WO2024007465A1 - 双馈型变速抽水蓄能机组自适应变参数调频方法及装置 - Google Patents

双馈型变速抽水蓄能机组自适应变参数调频方法及装置 Download PDF

Info

Publication number
WO2024007465A1
WO2024007465A1 PCT/CN2022/124295 CN2022124295W WO2024007465A1 WO 2024007465 A1 WO2024007465 A1 WO 2024007465A1 CN 2022124295 W CN2022124295 W CN 2022124295W WO 2024007465 A1 WO2024007465 A1 WO 2024007465A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency modulation
frequency
upper limit
parameter
speed
Prior art date
Application number
PCT/CN2022/124295
Other languages
English (en)
French (fr)
Inventor
史林军
劳文洁
吴峰
李杨
林克曼
Original Assignee
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河海大学 filed Critical 河海大学
Publication of WO2024007465A1 publication Critical patent/WO2024007465A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/003Systems for storing electric energy in the form of hydraulic energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/10Special adaptation of control arrangements for generators for water-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the invention relates to a doubly-fed variable-speed pumped storage unit adaptive variable parameter frequency modulation method and device, belonging to the field of power system energy storage.
  • Doubly-fed variable-speed pumped storage units have become a hot topic in research and construction in the field of pumped storage units in recent years. Since it can achieve variable speed operation within a certain range, the doubly-fed variable-speed pumped storage unit can not only overcome the low efficiency problem of conventional pumped storage units caused by the fixed speed of the motor, but also can continuously adjust the power under pumping conditions. Therefore, in It can participate in power grid frequency regulation under different working conditions. However, due to the control strategy adopted by the doubly-fed variable-speed pumped storage unit, the unit speed will be decoupled from the grid frequency. The unit cannot automatically participate in the grid frequency adjustment. It is necessary to add an additional frequency regulation control module to explore the frequency regulation of the unit under different working conditions. potential.
  • the invention provides an adaptive variable parameter frequency modulation method and device for a doubly-fed variable-speed pumped storage unit, which solves the problems disclosed in the background technology.
  • the technical solution adopted by the present invention is:
  • the adaptive variable parameter frequency modulation method for doubly-fed variable-speed pumped storage units includes:
  • the corresponding frequency modulation parameter upper limit is obtained from the pre-generated frequency modulation parameter upper limit curves under different working conditions according to the rotation speed, and the positive and negative frequency modulation parameter upper limit is determined based on the frequency deviation change rate, and the positive and negative frequency modulation parameters are
  • the upper limit is used as a parameter for frequency modulation; among them, the upper limit curve of frequency modulation parameters under different working conditions is the relationship curve between the rotation speed and the upper limit of frequency modulation parameters under different working conditions.
  • the working conditions include power generation working conditions and pumping working conditions.
  • the process of pre-generating frequency modulation parameter upper limit curves for different working conditions includes:
  • the frequency dynamic response indicators are obtained; among them, the frequency dynamic response indicators include the maximum frequency deviation change rate, steady-state frequency deviation and maximum frequency deviation when the load disturbance is a step change;
  • the frequency modulation parameter upper limit curves for different working conditions are generated.
  • a frequency response model is constructed, including:
  • the additional power change caused by frequency regulation in power generation is regarded as a negative load change
  • the water pumping Under working conditions, the sum of the power change caused by the additional speed change and the power change caused by frequency modulation is regarded as the load change, and a frequency response model is constructed.
  • Frequency modulation methods for pumping conditions include:
  • the optimal speed command and the additional speed command are superimposed to generate a new speed command, and the new speed command is used as the control target of the inverter.
  • the frequency response model is:
  • ⁇ P L is the load disturbance
  • ⁇ P m is the output power change of the thermal power unit
  • H G is the equivalent inertia time constant of the thermal power unit
  • D G is the equivalent damping coefficient
  • s is the proportional coefficient
  • ⁇ f is the frequency deviation
  • k is The slope of the water pump output power curve at the optimal operating point of the water pump.
  • K p is the proportional coefficient of traditional frequency modulation under power generation conditions
  • K d is the differential coefficient of traditional frequency modulation under power generation conditions
  • K pd is the active power frequency modulation under pumping conditions.
  • K pp is the proportional coefficient of frequency modulation of active power under pumping conditions
  • K ⁇ d is the differential coefficient of frequency modulation of rotational speed under pumping conditions
  • K ⁇ p is the proportional coefficient of frequency modulation of rotational speed under pumping conditions.
  • the maximum frequency deviation change rate when the load disturbance is a step change ⁇ P step The steady-state frequency deviation ⁇ f st and the maximum frequency deviation ⁇ f max are:
  • the subscript 1 represents the parameters under power generation conditions
  • the subscript 2 represents the parameters under pumping conditions
  • K m is the mechanical power gain coefficient of the thermal power unit
  • R is the adjustment coefficient
  • F H is the output power ratio of the high-pressure cylinder of the prime mover
  • T R is the reheat time constant of the prime mover intermediate pressure cylinder.
  • Screening particles using the maximum frequency deviation change rate and steady-state frequency deviation includes:
  • the frequency modulation parameter optimization model is:
  • obj is the objective function
  • ⁇ f max is the maximum frequency deviation
  • ⁇ r is the rotation speed of the doubly-fed variable-speed pumped storage unit
  • ⁇ rmax is the upper limit of ⁇ r
  • ⁇ rmin is the lower limit of ⁇ r
  • P s is the doubly-fed type.
  • the input/output active power of the variable-speed pumped storage unit, P max is the upper limit of P s .
  • Doubly-fed variable speed pumped storage unit adaptive variable parameter frequency modulation device including:
  • Detection module detects the rotation speed, frequency deviation and frequency deviation change rate of the doubly-fed variable-speed pumped storage unit;
  • Adaptive parameter acquisition module In response to the frequency deviation exceeding the dead zone, the corresponding frequency modulation parameter upper limit is obtained from the pre-generated frequency modulation parameter upper limit curves for different working conditions according to the rotation speed, and the positive and negative frequency modulation parameter upper limit is determined based on the frequency deviation change rate.
  • the positive and negative upper limit of the frequency modulation parameter is used as the parameter used for frequency modulation; among them, the upper limit curve of the frequency modulation parameter under different working conditions is the relationship curve between the rotation speed and the upper limit of the frequency modulation parameter under different working conditions.
  • a computer-readable storage medium storing one or more programs, the one or more programs including instructions that, when executed by a computing device, cause the computing device to execute a doubly-fed variable-speed pumped storage unit automatically Adaptive variable parameter frequency modulation method.
  • the present invention pre-generates the upper limit curve of frequency modulation parameters under different working conditions, and obtains the corresponding frequency modulation parameters from the curve through real-time detection of the rotation speed, frequency deviation and frequency deviation change rate of the doubly-fed variable-speed pumped storage unit.
  • the upper limit of the frequency modulation parameter is used as the corresponding upper limit of the frequency modulation parameter, which can ensure the stable operation of the unit under different conditions, and can maximize the use of the frequency modulation capacity of the unit, so that it can have good frequency modulation under different working conditions and different operating states. performance.
  • Figure 1 is a specific flow chart of the method of the present invention
  • Figure 2 shows the frequency regulation control strategy under power generation conditions
  • Figure 3 shows the frequency regulation control strategy under pumping conditions
  • Figure 4 is the schematic diagram of the frequency response model
  • Figure 5 shows the simulated system model
  • Figure 6 shows the convergence situation of the particle swarm algorithm
  • Figure 7(a) shows the upper limit curve of frequency regulation parameters under power generation conditions
  • Figure 7(b) shows the upper limit curve of frequency modulation parameters under pumping conditions
  • Figure 8(a) shows the frequency response curve under subsynchronous power generation conditions
  • Figure 8(b) shows the active power response curve under subsynchronous power generation conditions
  • Figure 8(c) shows the speed response curve under subsynchronous power generation conditions
  • Figure 9(a) shows the frequency response curve under super-synchronous power generation conditions
  • Figure 9(b) shows the active power response curve under super-synchronous power generation conditions
  • Figure 9(c) shows the speed response curve under super-synchronous power generation conditions
  • Figure 10(a) is a comparison chart of the maximum frequency deviation under power generation conditions
  • Figure 10(b) is a comparison chart of steady-state frequency deviation under power generation conditions
  • Figure 10(c) is a comparison chart of frequency stabilization time under power generation conditions
  • Figure 11(a) shows the frequency response curve under subsynchronous pumping conditions
  • Figure 11(b) shows the active power response curve under subsynchronous pumping conditions
  • Figure 11(c) shows the speed response curve under subsynchronous pumping conditions
  • Figure 12(a) shows the frequency response curve under super-synchronous pumping conditions
  • Figure 12(b) shows the active power response curve under super-synchronous pumping conditions
  • Figure 12(c) shows the speed response curve under super-synchronous pumping conditions
  • Figure 13(a) is a comparison chart of the maximum frequency deviation under pumping conditions
  • Figure 13(b) is a comparison chart of steady-state frequency deviation under pumping conditions
  • Figure 13(c) is a comparison chart of frequency stabilization time under pumping conditions.
  • the adaptive variable parameter frequency modulation method for doubly-fed variable-speed pumped storage units includes the following steps:
  • Step 1 Detect the rotation speed, frequency deviation and frequency deviation change rate of the doubly-fed variable-speed pumped storage unit
  • Step 2 In response to the frequency deviation exceeding the dead zone, obtain the corresponding frequency modulation parameter upper limit from the pre-generated frequency modulation parameter upper limit curves under different working conditions according to the rotation speed, and determine the positive and negative frequency modulation parameter upper limit according to the frequency deviation change rate, and add the positive and negative
