WO2024007331A1 - Sidelink链路配置方法、装置、存储介质以及终端 - Google Patents

Sidelink链路配置方法、装置、存储介质以及终端 Download PDF

Info

Publication number
WO2024007331A1
WO2024007331A1 PCT/CN2022/104732 CN2022104732W WO2024007331A1 WO 2024007331 A1 WO2024007331 A1 WO 2024007331A1 CN 2022104732 W CN2022104732 W CN 2022104732W WO 2024007331 A1 WO2024007331 A1 WO 2024007331A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
terminal
sidelink
link
duration
Prior art date
Application number
PCT/CN2022/104732
Other languages
English (en)
French (fr)
Inventor
杨星
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/104732 priority Critical patent/WO2024007331A1/zh
Priority to CN202280002274.7A priority patent/CN115299172A/zh
Publication of WO2024007331A1 publication Critical patent/WO2024007331A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a Sidelink link configuration method, device, storage medium and terminal.
  • 5G NR New Radio, New Radio
  • Sidelink direct link
  • user terminals User Equipment, UE
  • the present disclosure provides a Sidelink link configuration method, device, storage medium and terminal.
  • a Sidelink link configuration method including:
  • the timer is configured according to the target duration of the timer.
  • determining the target duration of the timer according to the sending path of the first RRC message includes:
  • the target duration of the timer is determined based on the correspondence between different types of transmission paths and the duration of the timer.
  • determining the target duration of the timer based on the correspondence between different types of transmission paths and the duration of the timer includes:
  • the target duration of the timer is determined according to the correspondence between the first Sidelink link and the duration of the timer, wherein the first Sidelink The link is a link through which the first terminal directly sends the first RRC message to the second terminal.
  • determining the target duration of the timer based on the correspondence between different types of transmission paths and the duration of the timer includes:
  • the target duration of the timer is determined according to the correspondence between the second Sidelink link and the duration of the timer, wherein the second Sidelink
  • the link is a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal.
  • determining the target duration of the timer according to the sending path of the first RRC message includes:
  • the target duration of the timer is determined according to the type of relay terminals or the number of relay terminals included in the second Sidelink link, wherein,
  • the second Sidelink link is a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal.
  • determining the target duration of the timer according to the sending path of the first RRC message includes:
  • the target duration of the timer is determined according to the type or number of sub-links included in the second Sidelink link, wherein the The second Sidelink link is a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal.
  • determining the target duration of the timer according to the sending path of the first RRC message includes:
  • the target duration of the timer is determined according to the sending path of the first RRC message.
  • the method further includes:
  • the timer is configured according to a preset duration sent by the second terminal, wherein the preset duration is when the first terminal sends the first RRC message to the second terminal again. The corresponding duration of the timer.
  • the preset duration is sent by the second terminal to the first terminal through a second RRC message.
  • the corresponding relationship is obtained through at least one of the following steps:
  • the timer is a T400 timer.
  • the first RRC message is a Sidelink RRC reconfiguration message.
  • a Sidelink link configuration device which is applied to a first terminal and includes:
  • the determining module is configured to determine the target duration of the timer according to the sending path of the first RRC message, wherein the first RRC message is a Sidelink link message sent by the first terminal to the second terminal, and the The timer is used to indicate that a wireless link failure occurs on the Sidelink link when the timer times out;
  • a timer configuration module is configured to configure the timer according to the target duration of the timer.
  • a terminal including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute the executable instructions to implement the Sidelink link configuration method provided in the first aspect of this disclosure.
  • a computer-readable storage medium on which computer program instructions are stored.
  • the program instructions are executed by a processor, the Sidelink link configuration method provided by the first aspect of the present disclosure is implemented. step.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: by determining the target duration of the timer according to the sending path of the first RRC message, and configuring the timer according to the target duration of the timer, so that the timer The timing length can match the sending path of the first RRC message, thereby avoiding triggering the RLF of Sidelink in advance or delay.
  • Figure 1 shows an application scenario applicable to a Sidelink link configuration method according to some embodiments.
  • Figure 2 shows an application scenario applicable to a Sidelink link configuration method according to some embodiments.
  • Figure 3 is a flow chart of a Sidelink link configuration method according to some embodiments.
  • Figure 4 is a flow chart of a Sidelink link configuration method according to some embodiments.
  • Figure 5 is a flow chart of a Sidelink link configuration method according to other embodiments.
  • Figure 6 is a flow chart of a Sidelink link configuration method according to some embodiments.
  • Figure 7 is a flow chart of a Sidelink link configuration method according to some embodiments.
  • Figure 8 is a flow chart of a Sidelink link configuration method according to some embodiments.
