WO2024008031A1 - 气溶胶生成装置及其感应控制装置 - Google Patents

气溶胶生成装置及其感应控制装置 Download PDF

Info

Publication number
WO2024008031A1
WO2024008031A1 PCT/CN2023/105479 CN2023105479W WO2024008031A1 WO 2024008031 A1 WO2024008031 A1 WO 2024008031A1 CN 2023105479 W CN2023105479 W CN 2023105479W WO 2024008031 A1 WO2024008031 A1 WO 2024008031A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance
component
plate
medium
control device
Prior art date
Application number
PCT/CN2023/105479
Other languages
English (en)
French (fr)
Inventor
王鑫
梁峰
周鹤
李瑜
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2024008031A1 publication Critical patent/WO2024008031A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating

Definitions

  • the present application relates to the field of heated atomization technology, and in particular to an aerosol generating device and its induction control device.
  • An aerosol generating device is an electronic device that atomizes atomized media to form an aerosol that can be inhaled by the user.
  • the aerosol generating device does not contain harmful substances such as tar and will not cause any harm to smokers, making it popular among users.
  • the heating start-up action of traditional aerosol generating devices is usually achieved by pressing a button, and automatic start-up of heating cannot be realized, which has the disadvantage of low convenience of use.
  • An induction control device for an aerosol generating device including:
  • the capacitance component to be tested is used to produce a capacitance change according to whether the atomization medium is inserted, and a capacitance plate of the capacitance component to be tested is arranged on the heating element for inserting the atomization medium;
  • a capacitance processing component is connected to the capacitance component to be tested and used to analyze the state of the atomization medium according to the capacitance of the capacitance component to be tested, and to control the heating of the aerosol generation device according to the state of the atomization medium.
  • the capacitance processing component is also used to control the aerosol generating device to start heating when the atomized medium is inserted according to the capacitance of the capacitance component to be tested, and to control the aerosol generation device to start heating according to the capacitance component to be tested.
  • the capacitance recognizes that when the atomization medium is pulled out, it controls the aerosol generation device to turn off the heating.
  • the capacitance processing component is further configured to identify the insertion of the atomized medium when the difference between the capacitance of the capacitance component to be measured and the preset capacitance is greater than the first preset threshold.
  • the capacitance processing component is also used to perform the processing when the difference between the capacitance of the capacitance component to be measured and the capacitance corresponding to when the insertion of the atomized medium is recognized is greater than a second preset threshold. Removal of atomized media detected.
  • the capacitor component to be tested includes a base body, a first capacitor plate and a second capacitor plate.
  • the first capacitor plate and the second capacitor plate are along the atomized medium.
  • the insertion directions are distributed on the base body.
  • the first capacitor plate is a closed ring plate or a non-closed ring plate.
  • the first capacitor plate is a metal ring plate.
  • the first capacitor plate includes an insulating ring and a metal plate disposed on the insulating ring.
  • the second capacitor plate is a tapered capacitor plate.
  • the second capacitor plate is a metal capacitor plate.
  • the second capacitor plate includes an insulator and a metal ring disposed on the insulator.
  • the base is made of non-conductive material.
  • the first capacitor plate and the second capacitor plate do not overlap in the insertion direction of the atomized medium.
  • the first capacitor plate and the second capacitor plate partially overlap in the insertion direction of the atomized medium.
  • the capacitance processing component includes a capacitance acquisition component and a main control unit, and the capacitance acquisition component connects the capacitance component to be measured and the main control unit.
  • An aerosol generating device includes the above-mentioned induction control device.
  • a capacitive plate of the capacitive component to be tested is arranged on the heating element for inserting the atomizing medium.
  • the capacitive component to be tested produces a capacitance change according to whether the atomizing medium is inserted.
  • the capacitance changes.
  • the processing component analyzes the state of the atomization medium according to the capacitance of the capacitive component to be tested, and controls the heating of the aerosol generation device according to the state of the atomization medium, realizing automatic heating control based on the state of the atomization medium, without the need for the user to use a button to start
  • the aerosol generating device is heated, improving convenience of use.
  • Figure 1 is a structural block diagram of a sensing control device of an aerosol generating device in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a capacitor component to be tested in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a capacitor component to be tested in another embodiment of the present application.
  • Figure 4 is a schematic diagram of the state of the atomized medium in an embodiment of the present application.
  • Figure 5 is a schematic diagram of the state of the atomized medium in another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of the first capacitor plate in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of the first capacitor plate in another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of various shapes of the first capacitor plate in an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a second capacitor plate in an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a second capacitor plate in another embodiment of the present application.
  • Figure 11 is a schematic diagram of the position information detection principle of atomized medium insertion in an embodiment of the present application.
  • Figure 12 is a schematic diagram of equivalent capacitance in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the capacitor plate when the capacitor component to be tested is an independent test component in an embodiment of the present application.
  • Figure 14 is a schematic diagram of the capacitor plate when the capacitor component to be tested is a series type in the composite test component according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the capacitor plate when the capacitor component to be tested is a parallel type in the composite test component according to an embodiment of the present application.
  • Figure 16 is a schematic diagram of the connection between the touch chip and the capacitive component under test in an embodiment of the present application.
  • FIG. 17 is a schematic diagram of the connection between the touch chip and the capacitive component to be tested in another embodiment of the present application.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection”, etc. if the connected circuits, modules, units, etc. have the transmission of electrical signals or data between each other.
  • this application provides an induction control device for an aerosol generating device, including a capacitance component to be tested and a capacitance processing component.
  • a capacitive plate of the capacitive component to be tested is arranged on the heating element for inserting the atomized medium.
  • the capacitive component to be tested produces a capacitance change according to whether the atomized medium is inserted; the capacitance processing component changes according to the capacitance of the capacitive component to be tested.
  • the capacity analyzes the state of the atomization medium, and controls the heating of the aerosol generation device according to the state of the atomization medium, thereby It can intelligently judge the insertion of the atomized medium to intelligently turn on the heated atomized medium; it can also intelligently judge the removal of the atomized medium to intelligently turn off the heated atomized medium, and it can stop immediately after pumping.