  • the upper limit of the frequency modulation parameter is used as the parameter used for frequency modulation; among them, the upper limit curve of the frequency modulation parameter under different working conditions is the relationship curve between the rotation speed and the upper limit of the frequency modulation parameter under different working conditions.
  • the above method pre-generates the upper limit curve of frequency modulation parameters under different working conditions, and obtains the corresponding upper limit of frequency modulation parameters from the curve by detecting the speed, frequency deviation and frequency deviation change rate of doubly-fed variable speed pumped storage unit in real time, and uses the upper limit of frequency modulation parameters as the corresponding
  • the upper limit of frequency modulation parameters can ensure the stable operation of the unit under different conditions, and can maximize the use of the frequency modulation capacity of the unit, so that it can have good frequency modulation performance under different working conditions and different operating conditions.
  • the working conditions of doubly-fed variable-speed pumped storage units generally include power generation and pumping conditions. Under different working conditions, different frequency regulation control strategies are used here, and the operation control characteristics of doubly-fed variable-speed pumped storage units can be used. , so that it can quickly participate in power grid frequency regulation under different working conditions; the frequency regulation control strategy is shown in Figures 2 and 3. In the figure, Q s_ref is the reactive power command, Q s is the actual reactive power, and Z is the guide vane opening.
  • the frequency regulation control strategy in Figure 3 is constructed.
  • the doubly-fed variable-speed pumped storage unit adopts the speed priority control strategy, using the speed as the control target of the frequency converter to achieve rapid adjustment, and the active power is determined by the active power at the water pump.
  • Controller control in order to enable the unit to respond quickly when the frequency deviates, the specific frequency modulation method for pumping conditions can be as follows:
  • K pd is the differential coefficient of frequency modulation of active power under pumping conditions
  • K pp is the proportional coefficient of frequency modulation of active power under pumping conditions
  • K ⁇ d is the differential coefficient of frequency modulation of rotational speed under pumping conditions
  • K ⁇ p is the frequency modulation of active power under pumping conditions. Proportional coefficient of frequency modulation at lower speed.
  • ⁇ P DFPSU_mot -[(K pp +K pd s)+k(K ⁇ p +K ⁇ d s)] ⁇ f.
  • the additional power change caused by frequency regulation in power generation is regarded as a negative load change.
  • the sum of the power change caused by the additional speed change and the power change caused by frequency modulation is regarded as the load change, and a frequency response model can be constructed.
  • ⁇ P L is the load disturbance
  • ⁇ P m is the output power change of the thermal power unit
  • H G is the equivalent inertia time constant of the thermal power unit
  • D G is the equivalent damping coefficient
  • frequency dynamic response indicators such as the maximum frequency deviation change rate, steady-state frequency deviation, and maximum frequency deviation when the load disturbance is a step change can be obtained, as follows:
  • the subscript 1 represents the parameters under power generation conditions
  • the subscript 2 represents the parameters under pumping conditions
  • K m is the mechanical power gain coefficient of the thermal power unit
  • R is the adjustment coefficient
  • F H is the output power ratio of the high-pressure cylinder of the prime mover
  • T R is the reheat time constant of the prime mover intermediate pressure cylinder.
  • obj is the objective function
  • ⁇ f max is the maximum frequency deviation
  • ⁇ r is the rotation speed of the doubly-fed variable-speed pumped storage unit
  • ⁇ rmax is the upper limit of ⁇ r
  • ⁇ rmin is the lower limit of ⁇ r
  • P s is the doubly-fed type.
  • the input/output active power of the variable-speed pumped storage unit, P max is the upper limit of P s .
  • the traditional particle swarm algorithm needs to be improved. Specifically, based on the expressions of the maximum frequency deviation change rate and steady-state frequency deviation, particles are initially screened before calling the system model, thereby improving the initial population quality and thus improving the algorithm.
  • the convergence speed; among them, the principle of screening is: if the maximum frequency deviation change rate and steady-state frequency deviation corresponding to the particle exceed the corresponding threshold, the particle will be eliminated.
  • the improved particle swarm algorithm calls the system model to calculate the individual and global optimal fitness values of the particle swarm. From this, the speed and position of the particles are updated, and the cycle is repeated until the termination condition is met. The resulting optimization result is the upper limit of the frequency modulation parameter.
  • This cycle is generally T s , that is, the frequency modulation parameter is calculated every T s is adjusted once.
  • the upper limit of the differential coefficient takes a positive value, that is, the upper limit of K d under power generation conditions, and the upper limit of K pd and K ⁇ d under pumping conditions; if d ⁇ f/dt is less than 0, then the upper limit of the differential coefficient
  • the upper limit takes a negative value, that is, the upper limit of K d under power generation conditions, and the upper limit of K pd and K ⁇ d under pumping conditions; in the above two cases, the upper limit of the proportional coefficient does not need to be adjusted.
  • the upper limit of the frequency modulation parameters with positive and negative values is used as the parameter used for frequency modulation, thereby realizing adaptive adjustment of the frequency modulation parameters.
  • the above method generates upper limit curves of frequency modulation parameters under different working conditions offline, and queries the curves in real time during the frequency modulation process to adaptively adjust frequency modulation parameters. This allows the unit to find parameters that adapt to its operating status during the full frequency modulation stage, thereby reducing the maximum frequency deviation and steady state. Improve the frequency regulation capability of the unit from the perspective of frequency deviation and shortening the frequency recovery time.
  • a simulation model of a doubly-fed variable-speed pumped storage unit connected to a four-machine two-zone system was built on the PSCAD/EMTDC platform as shown in Figure 5.
  • G1 in Figure 5 , G2, G3, and G4 respectively represent a generator.
  • the frequency dynamic response characteristics of the system are observed by setting a load sudden increase of 10%.
  • the specific simulation parameters are shown in Table 1.
  • the doubly-fed variable-speed pumped storage unit adopts the strategy in Figure 2 under power generation conditions, and the strategy in Figure 3 under pumping conditions.
  • a frequency response model containing a doubly-fed variable-speed pumped storage unit was constructed, and the expressions of frequency dynamic indicators such as the maximum frequency deviation change rate, steady-state frequency deviation, and maximum frequency deviation were derived.
  • the improved particle swarm algorithm is further used to call the system model set to the typical operating conditions of power generation and water pumping to obtain the upper limit of frequency modulation parameters under typical operating conditions of different working conditions, and perform interpolation processing to obtain the upper limit curve of frequency modulation parameters under different working conditions. That is, Figure 7(a) and Figure 7(b); among them, the comparison of the convergence of the improved particle swarm algorithm and the original particle swarm algorithm under a specific operating condition is shown in Figure 6.
  • the improved algorithm can effectively improve the convergence of the algorithm. speed.
  • Calculation example 1 (subsynchronous power generation conditions):
  • the initial output active power command of the doubly-fed variable-speed pumped storage unit is 0.6pu, and the corresponding optimal speed is 0.97pu.
  • the changes of each parameter during the frequency modulation process can be obtained, as shown in Table 2.
  • Calculation example 4 (super-synchronous pumping condition):
  • the initial input active power command of the doubly-fed variable-speed pumped storage unit is -0.9pu, and the corresponding optimal speed is 1.05pu.
  • the changes of each parameter during the frequency modulation process can be obtained, as shown in Table 5.
  • the method of the present invention has good effects in different operating conditions of power generation and water pumping. It can maximize its frequency regulation capability on the basis of ensuring the safe and stable operation of the unit, and effectively reduce ⁇ f max and ⁇ f st .
  • an adaptive variable parameter frequency modulation device for a doubly-fed variable-speed pumped storage unit including:
  • Detection module detects the rotation speed, frequency deviation and frequency deviation change rate of the doubly-fed variable-speed pumped storage unit.
  • Adaptive parameter acquisition module In response to the frequency deviation exceeding the dead zone, the corresponding frequency modulation parameter upper limit is obtained from the pre-generated frequency modulation parameter upper limit curves for different working conditions according to the rotation speed, and the positive and negative frequency modulation parameter upper limit is determined based on the frequency deviation change rate.
  • the positive and negative upper limit of the frequency modulation parameter is used as the parameter used for frequency modulation; among them, the upper limit curve of the frequency modulation parameter under different working conditions is the relationship curve between the rotation speed and the upper limit of the frequency modulation parameter under different working conditions.
  • the present invention also discloses a computer-readable storage medium storing one or more programs, the one or more programs including instructions, which when executed by a computing device, causes the calculation
  • the equipment implements an adaptive variable parameter frequency modulation method for doubly-fed variable-speed pumped storage units.
  • the present invention also discloses a computing device, including one or more processors, one or more memories and one or more programs, wherein one or more programs are stored in the one or more In the memory and configured to be executed by the one or more processors, the one or more programs include instructions for executing an adaptive variable parameter frequency modulation method for a doubly-fed variable speed pumped storage unit.
  • embodiments of the present invention may be provided as methods, systems, or computer program products.
  • the invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects.
  • the invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种双馈型变速抽水蓄能机组自适应变参数调频方法及装置,本发明通过对多个典型工况下的机组以转速和功率限制为约束进行调频参数优化,预先生成不同工况下的调频参数上限曲线,在调频过程中实时检测双馈型变速抽水蓄能机组的转速、频率偏差和频率偏差变化率,根据转速从上限曲线中获取相应的调频参数上限并根据频率偏差变化率调整其符号,由此获得调频参数,可以保证机组在不同状态下的稳定运行,可以最大程度利用机组的调频容量,使其在不同工况不同运行状态下均能具备良好的调频性能。

