WO2024007893A1 - 一种微型磁流体驱动装置和方法 - Google Patents
一种微型磁流体驱动装置和方法 Download PDFInfo
- Publication number
- WO2024007893A1 WO2024007893A1 PCT/CN2023/102682 CN2023102682W WO2024007893A1 WO 2024007893 A1 WO2024007893 A1 WO 2024007893A1 CN 2023102682 W CN2023102682 W CN 2023102682W WO 2024007893 A1 WO2024007893 A1 WO 2024007893A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- electrodes
- voltage
- electrode
- fixed cavity
- Prior art date
Links
- 239000011553 magnetic fluid Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000012530 fluid Substances 0.000 claims abstract description 102
- 239000004020 conductor Substances 0.000 claims abstract description 18
- 239000002245 particle Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 6
- 238000006479 redox reaction Methods 0.000 claims description 4
- 239000000084 colloidal system Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229920001940 conductive polymer Polymers 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- FGEKTVAHFDQHBU-UHFFFAOYSA-N dioxoruthenium;hydrate Chemical group O.O=[Ru]=O FGEKTVAHFDQHBU-UHFFFAOYSA-N 0.000 claims description 3
- 239000000696 magnetic material Substances 0.000 claims description 3
- 229910021392 nanocarbon Inorganic materials 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 9
- 238000005868 electrolysis reaction Methods 0.000 description 8
- 238000002161 passivation Methods 0.000 description 5
- 239000003814 drug Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000003487 electrochemical reaction Methods 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003889 chemical engineering Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- -1 polyanline Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K44/00—Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K44/00—Machines in which the dynamo-electric interaction between a plasma or flow of conductive liquid or of fluid-borne conductive or magnetic particles and a coil system or magnetic field converts energy of mass flow into electrical energy or vice versa
- H02K44/02—Electrodynamic pumps
- H02K44/06—Induction pumps
Definitions
- the present invention relates to the field of magnetic fluid, and in particular, to a miniature magnetic fluid driving device and method.
- Electrolysis reactions may generate air bubbles, leading to electrode passivation, changes in the chemical composition of the driving fluid, or changes in pH, among many other adverse consequences.
- Chinese patent CN106428498A discloses an electromagnetic thruster mainly used in seawater. Its core design is to generate a pulse magnetic field through a pulse current, thereby generating an interaction between the induced current and the magnetic field in the seawater to push the seawater to do work. This method avoids the interface between the electrode and seawater, thereby improving the magnetic fluid driving efficiency.
- Chinese patent CN1485101A discloses a magnetic fluid blood pump, which also uses the electromagnetic force generated by the movement of a magnet rotor relative to a fixed dynamic chamber to circulate blood. Its driving current also generates induced current in the blood by changing the magnetic field, avoiding the application of electrodes.
- the above-mentioned magnetic fluid driving method through the action of induced current and magnetic field ampere force avoids the electrolysis reaction at the electrode-electrolyte interface by avoiding the introduction of electrodes.
- the induced current is generated by an external coil or a moving magnet, the efficiency is low. lower.
- the size of the induced current is related to the conductivity of the electrolyte. When the equivalent resistance of the electrolyte is high, the induced current is very small, the magnetic fluid driving force is limited, and the system efficiency is low.
- Increasing the induced current requires increasing the magnetic flux, so the magnetic flux area needs to be larger, which limits the application of existing solutions in micro systems. In micro- or nano-scale microchannel fluid systems, it is difficult to realize the magnetic fluid driving method of induced current.
- magnetic fluid drive In microchannel fluid systems, magnetic fluid drive has the advantages of easy control and adjustment, high precision, small pressure pulse fluctuations, and easy integration with circuits. Magnetic fluid drive pumps have broad application prospects in microchannel fluid drives.
- Chinese patent 200310108407 discloses a magnetic fluid propulsion micropump.
- This solution uses side wall electrodes to increase the contact surface between the electrode and the fluid, reduce the contact resistance, and make the driving current in the fluid evenly distributed in the microchannel fluid.
- the efficiency of the magnetic fluid propulsion pump is improved to a certain extent.
- this pump delays electrode passivation by using inert metal electrodes, it cannot avoid the electrolysis reaction at the electrode-electrolyte interface, so bubble precipitation is inevitable.
- the excitation magnetic field has a fixed direction, and the positive and negative changes in the current are used to control the direction of the force driving the fluid. This method also limits the DC characteristics of the driving current, which accelerates electrode passivation and bubbles to a certain extent. Undesirable effects of electrode electrolysis reactions such as precipitation.
- the present invention provides a micro magnetic fluid driving device and method to solve at least one of the problems existing in the above-mentioned prior art.
- the present invention provides a micro magnetic fluid driving device, which includes:
- the interior of the fixed cavity is hollow for containing fluid
- At least one set of electrodes the inner surfaces of each set of electrodes being arranged oppositely and located on the inner surface of the fixed cavity;
- the fluid input port and the fluid output port are respectively provided at both ends of the fixed cavity and communicate with the fixed cavity;
- each conductor lead is connected to the driving power supply, and the other end is connected to the outer surface of one of the electrodes.
- the voltage output by the driving power supply changes periodically.
- the voltage amplitude output by the driving power supply remains unchanged but in the opposite direction.
- the voltage output by the driving power supply changes periodically.
- an external magnetic field is applied in a first direction and a second direction respectively.
