WO2024007946A1 - 一种煤层硫化氢含量快速测定装置及测定方法 - Google Patents

一种煤层硫化氢含量快速测定装置及测定方法 Download PDF

Info

Publication number
WO2024007946A1
WO2024007946A1 PCT/CN2023/103886 CN2023103886W WO2024007946A1 WO 2024007946 A1 WO2024007946 A1 WO 2024007946A1 CN 2023103886 W CN2023103886 W CN 2023103886W WO 2024007946 A1 WO2024007946 A1 WO 2024007946A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen sulfide
crushing
coal
sulfide content
solenoid valve
Prior art date
Application number
PCT/CN2023/103886
Other languages
English (en)
French (fr)
Inventor
崔鑫峰
孙勇
张德鹏
孟祥宁
王睿德
郑忠宇
Original Assignee
中煤科工集团沈阳研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中煤科工集团沈阳研究院有限公司 filed Critical 中煤科工集团沈阳研究院有限公司
Priority to AU2023303693A priority Critical patent/AU2023303693A1/en
Publication of WO2024007946A1 publication Critical patent/WO2024007946A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the invention belongs to the field of coal seam gas testing, and particularly provides a rapid measuring device and measuring method for hydrogen sulfide content in coal seams.
  • the present invention provides a rapid measuring device and measuring method for hydrogen sulfide content in coal seams.
  • the technical solution adopted by the present invention is: a device for rapid determination of hydrogen sulfide content in coal seams, including crushing equipment, infrared absorption spectrum analyzer, control platform, air pump, high-pressure nitrogen source, connector, and air inlet of the crushing equipment.
  • the air outlet end of the crushing equipment is connected to the air inlet end of the air pump and the air inlet end of the connector through pipes.
  • the air pump The air outlet end is connected to the air inlet end of the infrared absorption spectrum analyzer through a pipeline;
  • a first solenoid valve is provided on the pipeline between the crushing equipment and the high-pressure nitrogen source, a second solenoid valve is provided on the pipeline between the crushing equipment and the infrared absorption spectrum analyzer, and a third solenoid valve is provided on the pipeline between the crushing equipment and the air pump. Solenoid valve, a fourth solenoid valve is provided on the pipeline between the crushing equipment and the connector;
  • the information collection end of the control platform is electrically connected to the crushing equipment, infrared absorption spectrum analyzer and connector through circuits, and the control interactive end of the control platform is respectively connected to the air pump, high-pressure nitrogen source, first solenoid valve, and second electromagnetic valve through circuits. Solenoid valve, third solenoid valve, fourth solenoid valve and fifth solenoid valve.
  • a filter is provided on the pipeline between the crushing equipment and the air pump.
  • a branch pipeline is provided on the pipeline connecting the infrared absorption spectrum analyzer and the second solenoid valve.
  • the infrared absorption spectrum analyzer is connected to an exhaust gas purifier through the branch pipeline, and a fifth purifier is provided on the pipeline.
  • the electromagnetic valve is provided on the pipeline connecting the infrared absorption spectrum analyzer and the second solenoid valve.
  • the output end of the high-pressure nitrogen source is equipped with a pressure reducing valve.
  • the crushing equipment includes a base, a motor, a crushing chamber, a sealing cover, a crushing blade, an air inlet, and an air outlet.
  • the motor is fixedly installed on the base
  • the crushing chamber is fixedly installed on the motor
  • the output end of the motor is inserted into the crushing chamber.
  • the sealing cover is fastened to the crushing chamber
  • the crushing blade is fixedly installed on the output end of the motor
  • the crushing blade is located in the crushing chamber
  • the air inlet and outlet nozzles are assembled on the side walls of the crushing chamber.
  • a primary filtering chamber is provided on the side wall of the crushing chamber, and the inner chamber of the crushing chamber is connected with the primary filtering chamber.