Description

双馈型变速抽水蓄能机组自适应变参数调频方法及装置 技术领域
本发明涉及一种双馈型变速抽水蓄能机组自适应变参数调频方法及装置,属于电力系统储能领域。
背景技术
双馈型变速抽水蓄能机组是近年来抽水蓄能机组领域的研究与建设热点。由于可在一定范围内实现变速运行,双馈型变速抽水蓄能机组不仅能够克服常规抽蓄机组因电机定速造成的效率较低问题,更是可以在抽水工况下连续调节功率,因此在不同工况均能参与电网调频。但由于双馈型变速抽水蓄能机组所采用的控制策略会导致机组转速与电网频率相解耦,机组无法自动参与电网频率调整,需要额外增加调频控制模块,挖掘机组在不同工况下的调频潜能。
现阶段双馈型变速抽水蓄能机组参与调频研究的展开大多沿用双馈风机的思路,由于双馈型变速抽水蓄能机组的运行状态变化较大,采用固定调频参数无法保证机组在不同状态下的稳定运行。
发明内容
本发明提供了一种双馈型变速抽水蓄能机组自适应变参数调频方法及装置,解决了背景技术中披露的问题。
为了解决上述技术问题,本发明所采用的技术方案是:
双馈型变速抽水蓄能机组自适应变参数调频方法,包括:
检测双馈型变速抽水蓄能机组的转速、频率偏差和频率偏差变化率;
响应于频率偏差超出死区,根据转速从预先生成的不同工况调频参数上限曲线中获取相应的调频参数上限,并根据频率偏差变化率确定调频参数上限的正负,将带正负的调频参数上限作为调频所用的参数;其中,不同工况调频参数上限曲线为不同工况下转速与调频参数上限之间的关系曲线。
工况包括发电工况和抽水工况,预先生成不同工况调频参数上限曲线的过程包括:
在发电工况和抽水工况采用不同调频控制策略的情况下,构建频率响应模型;
根据系统的频率响应模型,获得频率动态响应指标;其中,频率动态响应指标包括负荷扰动为阶跃变化时的最大频率偏差变化率、稳态频率偏差和最大频率偏差;
以最大频率偏差最小为目标,构建调频参数优化模型;
在不同工况下选取多个典型运行状态,采用粒子群算法求解调频参数优化模型,获得不同工况及不同运行状态下的调频参数上限;其中,在粒子群算法调用系统模型前,采用最大频率偏差变化率和稳态频率偏差对粒子进行筛选;
根据不同工况及不同运行状态下的调频参数上限,生成不同工况调频参数上限曲线。
在发电工况和抽水工况采用不同调频控制策略的情况下,构建频率响应模型,包括:
在发电工况和抽水工况采用不同调频控制策略的情况下,基于传统电网的低阶频率响应模型,将发电工况下因调频造成的附加功率变化量看作负的负荷变化量,将抽水工况下由于附加转速变化造成的功率变化量以及由调频造成的功率变化量之和看作负荷变化量,构建频率响应模型。
发电工况下,采用传统调频方法;
抽水工况的调频方法包括:
对频率偏差进行PD控制,生成附加转速指令和附加有功功率指令;
将附加有功功率指令和初始有功功率指令叠加,生成新的有功功率指令;
将新的有功功率指令传输给水泵水轮机的有功控制器,并根据新的有功功率指令和双馈型变速抽水蓄能机组运行水头,生成水泵水轮机的最优转速指令;
将最优转速指令和附加转速指令叠加,生成新的转速指令,并将新的转速指令作为变频器的控制目标。
频率响应模型为:
Figure PCTCN2022124295-appb-000001
其中,ΔP L为负荷扰动,ΔP m为火电机组输出功率改变量,H G为火电机组的等效惯性时间常数,D G为等效阻尼系数,s为比例系数,Δf为频率偏差,k为水泵输出功率曲线在水泵最佳运行点处的斜率,K p为发电工况下传统调频的比例系数,K d为发电工况下传统调频的微分系数,K pd为抽水工况下有功处调频的微分系数,K pp为抽水工况下有功处调频的比例系数,K ωd为抽水工况下转速处调频的微分系数,K ωp为抽水工况下转速处调频的比例系数。
负荷扰动为阶跃变化ΔP step时的最大频率偏差变化率
Figure PCTCN2022124295-appb-000002
稳态频率偏差Δf st和最大频率偏差Δf max为:
Figure PCTCN2022124295-appb-000003
Figure PCTCN2022124295-appb-000004
Figure PCTCN2022124295-appb-000005
其中:
中间变量
Figure PCTCN2022124295-appb-000006
中间变量
Figure PCTCN2022124295-appb-000007
中间变量
Figure PCTCN2022124295-appb-000008
中间变量
Figure PCTCN2022124295-appb-000009
中间变量
Figure PCTCN2022124295-appb-000010
中间变量
Figure PCTCN2022124295-appb-000011
中间变量
Figure PCTCN2022124295-appb-000012
中间变量
Figure PCTCN2022124295-appb-000013
中间变量
Figure PCTCN2022124295-appb-000014
中间变量
Figure PCTCN2022124295-appb-000015
下标1表示发电工况下的参数,下标2表示抽水工况下的参数,K m为火电机组的机械功率增益系数,R为调差系数,F H为原动机高压缸的输出功率比例,T R为原动机中压缸的再热时间常数。
采用最大频率偏差变化率和稳态频率偏差对粒子进行筛选包括:
若粒子对应的频率偏差变化率和稳态频率偏差均超过相应的阈值,则剔除该粒子。
调频参数优化模型为:
obj=min(Δf max)
ω rmin≤ω r≤ω rmax
P s≤P max
其中,obj为目标函数,Δf max为最大频率偏差,ω r为双馈型变速抽水蓄能 机组的转速,ω rmax为ω r的上限,ω rmin为ω r的下限,P s为双馈型变速抽水蓄能机组的输入/输出有功功率,P max为P s的上限。
双馈型变速抽水蓄能机组自适应变参数调频装置,包括:
检测模块:检测双馈型变速抽水蓄能机组的转速、频率偏差和频率偏差变化率;
自适应参数获取模块:响应于频率偏差超出死区,根据转速从预先生成的不同工况调频参数上限曲线中获取相应的调频参数上限,并根据频率偏差变化率确定调频参数上限的正负,将带正负的调频参数上限作为调频所用的参数;其中,不同工况调频参数上限曲线为不同工况下转速与调频参数上限之间的关系曲线。
一种存储一个或多个程序的计算机可读存储介质,所述一个或多个程序包括指令,所述指令当由计算设备执行时,使得所述计算设备执行双馈型变速抽水蓄能机组自适应变参数调频方法。