  • Figure 9 is a flow chart of a Sidelink link configuration method according to some embodiments.
  • Figure 10 is a flow chart of a Sidelink link configuration method according to some embodiments.
  • Figure 11 is a block diagram of a Sidelink link configuration device according to some embodiments.
  • Figure 12 is a block diagram of a terminal according to some embodiments.
  • UE1 in order to support direct communication between UE1 and UE2, Sidelink technology is introduced.
  • the interface used by UE1 and UE2 is PC5.
  • UE1 can send an RRCReconfigurationSidelink message (RRC reconfiguration message) to UE2, and the RRCReconfigurationSidelink message carries configuration information sent to UE2.
  • the configuration information includes a logical channel identifier, etc.
  • UE1 After sending the RRCReconfigurationSidelink message, UE1 starts the timer.
  • the timer stops counting. If the timer times out, a wireless link failure is triggered on the Sidelink link, and the PC5 interface and the resources used for the Sidelink link are released.
  • UE2 when UE2 receives the RRCReconfigurationSidelink message sent by UE1, if the configuration information carried in the RRCReconfigurationSidelink message is applicable, it replies an RRCReconfigurationCompleteSidelink message to UE1, the configuration information takes effect, and UE1 stops the timer.
  • UE2 When UE2 receives the RRCReconfigurationSidelink message sent by UE1, if the configuration information carried in the RRCReconfigurationSidelink message is not applicable, it replies an RRCReconfigurationFailureSidelink message to UE1. The configuration information does not take effect, and UE1 stops the timer.
  • the timer duration is generally configured by the network side device or the opposite end UE.
  • the configured duration is fixed, which results in that in some cases, RLF has actually occurred in the user terminal, but because the timer is too long, the user terminal delays triggering RLF. Or, in some cases, RLF has not occurred in the user terminal, but because the timer duration is too short, the timer times out early, thus triggering the user terminal to trigger RLF in advance.
  • the present disclosure proposes a Sidelink link configuration method, by determining the target duration of the timer according to the sending path of the first RRC message, and configuring the timer duration according to the target duration of the timer. , so that the duration of the timer can be determined according to the sending path of the first RRC message, thereby avoiding triggering the Sidelink RLF in advance or delay.
  • Figure 1 illustrates an application scenario applicable to a Sidelink link configuration method according to some embodiments. For convenience of explanation, only parts related to this embodiment are shown.
  • the application scenario includes a first terminal 11 and a second terminal 12, where the first terminal 11 and the second terminal 12 can communicate through the PC5 interface and using Sidelink. It should be understood that in the application scenario shown in Figure 1, the first terminal 11 and the second terminal 12 communicate directly through Sidelink.
  • the first terminal 11 and the second terminal 12 may be user terminals (User Equipment, UE) or other terminal-side devices, such as: mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistants ( Terminal devices such as Personal Digital Assistant (PDA), Mobile Internet Device (MID), Wearable Device, smart cars, vehicle-mounted equipment or robots. It is worth noting that in this disclosure, the specific type of terminal is not limited.
  • Figure 2 illustrates an application scenario applicable to a Sidelink link configuration method according to some embodiments. For convenience of explanation, only parts related to this embodiment are shown.
  • the application scenario includes a third terminal 21, a relay terminal 22, and a fourth terminal 23.
  • the third terminal 21 and the relay terminal 22 can communicate with each other through the PC5 interface and using Sidelink.
  • the relay terminal 22 and the fourth terminal 23 can communicate through the PC5 interface and use Sidelink.
  • the third terminal 21 and the fourth terminal 23 implement Sidelink communication through the relay of the relay terminal 22.
  • This architecture is called U2U (UE to UE) relay. It is worth noting that although only one relay terminal 22 is shown in FIG. 2 , in actual application, Sidelink communication between the third terminal 21 and the fourth terminal 23 can be implemented through multiple relay terminals.
  • FIG 3 is a flow chart of a Sidelink link configuration method according to some embodiments. As shown in Figure 3, the Sidelink link configuration method can be used in the first terminal and includes the following steps.
  • step 310 determine the target duration of the timer according to the sending path of the first RRC message, where the first RRC message is a Sidelink link message sent by the first terminal to the second terminal, and the The timer is used to indicate that a wireless link failure occurs on the Sidelink link when the timer times out.
  • the first terminal may send the first RRC message to the second terminal.
  • the first RRC message may be a Sidelink RRC reconfiguration message.
  • the first RRC message may be an RRCReconfigurationSidelink message.
  • the first RRC message may carry configuration information for Sidelink communication.
  • the sending path of the first RRC message may include at least two types, namely a first Sidelink link and a second Sidelink link.