  • the connecting port between the inner chamber of the primary filtering chamber and the crushing chamber is equipped with a mesh screen.
  • the cavity is filled with filler (filler used for dust particle filtration), the number of air outlets is two, and both air outlets are arranged on the side walls of the primary filter cavity;
  • the side walls of the crushing chamber are composed of stainless steel hollow plywood and an interlayer, and the interlayer is a heat-insulating interlayer.
  • a method for measuring hydrogen sulfide content in coal seams the steps include:
  • Step 1 air tightness test
  • Step 2 coal crushing treatment
  • Step 3 detect and collect data
  • Step 4 Calculate the hydrogen sulfide content in the coal body based on the data collected in step 3;
  • Step 5 clean and empty the equipment.
  • step 1 the air tightness test described in step 1 is specifically:
  • step 3 the detection and collection of data described in step 3 are specifically:
  • the infrared absorption spectrum analyzer detects the concentration of hydrogen sulfide gas in the introduced gas in real time, and the maximum concentration value is C (ppm);
  • the volume of the crushing chamber is V 1 (m 3 );
  • V 2 is the volume variable corresponding to the maximum concentration of hydrogen sulfide gas
  • V 3 (m 3 ) L ⁇ r 2 (pipe length L (m), radius of the pipe inner diameter r (m)).
  • the hydrogen sulfide content in the coal body is calculated based on the data collected in step 3 as described in step 4, specifically as follows:
  • the overall volume of this device is small and can be directly deployed at coal mining sites;
  • the operation process of this device is relatively simple, and it can effectively analyze the hydrogen sulfide content in the coal body, which can help on-site technicians more accurately determine the danger of hydrogen sulfide content in the coal seam;
  • This measurement plan uses a large coal sample as the measurement object.
  • the hydrogen sulfide content in this coal sample is less lost due to surface diffusion. Its hydrogen sulfide content is closer to the true content of hydrogen sulfide in the coal body, and the measurement results are more accurate. precise.
  • Figure 1 is a schematic diagram of the connection relationship between pipelines and circuits of the present invention
  • FIG. 2 is a schematic structural diagram of the crushing equipment of the present invention.
  • FIG. 3 is a schematic diagram of the internal structure of the crushing chamber of the present invention.
  • Reference numbers include: 1-crushing equipment; 101-base; 102-motor; 103-crushing chamber; 104-sealing cover; 105-crushing blade; 106-insulation interlayer; 107-air inlet; 108-primary filter chamber ; 109-air outlet; 110-mesh screen; 2-infrared absorption spectrum analyzer; 3-control platform; 4-air pump; 5-high-pressure nitrogen source; 501-pressure reducing valve; 6-filter; 7-connector; 8-exhaust gas purifier; 9-first solenoid valve; 10-second solenoid valve; 11-third solenoid valve; 12-fourth solenoid valve; 13-fifth solenoid valve.
  • a device for rapid determination of hydrogen sulfide content in coal seams includes a crushing equipment 1, an infrared absorption spectrum analyzer 2, a control platform 3, an air pump 4, a high-pressure nitrogen source 5, a connector 7, and an inlet of the crushing equipment 1.
  • the gas end is connected to the gas outlet of the infrared absorption spectrum analyzer 2 and the gas outlet of the high-pressure nitrogen source 5 through pipelines.
  • the gas outlet of the crushing equipment 1 is connected to the air inlet of the air pump 4 and the inlet of the connector 7 through pipelines.
  • the air end is connected, and the air outlet end of the air pump 4 is connected with the air inlet end of the infrared absorption spectrum analyzer 2 through a pipeline;
  • a first solenoid valve 9 is provided on the pipeline between the crushing equipment 1 and the high-pressure nitrogen source 5, a second solenoid valve 10 is provided on the pipeline between the crushing equipment 1 and the infrared absorption spectrum analyzer 2, and a second solenoid valve 10 is provided on the pipeline between the crushing equipment 1 and the air pump 4.
