WO2024007955A1 - 一种连续管钻井机电液一体化定向工具 - Google Patents

一种连续管钻井机电液一体化定向工具 Download PDF

Info

Publication number
WO2024007955A1
WO2024007955A1 PCT/CN2023/103937 CN2023103937W WO2024007955A1 WO 2024007955 A1 WO2024007955 A1 WO 2024007955A1 CN 2023103937 W CN2023103937 W CN 2023103937W WO 2024007955 A1 WO2024007955 A1 WO 2024007955A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
piston
hydraulic
pressure
module
Prior art date
Application number
PCT/CN2023/103937
Other languages
English (en)
French (fr)
Inventor
胡亮
阮臣良
陈武君
谷磊
程光明
尹慧博
曹海涛
Original Assignee
中国石油化工股份有限公司
中石化石油工程技术研究院有限公司
德州大陆架石油工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化石油工程技术研究院有限公司, 德州大陆架石油工程技术有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024007955A1 publication Critical patent/WO2024007955A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/062Deflecting the direction of boreholes the tool shaft rotating inside a non-rotating guide travelling with the shaft
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes

Definitions

  • the invention belongs to the technical field of oil and gas well drilling tools, and specifically relates to an electro-hydraulic integrated directional tool for a coiled tube drilling machine.
  • This directional tool is the core tool of coiled tubing drilling and determines the technical level of trajectory control during coiled tubing drilling.
  • drilling fluid drive or independent hydraulic drive.
  • Existing directional tools that use drilling fluid to drive mechanical structures to adjust the tool face still have the following shortcomings. For example, the application range is limited and cannot be used in gas or foam drilling. In addition, the mud pump displacement needs to be increased during the directional process, which affects normal drilling. Enter parameters.
  • Hydraulic oil will inevitably leak. This can adversely affect the accurate operation of the directional tool.
  • the present invention aims to propose an electro-hydraulic integrated directional tool for a coiled tube drilling machine.
  • the directional tool can adjust the downhole tool surface in real time to meet the coiled tube drilling directional requirements.
  • Its hydraulic drive module adopts a set of hydraulic The component realizes the reciprocating motion of the piston, and the mechanical transmission structure can be reliably locked after the movement is completed, preventing slippage from affecting the rotation effect. There is no need to add additional self-locking structures and positioning sensors, thus greatly simplifying the structure and significantly improving the reliability of the system.
  • an electro-hydraulic integrated directional tool for a coiled tube drilling machine which includes: an electronic control module for receiving surface control commands; a hydraulic drive module including a motor signally connected to the electronic control module; A two-way hydraulic pump connected to the motor, and a piston unit.
  • the piston unit includes a piston housing and a piston arranged in the piston housing. Two ends of the piston are respectively formed in communication with the two-way hydraulic pump.
  • the mechanical transmission module can convert the axial movement of the piston into rotation to drive the downhole drilling tool to rotate, thereby adjusting the downhole tool face.
  • the electronic control module includes a circuit pressure-bearing cylinder and a control circuit arranged in the circuit pressure-bearing cylinder, and the motor is signally connected to the control circuit.
  • it also includes an upper joint, a pressure-bearing housing and a mechanical transmission housing connected in sequence from top to bottom.
  • the electronic control module and the hydraulic drive module are arranged in the pressure-bearing housing and are connected with the pressure-bearing housing.
  • An annular flow channel for drilling fluid to circulate is formed between the pressure-bearing shells, and the mechanical transmission module is arranged in the mechanical transmission shell.
  • control circuit is installed in the circuit pressure-bearing cylinder through a circuit skeleton, and the control circuit is connected to a cable from the ground through a cable connector to receive and execute ground control commands.
  • the hydraulic drive module further includes a motor housing fixedly connected to the upper end of the piston housing, and the motor and the bidirectional hydraulic pump are arranged in the motor housing.
  • the hydraulic drive module further includes a configuration provided between the electronic control module and the The oil unit between the motors is used to store compensation hydraulic oil used to balance the internal and external pressure differences of the hydraulic drive module.
  • the oil nang unit is disposed between the circuit pressure-bearing cylinder and the motor housing, and includes an oil nang frame and a skin bag arranged on the oil nang frame.
  • An annular space for storing the compensation hydraulic oil is formed between the skeleton and the bladder.
  • a connector is installed in the oil noodle frame for connecting the control circuit and the motor.
  • the upper joint and the circuit pressure-bearing cylinder are respectively provided with a first overflow hole and a second overflow hole penetrating their side walls, and the second overflow hole is connected to the oil nang unit. Corresponding in position, wherein the drilling fluid from the upper drilling tool can flow to the oil nang unit through the first overflow hole, the annular overflow channel and the second overflow hole in sequence, To balance the pressure difference between the inside and outside of the hydraulic drive module.
  • the bidirectional hydraulic pump has a first oil port and a second oil port connected to the first liquid chamber and the second liquid chamber respectively
  • the hydraulic drive module further includes a connector connected to the bidirectional hydraulic pump.
  • a two-way hydraulic valve is provided between the pump and the piston housing. The two-way hydraulic valve is provided with a first oil path and a second oil path that are respectively connected with the first oil port and the second oil port.
  • a first flow channel and a second flow channel respectively connected to the first liquid chamber and the second liquid chamber are provided in the side wall of the piston housing, and the first flow channel and The first oil passage is connected to form a first hydraulic passage, and the second flow passage is connected to the second oil passage to form a second hydraulic passage.
  • the bidirectional hydraulic pump sucks in the low-pressure oil in the first hydraulic channel and compresses it to form high-pressure oil, and then delivers the high-pressure oil to the third hydraulic channel through the second hydraulic channel.
  • the two liquid chambers allow the piston to retract axially upward under the action of the oil pressure difference.
  • a first safety valve and a second safety valve are respectively provided in the first oil path and the second oil path of the two-way hydraulic valve.
  • the side wall of the piston housing is provided with a pressure balance hole for connecting the annular flow passage and the upper end area of the piston to balance the pressure at both ends of the piston.
  • a hydraulic joint is fixed at the lower end of the piston housing, and the lower end of the piston passes through the hydraulic joint and forms a dynamic seal.
  • an upper centralizer is provided on the outside of the circuit pressure-bearing cylinder, and the hydraulic lower connection
  • a lower centralizer is provided on the outside of the head for centering the electronic control module and the hydraulic drive module.
  • the mechanical transmission module includes a transmission shaft connected to the piston and a rotating barrel adaptively connected to the transmission shaft.
  • the mechanical transmission module is configured to drive all the components through the axial movement of the transmission shaft.
  • the rotating drum rotates.
  • the transmission shaft is fixedly connected to the piston through a drive shaft with a central flow channel, and the drive shaft is provided with a third flow hole penetrating its side wall for communicating with the central flow channel. and the annulus flow channel.
  • a plurality of circumferentially evenly distributed first keyways and a plurality of circumferentially evenly distributed second keyways are formed on the outer surface of the transmission shaft, and the first keyways and the second keyways are in an axial direction. are spaced apart from each other and arranged at a certain angle in the circumferential direction, so that the first keyway and the second keyway are connected to each other but staggered in the circumferential direction, and at least one matching protrusion is provided on the inner surface of the rotating barrel, When the transmission shaft moves in the axial direction, the matching protrusion can alternately cooperate with the first keyway and the second keyway to move between the first keyway and the second keyway, thereby The rotating drum is driven to rotate.
  • the first side wall of the lower end of the first keyway is configured as a first guide slope
  • the first guide slope is opposite to the second keyway to receive the mating protrusion from the second keyway
  • the first side wall of the upper end of the second keyway is configured as a second guide slope
  • the second guide slope is opposite to the first keyway to receive the mating protrusion from the first keyway.
  • a first matching slope that matches the first guide slope is formed on the upper end of the matching protrusion and on the second side opposite to the first side.
  • a first matching slope is formed on the lower end of the matching protrusion and on the second side opposite to the first side.
  • the mechanical transmission module further includes: a ratchet barrel, the upper end of the ratchet barrel is sleeved on the drive shaft, and the lower end of the ratchet barrel extends downward to connect with the rotating barrel.
  • the upper ends are joined together, and ratchet teeth that cooperate with each other are constructed at the lower end of the ratchet barrel and the upper end of the rotating barrel; and a spring, the inner wall of the mechanical transmission housing is provided with a step with an end facing downward, and the spring is provided with Between the step and the upper end surface of the ratchet barrel, the lower end of the ratchet barrel is pressed against the upper end of the rotating barrel, so that the rotating barrel can only rotate in one direction.
  • an output joint for connecting downhole drilling tools is fixedly connected to the lower end of the rotating barrel, and a sealing joint is provided between the output joint and the mechanical transmission housing, and the sealing joint is connected to the mechanical transmission housing.
  • the mechanical transmission shell is fixedly connected, the sealing joint is connected to the rotating cylinder and the output joint through thrust bearings respectively, and a rotating seal is provided between the output joint and the sealing joint. sealing ring, so that the output joint forms a rotary seal relative to the sealing joint.
  • the hydraulic drive module of the electro-hydraulic integrated directional tool of the coiled tube drilling machine realizes the bidirectional circulation of the two flow channels through a bidirectional hydraulic pump.
  • the hydraulic drive module uses a set of hydraulic components to realize the reciprocating movement of the piston. Compared with the traditional Two sets of hydraulic components greatly simplify the structure and significantly improve the reliability of the system.
  • the mechanical transmission module can be reliably locked after the movement is completed to prevent slippage from affecting the rotation effect. There is no need to add an additional self-locking structure.
  • the axial movement position has only two dead points, upper and lower, which does not require accurate positioning and is easy to control.
  • the electro-hydraulic integrated directional tool of the coiled tube drilling machine has high reliability and is very conducive to on-site construction.
  • Figure 1 shows the structure of the electro-hydraulic integrated directional tool of the coiled tube drilling machine according to the present invention.
  • Figure 2 schematically shows the retracted state of the piston in the hydraulic drive module.
  • Figure 3 schematically shows the extended state of the piston in the hydraulic drive module.
  • Figure 4 schematically shows the structure of the transmission shaft in the mechanical transmission module.
  • Figure 5 schematically shows the structure of the rotating drum in the mechanical transmission module.
  • Figure 6 schematically shows the working principle of the mechanical transmission module.
  • the end close to the wellhead is defined as the upper end, upstream end or similar terms, such as the upper end in Figure 1
  • the end far away from the wellhead is defined as the lower end, downstream end or similar terms, such as Figure 1 the lower end of the middle.
  • FIG. 1 shows the structure of the electro-hydraulic integrated directional tool 100 of the coiled tube drilling machine according to the present invention.
  • the electro-hydraulic integrated directional tool 100 of the coiled tube drilling machine includes an electronic control module 200, a hydraulic drive module 300, and a mechanical transmission module 400.
  • the electronic control module 200 is used to receive and execute ground operations. control commands.
  • the hydraulic drive module 300 is disposed at the lower end of the electronic control module 200, and includes a motor 14 signal-connected to the electronic control module 200, a bidirectional hydraulic pump 18 connected to the motor 14 and having a first oil port 19 and a second oil port 21, and
  • the piston housing 28 and the piston 27 adapted to the piston housing 28, the first oil port 19 and the second oil port 21 are respectively connected to the first liquid chamber 201 and the second liquid chamber 202 formed at the upper and lower ends of the piston 27 (see Figure 2) Connected.
  • the mechanical transmission module 400 is provided at the lower end of the hydraulic drive module 300 and includes a transmission shaft 41 connected to the piston 27 and a rotating cylinder 42 adapted to the transmission shaft 41 .
  • the electronic control module 200 can transmit ground control commands to the hydraulic drive module 300 and control the forward and reverse rotation of the motor 14 so that the bidirectional hydraulic pump 18 forms high-pressure oil and low-pressure oil at the first oil port 19 and the second oil port 21 respectively and alternately.
  • the first liquid chamber 201 and the second liquid chamber 202 are effectively connected, so that the piston 27 drives the transmission shaft 41 to perform axial reciprocating motion under the pressure difference between the high-pressure oil and the low-pressure oil.
  • the mechanical transmission module 400 is configured to be able to pass the transmission
  • the axial movement of the shaft 41 drives the rotating barrel 42 to rotate, thereby converting the axial movement of the transmission shaft 41 into the rotational movement of the rotating barrel 42, thereby driving the downhole drilling tools connected to the lower end of the rotating barrel 42 to rotate to adjust the downhole tool surface.
  • the electro-hydraulic integrated directional tool 100 of the coiled tube drilling machine also includes an upper joint 1, a pressure-bearing housing 4 and a mechanical transmission housing 36 connected in sequence from top to bottom.
  • the electronic control module 200 and the hydraulic drive module 300 are arranged in the pressure-bearing housing 4, and an annulus flow channel 5 for drilling fluid to circulate is formed between the electronic control module 200, the hydraulic drive module 300 and the pressure-bearing housing 4.