  • the first Sidelink link refers to a link through which the first terminal directly sends the first RRC message to the second terminal. In the first Sidelink link, the first terminal directly maintains a unicast connection with the second terminal. Of course, in some terms, the first Sidelink link can also be called a Sidelink direct link. It is worth noting that the first terminal directly sending the first RRC message to the second terminal means that the first terminal does not need to go through the relay terminal to send the first RRC message to the second terminal.
  • the second Sidelink link refers to a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal. In the second Sidelink link, the first terminal maintains a unicast connection with the second terminal through at least one relay terminal. Of course, in some terms, the second Sidelink link can also be called a Sidelink indirect link.
  • target duration of the timer may refer to the duration required to complete sending the first RRC message and receiving the RRC message fed back by the second terminal on the sending path.
  • step 320 the timer is configured according to the target duration of the timer.
  • configuring the timer based on the timer's target duration means setting the timer's timing duration to the target duration and starting the timer.
  • the timer is used to indicate a wireless link failure on the Sidelink link when the timer times out.
  • the timer may be a T400 timer.
  • the target duration of the timer is determined according to the sending path of the first RRC message, the timing duration of the timer is set to the target duration, and the timer is started. . If the first terminal receives the RRC message fed back by the second terminal in response to the first RRC message, the timer is stopped. For example, when the first terminal receives the RRCReconfigurationCompleteSidelink or RRCReconfigurationFailureSidelink message replied by the second terminal, the timer is stopped. If the first terminal does not receive the RRC message fed back by the second terminal, the timer times out, triggering a radio link failure (RLF) on the Sidelink link.
  • RLF radio link failure
  • stopping the timer does not mean that the configuration information carried in the first RRC message takes effect, which needs to be determined based on the information returned by the second terminal. For example, when the second terminal replies with the RRCReconfigurationCompleteSidelink message, it means that the configuration information in the first RRC message is valid and Sidelink communication is established. When the second terminal replies with the RRCReconfigurationFailureSidelink message, it means that the configuration information in the first RRC message is invalid.
  • the target duration of the timer is determined according to the transmission path of the first RRC message, and the timer is configured according to the target duration of the timer, so that the timing duration of the timer can match the transmission path of the first RRC message. , thereby avoiding triggering Sidelink's RLF in advance or delay.
  • the time required for the second Sidelink link is longer than the time required for the first Sidelink link. If a unified timer length is used, the RLF of the second Sidelink link will be advanced or the first Sidelink link will be triggered later. RLF.
  • the corresponding timer duration can be configured in a targeted manner according to different transmission paths to avoid triggering the Sidelink RLF in advance or delay.
  • FIG 4 is a flow chart of a Sidelink link configuration method according to some embodiments. As shown in Figure 4, the Sidelink link configuration method may include the following steps.
  • step 410 the target duration of the timer corresponding to the transmission path of the first RRC message is determined based on the correspondence between different types of transmission paths and the duration of the timer.
  • the first terminal may determine the target duration of the timer corresponding to the transmission path of the first RRC message based on the correspondence between different types of transmission paths and timer durations. For example, the duration of the timer corresponding to the transmission path is obtained by searching the corresponding relationship according to the transmission path of the first RRC message.
  • the type of the transmission path includes at least a first Sidelink link and a second Sidelink link.
  • the first Sidelink link refers to a link through which the first terminal directly sends the first RRC message to the second terminal. In the first Sidelink link, the first terminal directly maintains a unicast connection with the second terminal. Of course, in some terms, the first Sidelink link can also be called a Sidelink direct link. It is worth noting that the first terminal directly sending the first RRC message to the second terminal means that the first terminal does not need to go through the relay terminal to send the first RRC message to the second terminal.
  • the second Sidelink link refers to a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal. In the second Sidelink link, the first terminal maintains a unicast connection with the second terminal through at least one relay terminal. Of course, in some terms, the second Sidelink link can also be called a Sidelink indirect link.
  • the correspondence relationship includes different types of transmission paths and the duration of the timers corresponding to the transmission paths.
  • the first Sidelink link corresponds to the first duration of the timer
  • the second Sidelink link corresponds to the second duration of the timer.
  • the duration of the corresponding timer can also be matched according to the specific path of each transmission path.
  • the second Sidelink link may include a second Sidelink link composed of one relay terminal and a second Sidelink link composed of a plurality of relay terminals. Then, the second Sidelink link composed of one relay terminal can match the third duration of the timer, and the second Sidelink link composed of multiple relay terminals can match the fourth duration of the timer.
  • the third duration and the fourth duration can be obtained according to the sub-links included in the corresponding second Sidelink link.
