WO2019013675A1 - Скважинный насос - Google Patents

Скважинный насос Download PDF

Info

Publication number
WO2019013675A1
WO2019013675A1 PCT/RU2018/050113 RU2018050113W WO2019013675A1 WO 2019013675 A1 WO2019013675 A1 WO 2019013675A1 RU 2018050113 W RU2018050113 W RU 2018050113W WO 2019013675 A1 WO2019013675 A1 WO 2019013675A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
working
cylinder
plunger
housing
Prior art date
Application number
PCT/RU2018/050113
Other languages
English (en)
French (fr)
Inventor
Вячеслав Владимирович ЛЕОНОВ
Original Assignee
Общество С Ограниченной Ответственностью "Оклэс Технолоджиз"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Оклэс Технолоджиз" filed Critical Общество С Ограниченной Ответственностью "Оклэс Технолоджиз"
Priority to US16/608,193 priority Critical patent/US11162490B2/en
Priority to EA201991950A priority patent/EA036794B1/ru
Publication of WO2019013675A1 publication Critical patent/WO2019013675A1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/06Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having motor-pump units situated at great depth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/06Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having motor-pump units situated at great depth
    • F04B47/08Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having motor-pump units situated at great depth the motors being actuated by fluid
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/128Adaptation of pump systems with down-hole electric drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors

Definitions

  • the invention relates to the field of pumping equipment and can be used in the oil industry in the operation of marginal wells.
  • a well-known double-acting pump comprising a submersible electric motor with hydroprotection, a working pump drive that converts rotary motion into a reciprocating, working pump consisting of a working cylinder, a hollow plunger connected to the stem, with a discharge valve installed in it is known.
  • the cavity above the hollow plunger through the suction valve is connected to the annular annular space, the cavity under the hollow plunger is connected to an overflow line formed by means of a sheath, on the outer side covering the working cylinder.
  • the bypass line is connected to the discharge line of the pump.
  • the diameter of the hollow plunger is larger than the diameter of the rod, the working cylinder through the coupling is connected to the series-connected housing of the sealing assembly and the base of the drive of the working pump, the driving shaft of the working pump is the pump's stem and passes inside the housing of the sealing assembly.
  • the housing of the sealing assembly contains at least one hole connecting the cylindrical surface of the drive rod of the working pump to the annular space and located at a distance from the upper end of the working surface of the housing of the sealing assembly providing the necessary pressure differential between the pump discharge line and annular annular space (according to patent RU170784 , class F04B47 / 08, published on 11.05.17).
  • the closest technical solution is a well pumping installation, including tubing, plunger pump containing a cylinder, plunger, suction and pressure valves and driven by a drive, including a reversible motor, transmission screw-nut rolling with a drive rod, placed in an oil-filled housing containing an elastic casing, dampers, and the driving rod is connected to the plunger and sealed in the housing.
  • the plunger is hollow and stepped, the lower stage of which has a diameter smaller than the upper stage and is sealed in the cylinder, forming an annular cavity, and the cylinder is hermetically encased and provided with a transition cavity communicating with the suplunger cavity through the overflow valve, and with the cavity pumping - compressor pipes - through the discharge valve, with the transition cavity communicating with the annular cavity through the channel formed between the casing and the cylinder, and the holes made in the lower part of the cylinder, and the suction
  • This valve is located in the upper part of the plunger (according to patent RU2532475, class F04B47 / 00, publ. 10.11.14).
  • the problem to which the invention is directed, is to increase the resource installation.
  • the technical result which is achieved as a result of solving the above problem, is to increase the reliability of the downhole pump and its service life.
  • the borehole pump contains a submersible electric motor with hydroprotection, a drive of the working pump, which converts rotary motion into reciprocating, a working pump consisting of a body, suction and discharge valves, a discharge cylinder, a working cylinder, a hollow stepped plunger, the lower stage which is connected to the rod and has a diametral size smaller than the diametrical size of the upper stage, while under the working cylinder there is an additional cylinder, inside of which is located the lower stage of the hollow stepped plunger, and the working cylinder does not have a rigid mounting inside the housing.
  • figure 1 depicts a downhole pump.
  • the downhole pump (see Fig. 1) contains kinematically interconnected submersible electric motor 1 with hydraulic protection 2, driving the working pump 3 and the working pump consisting of the housing 4, the suction 5 of the discharge 6 and the bypass 7 of the valves, the working cylinder 8, a hollow stepped plunger 9, the lower stage of which is located in the additional cylinder 10 and is connected to the rod 11 (both rigid and hinged joints are possible).
  • the annular injection cavity 18 is formed between the working cylinder 8 and the lower stage of the hollow stepped plunger 9.
  • the pump in the well is attached to the tubing string (tubing) 19.
  • the electric motor is powered by cable 20.
  • the suction valve 5 opens and the formation fluid through the holes 13 and the channel 12 enters the suction cavity 14. Simultaneously, the formation fluid from the annular injection cavity 18 through the holes 16 and 15, the annular channel 17, opening the discharge valve 6 enters the tubing string 19. At the same time, the bypass valve 7 is closed.
  • tubing 19 is equal to the difference between the volumes of the suction 14 and injection cavities 18.
  • the cycle repeats during pump operation.
  • the solutions used in the invention can improve the reliability of the downhole pump and its service life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

