WO2024007512A1 - 定位测量及监控系统 - Google Patents

定位测量及监控系统 Download PDF

Info

Publication number
WO2024007512A1
WO2024007512A1 PCT/CN2022/135085 CN2022135085W WO2024007512A1 WO 2024007512 A1 WO2024007512 A1 WO 2024007512A1 CN 2022135085 W CN2022135085 W CN 2022135085W WO 2024007512 A1 WO2024007512 A1 WO 2024007512A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
module
mobile terminal
cloud server
monitoring
Prior art date
Application number
PCT/CN2022/135085
Other languages
English (en)
French (fr)
Inventor
洪剑
卢中
刘健
陈刚
李勇
余波
朱春春
李雅琼
江木春
袁锐
张文欢
王强
吴旭
王波
王柱
吴满
杨帆
金辉
戴寒光
Original Assignee
中交第二航务工程勘察设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中交第二航务工程勘察设计院有限公司 filed Critical 中交第二航务工程勘察设计院有限公司
Publication of WO2024007512A1 publication Critical patent/WO2024007512A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the invention relates to the fields of surveying and mapping engineering and ocean surveying and mapping, and more specifically, to a positioning measurement and monitoring system.
  • Positioning measurement is one of the important contents of surveying engineering, oceanographic surveying and other disciplines, and its measurement results are important basic data for engineering planning, design, construction and operation management.
  • positioning measurements often use GNSS measurement methods, total station polar coordinate methods, forward intersection methods, etc.
  • the positioning measurement data collected in the field are exported afterwards and then analyzed to determine whether the positioning measurement data results meet the engineering requirements. According to the requirements of planning, design, construction and operation management, verify the accuracy and compliance of the result data, and then process and process the qualified data to derive other digital products.
  • the main problem in this process is the observation of field positioning data and internal Industrial positioning data processing cannot synchronize "parallel" operations, and it cannot timely judge whether the positioning measurement results meet the requirements, resulting in post-event decision-making and affecting work efficiency.
  • the technical problem to be solved by the present invention is to provide a positioning measurement and monitoring system with a simple operation method.
  • the field and indoor operations can be operated "in parallel”.
  • the mobile positioning device is small in size, light in weight and easy to carry.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a positioning measurement and monitoring system, including a mobile terminal positioning equipment device, a cloud server data storage and processing program device, and a monitoring terminal device;
  • the mobile terminal positioning equipment device includes a power module, an antenna module, a positioning module, a development board and a wireless network module.
  • the power module is connected to the antenna module, the positioning module, the development board and the wireless network module respectively.
  • the antenna module is used to Navigation satellite signals are received, filtered and gained, and then transmitted to the positioning module.
  • the positioning module is integrated to calculate differential positioning coordinates.
  • the development board is used to integrate and drive the positioning module, wireless network module and antenna module.
  • the antenna The module, positioning module, development board and wireless network module are connected in sequence; the wireless network module is used for data exchange and transmission between the mobile terminal and the outside;
  • the cloud server data storage and processing program device includes a cloud server and a cloud server program.
  • the cloud server data storage and processing program device is a data processing and storage platform and a mobile terminal and monitoring terminal data transfer platform;
  • the monitoring terminal device includes monitoring terminal hardware and program monitoring terminal devices of PC platform and Android platform that can monitor and adjust the working status of mobile terminal equipment in real time.
  • the working process of the development board forwards the original observation information of the positioning module to the CORS server, sends the differential information of the CORS center to the positioning module, and sends the high-precision positioning result of the positioning module, that is, the differential coordinates to the cloud server.
  • the working process of the wireless network module data exchange between the mobile terminal and the CORS server: sending the original observation information of the mobile terminal to the CORS server, receiving the CORS server differential information to the mobile terminal; data between the mobile terminal and the cloud server Exchange: Send high-precision positioning results, namely differential coordinates, to the cloud server.
  • the working process of the positioning module outputs the original GNSS observation values, and connects to the CORS system through the Ntrip method, obtains the virtual base station observation values broadcast by the CORS system, and decodes the two observation values according to the RTCM protocol. Find the difference between the receiver and the satellite in turn, establish a double difference model, and solve for the coordinates of the mobile station.
  • user instructions from the platform monitoring end are issued by any authorized monitoring end, received by the server and transferred to all mobile devices.