  • the induction control device can avoid misheating when there is no atomized medium in the aerosol generating device and prevent dry burning when there is no atomized medium, and has certain intelligent safety.
  • the atomizing medium may be a solid medium designed to generate an aerosol when heated.
  • the atomization medium may include tobacco material, or further aroma components may be added to the tobacco material.
  • the atomization medium contains volatile tobacco flavor compounds that are released from the matrix when heated.
  • the atomization medium can also be a liquid medium, which is heated and atomized to form aerosol.
  • the present application provides an induction control device for an aerosol generating device, including a capacitance component 100 to be tested and a capacitance processing component 200 .
  • a capacitive plate of the capacitive component 100 to be tested is disposed on a heating element for inserting the atomized medium, and the capacitance processing component 200 is connected to the capacitive component 100 to be tested.
  • the capacitance component 100 to be tested generates capacitance changes based on whether the atomization medium is inserted; the capacitance processing component 200 analyzes the state of the atomization medium according to the capacitance of the capacitance component 100 to be tested, and performs operations on the aerosol generation device according to the state of the atomization medium. Heating control.
  • the capacitive component 100 to be tested can be disposed at a cavity of the aerosol generating device used to insert the atomized medium.
  • the capacitive component 100 to be tested can be configured according to the atomization. The capacitance change occurs depending on where the dielectric is actually inserted.
  • the capacitance processing component 200 can pre-store the initial capacitance value of the capacitance component 100 to be tested as a comparison threshold, and after detecting the actual capacitance of the capacitance component 100 to be tested, compare it with the comparison threshold to determine whether the atomized medium is being inserted or pulled out.
  • the capacitance processing component 200 controls the power supply module to turn on the heating.
  • the capacitance processing component 200 can also control the power module to cut off the power and turn off the heating when it detects that the atomization medium is pulled out.
  • the number of capacitor plates in the capacitor component 100 to be tested is not unique, and may be 2, 3 or more.
  • the structures of the capacitor plates may be all the same, partially the same, or entirely different. Specifically, when the capacitive component 100 under test includes two capacitive plates, it can be identified based on the capacitance of the capacitive component 100 under test whether the atomized medium is in an inserted or unplugged state.
  • the capacitance processing component 200 controls the heating of the aerosol generation device according to the state of the atomized medium.
  • the capacitance processing component 200 identifies the aerosol generation device according to the capacitance of the capacitance component 100 to be tested.
  • the aerosol generating device is controlled to turn on the heating, and when the atomizing medium is detected to be pulled out according to the capacitance of the capacitor component 100 to be tested, the aerosol generating device is controlled to turn off the heating.
  • automatic heating control is implemented based on the state of the atomized medium.
  • the capacitance processing component 200 recognizes the insertion of the atomized medium when the difference between the capacitance of the capacitance component 100 under test and the preset capacitance is greater than the first preset threshold.
  • the initial capacitance value of the capacitive component 100 under test can be saved as the preset capacitance C0.
  • the value of the first preset threshold Cth1 is not unique and can be determined according to the actual situation. Make settings.
  • the capacitance processing component 200 automatically controls the aerosol generation device to turn on. heating.
  • the capacitance processing component 200 identifies fog when the difference between the capacitance of the capacitance component 100 to be measured and the capacitance corresponding to when the insertion of the atomization medium is recognized is greater than the second preset threshold. media and remove it. Specifically, the value of the second preset threshold Cth2 is not unique and can be set according to the actual situation. The capacitance processing component 200 saves the capacitance C1 of the capacitance component 100 under test when the atomized medium is inserted, and continues to detect the actual capacitance of the capacitance component 100 under test.
  • the capacitance processing component 200 controls the gas flow.
  • the sol generating device turns off heating.
  • the capacitance processing component 200 includes a capacitance acquisition component 220 and a main control unit 240; the capacitance acquisition component 220 connects the capacitance component 100 under test and the main control unit 240. Unit 240.
  • the output end of the capacitance component 100 to be measured is connected to the input end of the capacitance collection component 220 , and the capacitance collection component 220 is connected to the input end and the output end of the main control unit 240 .
  • the capacitance collection component 220 may specifically use a touch chip, a 555 timer, an RC circuit or other circuits that can collect capacitance.
  • the capacitance acquisition component 220 converts changes in capacitance into electrical quantities, such as voltage, current, resistance, frequency, phase and other electrical quantities, and then the main control unit 240 processes the electrical quantity data output by the capacitance acquisition component 220, so as to achieve The purpose of controlling external devices.
  • the capacitance collection component 220 may also include a touch chip and a detection circuit.
  • the touch chip is connected to the capacitive component 100 to be tested through a detection circuit, where the detection circuit may specifically include a capacitor connected in series or in parallel with the capacitive plate in the capacitive component 100 to be tested.
  • a capacitive plate of the capacitive component 100 to be tested is arranged on the heating element for inserting the atomizing medium.
  • the capacitive component 100 to be tested generates capacitance changes according to whether the atomizing medium is inserted.
  • the capacity processing component 200 analyzes the state of the atomization medium according to the capacitance of the capacitive component to be tested, and performs heating control on the aerosol generation device according to the state of the atomization medium, realizing automatic heating control based on the state of the atomization medium without the need for The user activates the technical effect of heating the aerosol-generating device using a button, thereby improving convenience of use.
  • the capacitor component 100 to be tested includes a base (not shown in the figure), a first capacitor plate 110 and The second capacitor plate 120 .
  • the first capacitor plate 110 and the second capacitor plate 120 are distributed and arranged on the base body along the insertion direction of the atomized medium.
  • the second capacitor plate 120 is disposed on the heating element for inserting the atomizing medium.
  • a part of the heating element may be used as the second capacitor plate 120 , for example, the part of the top of the heating element that extends into the atomized medium may be used as the second capacitor plate 120 , or the heating element may be used as the second capacitor plate 120 .
  • the part where the atomization medium is not inserted serves as the second capacitive plate 120 .
  • the entire heating element may also be used as the second capacitor plate 120 .
  • the base body is made of non-conductive material.
  • the first capacitor plate 110 and the second capacitor plate 120 are located at different horizontal heights.
  • the structures of the first capacitor plate 110 and the second capacitor plate 120 may be the same or different.
  • the first capacitor plate 110 and the second capacitor plate 120 may be made of metal plates, or may be made of non-metal or metal. Mixed structure.