  • the sub-link includes a link between the first terminal and the relay terminal, a link between the relay terminal and the relay terminal, and a link between the relay terminal and the second terminal.
  • the correspondence between different types of transmission paths and the duration of the timer can be obtained according to the system message sent by the network side device.
  • the first terminal can obtain the corresponding relationship from the system message sent by the network side device.
  • the system message carries the correspondence between different types of sending paths and the duration of the timer.
  • the correspondence between different types of transmission paths and timer durations can be obtained based on the RRC reconfiguration message sent by the network side device.
  • the first terminal can obtain the corresponding relationship from the RRC reconfiguration message sent by the network side device.
  • the RRC reconfiguration message carries the correspondence between different types of transmission paths and timer durations. It is worth noting that the RRC reconfiguration message can be a Sidelink RRC reconfiguration message.
  • different timer durations can be configured in advance for different types of transmission paths to obtain the corresponding relationship between different types of transmission paths and timer durations.
  • the first terminal may store corresponding relationships between different types of transmission paths and timer durations, and the corresponding relationships are preconfigured. For different types of transmission paths, the corresponding timer duration can be configured for the transmission path.
  • step 420 the timer is configured according to the target duration of the timer.
  • configuring the timer according to the timer's target duration means setting the timer's timing duration to the timer's target duration and starting the timer.
  • the timer is used to indicate a wireless link failure on the Sidelink link when the timer times out.
  • the timer may be a T400 timer.
  • step 320 in the embodiment shown in FIG. 3, which will not be described again here.
  • the target duration of the timer is determined according to the sending path of the first RRC message, and the timing duration of the timer is set to the target duration of the timer, Start the timer. If the first terminal receives the RRC message fed back by the second terminal in response to the first RRC message, the timer is stopped. For example, when the first terminal receives the RRCReconfigurationCompleteSidelink or RRCReconfigurationFailureSidelink message replied by the second terminal, the timer is stopped. If the first terminal does not receive the RRC message fed back by the second terminal, the timer times out, triggering a radio link failure (RLF) on the Sidelink link.
  • RLF radio link failure
  • stopping the timer does not mean that the configuration information carried in the first RRC message takes effect, which needs to be determined based on the information returned by the second terminal. For example, when the second terminal replies with the RRCReconfigurationCompleteSidelink message, it means that the configuration information in the first RRC message is valid and Sidelink communication is established. When the second terminal replies with the RRCReconfigurationFailureSidelink message, it means that the configuration information in the first RRC message is invalid.
  • the target duration of the timer can be determined according to the sending path of the first RRC message.
  • the target duration of the timer is determined according to the sending path of the first RRC message, and before sending the first RRC message to the second terminal again, then The target duration of the timer may be determined based on the duration sent by the second terminal.
  • the target duration of the timer is determined according to the transmission path of the first RRC message, and the timer is configured according to the target duration of the timer, so that the timing duration of the timer can match the transmission path of the first RRC message. , thereby avoiding triggering Sidelink's RLF in advance or delay.
  • the second Sidelink link takes longer than the first Sidelink link. If a unified timer length is used, the RLF of the second Sidelink link will be triggered earlier or the first Sidelink link will be triggered later. RLF.
  • the corresponding timer duration can be configured in a targeted manner according to different transmission paths to avoid triggering the Sidelink RLF in advance or delay.
  • FIG. 5 is a flow chart of a Sidelink link configuration method according to other embodiments. As shown in Figure 5, the Sidelink link configuration method may include the following steps.
  • step 510 when the sending path of the first RRC message includes the first Sidelink link, the target duration of the timer is determined based on the correspondence between the first Sidelink link and the duration of the timer. , wherein the first Sidelink link is a link through which the first terminal directly sends the first RRC message to the second terminal.
  • the first Sidelink link refers to the link through which the first terminal directly sends the first RRC message to the second terminal.
  • the first terminal directly maintains a unicast connection with the second terminal.
  • the first Sidelink link can also be called a Sidelink direct link. It is worth noting that the first terminal directly sending the first RRC message to the second terminal means that the first terminal does not need to go through the relay terminal to send the first RRC message to the second terminal.
  • the target duration of the timer corresponding to the sending path of the first RRC message is determined based on the correspondence between the first Sidelink link and the duration of the timer.
  • direct links of the first Sidelink link type may correspond to the same timer duration.
  • different direct links in the first Sidelink link may also correspond to different timer lengths.
  • the correspondence between the first Sidelink link and the timer duration can be pre-configured, or it can be obtained based on the system message sent by the network side device, or it can be based on the RRC sent by the network side device. Obtained from the reconfiguration message.
  • step 520 the timer is configured according to the target duration of the timer.