  • the user instructions include: start recording, stop recording, adjust data collection interval, and restart the device. .
  • the functions of the PC monitoring program include: viewing and displaying the working status of the mobile device, and adjusting the working status of the mobile device: recording status and sampling interval.
  • the working process of the cloud server program receives and processes mobile terminal data, forwards the processed mobile terminal data to the monitoring terminal, forwards user instructions from the monitoring terminal to the mobile terminal, and stores the data.
  • the present invention is an innovation in positioning measurement and monitoring methods, which improves work efficiency, saves costs, and has good economic benefits;
  • This invention can control the observation process in real time, and has a positive guiding effect on the status and navigation of the mobile terminal;
  • the present invention can be widely used in positioning and surveying work in various cities, villages, rivers, lakes, rivers and seas;
  • the operation method of the present invention is simple, and outdoor and internal operations can be operated in parallel.
  • the mobile positioning device is small in size, light in weight, and easy to carry.
  • the mobile positioning device is low in cost and easy to process.
  • Figure 1 is a system schematic diagram of the positioning measurement and monitoring system of the present invention
  • Figure 2 is a schematic diagram of the mobile positioning end of the positioning measurement and monitoring system of the present invention.
  • Figure 3 is a schematic structural diagram of the appearance of the mobile terminal of the positioning measurement and monitoring system of the present invention.
  • Figure 4 is the cloud server data storage and processing program interface of the positioning measurement and monitoring system of the present invention.
  • Figure 5 is a flow chart of cloud server data storage and forwarding of the positioning measurement and monitoring system of the present invention
  • Figure 6 is a cloud server instruction forwarding flow chart of the positioning measurement and monitoring system of the present invention.
  • Figure 7 is the PC platform monitoring terminal program interface of the positioning measurement and monitoring system of the present invention.
  • Figure 8 is the Android platform monitoring terminal program interface of the positioning measurement and monitoring system of the present invention.
  • the positioning measurement and monitoring system of the present invention includes a mobile terminal positioning equipment device, a monitoring terminal device, a cloud server data storage and processing program device, and a monitoring terminal device.
  • the mobile terminal positioning equipment device includes a power module, an antenna module, a positioning module, a development board module, and a wireless network module.
  • the power module is connected to and supplies power to the antenna module, positioning module, development board, and wireless network module respectively.
  • the antenna module is used to receive navigation satellite signals, filter and gain the signals and then transmit them to the positioning module;
  • the positioning module integrates a differential positioning algorithm and is used to calculate differential positioning coordinates;
  • the development board is used to integrate and drive the positioning module, wireless Network module, etc., the antenna module, positioning module, development board and wireless network module are connected in sequence;
  • the wireless network module is used for data exchange and transmission between the mobile terminal and the outside.
  • the cloud server data storage and processing program device includes a cloud server and a cloud server program.
  • the cloud server data storage and processing program device is a data processing and storage platform and a mobile terminal and monitoring terminal data transfer platform.
  • the monitoring device includes PC platform and Android platform monitoring hardware and programs that can monitor and adjust the working status of mobile devices in real
  • the monitoring terminal device is shown in Figure 1.
  • the technical principle of the present invention is: the mobile terminal positioning device sends its own rough coordinates to the CORS center through the wireless network, obtains the differential data broadcast by the CORS service center for differential positioning, and sends the differential positioning results to Cloud server; the monitoring terminal sends instructions to the cloud server to obtain the positioning information of the mobile terminal, and sends control instructions to the mobile terminal through the cloud server according to actual needs to achieve real-time monitoring of the mobile terminal.
  • Wireless network communication is used between systems.
  • a mobile terminal positioning equipment device is included, specifically making a mobile terminal positioning device: through research and testing, a development board and functional module that meet the needs are selected, the positioning device is designed and produced, and a corresponding driver is written.
  • the main components of mobile positioning equipment include: development board, wireless network module, antenna module, positioning module, power module, shell, etc.
  • the main program is loaded in the development board flash and written in C language on the Keil uVision5 platform.
  • the performance and functions of each functional module are as follows:
  • the main functions of the development board are:
  • 3S end the high-precision positioning results (differential coordinates) of the positioning module to the cloud server.
  • Wireless network module 4G LTE module is used for data exchange and transmission between the mobile terminal and the outside world, using TCP mode for communication.
  • the main functions of the wireless network module are:
  • 2Data exchange between mobile terminal and cloud server send high-precision positioning results (differential coordinates) to the cloud server.
  • Antenna module Using active ceramic antenna, the main performance is as shown in Table 2:
  • the main functions of the positioning module are: output GNSS original observation values, and access the CORS system through Ntrip, obtain the Virtual Reference Station (VRS) observation values broadcast by the CORS system, and combine the two observation values according to the RTCM protocol Decode, find the difference between the receiver and the satellite in turn, establish a double difference model, and solve for the coordinates of the mobile station.
  • the specific process is as follows:
  • the carrier phase observation value of the mobile station relative to satellite i, i 1,2,...,n;
  • the carrier phase observation value of the virtual base station relative to satellite i, i 1,2,...,n;
  • the distance of the mobile station relative to satellite i, i 1,2,...,n;
  • carrier wavelength
  • ⁇ t j virtual base station receiver clock error
  • the value of is a known value, is an unknown value containing the coordinates of the mobile station (x y , y y , z y ).
  • carrier wavelength
  • Double difference integer ambiguity Double difference integer ambiguity.
  • n-2 double difference observation equations can be listed, but there are n+1 unknowns (3 coordinate parameters and n-2 double differences Integral ambiguity parameter), so the normal equation is rank deficient. This problem can be solved by accumulating the normal equation in multiple epochs.
  • Power module composed of polymer lithium battery and battery protection board. The main performance is shown in Table 4:
  • the cloud server in the cloud server data storage and processing program device, is a data processing and mobile terminal and monitoring terminal data transfer platform.
  • the cloud server program is written on the Eclipse platform using JAVA language, and the interface is shown in Figure 4.
  • the main functions of the cloud server program first receive and process mobile data, forward the processed mobile data to the monitoring terminal, forward user instructions from the monitoring terminal to the mobile terminal, and finally store all mobile data in the cloud server in real time.
  • the mobile terminal data format uses the GGA statement of the NMEA0183 protocol to transmit information.
  • the fields of the statement are defined as follows:
  • the coordinates of the mobile terminal in the data are expressed in the form of geodetic coordinates in the format of "dddmm.mmmm”. They are converted into degrees before use, that is, “ddd.ddd”, and then the geodetic coordinates (B, L) are converted into reference ellipses through Gaussian normal arithmetic.
  • Spherical grid coordinates (X 0 , Y 0 ) the conversion relationship is as follows (higher order terms have been omitted):
  • N is the radius of curvature of the Maoyou circle
  • the four-parameter conversion model + elevation conversion model method can be used.
  • the seven-parameter conversion model method can also be used, as follows:
  • A, B, C, D plane fitting parameters.
  • the data transmission process is: summarize the mobile terminal data, interpret and perform coordinate conversion, and then send it to each monitoring port after summary.
  • the process of forwarding user instructions from the monitoring terminal to the mobile terminal is: user instructions from the monitoring terminal can be issued by any authorized monitoring terminal, received by the server and forwarded to all mobile terminal devices.
  • the instructions include: start recording, stop recording , adjust the data collection interval, and restart the device.
  • each mobile device After receiving the instruction, each mobile device returns feedback information to the server, which is aggregated by the cloud server and forwarded to all monitoring devices.
  • the cloud server network is stable and data transmission is stable
  • the monitoring terminal does not need to remain online, and all current mobile terminal data can be obtained by connecting to the server at any time.
  • the cloud server data storage and processing program device includes a PC platform monitoring end program and an Android platform monitoring end program.
  • the monitoring program is directly operated by technicians and can monitor and adjust the working status of mobile devices in real time.
  • the PC platform monitoring program is written on the Eclipse platform using JAVA language, and the interface is shown in Figure 7.
  • the functions of the Android platform monitoring terminal program are roughly the same as those of the PC platform monitoring terminal program. It is written on the Android Studio platform using JAVA language. The interface is shown in Figure 8.
  • the system operation method of the present invention is as follows:
  • the device has set the cloud server IP and port number according to the built-in program, and will automatically connect to the server and start uploading data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

