WO2024008220A2 - 一种镀衣复合材料、一种镀衣磨料及其制备方法 - Google Patents

一种镀衣复合材料、一种镀衣磨料及其制备方法 Download PDF

Info

Publication number
WO2024008220A2
WO2024008220A2 PCT/CN2023/128459 CN2023128459W WO2024008220A2 WO 2024008220 A2 WO2024008220 A2 WO 2024008220A2 CN 2023128459 W CN2023128459 W CN 2023128459W WO 2024008220 A2 WO2024008220 A2 WO 2024008220A2
Authority
WO
WIPO (PCT)
Prior art keywords
parts
abrasive
composite material
coating
coated
Prior art date
Application number
PCT/CN2023/128459
Other languages
English (en)
French (fr)
Inventor
曾雄丰
王建省
Original Assignee
华北理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华北理工大学 filed Critical 华北理工大学
Priority to PCT/CN2023/128459 priority Critical patent/WO2024008220A2/zh
Publication of WO2024008220A2 publication Critical patent/WO2024008220A2/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the invention belongs to the technical field of abrasives, and specifically relates to a coated composite material, a coated abrasive and a preparation method thereof.
  • the abrasives added to the grinding wheel mainly include white corundum, green silicon carbide, cubic boron nitride, diamond, etc.
  • the wear of the grinding wheel mainly includes: 1) The sliding effect between the abrasive grains and the workpiece surface, the chemical reaction between the abrasive grains and the grinding zone, and the plastic deformation of the abrasive grains, which gradually dull the abrasive grains. Wear surfaces are formed on the grains; 2) Abrasive wear.
  • the grinding wheel's Clogging and adhesion means that the material to be ground will adhere to the abrasive grains under the action of high grinding temperature and high contact pressure. During the grinding process, the adherends will stick to the grinding wheel, causing the grinding wheel to lose its cutting effect. In addition, the abrasive debris will also block the pores between the abrasive grains. Severe blockage will also cause the abrasive grains to break and fall off or cause the grinding wheel to lose its cutting effect.
  • the purpose of the present invention is to provide a coating composite material, a coating abrasive and a preparation method thereof.
  • the coating composite material provided by the invention can further improve the wear resistance of the coating abrasive.
  • the invention provides a coating composite material, which includes the following components in terms of parts by mass:
  • borate glass 100-120 parts of borate glass, 50-60 parts of alumina, 100-120 parts of potassium feldspar, 10-20 parts of cryolite and 10-20 parts of calcium fluoride.
  • borate glass 100 parts of borate glass, 50 parts of alumina, 100 parts of potash feldspar, 10 parts of cryolite and 10 parts of calcium fluoride.
  • the particle size of the borate glass is 180-220 mesh.
  • the particle size of the alumina is 200-300 mesh.
  • the particle size of the potassium feldspar is 180-220 mesh.
  • the particle size of the cryolite is 180-220 mesh.
  • the particle size of the calcium fluoride is 200-300 mesh.
  • the present invention also provides a coated abrasive, which includes an abrasive and a coated material coated on the surface of the abrasive; the coated material is the coated composite material described in the above technical solution.
  • the abrasive includes one or more of white corundum, green silicon carbide, cubic boron nitride and diamond.
  • the particle size of the abrasive is 80 to 120 mesh.
  • the mass ratio of the abrasive and coating material is 1000:15-30.
  • the present invention also provides a method for preparing the coated abrasive described in the above technical solution, which includes the following steps:
  • the coating material is the coating composite material described in the above technical solution.
  • the binder includes sodium silicate.
  • the modulus of the sodium silicate is 1.6 to 2.2.
  • the mass ratio of the abrasive, adhesive and coating material is 1000:10-15:15-30.
  • the heat treatment is performed in a rotary kiln.
  • the rotary kiln includes a heating zone, a heat preservation zone and a cooling zone in sequence;
  • the length of the heating zone is 12m
  • the length of the heat preservation zone is 10m
  • the length of the cooling zone is 8m.
  • the forward speed of the mixed material in the rotary kiln is 10 to 15 m/h.
