WO2024007891A1 - 用于控制带电粒子移动的微流体系统以及控制方法 - Google Patents

用于控制带电粒子移动的微流体系统以及控制方法 Download PDF

Info

Publication number
WO2024007891A1
WO2024007891A1 PCT/CN2023/102668 CN2023102668W WO2024007891A1 WO 2024007891 A1 WO2024007891 A1 WO 2024007891A1 CN 2023102668 W CN2023102668 W CN 2023102668W WO 2024007891 A1 WO2024007891 A1 WO 2024007891A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
traveling wave
electric field
charged particles
wave electric
Prior art date
Application number
PCT/CN2023/102668
Other languages
English (en)
French (fr)
Inventor
杨少军
李易易
Original Assignee
珠海捷壹生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海捷壹生物科技有限公司 filed Critical 珠海捷壹生物科技有限公司
Publication of WO2024007891A1 publication Critical patent/WO2024007891A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44752Controlling the zeta potential, e.g. by wall coatings

Definitions

  • the present invention relates to the operation and control of charged particles in electrolytes, and specifically, to a microfluidic system for controlling the movement of charged particles and a method for controlling the movement of charged particles.
  • Charged particles in a liquid or colloid are forced to move under the action of an electric field. Therefore, by introducing an electric current into a liquid or colloidal electrolyte to form an electric field, the fluid or charged particles in the fluid can be manipulated and controlled.
  • conductor electrodes represented by graphite electrodes, alloy electrodes or certain solid metals such as gold and platinum are currently used to introduce current into fluids.
  • the carriers in the electrolyte solution are ions, while the carriers in the conductor are electrons. Therefore, at the electrode-fluid interface, there is an inevitable electrochemical reaction due to the charge transfer of carriers. .
  • the bubbles generated by the electrochemical reaction cannot be eliminated during the working process of the electrode.
  • hydrogen ions at the cathode gain electrons to produce hydrogen gas; oxygen ions at the anode lose electrons, producing oxygen.
  • bubbles will cause sudden changes in local fluid pressure, leading to obstruction or various adverse effects on the transport, monitoring and control of microfluidics. Local bubbles are a variety of microfluidics.
  • Patent WO2011102801A1 discloses a capacitive material electrode based on a pi conjugated complex. Its working principle is to utilize the reversible redox reaction of the conjugated complex, thereby eliminating the electrode electrochemical reaction at the interface between the solid and the fluid electrolyte, thus Fundamentally solves the problem of bubbles.
  • pseudocapacitive materials have redox polarity, and the electrodes often need to be activated in advance during use. According to the specific cathode/anode settings, the electrodes are oxidized or reduced, which is equivalent to charging the electrochemical capacitor. This in specific There is great inconvenience when using it.
  • the electrode has a certain discharge charge capacity after charging. When the discharge charge exceeds the electrode capacity, an electrode electrolysis reaction will occur. Therefore, this method cannot support long-term continuous application or application scenarios that require larger currents.
  • Chinese patent CN100455328C discloses a method of electroporating cell walls using a pulsed electric field provided by a waveform generator.
  • the purpose of electroporating the cell wall is achieved by utilizing the electric field between multiple parallel electrodes.
  • the electrode-electrolysis reaction is minimized.
  • this solution cannot avoid the carrier conversion process between the electrode and the electrolyte, that is, the electrolysis reaction, the specific application scope and effect of the solution are greatly limited.
  • Chinese patent CN1181337C discloses a method and kit for controlling particles in liquid using dielectrophoresis and traveling wave electric fields.
  • the particles in the liquid are controlled by generating an electric field on the microelectrode array and utilizing the characteristics of the particles to migrate through the traveling wave electric field.
  • the particles it controls can be cells, bacteria, viruses, biomolecules or plastic microspheres, bubbles, etc.
  • Dielectrophoresis uses the force of charged particles in a non-uniform electric field to control particles, avoiding the step of providing a driving current into the liquid, thereby avoiding the electrode-electrolysis reaction.
  • the existing technology has the following shortcomings:
  • Pseudocapacitive material electrodes have capacitance charge limitations, and traditional electrophoresis methods and methods are difficult to meet continuous and long-term application requirements.
  • the present invention provides a microfluidic system for controlling the movement of charged particles and a method for controlling the movement of charged particles, so as to solve at least one problem existing in the above-mentioned prior art.
  • the present invention provides a microfluidic system for controlling the movement of charged particles, which includes:
  • Microfluidic channel electrolyte flows inside the microfluidic channel, and the electrolyte has charged particles. son;
  • each electrode forms electrical contact with the electrolyte and forms pseudocapacitance and/or double-layer capacitance at the interface where the electrodes and electrolyte contact;
  • the driving power supply generates periodic voltage excitation or current excitation.
  • the voltage excitation or current excitation output by the driving power supply changes in an output cycle.
  • Each driving power supply is connected to one or more of them through conductor leads. electrode;
  • Each electrode continuously charges and discharges alternately, forming a traveling wave electric field in the microfluidic channel.
  • the traveling wave electric field moves at a preset traveling wave speed.
  • the charged particles in the electrolyte move under the direction of the traveling wave electric field.
  • the maximum charge capacity of each electrode is greater than the total charge transferred on the electrode during a charging process or a discharging process.
  • the moving direction of the traveling wave electric field is the same as or opposite to the electrolyte flow direction, and the traveling wave electric field has a positive amplitude Ep and a negative amplitude En, Ep ⁇ En, positive
  • the time domain span of the forward amplitude Ep is Tp
  • the time domain span of the negative amplitude En is Tn.
  • the characteristic length of the microfluidic channel is between 100 nanometers and 10 millimeters.
  • the characteristic length of the charged particles is between 0.1 nanometers and 0.1 millimeters.
  • the total input current on each electrode is equal to the total output current, that is, the net input current on each electrode, the net The output current is all zero;
  • the total input charge and total output charge on each electrode are always less than the charge capacity of the electrode.
  • the cycle, frequency and output voltage and/or current waveform of the driving power supply are all adjustable, and
  • the amplitude, positive and negative amplitude ratio, and moving speed of the traveling wave electric field are all adjustable.
  • the microfluidic channel has an opposite first side and a second side, and a plurality of electrodes are respectively arranged on the first side or the second side, and the number of electrodes on the first side and the second side is equal. Limit to zero or no less than three.
  • the charged particles are antibodies, protein molecules, microcapsules, vesicles, nanomedicines, cells or cell components.
  • the traveling wave electric field has the same waveform at different electrode positions, or
  • the traveling wave electric field has waveforms with similar shapes but different amplitudes at different electrode positions, or
  • the traveling wave electric field has the same or different traveling speed at different electrode positions.
  • the invention also provides a method for controlling the movement of charged particles, which method is applied to the above-mentioned microfluidic system for controlling the movement of charged particles, and includes:
  • each driving power supply to generate periodic voltage excitation or current excitation, forming a traveling wave electric field moving at a preset traveling wave speed in the microfluidic channel, and the charged particles in the electrolyte move along the traveling wave Moving under the action of an electric field, the maximum charge capacity of each electrode is greater than the total charge transferred on the electrode during a charging process or a discharging process.
  • the present invention can accurately control the movement of charged particles.
  • Figure 1a is a schematic diagram of a charged particle movement control device according to an embodiment of the present invention.
  • Figure 1b is a schematic diagram of a charged particle movement control device according to another embodiment of the present invention.