  • the mechanical transmission module 400 is disposed within the mechanical transmission housing 36 .
  • the upper end of the upper joint 1 is a universal drill pipe buckle for connecting with an upper drilling tool (not shown).
  • the lower end of the upper joint 1 is configured as a positive tapered buckle and is fixedly connected to the pressure-bearing shell 4 through threads.
  • Both ends of the pressure-bearing housing 4 are configured as negative conical buckles.
  • the upper negative conical buckle is threaded to form a fixed connection with the positive conical buckle of the upper joint 1, and the lower negative conical buckle is threaded with the mechanical transmission housing 36.
  • the positive tapered buckle at the upper end is adapted to form a fixed connection. Therefore, the pressure-bearing housing 4 serves as a protective housing for the electronic control module 200 and the hydraulic drive module 300, and is used to withstand external impacts of the directional tool and the difference in drilling hydraulic pressure between the inside and outside.
  • the upper joint 1 is provided with a first overflow hole 3 penetrating the side wall of the upper joint 1 .
  • the first through-flow hole 3 is provided near the lower end, and there are two first through-flow holes 3 and they are symmetrically distributed.
  • the first overflow hole 3 connects the inside of the upper joint 1 with the annulus overflow channel 5 , whereby the drilling fluid from the upper drilling tool flows into the annulus overflow channel 5 through the first overflow hole 3 .
  • the electronic control module 200 includes a circuit pressure-bearing cylinder 6 and a control circuit 9 arranged in the circuit pressure-bearing cylinder.
  • the control circuit 9 is connected to the cable from the ground through the cable connector 2. Used to receive and execute ground control commands.
  • the control circuit 9 is installed on the circuit carrier through the circuit skeleton 8 Inside the pressure cylinder 6, the circuit pressure cylinder 6 can effectively protect the control circuit 9.
  • the upper end of the circuit pressure-bearing cylinder 6 is provided with a step-shaped installation part, and the cable connector 2 is fixedly installed on the step-shaped installation part, which is used to connect the upper part of the electro-hydraulic integrated directional tool 100 of the coiled tube drilling machine to the internal cable of the drilling tool and the circuit.
  • the control circuit 9 inside the pressure-bearing cylinder 6 is connected.
  • the circuit skeleton 8 is arranged inside the circuit pressure-bearing cylinder 6 for installing the control circuit 9 and supporting the control circuit 9 .
  • an upper centralizer 7 is installed near the upper end of the circuit pressure-bearing cylinder 6 to ensure the centralization of the electronic control module 200 .
  • the hydraulic drive module 300 further includes a motor housing 16 fixedly connected to the upper end of the piston housing 28.
  • the motor 14 and the bidirectional hydraulic pump 18 are both arranged in the motor housing 16.
  • the upper end of the motor housing 16 is fixedly connected to the lower end of the circuit pressure-bearing cylinder 6 through a forward tapered connection buckle, and the lower end of the motor housing 16 is connected to the piston housing 28 through a forward tapered connection buckle.
  • the upper end forms a fixed connection.
  • Annular gaps are formed between the circuit pressure-bearing cylinder 6 , the motor housing 16 , the piston housing 28 and the pressure-bearing shell 4 . These annular gaps are connected with each other and form part of the annular flow passage 5 .
  • an oil nang unit 10 is installed between the circuit pressure-bearing cylinder 6 and the motor housing 16 .
  • the Nang unit 10 includes a Nang frame 11 and a skin bag 15 arranged on the Nang frame 11 .
  • the oil unit 10 stores compensation hydraulic oil for balancing the internal and external pressure differences of the hydraulic drive module 300 .
  • compensation hydraulic oil is stored in the annular space formed between the oil cake frame 11 and the bladder 15 .
  • the bladder 15 is made of flexible material, such as rubber.
  • the entire hydraulic drive module 300 is immersed in hydraulic oil, and oil is injected through the oil filling hole 17 on the motor protective shell 16. Part of the hydraulic oil is stored in the annular space between the oil pan frame 11 and the bladder 15 as compensation hydraulic oil.
  • the circuit pressure-bearing cylinder 6 is provided with a second overflow hole 13 penetrating its side wall.
  • the second overflow hole 13 corresponds to the oil nang unit 10.
  • the drilling fluid from the upper drilling tool can sequentially pass through the first overflow hole 3, the ring
  • the empty flow passage 5 and the second flow hole 13 flow to the oil noodle unit 10 . Therefore, the drilling fluid can act on the bladder 15 of the oil nang unit 10 to balance the pressure difference between the inside and outside of the hydraulic drive module 300 .
  • the internal pressure here refers to the pressure within the hydraulic drive module 300
  • the external pressure refers to the drilling fluid pressure in the annulus flow channel.
  • the upper end of the oil nang frame 11 is inserted into the lower end of the circuit pressure-bearing tube 6, and the lower end of the oil frame 11 is inserted into the upper end of the motor housing 16 to form a fixed installation.
  • a connector 12 is installed in the Nang frame 11 for connecting the control lines of the control circuit 9 and the control lines of the motor 14 to facilitate the transmission of control signals.
  • the hydraulic drive module 300 includes fluids arranged sequentially along the direction from upstream to downstream.
  • the oil noodle unit 10, the motor 14 and the two-way hydraulic pump 18 are connected.
  • the Nang unit 10 includes a Nang frame 11 and a bladder 15 made of, for example, rubber, which is disposed on the Nang frame 11 . Compensating hydraulic oil is stored in the annular space formed between the oil pan frame 11 and the bladder 15 . This compensation hydraulic oil is in communication with the hydraulic oil used by the bidirectional hydraulic pump 18 .
  • the oil nang unit 10 can automatically supply the bidirectional hydraulic pump 18 when hydraulic oil leaks, compensating for the hydraulic oil loss that occurs, ensuring that the motor 14 and the bidirectional hydraulic pump 18 can work normally, and also avoiding the need to replace the motor 14 Or the need for two-way hydraulic pump 18.
  • the hydraulic force acting on the rubber bladder 15 will cause the bladder 15 to deform, thereby eliminating the vacuum that may be formed in the oil nang unit 10, ensuring The normal operation of the hydraulic drive module 300 is ensured.
  • the drilling fluid can flow to the oil nang unit 10 through the first overflow hole 3, the annulus overflow channel 5 and the second overflow hole 13 in sequence.
  • the internal and external pressure differences of the hydraulic drive module 300 can be balanced. As a result, the pressure-bearing capacity of each component in the hydraulic drive module 300 is improved and the service life is extended.
  • the hydraulic drive module 300 also includes a two-way hydraulic valve 20 connected between the two-way hydraulic pump 18 and the piston housing 28.
  • the two-way hydraulic valve 20 is provided with a second oil port 21 and a first oil port respectively connected to the two-way hydraulic pump 18.
  • the first oil circuit and the second oil circuit connected by port 19.
  • a first flow channel 24 and a second flow channel 26 are provided in the side wall of the piston housing 28 and communicate with the first liquid chamber 201 and the second liquid chamber 202 respectively.
  • the first flow channel 24 is connected with the first oil channel to form a first hydraulic channel, and both ends of the first hydraulic channel are connected with the first oil port 19 and the first liquid chamber 201 of the bidirectional hydraulic pump 18 respectively.
  • the second flow channel 26 is connected with the second oil channel to form a second hydraulic channel, and both ends of the second hydraulic channel are connected with the second oil port 21 and the second liquid chamber 202 of the bidirectional hydraulic pump 18 respectively.
  • the piston housing 28 is roughly cylindrical, and two independent upper and lower cavities are formed in the piston housing 28.
  • the upper cavity is used to install the two-way hydraulic valve 20, and the lower cavity is used to install the two-way hydraulic valve 20.
  • the piston 27 is adapted to be installed.
  • a hydraulic joint 29 is fixedly installed at the lower end of the piston housing 28 , and the hydraulic joint 29 is inserted into the lower end of the piston housing 28 .
  • a sliding seal ring 30 is provided between the hydraulic lower joint 29 and the lower end of the lower piston rod (see below) of the piston 27, so that the two form a dynamic sealing connection.
  • the lower end of the lower piston rod of the piston 27 extends outward through the hydraulic joint 29, and a dynamic seal is formed between the lower piston rod and the hydraulic joint 29. seal up.
  • the piston 27 can move axially within the cavity.
  • the piston 27 is configured to include a piston body and upper and lower piston rods arranged oppositely at both axial ends of the piston body.
  • the diameters of the upper and lower piston rods are equal and smaller than the diameter of the piston body.
  • the cavity in the piston housing 28 is formed into an upper cavity and a lower cavity connected to the upper cavity.
  • the diameter of the upper cavity is smaller than the diameter of the lower cavity.
  • the upper piston rod is adapted to be installed in the upper cavity and forms a seal with the inner wall of the upper cavity.
  • the piston body is adapted to be installed in the lower cavity and forms a seal with the inner wall of the lower cavity.
  • the area of the lower cavity corresponding to the upper end surface of the piston body is formed as the first liquid chamber 201, and the area of the lower cavity corresponding to the lower end surface of the piston body is formed as the second liquid chamber 202.
  • the first liquid chamber 201 is connected with the first hydraulic channel
  • the second liquid chamber 202 is connected with the second hydraulic channel.
  • the hydraulic drive module 300 can enable the first liquid chamber 201 and the second liquid chamber 202 to alternately communicate with high-pressure oil and low-pressure oil, thereby forming a pressure difference between the upper and lower end surfaces of the piston body, thereby realizing the movement of the piston 27 along the axis. toward reciprocating motion.
  • the hydraulic drive module 300 receives ground control commands transmitted by the electronic control module 200 to control the motor 14 to rotate forward and reverse.
  • the first oil port 19 of the two-way hydraulic pump 18 absorbs oil, sucks the low-pressure oil in the second hydraulic channel back into the two-way hydraulic pump 18, and compresses it to form high-pressure oil, and then passes the high-pressure oil through the first
  • the hydraulic channel delivers to the first liquid chamber 201.
  • the oil in the first liquid chamber 201 is high-pressure oil
  • the oil in the second liquid chamber 202 is low-pressure oil, so that the piston 27 moves axially downward under the pressure difference between the high-pressure oil and the low-pressure oil. , thereby realizing the extension of the piston 27.
  • Figure 3 shows the extended state of the piston 27 in the hydraulic drive module 300.
  • matching first safety valves 22 and second safety valves 23 are respectively provided in the first oil path and the second oil path of the dual-way hydraulic valve 20 .
  • the oil pressure in the dual-way hydraulic valve 20 is abnormal (such as the movement of the piston 27 is blocked or the circulating oil passage is blocked) and exceeds the set threshold of the first safety valve 22 or the second safety valve 23, the corresponding first safety valve 22 Or the second safety valve 23 will automatically open to drain part of the oil to the low-pressure chamber, thereby ensuring the safety of the entire hydraulic circulation system.
  • the hydraulic drive module 300 only includes a bidirectional hydraulic pump 18, through which a bidirectional The hydraulic pump 18 realizes bidirectional circulation of the two flow channels, ensuring that the piston reciprocates reliably along the axial direction.
  • the structure of the device of the present invention is significantly simplified, which greatly improves the reliability of the system.
  • the length of the entire orientation tool 100 is significantly shortened.
  • the orientation tool of the present invention can be manufactured with a length of only 3.6 to 4 meters, which is about 15-30% shorter than the length of the orientation tools in the prior art.
  • the overall length of the orientation tool 100 according to the present invention is only about 3.8 m, compared to the overall length of about 5.5 m in the prior art. About 30% shorter. It is easy to understand that this is of great significance to the tool borehole curvature passability.
  • a pressure balance hole 25 is provided on the side wall of the piston housing 28 corresponding to the upper cavity.
  • the pressure balance hole 25 is preferably provided near the top of the upper cavity for communicating with the annulus flow passage. 5 corresponds to the upper end area of the piston 27 in the cavity, so that the drilling fluid pressure acts on the piston rod above the piston 27 to balance the drilling fluid pressure on the piston rod below the piston 27 and prevent vacuuming when the piston 27 moves. Phenomenon.
  • a lower centralizer 31 is provided on the outside of the hydraulic lower joint 29, which is used to center the hydraulic drive module 300 to ensure the coaxiality of the connection between the piston 27 and the mechanical transmission module 400, and reduce the differences in the driving process of the entire system. shaft resistance to improve the output thrust efficiency of the hydraulic drive module 300.
  • the upper centralizer 7 installed on the circuit pressure-bearing cylinder 6 and the lower centralizer 31 work together to effectively ensure the centralization of the electronic control module 200 and the hydraulic drive module 300.
  • the transmission shaft 41 is fixedly connected to the lower end of the piston 27 through the drive shaft 34 having a central flow channel 35 . Therefore, when the piston 27 is driven by the hydraulic drive module 300 to move in the axial direction, the transmission shaft 41 can be driven by the piston 27 and move in the axial direction.
  • the driving shaft 34 is provided with a third flow hole 33 penetrating its side wall. The third flow hole 33 is preferably located near the upper end for connecting the central flow channel 35 and the annular flow channel 5 .
  • the drilling fluid in the annulus flow passage 5 between the electronic control module 200 and the hydraulic drive module 300 and the pressure housing 4 can enter the center of the drive shaft 34 of the mechanical transmission module 400 through the third flow hole 33 in the flow channel 35 to realize the downward transmission of drilling fluid.
  • a limiting cylinder 32 is provided on the driving shaft 34 and is located close to the upper end of the driving shaft 34 .
  • the upper end surface of the limiting cylinder 32 is in contact with the lower end surface of the hydraulic lower joint 29 of the hydraulic drive module 300.
  • the lower end surface of the limiting cylinder 32 is in contact with the upper end surface of the mechanical transmission housing 36, thereby limiting the hydraulic drive module 300. , to prevent the entire hydraulic drive module 300 from moving downward when the piston 27 extends.