  • the heating rate of the heating zone is 8-15°C/min.
  • the temperature of the heat preservation zone is 900-1000°C.
  • the cooling rate of the cooling zone is 5-10°C/min.
  • the feeding rate of the mixed material in the rotary kiln is 10 to 20 kg/min.
  • the invention provides a coating composite material, which includes the following components in terms of parts by mass: 100 to 120 parts of borate glass, 50 to 60 parts of alumina, 100 to 120 parts of potassium feldspar, and 10 to 10 parts of cryolite. 20 parts and 10 to 20 parts of calcium fluoride.
  • the coated composite material provided by the present invention can not only eliminate or weaken the stress inside the abrasive through heat treatment, but also play a good role in repairing and bridging micro-cracks on the surface of the abrasive at high temperatures during specific application processes, thereby greatly improving the strength of the abrasive itself. strength.
  • Figure 1 is a schematic structural diagram of the rotary kiln used in the present invention.
  • the invention provides a coating composite material, which includes the following components in terms of parts by mass:
  • borate glass 100 to 120 parts of borate glass, 50 to 60 parts of alumina, 100 to 120 parts of potassium feldspar, 10 to 20 parts of cryolite, and 10 to 20 parts of calcium fluoride.
  • the coated composite material provided by the present invention includes 100 to 120 parts of borate glass, more preferably 105 to 115 parts, and more preferably 110 parts.
  • the particle size of the borate glass is preferably 180 to 220 mesh, more preferably 190 to 210 mesh, and more preferably 200 mesh.
  • the coated composite material provided by the present invention includes 50 to 60 parts of alumina, more preferably 52 to 58 parts, and more preferably 55 to 56 parts.
  • the particle size of the alumina is preferably 200 to 300 mesh, more preferably 220 to 280 mesh, and more preferably 250 to 260 mesh.
  • the coating composite material provided by the present invention includes 100 to 120 parts of potassium feldspar, more preferably 105 to 115 parts, and more preferably 110 parts.
  • the particle size of the potassium feldspar is preferably 180 to 220 mesh, more preferably 190 to 210 mesh, and more preferably 200 mesh.
  • the coating composite material provided by the present invention includes 10 to 20 parts of cryolite, more preferably 12 to 18 parts, and more preferably 15 to 16 parts.
  • the particle size of the cryolite is preferably 180 to 220 mesh, more preferably 190 to 210 mesh, and more preferably 200 mesh.
  • the coating composite material provided by the present invention includes 10 to 20 parts of calcium fluoride, more preferably 12 to 18 parts, and more preferably 15 to 16 parts.
  • the particle size of the calcium fluoride is preferably 200 to 300 mesh, more preferably 220 to 280 mesh, and more preferably 250 to 260 mesh.
  • the present invention has no special limitations on the preparation method of the coated composite material. It is enough to directly stir and mix the raw materials contained therein; the stirring time is preferably 15 minutes.
  • the present invention also provides a coated abrasive, which includes an abrasive and a coated material coated on the surface of the abrasive; the coated material is the coated composite material described in the above technical solution.
  • the abrasive preferably includes one or more of white corundum, green silicon carbide, cubic boron nitride and diamond.
  • the particle size of the abrasive is preferably 80 to 120 mesh, more preferably 90 to 110 mesh, and more preferably 100 mesh.
  • the adhesive preferably includes sodium silicate; the modulus of the sodium silicate is preferably 1.6 to 2.2, more preferably 1.7 to 2.1, and more preferably 1.8 to 2.0.
  • the mass ratio of the abrasive and coating material is 1000:15-30.
  • the present invention also provides a method for preparing the coated abrasive described in the above technical solution, which includes the following steps:
  • the coating material is the coating composite material described in the above technical solution.
  • the mass ratio of the abrasive, adhesive and coating material is preferably 1000:10-15:15-30, more preferably 1000:11-14:18-28, and more preferably 1000:12 ⁇ 13:20 ⁇ 25.