  • a third solenoid valve 11 is provided on the pipeline, and a fourth solenoid valve 12 is provided on the pipeline between the crushing equipment 1 and the connector 7;
  • the information collection end of the control platform 3 is electrically connected to the crushing equipment 1, the infrared absorption spectrum analyzer 2 and the connector 7 through circuits, and the control interactive end of the control platform 3 is respectively connected to the air pump 4, high-pressure nitrogen source 5, and the first Solenoid valve 9, second solenoid valve 10, third solenoid valve 11, fourth solenoid valve valve 12 and fifth solenoid valve 13.
  • a filter 6 is provided on the pipeline between the crushing equipment 1 and the air pump 4 .
  • a branch pipeline is provided on the pipeline connecting the infrared absorption spectrum analyzer 2 and the second solenoid valve 10.
  • the infrared absorption spectrum analyzer 2 is connected to the exhaust gas purifier 8 through the branch pipeline, and a third pipeline is provided on the pipeline.
  • Five solenoid valves 13 are provided on the pipeline connecting the infrared absorption spectrum analyzer 2 and the second solenoid valve 10.
  • the exhaust gas purifier 8 is used to absorb and treat greenhouse gases and other harmful gases generated during the measurement process.
  • the output end of the high-pressure nitrogen source 5 is equipped with a pressure reducing valve 501.
  • the crushing equipment 1 includes a base 101, a motor 102, a crushing chamber 103, a sealing cover 104, a crushing blade 105, an air inlet 107, and an air outlet 109.
  • the motor 102 is fixedly installed on the base 101, and the crushing chamber 103 is fixedly installed on the motor 102. on, the output end of the motor 102 is inserted into the crushing chamber 103, the sealing cover 104 is fastened to the crushing chamber 103, the crushing blade 105 is fixedly installed on the output end of the motor 102, and the crushing blade 105 is located in the crushing chamber 103, the air inlet 107
  • the air outlet nozzle 109 is assembled on the side wall of the crushing chamber 103;
  • the motor 102 is a variable frequency motor
  • a primary filter chamber 108 is provided on the side wall of the crushing chamber 103, and the inner chamber of the crushing chamber 103 is connected with the primary filter chamber 108.
  • the communication port between the inner chamber of the primary filter chamber 108 and the crushing chamber 103 is equipped with a mesh screen. 110.
  • the primary filter chamber 108 is filled with filler (filler used for dust particle filtration).
  • the number of air outlets 109 is two, and the two air outlets 109 are arranged on the side walls of the primary filter chamber 108.
  • the side walls of the crushing chamber 103 are composed of stainless steel hollow plywood and an interlayer, and the interlayer is a heat-insulating interlayer 106.
  • the filler is cotton mass
  • the cotton mass is made of cotton with characteristics such as corrosion resistance and non-adsorption. become.
  • a method for measuring hydrogen sulfide content in coal seams using a rapid measuring device for hydrogen sulfide content in coal seams includes:
  • Step 1 air tightness test
  • Step 2 coal crushing treatment
  • Step 3 detect and collect data
  • the infrared absorption spectrum analyzer 2 detects the concentration of hydrogen sulfide gas in the introduced gas in real time, and the maximum concentration value is C (ppm);
  • the volume of the inner cavity of the crushing chamber 103 is V 1 (m 3 );
  • V 2 (m 3 ) of the gas in the equipment is measured through the connector 7.
  • V 2 is the volume variable corresponding to the maximum concentration of hydrogen sulfide gas;
  • V 3 (m 3 ) L ⁇ ⁇ r 2 (pipe length L (m), radius of the pipe inner diameter r (m));
  • Step 4 Calculate the hydrogen sulfide content in the coal body based on the data collected in step 3;
  • Step 5 clean and empty the equipment