本发明所达到的有益效果:本发明预先生成不同工况调频参数上限曲线,通过实时检测的双馈型变速抽水蓄能机组转速、频率偏差和频率偏差变化率,从曲线中获取相应的调频参数上限,并将调频参数上限作为相应的调频参数上限,可以保证机组在不同状态下的稳定运行,可以最大程度利用机组的调频容量,使其在不同工况不同运行状态下均能具备良好的调频性能。
附图说明
图1为本发明方法的具体流程图;
图2为发电工况下的调频控制策略;
图3为抽水工况下的调频控制策略;
图4为频率响应模型原理图;
图5为仿真的系统模型;
图6为粒子群算法收敛情况;
图7(a)为发电工况下的调频参数上限曲线;
图7(b)为抽水工况下的调频参数上限曲线;
图8(a)为次同步发电工况下的频率响应曲线;
图8(b)为次同步发电工况下的有功功率响应曲线;
图8(c)为次同步发电工况下的转速响应曲线;
图9(a)为超同步发电工况下的频率响应曲线;
图9(b)为超同步发电工况下的有功功率响应曲线;
图9(c)为超同步发电工况下的转速响应曲线;
图10(a)为发电工况下的最大频率偏差对比图;
图10(b)为发电工况下的稳态频率偏差对比图;
图10(c)为发电工况下的频率稳定时间对比图;
图11(a)为次同步抽水工况下的频率响应曲线;
图11(b)为次同步抽水工况下的有功功率响应曲线;
图11(c)为次同步抽水工况下的转速响应曲线;
图12(a)为超同步抽水工况下的频率响应曲线;
图12(b)为超同步抽水工况下的有功功率响应曲线;
图12(c)为超同步抽水工况下的转速响应曲线;
图13(a)为抽水工况下的最大频率偏差对比图;
图13(b)为抽水工况下的稳态频率偏差对比图;
图13(c)为抽水工况下的频率稳定时间对比图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
双馈型变速抽水蓄能机组自适应变参数调频方法,包括以下步骤:
步骤1,检测双馈型变速抽水蓄能机组的转速、频率偏差和频率偏差变化率;
步骤2,响应于频率偏差超出死区,根据转速从预先生成的不同工况调频 参数上限曲线中获取相应的调频参数上限,并根据频率偏差变化率确定调频参数上限的正负,将带正负的调频参数上限作为调频所用的参数;其中,不同工况调频参数上限曲线为不同工况下转速与调频参数上限之间的关系曲线。
上述方法预先生成不同工况调频参数上限曲线,通过实时检测双馈型变速抽水蓄能机组转速、频率偏差和频率偏差变化率,从曲线中获取相应的调频参数上限,并将调频参数上限作为相应的调频参数上限,可以保证机组在不同状态下的稳定运行,可以最大程度利用机组的调频容量,使其在不同工况不同运行状态下均能具备良好的调频性能。
双馈型变速抽水蓄能机组的工况一般包括发电工况和抽水工况,在不同的工况下,这里采用不同的调频控制策略,可以利用双馈型变速抽水蓄能机组的运行控制特性,使其在不同工况下均能快速参与电网调频;调频控制策略具体见图2和3,图中Q s_ref为无功功率指令,Q s为实际无功功率,Z为导叶开度。
在发电工况下,构建图2的调频控制策略,在双馈型变速抽水蓄能机组采用功率优先控制策略的基础上选用传统调频方法,将频率偏差Δf通过PD控制器形成附加有功功率指令ΔP,用公式可以表示为:ΔP=(K p+K ds)Δf,s为比例系数,K p为发电工况下传统调频的比例系数,K d为发电工况下传统调频的微分系数。
在发电工况调频策略下,双馈型变速抽水蓄能机组的输出功率改变量可以表示为ΔP DFPSU_gen=(K p+K ds)Δf。
在抽水工况下,构建图3的调频控制策略,此时双馈型变速抽水蓄能机组采用转速优先控制策略,将转速作为变频器的控制目标实现快速调节,有功功率则由水泵处的有功控制器控制,为使机组在频率产生偏差后能够快速响应,抽水工况的调频方法具体可以如下:
11)对频率偏差Δf进行PD控制(即将Δf输入PD控制器),生成附加转速指令Δω和附加有功功率指令ΔP,用公式可以表示为:
Δω=(K ωp+K ωds)Δf
ΔP=(K pp+K pds)Δf
其中,K pd为抽水工况下有功处调频的微分系数,K pp为抽水工况下有功处调频的比例系数,K ωd为抽水工况下转速处调频的微分系数,K ωp为抽水工况下转速处调频的比例系数。
12)将附加有功功率指令ΔP和初始有功功率指令P 0_ref叠加,生成新的有功功率指令P s_ref
13)将新的有功功率指令P s_ref传输给水泵水轮机的有功控制器,并根据新的有功功率指令P s_ref和双馈型变速抽水蓄能机组运行水头H,生成水泵水轮机的最优转速指令ω 0_ref,具体将P s_ref和H输入水泵水轮机的最佳运行点选择模块形成最优转速指令。
14)将最优转速指令ω 0_ref和附加转速指令叠加Δω,生成新的转速指令ω r_ref,并将新的转速指令作为变频器的控制目标,实现快速调节。
在抽水工况调频策略下,双馈型变速抽水蓄能机组的输入功率改变量不仅包括根据频率偏差直接得到的附加有功功率,还包括由转速改变引起的有功功率变化。由于水泵输出功率可以表示为有关转速的多项式,出于简化考虑,对其线性化得到转速变化Δω r引起的有功功率变化量ΔP mech=kΔω r,其中,k为水泵输出功率曲线在水泵最佳运行点处的斜率,由此得到双馈型变速抽水蓄能机组的输入功率改变量表示为ΔP DFPSU_mot=-[(K pp+K pds)+k(K ωp+K ωds)]Δf。
因此在发电工况和抽水工况采用不同调频控制策略的情况下,基于传统电网的低阶频率响应模型,将发电工况下因调频造成的附加功率变化量看作负的负荷变化量,将抽水工况下由于附加转速变化造成的功率变化量以及由调频造成的功率变化量之和看作负荷变化量,可以构建频率响应模型。
将双馈型变速抽水蓄能机组的功率改变量代入图4的频率响应模型,整理可得:
Figure PCTCN2022124295-appb-000016
其中,ΔP L为负荷扰动,ΔP m为火电机组输出功率改变量,H G为火电机组的等效惯性时间常数,D G为等效阻尼系数。
基于上述模型公式,可获得负荷扰动为阶跃变化时的最大频率偏差变化率、稳态频率偏差和最大频率偏差等频率动态响应指标,具体如下:
设置负荷扰动ΔP L为阶跃变化ΔP step,最大频率偏差变化率
Figure PCTCN2022124295-appb-000017
为:
Figure PCTCN2022124295-appb-000018
基于终值定理可获得的稳态频率偏差Δf st为:
Figure PCTCN2022124295-appb-000019
经过拉普拉斯反变换并通过求取极值可获得的最大频率偏差Δf max为:
Figure PCTCN2022124295-appb-000020
其中:
中间变量
Figure PCTCN2022124295-appb-000021