  • the mixing process is preferably: after mixing the abrasive and the adhesive for the first stirring, adding the coating material for the second stirring; the first stirring time is preferably 5 minutes; the second stirring The stirring time is preferably 20 minutes.
  • the heat treatment is preferably performed in a rotary kiln.
  • the rotary kiln includes a heating zone, a heat preservation zone and a cooling zone; the length of the heating zone is preferably 12m, the length of the heat preservation zone is preferably 10m, and the length of the cooling zone is preferably 8m.
  • the advancing speed of the mixture in the rotary kiln is preferably 10 to 15 m/h.
  • the heating rate of the heating zone is 8-15°C/min; the temperature in the heating zone is raised from room temperature to the temperature of the heat preservation zone.
  • the temperature of the heat preservation zone is preferably 900-1000°C, more preferably 920-980°C, and more preferably 950-960°C.
  • the cooling rate of the cooling zone is preferably 5-10°C/min; in the cooling zone, the temperature of the heat preservation zone is reduced to room temperature.
  • the feeding rate of the mixed material in the rotary kiln is preferably 10 to 20 kg/min.
  • the structural diagram of the rotary kiln used is shown in Figure 1.
  • the obtained mixture is continuously added into the rotary kiln at a speed of 10kg/min.
  • the length of the rotary kiln is 30m.
  • the rotation speed of the rotary kiln is controlled so that the forward speed of the material in the kiln is 10m/h.
  • the temperature zone in the kiln is divided into a heating zone and a heat preservation zone. zone and cooling zone, in which the length of the heating zone is 12m, and the temperature rises from room temperature to 1000°C at a heating rate of 10°C/min; the length of the heat preservation zone is 10m, and the temperature is 1000°C; the length of the cooling zone is 8m, and the temperature is 1000°C °C evenly drops to room temperature at a cooling rate of 8 °C/min.
  • the material enters from the kiln head and flows out from the kiln tail after heat treatment to obtain coated abrasive.
  • the obtained coated abrasive was prepared into a grinding wheel, and the grinding wheel wear resistance was tested.
  • the test results obtained are as shown in Table 1:
  • the obtained mixture is continuously added into the rotary kiln at a speed of 20kg/min.
  • the length of the rotary kiln is 30m.
  • the rotation speed of the rotary kiln is controlled so that the forward speed of the material in the kiln is 15m/h.
  • the temperature zone in the kiln is divided into a heating zone and a heat preservation zone.
  • the length of the heating zone is 12m, and the temperature rises from room temperature to 900°C at a heating rate of 10°C/min; the length of the heat preservation zone is 10m, and the temperature is 900°C; the length of the cooling zone is 8m, and the temperature is 900°C °C evenly drops to room temperature at a cooling rate of 8 °C/min.
  • the material enters from the kiln head and flows out from the kiln tail after heat treatment to obtain coated abrasive.
  • the obtained coated abrasive was prepared into a grinding wheel, and the grinding wheel wear resistance was tested.
  • the test results obtained are as shown in Table 2:
  • the obtained mixture is continuously added into the rotary kiln at a speed of 20kg/min.
  • the length of the rotary kiln is 30m.
  • the rotation speed of the rotary kiln is controlled so that the forward speed of the material in the kiln is 15m/h.
  • the temperature zone in the kiln is divided into a heating zone and a heat preservation zone. zone and cooling zone, in which the length of the heating zone is 12m, and the temperature rises from room temperature to 1000°C at a heating rate of 10°C/min; the length of the heat preservation zone is 10m, and the temperature is 1000°C; the length of the cooling zone is 8m, and the temperature is 1000°C °C evenly drops to room temperature at a cooling rate of 8 °C/min.
  • the material enters from the kiln head and flows out from the kiln tail after heat treatment to obtain abrasives.
  • the obtained abrasive was prepared into a grinding wheel, and the grinding wheel wear resistance was tested.
  • the test results obtained are shown in Table 3:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