Изобретение относится к области насосного оборудования и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин. Насос содержит погружной электродвигатель с гидрозащитой. Привод рабочего насоса преобразует вращательное движение в возвратно-поступательное. Рабочий насос состоит из корпуса, всасывающего, нагнетательного и перепускного клапанов, рабочего цилиндра, полого ступенчатого плунжера, нижняя ступень которого соединена со штоком и имеет диаметральный размер меньше, чем диаметральный размер верхней ступени. Под рабочим цилиндром расположен дополнительный цилиндр, внутри которого расположена нижняя ступень полого ступенчатого плунжера. Рабочий цилиндр не имеет жесткого крепления внутри корпуса. Отсутствие жесткого крепления рабочего цилиндра позволяет ему самоцентрироваться относительно полого ступенчатого плунжера, что исключает его заклинивание и повышает надежность работы насоса и срок его эксплуатации.

Description

СКВАЖИННЫЙ НАСОС
Изобретение относится к области насосного оборудования и может быть использовано в нефтедобывающей промышленности при эксплуатации малодебитных скважин.
Известен скважинный насос двойного действия, содержащий погружной электродвигатель с гидрозащитой, привод рабочего насоса, преобразующий вращательное движение в возвратно-поступательное, рабочий насос, состоящий из рабочего цилиндра, полого плунжера, соединенного со штоком, с установленным в нем нагнетательным клапаном. Полость над полым плунжером через всасывающий клапан соединена с затрубным кольцевым пространством, полость под полым плунжером соединена с перепускной магистралью, образованной посредством оболочки, с внешней стороны охватывающей рабочий цилиндр. Перепускная магистраль соединена с выкидной линией насоса. Диаметр полого плунжера больше диаметра штока, рабочий цилиндр через муфту присоединен к последовательно соединенным корпусу уплотнительного узла и основанию привода рабочего насоса, шток привода рабочего насоса является штоком рабочего насоса и проходит внутри корпуса уплотнительного узла. Корпус уплотнительного узла содержит, как минимум, одно отверстие, соединяющее цилиндрическую поверхность штока привода рабочего насоса с затрубным пространством и расположенное на расстоянии от верхнего торца рабочей поверхности корпуса уплотнительного узла, обеспечивающим необходимый перепад давления между выкидной линией насоса и затрубным кольцевым пространством (по патенту RU170784, кл. F04B47/08, опубл. 11.05.17).
Недостатком данного насоса является пересечение каналов в нагнетательном и всасывающем клапанах, что приводит к повышенным гидравлическим потерям, что снижает эффективность насоса.
Наиболее близким техническим решением является скважинная насосная установка, включающая насосно-компрессорные трубы, плунжерный насос, содержащий цилиндр, плунжер, всасывающий и нагнетательный клапаны и приводимый в действие приводом, включающим реверсивный электродвигатель, передачу винт-гайка качения с приводной штангой, размещенные в маслозаполненном корпусе, содержащем эластичную оболочку, демпферы, причем приводная штанга соединена с плунжером и уплотнена в корпусе. Плунжер выполнен полым и ступенчатым, нижняя ступень которого имеет размер по диаметру меньше, чем верхняя ступень и уплотнена в цилиндре, образуя кольцевую полость, а цилиндр герметично заключен в кожух и снабжен переходной полостью, сообщающейся с надплунжерной полостью через перепускной клапан, а с полостью насосно-компрессорных труб - через нагнетательный клапан, причем переходная полость сообщается с кольцевой полостью по каналу, образованному между кожухом и цилиндром, и отверстиям, выполненным в нижней части цилиндра, а всасывающий клапан расположен в верхней части плунжера (по патенту RU2532475, кл. F04B47/00, опубл. 10.11.14).
Недостатком данной установки является уплотнение нижней ступени плунжера, которое при работе в пластовой жидкости, содержащей механические примеси, быстро выйдет из строя. А также, сложность обеспечения соосности ступенчатого плунжера с цилиндром и поверхностью уплотнения, что может привести к заклиниванию насоса.
Задачей, на решение которой направлено изобретение, является повышение ресурса установки.
Техническим результатом, который достигается в результате решения указанной выше задачи, является повышение надежности работы скважинного насоса и срока его эксплуатации.
Указанный технический результат достигается тем, что скважинный насос содержит погружной электродвигатель с гидрозащитой, привод рабочего насоса, преобразующий вращательное движение в возвратно- поступательное, рабочий насос, состоящий из корпуса, всасывающего и нагнетательного и перепускного клапанов, рабочего цилиндра, полого ступенчатого плунжера, нижняя ступень которого соединена со штоком и имеет диаметральный размер меньше, чем диаметральный размер верхней ступени, при этом под рабочим цилиндром расположен дополнительный цилиндр, внутри которого располагается нижняя ступень полого ступенчатого плунжера, а рабочий цилиндр не имеет жесткого крепления внутри корпуса.