  • a plurality of first key grooves 50 evenly spaced in the circumferential direction and a plurality of second key grooves 60 evenly spaced in the circumferential direction are formed on the outer surface of the transmission shaft 41 .
  • the first keyway 50 and the second keyway 60 are spaced apart from each other in the axial direction, and are staggered at a certain angle in the circumferential direction, so that the first keyway 50 and the second keyway 60 are connected to each other but are staggered in the circumferential direction.
  • Both the first keyway 50 and the second keyway 60 extend in the axial direction.
  • the first key groove 50 and the second key groove 60 may be, for example, external spline grooves extending in the axial direction.
  • At least one matching protrusion 70 is provided on the inner surface of the rotating barrel 42 .
  • the fitting protrusions 70 may be configured in plurality. More preferably, the first key groove 50 , the second key groove 60 and the mating protrusion 70 are equal in number. These cooperating protrusions 70 are arranged circumferentially spaced apart from each other.
  • the above-mentioned matching protrusions 70 may be, for example, internal key teeth extending in the axial direction.
  • the mating protrusion 70 can alternately cooperate with the first keyway 50 and the second keyway 60 to form a gap between the first keyway 50 and the second keyway 60 .
  • the second key grooves 60 move between each other, thereby driving the rotating cylinder 42 to rotate.
  • the first side wall of the lower end of the first keyway 50 is configured as a first guide slope 51
  • the first guide slope 51 is opposite to the second keyway 60 to receive the mating protrusion 70 from the second keyway 60
  • the first side wall of the upper end of the second keyway 60 is configured as a second guide slope 61
  • the second guide slope 61 is opposite to the first keyway 50 to receive the mating protrusion 70 from the first keyway 50 .
  • a first mating slope 71 mating with the first guide slope 51 is formed on the upper end of the mating protrusion 70 and on the second side opposite to the first side.
  • a second matching slope 72 that matches the second guide slope 61 is formed on the second side opposite to the first side.
  • the first fitting slope 71 at the upper end of the fitting protrusion 70 engages with the first guide slope 51 at the lower end of the first keyway 50 .
  • the matching protrusion 70 can continue to move upward with an offset in the circumferential direction, and thereby enter into a position that is offset at a certain angle from the second keyway 60 in the circumferential direction. inside the first keyway 50 .
  • the cooperation between the first guide slope 51 and the first matching slope 71 facilitates the stable movement of the matching protrusion 70 relative to the first keyway 50 and enables the rotation of the rotating barrel 42 .
  • the second fitting slope 72 at the lower end of the fitting protrusion 70 engages with the second guide slope 61 at the upper end of the second keyway 60 .
  • the matching protrusion 70 can continue to move downward in a circumferentially biased manner, and thereby enter into a position that is circumferentially offset by a certain angle from the above-mentioned first keyway 50. in the second keyway 60.
  • the second guide slope 61 and the second matching slope 72 it is beneficial to realize the matching protrusion 70
  • the stable movement relative to the second keyway 60 realizes the rotation of the rotating barrel 42 .
  • the mating protrusion 70 is always mated with at least one of the first key groove 50 and the second key groove 60 . That is to say, the matching protrusion 70 does not escape from the first key groove 50 and the second key groove 60 at the same time.
  • the rotating barrel 42 is arranged outside the transmission shaft 41 so that the matching protrusion 70 on the rotating barrel 42 can be in the first keyway 50 and the second keyway 60 move between.
  • the fitting protrusion 70 engages with the first keyway 50 and the second keyway 60 in the circumferential direction, thereby realizing the transmission shaft 41 and the rotating barrel 42 Relatively fixed in the circumferential direction.
  • this arrangement can effectively avoid slippage and prevent the bottom hole assembly connected to the rotating barrel 42 from deviating in the drilling direction during the drilling process.
  • a constriction portion 411 is also formed on the outer surface of the transmission shaft 41 .
  • the constricted portion 411 is located in the space between the first key groove 50 and the second key groove 60 . Therefore, when the fitting protrusion 70 moves to the constricted portion 411 , the fitting protrusion 70 will not directly contact the outer surface of the transmission shaft 41 . This is beneficial to reducing the friction between the rotating barrel 42 and the transmission shaft 41, making the relative movement between them more flexible.
  • the mechanical transmission module 400 further includes a ratchet barrel 40.
  • the upper end of the ratchet barrel 40 is sleeved on the drive shaft 34.
  • the lower end of the ratchet barrel 40 extends downward to the outside of the transmission shaft 41 and is connected with the rotating barrel 42.
  • the upper ends are joined together.
  • a ratchet tooth is configured at the lower end edge of the ratchet barrel 40 . The function and role of this ratchet will be described in detail below.
  • a step with the end facing downward is provided on the inner wall of the mechanical transmission housing 36 , and a spring 38 is provided between the step and the upper end surface of the ratchet barrel 40 .
  • the upper end of the spring 38 is pressed against the step through the balance weight 37 .
  • the spring 38 is always in a compressed state to press the ratchet barrel 40 downward, so that the lower end of the ratchet barrel 40 is pressed against the upper end of the rotating barrel 42 .
  • the spring 38 can also be replaced by any other suitable elastic member.
  • a ratchet 421 is also constructed at the upper edge of the rotating barrel 42 (see Figure 5). Under the urging force of the spring 38, the ratchet teeth 421 can abut and cooperate with the ratchet teeth at the lower edge of the ratchet barrel 40 mentioned above.
  • the ratchet cylinder 40 compresses the spring 38, thereby providing a certain axial movement space. At the same time, the cooperation between the ratchet teeth can prevent the rotating cylinder 42 from rotating in the opposite direction.
  • the upper outer surface of the ratchet barrel 40 is processed with a spline groove. The ratchet barrel 40 cooperates with the splines provided on the inner wall of the mechanical housing 36 through the spline groove to prevent rotation.
  • the upper oil filling port 39 of 36 is used to fill the space between the transmission shaft 41 and the mechanical transmission housing 36 with lubricating oil.
  • the lubricating oil can flow in the space between the transmission shaft 41 and the mechanical transmission housing 36 , the space between the rotating barrel 42 and the mechanical transmission housing 36 , and the space where the transmission shaft 41 and the rotating barrel 32 cooperate.
  • the upper oil filling port 39 is equipped with a removable sealing plug. This further facilitates the relative movement between the rotating drum 42 and the transmission shaft 41 to be more flexible.
  • an output joint 47 is fixedly connected to the lower end of the rotating barrel 42 for connecting to downhole drilling tools (not shown).
  • the upper end of the output joint 47 can be inserted into the lower end of the rotating barrel 42 and threadedly connected thereto. Therefore, when the rotating drum 42 rotates, the output joint 47 can rotate accordingly. Therefore, the rotation of the rotating barrel 42 can be transmitted to the downhole drilling tool, and drive the downhole drilling tool to change the drilling direction.
  • a sealing ring is provided between the upper end of the output joint 47 and the lower end of the rotating cylinder 42 to prevent well fluid from flowing to the outside of the transmission shaft 41 through the connection between the output joint 47 and the rotating cylinder 42 and contaminating the lubrication. Oil.
  • a sealing joint 44 is provided between the mechanical transmission housing 36 and the output joint 47 .
  • the upper end of the sealing joint 44 is inserted into the lower end of the mechanical transmission housing 36 and is fixedly connected through threads.
  • the sealing joint 44 is provided on the outside of the output joint 47, and a rotating sealing ring 46 is provided on the inside of the sealing joint 44.
  • the rotating sealing ring 46 is engaged between the sealing joint 44 and the output joint 47, so that the output joint 47 is sealed relative to the sealing joint 44. As the joint 44 rotates, the rotating seal ring 46 maintains a sealing engagement therebetween.
  • the upper end surface of the sealing joint 44 is directly opposite to the lower end surface of the rotating cylinder 42, and a thrust bearing 43 is provided between them.
  • the inner wall of the sealing joint 44 is provided with an inner step with the end facing downward
  • the outer wall of the output joint 47 is provided with an outer step with the end facing upward.
  • the inner step is opposite to the outer step, and there are also between the inner step and the outer step.
  • a thrust bearing 43 is provided.
  • the two thrust bearings 43 mentioned above surround the output joint 47 and are arranged axially spaced apart. The thrust bearings 43 can guide the rotation of the rotating cylinder 42 and transmit the axial pulling force of the mechanical transmission housing 36 at the same time. .
  • the sealing joint 44 is also provided with a lower oil filling port 45 radially penetrating its side wall for filling the space between the output joint 47 and the sealing joint 44 with lubricating oil to lubricate the two thrust bearings 43 .
  • the lower oil filling port 45 is equipped with a removable sealing plug.
  • Figure 6 shows three working states of the mechanical transmission module 400, which are state I, state II and state III respectively. They show the process of the rotating drum 42 rotating through a preset orientation angle.
  • the mating protrusion 70 is located in the second keyway 60A.
  • the two side walls of the second keyway 60A can effectively block the mating protrusion 70 . Therefore, the rotating cylinder 42 will not rotate relative to the transmission shaft 41, and the orientation of the downhole drilling tool connected below can be effectively ensured.
  • the spring 38 presses down the ratchet barrel 40 so that the ratchet teeth at its lower end mesh with the ratchet teeth at the upper end of the rotating barrel 42 .
  • the hydraulic drive module 300 drives the piston 27 to extend and press down the transmission shaft 41 , so that the transmission shaft 41 moves downward relative to the rotating barrel 42 . Thereby, the fitting protrusion 70 can be moved upward relative to the second key groove 60A and advanced to the state II.
  • the mating protrusion 70 is about to disengage from the second keyway 60A.
  • the first fitting slope 71 at the upper end of the fitting protrusion 70 is engaged with the first guide slope 51 at the lower end of the first key groove 50C sandwiched between the first key grooves 50B and 50C.
  • the hydraulic drive module 300 further depresses the piston 27 and then depresses the transmission shaft 41 , with the cooperation between the first matching ramp 71 of the fitting protrusion 70 and the first guide ramp 51 of the first keyway 50C, the fitting protrusion 70 It will turn towards the first keyway 50C (away from the first keyway 50B) and thereby enter the first keyway 50C.
  • the rotating barrel 42 not only rotates at a predetermined angle relative to the transmission shaft 41 , but also rotates at a predetermined angle relative to the ratchet barrel 40 .
  • the ratchet teeth at the upper end of the rotating barrel 42 and the ratchet teeth at the lower end of the ratchet barrel 40 are staggered, and after rotating through the above-mentioned predetermined angle, they mesh together again and enter the state III.
  • the matching protrusion 70 is located in the first keyway 50C and is limited by the left and right walls. Therefore, the rotating cylinder 42 will not rotate relative to the transmission shaft 41, and the orientation of the downhole drilling tool connected below can be effectively ensured.
  • the rotating cylinder 42 can rotate a predetermined angle in the same direction, so that the matching protrusion 70 moves to be adjacent to the second keyway 60A (located at Its left side) in another second keyway 60D. Therefore, every time the transmission shaft 41 moves once, it drives the rotating cylinder 42 to rotate by an angle, thereby realizing the adjustment of the downhole tool face.
  • the hydraulic drive module 300 alternately drives the piston 27 to extend and retract, thereby driving the transmission shaft 41 to undergo continuous axial reciprocating motion.
  • a continuous change in the orientation of the rotating drum 42 can be achieved. This is very efficient and beneficial in situations where the drilling angle of downhole drilling tools needs to be changed at a large angle.
  • the electromechanical and hydraulic integrated directional tool 100 of the coiled tube drilling machine When the electromechanical and hydraulic integrated directional tool 100 of the coiled tube drilling machine according to the present invention is actually working, the electromechanical and hydraulic The overall structure of the integrated directional tool is shown in Figure 1.
  • the electronic control module 200 receives ground control commands through cables and controls the motor 14 in the hydraulic drive module 300 to rotate forward and reverse to drive the two different oil outlets of the bidirectional hydraulic pump 18. oil, so that the bidirectional hydraulic pump 18 alternately forms high-pressure oil and low-pressure oil in the first hydraulic channel and the second hydraulic channel respectively.
  • the first liquid chamber 201 and the second liquid chamber 202 alternately communicate with high-pressure oil and low-pressure oil, thereby forming a pressure difference between the upper and lower end surfaces of the piston 27 to realize the axial reciprocating movement of the piston 27 .
  • the piston 27 drives the transmission shaft 41 connected to the drive shaft 34 in the mechanical transmission module 400 to move linearly and reciprocally.
  • the linear reciprocating motion of the transmission shaft 41 is converted into the rotational motion of the rotating barrel 42. , thus causing the rotating barrel 42 to drive the output joint 47 to rotate, and then drive the downhole drilling tool connected to the lower end of the output joint 47 to rotate, thereby realizing the adjustment of the downhole tool face and completing the coiled tubing drilling directional operation.
  • the hydraulic drive module 300 of the electro-hydraulic integrated directional tool 100 of the coiled tube drilling machine realizes the bidirectional circulation of the two flow channels through a bidirectional hydraulic pump 18. Compared with the traditional two sets of hydraulic components, the structure is greatly simplified and significantly improved. Improved system reliability. At the same time, the mechanical transmission module 400 can be reliably locked after the movement is completed to prevent slippage from affecting the rotation effect. There is no need to add an additional self-locking structure. In addition, the axial movement position has only two dead points, upper and lower, which does not require accurate positioning and is easy to control.
  • the electro-hydraulic integrated directional tool 100 of the coiled tube drilling machine has high reliability and is very conducive to improving the directional efficiency.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