本发明属于磨料技术领域,具体涉及一种镀衣复合材料、一种镀衣磨料及其制备方法。本发明提供了一种镀衣复合材料,以质量份数计,包括以下组分:硼酸盐玻璃100~120份、氧化铝50~60份、钾长石100~120份、冰晶石10~20份和氟化钙10~20份。本发明提供的镀衣复合材料不但可通过热处理消除或减弱磨料内部的应力,而且在具体应用过程中的高温下可对磨料表面的微裂纹起到良好的修复弥合作用,从而大大提高磨料本身的强度。

Description

一种镀衣复合材料、一种镀衣磨料及其制备方法 技术领域
本发明属于磨料技术领域,具体涉及一种镀衣复合材料、一种镀衣磨料及其制备方法。
背景技术
砂轮中添加的磨料主要有白刚玉、绿碳化硅、立方氮化硼、金刚石等。在砂轮使用过程中,砂轮的磨耗主要是有:1)磨粒与工件表面的滑移作用,磨粒与磨削区的化学反应以及磨粒的塑性变形作用使磨粒逐渐变钝,在磨粒上形成磨损面;2)磨料的磨损,当磨粒所受的应力超过磨粒本身的强度时,磨粒就会破碎从而从砂轮上脱落,而在原位置留下空穴;3)砂轮的堵塞粘附是在磨削高温和很大的接触压力作用下被磨材料会粘附在磨粒上,磨削过程中粘附物糊在砂轮上使砂轮失去切削作用。另外磨屑也会堵塞磨粒与磨粒之间的孔隙中严重的堵塞同样会引起磨粒破碎脱落或使砂轮失去切削作用。
想要提高砂轮的使用寿命,就必须提高磨料的耐磨性。为此,研究者通过对磨料进行镀衣处理,从而提高砂轮的耐磨性。磨料镀衣是一种采用物理或化学方法对磨料进行包覆的深加工处理工艺。但现有的镀衣磨料依然存在耐磨性较差的缺陷。
发明内容
本发明的目的在于提供一种镀衣复合材料、一种镀衣磨料及其制备方法,本发明提供的镀衣复合材料能够进一步提高镀衣磨料的耐磨性。
为了实现上述目的,本发明提供如下技术方案:
本发明提供了一种镀衣复合材料,以质量份数计,包括以下组分:
硼酸盐玻璃100~120份、氧化铝50~60份、钾长石100~120份、冰晶石10~20份和氟化钙10~20份。
优选的,包括以下组分:
硼酸盐玻璃120份、氧化铝60份、钾长石120份、冰晶石10份和氟化钙20份。
优选的,包括以下组分:
硼酸盐玻璃100份、氧化铝50份、钾长石100份、冰晶石10份和氟化钙10份。
优选的,所述硼酸盐玻璃的粒径为180~220目。
优选的,所述氧化铝的粒径为200~300目。
优选的,所述钾长石的粒径为180~220目。
优选的,所述冰晶石的粒径为180~220目。
优选的,所述氟化钙的粒径为200~300目。
本发明还提供了一种镀衣磨料,包括磨料和包覆在所述磨料表面的镀衣材料;所述镀衣材料为上述技术方案所述的镀衣复合材料。
优选的,所述磨料包括白刚玉、绿碳化硅、立方氮化硼和金刚石中的一种或几种。
优选的,所述磨料的粒径为80~120目。
优选的,所述磨料和镀衣材料的质量比为1000:15~30。
本发明还提供了上述技术方案所述的镀衣磨料的制备方法,包括以下步骤:
将磨料、粘合剂和镀衣材料混合,进行热处理,得到所述镀衣磨料;
所述镀衣材料为上述技术方案所述的镀衣复合材料。
优选的,所述粘合剂包括硅酸钠。
优选的,所述硅酸钠的模数为1.6~2.2。
优选的,所述磨料、粘合剂和镀衣材料的质量比为1000:10~15:15~30。
优选的,所述热处理在回转窑中进行。
优选的,所述回转窑依次包括升温区、保温区和降温区;
所述升温区的长度为12m,所述保温区的长度为10m,所述降温区的长度为8m。
优选的,所述混合得到的混合料在所述回转窑中的前进速率为10~15m/h。
优选的,所述升温区的升温速率为8~15℃/min。
优选的,所述保温区的温度为900~1000℃。
优选的,所述降温区的降温速率为5~10℃/min。
优选的,所述混合得到的混合料在所述回转窑中的进料速率为10~20kg/min。
本发明提供了一种镀衣复合材料,以质量份数计,包括以下组分:硼酸盐玻璃100~120份、氧化铝50~60份、钾长石100~120份、冰晶石10~20份和氟化钙10~20份。本发明提供的镀衣复合材料不但可通过热处理消除或减弱磨料内部的应力,而且在具体应用过程中的高温下可对磨料表面的微裂纹起到良好的修复弥合作用,从而大大提高磨料本身的强度。
附图说明
图1为本发明采用的回转窑的结构示意图。
具体实施方式
本发明提供了一种镀衣复合材料,以质量份数计,包括以下组分:
硼酸盐玻璃100~120份、氧化铝50~60份、钾长石100~120份、冰晶石10~20份、氟化钙10~20份。
在本发明中,若无特殊说明,所有组分均为本领域技术人员熟知的市售产品。
以质量份数计,本发明提供的镀衣复合材料包括硼酸盐玻璃100~120份,进一步优选为105~115份,更优选为110份。在本发明中,所述硼酸盐玻璃的粒径优选为180~220目,进一步优选为190~210目,更优选为200目。