  • configuring the timer based on the timer's target duration means setting the timer's timing duration to the target duration and starting the timer.
  • the timer is used to indicate a wireless link failure on the Sidelink link when the timer times out.
  • the timer may be a T400 timer.
  • step 320 in the embodiment shown in FIG. 3, which will not be described again here.
  • the target duration of the timer can be determined based on the first Sidelink link of the first RRC message.
  • the target duration of the timer is determined based on the first Sidelink link of the first RRC message, and then the first terminal sends the second RRC message to the second terminal again.
  • the target duration of the timer may be determined based on the duration sent by the second terminal.
  • the target duration of the timer is determined based on the correspondence between the first Sidelink link and the duration of the timer, so that the timer's target duration can be The timing duration matches the duration of sending the first RRC message through the first Sidelink link, thereby avoiding early or delayed triggering of Sidelink RLF.
  • FIG. 6 is a flow chart of a Sidelink link configuration method according to some embodiments. As shown in Figure 6, the Sidelink link configuration method may include the following steps.
  • step 610 when the sending path of the first RRC message includes a second Sidelink link, the second Sidelink link is determined based on the correspondence between the second Sidelink link and the duration of the timer.
  • the second Sidelink link refers to a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal.
  • the first terminal maintains a unicast connection with the second terminal through at least one relay terminal.
  • the second Sidelink link can also be called a Sidelink indirect link.
  • the target duration of the timer corresponding to the sending path of the first RRC message is determined based on the correspondence between the second Sidelink link and the duration of the timer.
  • the type of indirect link may correspond to the same timer duration. That is, as long as it belongs to the second Sidelink link, it corresponds to the duration of the same timer.
  • different indirect links in the second Sidelink link may also correspond to different timer lengths.
  • the second Sidelink link may include a second Sidelink link composed of one relay terminal and a second Sidelink link composed of multiple relay terminals. Then, the second Sidelink link composed of one relay terminal can match the third duration of the timer, and the second Sidelink link composed of multiple relay terminals can match the fourth duration of the timer.
  • the correspondence between the second Sidelink link and the timer duration may be pre-configured, may be obtained based on the system message sent by the network side device, or may be based on the RRC sent by the network side device. Obtained from the reconfiguration message.
  • step 620 the timer is configured according to the target duration of the timer.
  • configuring the timer based on the timer's target duration means setting the timer's timing duration to the target duration and starting the timer.
  • the timer is used to indicate a wireless link failure on the Sidelink link when the timer times out.
  • the timer may be a T400 timer.
  • step 320 in the embodiment shown in FIG. 3, which will not be described again here.
  • the target duration of the timer can be determined based on the second Sidelink link of the first RRC message.
  • the target duration of the timer is determined based on the second Sidelink link of the first RRC message, and then the first terminal sends the second RRC message to the second terminal again.
  • the target duration of the timer may be determined based on the duration sent by the second terminal.
  • the target duration of the timer is determined based on the correspondence between the second Sidelink link and the duration of the timer, so that the timer's target duration can be
  • the timing duration matches the duration of sending the first RRC message through the second Sidelink link, thereby avoiding triggering the RLF of the Sidelink in advance or delay.
  • FIG. 7 is a flow chart of a Sidelink link configuration method according to some embodiments. As shown in Figure 7, the Sidelink link configuration method may include the following steps.
  • step 710 when the sending path of the first RRC message includes a second Sidelink link, the second Sidelink link is determined based on the type of relay terminals or the number of relay terminals included in the second Sidelink link.
  • the second Sidelink link refers to a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal.
  • the first terminal maintains a unicast connection with the second terminal through at least one relay terminal.
  • the second Sidelink link can also be called a Sidelink indirect link.
  • the target duration of the timer may be determined based on the types of relay terminals included in the second Sidelink link and the corresponding relationships between types of different relay terminals and the duration of the timer.
  • the type of relay terminal refers to a specific relay terminal.
  • the type of relay terminal it includes is “relay terminal A”
  • the type of relay terminal it includes is “Relay Terminal B”
  • the types of relay terminals it includes are "Relay Terminal A” and "Relay Terminal B”.
  • the corresponding relationship can be: the second Sidelink link of "first terminal---relay terminal A---second terminal” corresponds to the duration of a timer, and "first terminal---relay terminal B- --The second Sidelink link of "Second Terminal” corresponds to the duration of a timer.
  • second Sidelink links can be distinguished by the type of relay terminals included in the second Sidelink link. For example, the second Sidelink link of "first terminal---relay terminal A---second terminal” and the second sidelink link of "first terminal---relay terminal B---second terminal” If the paths are different, the corresponding timer lengths are different.