- the first direction and the second direction are opposite and the external magnetic field causes the Ampere force acting on the fluid to have the same direction.
- the amount of charge output by the electrode is not greater than the maximum charge capacity of the electrode.
- the electrodes are double-layer capacitive electrodes or pseudocapacitive electrodes, and an alternating current is formed in each group of electrodes.
- the charges required to form an alternating current are provided through the cyclic charge and discharge of the electrodes or the oxidation-reduction reaction.
- the material of the electrode is ruthenium dioxide hydrate, birnessite compound, dispersed nanocarbon colloid or conductive polymer.
- the maximum charge capacity of the electrode, the voltage period of the driving power supply, and the output power of the driving power supply are all adjustable.
- the cross section of the fixed cavity is circular, elliptical, rectangular, rounded rectangular or a combination of the above shapes.
- the minimum radial size in the fixed cavity is between 10 nanometers and 10 millimeters.
- the external magnetic field is obtained by passing a current through a planar coil, and the magnitude, frequency and phase of the current in the planar coil are all adjustable.
- a magnetic circuit optimization device is provided between the planar coil and the fixed cavity.
- the material of the magnetic circuit optimization device is soft magnetic material.
- the invention also provides a micro magnetic fluid driving method applied in the above micro magnetic fluid driving device, which includes:
- the voltage output by the driving power source drives the charged particles in the fluid to flow between the two electrodes to generate a current.
- an external magnetic field in one direction is applied in the second direction, so that The direction of the ampere force acting on the fluid is toward the fluid outlet,
- first direction and the second direction are opposite and the external magnetic field causes the direction of the Ampere force acting on the fluid to be the same.
- the amount of charge output by the electrode are not greater than the maximum charge capacity of the electrode.
- Figure 2 is a schematic diagram of the voltage output by two electrodes according to an embodiment of the present invention.
- Figure 3 is a schematic diagram of the driving current according to an embodiment of the present invention.
- Figure 4 is a schematic diagram of an external magnetic field according to an embodiment of the present invention.
- Figure 5 is a schematic diagram of the driving force according to an embodiment of the present invention.
- Figure 6 is a partial schematic diagram of a fixed cavity according to an embodiment of the present invention.
- FIG. 1 shows a micro magnetic fluid driving device according to an embodiment of the present invention, which includes:
- the interior of the fixed cavity 1 is hollow for containing fluid
- the fluid in the present invention contains positively and negatively charged ions, and the fluid can be a conductive fluid, such as physiological saline, phosphate buffer, etc.
- a set of electrodes (21/22), the inner surfaces of the electrodes (21/22) are arranged oppositely and located on the inner surface of the fixed cavity 1;
- This embodiment takes a set of electrodes as an example.
- One set of electrodes includes two electrodes.
- the number of electrodes may be two or more groups, arranged in the same manner as in FIG. 1 .
- the fluid input port 3 and the fluid output port 4 are respectively provided at both ends of the fixed cavity 1 and communicate with the fixed cavity 1;
- Two conductor leads (51/52), one end of the two conductor leads (51/52) is connected to the driving power supply (not shown in the figure), and the other end is connected to the outer side of one of the electrodes (21/22), As shown in Figure 1, the conductor lead 51 in this embodiment is connected to the electrode 21, and the conductor lead 52 is connected to the electrode 22.
- This embodiment takes a group of electrodes as an example, so there are two conductor leads.
- the number of conductor leads also increases simultaneously, and the added conductor leads are connected to the electrodes in the same manner as in Figure 1.
- This field Technical personnel can clearly understand the connection method of the conductor leads based on Figure 1, which will not be described in detail here.
- the voltage output by the driving power supply changes periodically.
- the voltage amplitude output by the driving power supply remains unchanged but in the opposite direction.
- the applied direction are an external magnetic field in a first direction and a second direction respectively.
- Figure 1 shows the direction of the external magnetic field in the first half cycle of the voltage cycle.
- the voltage V2 on the electrode 22 is positive, it is regarded as the first half cycle.
- the first half cycle The direction is opposite to the second direction and the external magnetic field makes the direction of the Ampere force acting on the fluid be the same.
- FIG. 2 is a schematic diagram of the voltage output by two electrodes according to an embodiment of the present invention. Since the voltage pattern output by the driving power supply is as above, the voltage output on the electrodes 21/22 is as shown in Figure 2. Among them, V1 is the voltage output on the electrode 21, and V2 is the voltage output on the electrode 22. In the first half cycle, the voltage of electrode 22 is V and the voltage of electrode 21 is 0. At this time, the driving current generated by the flow of charged particles in the fluid flows from electrode 22 to electrode 21 (this direction is the positive direction of the current), and the magnitude of the driving current is I, in the second half cycle, the voltage of electrode 21 is V, and the electrode The voltage of 22 is 0.
- the driving current generated by the flow of charged particles in the fluid flows from electrode 22 to electrode 21.
- the direction of the current changes to the opposite direction, but the magnitude of the driving current is still I.
- AC current forward and reverse driving current
- the present invention has extremely low charge capacity requirements based on double-layer capacitive electrodes/pseudocapacitive electrodes, so that electrodes with extremely small volume and mass can meet fluid driving requirements, and the present invention can be more conveniently applied to micron/ in nanoscale microchannel fluidic systems.
- Figure 4 is a schematic diagram of an external magnetic field according to an embodiment of the present invention.