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明属于煤层气体测试领域,特别提供了一种煤层硫化氢含量快速测定装置及测定方法。本测定装置主要包括破碎设备、红外吸收光谱分析仪、控制平台、气泵、高压氮气源、连通器。本测定方法的步骤包括:步骤1气密性检测;步骤2煤块破碎处理;步骤3检测和收集数据;步骤4根据步骤3所收集的数据计算煤体中硫化氢含量;步骤5清洗排空设备。本装置的整体体积较小,可直接部署于煤矿开采现场;操作流程较为简单,且能够有效分析煤体内的硫化氢含量,能帮助现场技术人员更准确的判别煤层硫化氢含量的危险性;本测定方案以大块煤样作为测定对象,其硫化氢含量更接近于煤体内硫化氢的真实含量,测定结果更准确。

Description

一种煤层硫化氢含量快速测定装置及测定方法 技术领域
本发明属于煤层气体测试领域,特别提供了一种煤层硫化氢含量快速测定装置及测定方法。
背景技术
近年来国内煤矿H2S伤人事故时有发生,严重危害人员生命和井下生产安全。煤层中硫化氢气体涌出导致中毒伤亡的事件虽较煤矿五大灾害发生较少,但仍不可小觑。从绝大多数硫化氢异常涌出事故发生的矿井可以发现,在低浓度情况下硫化氢气体就会对人体造成一定损害,同时高浓度硫化氢气体瞬间涌出也是造成众多含硫化氢气体煤矿人员伤亡的主要原因之一。众所周知,煤层条件、煤矿物质组成是影响煤层中硫化氢生成与赋存的必要条件,除此之外矿区的地质条件、埋深等均对其有一定影响。
目前,我国在煤层硫化氢研究方面处于探索阶段,对煤层硫化氢含量测定方法暂无相关标准,有部分学者把硫化氢气体当作煤层瓦斯组分之一,将硫化氢的吸附和解吸规律类比于煤层瓦斯吸附和解吸规律,其含量测定主要的方法是借鉴煤层瓦斯含量的测定方法。通过对开采过程中煤体周围的空气进行测定,得出空气中的硫化氢含量。但这种方法仅能检出空气中的硫化氢含量,而煤体在开采过程中,仅仅以自然解吸方式将煤体内的少量硫化氢扩散至空气中,绝大部分硫化氢仍残留于煤体内。这导致硫化氢含量的测定结果与煤体内实际的硫化氢含量相差较大的问题。
因此,需要一套能够快速有效的测定煤层中硫化氢含量的装置,以解决 上述问题。
发明内容
为解决上述问题,本发明提供了一种煤层硫化氢含量快速测定装置及测定方法。
为实现上述目的,本发明采用的技术方案是:一种煤层硫化氢含量快速测定装置,包括破碎设备、红外吸收光谱分析仪、控制平台、气泵、高压氮气源、连通器,破碎设备的进气端通过管路分别与红外吸收光谱分析仪的出气端和高压氮气源的出气端相连通,破碎设备的出气端通过管路分别与气泵的进气端和连通器的进气端相连通,气泵的出气端通过管路与红外吸收光谱分析仪的进气端相连通;
所述破碎设备与高压氮气源间的管路上设置有第一电磁阀,破碎设备与红外吸收光谱分析仪间的管路上设置有第二电磁阀,破碎设备与气泵间的管路上设置有第三电磁阀,破碎设备与连通器间的管路上设置有第四电磁阀;
所述控制平台的信息采集端通过电路分别与破碎设备、红外吸收光谱分析仪和连通器电性连接,控制平台的控制交互端通过电路分别与气泵、高压氮气源、第一电磁阀、第二电磁阀、第三电磁阀、第四电磁阀和第五电磁阀。
进一步地,所述破碎设备与气泵间的管路上设置有过滤器。
进一步地,所述红外吸收光谱分析仪与第二电磁阀连接的管路上设置支路管路,红外吸收光谱分析仪通过该支路管路连接有尾气净化器,且该管路上设置有第五电磁阀。
进一步地,所述高压氮气源的输出端装配有减压阀。
进一步地,所述破碎设备包括底座、电机、破碎室、密封盖、破碎刃、进气嘴、出气嘴,电机固定安装于底座上,破碎室固定安装于电机上,电机的输出端插入破碎室内,密封盖扣合于破碎室上,破碎刃固定安装于电机的输出端,且破碎刃位于破碎室内,进气嘴和出气嘴装配于破碎室的侧壁上。