  • the correspondence between different relay terminal types and timer durations can be pre-configured, or can be obtained based on system messages sent by the network side device, or can be obtained based on system messages sent by the network side device.
  • the RRC reconfiguration message is obtained.
  • the correspondence between the types of different relay terminals and the duration of the timer can be obtained through the following steps: according to the type of the relay terminal, determine the sub-link included in the second Sidelink link, and then According to the corresponding duration of the sub-link, the duration of the corresponding timer is determined, and then the corresponding relationship is obtained according to the determined duration of the timer and the type of the relay terminal.
  • the sub-links included are "first terminal --- "Relay terminal A”, “Relay terminal A --- Relay terminal B” and "Relay terminal B --- the second terminal”.
  • the duration corresponding to each sub-link may be different, and the duration of the timer corresponding to the second Sidelink link may be obtained based on the sum of the durations corresponding to each sub-link.
  • second Sidelink links due to different numbers and/or types of relay terminals, the number and/or duration of sub-links may also be inconsistent, and the duration of the corresponding timers may also be inconsistent.
  • the second Sidelink link of "first terminal---relay terminal A---second terminal” and the second Sidelink link of "first terminal---relay terminal B---second terminal” Links have the same number of sub-links, but because the sub-link durations are inconsistent, the corresponding timer durations are also inconsistent.
  • the target duration of the timer may be determined based on the number of relay terminals included in the second Sidelink link and the correspondence between the number of different relay terminals and the duration of the timer.
  • the target duration of the timer can be found in the correspondence between the number of different relay terminals and the duration of the timer according to the number of relay terminals included in the second Sidelink link.
  • the corresponding relationship between the number of different relay terminals and the timer duration means that different numbers of relay terminals correspond to different timer durations.
  • the number of relay terminals is 2, and for “first terminal-- -The second Sidelink link of "Relay Terminal A---Second Terminal”, the number of relay terminals is 1, then "First Terminal---Relay Terminal A---Relay Terminal B---th
  • the duration of the timer corresponding to the second Sidelink link of "Second Terminal” is inconsistent with the duration of the timer corresponding to the second Sidelink link of "First Terminal --- Relay Terminal A --- Second Terminal”.
  • the correspondence between the number of different relay terminals and the duration of the timer may be pre-configured, may be obtained based on a system message sent by the network side device, or may be obtained based on a system message sent by the network side device. Obtained from RRC reconfiguration message.
  • step 720 the timer is configured according to the target duration of the timer.
  • configuring the timer based on the timer's target duration means setting the timer's timing duration to the target duration and starting the timer.
  • the timer is used to indicate a wireless link failure on the Sidelink link when the timer times out.
  • the timer may be a T400 timer.
  • step 320 in the embodiment shown in FIG. 3, which will not be described again here.
  • the target duration of the timer can be determined based on the first Sidelink link of the first RRC message.
  • the target duration of the timer is determined based on the first Sidelink link of the first RRC message, and then the first terminal sends the second RRC message to the second terminal again.
  • the target duration of the timer may be determined based on the duration sent by the second terminal.
  • the timer corresponding to the second Sidelink link is determined according to the type of relay terminals or the number of terminals included in the second Sidelink link.
  • the target duration of the timer can be determined for different second Sidelink links, so that the timing duration of the timer matches the duration of sending the first RRC message through the second Sidelink link, thereby avoiding early or delayed triggering.
  • Sidelink s RLF.
  • FIG 8 is a flow chart of a Sidelink link configuration method according to some embodiments. As shown in Figure 8, the Sidelink link configuration method may include the following steps.
  • step 810 when the sending path of the first RRC message includes a second Sidelink link, determine the type or number of sub-links included in the second Sidelink link, where the first The second Sidelink link is a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal.
  • the second Sidelink link refers to a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal.
  • the first terminal maintains a unicast connection with the second terminal through at least one relay terminal.
  • the second Sidelink link can also be called a Sidelink indirect link.
  • the type of the sublink refers to the types of the two terminals that constitute the sublink.
  • the corresponding sub-link types are also different.
  • the type of its sub-link includes "first terminal --- middle "Relay terminal A”, "Relay terminal A---Relay terminal B” and "Relay terminal B---second terminal”.
  • the target duration of the timer may be determined based on the types of sublinks included in the second Sidelink link and the correspondence between different sublink types and the duration of the timer.
  • the target duration of the timer can be found in the correspondence between different sub-link types and the duration of the timer according to the type of the sub-link included in the second Sidelink link.
  • second Sidelink links can be distinguished by the types of sub-links included in the second Sidelink link.