  • the first capacitor plate 110 and the second capacitor plate 120 may be disposed on a non-conductive substrate by lamination, coating or electroplating. The first capacitor plate 110 and the second capacitor plate 120 respectively serve as two plates of the capacitor to be measured.
  • the base body can be designed as a hollow cylindrical base body for accommodating the atomized medium.
  • the first capacitor plate 110 and the second capacitor plate 120 may be located inside the base body and distributed longitudinally along the base body.
  • a cylindrical base body can be designed with openings at both ends, and then the capacitor plate is disposed on the cylindrical outer wall or inner wall surface of the base body.
  • the relative positional relationship between the first capacitor plate 110 and the second capacitor plate 120 is not unique.
  • the first capacitor plate 110 and the second capacitor plate 120 may partially overlap in the insertion direction of the atomized medium, or may No overlap at all. In one embodiment, as shown in FIG. 2 , the first capacitor plate 110 and the second capacitor plate 120 do not overlap at all along the insertion direction of the atomized medium. Or, in another embodiment, as shown in FIG. 3 , the first capacitive plate 110 and the second capacitive plate 120 partially overlap along the insertion direction of the atomized medium.
  • the states of the atomized medium can be divided into two types: Figure 4 and Figure 5 .
  • Figure 4 the atomization medium
  • Figure 5 the atomized medium Depending on the state of the atomized medium
  • the first capacitor plate 110 is a closed ring plate or a Non-closed ring plate.
  • the first capacitor plate 110 may be designed as a fully closed, partially closed or non-closed annular plate.
  • the first capacitor plate 110 is a metal ring plate.
  • the first capacitor plate 110 may further include an insulating ring and a metal plate disposed on the insulating ring.
  • the insulating ring can be a plastic ring.
  • the outline of the first capacitor plate 110 may be circular, rectangular, arcuate, triangular, spiral or a combination of these shapes.
  • the shape of the first capacitor plate 110 The edges on both sides can be one or more segments that are linear, non-linear, planar or non-planar.
  • the second capacitor plate 120 is a tapered capacitor plate.
  • the second capacitor plate 120 may Composite plates are designed as tapered and other structures.
  • the second capacitor plate 120 may be a composite of conical and cylindrical shapes.
  • the second capacitor plate 120 may also be a composite of a cone and a rectangular parallelepiped.
  • the second capacitor plate 120 can also be a composite body using a cone shape or other more types of structures.
  • the second capacitor plate 120 is a metal capacitor plate.
  • the second capacitor plate 120 may also include an insulator and a metal ring disposed on the insulator. Among them, the insulator can be a ceramic body.
  • Figure 11 shows a simplified schematic diagram of the atomized medium X inserted into the matrix.
  • the atomized medium The dielectric
  • the theoretical formula of capacitance is as follows:
  • C is the capacitance value
  • is the dielectric constant between the capacitor plates
  • S is the plate area
  • d is the distance between the plates. Since the conductivity of atomized medium X is much smaller than capacitor plate A and capacitor plate B, when atomized medium The dielectric constant ⁇ of the material between capacitor plates B causes the capacitance between capacitor plates A and capacitor plates B to change. Depending on whether the capacitance between capacitor plate A and capacitor plate B changes, it can be identified whether atomized medium X is inserted between capacitor plate A and capacitor plate B.
  • the atomization medium X can be cigarettes, solid medicines or other solid substances. In some embodiments, the atomization medium X may also be a liquid substance contained in a solid container.
  • the capacitor component 100 to be tested can be divided into two categories: independent test components and composite test components.
  • Composite test components can be divided into series type and parallel type.
  • the independent testing component only tests the capacitor body to be tested, where Cx is the capacitor plate.
  • the capacitor C1 and the capacitor C2 are external test capacitors connected in series with the capacitor plate Cx.
  • the capacitor C1 and the capacitor C2 are specifically the capacitors in the capacitance acquisition component 220.
  • the number of capacitors connected in series is not limited and can be 1, 2 or more, which can be adjusted according to actual needs.
  • the series-connected capacitors may be finished capacitors produced by capacitor manufacturers, or may be capacitors made of structural components.
  • the capacitor C1 and the capacitor C2 are external test capacitors connected in parallel with the capacitor plate Cx, and the capacitor C1 and the capacitor C2 are specifically the capacitors in the capacitance acquisition component 220.
  • the number of parallel capacitors is not limited and can also be 1, 2 or more, which can be adjusted according to actual needs.
  • the parallel capacitors can be finished capacitors produced by capacitor manufacturers, or they can be capacitors made of structural parts.
  • the capacitance scanning principle of the touch chip 222 is divided into mutual capacitance scanning and self-capacitance scanning.
  • self-capacitance scanning is a kind of scanning that is spontaneous and self-contained.
  • the capacitance measured by the touch chip 222 is the capacitance of the electrode relative to the ground.
  • the touch chip 222 measures the capacitance between the two electrodes.
  • the connection between the touch chip 222 and the capacitive component 100 to be tested is divided into the following two methods: As shown in Figure 16, for the self-capacitance scanning method, a capacitive electrode in the capacitive component 100 to be tested is The plate is connected to Ground, and the other capacitive plate is connected to the signal acquisition input end of the touch chip 222 . As shown in FIG. 17 , for the mutual capacitance scanning mode, one capacitive plate in the capacitive component 100 to be tested is connected to the signal output end of the touch chip 222 , and the other capacitive plate is connected to the signal acquisition input end of the touch chip 222 .
  • the initial capacitance value of the capacitive component 100 under test is periodically collected and updated by the touch chip 222, and the initial capacitance value is set to the preset capacitance C0.
  • the capacitance of the capacitor component 100 under test changes to C1.
  • the difference between C1 and C0 is greater than the first preset threshold Cth1
  • the insertion of the atomized medium is recognized and heating is started.
  • the capacitance of the capacitor component 100 under test changes to C2.
  • the difference between C1 and C2 is greater than the second preset threshold Cth2
  • the pull-out of the atomized medium is recognized and heating is terminated.
  • the main control unit 240 may include a control chip and discrete devices.
  • the control chip is responsible for collecting data information of the touch chip 222 and making control actions based on the data information of the touch chip 222 .
  • Discrete devices include power chips, resistors, capacitors, inductors, crystal oscillators, memories, logic gate circuits, etc. that support the operation of the control chip.
  • an aerosol generating device including the above-mentioned induction control device.
  • a capacitive plate of the capacitive component to be tested is arranged on the heating element for inserting the atomizing medium.
  • the capacitive component to be tested produces a capacitance change according to whether the atomizing medium is inserted, and the capacitance processing component changes according to whether the atomizing medium is inserted.
  • the capacitance of the capacitor component analyzes the state of the atomization medium, and controls the heating of the aerosol generation device according to the state of the atomization medium, realizing automatic heating control based on the state of the atomization medium, without the need for the user to use a button to start the heating of the aerosol generation device , improving the convenience of use.