本发明提供了一种连续管钻井机电液一体化定向工具,包括:电子控制模块;液压驱动模块,其包括与电子控制模块信号连接的电机、设置在电子控制模块与电机之间的油馕单元、与电机连接的双向液压泵,及活塞单元,油馕单元存储有用于平衡液压驱动模块的内外压差的补偿液压油,活塞单元包括活塞壳体和活塞,活塞两端形成有与双向液压泵连通的第一液腔和第二液腔;机械传动模块,其两端分别连接活塞和井下钻具;其中,电子控制模块能将地面控制命令传给液压驱动模块,控制电机驱动双向液压泵在第一液腔和第二液腔内交替形成高压油和低压油,使活塞轴向往复运动,机械传动模块能够将活塞的轴向运动转化为转动以带动井下钻具旋转,从而调整井下工具面。

Description

一种连续管钻井机电液一体化定向工具
相关申请的交叉引用
本申请要求享有于2022年7月5日提交的、发明名称为“一种连续管钻井机电液一体化定向工具”的中国专利申请202210783518.1的优先权,该申请的全部内容通过引用并入于本文中。
技术领域
本发明属于油气井钻井工具技术领域,具体涉及一种连续管钻井机电液一体化定向工具。
背景技术
在连续管钻井过程中,由于井口连续管送入装置的限制,连续管和底部钻具组合不能转动,因此,要实现连续管定向钻井,必须在底部钻具组合中配备专门的定向工具。该定向工具是连续管钻井的核心工具,决定了连续管钻井过程中轨迹控制的技术水平。
目前,国内外已有的连续管定向工具以驱动方式可分为钻井液驱动或独立液压驱动两种。现有的以钻井液驱动机械结构实现工具面调整的定向工具仍然存在以下缺点,如应用范围受限,无法应用于气体或泡沫钻井,且定向过程中需要加大泥浆泵排量,影响正常钻进参数。
而对于现有的通过独立液压系统产生驱动力的定向工具,其通过特定的机械结构产生旋转运动,实现井下工具面的调整,这种定向工具中的独立液压系统采用了两套液压组件实现活塞往复运动,这致使系统比较复杂,可靠性降低。并且,该定向工具中的机械转动部分采用长螺旋传动结构,螺旋升角不满足自锁条件,因此会在旋转动作结束后出现溜滑现象。为了保证螺杆旋转结束后可靠锁定,需要设计专门的锁定机构或者使用液压锁技术。同时长螺旋传动的输出转角与往复运动位移一一对应,为了输出确定的转角需要准确定位移动螺母位置,为此需要在狭小的机械配合空间安装位移传感器,并设计相应的软件算法加以控制,提高了工具的设计难度,可靠性也难以保证。
另外,对于在井下使用的液压系统来说,由于长期在高温高压环境下工作, 液压油难免会出现渗漏。这会对定向工具的准确操作造成不利的影响。
发明内容
针对如上所述的技术问题,本发明旨在提出一种连续管钻井机电液一体化定向工具,该定向工具能够实时调整井下工具面以满足连续管钻井定向要求,其液压驱动模块采用一套液压组件实现活塞往复运动,并且机械传动结构动作结束后能够可靠锁止,防止溜滑现象影响旋转效果,不需要格外增加自锁结构和定位传感器,从而大大简化结构,显著提高系统工作可靠性。
为此,根据本发明提供了一种连续管钻井机电液一体化定向工具,包括:用于接收地面控制命令的电子控制模块;液压驱动模块,其包括与所述电子控制模块信号连接的电机、与所述电机连接的双向液压泵,以及活塞单元,所述活塞单元包括活塞壳体和设置在所述活塞壳体内的活塞,在所述活塞两端分别形成有与所述双向液压泵连通的第一液腔和第二液腔;以及机械传动模块,其上下两端分别连接所述活塞和井下钻具;其中,所述电子控制模块能将地面控制命令传给所述液压驱动模块,以控制所述电机驱动所述双向液压泵在所述第一液腔和所述第二液腔内交替形成高压油和低压油,使得所述活塞在压差作用下做轴向往复运动,所述机械传动模块能够将所述活塞的轴向运动转化为转动以带动井下钻具旋转,从而调整井下工具面。
在一个实施例中,所述电子控制模块包括电路承压筒和布置在所述电路承压筒内的控制电路,所述电机与所述控制电路信号连接。
在一个实施例中,还包括从上到下依次连接的上接头、承压外壳和机械传动外壳,所述电子控制模块和所述液压驱动模块设置在所述承压外壳内,且与所述承压外壳之间形成有供钻井液流通的环空过流通道,所述机械传动模块设置在所述机械传动外壳内。
在一个实施例中,所述控制电路通过电路骨架安装在所述电路承压筒内,且所述控制电路通过电缆连接器与来自地面的电缆连接,以接收并执行地面控制命令。
在一个实施例中,所述液压驱动模块还包括固定连接在所述活塞壳体上端的电机壳体,所述电机和所述双向液压泵布置在所述电机壳体内。
在一个实施例中,所述液压驱动模块还包括设置在所述电子控制模块与所述 电机之间的油馕单元,用于存储用于平衡所述液压驱动模块的内外压差的补偿液压油。
在一个实施例中,所述油馕单元设置在所述电路承压筒与所述电机壳体之间,包括油馕骨架和设置在所述油馕骨架上的皮囊,在所述油馕骨架与所述皮囊之间形成了用于存储所述补偿液压油的环形空间。
在一个实施例中,在所述油馕骨架内安装有联线器,用于连接所述控制电路与所述电机。
在一个实施例中,所述上接头和所述电路承压筒分别设有贯穿其侧壁的第一过流孔和第二过流孔,所述第二过流孔与所述油馕单元在位置上相对应,其中,来自上部钻具的钻井液能够依次通过所述第一过流孔、所述环空过流通道和所述第二过流孔流到所述油馕单元处,以平衡所述液压驱动模块的内外压差。
在一个实施例中,所述双向液压泵具有分别与所述第一液腔和第二液腔连通的第一油口和第二油口,所述液压驱动模块还包括连接在所述双向液压泵与所述活塞壳体之间的双路液压阀,所述双路液压阀内设有分别与所述第一油口和第二油口连通的第一油路和第二油路。
在一个实施例中,在所述活塞壳体的侧壁内设有分别与所述第一液腔和所述第二液腔连通的第一流道和第二流道,所述第一流道与所述第一油路连通而形成第一液压通道,所述第二流道与所述第二油路连通而形成第二液压通道,其中,所述电机正转时,所述双向液压泵吸入所述第二液压通道内的低压油并压缩形成高压油,进而将高压油通过所述第一液压通道输送至所述第一液腔,使得所述活塞在油液压差的作用下轴向向下伸出,当所述电机反转时,所述双向液压泵吸入所述第一液压通道内的低压油并压缩形成高压油,进而将高压油通过所述第二液压通道输送至所述第二液腔,使得所述活塞在油液压差的作用下轴向向上缩回。
在一个实施例中,在所述双路液压阀的第一油路和第二油路中分别设有第一安全阀和第二安全阀。
在一个实施例中,所述活塞壳体的侧壁设有压力平衡孔,用于连通所述环空过流通道与所述活塞的上端区域,以平衡所述活塞的两端压力。
在一个实施例中,在所述活塞壳体的下端固定有液压接头,所述活塞的下端穿过所述液压接头并形成动密封。
在一个实施例中,在所述电路承压筒的外侧设有上扶正器,在所述液压下接 头的外侧设有下扶正器,用于将所述电子控制模和所述液压驱动模块扶正居中。
在一个实施例中,机械传动模块包括与所述活塞连接的传动轴和与所述传动轴适配连接的转动筒,所述机械传动模块构造成能通过所述传动轴的轴向运动驱动所述转动筒旋转。
在一个实施例中,所述传动轴通过具有中心流道的驱动轴与所述活塞固定连接,所述驱动轴设有贯穿其侧壁的第三过流孔,用于连通所述中心流道与所述环空过流通道。
在一个实施例中,在所述传动轴的外表面上形成有多个周向均布的第一键槽和多个周向均布的第二键槽,所述第一键槽与所述第二键槽在轴向上彼此间隔开分布,且在周向上错开一定角度设置,使得所述第一键槽与所述第二键槽彼此连通但在周向上错开,在所述转动筒的内表面设有至少一个配合凸起,所述传动轴沿轴向运动时使得所述配合凸起能交替地与所述第一键槽和所述第二键槽配合,以在所述第一键槽和所述第二键槽之间移动,从而驱动所述转动筒旋转。
在一个实施例中,所述第一键槽的下端的第一侧壁构造成第一导向斜面,所述第一导向斜面与所述第二键槽相对,以接收来自第二键槽的配合凸起,所述第二键槽的上端的第一侧壁构造成第二导向斜面,所述第二导向斜面与所述第一键槽相对,以接收来自第一键槽的配合凸起,在所述配合凸起的上端且与第一侧相反的第二侧上形成有与所述第一导向斜面相配合的第一配合斜面,在所述配合凸起的下端且与第一侧相反的第二侧上形成有与所述第二导向斜面相配合的第二配合斜面。
在一个实施例中,所述机械传动模块还包括:棘齿筒,所述棘齿筒的上端套装在所述驱动轴上,所述棘齿筒的下端向下延伸至与所述转动筒的上端相接合,在所述棘齿筒的下端和所述转动筒的上端构造有彼此配合的棘齿;以及弹簧,所述机械传动外壳的内壁设有端面朝下的台阶,所述弹簧设置在所述台阶与所述棘齿筒的上端面之间,并使所述棘齿筒的下端压紧在所述转动筒的上端处,以使所述转动筒仅能单向转动。
在一个实施例中,在所述转动筒的下端固定连接有用于连接井下钻具的输出接头,在所述输出接头与所述机械传动外壳之间设有密封接头,所述密封接头与所述机械传动外壳固定连接,所述密封接头与所述转动筒及所述输出接头之间分别通过推力轴承相接合,并且在所述输出接头与所述密封接头之间设置有旋转密 封圈,从而使所述输出接头相对于所述密封接头形成旋转式密封。
与现有技术相比,本申请的优点之处在于:
根据本发明的连续管钻井机电液一体化定向工具的液压驱动模块通过一个双向液压泵实现了两个流道的双向循环,液压驱动模块采用一套液压组件实现活塞往复运动,相比与传统的两套液压组件大大简化了结构,显著提高了系统工作可靠性。同时,机械传动模块动作结束后能够可靠锁止,防止溜滑现象影响旋转效果,不需要格外增加自锁结构。此外,轴向运动位置只有上下两个止点,不需要准确定位,控制简单。该连续管钻井机电液一体化定向工具可靠性高,非常有利于现场施工。
附图说明
下面将参照附图对本发明进行说明。
图1显示了根据本发明的连续管钻井机电液一体化定向工具的结构。
图2示意性地显示了液压驱动模块中活塞的收缩状态。
图3示意性地显示了液压驱动模块中活塞的伸出状态。
图4示意性地显示了机械传动模块中的传动轴的结构。
图5示意性地显示了机械传动模块中的转动筒的结构。
图6示意性地显示了机械传动模块的工作原理。
在本申请中,所有附图均为示意性的附图,仅用于说明本发明的原理,并不一定按实际比例绘制。
具体实施方式
下面通过附图来对本发明进行介绍。需要说明的是,这些介绍仅为出于说明本发明的原理而提供,并不因此而限制了本发明的范围。
为方便理解,在本申请中,将靠近井口的一端定义为上端、上游端或相似用语,例如图1中的上端,而将远离井口的一端定义为下端、下游端或相似用语,例如图1中的下端。