Изобретение поясняется фиг.1 на которой изображен скважинный насос.
Скважинный насос (см. фиг. 1) содержит кинематически связанные между собой погружной электродвигатель 1 с гидрозащитой 2, привод рабочего насоса 3 и рабочий насос, состоящий из корпуса 4, всасывающего 5 нагнетательного 6 и перепускного 7 клапанов, рабочего цилиндра 8, полого ступенчатого плунжера 9, нижняя ступень которого располагается в дополнительном цилиндре 10 и соединена со штоком 11 (возможно как жесткое, так и шарнирное соединение).
В полом ступенчатом плунжере 9 выполнен канал 12, который через отверстия 13 связан с затрубным пространством, а через всасывающий клапан 5 с надплунжерной всасывающей полостью 14.
Надплунжерная всасывающая полость 14 через перепускной клапан 7, отверстия 15 и 16, кольцевой канал 17, выполненный между корпусом 4 и рабочим цилиндром 8, связана с кольцевой нагнетательной полостью 18.
Кольцевая нагнетательная полость 18 образована между рабочим цилиндром 8 и нижней ступенью полого ступенчатого плунжера 9.
Насос в скважине крепится к колонне насосно-компрессорных труб (НКТ) 19. Питание электродвигателя осуществляется по кабелю 20.
Скважинный насос работает следующим образом.
При спуске насоса в скважину пластовая жидкость под действием гидростатического давления пласта через отверстия 13, 15, 16, канал 12, клапаны 5 и 7 заполняет внутренние полости 14, 17, 18 насоса. Через нагнетательный клапан 6 пластовая жидкость поступает в колонну НКТ 19.
При включении погружного электродвигателя 1 , его крутящий момент через кинематически связанную с ним гидрозащиту 2, передается на привод рабочего насоса 3, преобразующий вращательное движение электродвигателя 1 в возвратно-поступательное движение штока 11 привода рабочего насоса 3. Шток 11 приводит в движение полый ступенчатый плунжер 9.
При движении полого ступенчатого плунжера 9 вниз всасывающий клапан 5 открывается и пластовая жидкость через отверстия 13 и канал 12 поступает во всасывающую полость 14. Одновременно с этим пластовая жидкость из кольцевой нагнетательной полости 18 через отверстия 16 и 15, кольцевой канал 17, открывая нагнетательный клапан 6, поступает в колонну НКТ 19. При этом перепускной клапан 7 закрыт.
При движении полого ступенчатого плунжера 9 вверх всасывающий клапан 5 закрывается и часть пластовой жидкости через перепускной клапан 7, отверстия 16 и 15, кольцевой канал 17 поступает в нагнетательную полость 18, а другая часть - через нагнетательный клапан 6 в колонну НКТ 19. Объем жидкости поданной в НКТ 19 равен разнице объемов всасывающей 14 и нагнетательной 18 полостей.
Цикл повторяется в течение работы насоса.
Использование в насосе дополнительного цилиндра 10, хоть и незначительно увеличивает осевой габарит насоса, зато многократно повышает его надежность, так как скорость износа цилиндра значительно меньше скорости износа уплотнения. Это позволяет насосу в течение долгого времени сохранять герметичность и эффективно качать пластовую жидкость из скважины.
Отсутствие жесткого крепления рабочего цилиндра 8 позволяет ему самоцентрироваться относительно полого ступенчатого плунжера 9, что исключает его заклинивание и повышает надежность работы насоса. Также, делает изготовление насоса более технологичным, так как отсутствуют жесткие требования по соосности ступеней плунжера 9.
Таким образом, решения, используемые в изобретении, позволяют повысить надежность работы скважинного насоса и срок его эксплуатации.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
Скважинный насос содержит погружной электродвигатель с гидрозащитой, привод рабочего насоса, преобразующий вращательное движение в возвратно-поступательное, рабочий насос, состоящий из корпуса, всасывающего и нагнетательного и перепускного клапанов, рабочего цилиндра, полого ступенчатого плунжера, нижняя ступень которого соединена со штоком и имеет диаметральный размер меньше, чем диаметральный размер верхней ступени, отличающийся тем, что под рабочим цилиндром расположен дополнительный цилиндр, внутри которого располагается нижняя ступень полого ступенчатого плунжера, а рабочий цилиндр не имеет жесткого крепления внутри корпуса.
PCT/RU2018/050113 2017-07-12 2018-09-12 Скважинный насос WO2019013675A1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/608,193 US11162490B2 (en) 2017-07-12 2018-09-12 Borehole pump
EA201991950A EA036794B1 (ru) 2017-07-12 2018-09-12 Скважинный насос