中间变量
Figure PCTCN2022124295-appb-000022
中间变量
Figure PCTCN2022124295-appb-000023
中间变量
Figure PCTCN2022124295-appb-000024
中间变量
Figure PCTCN2022124295-appb-000025
中间变量
Figure PCTCN2022124295-appb-000026
中间变量
Figure PCTCN2022124295-appb-000027
中间变量
Figure PCTCN2022124295-appb-000028
中间变量
Figure PCTCN2022124295-appb-000029
中间变量
Figure PCTCN2022124295-appb-000030
下标1表示发电工况下的参数,下标2表示抽水工况下的参数,K m为火电机组的机械功率增益系数,R为调差系数,F H为原动机高压缸的输出功率比例,T R为原动机中压缸的再热时间常数。
以最大频率偏差最小为目标,调频过程中双馈型变速抽水蓄能机组的转速及有功功率始终不超出允许限值为约束条件,可以构建以下调频参数优化模型:
obj=min(Δf max)
ω rmin≤ω r≤ω rmax
P s≤P max
其中,obj为目标函数,Δf max为最大频率偏差,ω r为双馈型变速抽水蓄能机组的转速,ω rmax为ω r的上限,ω rmin为ω r的下限,P s为双馈型变速抽水蓄能机组的输入/输出有功功率,P max为P s的上限。
在不同工况下选取多个典型运行状态,采用粒子群算法求解调频参数优化模型,获得不同工况及不同运行状态下的调频参数上限。
为了提高优化效率,需要对传统粒子群算法进行改进,具体根据最大频率偏差变化率和稳态频率偏差的表达式,在调用系统模型前对粒子进行初步筛选,从而提高初始种群质量,从而提高算法的收敛速度;其中,筛选的原则为:若粒子对应的最大频率偏差变化率和稳态频率偏差均超过相应的阈值,则剔除该粒子。
改进的粒子群算法调用系统模型,计算粒子群的个体及全局最优适应度值,由此对粒子进行速度及位置更新,往复循环直到满足终止条件,所得优化结果即为调频参数上限。
在发电和抽水工况下分别选取多个典型运行状态,利用改进粒子群算法得到不同工况及运行状态下的调频参数上限,即不同转速及有功功率下的调频参数上限,并进行插值处理。由于双馈型变速抽水蓄能机组具有最佳运行点追踪功能,其转速与有功功率一一对应,最终可以绘制得到发电和抽水工况下的转速与调频参数上限之间的关系曲线,即生成不同工况调频参数上限曲线。
上述不同工况调频参数上限曲线可预先离线生成,基于该曲线可在线实时自适应变参数调频控制,过程如图1所示:
1)在机组运行过程中,实时检测双馈型变速抽水蓄能机组的转速ω r、频率偏差Δf和频率偏差变化率dΔf/dt。
2)若频率偏差超出死区,Δf>0.05Hz或Δf<-0.05Hz,转至3),否则,本周期结束,转至下一计算周期,该周期一般为T s,即调频参数每隔T s调整一次。
3)根据转速从预先生成的不同工况调频参数上限曲线中获取相应的调频参数上限;发电工况下,获取K p和K d的上限,在抽水工况下,获取K pd、K pp、K ωd和K ωp的上限。
4)若dΔf/dt大于等于0,那么微分系数上限取正值,即发电工况下的K d上限,抽水工况下的K pd和K ωd上限;若dΔf/dt小于0,那么微分系数上限取负值,即发电工况下的K d上限,抽水工况下的K pd和K ωd上限;在上述两种情况下,比例系数上限无需调整。
将带正负的调频参数上限作为调频所用的参数,实现了调频参数的自适应调整。
上述方法通过离线生成不同工况调频参数上限曲线,在调频过程中实时查询曲线来自适应调整调频参数,可以使机组在全调频阶段寻找适应其运行状态的参数,从减小最大频率偏差和稳态频率偏差、以及缩短频率恢复时间等角度提高机组的调频能力。
为了验证上述方法,在PSCAD/EMTDC平台上搭建如图5所示的一台双馈型变速抽水蓄能机组接入四机两区系统的仿真模型(即上述的系统模型),图5中G1、G2、G3、G4分别表示一台发电机,通过设置负荷突增10%来观察系统的频率动态响应特性,具体仿真参数见表1。
表1 双馈型变速抽水蓄能机组仿真参数
Figure PCTCN2022124295-appb-000031
双馈型变速抽水蓄能机组在发电工况下采用图2策略,在抽水工况下则采用图3的策略。构建含双馈型变速抽水蓄能机组的频率响应模型,推导出最大频率偏差变化率、稳态频率偏差以及最大频率偏差等频率动态指标的表达式。
进一步利用改进粒子群算法,调用设置为发电与抽水工况典型运行状态的系统模型,获得不同工况典型运行状态下的调频参数上限,并作插值处理,进而得到不同工况调频参数上限曲线,即图7(a)和图7(b);其中,某一具体运行 工况下改进粒子群算法与原粒子群算法的收敛情况对比如图6所示,改进的算法可以有效提高算法的收敛速度。
从图7(a)和图7(b)可以看出,在不同工况不同运行状态下,机组能够维持转速及功率不超出允许范围的调频参数上限存在明显差异,因此在机组在不同状态下参与电网调频时,应当注意适时调整调频参数,保证其安全稳定运行。进一步采用图1的方法获得当前周期的调频参数。
为验证方法在不同工况不同运行状态下均能提高双馈型变速抽水蓄能机组的调频能力,在发电和抽水工况下分别设置典型算例,并与传统调频控制作对照,通过对比分析,验证所提方法及变参数设置的有效性。
其中传统调频控制的参数固定,比例系数K′ p=P N*f N,微分系数K′ d=2H′S N/f N,其中,σ *为调差系数,H′为双馈型变速抽水蓄能机组固有惯性时间常数,P N为额定有功功率,S N为额定视在功率,f N为额定频率。
算例1(次同步发电工况):双馈型变速抽水蓄能机组初始输出有功功率指令为0.6pu,对应最优转速为0.97pu。根据本发明方法可得调频过程中各参数的变化情况,如表2所示。
表2 发电工况下的调频参数(有功功率为0.6pu)
t/s ω r/pu K p K d
20 0.9700 1.5794 0.4905
25 0.9795 1.8895 0.7113
30 0.9883 2.2084 -0.9312
35 0.9933 2.3566 -1.0268
40 0.9915 2.3042 -0.9938
45 0.9907 2.2833 -0.9780
50 0.9907 2.2833 -0.9780