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种气溶胶生成装置及其感应控制装置,感应控制装置包括:待测电容组件(100),用于根据是否插入雾化介质产生电容量变化,待测电容组件(100)的一个电容极板设置于用于插入雾化介质的发热体上;以及电容量处理组件(200),连接待测电容组件(100)并且用于根据待测电容组件(100)的电容量分析雾化介质的状态,并根据雾化介质的状态对气溶胶生成装置进行加热控制。待测电容组件(100)根据是否插入雾化介质产生电容量变化,电容量处理组件(200)根据待测电容组件(100)的电容量分析雾化介质的状态,并根据雾化介质的状态对气溶胶生成装置进行加热控制,实现结合雾化介质的状态自动进行加热控制,无需用户使用按键启动气溶胶生成装置加热,提高了使用便利性。

Description

气溶胶生成装置及其感应控制装置
相关申请
本申请要求2022年07月04日申请的,申请号为202210776569.1,名称为“气溶胶生成装置及其感应控制装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及加热雾化技术领域,尤其涉及一种气溶胶生成装置及其感应控制装置。
背景技术
气溶胶生成装置是一种对雾化介质雾化形成可供用户抽吸的气溶胶的电子设备。气溶胶生成装置不含焦油等有害物质,不会对吸烟者造成任何伤害,受到广大用户的喜爱。传统气溶胶生成装置的启动加热动作通常是使用按键来实现,不能实现自动启动加热,存在使用便利性低的缺点。
发明内容
基于此,有必要针对传统的气溶胶生成装置使用便利性低的问题,提供一种可提高使用便利性的气溶胶生成装置及其感应控制装置。
一种气溶胶生成装置的感应控制装置,包括:
待测电容组件,用于根据是否插入雾化介质产生电容量变化,所述待测电容组件的一个电容极板设置于用于插入雾化介质的发热体上;以及
电容量处理组件,连接所述待测电容组件并用于根据所述待测电容组件的电容量分析雾化介质的状态,并根据雾化介质的状态对气溶胶生成装置进行加热控制的。
在其中一个实施例中,所述电容量处理组件还用于根据所述待测电容组件的电容量识别到雾化介质插入时,控制气溶胶生成装置开启加热,以及根据所述待测电容组件的电容量识别到雾化介质拔出时,控制气溶胶生成装置关闭加热。
在其中一个实施例中,所述电容量处理组件还用于在所述待测电容组件的电容量与预设电容量的差值大于第一预设阈值时,识别到雾化介质插入。
在其中一个实施例中,所述电容量处理组件还用于在所述待测电容组件的电容量,与识别到雾化介质插入时对应的电容量的差值大于第二预设阈值时,识别到雾化介质拔出。
在其中一个实施例中,所述待测电容组件包括基体、第一电容极板和第二电容极板,所述第一电容极板和所述第二电容极板沿所述雾化介质的插入方向分布设置于所述基体。
在其中一个实施例中,所述第一电容极板为闭合环式极板或非闭合环式极板。
在其中一个实施例中,所述第一电容极板为金属环式极板。
在其中一个实施例中,所述第一电容极板包括绝缘环和设置于所述绝缘环上的金属极板。
在其中一个实施例中,所述第二电容极板为锥形电容极板。
在其中一个实施例中,所述第二电容极板为金属电容极板。
在其中一个实施例中,所述第二电容极板包括绝缘体和设置于所述绝缘体的金属环。
在其中一个实施例中,所述基体为非导电材质的基体。
在其中一个实施例中,所述第一电容极板和所述第二电容极板在所述雾化介质的插入方向上不重叠。
在其中一个实施例中,所述第一电容极板和所述第二电容极板再所述雾化介质的插入方向上部分重叠。
在其中一个实施例中,所述电容量处理组件包括电容量采集组件和主控单元,所述电容量采集组件连接所述待测电容组件和所述主控单元。
一种气溶胶生成装置,包括上述的感应控制装置。
上述气溶胶生成装置及其感应控制装置,待测电容组件的一个电容极板设置于用于插入雾化介质的发热体上,待测电容组件根据是否插入雾化介质产生电容量变化,电容量处理组件根据待测电容组件的电容量分析雾化介质的状态,并根据雾化介质的状态对气溶胶生成装置进行加热控制,实现结合雾化介质的状态自动进行加热控制,无需用户使用按键启动气溶胶生成装置加热,提高了使用便利性。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中气溶胶生成装置的感应控制装置的结构框图。
图2为本申请一实施例中待测电容组件的结构示意图。
图3为本申请另一实施例中待测电容组件的结构示意图。
图4为本申请一实施例中雾化介质的状态示意图。
图5为本申请另一实施例中雾化介质的状态示意图。
图6为本申请一实施例中第一电容极板的结构示意图。
图7为本申请另一实施例中第一电容极板的结构示意图。
图8为本申请一实施例中第一电容极板的多种形状结构示意图。
图9为本申请一实施例中第二电容极板的结构示意图。
图10为本申请另一实施例中第二电容极板的结构示意图。
图11为本申请一实施例中雾化介质插入的位置信息检测原理示意图。
图12为本申请一实施例中的等效电容示意图。
图13为本申请一实施例中待测电容组件为独立测试组件时的电容极板示意图。
图14为本申请一实施例中待测电容组件为复合测试组件中的串联型时的电容极板示意图。
图15为本申请一实施例中待测电容组件为复合测试组件中的并联型时的电容极板示意图。
图16为本申请一实施例中触控芯片与待测电容组件的连接示意图。
