appendix 3-1 or 3-2.
[Appendix 3-4]
The control unit determines a TCI state corresponding to at least one of a serving cell and a candidate cell corresponding to another frequency region based on a TCI state ID instructed to a serving cell corresponding to a certain frequency region by the MAC CE. The terminal described in any of Supplementary Notes 3-1 to 3-3 to be determined.
[付記4-1]
 サービングセルから候補セルへのセル切り替え指示情報を含む下り制御情報及びMAC CE(MAC Control Element)の少なくとも一つを受信する受信部と、前記セル切り替え指示情報に基づいて、セルの切り替え動作を制御する制御部と、を有し、前記サービングセル及び前記候補セルの少なくとも一つは、セル内マルチ送受信ポイント及びセル間マルチ送受信ポイントの少なくとも一つが設定される端末。
[付記4-2]
 前記セル内マルチ送受信ポイントが設定される場合、前記サービングセル及び前記候補セルの少なくとも一つに含まれる複数の送受信ポイントが同期又は非同期に設定される付記4-1に記載の端末。
[付記4-3]
 前記セル間マルチ送受信ポイントが設定される場合、複数のサービングセルにそれぞれ含まれる複数の送受信ポイント及び複数の候補セルにそれぞれ含まれる複数の送受信ポイントの少なくとも一方が同期又は非同期に設定される付記4-1又は付記4-2に記載の端末。
[付記4-4]
 前記セル内マルチ送受信ポイント及び前記セル間マルチ送受信ポイントの両方の設定がサポートされる場合、あるセルに含まれる複数の送受信ポイントは同じタイミングアドバンスグループに設定され、異なるセルにそれぞれ含まれる複数の送受信ポイントは異なるタイミングアドバンスグループに設定されることがサポートされる付記4-1から付記4-3のいずれかに記載の端末。
[Appendix 4-1]
a receiving unit that receives at least one of downlink control information and a MAC Control Element (MAC CE) including cell switching instruction information from a serving cell to a candidate cell; and a receiving unit that controls cell switching operations based on the cell switching instruction information. A terminal comprising: a control unit; and at least one of the serving cell and the candidate cell is configured with at least one of an intra-cell multi-transmission/reception point and an inter-cell multi-transmission/reception point.
[Appendix 4-2]
The terminal according to appendix 4-1, wherein when the intra-cell multi-transmission/reception points are set, a plurality of transmission/reception points included in at least one of the serving cell and the candidate cell are set synchronously or asynchronously.
[Appendix 4-3]
When the inter-cell multi-transmission/reception points are set, at least one of the plurality of transmission/reception points included in each of the plurality of serving cells and the plurality of transmission/reception points included in each of the plurality of candidate cells is set to be synchronous or asynchronous. 1 or the terminal described in Appendix 4-2.
[Appendix 4-4]
If the configuration of both the intra-cell multi-transmission/reception point and the inter-cell multi-transmission/reception point is supported, multiple transmission/reception points included in a certain cell are set to the same timing advance group, and multiple transmission/reception points included in different cells are set to the same timing advance group. The terminal according to any one of Supplementary notes 4-1 to 4-3, in which points are supported to be set in different timing advance groups.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
 図23は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 23 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (also simply referred to as system 1) uses Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). It may also be a system that realizes communication using
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Additionally, the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare. User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、ApplicationFunction(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。 Core Network 30 is, for example, User Plane Function (UPF), Access and Mobility Management Function (AMF), Session Management (SMF), Unified Data Management. T (UDM), ApplicationFunction (AF), Data Network (DN), Location Management Network Functions (NF) such as Function (LMF) and Operation, Administration and Maintenance (Management) (OAM) may also be included. Note that multiple functions may be provided by one network node. Furthermore, communication with an external network (eg, the Internet) may be performed via the DN.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A wireless access method may also be called a waveform. Note that in the wireless communication system 1, other wireless access methods (for example, other single carrier transmission methods, other multicarrier transmission methods) may be used as the UL and DL radio access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the wireless communication system 1, uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, upper layer control information, etc. may be transmitted by PUSCH. Furthermore, a Master Information Block (MIB) may be transmitted via the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlinks, uplinks, etc. may be expressed without adding "link". Furthermore, various channels may be expressed without adding "Physical" at the beginning.