图1显示了根据本发明的连续管钻井机电液一体化定向工具100的结构。如图1所示,连续管钻井机电液一体化定向工具100包括电子控制模块200、液压驱动模块300,以及机械传动模块400,电子控制模块200用于接收并执行地面 控制命令。液压驱动模块300设置在电子控制模块200的下端,其包括与电子控制模块200信号连接的电机14、与电机14连接且具有第一油口19和第二油口21的双向液压泵18,以及活塞壳体28和与活塞壳体28适配的活塞27,第一油口19和第二油口21分别与形成于活塞27上、下端的第一液腔201和第二液腔202(见图2)连通。机械传动模块400设置在液压驱动模块300的下端,其包括与活塞27连接的传动轴41和与传动轴41适配连接的转动筒42。电子控制模块200能将地面控制命令传输给液压驱动模块300并控制电机14正反转,使双向液压泵18在第一油口19和第二油口21处分别形成高压油和低压油并交替地连通第一液腔201和第二液腔202,以使活塞27在高压油和低压油之间的压差作用下带动传动轴41做轴向往复运动,机械传动模块400构造成能通过传动轴41的轴向运动驱动转动筒42旋转,实现将传动轴41的轴向运动转化为转动筒42的旋转运动,从而带动连接在转动筒42下端的井下钻具旋转,以调整井下工具面。
如图1所示,连续管钻井机电液一体化定向工具100还包括从上到下依次连接的上接头1、承压外壳4和机械传动外壳36。电子控制模块200和液压驱动模块300设置在承压外壳4内,并且在电子控制模块200及液压驱动模块300与承压外壳4之间形成有供钻井液流通的环空过流通道5。机械传动模块400设置在机械传动外壳36内。
在一个实施例中,上接头1的上端为通用钻杆扣,用于与上部钻具(未示出)连接。上接头1的下端构造为正锥形扣,并与承压外壳4通过螺纹形成固定连接。承压外壳4的两端均构造成负锥形扣,上端负锥形扣通过螺纹与上接头1的正锥形扣适配而形成固定连接,下端负锥形扣通过螺纹与机械传动外壳36上端的正锥形扣适配而形成固定连接。由此,承压外壳4充当电子控制模块200和液压驱动模块300的保护外壳,用于承受定向工具外部冲击和内外钻井液压差。
上接头1设有贯穿上接头1的侧壁的第一过流孔3。优选地,第一过流孔3设置在靠近下端部的位置,第一过流孔3开有两个且对称分布。第一过流孔3连通上接头1的内部与环空过流通道5,由此,来自上部钻具的钻井液通过第一过流孔3流到环空过流通道5中。
根据本发明,如图1所示,电子控制模块200包括电路承压筒6和设置在所述电路承压筒内的控制电路9,控制电路9通过电缆连接器2与来自地面的电缆连接,用于接收并执行地面控制命令。控制电路9通过电路骨架8安装在电路承 压筒6的内部,电路承压筒6能够对控制电路9形成有效保护。电路承压筒6的上端设有台阶形安装部,电缆连接器2固定安装在台阶形安装部上,用于将连续管钻井机电液一体化定向工具100上部连接的钻具内通电缆与电路承压筒6内部的控制电路9相连接。电路骨架8布置在电路承压筒6的内部,用于安装控制电路9,并能够起支撑控制电路9。
在一个实施例中,在电路承压筒6的靠近上端位置处安装有上扶正器7,用于保证电子控制模块200的扶正居中。
根据本发明,液压驱动模块300还包括固定连接在活塞壳体28的上端的电机壳体16,电机14和双向液压泵18均布置在电机壳体16内。在一个实施例中,电机壳体16的上端通过正锥形连接扣与电路承压筒6的下端形成固定连接,电机壳体16的下端通过正锥形连接扣与活塞壳体28的上端形成固定连接。在电路承压筒6、电机壳体16、活塞壳体28与承压外壳4之间均形成有环形缝隙,这些环形缝隙相互连通,并形成环空过流通道5的一部分。
如图1所示,在电路承压筒6与电机壳体16之间安装有油馕单元10。油馕单元10包括油馕骨架11和设置在油馕骨架11上的皮囊15。油馕单元10内存储有用于平衡液压驱动模块300的内外压差的补偿液压油。优选地,在油馕骨架11与皮囊15之间形成的环形空间内储存有补偿液压油。皮囊15由柔性材料制成,例如橡胶。整个液压驱动模块300浸泡在液压油之中,通过电机保护壳16上的注油孔17注油,部分液压油储存在油馕骨架11和皮囊15之间的环形空间内而作为补偿液压油。电路承压筒6设有贯穿其侧壁的第二过流孔13,第二过流孔13与油馕单元10对应,来自上部钻具的钻井液能够依次通过第一过流孔3、环空过流通道5和第二过流孔13流到油馕单元10处。由此,钻井液能够作用在油馕单元10的皮囊15上,以平衡液压驱动模块300的内外压差。在本申请中,关于内外压差需要说明的是,这里的内部压力指液压驱动模块300内的压力,外部压力指环空过流通道内的钻井液压力。
油馕骨架11的上端插入式安装到电路承压筒6的下端,油馕骨架11的下端插入式安装到电机壳体16的上端,并形成固定安装。在油馕骨架11内安装有联线器12,用于连接控制电路9的控制线与电机14的控制线,以便于控制信号的传输。
根据本发明,液压驱动模块300包括沿着从上游至下游方向依次设置并流体 连通的油馕单元10、电机14和双向液压泵18。油馕单元10包括油馕骨架11,以及设置在油馕骨架11上的例如橡胶制成的皮囊15。在油馕骨架11与皮囊15之间形成的环形空间内储存有补偿液压油。该补偿液压油与双向液压泵18使用的液压油处于连通状态。
容易理解,尽管液压驱动模块300具有相应的密封件,然而在高温高压的井下环境中长期使用后,电机14和双向液压泵18中的液压油不可避免会发生泄漏。根据本发明,油馕单元10能够在液压油泄漏时自动地提供给双向液压泵18,补偿所发生的液压油损失,确保电机14和双向液压泵18能够正常工作,同时也避免了更换电机14或双向液压泵18的需要。
在油馕单元10的补偿液压油提供给双向液压泵18之后,作用于由橡胶制成的皮囊15上的液压力会使皮囊15发生变形,从而消除油馕单元10内可能形成的真空,保证了液压驱动模块300的正常操作。
此外,如上所述,钻井液能够依次通过第一过流孔3、环空过流通道5和第二过流孔13流到油馕单元10处,作用在油馕单元10的由柔性材料制成的皮囊15上,从而能够平衡液压驱动模块300的内、外压差。由此,提高了液压驱动模块300中的各部件的承压能力,延长了使用寿命。
液压驱动模块300还包括连接在双向液压泵18与活塞壳体28之间的双路液压阀20,双路液压阀20内设有分别与双向液压泵18的第二油口21和第一油口19连通的第一油路和第二油路。在活塞壳体28的侧壁内设有分别与第一液腔201和第二液腔202连通的第一流道24和第二流道26。第一流道24与第一油路连通而形成第一液压通道,且第一液压通道的两端分别与双向液压泵18的第一油口19和第一液腔201形成连通。第二流道26与第二油路连通而形成第二液压通道,且第二液压通道的两端分别与双向液压泵18的第二油口21和第二液腔202形成连通。
如图1所示,活塞壳体28大致呈圆筒状,在活塞壳体28内形成有两个独立的上空腔和下空腔,上空腔用于安装双路液压阀20,下空腔用于适配安装活塞27。同时,在活塞壳体28的下端固定安装有液压接头29,液压接头29插入式安装在活塞壳体28的下端。在液压下接头29与活塞27的下活塞杆(见下文)的下端之间设有滑动密封圈30,从而使两者形成动密封连接。活塞27的下活塞杆的下端穿过液压接头29而向外伸出,并且下活塞杆与液压接头29之间形成动密 封。活塞27能够在空腔内沿轴向运动。
活塞27构造成包括活塞本体和相对地设置在活塞本体轴向两端的上活塞杆和下活塞杆。上活塞杆和下活塞杆的直径相等,且小于活塞本体的直径。活塞壳体28内的空腔形成为上空腔和与上空腔连通的下空腔,上空腔的直径小于下空腔的直径。上活塞杆适配安装在上空腔内,并与上空腔的内壁之间形成密封。活塞本体适配安装在下空腔内,并与下空腔的内壁之间形成密封。下空腔的对应于活塞本体上端面之上的区域形成为第一液腔201,下空腔的对应于活塞本体下端面之下的区域形成为第二液腔202。第一液腔201与第一液压通道连通,第二液腔202与第二液压通道连通。在工作时,液压驱动模块300能够使第一液腔201和第二液腔202交替地连通高压油和低压油,从而在活塞本体的上下端面之间形成压差,由此实现活塞27沿轴向往复运动。
在工作时,液压驱动模块300接收电子控制模块200传输的地面控制命令,以控制电机14正反转。当电机14正转时,双向液压泵18的第一油口19吸油,将第二液压通道内的低压油吸回到双向液压泵18内,并压缩形成高压油,进而将高压油通过第一液压通道输送至第一液腔201。此时,第一液腔201内的油液为高压油,第二液腔202内的油液为低压油,使得活塞27在高压油与低压油之间的压差作用下轴向向下运动,从而实现活塞27伸出。图3显示了液压驱动模块300中活塞27的伸出状态。
当电机14反转时,双向液压泵20的第二油口21吸油,将第一液压通道内的低压油吸回到双向液压泵18内,并压缩形成高压油,进而将高压油通过第二液压通道输送到第二液腔202。此时,第一液腔201内的油液为低压油,第二液腔202内的油液为高压油,使得活塞27在高压油与低压油之间的压差作用下轴向向上运动,从而实现活塞27收缩。图2显示了液压驱动模块300中活塞27的缩回状态。
根据本发明的一个实施例,在双路液压阀20的第一油路和第二油路中分别设有配套的第一安全阀22和第二安全阀23。当双路液压阀20内的油液压力异常时(如活塞27运动受阻或循环油路堵塞),超过第一安全阀22或第二安全阀23的设定阈值,对应的第一安全阀22或第二安全阀23会自动打开,以将部分油液泄到低压腔,从而保证整个液压循环系统的安全。
根据本发明,液压驱动模块300仅包括一个双向液压泵18,通过这一个双向 液压泵18实现了两个流道的双向循环,保证活塞可靠地沿轴向往复运动。相比与传统的两套液压组件而言,本发明的装置的结构得到了明显的简化,大大提高了系统工作可靠性。
另外,通过液压驱动模块300的这种设置,整个定向工具100的长度得到了明显的缩短。通常来说,本发明的定向工具可制造成仅具有3.6到4米的长度,这相对于现有技术中的定向工具的长度有15-30%左右的缩短。例如,在一个具体的实施例中,根据本发明的定向工具100的整体长度仅为约3.8m,相比于现有技术中的约5.5m米的整体长度,根据本发明的定向工具的长度缩短了30%左右。容易理解,这对于工具井眼曲率通过性来说具有非常重要的意义。
在一个实施例中,活塞壳体28的对应于上腔体的侧壁设有压力平衡孔25,压力平衡孔25优选设置在靠近上腔体的顶部位置处,用于连通环空过流通道5与空腔内对应于活塞27的上端区域,使钻井液压力作用在活塞27上方的活塞杆,以平衡活塞27下方的活塞杆所受到的钻井液压力,同时防止活塞27运动时的抽真空现象。