  • Figure 2 is a schematic diagram of a traveling wave electric field according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the voltage output by each driving power supply according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the current on one of the electrodes according to an embodiment of the present invention.
  • the electrolyte flows inside the microfluidic channel, and the charged particles are distributed in the electrolyte.
  • the electrodes are connected to the driving power supply.
  • a traveling wave electric field is formed inside the microfluidic channel, and the traveling wave is utilized. Electric fields control the movement of charged particles inside microfluidic channels.
  • Figure 1a is a schematic diagram of a charged particle movement control device according to one embodiment of the present invention.
  • Figure 1b is a schematic diagram of a charged particle movement control device according to another embodiment of the present invention.
  • the present invention provides a device for controlling movement of charged particles.
  • Microfluidic systems that control the movement of charged particles including:
  • the electrolyte flows inside the microfluidic channel 1.
  • the electrolyte in the present invention can be a colloid or a fluid.
  • the charged particles 11 can be solid, gas or liquid.
  • the charged particles 11 follow the dielectric.
  • the characteristic length of the charged particles 11 is generally between 0.1 nanometers and 0.1 millimeters, and the characteristic length of the microfluidic channel 1 is generally between 100 nanometers and 10 millimeters.
  • the charged particles 11 are, for example, Antibodies, protein molecules, microcapsules, vesicles, nanomedicines, cells or cell components, the charged particles 11 can also be bacteria, viruses, biomolecules or plastic microspheres, bubbles, etc.
  • each electrode 2 forms electrical contact with the electrolyte and between the electrodes and the electrolyte
  • a pseudocapacitance and/or a double-layer capacitance are formed at the interface in contact with each other.
  • the microfluidic channel 1 has an opposite first side and a second side.
  • a plurality of electrodes 2 are respectively disposed on the first side or the second side.
  • the first side and the second side are The number of electrodes on each side is limited to zero or no less than three. That is to say, the present invention sets electrodes on at least one side of the microfluidic channel 1. Once an electrode is set on a certain side, the number of electrodes on that side is at least 3. This is a necessary condition for forming a traveling wave electric field. Less than 3 electrodes cannot form a traveling wave electric field.
  • the first and second sides Each is equipped with 4 electrodes;
  • the number of electrodes in Figure 1a and Figure 1b are examples. In other embodiments, the number of electrodes can be increased or decreased according to actual needs, provided that the above electrode setting restrictions are met.
  • Two or more driving power supplies 3 generate periodic voltage excitation or current excitation.
  • the voltage excitation or current excitation output by the driving power supply 3 within an output cycle is in a changing state.
  • the meaning of "in a changing state” here is During at least part of an output period, the voltage amplitude output by the driving power supply 3 changes or the current amplitude changes, and the voltage amplitude output by the driving power supply 3 is allowed to change during another part of an output period. The value or current amplitude remains unchanged.
  • Each driving power supply 3 is connected to one or more electrodes through a conductor lead 4.
  • the conductor lead 4 transmits the current or voltage excitation output by the drive power supply 3 to the electrode 2, driving the electrolyte in the electrolyte.
  • the flow of charged particles11 creates an electric current, thereby forming a complete conductive path;
  • Each electrode 2 continues to charge and discharge alternately, forming a traveling wave electric field in the microfluidic channel 1.
  • the traveling wave electric field moves at a preset traveling wave speed, and the charged particles in the electrolyte move under the action of the traveling wave electric field.
  • the maximum charge capacity of each electrode is greater than the total amount of charge transferred on the electrode during a charging process or a discharging process.
  • the moving direction of the traveling wave electric field and the electrolyte flow direction can be the same or opposite.
  • the traveling wave electric field and the electrolyte flow direction are the same as an example for illustration.
  • Figure 2 is an embodiment of the present invention. Schematic diagram of an example of a traveling wave electric field.
  • the traveling wave electric field has a positive amplitude Ep and a negative amplitude En, Ep ⁇ En.
  • the time domain span of the positive amplitude Ep is Tp
  • the time domain span of En is Tn
  • the total input current and the total output current on each electrode are equal, that is, the net input current and net output current on each electrode are both zero;
  • the total input charge and total output charge on each electrode are always less than the charge capacity of the electrode.
  • the cycle, frequency and output voltage and/or current waveform of the driving power supply 3 are all adjustable.
  • the voltage waveform output by the driving power supply 3 is: It rises with a fixed slope, rises to the maximum value, and then drops with a fixed slope. After that, the voltage is zero for a period of time, and the above constitutes a complete voltage cycle.
  • the output period of the driving power supply 3 can be adjusted, and its output voltage waveform and current waveform can also be adjusted, and the output voltage or current waveform is not limited to that shown in Figure 3.
  • the voltage or current can be changed according to actual needs.
  • the waveform is adjusted to the required form, and the adjustment of the driving power supply 3 is not limited to whether the electrode is working.
  • the output cycle and output of the driving power supply 3 can be changed over time.
  • the voltage waveform and current waveform cause the traveling wave electric field to change accordingly, which reflects the control of the electrode and traveling wave electric field from the time dimension.
  • the amplitude of the traveling wave electric field, the ratio of positive and negative amplitudes, and the moving time of the traveling wave are all adjustable. This adjustment is mainly based on the adjustment of the driving power supply 3 and is calculated according to the specific values of the above parameters that need to be adjusted. The output parameters of the drive power supply 3 are then adjusted accordingly.
  • the voltage waveforms output by multiple driving power supplies 3 are the same and the voltage phases uniformly increase or decrease sequentially along the axial direction of the microfluidic channel.
  • the purpose of this arrangement is to enable phase delay from the same source.
  • the voltage is output to multiple driving power supplies 3, which facilitates actual operation and saves implementation costs.
  • the voltage output by the driving power supply 3 can also be controlled to other forms, as long as a traveling wave electric field moving at a preset traveling wave speed is formed in the microfluidic channel 1.
  • the present invention does not implement the above-mentioned method. The method is limited.
  • FIG 3 is a schematic diagram of the voltage output by each driving power supply according to an embodiment of the present invention.
  • the voltages output by the four driving power supplies from left to right are V1 ⁇ V4 respectively, and their waveforms are as follows
  • the voltage waveforms of V1 to V4 are the same. If V1 is used as the benchmark, the waveforms of V2 to V4 can be regarded as obtained by phase delay on the basis of V1, and the phases are uniformly decreasing, that is, each voltage waveform is phase-delayed. Decreases the same phase as the previous voltage waveform.
  • the traveling electric field has the same waveform at different electrode positions.
  • the traveling wave electric field in the present invention can also have waveforms with similar shapes but different amplitudes at different electrode positions.
  • the traveling wave electric field at different electrode positions can also have the same or For different traveling wave traveling speeds, if it is necessary to adjust the traveling wave traveling speed of the traveling wave electric field at different positions in space, it can be achieved by adjusting the switching speed of the voltage on the corresponding electrode at the location.
  • the switching speed of the voltage corresponds to The output period of the driving power supply, that is, by controlling the output period of the driving power supply connected to the electrode at the corresponding position, the traveling wave electric field can be controlled to have different traveling wave traveling speeds at different positions along its moving direction.