一种定位测量及监控系统,包括移动端定位设备装置、云服务器数据存储与处理程序装置、监控端装置。移动端定位设备装置包括电源模块、天线模块、定位模块、开发板和无线网络模块;天线模块用于接收导航卫星信号并进行过滤和增益后传输给定位模块,定位模块集成用于解算差分定位坐标;无线网络模块用于与外部进行数据交换和传输。无线网络模块的工作过程包括移动端定位定设备装置与CORS服务器间数据交换;移动端定位定设备装置与云服务器间数据交换。

Description

定位测量及监控系统 技术领域
本发明涉及测绘工程、海洋测绘领域,更具体地说,涉及一种定位测量及监控系统。
背景技术
定位测量是测绘工程、海洋测绘等学科的重要内容之一,其测量成果是工程的规划、设计、施工和营运管理等工作的重要基础资料。
目前定位测量常采用GNSS测量方法、全站仪极坐标法和前方交会法等,其外业采集的定位测量数据,是通过事后导出后,再进行数据分析,判断定位测量数据成果是否满足工程的规划、设计、施工和营运管理等方面的要求,证实成果数据的正确性和合规性,再将合格数据进行加工和处理,衍生其他数字产品,此过程主要问题是外业定位数据观测和内业定位数据处理不能同步“并线”作业,不能及时判断定位测量成果是否满足要求,导致事后决策,影响工作效率。
发明内容
本发明要解决的技术问题在于,提供一种定位测量及监控系统,其操作方法简单,外业和内业可“并线”操作,移动端定位设备体积小、重量轻、便于携带。
本发明解决其技术问题所采用的技术方案是:构造一种定位测量及监控系统,包括移动端定位设备装置、云服务器数据存储与处理程序装置、监控端装置;
所述移动端定位设备装置包括电源模块、天线模块、定位模块、开发板和无线网络模块,所述电源模块分别与天线模块、定位模块、开发板和无线网络 模块连接,所述天线模块用于接收导航卫星信号并进行过滤和增益后传输给定位模块,所述定位模块集成用于解算差分定位坐标;所述开发板用于集成并驱动定位模块、无线网络模块和天线模块,所述天线模块、定位模块、开发板和无线网络模块依次连接;所述无线网络模块用于移动端与外部进行数据交换和传输;
所述云服务器数据存储与处理程序装置包括云服务器和云服务器程序,所述云服务器数据存储与处理程序装置为数据处理与存储平台和移动端与监控端数据中转平台;
所述监控端装置包括可实时监控并调整移动端设备工作状态的PC平台和Android平台的监控端硬件和程序监控端装置。
按上述方案,所述开发板的工作过程:转发定位模块的原始观测信息至CORS服务器,将CORS中心的差分信息发送至定位模块,将定位模块的高精度定位结果即差分坐标发送至云服务器。
按上述方案,所述无线网络模块的工作过程:移动端与CORS服务器间数据交换:将移动端原始观测信息发送至CORS服务器,将CORS服务器差分信息接收至移动端;移动端与云服务器间数据交换:将高精度定位结果即差分坐标发送至云服务器。
按上述方案,所述定位模块的工作过程:输出GNSS原始观测值,并通过Ntrip方式接入CORS系统,获取CORS系统播发的虚拟基准站观测值,将两者的观测值根据RTCM协议进行解码,依次在接收机和卫星间求差,建立双差模型,求解移动站坐标。
按上述方案,所述平台监控端的用户指令由任一授权的监控端发出,经服务器接收并中转至所有移动端设备,所述用户指令包括:开始记录、停止记录、调整数据采集间隔、设备重启。
按上述方案,所述PC监控端程序的功能包括:查看并显示移动端设备工作状态,调整移动端设备工作状态:记录状态、采样间距。
按上述方案,云服务器程序的工作过程:接收并处理移动端数据,转发处理后的移动端数据至监控端,将监控端的用户指令转发至移动端,数据存储。
实施本发明的定位测量及监控系统,具有以下有益效果:
1、本发明是定位测量和监控方法的创新,对提高工作效率、节约成本、具有良好的经济效益;
2、本发明快速反应测量的成果质量的符合性,适用性广;
3、本发明可实时掌控观测过程,对移动端的状态和导航有积极的指导作用;
4、本发明可广泛应用于各种城、乡、江、湖、河、海的定位测量工作中;
5、本发明操作方法简单,外业和内业可“并线”操作,移动端定位设备体积小、重量轻、便于携带,移动端定位设备造价低廉、加工方便。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明定位测量及监控系统的系统原理图;
图2是本发明定位测量及监控系统的移动定位端原理图;
图3是本发明定位测量及监控系统的移动端外观结构示意图;
图4是本发明定位测量及监控系统的云服务器数据存储与处理程序界面;
图5是本发明定位测量及监控系统的云服务器数据存储与转发流程图;
图6是本发明定位测量及监控系统的云服务器指令转发流程图;
图7是本发明定位测量及监控系统的PC平台监控端程序界面;
图8是本发明定位测量及监控系统的Android平台监控端程序界面。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
本发明的定位测量及监控系统,包括移动端定位设备装置、监控端装置云服务器数据存储与处理程序装置、监控端装置。
移动端定位设备装置包括电源模块、天线模块、定位模块、开发板模块、无线网络模块,电源模块分别与天线模块、定位模块、开发板和无线网络模块 连接并供电。天线模块用于接收导航卫星信号,对信号进行过滤和增益后传输给定位模块;所述定位模块集成了差分定位算法,用于解算差分定位坐标;开发板用于集成并驱动定位模块、无线网络模块等,天线模块、定位模块、开发板和无线网络模块依次连接;无线网络模块用于移动端与外部进行数据交换和传输。云服务器数据存储与处理程序装置包括云服务器和云服务器程序,云服务器数据存储与处理程序装置为数据处理与存储平台和移动端与监控端数据中转平台。监控端装置包括可实时监控并调整移动端设备工作状态的PC平台和Android平台的监控端硬件和程序。