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2017124816A RU2652693C1 (ru) 2017-07-12 2017-07-12 Скважинный насос
RU2017124816 2017-07-12

Publications (1)

Publication Number Publication Date
WO2019013675A1 true WO2019013675A1 (ru) 2019-01-17

Family

ID=62105314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2018/050113 WO2019013675A1 (ru) 2017-07-12 2018-09-12 Скважинный насос

Country Status (4)

Country Link
US (1) US11162490B2 (ru)
EA (1) EA036794B1 (ru)
RU (1) RU2652693C1 (ru)
WO (1) WO2019013675A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466548B2 (en) * 2020-06-05 2022-10-11 Saudi Arabian Oil Company Downhole linear pump system
RU2762817C1 (ru) * 2021-05-04 2021-12-23 Общество с ограниченной ответственностью "Научно-производственная организация "Инновация" Скважинный штанговый насос

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0320859A1 (de) * 1987-12-16 1989-06-21 Matthias Sickl Bohrlochpumpe für kleine Bohrlochdurchmesser
RU2235907C1 (ru) * 2003-04-14 2004-09-10 Пономарев Анатолий Константинович Скважинный электрогидроприводной насосный агрегат
RU139596U1 (ru) * 2013-07-15 2014-04-20 Николай Владимирович Шенгур Скважинный насос двойного действия
RU2532475C1 (ru) * 2013-07-02 2014-11-10 Закрытое акционерное общество "ПАРМ-ГИНС" Скважинная насосная установка