以所述硼酸盐玻璃的质量份数为基准,本发明提供的镀衣复合材料包括氧化铝50~60份,进一步优选为52~58份,更优选为55~56份。在本发明中,所述氧化铝的粒径优选为200~300目,进一步优选为220~280目,更优选为250~260目。
以所述硼酸盐玻璃的质量份数为基准,本发明提供的镀衣复合材料包括钾长石100~120份,进一步优选为105~115份,更优选为110份。在本发明中,所述钾长石的粒径优选为180~220目,进一步优选为190~210目,更优选为200目。
以所述硼酸盐玻璃的质量份数为基准,本发明提供的镀衣复合材料包括冰晶石10~20份,进一步优选为12~18份,更优选为15~16份。在本发明中,所述冰晶石的粒径优选为180~220目,进一步优选为190~210目,更优选为 200目。
以所述硼酸盐玻璃的质量份数为基准,本发明提供的镀衣复合材料包括氟化钙10~20份,进一步优选为12~18份,更优选为15~16份。在本发明中,所述氟化钙的粒径优选为200~300目,进一步优选为220~280目,更优选为250~260目。
本发明对所述镀衣复合材料的制备方法没有特殊的限定,直接将包含的原料经搅拌混合均匀即可;所述搅拌的时间优选为15min。
本发明还提供了一种镀衣磨料,包括磨料和包覆在所述磨料表面的镀衣材料;所述镀衣材料为上述技术方案所述的镀衣复合材料。
在本发明中,所述磨料优选包括白刚玉、绿碳化硅、立方氮化硼和金刚石中的一种或几种。在本发明中,所述磨料的粒径优选为80~120目,进一步优选为90~110目,更优选为100目。
在本发明中,所述粘合剂优选包括硅酸钠;所述硅酸钠的模数优选为1.6~2.2,进一步优选为1.7~2.1,更优选为1.8~2.0。
在本发明中,所述磨料和镀衣材料的质量比为1000:15~30。
本发明还提供了上述技术方案所述的镀衣磨料的制备方法,包括以下步骤:
将磨料、粘合剂和镀衣材料混合,进行热处理,得到所述镀衣磨料;
所述镀衣材料为上述技术方案所述的镀衣复合材料。
在本发明中,所述磨料、粘合剂和镀衣材料的质量比优选为1000:10~15:15~30,进一步优选为1000:11~14:18~28,更优选为1000:12~13:20~25。
在本发明中,所述混合的过程优选为:将磨料和粘合剂混合进行第一搅拌后,加入镀衣材料进行第二搅拌;所述第一搅拌的时间优选为5min;所述第二搅拌的时间优选为20min。
在本发明中,所述热处理优选在回转窑中进行。
在本发明中,所述回转窑包括升温区、保温区和降温区;所述升温区的长度优选为12m,所述保温区的长度优选为10m,所述降温区的长度优选为8m。
在本发明中,所述混合料在所述回转窑中的前进速率优选为10~15m/h。 在本发明中,所述升温区的升温速率为8~15℃/min;在所述升温区由室温升温至所述保温区的温度。在本发明中,所述保温区的温度优选为900~1000℃,进一步优选为920~980℃,更优选为950~960℃。在本发明中,所述降温区的降温速率优选为5~10℃/min;在所述降温区由所述保温区温度降至室温。
在本发明中,所述混合得到的混合料在所述回转窑中的进料速率优选为10~20kg/min。在本发明中,采用的回转窑的结构示意图如图1所示。
为了进一步说明本发明,下面结合附图和实施例对本发明提供的一种镀衣复合材料、一种镀衣磨料及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
将粒径为180目的硼酸盐玻璃100份、粒径为200目的氧化铝50份、粒径为180目的钾长石100份、粒径为180目的冰晶石10份、粒径为200目的氟化钙10份置于搅拌机中搅拌15min,混合均匀后镀衣材料;
按粒径为80目的白刚玉1000份、模数为1.6的水玻璃硅酸钠10份置于搅拌机中,搅拌5min,使粘合剂充分润湿磨料,加入镀衣材料30份,继续搅拌20min,使镀衣材料充分包覆在磨料颗粒的表面,得到混合料;
将得到的混合料以10kg/min的速度持续加入到回转窑中,回转窑长度30m,回转窑转速控制在使物料在窑中的前进速度为10m/h,窑内温区分为升温区、保温区、降温区,其中升温区长度为12m,温度由室温以10℃/min的升温速率升温至升高至1000℃;保温区长度为10m,温度为1000℃;降温区长度为8m,温度1000℃以8℃/min的降温速率均匀降至室温,物料从窑头进入,经热处理后从窑尾流出,得到镀衣磨料。
将得到的镀衣磨料制备成砂轮,经砂轮耐磨测试,得到的测试结果如表1所示:
表1得到的镀衣磨料的性能测试结果