  • the switching speed of the voltage The faster (corresponding to the shorter the output period of the driving power supply), the faster the traveling wave travels, and the slower the voltage switching speed (corresponding to the longer the output period of the driving power supply), the slower the traveling wave travels.
  • the basis for controlling the traveling speed of traveling waves which reflects the control of electrodes and traveling wave electric fields from the time dimension. .
  • FIG 3 is a schematic diagram of the current on one of the electrodes according to an embodiment of the present invention. It shows the current on the electrode connected to V1.
  • the reciprocating current does not exist all the time. During the time period when the voltage difference between the electrode and the adjacent electrode is 0, the current on the electrode is 0. At other times, the magnitude and direction of the current are consistent with the voltage difference. related.
  • the invention forms a periodically changing electric field or current in a microfluidic channel by alternating charge and discharge of electrodes in time or space, thereby controlling fluid or charged particles in the fluid. At the same time, since the carrier conversion is completed inside the electrode, no electrolysis reaction will occur and bubbles will not be generated in the fluid.
  • the electrodes are double-layer capacitive electrodes and/or pseudocapacitive electrodes, and the maximum charge capacity of each electrode is greater than the total amount of charge transferred on the electrode during a charging process or a discharging process.
  • the electrodes operate at different working times. Interleaved work.
  • the double-layer capacitance electrode is an electrode including a double-layer capacitance
  • the pseudocapacitance electrode is an electrode including a pseudocapacitance.
  • the double-layer capacitor electrode relies on the net charge adsorption of charged ions in the electrolyte on the electrode surface to achieve charge storage. There is no oxidation-reduction process involved, which fundamentally eliminates the generation of bubbles.
  • Pseudocapacitive electrodes are a continuous, reversible, phase-change-free method that occurs through electrode materials at a specific potential. It uses the Radic reaction to store and release electrical energy, does not produce bubbles in the electrode interface, and has greater charge capacity.
  • the electrode may have either double-layer capacitance or pseudo-capacitance, or may have different composite forms of double-layer capacitance and pseudo-capacitance characteristics at the same time. For example, an electrode made of a material mixed with graphene and metal oxide in a certain proportion will have both pseudocapacitance and double-layer capacitance properties.
  • the traveling wave electric field has different effects on charged particles with different charge-to-mass ratios
  • the charged particles can be accurately operated and controlled, as detailed below:
  • Figure 2 is a schematic diagram of a traveling wave electric field according to an embodiment of the present invention. It shows the electric field waveform at a certain moment. Since the traveling wave electric field moves at the traveling wave speed V0, at other times, the waveform of the traveling wave electric field needs to be based on The specific time t and the value of V0 are determined.
  • the horizontal axis in Figure 2 represents the axis from left to right along the microfluidic channel, and the vertical axis represents the electric field amplitude of the traveling wave electric field.
  • the average charge output from the electrode is zero, that is, the total amount of charge input and output from the electrode is equal.
  • the moving speed Vq of the charged particle q is slightly less than V0, since the charged particle will move forward with the traveling wave electric field for a period of time, the time Ep acts on the charged particle is greater than Tp; and because En is opposite, the charged particle moves forward under the action of En After the movement, the time En acts on the charged particles is less than Tn; under the influence of the above two items, the charged particles will move forward for a certain distance after passing through an electric field cycle.
  • the moving speed of charged particle q when the moving speed of charged particle q is less than V0, then q will first be acted upon by the Ep pulse, It moves forward for a certain distance, and the moving distance is about V0 ⁇ Vqp ⁇ Tp/(V0-Vqp); then it is acted on by the En pulse, and moves backward for a certain distance, and the distance is about V0 ⁇ Vqn ⁇ Tn/(V0+Vqn). Since the speed of charged particles moving with the electric field Vp is consistent with the direction of V0, the time for Ep to act on the charged particles is greater than Tp, and the time for En to act on the charged particles is less than Tn. After a traveling wave electric field period, the forward movement distance of the charged particles is related to the relative ratio of V0 and Vq, the electric field period and other parameters Tn.
  • the present invention can accurately control charged particles with different charge-to-mass ratios in the electrolyte by adjusting the size of Vq and the specific electric field waveform, and can also adjust the behavior of the traveling wave electric field at different times and/or locations.
  • the wave traveling speed and electric field amplitude can perform various operations such as sorting, enrichment, or separation of charged particles.
  • electrodes with larger charge capacity are selected to provide a certain charge buffer for the entire working system, and reducing charge consumption during the working process is beneficial to maintaining the stability of the long-term charge and discharge cycle of the working system.
  • the invention also provides a method for controlling the movement of charged particles, which method is applied to the above-mentioned microfluidic system for controlling the movement of charged particles, and includes:
  • each driving power supply to generate periodic voltage excitation or current excitation, forming a traveling wave electric field moving at a preset traveling wave speed in the microfluidic channel, and the charged particles in the electrolyte move along the traveling wave Moving under the action of an electric field, the maximum charge capacity of each electrode is greater than the total charge transferred on the electrode during a charging process or a discharging process.
  • the present invention can accurately control the movement of charged particles.
  • the electrodes are charged and discharged alternately in time or space, forming a periodically changing electric field or current in the microfluidic channel, thereby controlling the fluid or charged particles in the fluid.
  • the present invention sets the moving traveling wave electric field to have asymmetric positive and negative amplitudes. Therefore, at different stages of the traveling wave cycle, the input current and output current of the same electrode are asymmetric, but in a complete traveling wave cycle, any one The input current of the electrode is equal to the output current.
  • the larger charge capacity of the electrode provides charge buffering for the entire microfluidic system, reducing charge consumption during the working process and maintaining the stability of the long-term charge-discharge cycle of the working system.
  • the electrodes are alternately charged and discharged, and the charging and discharging cycle is realized in time to provide current drive, and the fluid or charged particles in the fluid are controlled to realize the joint regulation of the charging and discharging cycle and the electric drive phenomenon.
  • the electrodes work staggered at different times, which greatly reduces the requirement for the charge capacity that a single electrode can provide, making the size of the electrode easy to control and meeting the application needs of micro-systems at the micron and nanoscale.
  • the electrode basically eliminates oxidation/reaction at the electrode interface, and works in a staggered manner at different times, it has a strong self-cleaning function of the electrode, minimizing the effects of electrodeposition, electrode oxidation/reduction and other phenomena.
  • the electrode passivation and various failures are eliminated, which greatly extends the service life of the electrode.
  • modules in the device in the embodiment may be distributed in the device in the embodiment according to the description of the embodiment, or may be correspondingly changed and located in one or more devices different from this embodiment.
  • the modules of the above embodiments can be combined into one module, or further divided into multiple sub-modules.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