图17为本申请另一实施例中触控芯片与待测电容组件的连接示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,以下实施例中的“连接”,如果被连接的电路、模块、单元等相互之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
现有的气溶胶生成装置的启动加热动作通常是使用按键来实现,使用便利性低。有鉴于此,本申请提供了一种气溶胶生成装置的感应控制装置,包括待测电容组件和电容量处理组件。其中,待测电容组件的一个电容极板设置于用于插入雾化介质的发热体上,待测电容组件根据是否插入雾化介质产生电容量变化;电容量处理组件根据待测电容组件的电容量分析雾化介质的状态,并根据雾化介质的状态对气溶胶生成装置进行加热控制,进而 能实现智能判断雾化介质的插入,达到智能开启加热雾化介质的目的;以及实现智能判断雾化介质的拔出,达到智能关闭加热雾化介质的目的,即抽即停。同时,该感应控制装置可以避免气溶胶生成装置内没有雾化介质时的误加热,防止无雾化介质时干烧,具有一定的智能安全性。在一个实施例中,雾化介质可为固态介质,用于在被加热时产生气溶胶。雾化介质可以是包括烟草材料,也可在烟草材料中进一步添加香气成分。雾化介质含有在加热时从基质释放的挥发性烟草香味化合物。在其他实施方式中,雾化介质也可以是液体介质,加热后雾化形成气雾。
在一个实施例中,如图1所示,本申请提供了一种气溶胶生成装置的感应控制装置,包括待测电容组件100和电容量处理组件200。待测电容组件100的一个电容极板设置于用于插入雾化介质的发热体上,电容量处理组件200连接待测电容组件100。待测电容组件100根据是否插入雾化介质产生电容量变化;电容量处理组件200根据待测电容组件100的电容量分析雾化介质的状态,并根据雾化介质的状态对气溶胶生成装置进行加热控制。
具体地,待测电容组件100可设置在气溶胶生成装置用作插入雾化介质的空腔处,在用户将雾化介质插入或拔出气溶胶生成装置时,待测电容组件100可根据雾化介质实际插入的位置产生电容量变化。电容量处理组件200可预先保存待测电容组件100的初始电容值作为比较阈值,在检测到待测电容组件100的实际电容量后与比较阈值进行对比,确定雾化介质是处于插入还是拔出状态,进而根据雾化介质的状态对气溶胶生成装置进行加热控制。例如,电容量处理组件200在检测到雾化介质插入时控制电源模块供电开启加热,电容量处理组件200还可在识别到雾化介质拔出时控制电源模块断电关闭加热。
其中,待测电容组件100中电容极板的数量并不唯一,可以是2个,也可以是3个或3个以上。各电容极板的结构可以是全部相同,也可以是部分相同或全部不相同。具体地,当待测电容组件100包含2个电容极板时,则可根据待测电容组件100的电容量识别到雾化介质是处于已经插入还是已经拔出的状态。
可以理解,电容量处理组件200根据雾化介质的状态对气溶胶生成装置进行加热控制的方式并不唯一,在一个实施例中,电容量处理组件200根据待测电容组件100的电容量识别到雾化介质插入时,控制气溶胶生成装置开启加热,以及根据待测电容组件100的电容量识别到雾化介质拔出时,控制气溶胶生成装置关闭加热。通过检测待测电容组件100的电容量,识别雾化介质的插入和拔出,实现根据雾化介质的状态自动进行加热控制。
在一个实施例中,电容量处理组件200在待测电容组件100的电容量与预设电容量的差值大于第一预设阈值时,识别到雾化介质插入。其中,可将待测电容组件100的初始电容值作为预设电容量C0进行保存,第一预设阈值Cth1的取值并不唯一,可根据实际情况 进行设置。当待测电容组件100的实际电容量与预设电容量C0的差值大于第一预设阈值Cth1时,则可认为识别到雾化介质插入,电容量处理组件200自动控制气溶胶生成装置开启加热。
进一步地,在一个实施例中,电容量处理组件200在待测电容组件100的电容量,与识别到雾化介质插入时对应的电容量的差值大于第二预设阈值时,识别到雾化介质拔出。具体地,第二预设阈值Cth2的取值也并不唯一,可根据实际情况进行设置。电容量处理组件200将识别到雾化介质插入时待测电容组件100的电容量C1进行保存,并继续检测待测电容组件100的实际电容量。在检测到待测电容组件100的电容量变为C2,且与电容量C1的差值大于第二预设阈值Cth2时,则可认为识别到雾化介质拔出,电容量处理组件200控制气溶胶生成装置关闭加热。
电容量处理组件200的具体结构也并不唯一,在一个实施例中,电容量处理组件200包括电容量采集组件220和主控单元240;电容量采集组件220连接待测电容组件100和主控单元240。其中,待测电容组件100的输出端与电容量采集组件220的输入端连接,电容量采集组件220与主控单元240的输入端和输出端连接。电容量采集组件220具体可采用触摸芯片、555定时器、RC电路或其他可以采集电容量的电路。电容量采集组件220把电容量变化转化为电学量,例如电压、电流、电阻、频率、相位等电学量,然后由主控单元240对电容量采集组件220输出的电学量数据进行处理,从而达到控制外部设备的目的。此外,在一个实施例中,电容量采集组件220还可以是包括触摸芯片和检测电路。触摸芯片通过检测电路连接待测电容组件100,其中检测电路具体可包括用作与待测电容组件100中的电容极板串联或并联的电容。
上述气溶胶生成装置的感应控制装置,待测电容组件100的一个电容极板设置于用于插入雾化介质的发热体上,待测电容组件100根据是否插入雾化介质产生电容量变化,电容量处理组件200根据待测电容组件的电容量分析雾化介质的状态,并根据雾化介质的状态对气溶胶生成装置进行加热控制,实现了结合雾化介质的状态自动进行加热控制,而无需用户使用按键启动气溶胶生成装置加热的技术效果,由此提高了使用便利性。