进一步地,所述破碎室的侧壁上设置有初滤腔,且破碎室的内腔与初滤腔相连通,初滤腔的内腔与破碎室的连通口处装配有网筛,初滤腔内填充有填料(用于粉尘微粒过滤的填料),出气嘴的数量为两个,且两个出气嘴均设置于初滤腔的侧壁上;
所述破碎室的侧壁由不锈钢空心夹板和夹层构成,所述夹层为隔热夹层。
一种煤层硫化氢含量测定方法,其步骤包括:
步骤1,气密性检测;
步骤2,煤块破碎处理;
步骤3,检测和收集数据;
步骤4,根据步骤3所收集的数据计算煤体中硫化氢含量;
步骤5,清洗排空设备。
进一步地,步骤1中所述气密性检测,具体为:
对破碎设备、红外吸收光谱分析仪、气泵、高压氮气源及连接管路做气密性检测。
进一步地,步骤3中所述的检测和收集数据,具体为:
同时启动红外吸收光谱分析仪及气泵,红外吸收光谱分析仪实时检测导入气体中硫化氢气体的浓度,其中最大浓度值为C(ppm);
破碎室内腔的容积为V1(m3);
通过连通器测定设备内气体的体积变量V2(m3),V2为硫化氢气体的浓度值最大时所对应的体积变量;
气路的体积记为V3(m3)=L×πr2(管路长度L(m),管路内径的半径r(m))。
进一步地,步骤4中所述的根据步骤3所收集的数据计算煤体中硫化氢含量,具体为:
装置内硫化氢总量为n(m3);
n=C×(V1+V2+V3)×10-6
煤样硫化氢含量W(m3/kg);
W=n/G。
使用本发明的有益效果是:
1、本装置的整体体积较小,可直接部署于煤矿开采现场;
2、本装置操作流程较为简单,且能够有效分析煤体内的硫化氢含量,能帮助现场技术人员更准确的判别煤层硫化氢含量的危险性;
3、本测定方案以大块煤样作为测定对象,该煤样内的硫化氢含量受表面扩散影响的流失量较少,其硫化氢含量更接近于煤体内硫化氢的真实含量,测定结果更准确。
附图说明
图1为本发明的管路及电路连接关系示意图;
图2为本发明破碎设备的结构示意图;
图3为本发明破碎室的内部结构示意图。
附图标记包括:1-破碎设备;101-底座;102-电机;103-破碎室;104-密封盖;105-破碎刃;106-隔热夹层;107-进气嘴;108-初滤腔;109-出气嘴;110-网筛;2-红外吸收光谱分析仪;3-控制平台;4-气泵;5-高压氮气源;501-减压阀;6-过滤器;7-连通器;8-尾气净化器;9-第一电磁阀;10-第二电磁阀;11-第三电磁阀;12-第四电磁阀;13-第五电磁阀。
具体实施方式
以下结合附图对本发明进行详细的描述。
参照图1-图3,一种煤层硫化氢含量快速测定装置,包括破碎设备1、红外吸收光谱分析仪2、控制平台3、气泵4、高压氮气源5、连通器7,破碎设备1的进气端通过管路分别与红外吸收光谱分析仪2的出气端和高压氮气源5的出气端相连通,破碎设备1的出气端通过管路分别与气泵4的进气端和连通器7的进气端相连通,气泵4的出气端通过管路与红外吸收光谱分析仪2的进气端相连通;
破碎设备1与高压氮气源5间的管路上设置有第一电磁阀9,破碎设备1与红外吸收光谱分析仪2间的管路上设置有第二电磁阀10,破碎设备1与气泵4间的管路上设置有第三电磁阀11,破碎设备1与连通器7间的管路上设置有第四电磁阀12;
控制平台3的信息采集端通过电路分别与破碎设备1、红外吸收光谱分析仪2和连通器7电性连接,控制平台3的控制交互端通过电路分别与气泵4、高压氮气源5、第一电磁阀9、第二电磁阀10、第三电磁阀11、第四电磁 阀12和第五电磁阀13。
所述破碎设备1与气泵4间的管路上设置有过滤器6。
所述红外吸收光谱分析仪2与第二电磁阀10连接的管路上设置支路管路,红外吸收光谱分析仪2通过该支路管路连接有尾气净化器8,且该管路上设置有第五电磁阀13。