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2903308A (en) * 1955-03-03 1959-09-08 George E Barnhart Composite cylinder
US7458787B2 (en) * 2004-04-13 2008-12-02 Harbison-Fischer, Inc. Apparatus and method for reducing gas lock in downhole pumps
US20080080991A1 (en) * 2006-09-28 2008-04-03 Michael Andrew Yuratich Electrical submersible pump
US8226383B2 (en) * 2007-09-07 2012-07-24 James Henry Downhole pump
US9296531B2 (en) * 2010-01-12 2016-03-29 Medela Holding Ag Container with sealed cap and venting system
US9028229B2 (en) * 2010-09-21 2015-05-12 David Joseph Bolt Wellbore fluid removal systems and methods
US9511875B2 (en) * 2012-06-06 2016-12-06 Hamilton Sundstrand Corporation Electromechanical actuator damping arrangement for ram air turbine
US10309381B2 (en) * 2013-12-23 2019-06-04 Baker Hughes, A Ge Company, Llc Downhole motor driven reciprocating well pump
RU153600U1 (ru) * 2014-06-06 2015-07-27 Николай Владимирович Шенгур Скважинный насос двойного действия
RU170784U1 (ru) 2015-08-11 2017-05-11 Николай Владимирович Шенгур Скважинный насос двойного действия

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0320859A1 (de) * 1987-12-16 1989-06-21 Matthias Sickl Bohrlochpumpe für kleine Bohrlochdurchmesser
RU2235907C1 (ru) * 2003-04-14 2004-09-10 Пономарев Анатолий Константинович Скважинный электрогидроприводной насосный агрегат
RU2532475C1 (ru) * 2013-07-02 2014-11-10 Закрытое акционерное общество "ПАРМ-ГИНС" Скважинная насосная установка
RU139596U1 (ru) * 2013-07-15 2014-04-20 Николай Владимирович Шенгур Скважинный насос двойного действия

Also Published As

Publication number Publication date
EA201991950A1 (ru) 2020-04-22
US20210095660A1 (en) 2021-04-01
US11162490B2 (en) 2021-11-02
EA036794B1 (ru) 2020-12-22
RU2652693C1 (ru) 2018-04-28

Similar Documents

Publication Publication Date Title
US20090041596A1 (en) Downhole Electric Driven Pump Unit
US3123007A (en) Well pump
MY178712A (en) A downhole pumping assembly and a downhole system
RU139596U1 (ru) Скважинный насос двойного действия
WO2019013675A1 (ru) Скважинный насос
US20170191477A1 (en) A downhole sucker rod pumping unit
RU2532475C1 (ru) Скважинная насосная установка
RU151393U1 (ru) Скважинный насос двойного действия
CN101255860B (zh) 潜油电动隔膜泵
RU2680478C2 (ru) Привод скважинного насоса (варианты)
RU2550858C1 (ru) Скважинный электроплунжерный насос
RU173856U1 (ru) Скважинная насосная установка
CA2636526C (en) Stress and torque reducing tool
RU2504692C2 (ru) Установка погружная электрогидроприводная
RU2166668C1 (ru) Скважинный электрогидроприводной насосный агрегат
CN202040053U (zh) 潜油电机柱塞式隔膜泵
RU103144U1 (ru) Погружной скважинный диафрагменный насос
CN201184288Y (zh) 潜油电动隔膜泵
RU2576560C1 (ru) Скважинный штанговый насос
RU153600U1 (ru) Скважинный насос двойного действия
RU2305797C1 (ru) Насосный агрегат
RU170784U1 (ru) Скважинный насос двойного действия
CN204851570U (zh) 油田钻机用径向柱塞泥浆泵
RU2628840C1 (ru) Гидроприводной погружной насосный агрегат
RU2704088C1 (ru) Глубинное газоперепускное устройство для скважины, эксплуатируемой штанговым насосом

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832088

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18832088

Country of ref document: EP

Kind code of ref document: A1