由表1可以看出,本发明提供的镀衣磨料明显提高了砂轮的使用寿命。
实施例2
将粒径为220目的硼酸盐玻璃120份、粒径为300目的氧化铝60份、粒径为220目的钾长石120份、粒径为220目的冰晶石10份、粒径为300目的氟化钙20份置于搅拌机中搅拌15min,混合均匀后镀衣材料;
按粒径为120目的立方氮化硼1000份、模数为2.2的水玻璃硅酸钠15份置于搅拌机中,搅拌5min,使粘合剂充分润湿磨料,加入镀衣材料15份,继续搅拌20min,使镀衣材料充分包覆在磨料颗粒的表面,得到混合料;
将得到的混合料以20kg/min的速度持续加入到回转窑中,回转窑长度30m,回转窑转速控制在使物料在窑中的前进速度为15m/h,窑内温区分为升温区、保温区、降温区,其中升温区长度为12m,温度由室温以10℃/min的升温速率升温至升高至900℃;保温区长度为10m,温度为900℃;降温区长度为8m,温度900℃以8℃/min的降温速率均匀降至室温,物料从窑头进入,经热处理后从窑尾流出,得到镀衣磨料。
将得到的镀衣磨料制备成砂轮,经砂轮耐磨测试,得到的测试结果如表2所示:
表2得到的镀衣磨料的性能测试结果
由表2可以看出,本发明提供的镀衣磨料明显提高了砂轮的使用寿命。
对比例1
按粒径为120目的白刚玉1000份、模数为2.2的水玻璃硅酸钠15份置于搅拌机中,搅拌5min,使粘合剂充分润湿磨料,得到混合料;
将得到的混合料以20kg/min的速度持续加入到回转窑中,回转窑长度30m,回转窑转速控制在使物料在窑中的前进速度为15m/h,窑内温区分为升温区、保温区、降温区,其中升温区长度为12m,温度由室温以10℃/min的升温速率升温至升高至1000℃;保温区长度为10m,温度为1000℃;降温区长度为8m,温度1000℃以8℃/min的降温速率均匀降至室温,物料从窑头进入,经热处理后从窑尾流出,得到磨料。
将得到的磨料制备成砂轮,经砂轮耐磨测试,得到的测试结果如表3所示:
表3得到的磨料的性能测试结果
由表3可以看出,仅经过热处理的磨料,使用寿命没有明显的提高。
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (23)