- an external magnetic field in a first direction (this direction is regarded as a positive direction) and a second direction is applied respectively.
- Figure 1 shows the first direction of the external magnetic field.
- the first direction and the second direction are opposite.
- the purpose is to control the movement of charged particles in the fluid, specifically to control the movement of charged particles towards the fluid output port 4.
- Due to the first half cycle and the second half cycle of the voltage cycle During the half cycle, the voltage output by the driving power supply is in the opposite direction. Therefore, correspondingly, the direction of the external magnetic field is also opposite. Under the combined effect of the two, the direction of the Ampere force on the fluid remains unchanged, forming a stable driving force in the fluid. This can drive the fluid in the microchannel to move in a directional manner.
- the size of the Ampere force is proportional to the product of the driving current I and the intensity of the external magnetic field. Therefore, the driving force can be adjusted by adjusting the driving current I or the size of the external magnetic field.
- FIG. 5 is a schematic diagram of the driving force according to an embodiment of the present invention. Since the frequency of the driving current is related to the voltage period, the driving force can also be adjusted by adjusting the period of the external magnetic field and the voltage period. For example, when the period of the external magnetic field is the same as the voltage period and they are synchronized, the phase difference between the two can be regarded as 0 degrees, and the driving force obtained by the fluid is the largest at this time; if the period of the external magnetic field is the same as the voltage period but the phase When the difference is 90 degrees, the driving force obtained by the fluid is the smallest; when the phase difference between the period of the external magnetic field and the voltage period is 180 degrees, the driving force is also the largest, but the direction of the driving force is exactly opposite to that of the 0-degree phase difference. When the phase difference between the period of the external magnetic field and the voltage period changes between 0 degrees and 90 degrees, the driving force is inversely proportional to the phase difference as shown in Figure 5.
- the fluid driving force the greater the fluid flow rate per unit time. Therefore, by controlling the period and voltage period of the external magnetic field, the fluid flow can also be precisely controlled, which facilitates digital measurement and control.
- the voltage cycle can be shortened and the switching frequency can be increased to increase the boost current, thereby obtaining greater driving power.
- the driving power is constant, by increasing the driving frequency and shortening the voltage period, the requirement for the half-cycle charge of the electrode can be reduced, making it easier to Electrode miniaturization and miniaturization.
- the electrodes are, for example, double-layer capacitive electrodes or pseudocapacitive electrodes, and an alternating current is formed in each group of electrodes.
- the charge required to form an alternating current is provided through the cyclic charge and discharge of the electrodes or the oxidation-reduction reaction.
- the material of the electrode can be ruthenium dioxide hydrate, birnessite compound, dispersed nanocarbon colloid or conductive polymer (such as PEDOT: PSS, polyanline, polypyrrole, etc.), or other materials that can meet the actual needs of use.
- the invention is not limited to the electrode materials listed above.
- FIG. 6 is a partial schematic diagram of a fixed cavity according to an embodiment of the present invention.
- the space occupied by the fixed cavity in this embodiment is a relatively flat cylindrical shape, and a fluid input port 3 and a fluid output port 4 are provided on both sides.
- the fluid input port 3 and the fluid output port 4 constitute a microchannel, which is the minimum radial size in the fixed cavity, ranging from 10 nanometers to 10 millimeters.
- a magnetic circuit optimization device can be further provided between the planar coil and the fixed cavity.
- the material of the magnetic circuit optimization device is, for example, soft magnetic material, which can optimize the magnetic circuit, improve the intensity and uniformity of the excitation magnetic field, and reduce the magnetic field intensity. Magnetic leakage of fluid-driven pumps improves overall driving efficiency and avoids interference from external magnetic fields.
- the maximum charge capacity of the electrode, the voltage period of the driving power supply, and the output power of the driving power supply are all adjustable to adjust the driving force.
- the adjustment method is as follows:
- the driving force is adjusted by the voltage cycle (frequency) of the driving power supply.
- the greater the driving force the greater the pressure and flow rate of the fluid.
- the smaller the driving force the smaller the pressure and flow rate of the fluid. Therefore, if you want to change the pressure and flow rate of the fluid, adjusting the driving force is a relatively direct method.
- the invention also provides a micro magnetic fluid driving method applied in the above micro magnetic fluid driving device, which includes:
- the voltage output by the driving power source drives the charged particles in the fluid to flow between the electrodes to generate current.
- an external magnetic field is applied in a first direction, so that the direction of the Ampere force acting on the fluid is toward fluid outlet;
- the voltage output by the driving power source drives the charged particles in the fluid to flow between the two electrodes to generate a current.
- an external magnetic field in one direction is applied in the second direction, so that the Ampere force acting on the fluid direction toward the fluid outlet,
- the first direction and the second direction are opposite and the external magnetic field causes the direction of the Ampere force acting on the fluid to be the same.
- the amount of charge output by the electrode is not greater than the maximum charge capacity of the electrode. .
- micro magnetic fluid driving device and method provided by the present invention are more convenient for miniaturization, and the driving device can be more conveniently integrated with the microfluidic system to be used with modern bioengineering (such as cells, microcapsules, vesicles, proteins, nanometers). Drugs, etc.) and various analysis and extraction technologies in chemical engineering can be combined to increase speed, improve accuracy, reduce sample requirements, and accelerate drug research and development and analytical diagnosis.
- the invention is easy to integrate and control, and can realize precise fluid driving, measurement and control on the microtube scale, thereby bringing greater social benefits.