一种用于控制带电粒子(11)移动的微流体系统以及一种带电粒子(11)移动控制方法,其包括:微流体通道(1);三个或以上电极(2),每个电极(2)均与电解质形成电接触并且在电极(2)、电解质二者接触的界面形成赝电容和/或双层电容;两个或以上驱动电源(3),驱动电源(3)产生周期性的电压激励或者电流激励,驱动电源(3)在一个输出周期内输出的电压激励或电流激励呈变化状态,每个驱动电源(3)通过导体引线(4)连接其中一个或多个电极(2),每一电极(2)均持续轮换充电及放电,在微流体通道(1)中形成一个行波电场(5),行波电场(5)以预设的行波行进速度移动,电解质中的带电粒子(11)在行波电场(5)的作用下移动,每一电极(2)的最大电荷容量均大于在一次充电过程或一次放电过程中电极(2)上转移的总电荷量。

Description

用于控制带电粒子移动的微流体系统以及控制方法 技术领域
本发明是关于对电解质中的带电粒子的进行操作和控制,具体而言,涉及一种用于控制带电粒子移动的微流体系统以及带电粒子移动控制方法。
背景技术
液体或者胶体中的带电粒子在电场作用下会受力移动,因此,通过在液体或者胶体电解质中引入电流形成电场,可以对流体或者流体中的带电粒子进行操作和控制。
目前在流体中引入电流的方式主要采用以石墨电极、合金电极或某些固体金属例如金、铂等为代表的导体电极。
在导体电极的工作过程中,电解质溶液中载流子为离子,而导体中载流子为电子,因此在电极-流体的界面上,由于载流子的电荷转移,存在不可避免的电化学反应。电化学的反应产生的气泡在电极工作过程中无法消除。例如,在典型的水溶液工作流体中,阴极的氢离子会获得电子产生氢气;阳极的氧离子失去电子,产生氧气。在微通道流体系统中,由于尺度效应,气泡将导致局部的流体压强骤变,导致阻塞或是对微流体的输运、监测和控制等带来各种不利影响,局部气泡是多种微流控芯片失效的重要原因。另外,电极电化学反应过程中产生的气泡聚集在电极周围导致电极导电能力降低的同时,也消耗额外的能量。在存在其他粒子的工作环境中,将会发生更为复杂电化学反应而影响工作环境的pH值。这些不可控因素,都严重制约导体电极的使用。
在美国专利US6890409中,通过采用将电极部分和微流道分离,避免了气泡进入微流体中。但是该方案由于使用了额外的通道,让电极产生的气泡与微流体通道分开,因此无法用在密闭的流体通道中。
专利WO2011102801A1中公开了一种基于pi共轭复合物的膺电容材料电极,其工作原理是利用共轭复合物可逆的氧化还原反应因此在固体与流体电解质的界面中消除了电极电化学反应,从根本上解决了气泡产生的问题。但是,赝电容材料存在氧化还原的极性,使用中往往需要预先对电极进行激活,按照具体的阴极/阳极设置,对电极进行氧化或者还原反应,等效为对该电化学电容进行充电,这在具体 的使用时存在很大的不便。另外,充电后电极存在一定的放电电荷容量,当放电电荷超过电极容量后,将会发生电极电解反应,因此这样的方法无法支持长时间的连续应用或者需要较大电流的应用场景。
中国专利CN100455328C公开了一种利用波形发生器提供的脉冲电场对细胞壁进行电穿孔,通过利用多个平行电极之间的电场达到对细胞壁进行电穿孔的目的。通过利用电极之间的往复电流激励,产生交变电场,来尽量减小电极-电解反应。但是这种方案由于并没有能够避免在电极-电解质之间的载流子变换过程也即电解反应,具体的应用范围和方案的效果受到很大的限制。
中国专利CN1181337C中公开了一种利用介电泳和行波电场对液体中的微粒进行操控的方法和试剂盒。在该专利所公开的方案中,通过在微电极阵列上产生电场,利用粒子经过行波电场迁移的特性,来对液体中的微粒进行操控。其操控的微粒可以是细胞、细菌、病毒、生物分子或塑料微球、气泡等。介电泳是利用带电颗粒在不均匀电场中的受力来对微粒进行操控,避免了向液体中提供驱动电流的步骤,从而规避了电极-电解反应,但是由于电解质是导体,因此为了能对液体中的带电粒子进行有效的操控,需要在流体中产生极高的电场梯度,实际的使用中往往会限制该方案的应用,典型情况下,对亚微米尺度的微粒,介电泳很难进行有效的操控。
综上,现有技术存在以下不足之处:
(1)普通电极存在电极-电解反应,以及由此导致的一系列不利后果;在微流道系统的应用中受到极大的限制。例如高频行波驱动的普通电极,是一种临时的方案,使用场景受限,难以广泛应用。
(2)赝电容材料电极存在电容电荷限制,传统电泳方式和方法很难满足连续长期的应用需求。
(3)行波介电泳方式,由于需要在导电的电解质中产生高电场梯度,实际应用非常受限,效率极低,同时无法对纳米颗粒进行有效操控。
发明内容
本发明提供一种用于控制带电粒子移动的微流体系统以及带电粒子移动控制方法,用以解决上述现有技术存在的至少一个问题。
为达到上述目的,本发明提供了一种用于控制带电粒子移动的微流体系统,其包括:
微流体通道,供电解质在所述微流体通道内部流动,所述电解质中具有带电粒 子;
三个或以上电极,每个电极均与电解质形成电接触并且在电极、电解质二者接触的界面形成赝电容和/或双层电容;
多个导体引线;以及
两个或以上驱动电源,驱动电源产生周期性的电压激励或者电流激励,驱动电源在一个输出周期内输出的电压激励或电流激励呈变化状态,每个驱动电源通过导体引线连接其中一个或多个电极;
每一电极均持续轮换充电及放电,在所述微流体通道中形成一个行波电场,所述行波电场以预设的行波行进速度移动,电解质中的带电粒子在所述行波电场的作用下移动,每一电极的最大电荷容量均大于在一次充电过程或一次放电过程中电极上转移的总电荷量。
在本发明的一实施例中,所述行波电场的移动方向与电解质流动方向相同或相反,所述行波电场具有一正向幅值Ep和一负向幅值En,Ep≠En,正向幅值Ep的时域跨度为Tp,负向幅值En的时域跨度为Tn,所述行波电场满足下式(1):
Ep×Tp=En×Tn(1)。
在本发明的一实施例中,所述微流体通道的特征长度介于100纳米~10毫米之间。
在本发明的一实施例中,所述带电粒子的特征长度介于0.1纳米~0.1毫米之间。
在本发明的一实施例中,在所述行波电场的一个或多个行波周期内,每一电极上的总输入电流与总输出电流相等,即每一电极上的净输入电流、净输出电流均为零;或
每一电极上的总输入电荷与总输出电荷恒小于该电极的电荷容量。
在本发明的一实施例中,所述驱动电源的周期、频率以及所输出的电压和/或电流波形均为可调节的,以及
所述行波电场的幅值、正负幅值比以及行波移动速度均为可调节的。
在本发明的一实施例中,所述微流体通道具有相对的第一侧和第二侧,多个电极分别设置在第一侧或第二侧,第一侧和第二侧的电极数量均限制为零个或不小于三个。
在本发明的一实施例中,所述带电粒子为抗体、蛋白质分子、微囊、囊泡、纳米药物、细胞或细胞组分。
在本发明的一实施例中,所述行波电场在不同的电极位置处具有相同的波形, 或
所述行波电场在不同的电极位置处具有形状相似但幅值不同的波形,或
所述行波电场在不同的电极位置处具有相同或者不同的行波行进速度。
本发明还提供了一种带电粒子移动控制方法,该方法应用于上述用于控制带电粒子移动的微流体系统中,其包括:
a.将电解质输入至所述微流体通道;
b.将导体引线分别与对应的驱动电源连接;
c.控制每一驱动电源产生周期性的电压激励或者电流激励,在所述微流体通道中形成一个以预设的行波行进速度移动的行波电场,电解质中的带电粒子在所述行波电场作用下移动,每一电极的最大电荷容量均大于在一次充电过程或一次放电过程中电极上转移的总电荷量。
本发明提供的用于控制带电粒子移动的微流体系统以及带电粒子移动控制方法相较于现有技术具有以下有益技术效果:
1.与传统电极相比
(1)解决了电极处发生电解反应的问题,根本杜绝气泡产生
(2)解决了电极长时间工作后钝化的问题
2.与其他现有的新型电极相比,解决了电荷容量限制的问题
(1)长时间稳定工作
(2)提供很高的电流驱动力