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In addition, in the wireless communication system 1, measurement reference signals (Sounding Reference Signal (SRS)), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS). good. Note that DMRS may be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図24は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 24 is a diagram illustrating an example of the configuration of a base station according to an embodiment. The base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like. The control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140. The control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120. The control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123. The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212. The transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted. A baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 120 (RF section 122) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may perform measurements regarding the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 is the receiving power (for example, Reference Signal Received Power (RSRP)), Receive Quality (eg, Reference Signal Received Quality (RSRQ), Signal To InterfERENCE PLUS NOI. SE RATIO (SINR), Signal to Noise Ratio (SNR) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured. The measurement results may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30 (for example, network nodes providing NF), other base stations 10, etc., and provides information for the user terminal 20. User data (user plane data), control plane data, etc. may be acquired and transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
 送受信部120は、サービングセルから候補セルへのセル切り替え指示情報を含む下り制御情報及びMAC CE(MAC Control Element)の少なくとも一つを端末に送信してもよい。制御部110は、端末から送信される、セル切り替え指示情報に対するACK(ACKnowledgement)に基づいて、サービングセルから候補セルへの切り替えの成功又は失敗を判断してもよい。 The transmitting/receiving unit 120 may transmit to the terminal at least one of downlink control information including cell switching instruction information from a serving cell to a candidate cell and a MAC CE (MAC Control Element). The control unit 110 may determine whether the switching from the serving cell to the candidate cell is successful or unsuccessful based on an ACK (ACKnowledgement) for cell switching instruction information transmitted from the terminal.
 送受信部120は、L1/L2セル間モビリティ手順を指示する第1の指示情報と、L3モビリティ手順を指示する第2の指示情報と、の少なくとも一つを送信してもよい。制御部110は、L1/L2セル間モビリティ手順とL3モビリティ手順が衝突しないように第1の指示情報と第2の指示情報の送信を制御してもよい。 The transmitter/receiver 120 may transmit at least one of first instruction information that instructs the L1/L2 inter-cell mobility procedure and second instruction information that instructs the L3 mobility procedure. The control unit 110 may control the transmission of the first instruction information and the second instruction information so that the L1/L2 inter-cell mobility procedure and the L3 mobility procedure do not conflict.
 送受信部120は、サービングセルと、サービングセルに対応する1以上の候補セルと、にそれぞれ関連付けられるアクティブ送信コンフィグレーション指標(TCI)状態に関する情報を含むMAC CE(MAC Control Element)を送信してもよい。制御部110は、MAC CEに基づいて、サービングセルに対応するTCI状態及び候補セルに対応するTCI状態を指示してもよい。MAC CEによりアクティブ化されるTCI状態は、少なくともサービングセルと同じ周波数領域に対応する候補セルに関連づけられてもよい。 The transmitter/receiver 120 may transmit a MAC CE (MAC Control Element) that includes information regarding active transmission configuration indicators (TCI) states respectively associated with the serving cell and one or more candidate cells corresponding to the serving cell. The control unit 110 may instruct the TCI state corresponding to the serving cell and the TCI state corresponding to the candidate cell based on the MAC CE. The TCI state activated by the MAC CE may be associated with a candidate cell that corresponds to at least the same frequency region as the serving cell.
 送受信部120は、サービングセルから候補セルへのセル切り替え指示情報を含む下り制御情報及びMAC CE(MAC Control Element)の少なくとも一つを送信してもよい。制御部110は、セル切り替え指示情報を利用して、セルの切り替え動作を指示してもよい。サービングセル及び候補セルの少なくとも一つは、セル内マルチ送受信ポイント及びセル間マルチ送受信ポイントの少なくとも一つが設定されてもよい。 The transmitter/receiver 120 may transmit at least one of downlink control information including cell switching instruction information from a serving cell to a candidate cell and a MAC CE (MAC Control Element). The control unit 110 may instruct a cell switching operation using the cell switching instruction information. At least one of the serving cell and the candidate cell may be configured with at least one of an intra-cell multi-transmission/reception point and an inter-cell multi-transmission/reception point.