此外,在液压下接头29的外侧设有下扶正器31,用于将液压驱动模块300扶正居中,以保证活塞27与机械传动模块400连接的同轴度,降低整个系统推动过程中的不同轴阻力,提高液压驱动模块300输出推力效率。在作业过程中,安装在电路承压筒6上的上扶正器7与下扶正器31共同作用,有效保证了电子控制模块200和液压驱动模块300的扶正居中。
根据本发明,如图1所示,传动轴41通过具有中心流道35的驱动轴34与活塞27的下端固定连接。由此,在活塞27受液压驱动模块300驱动而沿轴向方向移动时,传动轴41能受到活塞27的驱动而沿轴向方向移动。驱动轴34设有贯穿其侧壁的第三过流孔33,该第三过流孔33优选设置在靠近上端位置处,用于连通中心流道35与环空过流通道5。由此,电子控制模块200和液压驱动模块300与承压外壳4之间的环空过流通道5中的钻井液能够通过第三过流孔33进入到机械传动模块400的驱动轴34的中心流道35内,以实现钻井液的向下传递。
在驱动轴34上设有限位筒32,其处于靠近驱动轴34的上端位置。限位筒32的上端面与液压驱动模块300的液压下接头29的下端面相接触,限位筒32的下端面与机械传动外壳36的上端面相接触,起到对液压驱动模块300的限位作用,防止活塞27伸出时带动整个液压驱动模块300向下运动。
根据本发明,如图4示,在传动轴41的外表面上形成有多个沿周向均匀间隔开分布的第一键槽50和多个沿周向均匀间隔开分布的第二键槽60。第一键槽50与第二键槽60在轴向上彼此间隔开分布,且在周向上错开一定角度设置,使得第一键槽50与第二键槽60彼此连通而但周向上错开。第一键槽50和第二键槽60均沿轴向延伸。上述第一键槽50和第二键槽60例如可以是沿轴向延伸的外花键槽。如图5所示,同时在转动筒42的内表面设有至少一个配合凸起70。优选地,配合凸起70可构造有多个。更优选地,第一键槽50、第二键槽60和配合凸起70这三者的数量相等。这些配合凸起70在周向上彼此间隔开地布置。上述配合凸起70例如可以是沿轴向延伸的内键齿。由于第一键槽和对应第二键槽错开一定角度,因此在传动轴41沿轴向运动时,配合凸起70能交替地与第一键槽50和第二键槽60配合,以在第一键槽50和第二键槽60之间移动,从而驱动转动筒42旋转。
如图4所示,第一键槽50的下端的第一侧壁构造成第一导向斜面51,第一导向斜面51与第二键槽60相对,以接收来自第二键槽60的配合凸起70。并且,第二键槽60的上端的第一侧壁构造成第二导向斜面61,第二导向斜面61与第一键槽50相对,以接收来自第一键槽50的配合凸起70。如图5所示,同时,在配合凸起70的上端且与第一侧相反的第二侧上形成有与第一导向斜面51相配合的第一配合斜面71,在配合凸起70的下端且与第一侧相反的第二侧上形成有与第二导向斜面61相配合的第二配合斜面72。
由此,在配合凸起70相对向上移动离开第二键槽60时,配合凸起70上端的第一配合斜面71会与第一键槽50下端的第一导向斜面51相接合。在该第一导向斜面51与第一配合斜面71的配合下,配合凸起70能在周向上偏置地继续向上移动,并由此进入到与上述第二键槽60在周向上错开一定角度的第一键槽50内。通过第一导向斜面51与第一配合斜面71之间的配合有利于实现配合凸起70相对于第一键槽50的稳定移动,并实现了转动筒42的旋转。
在配合凸起70相对向下移动离开第一键槽50时,配合凸起70下端的第二配合斜面72会与第二键槽60上端的第二导向斜面61相接合。在该第二导向斜面61与第二配合斜面72的配合下,配合凸起70能在周向上偏置地继续向下移动,并由此进入到与上述第一键槽50在周向上错开一定角度的第二键槽60内。通过第二导向斜面61与第二配合斜面72之间的配合,有利于实现配合凸起70 相对于第二键槽60的稳定移动,并实现了转动筒42的旋转。
在一个优选的实施例中,配合凸起70始终与第一键槽50和第二键槽60中的至少一个进行配合。也就是说,配合凸起70不存在同时脱离第一键槽50和第二键槽60的情况。
由此,在连续管钻井机电液一体化定向工具100装配好之后,转动筒42设在传动轴41之外,使得转动筒42上的配合凸起70能在第一键槽50和第二键槽60之间移动。当配合凸起70处于第一键槽50和第二键槽60内时,配合凸起70在周向上与第一键槽50和第二键槽60卡接配合,由此来实现传动轴41与转动筒42在周向上的相对固定。在钻井过程中,这种设置可有效避免溜滑现象,避免与转动筒42相连的底部钻具组合在钻进过程中发生钻进方向的偏离。
另外,如图4所示,在传动轴41的外侧面上还构造有缩颈部411。该缩颈部411处于第一键槽50和第二键槽60之间的间隔空间内。由此,在配合凸起70移动到该缩颈部411时,配合凸起70不会与传动轴41的外侧面直接接触。这有利于减小转动筒42与传动轴41之间的摩阻,使得它们之间的相对运动更加灵活。
根据本发明,机械传动模块400还包括棘齿筒40,棘齿筒40的上端部分套装在驱动轴34上,棘齿筒40的下端向下延伸至传动轴41的外侧并与转动筒42的上端相接合。在棘齿筒40的下端边缘处构造有棘齿。该棘齿的功能和作用将在下文中进行详细描述。
如图1所示,在机械传动外壳36的内壁设有端面朝下的台阶,在该台阶与棘齿筒40的上端面之间设置有弹簧38。优选地,弹簧38的上端通过平衡块37抵压在台阶上。在连续管钻井机电液一体化定向工具100装配好之后,弹簧38始终处于压缩状态,以向下压紧棘齿筒40,从而使棘齿筒40的下端压紧在转动筒42的上端处。可以理解的是,弹簧38也可替换为其他任意适当的弹性件。
同时,转动筒42的上端边缘处也构造有棘齿421(见图5)。在弹簧38的推压作用下,该棘齿421能与上文所述的棘齿筒40的下端边缘处的棘齿抵接配合。当转动筒42转动,棘轮错位配合时,棘轮筒40压缩弹簧38,从而提供了一定的轴向移动空间,同时通过棘齿间的配合,能避免转动筒42发生反向转动。此外,棘轮筒40的上部外表面加工有花键槽,棘轮筒40通过花键槽与机械外壳36内壁设有的花键配合,起到防转的作用。
如图1所示,在机械传动外壳36的侧壁上还设有沿径向贯穿机械传动外壳 36的上注油口39,用于向传动轴41与机械传动外壳36之间充满润滑油。润滑油可以在传动轴41与机械传动外壳36之间的空间、转动筒42与机械传动外壳36之间的空间以及传动轴41和转动筒32配合的空间内流动。上注油口39安装有可拆卸的密封堵头。由此,进一步有利于转动筒42与传动轴41之间的相对运动更加灵活。
如图1所示,在转动筒42的下端处固定连接有输出接头47,用于连接井下钻具(未示出)。在一个实施例中,输出接头47的上端可插入到转动筒42的下端内,并与其螺纹连接。由此,在转动筒42发生旋转时,输出接头47可以相应地一起旋转。由此,转动筒42的转动可传递至井下钻具,并带动井下钻具发生钻进方向的变化。该输出接头47的上端与传动轴41的下端留有一定的轴向空间,以允许传动轴41发生轴向的相对运动。优选地,在输出接头47的上端与转动筒42的下端之间设置有密封圈,以避免井内流体通过输出接头47与转动筒42之间的连接处而流到传动轴41的外侧,污染润滑油。
还如图1所示,在机械传动外壳36与输出接头47之间设有密封接头44。密封接头44的上端插入机械传动外壳36的下端并通过螺纹形成固定连接。密封接头44设置在输出接头47的外侧,并且在密封接头44的内侧设置有旋转密封圈46,该旋转密封圈46接合在密封接头44和输出接头47之间,从而在输出接头47相对于密封接头44发生旋转时,旋转密封圈46可保持两者之间的密封接合。
密封接头44的上端面与转动筒42的下端面正相对,在它们之间设置有一个推力轴承43。同时,在密封接头44内壁设有端面朝下的内台阶,在输出接头47的外壁设有端面朝上的外台阶,内台阶与外台阶相对,并在内台阶与外台阶之间也设有一个推力轴承43。上述两个推力轴承43均围绕在输出接头47的周围,且轴向间隔开布置,推力轴承43能在引导转动筒42旋转的同时,传递机械传动外壳36的轴向拉力。。
在一个实施例中,密封接头44还设有沿径向贯穿其侧壁的下注油口45,用于向输出接头47与密封接头44之间充满润滑油,以对两个推力轴承43进行润滑。下注油口45安装有可拆卸的密封堵头。
下面将结合图6来详细说明机械传动模块400的工作过程。
图6显示了机械传动模块400的三个工作状态,分别为状态I、状态II和状态III。它们显示了转动筒42转动一预设的定向角度的过程。
在状态I中,配合凸起70位于第二键槽60A中。此时,由于第二键槽60A的两侧壁能有效卡住配合凸起70。由此,转动筒42不会相对于传动轴41旋转,能够有效确保下方连接的井下钻具的取向。同时,弹簧38下压棘齿筒40,使得其下端的棘齿与转动筒42上端的棘齿啮合在一起。
通过液压驱动模块300驱动活塞27伸出而下压传动轴41,使得传动轴41相对于转动筒42向下移动。由此,可使配合凸起70相对于第二键槽60A向上移动而前进至状态II。
在状态II中,配合凸起70即将脱离第二键槽60A。此时,配合凸起70的上端的第一配合斜面71与夹在第一键槽50B和50C之间的第一键槽50C的下端的第一导向斜面51相接合。
在从状态I到状态II的过程中,转动筒42还未发生转动。因此,在状态II中,棘齿筒40与转动筒42的棘齿仍保持啮合在一起。由此,即便配合凸起70已经脱离了第二键槽60A的侧壁面的限制,转动筒42也不会发生反向转动。
随着液压驱动模块300进一步下压活塞27进而下压传动轴41,在配合凸起70的第一配合斜面71与第一键槽50C的第一导向斜面51之间的配合下,配合凸起70会转向第一键槽50C(背离第一键槽50B),并由此进入到第一键槽50C中。在此过程中,转动筒42不仅相对于传动轴41发生了一预定角度的转动,还相对于棘齿筒40发生了一预定角度的转动。转动筒42上端的棘齿与棘齿筒40下端的棘齿错开,并在转动上述预定角度之后,再次啮合在一起,进入到状态III。
在状态III中,配合凸起70位于第一键槽50C内,并受到左右两侧壁面的限位。由此,转动筒42又不会相对于传动轴41旋转,能够有效确保下方连接的井下钻具的取向。
类似地,通过液压驱动模块300驱动活塞27缩回而上提传动轴41即可使转动筒42再沿同方向转动一预定角度,使得配合凸起70移动至与第二键槽60A相邻(位于其左侧)的另一第二键槽60D内。由此,传动轴41每运动一次,就带动转动筒42旋转一个角度,实现井下工具面的调整。