(3)便于小型化,在微米和纳米尺度提供足够的驱动力
3.与现有的电泳方式相比
(1)便于微型化
(2)精确控制电解质中带电粒子的正反向移动
(3)精准控制从纳米到微米尺度的带电粒子
4.与介电泳方式相比
(1)高效率
(2)驱动电压低,操控带电粒子的速度快
(3)可以驱动微米和纳米级带电粒子
(4)相较于介电泳局部电场梯度的扭曲极大影响带电粒子移动控制精度,本发明可以精确的控制带电粒子移动。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为本发明一个实施例的带电粒子移动控制装置的示意图;
图1b为本发明另一个实施例的带电粒子移动控制装置的示意图;
图2为本发明一个实施例的行波电场的示意图;
图3为本发明一实施例的各驱动电源输出的电压的示意图;
图4为本发明一实施例的其中一个电极上的电流的示意图。
附图标记说明:1-微流体通道;11-带电粒子;2-电极;3-驱动电源;4-导体引线;5-行波电场。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明中,电解质在微流体通道内部流动,带电粒子分布在电解质中,电极与驱动电源连接,通过对驱动电源输出的电压或电流进行控制,在微流体通道内部形成行波电场,利用行波电场控制带电粒子在微流体通道内部的移动。
图1a为本发明一个实施例的带电粒子移动控制装置的示意图,图1b为本发明另一个实施例的带电粒子移动控制装置的示意图,如图1a、图1b所示,本发明提供的用于控制带电粒子移动的微流体系统,其包括:
微流体通道1,供电解质在微流体通道1内部流动,电解质中具有带电粒子11,本发明中的电解质可以为胶体或流体,带电粒子11可以是固体、气体或者液体,带电粒子11随着电介质在微流体通道1内部流动,带电粒子11的特征长度一般是介于0.1纳米~0.1毫米之间,微流体通道1的特征长度一般是介于100纳米~10毫米之间,带电粒子11例如为抗体、蛋白质分子、微囊、囊泡、纳米药物、细胞或细胞组分,带电粒子11还可以是细菌、病毒、生物分子或塑料微球、气泡等。
三个或以上电极2,每个电极2均与电解质形成电接触并且在电极、电解质二 者接触的界面形成赝电容和/或双层电容,微流体通道1具有相对的第一侧和第二侧,多个电极2分别设置在第一侧或第二侧,第一侧和第二侧的电极数量均限制为零个或不小于三个,也就是说,本发明在微流体通道1的至少一侧设置电极,一旦某一侧设置了电极,则该侧的电极数量至少为3个,这是形成行波电场的必要条件,电极少于3个无法形成行波电场,图1a中,仅在第二侧设有4个电极,图1b中,第一侧和第二侧分别设有4个电极;
图1a、图1b中的电极数量均为举例说明,在其他实施例中,在满足以上电极设置限制的前提下,可以根据实际需要增减电极的数目。
多个导体引线4;以及
两个或以上驱动电源3,驱动电源3产生周期性的电压激励或者电流激励,驱动电源3在一个输出周期内输出的电压激励或电流激励呈变化状态,此处“呈变化状态”的含义为在一个输出周期内的至少其中一部分时间以内,驱动电源3输出的电压幅值是变化的或电流幅值是变化的,并且允许驱动电源3在一个输出周期的另一部分时间以内,输出的电压幅值不变或电流幅值不变,每个驱动电源3通过导体引线4连接其中一个或多个电极,导体引线4将驱动电源3输出的电流或电压激励传输至电极2上,驱动电解质中的带电粒子流动11以形成电流,从而形成完整的导电通路;
每一电极2均持续轮换充电及放电,在微流体通道1中形成一个行波电场,行波电场以预设的行波行进速度移动,电解质中的带电粒子在行波电场的作用下移动,每一电极的最大电荷容量均大于在一次充电过程或一次放电过程中电极上转移的总电荷量。
本发明中,行波电场的移动方向与电解质流动方向可以为相同也可以为相反,图1a、图1b中,以行波电场与电解质流动方向相同为例进行说明,图2为本发明一个实施例的行波电场的示意图,图2中,行波电场具有一正向幅值Ep和一负向幅值En,Ep≠En,正向幅值Ep的时域跨度为Tp,负向幅值En的时域跨度为Tn,行波电场满足下式(1):
Ep×Tp=En×Tn(1)。
本发明中的行波电场满足以下特点:
(1)在行波电场的一个或多个行波周期内,每一电极上的总输入电流与总输出电流相等,即每一电极上的净输入电流、净输出电流均为零;或
每一电极上的总输入电荷与总输出电荷恒小于该电极的电荷容量。
实际设计中,允许每个电极上的净输入电流与净输出电流存在细微的、可以忽略不计的差别,但即使净输入电流与净输出电流不同,在任何时刻,电极提供电荷不超过其容量即可。
(2)行波电场的幅值、正负幅值比以及行波移动速度均为可调节的。
本发明中,驱动电源3的周期、频率以及所输出的电压和/或电流波形均为可调节的,如图3所示,驱动电源3在每个周期内,输出的电压波形中,电压先是以固定斜率上升,上升到最大值后再以固定斜率下降,之后有一段时间电压为零,以上构成一个完整的电压周期。在实际实施时,驱动电源3的输出周期可以调节,其输出的电压波形和电流的波形也可以调节,并且输出的电压或电流的波形不限于图3所示,可以视实际需要将电压或电流波形调整为所需的形态,并且对驱动电源3进行调整时不限于电极是否正在工作,也就是说,即使在电极工作过程中,也可以随时间的推移而改变驱动电源3的输出周期以及输出的电压波形和电流波形,进而使得行波电场发生相应的改变,这体现了从时间维度上对电极和行波电场的控制。
本发明中,行波电场的幅度、正负幅度比以及行波移动时间均为可调节的,这种调节主要是基于对驱动电源3的调整,根据所需调节的以上参数的具体数值来计算驱动电源3的输出参数,进而进行相应的调节。
本发明一实施例中,多个驱动电源3输出的电压波形相同以及电压相位沿微流体通道的轴向依次均匀递增或均匀递减,如此设置的目的在于可以通过相位延迟的方式将来自同一源头的电压输出至多个驱动电源3,便于实际操作,节省实现成本。在其他实施例中,也可以控制驱动电源3输出的电压为其他形态,只要在微流体通道1中形成一个以预设的行波行进速度移动的行波电场均可以,本发明不以上述实施方式为限制。
图3为本发明一实施例的各驱动电源输出的电压的示意图,如图1a、图1b、图3所示,4个驱动电源由左至右输出的电压分别为V1~V4,其波形如图3所示,V1~V4的电压波形相同,若以V1为基准,则V2~V4的波形可以视为在V1的基础上通过相位延迟得到,且相位为均匀递减,即每一电压波形相较于前一电压波形递减相同的相位。
如图3所示,在本发明的一实施例中,行波电场在不同的电极位置处具有相同的波形。另外,本发明中的行波电场在不同的电极位置处还可以具有形状相似但幅值不同的波形。
本发明的再一实施例中,还可以使得行波电场在不同的电极位置处具有相同或 者不同的行波行进速度,若需要调整行波电场于空间上不同位置处的行波行进速度时,可以通过调节所在位置处对应的电极上的电压的切换速度来实现,电压的切换速度对应驱动电源的输出周期,即通过控制对应位置处的电极连接的驱动电源的输出周期,可以控制行波电场沿其移动方向的不同位置具有不同的行波行进速度,一般来说,电压的切换速度越快(对应驱动电源的输出周期越短),行波行进速度就越快,而电压的切换速度越慢(对应驱动电源的输出周期越长),行波行进速度就越慢,以此作为控制行波行进速度的依据,这体现了从时间维度上对电极和行波电场的控制。。
如图3所示,在各驱动电源3输出上述电压波形的基础上,电极之间产生电压差,电压差导致电解质中的带电粒子流动而产生电流,电流从电压高的电极流向电压低的电极,此处的电压高/低是相对而言,图4为本发明一实施例的其中一个电极上的电流的示意图,其示出的是与V1连接的电极上的电流,当与V1连接的电极上的电压(此处的电压为电极之间的相对电压,下同)为正时,电极工作在阳极模式,其中的电流为正(如图4所示),即电流是从电极流出并流向相邻的、相对电压更低的电极,当与V1连接的电极上的电压为0时,电流也为0,电极上既无电流流入,也无电流流出,当与V1连接的电极上的电压为负时,电极工作在阴极模式,其中的电流为负,即电流流入电极。由此可见,电极上随时间变化的电压导致电极进行往复的充电、放电过程,充放电过程来回轮换,形成往复电流。本发明中,行波电场驱动电解质中的带电粒子移动而在电极产生电流并且每一电极上的平均电流均为0。