  • the type of its sub-link includes “first terminal --- middle "Relay terminal A”, “Relay terminal A---relay terminal B” and “relay terminal B---second terminal”, then "first terminal---relay terminal A”, "relay terminal
  • the types of sublinks of "A --- Relay Terminal B” and “Relay Terminal B --- Second Terminal” correspond to the duration of a timer.
  • the sub-link types include “first terminal --- relay terminal A” and “relay terminal A---second terminal”, then the types of sub-links of "first terminal---relay terminal A” and "relay terminal A---second terminal” correspond to the duration of a timer.
  • the correspondence between the types of different sub-links and the duration of the timer may be pre-configured, may be obtained based on a system message sent by the network side device, or may be obtained based on a system message sent by the network side device. Obtained from RRC reconfiguration message.
  • the correspondence between different sub-link types and timer durations can be obtained through the following steps: according to the sub-link type, determine the sub-links included in the second Sidelink link, and then According to the corresponding duration of the sub-link, the duration of the corresponding timer is determined, and then the corresponding relationship is obtained according to the determined duration of the timer and the type of the relay terminal.
  • the sub-link type it includes is "first terminal -- -Relay Terminal A”, “Relay Terminal A---Relay Terminal B” and "Relay Terminal B---Second Terminal”.
  • the duration corresponding to each sub-link may be different, and the duration of the timer corresponding to the second Sidelink link may be obtained based on the sum of the durations corresponding to each sub-link.
  • the target duration of the timer may be determined based on the number of sub-links included in the second Sidelink link and the correspondence between the number of different sub-links and the duration of the timer.
  • the target duration of the timer can be found in the corresponding relationship between the number of different sub-links and the duration of the timer according to the number of sub-links included in the second Sidelink link.
  • the corresponding relationship between the number of different sub-links and the timer duration means that different numbers of sub-links correspond to different timer durations.
  • the number of sub-links is 3.
  • the number of sub-links is 2, then "First Terminal---Relay Terminal A---Relay Terminal B---The The duration of the timer corresponding to the second Sidelink link of "Second Terminal” is inconsistent with the duration of the timer corresponding to the second Sidelink link of "First Terminal --- Relay Terminal A --- Second Terminal”.
  • the correspondence between the number of different sub-links and the duration of the timer may be pre-configured, may be obtained based on a system message sent by the network side device, or may be obtained based on a system message sent by the network side device. Obtained from RRC reconfiguration message.
  • step 820 the timer is configured according to the target duration of the timer.
  • configuring the timer based on the timer's target duration means setting the timer's timing duration to the target duration and starting the timer.
  • the timer is used to indicate a wireless link failure on the Sidelink link when the timer times out.
  • the timer may be a T400 timer.
  • step 320 in the embodiment shown in FIG. 3, which will not be described again here.
  • the target duration of the timer can be determined based on the first Sidelink link of the first RRC message.
  • the target duration of the timer is determined based on the first Sidelink link of the first RRC message, and then the first terminal sends the second RRC message to the second terminal again.
  • the target duration of the timer may be determined based on the duration sent by the second terminal.
  • the type corresponding to the second Sidelink link is determined according to the type or the number of sub-links included in the second Sidelink link.
  • the target duration of the timer can be determined for different second Sidelink links, so that the timing duration of the timer matches the duration of sending the first RRC message through the second Sidelink link, thereby avoiding premature or Delay triggering of Sidelink's RLF.
  • FIG 9 is a flow chart of a Sidelink link configuration method according to some embodiments. As shown in Figure 9, the Sidelink link configuration method may include the following steps.
  • step 910 when the first terminal sends the first RRC message to the second terminal for the first time, the target duration of the timer corresponding to the sending path is determined according to the sending path of the first RRC message.
  • the first terminal determines the target duration of the timer corresponding to the sending path according to the sending path of the first RRC message. It should be understood that the first time the first terminal sends the first RRC message to the second terminal refers to the first time the first terminal sends the RRC message to the second terminal.
  • the first terminal receives a message fed back by the second terminal in response to the first RRC message, the first terminal sends the first RRC message to the second terminal, which does not belong to the initial sending of the first RRC message.
  • the sending path of the first RRC message may include at least two types, namely a first Sidelink link and a second Sidelink link.
  • the first Sidelink link refers to a link through which the first terminal directly sends the first RRC message to the second terminal. In the first Sidelink link, the first terminal directly maintains a unicast connection with the second terminal. Of course, in some terms, the first Sidelink link can also be called a Sidelink direct link. It is worth noting that the first terminal directly sending the first RRC message to the second terminal means that the first terminal does not need to go through the relay terminal to send the first RRC message to the second terminal.
  • the second Sidelink link refers to a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal. In the second Sidelink link, the first terminal maintains a unicast connection with the second terminal through at least one relay terminal. Of course, in some terms, the second Sidelink link can also be called a Sidelink indirect link.