监控端装置如图1所示,本发明的技术原理为:移动端定位设备通过无线网络向CORS中心发送自身概略坐标,获取CORS服务中心播发的差分数据进行差分定位,并将差分定位结果发送至云服务器;监控端向云服务器发送指令,获取移动端的定位信息,并根据实际需求通过云服务器向移动端发送控制指令,实现对移动端的实时监控,系统间均采用无线网络通讯。
本发明的优选实施方式中,包括移动端定位设备装置,具体为制作移动端定位设备:通过调研及试验,选取满足需求的开发板和功能模块,设计制作定位设备,并编写相应的驱动程序。移动端定位设备装置主要组成部分包括:开发板、无线网络模块、天线模块、定位模块、电源模块、外壳等。主程序加载于开发板flash中,采用C语言在Keil uVision5平台编写。各功能模块性能及作用如下:
(1)开发板:采用STM32F103C8T6型微控制器核心板,主要性能如表1:
表1 开发板性能汇总表
项目 技术指标
总线宽度 32位
FLASH 64KB
RAM 20KB
工作温度: -40℃~85℃
开发板的主要功能为:
①转发定位模块的原始观测信息至CORS服务器;
②将CORS中心的差分信息发送至定位模块;
③将定位模块的高精度定位结果(差分坐标)发送至云服务器。
(2)无线网络模块:采用4G LTE模块,用于移动端与外部进行数据交换和传输,采用TCP模式通讯。
无线网络模块的主要功能为:
①移动端与CORS服务器间数据交换:将移动端原始观测信息发送至CORS服务器,将CORS服务器差分信息接收至移动端;
②移动端与云服务器间数据交换:将高精度定位结果(差分坐标)发送至云服务器。
(3)天线模块:采用有源陶瓷天线,主要性能如表2:
表2 天线模块性能汇总表
Figure PCTCN2022135085-appb-000001
(4)定位模块:采用双频GNSS定位模块,主要性能如表3:
表3 定位模块性能汇总表
Figure PCTCN2022135085-appb-000002
定位模块的主要功能为:输出GNSS原始观测值,并通过Ntrip方式接入CORS系统,获取CORS系统播发的虚拟基准站(Virtual Reference Station,简称VRS)观测值,将两者的观测值根据RTCM协议进行解码,依次在接收机和卫星间求差,建立双差模型,求解移动站坐标。具体流程如下:
建立载波相位观测值基础方程:
Figure PCTCN2022135085-appb-000003
Figure PCTCN2022135085-appb-000004
Figure PCTCN2022135085-appb-000005
Figure PCTCN2022135085-appb-000006
式中:
Figure PCTCN2022135085-appb-000007
移动站相对于卫星i的载波相位观测值,i=1,2,…,n;
Figure PCTCN2022135085-appb-000008
虚拟基准站相对于卫星i的载波相位观测值,i=1,2,…,n;
Figure PCTCN2022135085-appb-000009
移动站相对于卫星i的距离,i=1,2,…,n;
Figure PCTCN2022135085-appb-000010
虚拟基准站相对于卫星i的距离,i=1,2,…,n;
λ:载波波长;
f:载波频率;
Figure PCTCN2022135085-appb-000011
移动站电离层延迟参数,i=1,2,…,n;
Figure PCTCN2022135085-appb-000012
虚拟基准站电离层延迟参数,i=1,2,…,n;
Figure PCTCN2022135085-appb-000013
移动站对流层延迟参数,i=1,2,…,n;
Figure PCTCN2022135085-appb-000014
虚拟基准站对流层延迟参数,i=1,2,…,n;
δt y:移动站接收机钟差;
δt j:虚拟基准站接收机钟差;
Figure PCTCN2022135085-appb-000015
移动站相对于卫星i的整周模糊度,i=1,2,…,n;
Figure PCTCN2022135085-appb-000016
虚拟基准站相对于卫星i的整周模糊度,i=1,2,…,n;
Figure PCTCN2022135085-appb-000017
移动站噪声误差,i=1,2,…,n;
Figure PCTCN2022135085-appb-000018
移动站噪声误差,i=1,2,…,n;
其中
Figure PCTCN2022135085-appb-000019
的值为已知值,
Figure PCTCN2022135085-appb-000020
为包含移动站坐标(x y,y y,z y)的未知值。
假设移动站和虚拟基准站同时跟踪到卫星i和卫星j,依次建立式(1)-式(4)载波相位观测方程后在接收机和卫星间求差,建立双差模型,如下:
Figure PCTCN2022135085-appb-000021
Figure PCTCN2022135085-appb-000022
Figure PCTCN2022135085-appb-000023
式中:
λ:载波波长;
Figure PCTCN2022135085-appb-000024
双差载波相位观测值;