(ユーザ端末)
 図25は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 25 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. The user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223. The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212. The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 2211 and an RF section 222. The reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Note that whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (for example, PUSCH), the transmitting/receiving unit 220 (transmission processing unit 2211) performs the above processing in order to transmit the channel using the DFT-s-OFDM waveform. DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving unit 220 (measuring unit 223) may perform measurements regarding the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement results may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
 送受信部220は、サービングセルから候補セルへのセル切り替え指示情報を含む下り制御情報及びMAC CE(MAC Control Element)の少なくとも一つを受信してもよい。制御部210は、セル切り替え指示情報に対するACK(ACKnowledgement)の送信、及びセル切り替え指示情報を受信した後の特定のウィンドウ又はタイマ期間における候補セルからのDL送信の受信、の少なくとも一つに基づいて、サービングセルから候補セルへの切り替えの成功又は失敗を判断してもよい。特定のウィンドウ又はタイマは、ACK送信後又は前記ACK送信後の所定期間後に開始されてもよい。制御部210は、特定のウィンドウ又はタイマ期間において、候補セルからのDL送信を受信できない場合/ランダムアクセス手順が完了しない場合、サービングセルから前記候補セルへの切り替えが失敗したと判断してもよい。制御部210は、サービングセルから候補セルへの切り替えが失敗した場合、サービングセル及び候補セルの少なくとも一つに対してランダムアクセス手順を行うように制御してもよい。 The transmitting/receiving unit 220 may receive at least one of downlink control information including cell switching instruction information from a serving cell to a candidate cell and a MAC CE (MAC Control Element). The control unit 210 transmits an ACK (ACKnowledgement) in response to the cell switching instruction information, and receives DL transmission from the candidate cell in a specific window or timer period after receiving the cell switching instruction information. , the success or failure of switching from the serving cell to the candidate cell may be determined. A particular window or timer may be started after an ACK is sent or after a predetermined period of time after said ACK is sent. The control unit 210 may determine that the switching from the serving cell to the candidate cell has failed if the DL transmission from the candidate cell cannot be received/the random access procedure is not completed within a specific window or timer period. If the switching from the serving cell to the candidate cell fails, the control unit 210 may perform control to perform a random access procedure on at least one of the serving cell and the candidate cell.
 送受信部220は、L1/L2セル間モビリティ手順を指示する第1の指示情報と、L3モビリティ手順を指示する第2の指示情報と、の少なくとも一つを受信してもよい。制御部210は、第1の指示情報に基づいてL1/L2セル間モビリティ手順を制御し、第2の指示情報に基づいてL3モビリティ手順を制御してもよい。制御部210は、L1/L2セル間モビリティ手順とL3モビリティ手順を同時に行わないように制御(又は、想定)してもよい。制御部210は、L1/L2セル間モビリティ手順が進行中の場合に第2の指示情報を受信しないと想定してもよい。制御部210は、L3モビリティ手順が進行中の場合に第1の指示情報を受信しないと想定してもよい。制御部210は、L1/L2セル間モビリティ手順とL3モビリティ手順が衝突する場合、特定の手順を優先してもよい。制御部210は、L1/L2セル間モビリティ手順とL3モビリティ手順が衝突する場合、後から指示された手順を優先してもよい。 The transmitting/receiving unit 220 may receive at least one of first instruction information instructing an L1/L2 inter-cell mobility procedure and second instruction information instructing an L3 mobility procedure. The control unit 210 may control the L1/L2 inter-cell mobility procedure based on the first instruction information, and may control the L3 mobility procedure based on the second instruction information. The control unit 210 may control (or assume) not to perform the L1/L2 inter-cell mobility procedure and the L3 mobility procedure at the same time. The controller 210 may assume that the second instruction information is not received when the L1/L2 inter-cell mobility procedure is in progress. The controller 210 may assume that the first instruction information is not received when the L3 mobility procedure is in progress. When the L1/L2 inter-cell mobility procedure and the L3 mobility procedure conflict, the control unit 210 may give priority to a specific procedure. When the L1/L2 inter-cell mobility procedure and the L3 mobility procedure conflict, the control unit 210 may give priority to the procedure instructed later.