如图4所示,往复电流并不是时刻都存在,在电极与相邻电极上的电压差为0的时间段内,电极上的电流为0,在其他时间,电流的大小、方向与电压差有关。本发明通过对电极在时间或者空间上进行充放电的轮换在微流体通道中形成周期变化的电场或电流,从而对流体或流体中的带电粒子进行操控。同时由于在电极内部即完成了载流子的变换,因而不会产生电解反应,杜绝气泡在流体中生成。
本发明中,电极为双层电容电极和/或赝电容电极,并且每一电极的最大电荷容量均大于在一次充电过程或一次放电过程中电极上转移的总电荷量,电极在不同的工作时间上交错工作。双层电容电极为包括双层电容的电极,赝电容电极为包括赝电容的电极。双层电容电极是依赖于电解液内的带电离子在电极表面的净电荷吸附产生的双电层实现电荷存储,不存在氧化还原过程参与,从根本上杜绝了气泡的产生。赝电容电极则是通过电极材料在特定的电位下发生的连续、可逆、无相变的法 拉第反应来储存和释放电能,电极界面中也不会产生气泡,并具有更大的电荷容量。本发明中,电极可以具备双层电容或者赝电容中的任何一种,也可以同时具备双层电容和赝电容特性的不同复合形式。例如,采用石墨烯与金属氧化物以一定比例混合的材料构成的电极,将会同时具备赝电容与双层电容特性。
由于行波电场对于不同电荷质量比的带电粒子的影响不同,通过精确控制行波电场的幅度和行波行进速度,可以精确的对带电粒子进行操作和控制,以下详述:
图2为本发明一实施例的行波电场的示意图,其呈现的是某一时刻的电场波形,因行波电场是以行波行进速度V0移动,在其他时刻,行波电场的波形需要根据具体时刻t以及V0的数值确定。图2中的横轴表示沿微流体通道由左至右的轴线,纵轴表示行波电场的电场幅度。
图2所示的行波电场以行波行进速度V0在微流体通道1中移动,由于行波电场对于电场为正和电场为负两个区间,在时间和幅度上的乘积相等并且方向相反,也即图2中的Ep×Tp=En×Tn,在一个周期内,从电极上输出的平均电荷为零,即从电极上输入和输出的电荷总量相等。假设Ep的大小为En的n倍,即En=E0,Ep=n×E0;那么Tp则为Tn的1/n,这样Tp=T0,Tn=n×T0。
当该行波电场的前沿首先作用于某个带有电荷q的带电粒子后,假设该带电粒子受到电场力n×E0×q,并在电场力、液体的粘滞力、摩擦阻力等共同作用下,产生了一个正比于电场力的速度,Ep中带电粒子速度Vqp=k×Ep=k×n×E0,En中带电粒子速度Vqn=k×E0。由于Tp=T0,Tn=n×T0,所以Vqp×Tp=Vqn×Tn=k×n×E0×T0。
由于该行波电场在时间上向前运动,当带电粒子q的运动速度Vq大于V0时,那么带电粒子将被电场力推动到Ep脉冲前沿,持续的被Ep脉冲作用,随Ep的运动而向前运动。
如果带电粒子q的运动速度Vq略小于V0时,由于带电粒子会随行波电场向前运动一段时间,因此Ep作用于带电粒子的时间大于Tp;而由于En相反,带电粒子在En的作用下向后运动,所以En作用于带电粒子上的时间小于Tn;上述两项的作用影响下,带电粒子在经过了一个电场周期后,将向前运动一段距离。
如果带电粒子q的运动速度Vq远小于V0,那么V0对行波电场作用时间的影响可忽略不计。此时由于Eq对带电粒子的作用时间的乘积,和En对带电粒子的作用时间乘积几乎相等,因此带电粒子前后运动的距离也几乎相等。因此经过了一个行波电场周期后,带电粒子位移量几乎为零。
具体而言,当带电粒子q的运动速度小于V0时,那么q会首先被Ep脉冲作用, 向前运动一段距离,运动距离约为V0×Vqp×Tp/(V0-Vqp);然后再被En脉冲作用,向后运动一段距离,距离约为V0×Vqn×Tn/(V0+Vqn)。由于带电粒子随电场运动速度Vp与V0方向一致,因此Ep作用在带电粒子上的时间大于Tp,而En作用在带电粒子上的时间小于Tn。经过了一个行波电场周期以后,带电粒子向前运动的距离与V0和Vq的相对比值、电场周期等参数Tn相关。
如上所述,本发明可以通过调整Vq的大小以及具体的电场波形,对电解质中具备不同电荷质量比的带电粒子进行精确操控,也可以通过在不同的时间和/或位置调整行波电场的行波行进速度和电场幅度,可以对带电粒子进行分选、富集、或者分离等多种操作。
本发明中,选用较大电荷容量的电极,从而为整个工作体系提供一定的电荷缓冲,减少工作过程中电荷消耗有利于维持工作体系的长期充放电循环的稳定性。
本发明还提供了一种带电粒子移动控制方法,该方法应用于上述用于控制带电粒子移动的微流体系统中,其包括:
a.将电解质输入至所述微流体通道;
b.将导体引线分别与对应的驱动电源连接;
c.控制每一驱动电源产生周期性的电压激励或者电流激励,在所述微流体通道中形成一个以预设的行波行进速度移动的行波电场,电解质中的带电粒子在所述行波电场作用下移动,每一电极的最大电荷容量均大于在一次充电过程或一次放电过程中电极上转移的总电荷量。
以上带电粒子移动控制方法中涉及的概念、名称等根据以上实施例的描述而得知,在此不予赘述。
本发明提供的用于控制带电粒子移动的微流体系统以及带电粒子移动控制方法相较于现有技术具有以下有益技术效果:
1.与传统电极相比
(1)解决了电极处发生电解反应的问题,根本杜绝气泡产生
(2)解决了电极长时间工作后钝化的问题
2.与其他现有的新型电极相比,解决了电荷容量限制的问题
(1)长时间稳定工作
(2)提供很高的电流驱动力
(3)便于小型化,在微米和纳米尺度提供足够的驱动力
3.与现有的电泳方式相比
(1)便于微型化
(2)精确控制电解质中带电粒子的正反向移动
(3)精准控制从纳米到微米尺度的带电粒子
4.与介电泳方式相比
(1)高效率
(2)驱动电压低,操控带电粒子的速度快
(3)可以驱动微米和纳米级带电粒子
(4)相较于介电泳局部电场梯度的扭曲极大影响带电粒子移动控制精度,本发明可以精确的控制带电粒子移动
本发明在工作过程中,对电极在时间或者空间上进行充放电的轮换,在微流体通道中形成周期变化的电场或电流,从而对流体或流体内的带电粒子进行操控。同时由于在电极内部即完成了载流子的变换,因而不会在电极表面产生电解反应从而杜绝气泡在流体中生成。本发明将移动的行波电场设置成具有不对称的正负幅度,因此在行波周期的不同阶段,同一电极的输入电流与输出电流不对称,但是在一个完整的行波周期中,任何一个电极的输入电流与输出电流相等,同时由电极的较大的电荷容量为整个微流体系统提供电荷缓冲,减少工作过程中电荷消耗,维持工作体系的长期充放电循环的稳定性。电极上进行充放电的轮换,在时间上实现充放电循环提供电流驱动,对流体或者处于流体内的带电粒子进行控制,实现充放电循环和电驱动现象的联合调控。电极在不同的时间上交错工作,极大程度上降低了对于单个电极所能提供的电荷容量的要求,使得电极的大小易于控制,可以满足微米和纳米尺度的微型系统应用需求。由于电极基本根除了电极界面的氧化/反应,而且不同时间上交错的工作方式,因此会有极强的电极自清洁功能,最大程度的减小了电致沉积、电极的氧化/还原等现象导致的电极钝化和各种失效,极大的延长了电极使用寿命。
本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
本领域普通技术人员可以理解:实施例中的装置中的模块可以按照实施例描述分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解: 其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围。