通过液压驱动模块300交替地驱动活塞27伸出和缩回,从而驱使传动轴41发生连续的轴向往复运动。由此,可以实现转动筒42的取向的连续变化。在需要大角度地改变井下钻具的钻进角度的情况下,这是非常高效且有利的。
根据本发明的连续管钻井机电液一体化定向工具100在实际工作时,机电液 一体化定向工具整体结构如图1所示,电子控制模块200通过电缆接收地面控制命令,并控制液压驱动模块300中的电机14正反转,带动双向液压泵18的两个不同出油口出油,使得双向液压泵18交替地在第一液压通道和第二液压通道内分别形成高压油和低压油。由此,第一液腔201和第二液腔202交替地连通高压油和低压油,从而在活塞27的上下端面之间形成压差,以实现活塞27沿轴向往复运动。活塞27带动机械传动模块400中与驱动轴34连接的传动轴41直线往复运动,通过传动轴41和转动筒42的机械配合,实现将传动轴41的直线往复运动转化为转动筒42的旋转运动,由此使得转动筒42带动输出接头47旋转,进而带动连接在输出接头47下端的井下钻具转动,实现井下工具面调整,完成连续管钻井定向作业。
根据本发明的连续管钻井机电液一体化定向工具100的液压驱动模块300通过一个双向液压泵18实现了两个流道的双向循环,相比与传统的两套液压组件大大简化了结构,显著提高了系统工作可靠性。同时,机械传动模块400动作结束后能够可靠锁止,防止溜滑现象影响旋转效果,不需要格外增加自锁结构。此外,轴向运动位置只有上下两个止点,不需要准确定位,控制简单。该连续管钻井机电液一体化定向工具100可靠性高,非常有利于提高定向效率。
最后应说明的是,以上所述仅为本发明的优选实施方案,并不构成对本发明的任何限制。尽管参照前述实施方案对本发明进行了详细的说明,但是对于本领域的技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种连续管钻井定向工具,包括:
    用于接收地面控制命令的电子控制模块(200);
    液压驱动模块(300),其包括与所述电子控制模块(200)信号连接的电机(14)、与所述电机(14)连接的一个双向液压泵(18),以及活塞单元,其中,所述活塞单元包括活塞壳体(28)和设置在所述活塞壳体内的活塞(27),在所述活塞两端分别形成有与所述双向液压泵(18)连通的第一液腔(201)和第二液腔(202);以及
    机械传动模块(400),其两端分别连接所述活塞和井下钻具;
    其中,所述电子控制模块能将地面控制命令传给所述液压驱动模块,以控制所述电机驱动所述双向液压泵在所述第一液腔和所述第二液腔内交替形成高压油和低压油,使得所述活塞在压差作用下做轴向往复运动,
    所述机械传动模块能够将所述活塞的轴向运动转化为转动,以带动井下钻具旋转,从而调整井下工具面。
  2. 根据权利要求l所述的连续管定向工具,其特征在于,所述电子控制模块(200)包括电路承压筒(6)和布置在所述电路承压筒内的控制电路(9),所述电机(14)与所述控制电路(9)信号连接。
  3. 根据权利要求2所述的连续管钻井定向工具,其特征在于,还包括依次连接的上接头(1)、承压外壳(4)和机械传动外壳(36),
    其中,所述电子控制模块(200)和所述液压驱动模块(300)设置在所述承压外壳(4)内,且与所述承压外壳(4)之间形成有供钻井液流通的环空过流通道(5),所述机械传动模块(400)设置在所述机械传动外壳(36)内。
  4. 根据权利要求2或3所述的连续管钻井定向工具,其特征在于,所述控制电路通过电路骨架(8)安装在所述电路承压筒内,所述控制电路通过电缆连接器(2)来接收地面控制命令。
  5. 根据权利要求4所述的连续管钻井定向工具,其特征在于,所述液压驱动模块(300)还包括固定连接在所述活塞壳体上端的电机壳体(16),所述电机(14)和所述双向液压泵(18)布置在所述电机壳体内。
  6. 根据权利要求5所述的连续管钻井定向工具,其特征在于,所述液压驱动 模块(300)还包括设置在所述电子控制模块(200)与所述电机(14)之间的油馕单元(10),用于存储用于平衡所述液压驱动模块的内外压差的补偿液压油。
  7. 根据权利要求6所述的连续管钻井定向工具,其特征在于,所述油馕单元(10)设置在所述电路承压筒(6)与所述电机壳体(16)之间,并包括油馕骨架(11)和设置在所述油馕骨架上的皮囊(15),在所述油馕骨架(11)与所述皮囊(15)之间形成了用于存储所述补偿液压油的环形空间。
  8. 根据权利要求7所述的连续管钻井定向工具,其特征在于,在所述油馕骨架内安装有联线器(12),用于连接所述控制电路与所述电机。
  9. 根据权利要求7或8所述的连续管钻井定向工具,其特征在于,所述上接头(1)和所述电路承压筒(6)分别设有贯穿其侧壁的第一过流孔(3)和第二过流孔(13),所述第二过流孔(13)与所述油馕单元(10)在位置上相对应,
    其中,来自上部钻具的钻井液能够依次通过所述第一过流孔、所述环空过流通道和所述第二过流孔流到所述油馕单元处,以平衡所述液压驱动模块的内外压差。
  10. 根据权利要求l所述的连续管钻井定向工具,其特征在于,所述双向液压泵(18)具有分别与所述第一液腔(201)和第二液腔(202)连通的第一油口(19)和第二油口(21),所述液压驱动模块还包括连接在所述双向液压泵(18)与所述活塞壳体(28)之间的双路液压阀(20),所述双路液压阀(20)内设有分别与所述第一油口(19)和第二油口(21)连通的第一油路和第二油路。
  11. 根据权利要求10所述的连续管钻井定向工具,其特征在于,在所述活塞壳体的侧壁内设有分别与所述第一液腔和所述第二液腔连通的第一流道(24)和第二流道(26),所述第一流道与所述第一油路连通而形成第一液压通道,所述第二流道与所述第二油路连通而形成第二液压通道,
    其中,所述电机正转时,所述双向液压泵吸入所述第二液压通道内的低压油并压缩形成高压油,进而将高压油通过所述第一液压通道输送至所述第一液腔,以使所述活塞轴向向下伸出,
    当所述电机反转时,所述双向液压泵吸入所述第一液压通道内的低压油并压缩形成高压油,进而将高压油通过所述第二液压通道输送至所述第二液腔,以使所述活塞轴向向上缩回。
  12. 根据权利要求10或11所述的连续管钻井定向工具,其特征在于,在所 述双路液压阀的第一油路和第二油路中分别设有第一安全阀(22)和第二安全阀(23)。
  13. 根据权利要求l到12中任一项所述的连续管钻井定向工具,其特征在于,所述活塞壳体的侧壁设有压力平衡孔(25),用于连通所述环空过流通道与所述活塞的上端区域,以平衡所述活塞的两端压力。
  14. 根据权利要求l到3中任一项所述的连续管钻井定向工具,其特征在于,在所述活塞壳体的下端固定有液压接头(29),所述活塞的下端穿过所述液压接头并形成动密封。
  15. 根据权利要求14所述的连续管钻井定向工具,其特征在于,在所述电路承压筒的外侧设有上扶正器(7),在所述液压下接头的外侧设有下扶正器(31),用于将所述电子控制模和所述液压驱动模块扶正居中。
  16. 根据权利要求l所述的连续管钻井定向工具,其特征在于,机械传动模块(400)包括与所述活塞连接的传动轴(41)和与所述传动轴适配连接的转动筒(42),所述机械传动模块构造成能通过所述传动轴的轴向运动驱动所述转动筒旋转。
  17. 根据权利要求16所述的连续管钻井定向工具,其特征在于,所述传动轴通过具有中心流道(35)的驱动轴(34)与所述活塞固定连接,所述驱动轴设有贯穿其侧壁的第三过流孔(33),用于连通所述中心流道(35)与所述环空过流通道(5)。
  18. 根据权利要求16或17所述的连续管钻井定向工具,其特征在于,在所述传动轴的外表面上形成有多个周向均布的第一键槽(50)和多个周向均布的第二键槽(60),所述第一键槽与所述第二键槽在轴向上彼此间隔开分布,且在周向上错开一定角度设置,使得所述第一键槽与所述第二键槽彼此连通但在周向上错开,
    在所述转动筒的内表面设有至少一个配合凸起(70),
    所述配合凸起能在所述传动轴(41)沿轴向运动时交替地与所述第一键槽和所述第二键槽配合,以驱动所述转动筒旋转。
  19. 根据权利要求18所述的连续管钻井定向工具,其特征在于,所述第一键槽的下端的第一侧壁构造成第一导向斜面(51),所述第一导向斜面与所述第二键槽相对,以接收来自第二键槽的配合凸起,
    所述第二键槽的上端的第一侧壁构造成第二导向斜面(61),所述第二导向斜面与所述第一键槽相对,以接收来自第一键槽的配合凸起,
    在所述配合凸起的上端且与第一侧相反的第二侧上形成有与所述第一导向斜面相配合的第一配合斜面(71),在所述配合凸起的下端且与第一侧相反的第二侧上形成有与所述第二导向斜面相配合的第二配合斜面(72)。
  20. 根据权利要求16所述的连续管钻井定向工具,其特征在于,所述机械传动模块还包括:
    棘齿筒(40),所述棘齿筒的上端套装在所述驱动轴(34)上,所述棘齿筒的下端向下延伸至与所述转动筒的上端相接合,在所述棘齿筒的下端和所述转动筒的上端构造有彼此配合的棘齿;以及
    弹簧(38),所述机械传动外壳的内壁设有端面朝下的台阶,所述弹簧设置在所述台阶与所述棘齿筒的上端面之间,并使所述棘齿筒的下端压紧在所述转动筒的上端处,以使所述转动筒仅能单向转动。
  21. 根据权利要求16所述的连续管钻井定向工具,其特征在于,在所述转动筒(42)的下端固定连接有用于连接井下钻具的输出接头(47),在所述输出接头与所述机械传动外壳之间设有密封接头(44),
    所述密封接头与所述机械传动外壳固定连接,所述密封接头与所述转动筒及所述输出接头之间分别通过推力轴承(43)相接合,并且在所述输出接头与所述密封接头之间设置有旋转密封圈(46),从而使所述输出接头相对于所述密封接头形成旋转式密封。
  22. 根据权利要求l到2l中任一项所述的连续管钻井定向工具,其特征在于,所述连续管钻井定向工具的长度为3.6到4米。
PCT/CN2023/103937 2022-07-05 2023-06-29 一种连续管钻井机电液一体化定向工具 WO2024007955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210783518.1A CN117386292A (zh) 2022-07-05 2022-07-05 一种连续管钻井机电液一体化定向工具
CN202210783518.1 2022-07-05