双馈型变速抽水蓄能机组采用不同调频策略时,各物理量的响应情况如图8(a)~(c)所示。可见,发电工况下的双馈型变速抽水蓄能机组通过增加输出功率参与频率调节。采用本发明方法时,机组转速迅速大幅调整,最低达到 0.908pu,在调频初期提供了极大的瞬时功率,使Δf max相较采用传统调频策略时减小了0.086Hz,同时机组有功功率的增加也使得Δf st显著减小到0.065Hz。此外,由于采用变微分系数控制,机组转速得到较快恢复,频率稳定时间t有所缩短。
算例2(超同步发电工况):双馈型变速抽水蓄能机组初始输出有功功率指令为0.9pu,对应最优转速为1.06pu。根据本发明方法可得调频过程中各参数的变化情况,如表3所示。
表3 发电工况下的调频参数(有功功率为0.9pu)
t/s ω r/pu K p K d
20 1.0600 1.7173 0.5140
25 1.0618 1.7004 0.5031
30 1.0881 1.5083 -0.3752
35 1.0835 1.5389 -0.3961
40 1.0808 1.5528 -0.4060
45 1.0802 1.5563 -0.4084
50 1.0803 1.5564 -0.4092
双馈型变速抽水蓄能机组采用不同调频策略时,各物理量的响应情况如图9(a)~(c)所示。可见,超同步发电工况下,采用本发明方法同样能使机组在应对相同频率偏差时产生更大的转速及有功功率改变量,从而显著减小Δf max和Δf st
发电工况不同运行状态下的频率响应指标对比如图10(a)~(c)所示。可见,相比于采用参数固定的传统调频策略,采用本发明方法时系统的Δf max和Δf st均显著减小,且对于缩短频率稳定时间t也有一定作用。其中,Δf max在次同步状态下由0.229Hz下降至0.143Hz,降低约37.55%,在超同步状态下也下降了0.094Hz(约41.59%);而Δf st在两种运行状态下均降低了24%以上。
算例3(次同步抽水工况):双馈型变速抽水蓄能机组初始输入有功功率指令为-0.6pu(以负号表示输入),对应最优转速为0.94pu。根据本发明方法可得调频过程中各参数的变化情况,如表4所示。
表4 抽水工况下的调频参数(有功功率为-0.6pu)
t/s ω r/pu K pp K pd K ωp K ωd
20 0.9401 1.1669 1.1122 0.7293 1.1076
25 0.9100 0.8024 0.8862 0.1586 0.3378
30 0.9130 0.8183 -0.8959 0.1835 -0.3710
35 0.9202 0.9083 -0.9501 0.3254 -0.5577
40 0.9185 0.8901 -0.9392 0.2967 -0.5201
45 0.9210 0.9221 -0.9584 0.3472 -0.5863
50 0.9216 0.9301 -0.9632 0.3598 -0.6028
双馈型变速抽水蓄能机组采用不同调频策略时,各物理量的响应情况如图11(a)~(c)所示。可见,抽水工况下双馈型变速抽水蓄能机组通过减小输入有功功率来提高频率水平。传统调频因水泵响应速度较慢,在频率发生偏差时不能及时调节机组功率,对应Δf max仍然较大。而采用本发明方法时,机组在检测到频率偏差后可以率先通过快速调节转速改变输入有功功率,使Δf max显著降低。与此同时,机组稳态有功功率和转速数值的减小,也使Δf st相比采用传统控制时有所下降。
算例4(超同步抽水工况):双馈型变速抽水蓄能机组初始输入有功功率指令为-0.9pu,对应最优转速为1.05pu。根据本发明方法可得调频过程中各参数的变化情况,如表5所示。
表5 抽水工况下的调频参数(有功功率为-0.9pu)
t/s ω r/pu K pp K pd K ωp K ωd
20 1.0500 1.2948 1.0186 0.8036 1.4139
25 1.0060 1.3894 1.2094 1.0065 1.6726
30 1.0217 1.3549 -1.1371 0.9264 -1.5805
35 1.0275 1.3417 -1.1093 0.8965 -1.5435
40 1.0275 1.3417 -1.1093 0.8965 -1.5435
45 1.0303 1.3364 -1.0984 0.8850 -1.5288
50 1.0307 1.3351 -1.0906 0.8822 -1.5251
双馈型变速抽水蓄能机组采用不同调频策略时,各物理量的响应情况如图12(a)~(c)所示。可见,超同步抽水工况下,采用本发明方法同样能使机组通过 调节转速快速参与调频,并大幅增加机组的功率改变量,从而减小Δf max和Δf st
抽水工况不同运行状态下的频率响应指标对比如图13(a)~(c)所示。可见,相比于采用参数固定的传统调频策略,采用本发明方法时,系统的Δf max和Δf st均显著减小。其中Δf max在两种运行状态下分别下降了28.09%(次同步)和35.27%(超同步),Δf st的降低也达到了20%以上。与此同时,频率稳定时间t缩短了8到10s。
结合上述四个算例可知,本发明方法在发电和抽水工况不同运行状态下都具有较好效果,可以在保证机组安全稳定运行的基础上最大程度发挥其调频能力,有效减小Δf max和Δf st
基于相同的技术方案,本发明还公开了相应的软件装置,双馈型变速抽水蓄能机组自适应变参数调频装置,包括:
检测模块:检测双馈型变速抽水蓄能机组的转速、频率偏差和频率偏差变化率。
自适应参数获取模块:响应于频率偏差超出死区,根据转速从预先生成的不同工况调频参数上限曲线中获取相应的调频参数上限,并根据频率偏差变化率确定调频参数上限的正负,将带正负的调频参数上限作为调频所用的参数;其中,不同工况调频参数上限曲线为不同工况下转速与调频参数上限之间的关系曲线。
上述软件装置的各模块的数据处理流程与方法的一致,这里不重复描述了。
基于相同的技术方案,本发明还公开了一种存储一个或多个程序的计算机可读存储介质,所述一个或多个程序包括指令,所述指令当由计算设备执行时,使得所述计算设备执行双馈型变速抽水蓄能机组自适应变参数调频方法。
基于相同的技术方案,本发明还公开了一种计算设备,包括一个或多个处理器、一个或多个存储器以及一个或多个程序,其中一个或多个程序存储在所述一个或多个存储器中并被配置为由所述一个或多个处理器执行,所述一个或 多个程序包括用于执行双馈型变速抽水蓄能机组自适应变参数调频方法的指令。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上仅为本发明的实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本发明的权利要求范围之内。