 送受信部220は、サービングセルと、サービングセルに対応する1以上の候補セルと、にそれぞれ関連付けられるアクティブ送信コンフィグレーション指標(TCI)状態に関する情報を含むMAC CE(MAC Control Element)を受信してもよい。制御部210は、MAC CEに基づいて、サービングセルに対応するTCI状態及び候補セルに対応するTCI状態を判断してもよい。MAC CEによりアクティブ化されるTCI状態は、少なくともサービングセルと同じ周波数領域に対応する候補セルに関連づけられてもよい。MAC CEによりアクティブ化されるTCI状態は、サービングセルと同じ周波数領域に対応する候補セル及びサービングセルと異なる周波数領域に対応する候補セルに関連づけられてもよい。複数のサービングセルが設定される場合、1つのMAC CEにより複数のサービングセルに関連づけられるアクティブTCI状態、及び複数のサービングセルにそれぞれ対応する1以上の候補セルに関連づけられるアクティブTCI状態の少なくとも一つが指示されてもよい。制御部210は、MAC CEによりある周波数領域に対応するサービングセルに対して指示されたTCI状態IDに基づいて、他の周波数領域に対応するサービングセル及び候補セルの少なくとも一つに対応するTCI状態を判断してもよい。 The transmitting/receiving unit 220 may receive a MAC CE (MAC Control Element) that includes information regarding active transmission configuration indicators (TCI) states respectively associated with the serving cell and one or more candidate cells corresponding to the serving cell. The control unit 210 may determine the TCI state corresponding to the serving cell and the TCI state corresponding to the candidate cell based on the MAC CE. The TCI state activated by the MAC CE may be associated with a candidate cell that corresponds to at least the same frequency region as the serving cell. The TCI state activated by the MAC CE may be associated with a candidate cell corresponding to the same frequency region as the serving cell and a candidate cell corresponding to a different frequency region than the serving cell. When multiple serving cells are configured, at least one of an active TCI state associated with multiple serving cells and an active TCI state associated with one or more candidate cells each corresponding to the multiple serving cells is indicated by one MAC CE. Good too. The control unit 210 determines the TCI state corresponding to at least one of the serving cell and candidate cell corresponding to another frequency region based on the TCI state ID instructed by the MAC CE to the serving cell corresponding to a certain frequency region. You may.
 送受信部220は、サービングセルから候補セルへのセル切り替え指示情報を含む下り制御情報及びMAC CE(MAC Control Element)の少なくとも一つを受信してもよい。制御部210は、セル切り替え指示情報に基づいて、セルの切り替え動作を制御してもよい。サービングセル及び前記候補セルの少なくとも一つは、セル内マルチ送受信ポイント及びセル間マルチ送受信ポイントの少なくとも一つが設定されてもよい。セル内マルチ送受信ポイントが設定される場合、サービングセル及び候補セルの少なくとも一つに含まれる複数の送受信ポイントが同期又は非同期に設定されてもよい。セル間マルチ送受信ポイントが設定される場合、複数のサービングセルにそれぞれ含まれる複数の送受信ポイント及び複数の候補セルにそれぞれ含まれる複数の送受信ポイントの少なくとも一方が同期又は非同期に設定されてもよい。セル内マルチ送受信ポイント及びセル間マルチ送受信ポイントの両方の設定がサポートされる場合、あるセルに含まれる複数の送受信ポイントは同じタイミングアドバンスグループに設定され、異なるセルにそれぞれ含まれる複数の送受信ポイントは異なるタイミングアドバンスグループに設定されることがサポートされてもよい。 The transmitting/receiving unit 220 may receive at least one of downlink control information including cell switching instruction information from a serving cell to a candidate cell and a MAC CE (MAC Control Element). The control unit 210 may control the cell switching operation based on the cell switching instruction information. At least one of the serving cell and the candidate cell may be configured with at least one of an intra-cell multi-transmission/reception point and an inter-cell multi-transmission/reception point. When intra-cell multi-transmission/reception points are set, multiple transmission/reception points included in at least one of the serving cell and the candidate cell may be set synchronously or asynchronously. When inter-cell multi-transmission/reception points are set, at least one of the plurality of transmission/reception points included in each of the plurality of serving cells and the plurality of transmission/reception points included in each of the plurality of candidate cells may be set to be synchronous or asynchronous. If both intra-cell multi-transmission/reception points and inter-cell multi-transmission/reception points are supported, multiple transmission/reception points in one cell are set to the same timing advance group, and multiple transmission/reception points in different cells are set to the same timing advance group. It may be supported to be set to different timing advance groups.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図26は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 26 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in this disclosure, words such as apparatus, circuit, device, section, unit, etc. can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, the processing may be performed by one processor, or the processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Note that the processor 1001 may be implemented using one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a portion of the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include. For example, the above-described transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modified example)
Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal may be interchanged. Also, the signal may be a message. The reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard. Further, a component carrier (CC) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame structure. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Additionally, an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier. Good too. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are not in any way exclusive designations. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Additionally, information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer. Information, signals, etc. may be input and output via multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like. Further, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, notification of prescribed information (for example, notification of "X") is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (such as infrared, microwave, etc.) to , a server, or other remote source, these wired and/or wireless technologies are included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may refer to devices (eg, base stations) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, "precoding", "precoder", "weight (precoding weight)", "quasi-co-location (QCL)", "Transmission Configuration Indication state (TCI state)", "space "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", and "panel" are interchangeable. can be used.