Figure PCTCN2022135085-appb-000025
双差星地距离;
Figure PCTCN2022135085-appb-000026
双差整周模糊度。
在一个历元中,移动站和虚拟基准站共观测n颗卫星,则可列出n-2个双差观测方程,但存在n+1个未知数(3个坐标参数和n-2个双差整周模糊度参 数),所以法方程是秩亏的,通过多历元的法方程累加可以解决此问题。
解算得到移动站空间直角坐标系坐标(x y,y y,z y)后将其转换为大地坐标(B,L,H),过程如下:
Figure PCTCN2022135085-appb-000027
L=arctan(y y/x y)        (9)
Figure PCTCN2022135085-appb-000028
(5)电源模块:由聚合物锂电池和电池保护板组成。主要性能如表4所示:
表4 电源模块性能汇总表
项目 技术指标
输出电压 DC 3.7V
输入电压 DC 4.2-5V
电池容量 2800mAh
(6)外壳:如图3所示,采用3D光固化打印,材质为光敏树脂。
本发明的优选实施方式中,云服务器数据存储与处理程序装置中,云服务器是数据处理和移动端与监控端数据中转平台。云服务器程序采用JAVA语言在Eclipse平台编写,界面如图4所示。
云服务器程序主要功能:先接收并处理移动端数据,在转发处理后的移动端数据至监控端,将监控端的用户指令转发至移动端,最后将所有移动端数据可实时存储于云服务器。
(1)接收并处理移动端数据
移动端数据格式采用NMEA0183协议的GGA语句传递信息,语句个字段定义如下:
例:$GPGGA,135744.00,194 9.0981805,N,10040.9124092,E,1,06,1.8,293.417,M,,,,*32,如表5所示:
表5 NMEA0183协议GGA语句信息统计表
Figure PCTCN2022135085-appb-000029
Figure PCTCN2022135085-appb-000030
数据中移动端坐标采用大地坐标形式表示,格式为“dddmm.mmmm”,使用前将其转换为度,即“ddd.dddd”,后经高斯正算将大地坐标(B,L)转换为参考椭球网格坐标(X 0,Y 0),转换关系如下(已略去高次项):
Figure PCTCN2022135085-appb-000031
Figure PCTCN2022135085-appb-000032
式中:
X:子午线弧长;
N:为卯酉圈曲率半径;
l=L-L 0,L 0为中央子午线;
t=tanB;
η=e′cosB。
将参考椭球网格坐标和大地高(X 0,Y 0,H 0)转换为当地坐标和正常高(X 1,Y 1,H 1),可采用四参数转换模型+高程转换模型方法,也可采用七参数转换模型方法,具体如下:
①四参数转换模型+高程转换模型方法:
四参数转换模型:
Figure PCTCN2022135085-appb-000033
式中:
Δx、Δy:平移参数;
θ:旋转参数;
m:尺度变换参数。
高程转换模型:
Figure PCTCN2022135085-appb-000034
式中:
ΔH:固定差转换参数;
A、B、C、D:平面拟合参数。
②七参数转换模型方法:
Figure PCTCN2022135085-appb-000035
式中:
Δx、Δy、Δh:平移参数;
ε x、ε y、ε z:旋转参数;
m:尺度变换参数。
(2)转发处理后的移动端数据至监控端
如图5所示,数据的传输流程为:汇总各移动端数据,解译并进行坐标转 换,汇总后发送至各监控端口。
(3)将监控端的用户指令转发至移动端
如图6所示,监控端的用户指令转发至移动端的流程为:监控端的用户指令可以由任一授权的监控端发出,经服务器接收并中转至所有移动端设备,指令包括:开始记录、停止记录、调整数据采集间隔、设备重启。各移动端设备接收到指令后向服务器返回回馈信息,并经云服务器汇总后转发所有监控端设备。
(4)数据存储
将所有移动端数据实时存储于云服务器,这样操作存在以下优点:
①云服务器网络稳定,数据传输稳定;
②数据存储安全,移动端受损的情况下云端数据也不会丢失;
③监控端不必保持在线,随时连接服务器即可获得当前所有移动端数据。
本发明的优选实施方式中,云服务器数据存储与处理程序装置包括PC平台监控端程序和Android平台监控端程序
(1)PC平台监控端程序
监控端程序由技术人员直接操作,可实时监控并调整移动端设备的工作状态。PC平台监控端程序采用JAVA语言在Eclipse平台编写,界面如图7所示。
监控端程序的主要功能:
①查看并显示移动端设备工作状态;
②调整移动端设备工作状态:记录状态、采样间距等。
(2)Android平台监控端程序
Android平台监控端程序功能与PC平台监控端程序功能大致相同,采用JAVA语言在Android Studio平台编写,界面如图8所示。
本发明的系统操作方法如下:
(1)云服务器设置
①设置并打开服务器端口;
②设置文件保存路径;
③设置或输入坐标转换参数(可选步骤);
(2)移动端操作
打开电源开关,设备根据内置程序已设置云服务器IP和端口号,将自动连接至服务器并开始上传数据。
(3)监控端操作
PC平台与Android平台监控端程序操作方法基本一致,具体如下:
①设置服务器IP和端口号,连接服务器;
②登录管理员账号密码,获取仪器设置权限;
③查看移动端设备状态,根据需求设置并发送指令。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (7)