可以理解,待测电容组件100的具体结构也不是唯一的,在一个实施例中,如图2所示,待测电容组件100包括基体(图中未示出)、第一电容极板110和第二电容极板120。第一电容极板110和第二电容极板120沿雾化介质的插入方向分布设置于基体。第二电容极板120设置于用于插入雾化介质的发热体上。具体地,在一些实施例中,可以是将发热体的一部分作为第二电容极板120,例如将发热体顶端伸入雾化介质的部分作为第二电容极板120,也可以是将发热体未插入雾化介质的部分作为第二电容极板120。在另一些实 施例中,还可以是将整个发热体作为第二电容极板120。
其中,基体为非导电材质的基体,在雾化介质插入方向(例如,垂直插入时)上,第一电容极板110和第二电容极板120位于不同的水平高度。第一电容极板110和第二电容极板120的结构可相同也可不同,第一电容极板110和第二电容极板120可以是采用金属极板,也可以是采用非金属与金属的混合结构。进一步地,可以是在非导电的基体上贴合、镀膜或电镀的方式设置第一电容极板110和第二电容极板120。第一电容极板110和第二电容极板120分别作为待测电容的两个极板。
具体地,基体可设计为中空圆柱形的基体,用于收容雾化介质。第一电容极板110和第二电容极板120具体可位于基体的内侧且沿基体纵向分布。例如,可以将圆柱形的基体设计为两端开口,然后将电容极板设置在基体的圆柱形外壁或内壁面。第一电容极板110和第二电容极板120的相对位置关系也并不唯一,第一电容极板110和第二电容极板120在雾化介质的插入方向上可以有部分重叠,也可以完全不重叠。在一个实施例中,如图2所示,第一电容极板110和第二电容极板120沿雾化介质的插入方向完全不重叠。或者,在另一个实施例中,如图3所示,第一电容极板110和第二电容极板120沿雾化介质的插入方向部分重叠。
以第一电容极板110和第二电容极板120在雾化介质的插入方向上完全不重叠为例,雾化介质的状态可分为图4和图5两种。如图4所示,雾化介质X至少部分收容于气溶胶生成装置的介质收容管300内,且第二电容极板120所在的发热体未插入雾化介质X。如图5所示,雾化介质X至少部分收容于气溶胶生成装置的介质收容管300内,且第二电容极板120所在的发热体至少部分(包括全部)插入雾化介质X。根据雾化介质X的状态不同,待测电容组件100的电容量也会对应不同,电容量处理组件200可根据检测到的实际电容量确定雾化介质X的状态。
第一电容极板110和第二电容极板120的具体结构类型也并不唯一,在一个实施例中,如图6和图7所示,第一电容极板110为闭合环式极板或非闭合环式极板。其中,第一电容极板110可以设计为完全闭合、部分闭合或非闭合的环式极板。本实施例中,第一电容极板110为金属环式极板。在另一实施例中,第一电容极板110还可以包括绝缘环和设置于绝缘环上的金属极板。其中,绝缘环可采用塑料环。
进一步地,第一电容极板110外形轮廓可以是圆形、矩形、弓形、三角、螺旋形或者这些形状的复合型,在一个实施例中,如图8所示,第一电容极板110的两侧边缘可以是线性、非线性、平面或非平面的一个或多个区段。
在一个实施例中,第二电容极板120为锥形电容极板。具体地,第二电容极板120可 以是设计为锥形和其他结构的复合体极板。例如,如图9所示,第二电容极板120可以是锥形和圆柱形的复合体。或者,如图10所示,第二电容极板120也可以是锥形和长方体的复合体。可以理解,在其他实施例中,第二电容极板120也可以是采用锥形和其他更多类型结构的复合体。进一步地,本实施例中,第二电容极板120为金属电容极板。在另一实施例中,第二电容极板120还可以是包括绝缘体和设置于绝缘体的金属环。其中,绝缘体具体可采用陶瓷体。
图11所示为雾化介质X插入基体中的简化示意图,把雾化介质X等效看成电容的一个极板,电容极板A和雾化介质X形成电容①,电容极板B和雾化介质X形成电容②,形成的等效电容示意图如图12所示。电容理论公式如下:
其中,C是电容值,ε是电容极板间的介电常数,S是极板面积,d是极板间距离。由于雾化介质X的电导率远小于电容极板A和电容极板B,故当雾化介质X插入到电容极板A和电容极板B之间时,相当于改变了电容极板A和电容极板B之间物质的介电常数ε,从而导致电容极板A和电容极板B之间的电容发生了变化。根据电容极板A和电容极板B之间的电容是否发生变化,便可识别到电容极板A和电容极板B之间是否插入有雾化介质X。其中,雾化介质X可以是烟支、固体药物或其他固体物质。在一些实施例中,雾化介质X也可以是装在固体容器内的液态物质。
根据待测电容组件100的组合方式不同,待测电容组件100可以分为独立测试组件和复合测试组件两大类,复合测试组件又可分为串联型和并联型。在一个实施例中,如图13所示,独立测试组件只测试待测电容本体,其中,Cx为电容极板。对于复合测试组件中的串联型,如图14所示,电容C1和电容C2为与电容极板Cx串联的外部测试电容,电容C1、电容C2具体为电容量采集组件220内的电容。串联的电容个数不受限制,可以是1个、2个或多个,具体可根据实际需求进行调整。在一些实施例中,串联的电容可以是电容厂家生产的成品电容,也可以是由结构件构成的电容。
进一步地,对于复合测试组件中的并联型,如图15所示,电容C1和电容C2为与电容极板Cx并联的外部测试电容,电容C1、电容C2具体为电容量采集组件220内的电容。并联的电容个数不受限制,同样可以是1个、2个或多个,具体可根据实际需求进行调整。并联的电容可以是电容厂家生产的成品电容,也可以是由结构件构成的电容。