  1. 一种镀衣复合材料,其特征在于,以质量份数计,包括以下组分:
    硼酸盐玻璃100~120份、氧化铝50~60份、钾长石100~120份、冰晶石10~20份和氟化钙10~20份。
  2. 根据权利要求1所述的镀衣复合材料,其特征在于,包括以下组分:
    硼酸盐玻璃120份、氧化铝60份、钾长石120份、冰晶石10份和氟化钙20份。
  3. 根据权利要求1所述的镀衣复合材料,其特征在于,包括以下组分:
    硼酸盐玻璃100份、氧化铝50份、钾长石100份、冰晶石10份和氟化钙10份。
  4. 根据权利要求1~3任一项所述的镀衣复合材料,其特征在于,所述硼酸盐玻璃的粒径为180~220目。
  5. 根据权利要求1~3任一项所述的镀衣复合材料,其特征在于,所述氧化铝的粒径为200~300目。
  6. 根据权利要求1~3任一项所述的镀衣复合材料,其特征在于,所述钾长石的粒径为180~220目。
  7. 根据权利要求1~3任一项所述的镀衣复合材料,其特征在于,所述冰晶石的粒径为180~220目。
  8. 根据权利要求1~3任一项所述的镀衣复合材料,其特征在于,所述氟化钙的粒径为200~300目。
  9. 一种镀衣磨料,其特征在于,包括磨料和包覆在所述磨料表面的镀衣材料;所述镀衣材料为权利要求1~8任一项所述的镀衣复合材料。
  10. 根据权利要求9所述的镀衣磨料,其特征在于,所述磨料包括白刚玉、绿碳化硅、立方氮化硼和金刚石中的一种或几种。
  11. 根据权利要求9或10所述的镀衣磨料,其特征在于,所述磨料的粒径为80~120目。
  12. 根据权利要求9所述的镀衣磨料,其特征在于,所述磨料和镀衣材料的质量比为1000:15~30。
  13. 权利要求9~12任一项所述的镀衣磨料的制备方法,其特征在于,包括以下步骤:
    将磨料、粘合剂和镀衣材料混合,进行热处理,得到所述镀衣磨料;
    所述镀衣材料为权利要求1~8任一项所述的镀衣复合材料。
  14. 根据权利要求13所述的制备方法,其特征在于,所述粘合剂包括硅酸钠。
  15. 根据权利要求14所述的制备方法,其特征在于,所述硅酸钠的模数为1.6~2.2。
  16. 根据权利要求13所述的制备方法,其特征在于,所述磨料、粘合剂和镀衣材料的质量比为1000:10~15:15~30。
  17. 根据权利要求13所述的制备方法,其特征在于,所述热处理在回转窑中进行。
  18. 根据权利要求17所述的制备方法,其特征在于,所述回转窑依次包括升温区、保温区和降温区;
    所述升温区的长度为12m,所述保温区的长度为10m,所述降温区的长度为8m。
  19. 根据权利要求18所述的制备方法,其特征在于,所述混合得到的混合料在所述回转窑中的前进速率为10~15m/h。
  20. 根据权利要求19所述的制备方法,其特征在于,所述升温区的升温速率为8~15℃/min。
  21. 根据权利要求18所述的制备方法,其特征在于,所述保温区的温度为900~1000℃。
  22. 根据权利要求19所述的制备方法,其特征在于,所述降温区的降温速率为5~10℃/min。
  23. 根据权利要求13所述的制备方法,其特征在于,所述混合得到的混合料在所述回转窑中的进料速率为10~20kg/min。
PCT/CN2023/128459 2023-10-31 2023-10-31 一种镀衣复合材料、一种镀衣磨料及其制备方法 WO2024008220A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/128459 WO2024008220A2 (zh) 2023-10-31 2023-10-31 一种镀衣复合材料、一种镀衣磨料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/128459 WO2024008220A2 (zh) 2023-10-31 2023-10-31 一种镀衣复合材料、一种镀衣磨料及其制备方法