  1. 一种定位测量及监控系统,其特征在于,包括移动端定位设备装置、云服务器数据存储与处理程序装置、监控端装置;
    所述移动端定位设备装置包括电源模块、天线模块、定位模块、开发板和无线网络模块,所述电源模块分别与天线模块、定位模块、开发板和无线网络模块连接,所述天线模块用于接收导航卫星信号并进行过滤和增益后传输给定位模块,所述定位模块集成用于解算差分定位坐标;所述开发板用于集成并驱动定位模块、无线网络模块和天线模块,所述天线模块、定位模块、开发板和无线网络模块依次连接;所述无线网络模块用于移动端与外部进行数据交换和传输;
    所述云服务器数据存储与处理程序装置包括云服务器和云服务器程序,所述云服务器数据存储与处理程序装置为数据处理与存储平台和移动端与监控端数据中转平台;
    所述监控端装置包括可实时监控并调整移动端设备工作状态的PC平台和Android平台的监控端硬件和程序监控端装置。
  2. 根据权利要求1所述的定位测量及监控系统,其特征在于,所述开发板的工作过程:转发定位模块的原始观测信息至CORS服务器,将CORS中心的差分信息发送至定位模块,将定位模块的高精度定位结果即差分坐标发送至云服务器。
  3. 根据权利要求1所述的定位测量及监控系统,其特征在于,所述无线网络模块的工作过程:移动端与CORS服务器间数据交换:将移动端原始观测信息发送至CORS服务器,将CORS服务器差分信息接收至移动端;移动端与云服务器间数据交换:将高精度定位结果即差分坐标发送至云服务器。
  4. 根据权利要求1所述的定位测量及监控系统,其特征在于,所述定位模块的工作过程:输出GNSS原始观测值,并通过Ntrip方式接入CORS系统,获取CORS系统播发的虚拟基准站观测值,将两者的观测值根据RTCM协议进行解码,依次在接收机和卫星间求差,建立双差模型,求解移动站坐标。
  5. 根据权利要求1所述的定位测量及监控系统,其特征在于,所述平台监控端的用户指令由任一授权的监控端发出,经服务器接收并中转至所有移动端设备,所述用户指令包括:开始记录、停止记录、调整数据采集间隔、设备重启。
  6. 根据权利要求1所述的定位测量及监控系统,其特征在于,所述PC监控端程序的功能包括:查看并显示移动端设备工作状态,调整移动端设备工作状态:记录状态、采样间距。
  7. 根据权利要求1所述的定位测量及监控系统,其特征在于,云服务器程序的工作过程:接收并处理移动端数据,转发处理后的移动端数据至监控端,将监控端的用户指令转发至移动端,数据存储。
PCT/CN2022/135085 2022-07-08 2022-11-29 定位测量及监控系统 WO2024007512A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210806487.7A CN115144881A (zh) 2022-07-08 2022-07-08 定位测量及监控系统
CN202210806487.7 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024007512A1 true WO2024007512A1 (zh) 2024-01-11