Claims (10)

  1. 双馈型变速抽水蓄能机组自适应变参数调频方法,其特征在于,包括:
    检测双馈型变速抽水蓄能机组的转速、频率偏差和频率偏差变化率;
    响应于频率偏差超出死区,根据转速从预先生成的不同工况调频参数上限曲线中获取相应的调频参数上限,并根据频率偏差变化率确定调频参数上限的正负,将带正负的调频参数上限作为调频所用的参数;其中,不同工况调频参数上限曲线为不同工况下转速与调频参数上限之间的关系曲线。
  2. 根据权利要求1所述的双馈型变速抽水蓄能机组自适应变参数调频方法,其特征在于,工况包括发电工况和抽水工况,预先生成不同工况调频参数上限曲线的过程包括:
    在发电工况和抽水工况采用不同调频控制策略的情况下,构建频率响应模型;
    根据系统的频率响应模型,获得频率动态响应指标;其中,频率动态响应指标包括负荷扰动为阶跃变化时的最大频率偏差变化率、稳态频率偏差和最大频率偏差;
    以最大频率偏差最小为目标,构建调频参数优化模型;
    在不同工况下选取多个典型运行状态,采用粒子群算法求解调频参数优化模型,获得不同工况及不同运行状态下的调频参数上限;其中,在粒子群算法调用系统模型前,采用最大频率偏差变化率和稳态频率偏差对粒子进行筛选;
    根据不同工况及不同运行状态下的调频参数上限,生成不同工况调频参数上限曲线。
  3. 根据权利要求2所述的双馈型变速抽水蓄能机组自适应变参数调频方法,其特征在于,在发电工况和抽水工况采用不同调频控制策略的情况下,构建频率响应模型,包括:
    在发电工况和抽水工况采用不同调频控制策略的情况下,基于传统电网的低阶频率响应模型,将发电工况下因调频造成的附加功率变化量看作负的负荷 变化量,将抽水工况下由于附加转速变化造成的功率变化量以及由调频造成的功率变化量之和看作负荷变化量,构建频率响应模型。
  4. 根据权利要求2或3所述的双馈型变速抽水蓄能机组自适应变参数调频方法,其特征在于,发电工况下,采用传统调频方法;
    抽水工况的调频方法包括:
    对频率偏差进行PD控制,生成附加转速指令和附加有功功率指令;
    将附加有功功率指令和初始有功功率指令叠加,生成新的有功功率指令;
    将新的有功功率指令传输给水泵水轮机的有功控制器,并根据新的有功功率指令和双馈型变速抽水蓄能机组运行水头,生成水泵水轮机的最优转速指令;
    将最优转速指令和附加转速指令叠加,生成新的转速指令,并将新的转速指令作为变频器的控制目标。
  5. 根据权利要求4所述的双馈型变速抽水蓄能机组自适应变参数调频方法,其特征在于,频率响应模型为:
    Figure PCTCN2022124295-appb-100001
    其中,ΔP L为负荷扰动,ΔP m为火电机组输出功率改变量,H G为火电机组的等效惯性时间常数,D G为等效阻尼系数,s为比例系数,Δf为频率偏差,k为水泵输出功率曲线在水泵最佳运行点处的斜率,K p为发电工况下传统调频的比例系数,K d为发电工况下传统调频的微分系数,K pd为抽水工况下有功处调频的微分系数,K pp为抽水工况下有功处调频的比例系数,K ωd为抽水工况下转速处调频的微分系数,K ωp为抽水工况下转速处调频的比例系数。
  6. 根据权利要求5所述的双馈型变速抽水蓄能机组自适应变参数调频方法,其特征在于,负荷扰动为阶跃变化ΔP step时的最大频率偏差变化率
    Figure PCTCN2022124295-appb-100002
    稳态频率偏差Δf st和最大频率偏差Δf max为:
    Figure PCTCN2022124295-appb-100003
    Figure PCTCN2022124295-appb-100004
    Figure PCTCN2022124295-appb-100005
    其中:
    中间变量
    Figure PCTCN2022124295-appb-100006
    中间变量
    Figure PCTCN2022124295-appb-100007
    中间变量
    Figure PCTCN2022124295-appb-100008
    中间变量
    Figure PCTCN2022124295-appb-100009
    中间变量
    Figure PCTCN2022124295-appb-100010
    中间变量
    Figure PCTCN2022124295-appb-100011
    中间变量
    Figure PCTCN2022124295-appb-100012
    中间变量
    Figure PCTCN2022124295-appb-100013
    中间变量
    Figure PCTCN2022124295-appb-100014
    中间变量
    Figure PCTCN2022124295-appb-100015
    下标1表示发电工况下的参数,下标2表示抽水工况下的参数,K m为火电机组的机械功率增益系数,R为调差系数,F H为原动机高压缸的输出功率比例,T R为原动机中压缸的再热时间常数。
  7. 根据权利要求2所述的双馈型变速抽水蓄能机组自适应变参数调频方法,其特征在于,采用最大频率偏差变化率和稳态频率偏差对粒子进行筛选包括:
    若粒子对应的最大频率偏差变化率和稳态频率偏差均超过相应的阈值,则剔除该粒子。
  8. 根据权利要求2所述的双馈型变速抽水蓄能机组自适应变参数调频方法,其特征在于,调频参数优化模型为:
    obj=min(Δf max)
    ω rmin≤ω r≤ω rmax
    P s≤P max
    其中,obj为目标函数,Δf max为最大频率偏差,ω r为双馈型变速抽水蓄能机组的转速,ω rmax为ω r的上限,ω rmin为ω r的下限,P s为双馈型变速抽水蓄能机组的输入/输出有功功率,P max为P s的上限。
  9. 双馈型变速抽水蓄能机组自适应变参数调频装置,其特征在于,包括:
    检测模块:检测双馈型变速抽水蓄能机组的转速、频率偏差和频率偏差变化率;
    自适应参数获取模块:响应于频率偏差超出死区,根据转速从预先生成的不同工况调频参数上限曲线中获取相应的调频参数上限,并根据频率偏差变化率确定调频参数上限的正负,将带正负的调频参数上限作为调频所用的参数;其中,不同工况调频参数上限曲线为不同工况下转速与调频参数上限之间的关系曲线。
  10. 一种存储一个或多个程序的计算机可读存储介质,其特征在于,所述一个或多个程序包括指令,所述指令当由计算设备执行时,使得所述计算设备执行根据权利要求1至8所述的方法中的任一方法。
PCT/CN2022/124295 2022-07-04 2022-10-10 双馈型变速抽水蓄能机组自适应变参数调频方法及装置 WO2024007465A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210777047.3A CN114844064B (zh) 2022-07-04 2022-07-04 双馈型变速抽水蓄能机组自适应变参数调频方法及装置
CN202210777047.3 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024007465A1 true WO2024007465A1 (zh) 2024-01-11