- modules in the device in the embodiment may be distributed in the device in the embodiment according to the description of the embodiment, or may be correspondingly changed and located in one or more devices different from this embodiment.
- the modules of the above embodiments can be combined into one module, or further divided into multiple sub-modules.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
本发明公开了一种微型磁流体驱动装置和方法,该微型磁流体驱动装置包括:一固定腔体;至少一组电极,每组电极的内侧面相对设置并且位于固定腔体的内表面;一流体输入口;一流体输出口,流体输入口和流体输出口分别设置在固定腔体的两端并与固定腔体连通;多根导体引线,每根导体引线的一端与驱动电源连接,另一端与其中一个电极的外侧面连接,驱动电源输出的电压呈周期性变化,在一个电压周期的前半周期与后半周期,驱动电源输出的电压幅值不变但方向相反,在每一电压周期的前半周期和后半周期,施加方向分别为一第一方向和一第二方向的外加磁场,第一方向和第二方向相反并且外加磁场使得作用于所述流体的安培力的方向相同。
Description
本发明涉及磁流体领域,具体而言,涉及一种微型磁流体驱动装置和方法。
当前,大规模商业化应用的磁流体泵主要是应用于熔融金属的驱动方面,其原因在于,在熔融金属的磁流体泵应用中,驱动电流在电源-电极-流体的全部通路中,载流子均为电子,因此不涉及到载流子的变化。而当待驱动流体为电解质时,因电解质中的主要载流子为溶液中的离子,因此在电极和流体的界面中会发生电子-离子的载流子切换过程,该切换过程即为电化学反应过程。典型的电化学反应中,正电极得到电子,发生还原反应,负电极失去电子,发生氧化反应,氧化反应和还原反应统称为氧化还原反应,也即电解反应。电解反应可能会产生气泡,导致电极钝化、驱动流体的化学成分改变或pH值改变等诸多不利后果。
因此,在驱动电解质的磁流体泵设计中,现有方案主要是采用感应电流驱动的方式,通过变化的磁场在电解质中产生电流,在利用该电流与激励磁场的安培力来推动流体驱动。
中国专利CN106428498A公开了一种主要应用在海水中的电磁推进器,其核心设计就是通过脉冲电流产生脉冲磁场,从而在海水中产生感应电流与磁场的相互作用来推动海水做功。这种方式避免了电极到海水的界面,从而可以提高磁流体驱动效率。
中国专利CN1485101A公开了一种磁流体血液泵,也是利用磁体转子相对于固定的学动力室的运动产生的电磁力使血液流动循环。其驱动电流也是通过变化磁场在血液中产生感应电流的方式,避免了电极的应用。
但是上述通过感应电流与磁场安培力作用的磁流体驱动方式,虽然通过避免电极的引入,规避了电极-电解质界面的电解反应,但是由于其感应电流是由外置线圈或者运动磁铁产生,因此效率较低。另外,感应电流的大小与电解质的导电率相关,当电解质等效电阻较高时,感应电流很小,磁流体驱动力受限,系统效率较低。增大感应电流则需要增加磁通量,因而磁通面积需要较大,这限制了现有方案在微型系统中的应用。在微米或者纳米尺度的微通道流体系统中,感应电流的磁流体驱动方式很难实现。
在微通道流体系统中,磁流体驱动有着便于控制和调整,精度高,压力脉冲波动小,方便与电路集成等优点,磁流体驱动泵在微通道流体驱动中有广泛的应用前景。
中国专利201310597265公开了一种采用平面磁铁的磁流体驱动,该方案通过使用平面型电磁铁代替了三维电磁铁作为磁场激励源,易于微型化。但是电极材料使用金,钛,镍等金属材料,电极和流体的界面存在着载流子的变化,电化学反应不可避免。因此在该磁流体微泵中需要严格进行微气泡的捕捉和控制,才可能规避电解反应导致的微气泡问题。另外,电解反应对电极的钝化也会限制该磁流体泵的可用寿命。
中国专利200310108407公开了一种磁流体推进式微型泵,该方案通过采用侧壁电极增加了电极和流体的接触面,减少接触电阻,并使得流体中的驱动电流均匀分布在微通道流体之中,一定程度上提高了磁流体推进泵的效率。但是该泵虽然通过采用惰性金属电极延缓电极钝化,但是无法避免电极-电解质界面的电解反应,因此气泡析出不可避免。另外,该方案中,激励磁场是固定方向的,通过采用电流的正负变化来控制驱动流体的力的方向,这样的方式也限定了驱动电流的直流特性,一定程度上加快电极钝化和气泡析出等电极电解反应不良效果。
另外,以上现有方案也很难对流体的驱动力进行精密的调整和控制。
发明内容
本发明提供一种微型磁流体驱动装置和方法,用以解决上述现有技术中存在的至少一个问题。
为达到上述目的,本发明提供了一种微型磁流体驱动装置,其包括:
一固定腔体,所述固定腔体内部为中空以用于容置流体;
至少一组电极,每组电极的内侧面相对设置并且位于所述固定腔体的内表面;
一流体输入口;
一流体输出口,所述流体输入口和所述流体输出口分别设置在所述固定腔体的两端并与所述固定腔体连通;
多根导体引线,每根导体引线的一端与驱动电源连接,另一端与其中一个电极的外侧面连接,
所述驱动电源输出的电压呈周期性变化,在一个电压周期的前半周期与后半周期,所述驱动电源输出的电压幅值不变但方向相反,在每一电压周期的前半周期和
后半周期,施加方向分别为一第一方向和一第二方向的外加磁场,所述第一方向和所述第二方向相反并且所述外加磁场使得作用于所述流体的安培力的方向相同,在每一电压周期的前半周期和后半周期,电极输出的电荷量均不大于电极的最大电荷容量。