如图16和图17所示,以电容量采集组件220采用触摸芯片222为例,触摸芯片222的电容扫描原理分为互电容扫描和自电容扫描。其中,自电容扫描为自发自收的一种扫描 方式,触摸芯片222测量的电容是电极相对于地面的电容。而对于互电容扫描,触摸芯片222测量的是两个电极之间的电容。根据不同触摸芯片的电容扫描方式,触摸芯片222与待测电容组件100的连接,分为如下两种方式:如图16所示,对于自电容扫描方式,待测电容组件100中的一个电容极板连接地Ground,另一个电容极板连接到触摸芯片222的信号采集输入端。如图17所示,对于互电容扫描方式,待测电容组件100中的一个电容极板连接触摸芯片222的信号输出端,另一个电容极板连接到触摸芯片222的信号采集输入端。
通过触摸芯片222周期性采集及更新待测电容组件100的初始电容值,把初始电容值设置为预设电容量C0。当雾化介质插入时,待测电容组件100的电容变为C1,在C1和C0的差值大于第一预设阈值Cth1时,识别出雾化介质的插入,开启加热。当雾化介质拔出时,待测电容组件100的电容变为C2,在C1和C2的差值大于第二预设阈值Cth2时,识别出雾化介质的拔出,终止加热。
进一步地,主控单元240可包括控制芯片和分立器件,控制芯片负责收集触摸芯片222的数据信息,并根据触摸芯片222的数据信息做出控制动作。分立器件包括支撑控制芯片工作的电源芯片、电阻、电容、电感、晶振、存储器、逻辑门电路等。当雾化介质插入时,触摸芯片222会根据待测电容组件100的电容变化识别出插入状态,主控单元240开启加热。当雾化介质拔出时,触摸芯片222会根据待测电容组件100的电容变化识别出拔出状态,主控单元240关闭加热。
在一个实施例中,还提供了一种气溶胶生成装置,包括上述的感应控制装置。
上述气溶胶生成装置,待测电容组件的一个电容极板设置于用于插入雾化介质的发热体上,待测电容组件根据是否插入雾化介质产生电容量变化,电容量处理组件根据待测电容组件的电容量分析雾化介质的状态,并根据雾化介质的状态对气溶胶生成装置进行加热控制,实现结合雾化介质的状态自动进行加热控制,无需用户使用按键启动气溶胶生成装置加热,提高了使用便利性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种气溶胶生成装置的感应控制装置,包括:
    待测电容组件,用于根据是否插入雾化介质产生电容量变化,所述待测电容组件的一个电容极板设置于用于插入雾化介质的发热体上;以及
    电容量处理组件,连接所述待测电容组件并且用于根据所述待测电容组件的电容量分析雾化介质的状态,并根据雾化介质的状态对气溶胶生成装置进行加热控制。
  2. 根据权利要求1所述的感应控制装置,其中所述电容量处理组件还用于根据所述待测电容组件的电容量识别到雾化介质插入时,控制气溶胶生成装置开启加热,以及根据所述待测电容组件的电容量识别到雾化介质拔出时,控制气溶胶生成装置关闭加热。
  3. 根据权利要求2所述的感应控制装置,其中所述电容量处理组件还用于在所述待测电容组件的电容量与预设电容量的差值大于第一预设阈值时,识别到雾化介质插入。
  4. 根据权利要求3所述的感应控制装置,其中所述电容量处理组件还用于在所述待测电容组件的电容量与识别到雾化介质插入时对应的电容量的差值大于第二预设阈值时,识别到雾化介质拔出。
  5. 根据权利要求1所述的感应控制装置,其中所述待测电容组件包括基体、第一电容极板和第二电容极板,所述第一电容极板和所述第二电容极板沿所述雾化介质的插入方向分布设置于所述基体。
  6. 根据权利要求5所述的感应控制装置,其中所述第一电容极板为闭合环式极板或非闭合环式极板。
  7. 根据权利要求5所述的感应控制装置,其中所述第一电容极板为金属环式极板。
  8. 根据权利要求5所述的感应控制装置,其中所述第一电容极板包括绝缘环和设置于所述绝缘环上的金属极板。
  9. 根据权利要求5所述的感应控制装置,其中所述第二电容极板为锥形电容极板。
  10. 根据权利要求5所述的感应控制装置,其中所述第二电容极板为金属电容极板。
  11. 根据权利要求5所述的感应控制装置,其中所述第二电容极板包括绝缘体和设置于所述绝缘体的金属环。
  12. 根据权利要求5所述的感应控制装置,其中所述基体为非导电材质的基体。
  13. 根据权利要求5所述的感应控制装置,其中所述第一电容极板和所述第二电容极板在所述雾化介质的插入方向上不重叠。
  14. 根据权利要求5所述的感应控制装置,其中所述第一电容极板和所述第二电容极板在所述雾化介质的插入方向上部分重叠。
  15. 根据权利要求1-14任意一项所述的感应控制装置,其中所述电容量处理组件包括电容量采集组件和主控单元,所述电容量采集组件连接所述待测电容组件和所述主控单元。
  16. 一种气溶胶生成装置,包括权利要求1-15任意一项所述的感应控制装置。
PCT/CN2023/105479 2022-07-04 2023-07-03 气溶胶生成装置及其感应控制装置 WO2024008031A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210776569.1 2022-07-04
CN202210776569.1A CN115024522A (zh) 2022-07-04 2022-07-04 气溶胶生成装置及其感应控制装置