Family

ID=82573716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124295 WO2024007465A1 (zh) 2022-07-04 2022-10-10 双馈型变速抽水蓄能机组自适应变参数调频方法及装置

Country Status (2)

Country Link
CN (1) CN114844064B (zh)
WO (1) WO2024007465A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117739991A (zh) * 2024-02-07 2024-03-22 华侨大学 一种挖掘机最优作业轨迹规划方法、装置、设备及介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114844064B (zh) * 2022-07-04 2022-09-02 河海大学 双馈型变速抽水蓄能机组自适应变参数调频方法及装置
CN115387953B (zh) * 2022-08-15 2023-07-04 中国水利水电科学研究院 变速可逆式水泵水轮机调节系统入力控制方法及装置
US20240061412A1 (en) * 2022-08-16 2024-02-22 General Electric Company Trip predictor algorithm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005503A1 (ja) * 2011-07-06 2013-01-10 株式会社日立製作所 可変速発電電動機の運転制御装置および運転制御方法
CN110120677A (zh) * 2019-04-29 2019-08-13 南方电网调峰调频发电有限公司 双馈可变速抽水蓄能机组的自适应动态虚拟惯量调频方法
CN111027177A (zh) * 2019-11-08 2020-04-17 华中科技大学 一种抽水蓄能机组调频参数优化方法及调频方法
CN114844064A (zh) * 2022-07-04 2022-08-02 河海大学 双馈型变速抽水蓄能机组自适应变参数调频方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712101B (zh) * 2017-03-06 2019-09-03 重庆大学 一种双馈抽水蓄能机组的虚拟惯性控制系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005503A1 (ja) * 2011-07-06 2013-01-10 株式会社日立製作所 可変速発電電動機の運転制御装置および運転制御方法
CN110120677A (zh) * 2019-04-29 2019-08-13 南方电网调峰调频发电有限公司 双馈可变速抽水蓄能机组的自适应动态虚拟惯量调频方法
CN111027177A (zh) * 2019-11-08 2020-04-17 华中科技大学 一种抽水蓄能机组调频参数优化方法及调频方法
CN114844064A (zh) * 2022-07-04 2022-08-02 河海大学 双馈型变速抽水蓄能机组自适应变参数调频方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117739991A (zh) * 2024-02-07 2024-03-22 华侨大学 一种挖掘机最优作业轨迹规划方法、装置、设备及介质
CN117739991B (zh) * 2024-02-07 2024-04-30 华侨大学 一种挖掘机最优作业轨迹规划方法、装置、设备及介质

Also Published As

Publication number Publication date
CN114844064A (zh) 2022-08-02
CN114844064B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2024007465A1 (zh) 双馈型变速抽水蓄能机组自适应变参数调频方法及装置
WO2021164112A1 (zh) 风电场优化配置储能作为黑启动电源的频率控制方法及系统
CN109861251B (zh) 一种用于微网暂稳态频率优化的双馈风机综合控制方法
CN110890765B (zh) 双馈风机虚拟惯量调频的动态转速保护方法及系统
CN110299712B (zh) 一种直驱风机次同步振荡的控制方法及系统
CN110429668B (zh) 减载风电机组变速变桨协调优化频率控制方法
CN109787274B (zh) 一种虚拟同步控制方法及转子侧变频器控制器
WO2023092783A1 (zh) 一种可抑制多扰动因素的风机模糊自适应变桨距控制方法
CN113315179A (zh) 一种vsg虚拟惯量和阻尼协同自适应控制系统及方法
CN112994043A (zh) 自同步双馈风电机组惯量与一次调频的控制方法及系统
CN109026758A (zh) 一种用于控制抽蓄机组水泵工况启动过程的方法及装置
CN112271760A (zh) 适用于直驱风电场交流并网的调频控制方法
CN117117901A (zh) 一种海上风电柔直系统的频率控制方法
CN113765159A (zh) 基于协调控制提升新能源场站电压控制能力的方法及系统
CN113629728A (zh) 一种基于执行依赖启发式动态规划的风电机组变下垂控制方法
CN112910007A (zh) 一种基于可释放动能的双馈风机虚拟惯性控制方法
CN112769167A (zh) 一种风电火电协同调频控制方法及系统
CN114123249B (zh) 一种基于电池储能主动响应的含风电互联电力系统负荷频率控制方法
Kang et al. Neural network based pitch controller
CN114142490B (zh) 考虑水锤效应的风水协同调频控制方法、控制器及系统
CN117638997B (zh) 考虑送端风电场风速波动的直流频率控制器参数优化方法
CN112653157B (zh) 一种一次调频能力计算方法、装置及存储介质
CN113098030B (zh) 一种风电场参与一次调频的频率控制优化方法
CN117134345B (zh) 基于结构奇异值法的抑制超低频振荡的控制方法及系统
CN117791746A (zh) 考虑变量耦合的海上双馈风电机组多目标协同控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950026

Country of ref document: EP

Kind code of ref document: A1