在本发明的一实施例中,电极为双电层电容电极或者赝电容电极,每组电极内均形成交变电流。
在本发明的一实施例中,对于每一组电极,在一个电流周期内,通过电极的循环充放电或者是氧化还原反应提供形成交变电流所需要的电荷。在本发明的一实施例中,所述电极的材质为二氧化钌的水合物、水钠锰矿化合物、分散的纳米碳胶体或者导电聚合物。
在本发明的一实施例中,所述电极的最大电荷容量、所述驱动电源的电压周期以及所述驱动电源的输出功率均为可调节。
在本发明的一实施例中,所述固定腔体的截面为圆形、椭圆、矩形、圆角矩形或者以上形状的组合形式。
在本发明的一实施例中,所述固定腔体中的最小径向尺寸介于10纳米~10毫米之间。
在本发明的一实施例中,所述外加磁场为在平面线圈中通入电流而获得,所述平面线圈中电流的大小、频率和相位均为可调节。
在本发明的一实施例中,在所述平面线圈与所述固定腔体之间设置有磁路优化装置。
在本发明的一实施例中,所述磁路优化装置的材质为软磁材料。
本发明还提供了一种应用于上述微型磁流体驱动装置中的微型磁流体驱动方法,其包括:
a.将含有带电粒子的流体从所述流体输入口输入;
b.使得所述流体在所述固定腔体中流动;
c.将与电极相连的导体引线与所述驱动电源连接;
d.在电压周期的前半周期,所述驱动电源输出的电压驱动所述流体中的带电粒子在电极之间流动而产生电流,同时,施加一方向为第一方向的外加磁场,使得作用于所述流体的安培力的方向朝向所述流体输出口;
e.在电压周期的后半周期,所述驱动电源输出的电压驱动所述流体中的带电粒子在两个电极之间流动而产生电流,同时,施加一方向为第二方向的外加磁场,使
得作用于所述流体的安培力的方向朝向所述流体输出口,
其中,所述第一方向和所述第二方向相反并且所述外加磁场使得作用于所述流体的安培力的方向相同,在每一电压周期的前半周期和后半周期,电极输出的电荷量均不大于电极的最大电荷容量。
本发明提供的微型磁流体驱动装置和方法更加便于微型化,其中的驱动装置可以更加方便的与微流控系统整合,用以与现代生物工程(例如细胞、微囊、囊泡、蛋白质、纳米药物等)和化学工程中的各种分析、提取技术相结合,从而可以提升速度、提高精度、减少样品需求量,加快药物研发和分析诊断水平。同时,本发明易于集成,易于控制,能够在微管尺度上实现精确的流体驱动、测量和控制,从而带来较大的社会效益。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例的微型磁流体驱动装置;
图2为本发明一实施例的两个电极输出的电压示意图;
图3为本发明一实施例的驱动电流的示意图;
图4为本发明一实施例的外加磁场的示意图;
图5为本发明一实施例的驱动力的示意图;
图6为本发明一实施例的固定腔体的局部示意图;
图7为本发明一实施例的固定腔体下方设有平面线圈的示意图。
附图标记说明:1-固定腔体;21/22-电极;3-流体输入口;4-流体输出口;51/52-导体引线;6-平面线圈。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的微型磁流体驱动装置提供使流体中产生驱动力来调节流体的流动,如图1所示为本发明一实施例的微型磁流体驱动装置,其包括:
一固定腔体1,固定腔体1内部为中空以用于容置流体;
本发明中的流体中包含带正、负电荷的离子,流体可为导电流体,例如生理盐水、磷酸缓冲液等。
一组电极(21/22),电极(21/22)的内侧面相对设置并且位于固定腔体1的内表面;
本实施例以一组电极为例,一组电极包括两个电极,在其他实施例中,电极的数目可以为两组或两组以上,以与图1中相同的方式设置。
一流体输入口3;
一流体输出口4,流体输入口3和流体输出口4分别设置在固定腔体1的两端并与固定腔体1连通;
两根导体引线(51/52),两根导体引线(51/52)的一端与驱动电源(图中未示出)连接,另一端分别与其中一个电极(21/22)的外侧面连接,如图1所示,本实施例中的导体引线51是与电极21连接,导体引线52是与电极22连接,
本实施例以一组电极为例,故导体引线为两根,当电极为多组时,导体引线的数目也同步增加,增加的导体引线以与图1中相同的方式与电极连接,本领域技术人员根据图1可以清楚得知导体引线的连接方式,在此不予赘述。
驱动电源输出的电压呈周期性变化,在一个电压周期的前半周期与后半周期,驱动电源输出的电压幅值不变但方向相反,在每一电压周期的前半周期和后半周期,施加方向分别为一第一方向和一第二方向的外加磁场,图1示出的是在电压周期的前半周期时外加磁场的方向,将电极22上的电压V2为正时视为前半周期,第一方向和第二方向相反并且外加磁场使得作用于流体的安培力的方向相同,图1中,根据左手定则可知,其中的安培力是向右侧方向,也即朝向流体输出口的方向,安培力驱动流体由流体输入口3流向流体输出口4。在每一电压周期的前半周期和后半周期,电极输出的电荷量均不大于电极的最大电荷容量,电极可持续稳定工作。
图2为本发明一实施例的两个电极输出的电压示意图。因驱动电源输出的电压规律如上,故电极21/22之上输出的电压如图2。其中,V1为电极21上输出的电压,V2为电极22上输出的电压。在前半周期,电极22的电压为V,电极21的电压为0,此时流体中带电粒子流动产生的驱动电流为从电极22流向电极21(以该方向为电流正方向),驱动电流大小为I,在后半周期,电极21的电压为V,电极
22的电压为0,此时流体中带电粒子流动产生的驱动电流为从电极22流向电极21,电流方向变为相反,但是驱动电流大小仍为I。由此可见,在一个电压周期的前半周期和后半周期,电极21和电极22循环充放电,两个电极之间产生正反向交替、平均值为零的驱动电流(交流电流)如图3,因此,只要电极的最大电荷容量大于半个周期内电极释放的电荷,以避免电荷耗尽后产生电极-电解质反应,就能够满足本发明的需求。因此,本发明对基于双电层电容电极/赝电容电极的电荷容量要求极低,从而使得极小体积和质量的电极即可满足流体驱动要求,也使得本发明能够更方便的应用于微米/纳米尺度的微通道流体系统中。