Publications (1)

Publication Number Publication Date
WO2024008031A1 true WO2024008031A1 (zh) 2024-01-11

Family

ID=83128771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105479 WO2024008031A1 (zh) 2022-07-04 2023-07-03 气溶胶生成装置及其感应控制装置

Country Status (2)

Country Link
CN (1) CN115024522A (zh)
WO (1) WO2024008031A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115024522A (zh) * 2022-07-04 2022-09-09 深圳麦时科技有限公司 气溶胶生成装置及其感应控制装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3039474A1 (en) * 2016-12-12 2018-06-21 Philip Morris Products S.A. Product recognition in aerosol generating devices
WO2020149503A1 (ko) * 2019-01-16 2020-07-23 주식회사 케이티앤지 에어로졸 생성 장치 및 방법
CN113507849A (zh) * 2020-02-07 2021-10-15 韩国烟草人参公社 气溶胶生成装置及其操作方法
CN113892683A (zh) * 2021-10-08 2022-01-07 海南摩尔兄弟科技有限公司 气溶胶生成品、电子雾化器、雾化系统、识别方法和温度控制方法
CN113907442A (zh) * 2021-10-14 2022-01-11 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化主体、雾化器、加热控制方法
EP3965531A1 (en) * 2019-04-29 2022-03-09 Inno-It Co., Ltd. Composite heating aerosol-generating device
CN114259089A (zh) * 2021-12-28 2022-04-01 深圳麦克韦尔科技有限公司 电子雾化装置及加热方法、液体含量的检测方法
CN114582631A (zh) * 2022-03-04 2022-06-03 深圳麦时科技有限公司 用于气溶胶生成装置的待测电容组件
CN114568750A (zh) * 2022-03-04 2022-06-03 深圳麦时科技有限公司 气溶胶生成装置及其感应控制装置
CN114568763A (zh) * 2022-03-04 2022-06-03 深圳麦时科技有限公司 气溶胶生成装置及其雾化控制装置
CN115024522A (zh) * 2022-07-04 2022-09-09 深圳麦时科技有限公司 气溶胶生成装置及其感应控制装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3039474A1 (en) * 2016-12-12 2018-06-21 Philip Morris Products S.A. Product recognition in aerosol generating devices
WO2020149503A1 (ko) * 2019-01-16 2020-07-23 주식회사 케이티앤지 에어로졸 생성 장치 및 방법
EP3965531A1 (en) * 2019-04-29 2022-03-09 Inno-It Co., Ltd. Composite heating aerosol-generating device
CN113507849A (zh) * 2020-02-07 2021-10-15 韩国烟草人参公社 气溶胶生成装置及其操作方法
CN113892683A (zh) * 2021-10-08 2022-01-07 海南摩尔兄弟科技有限公司 气溶胶生成品、电子雾化器、雾化系统、识别方法和温度控制方法
CN113907442A (zh) * 2021-10-14 2022-01-11 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化主体、雾化器、加热控制方法
CN114259089A (zh) * 2021-12-28 2022-04-01 深圳麦克韦尔科技有限公司 电子雾化装置及加热方法、液体含量的检测方法
CN114582631A (zh) * 2022-03-04 2022-06-03 深圳麦时科技有限公司 用于气溶胶生成装置的待测电容组件
CN114568750A (zh) * 2022-03-04 2022-06-03 深圳麦时科技有限公司 气溶胶生成装置及其感应控制装置
CN114568763A (zh) * 2022-03-04 2022-06-03 深圳麦时科技有限公司 气溶胶生成装置及其雾化控制装置
CN115024522A (zh) * 2022-07-04 2022-09-09 深圳麦时科技有限公司 气溶胶生成装置及其感应控制装置

Also Published As

Publication number Publication date
CN115024522A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2023165214A1 (zh) 气溶胶生成装置及其雾化控制装置
WO2024008031A1 (zh) 气溶胶生成装置及其感应控制装置
EP3682924B1 (en) Power supply unit for aerosol inhaler
CN108471804A (zh) 电源组件、非燃烧型香味吸取器以及非燃烧型香味吸取系统
CN114568750A (zh) 气溶胶生成装置及其感应控制装置
CN204861167U (zh) 电子烟雾化温度控制电路及可控温电子烟雾化芯
CN114582631B (zh) 用于气溶胶生成装置的待测电容组件
CN205052879U (zh) 电子烟
CN108471812A (zh) 具有液体气溶胶形成基质识别的气溶胶生成系统
CN110447972A (zh) 具有加密芯片防伪的电子烟及其防伪方法
CN111669982A (zh) 抽吸成分生成装置的电源单元、抽吸成分生成装置的电源单元中的已知电阻的电阻值的选择方法
CN104394723A (zh) 电子蒸气提供装置
WO2024082852A1 (zh) 控制方法、控制模块及气溶胶生成装置
WO2023164945A1 (zh) 气溶胶生成装置及其感应控制装置
US20130057302A1 (en) Capacitive measuring circuit insensitive to high-frequency interference
CN219741838U (zh) 气溶胶生成装置及其感应控制装置
CN206821976U (zh) 复位电路及电子烟
CN218483795U (zh) 气溶胶生成装置及其活动盖检测装置
CN205317364U (zh) 一种中频治疗仪的输出电极板温度采样电路
CN214431824U (zh) 用于电子雾化装置的电源机构及电子雾化装置
CN115701915A (zh) 基于超声波振动的气溶胶生成装置及其方法
CN203772966U (zh) 一种便携式测量仪
KR102702978B1 (ko) 에어로졸 생성 장치
WO2024199099A1 (zh) 气溶胶生成装置及其控制方法
KR20240144425A (ko) 에어로졸 생성 장치 및 이의 감지 제어장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834798

Country of ref document: EP

Kind code of ref document: A1