Publications (1)

Publication Number Publication Date
WO2024008220A2 true WO2024008220A2 (zh) 2024-01-11

Family

ID=89454306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128459 WO2024008220A2 (zh) 2023-10-31 2023-10-31 一种镀衣复合材料、一种镀衣磨料及其制备方法

Country Status (1)

Country Link
WO (1) WO2024008220A2 (zh)

Similar Documents

Publication Publication Date Title
CN104802104B (zh) 一种纳米陶瓷结合剂超硬材料砂轮的制备方法
CN104440619A (zh) 一种提高树脂砂轮加工光洁度的方法
CN105563363B (zh) 一种离心干燥造粒技术制备陶瓷结合剂堆积磨料的方法
NO332714B1 (no) Fremgangsmate for senterlos sliping
CN108247553B (zh) 一种耐磨人造油石的制备方法
CN106553135B (zh) 一种结合剂、制备方法及砂轮
CN111216037B (zh) 一种抛光垫及其制备方法
CN109015425B (zh) 一种树脂结合剂砂轮及其制备方法
CN104385154B (zh) 一种磨具用低温陶瓷结合剂的制备方法
CN105922144A (zh) 超硬材料磨具的造孔剂及其制造方法
CN104944956B (zh) 一种基于凝胶反应的多晶纳米金刚石磨具制备方法
CN105196200B (zh) 一种稀土陶瓷结合剂及使用该结合剂的砂轮的制造方法
CN114670128B (zh) 一种纳米级高温烧结陶瓷磨料及其制备方法
CN106566968A (zh) 一种滤光片玻璃切割用金刚石划片刀及其制备方法
CN112521165A (zh) 一种陶瓷结合剂及其制备方法、磨具
CN105922146A (zh) 金属结合剂金刚石砂轮片的加工方法
WO2024008220A2 (zh) 一种镀衣复合材料、一种镀衣磨料及其制备方法
CN105014553A (zh) 一种具有高强磨削性能的陶瓷微晶砂轮及其制造方法
CN104552032A (zh) 一种金属纳米材料复合结合剂以及复合结合剂金刚石砂轮
CN102814748A (zh) 一种仿形磨高速磨削cbn陶瓷高速砂轮及制备方法和应用
KR20200050472A (ko) 실리콘 카바이드를 포함하는 비응집된 연마제 입자 및 무기 결합 재료를 포함하는 연마제 물품
CN109015420A (zh) 一种工量具加工磨砂轮
CN109706452B (zh) 一种高碳钢表面制备陶瓷涂层的方法
CN104128897A (zh) 一种采用湿化学方法成型微波烧结制备陶瓷cBN砂轮的方法
CN106493831A (zh) 一种耐磨陶瓷磨砂轮的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834985

Country of ref document: EP

Kind code of ref document: A2