图4为本发明一实施例的外加磁场的示意图,在电压周期的前半周期和后半周期,分别施加一第一方向(视该方向为正方向)和第二方向的外加磁场,图1中示出了外加磁场的第一方向,第一方向和第二方向相反,目的在于控制流体中的带电粒子的移动,具体为控制带电粒子朝向流体输出口4移动,由于电压周期的前半周期和后半周期中,驱动电源输出的电压方向相反,因此,对应的,使得外加磁场的方向也相反,二者综合作用之下,对流体的安培力方向不变,在流体中形成稳定的驱动力,从而可以驱动微通道中流体进行定向运动。
安培力的大小与驱动电流I和外加磁场的强度的乘积成正比,因此可通过调整驱动电流I或者外加磁场的大小,对驱动力的进行调整。
图5为本发明一实施例的驱动力的示意图,因驱动电流的频率与电压周期有关,也可以通过调整外加磁场的周期与电压周期来实现对驱动力的调整。例如,当外加磁场的周期与电压周期相同且二者同步时,二者之间可视为相位差为0度,此时流体获得的驱动力最大;如果外加磁场的周期与电压周期相同但相位差为90度,则流体获得的驱动力最小;当外加磁场的周期与电压周期的相位差为180度时,则驱动力也为最大,但是驱动力的方向与0度相位差时正好相反。当外加磁场的周期与电压周期的相位差在0度至90度之间变化时,驱动力与相位差大小成反比关系如图5。
由于通过上述周期变化的电流和磁场共同作用,产生一致的流体驱动力,流体的驱动力越大,单位时间内流过的流体流量越大。因此通过控制外加磁场的周期与电压周期,也可以对流体流量的精确控制,便于数字化的测量和控制。
另外,在电极所能提供的最大电荷量不变时,可以通过缩短电压周期,提高切换频率来增加提升电流,从而得到更大的驱动功率。或者在驱动功率一定时,通过提高驱动频率缩短电压周期,可以降低对电极的半周期电荷量的要求,从而易于将
电极小型化和微型化。
在本发明的一实施例中,电极例如为双电层电容电极或者赝电容电极,,每组电极内均形成交变电流。对于每一组电极,在一个电流周期内,通过电极的循环充放电或者是氧化还原反应提供形成交变电流所需要的电荷。该种类型电极与流体中存在一定电容量的电荷交换时,不会在电极界面上发生载流子变化以及对应的电极-电解反应,即避免电化学反应产生气泡,从根源上解决了电化学反应带来的各种不良后果(产生包括气泡在在内的各种附属产物,电化学反应带来的额外的能量消耗,使用过程导致的电极钝化或者腐蚀)。电极的材质可为二氧化钌的水合物、水钠锰矿化合物、分散的纳米碳胶体或者导电聚合物(例如PEDOT:PSS,polyanl ine,polypyrrole等),或其他能够满足实际使用需求的材质,本发明不以以上所列出的电极材质为限。
本发明中的固定腔体的截面为圆形、椭圆、矩形、圆角矩形或者以上形状的组合形式,亦或是其它能够满足实际使用需求的形状。图6为本发明一实施例的固定腔体的局部示意图,该实施例中的固定腔体所占的空间形状为较扁的圆柱形,两侧分别设有流体输入口3和流体输出口4,流体输入口3和流体输出口4构成微通道,其是固定腔体中的最小径向尺寸,介于10纳米~10毫米之间。
图7为本发明一实施例的固定腔体下方设有平面线圈的示意图,如图7所示,本发明中的外加磁场可以在平面线圈6中通入电流而获得,平面线圈6中电流的大小、频率和相位均为可调节,通过改变平面线圈的电流频率和相位,可以方便的对外加磁场与流体中驱动电流的相对相位进行调整,从而可以调整驱动力的大小和方向。
另外,还可以进一步在平面线圈与固定腔体之间设置有磁路优化装置,磁路优化装置的材质例如为软磁材料,可以对磁路进行优化,提高激励磁场强度和均匀度,降低磁流体驱动泵的磁泄漏,提高整体驱动效率,并避免外界磁场的干扰。
在本发明的一实施例中,电极的最大电荷容量、驱动电源的电压周期以及驱动电源的输出功率均为可调节的,以调节与驱动力。
调节方式如下:
(1)外加磁场固定不变时,通过驱动电源的电压周期(频率)来调节驱动力。
(2)驱动电源固定不变时,通过调整平面线圈中电流的大小来调节驱动力。
本发明中,驱动力越大,流体的压强和流速越大,驱动力越小,流体的压强和流速越小,因此,若要改变流体的压强和流速,调节驱动力是较为直接的方法。
本发明还提供了一种应用于上述微型磁流体驱动装置中的微型磁流体驱动方法,其包括:
a.将含有带电粒子的流体从流体输入口输入;
b.使得流体在固定腔体中流动;
c.将与电极相连的导体引线与驱动电源连接;
在电压周期的前半周期,驱动电源输出的电压驱动流体中的带电粒子在电极之间流动而产生电流,同时,施加一方向为第一方向的外加磁场,使得作用于流体的安培力的方向朝向流体输出口;
在电压周期的后半周期,驱动电源输出的电压驱动流体中的带电粒子在两个电极之间流动而产生电流,同时,施加一方向为第二方向的外加磁场,使得作用于流体的安培力的方向朝向流体输出口,
其中,第一方向和第二方向相反并且外加磁场使得作用于流体的安培力的方向相同,在每一电压周期的前半周期和后半周期,电极输出的电荷量均不大于电极的最大电荷容量。
以上微型磁流体驱动方法中涉及的概念、名称等根据以上实施例的描述而得知,在此不予赘述。
本发明提供的微型磁流体驱动装置和方法更加便于微型化,其中的驱动装置可以更加方便的与微流控系统整合,用以与现代生物工程(例如细胞、微囊、囊泡、蛋白质、纳米药物等)和化学工程中的各种分析、提取技术相结合,从而可以提升速度、提高精度、减少样品需求量,加快药物研发和分析诊断水平。同时,本发明易于集成,易于控制,能够在微管尺度上实现精确的流体驱动、测量和控制,从而带来较大的社会效益。