Claims (10)

  1. 一种用于控制带电粒子移动的微流体系统,其特征在于,包括:
    微流体通道,供电解质在所述微流体通道内部流动,所述电解质中具有带电粒子;
    三个或以上电极,每个电极均与电解质形成电接触并且在电极、电解质二者接触的界面形成赝电容和/或双层电容;
    多个导体引线;以及
    两个或以上驱动电源,驱动电源产生周期性的电压激励或者电流激励,驱动电源在一个输出周期内输出的电压激励或电流激励呈变化状态,每个驱动电源通过导体引线连接其中一个或多个电极;
    每一电极均持续轮换充电及放电,在所述微流体通道中形成一个行波电场,所述行波电场以预设的行波行进速度移动,电解质中的带电粒子在所述行波电场的作用下移动,每一电极的最大电荷容量均大于在一次充电过程或一次放电过程中电极上转移的总电荷量。
  2. 根据权利要求1所述的用于控制带电粒子移动的微流体系统,其特征在于,所述行波电场的移动方向与电解质流动方向相同或相反,所述行波电场具有一正向幅值Ep和一负向幅值En,Ep≠En,正向幅值Ep的时域跨度为Tp,负向幅值En的时域跨度为Tn,所述行波电场满足下式(1):
    Ep×Tp=En×Tn(1)。
  3. 根据权利要求1所述的用于控制带电粒子移动的微流体系统,其特征在于,所述微流体通道的特征长度介于100纳米~10毫米之间。
  4. 根据权利要求1所述的用于控制带电粒子移动的微流体系统,其特征在于,所述带电粒子的特征长度介于0.1纳米~0.1毫米之间。
  5. 根据权利要求1所述的用于控制带电粒子移动的微流体系统,其特征在于,在所述行波电场的一个或多个行波周期内,每一电极上的总输入电流与总输出电流相等,即每一电极上的净输入电流、净输出电流均为零;或
    每一电极上的总输入电荷与总输出电荷恒小于该电极的电荷容量。
  6. 根据权利要求1所述的用于控制带电粒子移动的微流体系统,其特征在于,所述驱动电源的周期、频率以及所输出的电压和/或电流波形均为可调节的,以及
    所述行波电场的幅值、正负幅值比以及行波移动速度均为可调节的。
  7. 根据权利要求1所述的用于控制带电粒子移动的微流体系统,其特征在于,所述微流体通道具有相对的第一侧和第二侧,多个电极分别设置在第一侧或第二侧,第一侧和第二侧的电极数量均限制为零个或不小于三个。
  8. 根据权利要求1所述的用于控制带电粒子移动的微流体系统,其特征在于,所述带电粒子为抗体、蛋白质分子、微囊、囊泡、纳米药物、细胞或细胞组分。
  9. 根据权利要求1所述的用于控制带电粒子移动的微流体系统,其特征在于,所述行波电场在不同的电极位置处具有相同的波形,或
    所述行波电场在不同的电极位置处具有形状相似但幅值不同的波形,或
    所述行波电场在不同的电极位置处具有相同或者不同的行波行进速度。
  10. 一种带电粒子移动控制方法,该方法应用于权利要求1-9任一项所述的用于控制带电粒子移动的微流体系统中,其特征在于,包括:
    a.将电解质输入至所述微流体通道;
    b.将导体引线分别与对应的驱动电源连接;
    c.控制每一驱动电源产生周期性的电压激励或者电流激励,在所述微流体通道中形成一个以预设的行波行进速度移动的行波电场,电解质中的带电粒子在所述行波电场作用下移动,每一电极的最大电荷容量均大于在一次充电过程或一次放电过程中电极上转移的总电荷量。
PCT/CN2023/102668 2022-07-07 2023-06-27 用于控制带电粒子移动的微流体系统以及控制方法 WO2024007891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210803968.2A CN117405758A (zh) 2022-07-07 2022-07-07 用于控制带电粒子移动的微流体系统以及控制方法
CN202210803968.2 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024007891A1 true WO2024007891A1 (zh) 2024-01-11