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "Base Station (BS)", "Wireless base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , "cell," "sector," "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In the present disclosure, a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" are used interchangeably. can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 図27は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 27 is a diagram illustrating an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49. The electronic control section 49 may be called an electronic control unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52. air pressure signals of the front wheels 46/rear wheels 47, a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor. 56, a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40. Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the base station 10, user terminal 20, etc. described above. Further, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 The communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions that the base station 10 described above has. Further, words such as "uplink" and "downlink" may be replaced with words corresponding to inter-terminal communication (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be replaced with sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced by a base station. In this case, the base station 10 may have the functions that the user terminal 20 described above has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, the operations performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is an integer or decimal number, for example)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods. The present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these systems. Furthermore, a combination of multiple systems (for example, a combination of LTE or LTE-A and 5G) may be applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment" can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be "determining", such as accessing data in memory (eg, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment" is considered to mean "judging" resolving, selecting, choosing, establishing, comparing, etc. Good too. In other words, "judgment (decision)" may be considered to be "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Furthermore, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected", "coupled", or any variations thereof refer to any connection or coupling, direct or indirect, between two or more elements. can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access."
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising". It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In the present disclosure, "less than or equal to", "less than", "more than", "more than", "equal to", etc. may be read interchangeably. In addition, in this disclosure, "good", "bad", "large", "small", "high", "low", "early", "slow", "wide", "narrow", etc. The words are not limited to the original, comparative, and superlative, and may be interpreted interchangeably. In addition, in this disclosure, words meaning "good", "bad", "large", "small", "high", "low", "early", "slow", "wide", "narrow", etc. may be interpreted as an expression with "the i-th" (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest" can be interpreted as "the i-th highest"). may be read interchangeably).
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, "of", "for", "regarding", "related to", "associated with", etc. are used to refer to each other. It may be read differently.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the invention defined based on the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and does not have any limiting meaning on the invention according to the present disclosure.

Claims (6)

  1.  L1/L2セル間モビリティ手順を指示する第1の指示情報と、L3モビリティ手順を指示する第2の指示情報と、の少なくとも一つを受信する受信部と、
     前記第1の指示情報に基づいて前記L1/L2セル間モビリティ手順を制御し、前記第2の指示情報に基づいて前記L3モビリティ手順を制御する制御部と、を有し、
     前記制御部は、前記L1/L2セル間モビリティ手順と前記L3モビリティ手順を同時に行わないように制御する端末。
    a receiving unit that receives at least one of first instruction information instructing an L1/L2 inter-cell mobility procedure and second instruction information instructing an L3 mobility procedure;
    a control unit that controls the L1/L2 inter-cell mobility procedure based on the first instruction information and controls the L3 mobility procedure based on the second instruction information,
    The control unit controls the terminal so that the L1/L2 inter-cell mobility procedure and the L3 mobility procedure are not performed simultaneously.
  2.  前記制御部は、前記L1/L2セル間モビリティ手順が進行中の場合に前記第2の指示情報を受信しないと想定し、前記L3モビリティ手順が進行中の場合に前記第1の指示情報を受信しないと想定する請求項1に記載の端末。 The control unit assumes that the second instruction information is not received when the L1/L2 inter-cell mobility procedure is in progress, and receives the first instruction information when the L3 mobility procedure is in progress. Terminal according to claim 1, wherein it is assumed that the terminal does not.
  3.  前記制御部は、前記L1/L2セル間モビリティ手順と前記L3モビリティ手順が衝突する場合、特定の手順を優先する請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit gives priority to a specific procedure when the L1/L2 inter-cell mobility procedure and the L3 mobility procedure conflict.
  4.  前記制御部は、前記L1/L2セル間モビリティ手順と前記L3モビリティ手順が衝突する場合、後から指示された手順を優先する請求項1に記載の端末。 The terminal according to claim 1, wherein when the L1/L2 inter-cell mobility procedure and the L3 mobility procedure conflict, the control unit gives priority to the procedure instructed later.