本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
本领域普通技术人员可以理解:实施例中的装置中的模块可以按照实施例描述分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明实
施例技术方案的精神和范围。
Claims (11)
- 一种微型磁流体驱动装置,其特征在于,包括:一固定腔体,所述固定腔体内部为中空以用于容置流体;至少一组电极,每组电极的内侧面相对设置并且位于所述固定腔体的内表面;一流体输入口;一流体输出口,所述流体输入口和所述流体输出口分别设置在所述固定腔体的两端并与所述固定腔体连通;多根导体引线,每根导体引线的一端与驱动电源连接,另一端与其中一个电极的外侧面连接,所述驱动电源输出的电压呈周期性变化,在一个电压周期的前半周期与后半周期,所述驱动电源输出的电压幅值不变但方向相反,在每一电压周期的前半周期和后半周期,施加方向分别为一第一方向和一第二方向的外加磁场,所述第一方向和所述第二方向相反并且所述外加磁场使得作用于所述流体的安培力的方向相同,在每一电压周期的前半周期和后半周期,电极输出的电荷量均不大于电极的最大电荷容量。
- 根据权利要求1所述的微型磁流体驱动装置,其特征在于,电极为双电层电容电极或者赝电容电极,每组电极内均形成交变电流。
- 根据权利要求1所述的微型磁流体驱动装置,其特征在于,对于每一组电极,在一个电流周期内,通过电极的循环充放电或者是氧化还原反应提供形成交变电流所需要的电荷。
- 根据权利要求2所述的微型磁流体驱动装置,其特征在于,所述电极的材质为二氧化钌的水合物、水钠锰矿化合物、分散的纳米碳胶体或者导电聚合物。
- 根据权利要求1所述的微型磁流体驱动装置,其特征在于,所述电极的最大电荷容量、所述驱动电源的电压周期以及所述驱动电源的输出功率均为可调节。
- 根据权利要求1所述的微型磁流体驱动装置,其特征在于,所述固定腔体的截面为圆形、椭圆、矩形、圆角矩形或者以上形状的组合形式。
- 根据权利要求1所述的微型磁流体驱动装置,其特征在于,所述固定腔体中的最小径向尺寸介于10纳米~10毫米之间。
- 根据权利要求1所述的微型磁流体驱动装置,其特征在于,所述外加磁场为 在平面线圈中通入电流而获得,所述平面线圈中电流的大小、频率和相位均为可调节。
- 根据权利要求8所述的微型磁流体驱动装置,其特征在于,在所述平面线圈与所述固定腔体之间设置有磁路优化装置。
- 根据权利要求9所述的微型磁流体驱动装置,其特征在于,所述磁路优化装置的材质为软磁材料。
- 一种应用于权利要求1-10中任一项的微型磁流体驱动方法,其特征在于,包括:a.将含有带电粒子的流体从所述流体输入口输入;b.使得所述流体在所述固定腔体中流动;c.将与电极相连的导体引线与所述驱动电源连接;d.在电压周期的前半周期,所述驱动电源输出的电压驱动所述流体中的带电粒子在电极之间流动而产生电流,同时,施加一方向为第一方向的外加磁场,使得作用于所述流体的安培力的方向朝向所述流体输出口;e.在电压周期的后半周期,所述驱动电源输出的电压驱动所述流体中的带电粒子在电极之间流动而产生电流,同时,施加一方向为第二方向的外加磁场,使得作用于所述流体的安培力的方向朝向所述流体输出口,其中,所述第一方向和所述第二方向相反并且所述外加磁场使得作用于所述流体的安培力的方向相同,在每一电压周期的前半周期和后半周期,电极输出的电荷量均不大于电极的最大电荷容量。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210803954.0 | 2022-07-07 | ||
CN202210803954.0A CN117411275A (zh) | 2022-07-07 | 2022-07-07 | 一种微型磁流体驱动装置和方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024007893A1 true WO2024007893A1 (zh) | 2024-01-11 |
Family
ID=89454225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/102682 WO2024007893A1 (zh) | 2022-07-07 | 2023-06-27 | 一种微型磁流体驱动装置和方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117411275A (zh) |
WO (1) | WO2024007893A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118408078A (zh) * | 2024-07-04 | 2024-07-30 | 中国人民解放军总医院第三医学中心 | 一种用于分子诊断设备的微阀驱动模块 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1610449A1 (de) * | 2004-06-23 | 2005-12-28 | Robert Bosch Gmbh | Kraftfahrzeug mit einer elektromagnetischen Induktionspumpe |
CN106593831A (zh) * | 2015-10-19 | 2017-04-26 | 中国科学院理化技术研究所 | 一种非接触式电磁微泵装置 |
CN107017071A (zh) * | 2017-04-28 | 2017-08-04 | 华中科技大学 | 一种交变磁场发生装置及交变磁场产生方法 |