尾气净化器8用于吸收处理测定过程中产生的温室气体及其他有害气体。
所述高压氮气源5的输出端装配有减压阀501。
所述破碎设备1包括底座101、电机102、破碎室103、密封盖104、破碎刃105、进气嘴107、出气嘴109,电机102固定安装于底座101上,破碎室103固定安装于电机102上,电机102的输出端插入破碎室103内,密封盖104扣合于破碎室103上,破碎刃105固定安装于电机102的输出端,且破碎刃105位于破碎室103内,进气嘴107和出气嘴109装配于破碎室103的侧壁上;
优选地,电机102为变频电机;
所述破碎室103的侧壁上设置有初滤腔108,且破碎室103的内腔与初滤腔108相连通,初滤腔108的内腔与破碎室103的连通口处装配有网筛110,初滤腔108内填充有填料(用于粉尘微粒过滤的填料),出气嘴109的数量为两个,且两个出气嘴109均设置于初滤腔108的侧壁上。
所述破碎室103的侧壁由不锈钢空心夹板和夹层构成,所述夹层为隔热夹层106。
优选地,填料为棉团,且该棉团由具有耐腐蚀、不吸附等特点的棉花构 成。
一种应用煤层硫化氢含量快速测定装置的煤层硫化氢含量测定方法,其步骤包括:
步骤1,气密性检测;
对破碎设备1、红外吸收光谱分析仪2、气泵4、高压氮气源5及连接管路做气密性检测;在确认破碎设备1、红外吸收光谱分析仪2、气泵4、高压氮气源5及连接管路连接妥当后,开启第一电磁阀9、第二电磁阀10和第三电磁阀11,关闭第四电磁阀12和第五电磁阀13,启动高压氮气源5向装置内充入一定压力的氮气,当减压阀501的示数不再发生明显变化时,关闭高压氮气源5及其管路的输入阀门(此阀门位于高压氮气源5与减压阀501之间),使破碎设备1、红外吸收光谱分析仪2、气泵4、高压氮气源5及连接管路构成密闭循环回路,通过观察减压阀501的数值变化判断装置气密性是否良好(若减压阀501的数值持续稳定不变,则证明气密性良好,反之则存在漏气问题),当确认气密性良好后打开第五电磁阀13释放装置内压,释放时长2min;
步骤2,煤块破碎处理;
将现场采集新鲜大块煤样(建议体积在200mm×200mm左右)进行称重,煤块的重量为G(kg),并放入破碎设备1内做破碎处理;
煤样放入破碎室103后,先以低频启动电机102,然后逐渐增加电机102的转动频率,以保证煤块破碎完全;
步骤3,检测和收集数据;
同时启动红外吸收光谱分析仪2及气泵4,红外吸收光谱分析仪2实时检测导入气体中硫化氢气体的浓度,其中最大浓度值为C(ppm);
破碎室103内腔的容积为V1(m3);
通过连通器7测定设备内气体的体积变量V2(m3),V2为硫化氢气体的浓度值最大时所对应的体积变量;
气路的体积记为V3(m3)=L×πr2(管路长度L(m),管路内径的半径r(m));
步骤4,根据步骤3所收集的数据计算煤体中硫化氢含量;
装置内硫化氢总量为n(m3);
n=C×(V1+V2+V3)×10-6
煤样硫化氢含量W(m3/kg);
W=n/G;
步骤5,清洗排空设备;
使用高压氮气冲洗装置腔室及管路;关闭第二电磁阀10和第四电磁阀12,打开第一电磁阀9、第三电磁阀11和第五电磁阀13,打开高压氮气源5,对装置内残留的硫化氢进行稀释,对红外吸收光谱分析仪2内的硫化氢清理。清洗流程持续20min;结束20分钟的氮气冲洗后再次启动装置,对装置内的气体进行检测,当检测浓度为0时关闭实验装置。
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上可以作出许多变化,只要这些变化未脱离本发明的构思,均属于本发明的保护范围。