  5.  L1/L2セル間モビリティ手順を指示する第1の指示情報と、L3モビリティ手順を指示する第2の指示情報と、の少なくとも一つを受信する工程と、
     前記第1の指示情報に基づいて前記L1/L2セル間モビリティ手順を制御し、前記第2の指示情報に基づいて前記L3モビリティ手順を制御する工程と、を有し、
     前記制御部は、前記L1/L2セル間モビリティ手順と前記L3モビリティ手順を同時に行わないように制御する端末の無線通信方法。
    receiving at least one of first instruction information indicating an L1/L2 intercell mobility procedure and second instruction information indicating an L3 mobility procedure;
    controlling the L1/L2 inter-cell mobility procedure based on the first instruction information, and controlling the L3 mobility procedure based on the second instruction information,
    The wireless communication method for a terminal, wherein the control unit controls the L1/L2 inter-cell mobility procedure and the L3 mobility procedure not to be performed simultaneously.
  6.  L1/L2セル間モビリティ手順を指示する第1の指示情報と、L3モビリティ手順を指示する第2の指示情報と、の少なくとも一つを送信する送信部と、
     前記L1/L2セル間モビリティ手順と前記L3モビリティ手順が衝突しないように前記第1の指示情報と前記第2の指示情報の送信を制御する制御部と、を有する基地局。
    a transmitter that transmits at least one of first instruction information that instructs an L1/L2 inter-cell mobility procedure and second instruction information that instructs an L3 mobility procedure;
    A base station comprising: a control unit that controls transmission of the first instruction information and the second instruction information so that the L1/L2 inter-cell mobility procedure and the L3 mobility procedure do not conflict.
PCT/JP2022/034740 2022-09-16 2022-09-16 Terminal, wireless communication method, and base station WO2024057525A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034740 WO2024057525A1 (en) 2022-09-16 2022-09-16 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034740 WO2024057525A1 (en) 2022-09-16 2022-09-16 Terminal, wireless communication method, and base station

Publications (1)

Publication Number Publication Date
WO2024057525A1 true WO2024057525A1 (en) 2024-03-21

Family

ID=90274676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034740 WO2024057525A1 (en) 2022-09-16 2022-09-16 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2024057525A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO INC.: "Discussion of L1/L2 based Inter-Cell Mobility", 3GPP DRAFT; R3-224286, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20220815 - 20220824, 9 August 2022 (2022-08-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052264454 *
VIVO: "Discussion on collision between L1/L2 based mobility and L3 mobility", 3GPP DRAFT; R3-224342, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20220815 - 20220824, 9 August 2022 (2022-08-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052264509 *
VIVO: "Discussion on potential impacts on F1 interface for L1/L2 based mobility", 3GPP DRAFT; R3-224341, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20220815 - 20220824, 9 August 2022 (2022-08-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052264508 *

Similar Documents

Publication Publication Date Title
WO2023209984A1 (en) Terminal, wireless communication method, and base station
WO2024057525A1 (en) Terminal, wireless communication method, and base station
WO2024057523A1 (en) Terminal, wireless communication method, and base station
WO2024057522A1 (en) Terminal, wireless communication method, and base station
WO2024057524A1 (en) Terminal, wireless communication method, and base station
WO2023248421A1 (en) Terminal, radio communication method, and base station
WO2023248420A1 (en) Terminal, radio communication method, and base station
WO2024034087A1 (en) Terminal, wireless communication method, and base station
WO2024034088A1 (en) Terminal, wireless communication method, and base station
WO2024034089A1 (en) Terminal, wireless communication method, and base station
WO2023188348A1 (en) Terminal, radio communication method, and base station
WO2023188349A1 (en) Terminal, wireless communication method, and base station
WO2024018608A1 (en) Terminal, radio communication method, and base station
WO2024018609A1 (en) Terminal, wireless communication method, and base station
WO2024034086A1 (en) Terminal, wireless communication method, and base station
WO2024034085A1 (en) Terminal, wireless communication method, and base station
WO2024009475A1 (en) Terminal, wireless communication method, and base station
WO2024009473A1 (en) Terminal, wireless communication method, and base station
WO2024080025A1 (en) Terminal, wireless communication method, and base station
WO2024009474A1 (en) Terminal, radio communication method, and base station
WO2024080024A1 (en) Terminal, wireless communication method, and base station
WO2024069822A1 (en) Terminal, wireless communication method, and base station
WO2024069821A1 (en) Terminal, wireless communication method, and base station
WO2024069820A1 (en) Terminal, wireless communication method, and base station
WO2024069823A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958845

Country of ref document: EP

Kind code of ref document: A1