Publications (1)

Publication Number Publication Date
WO2024007955A1 true WO2024007955A1 (zh) 2024-01-11

Family

ID=89454277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103937 WO2024007955A1 (zh) 2022-07-05 2023-06-29 一种连续管钻井机电液一体化定向工具

Country Status (2)

Country Link
CN (1) CN117386292A (zh)
WO (1) WO2024007955A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245783A2 (en) * 1996-02-07 2002-10-02 Anadrill International SA Apparatus and method for directional drilling using coiled tubing
US20120145462A1 (en) * 2010-12-14 2012-06-14 Leising Larry J System and Method for Directional Drilling
CN105134071A (zh) * 2015-06-25 2015-12-09 中国石油天然气集团公司 一种连续管钻井电液控定向装置
CN105888550A (zh) * 2016-05-05 2016-08-24 中国石油天然气集团公司 一种连续管钻井电液控定向工具
CN106050144A (zh) * 2016-08-08 2016-10-26 裴绪建 一种机械旋转导向钻井工具
CN114109256A (zh) * 2020-09-01 2022-03-01 中国石油化工股份有限公司 钻井定向装置
CN114508520A (zh) * 2020-11-16 2022-05-17 中国石油化工股份有限公司 一种用于连续管的定向器液压集成系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245783A2 (en) * 1996-02-07 2002-10-02 Anadrill International SA Apparatus and method for directional drilling using coiled tubing
US20120145462A1 (en) * 2010-12-14 2012-06-14 Leising Larry J System and Method for Directional Drilling
CN105134071A (zh) * 2015-06-25 2015-12-09 中国石油天然气集团公司 一种连续管钻井电液控定向装置
CN105888550A (zh) * 2016-05-05 2016-08-24 中国石油天然气集团公司 一种连续管钻井电液控定向工具
CN106050144A (zh) * 2016-08-08 2016-10-26 裴绪建 一种机械旋转导向钻井工具
CN114109256A (zh) * 2020-09-01 2022-03-01 中国石油化工股份有限公司 钻井定向装置
CN114508520A (zh) * 2020-11-16 2022-05-17 中国石油化工股份有限公司 一种用于连续管的定向器液压集成系统

Also Published As

Publication number Publication date
CN117386292A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
CN102518407B (zh) 一种电缆式井下轴向力发生装置
CN114109252B (zh) 实现钻柱全旋转定向的控制装置
US3504936A (en) Extensible coupling for well pipes
CN114109251B (zh) 复合定向钻井的控制装置与使用方法
CN105134071A (zh) 一种连续管钻井电液控定向装置
CN111322011A (zh) 一种井下方位定向方法及其定向工具
CN209761894U (zh) 动力输出装置和设备
CN115387729A (zh) 定向钻进钻柱旋转控制器
WO2024007955A1 (zh) 一种连续管钻井机电液一体化定向工具
RU2585775C2 (ru) Работающий на кручение элемент
CN112377133B (zh) 一种可控脉冲短节
CN209724994U (zh) 带液压离合装置的球笼式万向联轴器
CN212003032U (zh) 一种高精度、高扭矩井下方位定向器
CN111322010A (zh) 一种高精度、高扭矩井下方位定向器
CN206458381U (zh) 一种液控液驱连续管钻井牵引器
CN212898899U (zh) 一种潜井式单缸柱塞抽油泵
WO2019013675A1 (ru) Скважинный насос
WO2022006529A1 (en) Electric flow control valve
CN212079617U (zh) 双向内啮合齿轮马达泵及其液压系统
CN210829182U (zh) 一种主动式流量控制装置
CN112443448B (zh) 一种井下钻具用内啮合齿轮式液压马达机构
CN108240189A (zh) 一种液控液驱连续管钻井牵引器
CN101403284A (zh) 下井工具与井下工作筒密封用可控段密封装置
CN115263214B (zh) 连续油管钻井井下抗扭支撑装置及随钻抗扭支撑系统
CN211715071U (zh) 一种液力式万向节

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834722

Country of ref document: EP

Kind code of ref document: A1