Family

ID=83411936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135085 WO2024007512A1 (zh) 2022-07-08 2022-11-29 定位测量及监控系统

Country Status (2)

Country Link
CN (1) CN115144881A (zh)
WO (1) WO2024007512A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117708960A (zh) * 2024-02-04 2024-03-15 武汉大学 平面坐标和正常高的实时转换方法、装置、设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144881A (zh) * 2022-07-08 2022-10-04 中交第二航务工程勘察设计院有限公司 定位测量及监控系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333607A (zh) * 2018-02-07 2018-07-27 重庆市地理信息中心 基于cors增强的移动智能终端差分定位系统
CN109307872A (zh) * 2018-02-28 2019-02-05 南京大学 一种低成本多点安全高精度定位监测的方法及系统
CN109541655A (zh) * 2018-11-20 2019-03-29 腾讯科技(深圳)有限公司 一种差分定位系统、方法
CN111131510A (zh) * 2019-12-31 2020-05-08 湖南省测绘科技研究所 一种基于cors的位置服务系统和方法
JP2022013481A (ja) * 2020-06-30 2022-01-18 コンピュータ・システム株式会社 測位システム、通信装置および測位方法
CN114002724A (zh) * 2021-12-30 2022-02-01 自然资源部第三大地测量队 基于cors网的控制点在线实时快速分析方法和装置
CN114460607A (zh) * 2021-06-16 2022-05-10 北京大成国测科技有限公司 基于cors基准站的gnss铁路控制网系统
CN115144881A (zh) * 2022-07-08 2022-10-04 中交第二航务工程勘察设计院有限公司 定位测量及监控系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333607A (zh) * 2018-02-07 2018-07-27 重庆市地理信息中心 基于cors增强的移动智能终端差分定位系统
CN109307872A (zh) * 2018-02-28 2019-02-05 南京大学 一种低成本多点安全高精度定位监测的方法及系统
CN109541655A (zh) * 2018-11-20 2019-03-29 腾讯科技(深圳)有限公司 一种差分定位系统、方法
CN111131510A (zh) * 2019-12-31 2020-05-08 湖南省测绘科技研究所 一种基于cors的位置服务系统和方法
JP2022013481A (ja) * 2020-06-30 2022-01-18 コンピュータ・システム株式会社 測位システム、通信装置および測位方法
CN114460607A (zh) * 2021-06-16 2022-05-10 北京大成国测科技有限公司 基于cors基准站的gnss铁路控制网系统
CN114002724A (zh) * 2021-12-30 2022-02-01 自然资源部第三大地测量队 基于cors网的控制点在线实时快速分析方法和装置
CN115144881A (zh) * 2022-07-08 2022-10-04 中交第二航务工程勘察设计院有限公司 定位测量及监控系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117708960A (zh) * 2024-02-04 2024-03-15 武汉大学 平面坐标和正常高的实时转换方法、装置、设备及介质
CN117708960B (zh) * 2024-02-04 2024-05-03 武汉大学 平面坐标和正常高的实时转换方法、装置、设备及介质

Also Published As

Publication number Publication date
CN115144881A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2024007512A1 (zh) 定位测量及监控系统
CN104202723B (zh) 位置增强数据播发服务系统及方法
CN106526617B (zh) 一种基于lora的高精度定位的变形监测系统及方法
US20230072669A1 (en) Vehicle positioning using pseudo range observation and doppler observation values
CN106908824B (zh) 一种应用于铁路的精准定位系统
CN205643718U (zh) 一种gps/bd-2高精度差分定位装置
CN110001712B (zh) 基于卫星导航定位基准站网的铁路既有线控制测量系统
CN103994767A (zh) 一种救援人员室内协同定位装置及方法
CN206505179U (zh) 连续运行参考站系统
CN105738918A (zh) 基于卫星导航信息融合的输电线路位移监测系统及方法
CN105607079A (zh) 一种gnss定位精度增强方法及gnss定位系统
WO2021136547A1 (zh) 自主机器人的基准站共享方法、系统及存储介质
CN106483539A (zh) 一种基于gprs移动端的人员定位装置
CN206657110U (zh) 一种应用于铁路的精准定位系统
CN109116380A (zh) 一种gnss接收机、基于gnss接收机的定位系统和方法
CN204069178U (zh) 一种基于cors系统的高精度定位视频监测获取装置
CN112099064A (zh) 一种网络型gnss原始数据采集传输与定位系统
CN207078156U (zh) 列车无线通信装置
CN114002724B (zh) 基于cors网的控制点在线实时快速分析方法和装置
CN114280652A (zh) 一种网络rtk实时地方基准服务方法
CN208060721U (zh) 一种基于gprs移动端的人员定位装置
CN208314212U (zh) 北斗通信模块及无人机自动定位通信设备
CN206440261U (zh) 一种机耕面积测量系统及装置
CN106501824A (zh) 一种基于WiFi移动端的人员定位装置
Yang et al. Research on BeiDou satellite positioning algorithm based on GPRS technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950069

Country of ref document: EP

Kind code of ref document: A1