Claims (10)

  1. 一种煤层硫化氢含量快速测定装置,其特征在于:包括破碎设备、红外吸收光谱分析仪、控制平台、气泵、高压氮气源、连通器,破碎设备的进气端通过管路分别与红外吸收光谱分析仪的出气端和高压氮气源的出气端相连通,破碎设备的出气端通过管路分别与气泵的进气端和连通器的进气端相连通,气泵的出气端通过管路与红外吸收光谱分析仪的进气端相连通;
    所述破碎设备与高压氮气源间的管路上设置有第一电磁阀,破碎设备与红外吸收光谱分析仪间的管路上设置有第二电磁阀,破碎设备与气泵间的管路上设置有第三电磁阀,破碎设备与连通器间的管路上设置有第四电磁阀;
    所述控制平台的信息采集端通过电路分别与破碎设备、红外吸收光谱分析仪和连通器电性连接,控制平台的控制交互端通过电路分别与气泵、高压氮气源、第一电磁阀、第二电磁阀、第三电磁阀、第四电磁阀和第五电磁阀。
  2. 根据权利要求1中所述的一种煤层硫化氢含量快速测定装置,其特征在于:所述破碎设备与气泵间的管路上设置有过滤器。
  3. 根据权利要求1中所述的一种煤层硫化氢含量快速测定装置,其特征在于:所述红外吸收光谱分析仪与第二电磁阀连接的管路上设置支路管路,红外吸收光谱分析仪通过该支路管路连接有尾气净化器,且该管路上设置有第五电磁阀。
  4. 根据权利要求1中所述的一种煤层硫化氢含量快速测定装置,其特征在于:所述高压氮气源的输出端装配有减压阀。
  5. 根据权利要求1中所述的一种煤层硫化氢含量快速测定装置,其特征在于:所述破碎设备包括底座、电机、破碎室、密封盖、破碎刃、进气嘴、 出气嘴,电机固定安装于底座上,破碎室固定安装于电机上,电机的输出端插入破碎室内,密封盖扣合于破碎室上,破碎刃固定安装于电机的输出端,且破碎刃位于破碎室内,进气嘴和出气嘴装配于破碎室的侧壁上。
  6. 根据权利要求5中所述的一种煤层硫化氢含量快速测定装置,其特征在于:所述破碎室的侧壁上设置有初滤腔,且破碎室的内腔与初滤腔相连通,初滤腔的内腔与破碎室的连通口处装配有网筛,初滤腔内填充有填料,用于粉尘微粒过滤的填料,出气嘴的数量为两个,且两个出气嘴均设置于初滤腔的侧壁上;
    所述破碎室的侧壁由不锈钢空心夹板和夹层构成,所述夹层为隔热夹层。
  7. 一种应用权利要求1中所述煤层硫化氢含量快速测定装置的煤层硫化氢含量测定方法,其步骤包括:
    步骤1,气密性检测;
    步骤2,煤块破碎处理;
    步骤3,检测和收集数据;
    步骤4,根据步骤3所收集的数据计算煤体中硫化氢含量;
    步骤5,清洗排空设备。
  8. 根据权利要求7中所述的一种煤层硫化氢含量测定方法,其特征在于:步骤1中所述气密性检测,具体为:
    对破碎设备、红外吸收光谱分析仪、气泵、高压氮气源及连接管路做气密性检测。
  9. 根据权利要求7中所述的一种煤层硫化氢含量测定方法,其特征在于: 步骤3中所述的检测和收集数据,具体为:
    同时启动红外吸收光谱分析仪及气泵,红外吸收光谱分析仪实时检测导入气体中硫化氢气体的浓度,其中最大浓度值为C(ppm);
    破碎室内腔的容积为V1(m3);
    通过连通器测定设备内气体的体积变量V2(m3),V2为硫化氢气体的浓度值最大时所对应的体积变量;
    气路的体积记为V3(m3)=L×πr2(管路长度L(m),管路内径的半径r(m))。
  10. 根据权利要求7中所述的一种煤层硫化氢含量测定方法,其特征在于:步骤4中所述的根据步骤3所收集的数据计算煤体中硫化氢含量,具体为:
    装置内硫化氢总量为n(m3);
    n=C×(V1+V2+V3)×10-6
    煤样硫化氢含量W(m3/kg);
    W=n/G。
PCT/CN2023/103886 2022-07-08 2023-06-29 一种煤层硫化氢含量快速测定装置及测定方法 WO2024007946A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2023303693A AU2023303693A1 (en) 2022-07-08 2023-06-29 Apparatus for rapid determination of hydrogen sulfide content in coal seam and determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210796886.X 2022-07-08
CN202210796886.XA CN115112595A (zh) 2022-07-08 2022-07-08 一种煤层硫化氢含量快速测定装置及测定方法

Publications (1)

Publication Number Publication Date
WO2024007946A1 true WO2024007946A1 (zh) 2024-01-11

Family

ID=83333022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103886 WO2024007946A1 (zh) 2022-07-08 2023-06-29 一种煤层硫化氢含量快速测定装置及测定方法

Country Status (3)