Family

ID=89454215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102668 WO2024007891A1 (zh) 2022-07-07 2023-06-27 用于控制带电粒子移动的微流体系统以及控制方法

Country Status (2)

Country Link
CN (1) CN117405758A (zh)
WO (1) WO2024007891A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1337580A (zh) * 2000-08-08 2002-02-27 清华大学 微流体系统中实体分子的操纵方法
CN1346053A (zh) * 2000-09-27 2002-04-24 清华大学 用于微粒操纵与微粒导向的装置及其使用方法
US20060226012A1 (en) * 2005-04-08 2006-10-12 Kanagasabapathi Thirukumaran T Integrated microfluidic transport and sorting system
CN201188104Y (zh) * 2008-05-13 2009-01-28 东南大学 高通量测试芯片
CN101458519A (zh) * 2008-02-19 2009-06-17 湖北民族学院 行波介电电泳分离芯片控制与采集系统及其实现方法
US20150105297A1 (en) * 2013-10-14 2015-04-16 Katholieke Universiteit Leuven, KU LEUVEN R&D Electrical Polynucleotide Mapping
US20170033371A1 (en) * 2015-07-31 2017-02-02 Ada Technologies, Inc. High Energy and Power Electrochemical Device and Method of Making and Using Same
CN108474814A (zh) * 2015-11-04 2018-08-31 国际商业机器公司 微流体装置中连续、电容式液体流动监测
CN209302785U (zh) * 2018-09-20 2019-08-27 北京怡天佳瑞科技有限公司 微流控芯片、含有该微流控芯片的装置
CN110601497A (zh) * 2019-09-05 2019-12-20 中国科学院力学研究所 一种交流电渗驱动乙醇行波型微泵及工作方法
CN110918139A (zh) * 2018-09-20 2020-03-27 北京怡天佳瑞科技有限公司 微流控芯片、含有该微流控芯片的装置及样本浓缩的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1337580A (zh) * 2000-08-08 2002-02-27 清华大学 微流体系统中实体分子的操纵方法
CN1346053A (zh) * 2000-09-27 2002-04-24 清华大学 用于微粒操纵与微粒导向的装置及其使用方法
US20060226012A1 (en) * 2005-04-08 2006-10-12 Kanagasabapathi Thirukumaran T Integrated microfluidic transport and sorting system
CN101458519A (zh) * 2008-02-19 2009-06-17 湖北民族学院 行波介电电泳分离芯片控制与采集系统及其实现方法
CN201188104Y (zh) * 2008-05-13 2009-01-28 东南大学 高通量测试芯片
US20150105297A1 (en) * 2013-10-14 2015-04-16 Katholieke Universiteit Leuven, KU LEUVEN R&D Electrical Polynucleotide Mapping
US20170033371A1 (en) * 2015-07-31 2017-02-02 Ada Technologies, Inc. High Energy and Power Electrochemical Device and Method of Making and Using Same
CN108474814A (zh) * 2015-11-04 2018-08-31 国际商业机器公司 微流体装置中连续、电容式液体流动监测
CN209302785U (zh) * 2018-09-20 2019-08-27 北京怡天佳瑞科技有限公司 微流控芯片、含有该微流控芯片的装置
CN110918139A (zh) * 2018-09-20 2020-03-27 北京怡天佳瑞科技有限公司 微流控芯片、含有该微流控芯片的装置及样本浓缩的方法
CN110601497A (zh) * 2019-09-05 2019-12-20 中国科学院力学研究所 一种交流电渗驱动乙醇行波型微泵及工作方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
" Doctoral Dissertations", 15 January 2018, HARBIN INSTITUTE OF TECHNOLOGY, China, article LI, SHANSHAN: "AC Electric Field Based Rapid Detection of Biomolecules and Experimental Studies", pages: 1 - 142, XP009551685 *
LIU, WEIYU ET AL.: "Effects of discrete-electrode arrangement on traveling-wave electroosmotic pumping", JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 26, no. 9, 1 July 2016 (2016-07-01), XP020307987, DOI: 10.1088/0960-1317/26/9/095003 *
MARCIN MARCZAK ET AL.: "Traveling wave dielectrophoresis micropump based on the dispersion of a capacitive electrode layer", J. APPL. PHYS, vol. 105, no. 12, 23 June 2009 (2009-06-23), XP012125770, DOI: 10.1063/1.3152787 *

Also Published As

Publication number Publication date
CN117405758A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN103816805B (zh) 电渗微泵装置
CN203090949U (zh) 多级驱动电渗微泵装置
Carmona-Orbezo et al. Understanding the performance of flow-electrodes for capacitive deionization through hydrodynamic voltammetry
CN102420541B (zh) 压电陶瓷驱动电源
CN204746344U (zh) 一种电渗微泵装置
KR20170025091A (ko) 멤브레인 전극 복합체를 이용한 유체 이동용 전기 삼투압 펌프
CN102751525A (zh) 液流电池及含有其的液流电池堆和液流电池系统
WO2024007891A1 (zh) 用于控制带电粒子移动的微流体系统以及控制方法
Tavari et al. A systematic overview of electrode configuration in electric‐driven micropumps
Ajdari Electrokinetic ‘ratchet’pumps for microfluidics
CN101059526B (zh) 微通道中利用电热流驱动流体运动的方法
US9221023B2 (en) Liquid mixing apparatus
CN104052266A (zh) 电容电流型恒定导通时间控制技术及其装置
CN110601497B (zh) 一种交流电渗驱动乙醇行波型微泵及工作方法
WO2024007892A1 (zh) 流体中的带电粒子的控制装置以及带电粒子移动控制方法
Yeh et al. Analysis of traveling-wave electro-osmotic pumping with double-sided electrode arrays
WO2024007893A1 (zh) 一种微型磁流体驱动装置和方法
Mehdipoor et al. A novel four phase AC electroosmotic micropump for lab-on-a-chip applications
CN113998091B (zh) 一种多电极阵列脉冲放电水下推进装置
CN102593481A (zh) 液流电池、电池堆、电池系统及其电解液的控制方法
US8920621B2 (en) Pump
CN110601496B (zh) 一种交流电渗驱动乙醇非对称型微泵及工作方法
CN109855834B (zh) 一种高超声速内表面等离子直流脉冲风洞气流助力推进系统
TW200914363A (en) Micro-fluid device capable of enhancing mixing effect
CN111644215B (zh) 一种液态金属微流控混合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834659

Country of ref document: EP

Kind code of ref document: A1