CN215956248U (zh) * | 2021-04-08 | 2022-03-04 | 中国移动通信集团终端有限公司 | 一种驱动装置、散热系统及电子设备 |
-
2022
- 2022-07-07 CN CN202210803954.0A patent/CN117411275A/zh active Pending
-
2023
- 2023-06-27 WO PCT/CN2023/102682 patent/WO2024007893A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1610449A1 (de) * | 2004-06-23 | 2005-12-28 | Robert Bosch Gmbh | Kraftfahrzeug mit einer elektromagnetischen Induktionspumpe |
CN106593831A (zh) * | 2015-10-19 | 2017-04-26 | 中国科学院理化技术研究所 | 一种非接触式电磁微泵装置 |
CN107017071A (zh) * | 2017-04-28 | 2017-08-04 | 华中科技大学 | 一种交变磁场发生装置及交变磁场产生方法 |
CN215956248U (zh) * | 2021-04-08 | 2022-03-04 | 中国移动通信集团终端有限公司 | 一种驱动装置、散热系统及电子设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118408078A (zh) * | 2024-07-04 | 2024-07-30 | 中国人民解放军总医院第三医学中心 | 一种用于分子诊断设备的微阀驱动模块 |
Also Published As
Publication number | Publication date |
---|---|
CN117411275A (zh) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024007893A1 (zh) | 一种微型磁流体驱动装置和方法 | |
CN103816805B (zh) | 电渗微泵装置 | |
Sun et al. | A Mobile and Self‐Powered Micro‐Flow Pump Based on Triboelectricity Driven Electroosmosis | |
CN203090949U (zh) | 多级驱动电渗微泵装置 | |
KR101766712B1 (ko) | 멤브레인 전극 복합체를 이용한 유체 이동용 전기 삼투압 펌프 | |
CN106593831B (zh) | 一种非接触式电磁微泵装置 | |
Xu et al. | Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system | |
KR101488408B1 (ko) | 전기삼투펌프 및 이를 포함하는 유체 펌핑 시스템 | |
CN204746344U (zh) | 一种电渗微泵装置 | |
Cao et al. | Microchannel plate electro-osmotic pump | |
CN110911171A (zh) | 一种非对称微芯片超级电容器及其制备方法 | |
CN113904521B (zh) | 多级电渗微泵 | |
CN103566987B (zh) | 一种电渗流泵及其泵体设计工艺流程 | |
CN105127528B (zh) | 阵列群电极微小孔电加工同轴冲液方法及装置 | |
CN110601497B (zh) | 一种交流电渗驱动乙醇行波型微泵及工作方法 | |
CN109112567A (zh) | 一种综合利用多孔泡沫电极和外加磁场降低电解水能耗的装置 | |
CN1249899C (zh) | 微型电渗泵 | |
Yoon et al. | Photoelectrochemical ion concentration polarization: membraneless ion filtration based on light-driven electrochemical reactions | |
Piwowar et al. | High field asymmetric waveform for ultra-enhanced electroosmotic pumping of porous anodic alumina membranes | |
US8920621B2 (en) | Pump | |
CN110601496B (zh) | 一种交流电渗驱动乙醇非对称型微泵及工作方法 | |
US20230128867A1 (en) | Membrane-electrode assembly for electroosmotic pump, electroosmotic pump including same, and fluid pumping system | |
CN117405758A (zh) | 用于控制带电粒子移动的微流体系统以及控制方法 | |
WO2024007892A1 (zh) | 流体中的带电粒子的控制装置以及带电粒子移动控制方法 | |
KR102402592B1 (ko) | 전기 삼투 펌프를 포함하는 유체 펌핑 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23834661 Country of ref document: EP Kind code of ref document: A1 |