Country Link
CN (1) CN115112595A (zh)
AU (1) AU2023303693A1 (zh)
WO (1) WO2024007946A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115112595A (zh) * 2022-07-08 2022-09-27 中煤科工集团沈阳研究院有限公司 一种煤层硫化氢含量快速测定装置及测定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007041A (zh) * 2014-04-17 2014-08-27 河南理工大学 煤层硫化氢含量测定装置
KR101446172B1 (ko) * 2013-11-05 2014-10-01 한국지질자원연구원 석탄 코어에 포함된 석탄가스의 함유량을 측정하는 석탄가스 측정장치
CN105181165A (zh) * 2015-10-27 2015-12-23 河南理工大学 一种测试煤体切割过程co释放与温度变化的装置系统
CN108037236A (zh) * 2017-11-21 2018-05-15 中国科学院地质与地球物理研究所兰州油气资源研究中心 火炬排放中甲烷转化率定量分析气体收集实验装置
CN110208421A (zh) * 2019-01-31 2019-09-06 煤科集团沈阳研究院有限公司 一种用于测量煤体中硫化氢含量的装置
CN115112595A (zh) * 2022-07-08 2022-09-27 中煤科工集团沈阳研究院有限公司 一种煤层硫化氢含量快速测定装置及测定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446172B1 (ko) * 2013-11-05 2014-10-01 한국지질자원연구원 석탄 코어에 포함된 석탄가스의 함유량을 측정하는 석탄가스 측정장치
CN104007041A (zh) * 2014-04-17 2014-08-27 河南理工大学 煤层硫化氢含量测定装置
CN105181165A (zh) * 2015-10-27 2015-12-23 河南理工大学 一种测试煤体切割过程co释放与温度变化的装置系统
CN108037236A (zh) * 2017-11-21 2018-05-15 中国科学院地质与地球物理研究所兰州油气资源研究中心 火炬排放中甲烷转化率定量分析气体收集实验装置
CN110208421A (zh) * 2019-01-31 2019-09-06 煤科集团沈阳研究院有限公司 一种用于测量煤体中硫化氢含量的装置
CN115112595A (zh) * 2022-07-08 2022-09-27 中煤科工集团沈阳研究院有限公司 一种煤层硫化氢含量快速测定装置及测定方法

Also Published As

Publication number Publication date
AU2023303693A1 (en) 2024-04-04
CN115112595A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2024007946A1 (zh) 一种煤层硫化氢含量快速测定装置及测定方法
CN110068428B (zh) 一种碘吸附器泄漏率在线测量系统及其测量方法
CN103149057B (zh) 一种用于天然气汞含量检测的天然气样品采集方法
CN104729948A (zh) 含瓦斯煤水气两相渗流实验系统和方法
CN106959464B (zh) 一种氡析出率的测量装置和测量方法
CN208333779U (zh) 一种非腔体结构件的检漏装置
CN107192794B (zh) 一种煤矿井下co来源辨识的装置
CN105004801A (zh) 一种环路热管氨工质纯度分析装置
CN108488630A (zh) 一种测量燃气管道泄漏特性的实验装置及其测量方法
CN111175430A (zh) 静态容量法多组分竞争性吸附分析仪
CN201697765U (zh) 一种压力变送器远传装置的整机氦检漏设备
CN110726776A (zh) 一种用于核设施碘吸附器吸附效率测试的设备及其方法
CN110715975A (zh) 一种用非放射性甲基碘评价碘吸附器效率的在线测量设备及其方法
CN110196206A (zh) 一种采空区遗煤多气体竞争吸附测试装置及其使用方法
CN114544424A (zh) 一种井下煤层瓦斯含量快速自动测定方法及装置
CN105203355A (zh) 一种焦炉煤气采样装置及采样方法
CN111413418A (zh) 一种硫化氢处理剂评价装置及方法
CN112229687A (zh) 一种零泄漏煤气自动取样装置及取样方法
CN208579154U (zh) 一种测量燃气管道泄漏特性的实验装置
CN109870399A (zh) 一种可改变混合气体酸碱度的三轴渗流装置及操作方法
CN207351627U (zh) 检测净水滤芯气密性的系统
CN216050993U (zh) 一种用于非甲烷总烃采样气袋的自动清洗装置
CN213456300U (zh) 一种零泄漏煤气自动取样装置
CN220913061U (zh) 一种用于评价甲基碘吸收液性能的试验装置
CN205808648U (zh) 火电厂真空系统严密性在线监测结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834713

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023303693

Country of ref document: AU

Ref document number: AU2023303693

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023303693

Country of ref document: AU

Date of ref document: 20230629

Kind code of ref document: A