  • target duration of the timer may refer to the duration required to complete sending the first RRC message and receiving the RRC message fed back by the second terminal on the sending path.
  • the target duration of the timer corresponding to the transmission path of the first RRC message may be determined based on the correspondence between different types of transmission paths and the duration of the timer.
  • the target of the timer corresponding to the transmission path of the first RRC message is determined based on the correspondence between the first Sidelink link and the duration of the timer. duration.
  • the target of the timer corresponding to the transmission path of the first RRC message is determined based on the correspondence between the second Sidelink link and the duration of the timer. duration.
  • the target of the timer is determined according to the type of relay terminals or the number of relay terminals included in the second Sidelink link. duration.
  • the target duration of the timer is determined according to the type or the number of sub-links included in the second Sidelink link.
  • step 920 the timer is configured according to the target duration of the timer.
  • configuring the timer according to the timer's target duration means setting the timer's timing duration to the timer's target duration and starting the timer.
  • the timer is used to indicate a wireless link failure on the Sidelink link when the timer times out.
  • the timer may be a T400 timer.
  • step 320 in the embodiment shown in FIG. 3, which will not be described again here.
  • the target duration of the timer is determined according to the transmission path of the first RRC message, and the duration of the timer is configured according to the target duration of the timer, so that the timing duration of the timer can be consistent with the transmission path of the first RRC message. Match to avoid triggering Sidelink's RLF early or late.
  • FIG 10 is a flow chart of a Sidelink link configuration method according to some embodiments. As shown in Figure 10, the Sidelink link configuration method may include the following steps.
  • step 1010 when the first terminal sends the first RRC message to the second terminal for the first time, the target duration of the timer corresponding to the sending path is determined according to the sending path of the first RRC message.
  • the first terminal determines the target duration of the timer corresponding to the sending path according to the sending path of the first RRC message. It should be understood that the first time the first terminal sends the first RRC message to the second terminal refers to the first time the first terminal sends the RRC message to the second terminal.
  • the first terminal receives a message fed back by the second terminal in response to the first RRC message, the first terminal sends the first RRC message to the second terminal, which does not belong to the initial sending of the first RRC message.
  • the sending path of the first RRC message may include at least two types, namely a first Sidelink link and a second Sidelink link.
  • the first Sidelink link refers to a link through which the first terminal directly sends the first RRC message to the second terminal. In the first Sidelink link, the first terminal directly maintains a unicast connection with the second terminal. Of course, in some terms, the first Sidelink link can also be called a Sidelink direct link. It is worth noting that the first terminal directly sending the first RRC message to the second terminal means that the first terminal does not need to go through the relay terminal to send the first RRC message to the second terminal.
  • the second Sidelink link refers to a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal. In the second Sidelink link, the first terminal maintains a unicast connection with the second terminal through at least one relay terminal. Of course, in some terms, the second Sidelink link can also be called a Sidelink indirect link.
  • target duration of the timer may refer to the duration required to complete sending the first RRC message and receiving the RRC message fed back by the second terminal on the sending path.
  • the target duration of the timer corresponding to the transmission path of the first RRC message may be determined based on the correspondence between different types of transmission paths and the duration of the timer.
  • the target of the timer corresponding to the transmission path of the first RRC message is determined based on the correspondence between the first Sidelink link and the duration of the timer. duration.
  • the target of the timer corresponding to the transmission path of the first RRC message is determined based on the correspondence between the second Sidelink link and the duration of the timer. duration.
  • the target of the timer is determined according to the type of relay terminals or the number of relay terminals included in the second Sidelink link. duration.
  • the target duration of the timer is determined according to the type or the number of sub-links included in the second Sidelink link.
  • step 1020 configure a timer according to the target duration of the timer.
  • configuring the timer according to the timer's target duration means setting the timer's timing duration to the timer's target duration and starting the timer.
  • the timer is used to indicate a wireless link failure on the Sidelink link when the timer times out.
  • the timer may be a T400 timer.
  • step 320 in the embodiment shown in FIG. 3, which will not be described again here.
  • step 1030 configure the timer according to a preset duration sent by the second terminal, wherein the preset duration is when the first terminal sends the first RRC to the second terminal again. message, the corresponding duration of the timer.
  • the first terminal when the first terminal sends the first RRC message to the second terminal again, the first terminal configures the duration of the timer according to the preset duration sent by the second terminal.
  • the first terminal sending the first RRC message to the second terminal again may mean: when the first terminal receives a message fed back by the second terminal in response to the first RRC message, the first terminal sends the first RRC message to the second terminal.
  • First RRC message when the first terminal receives a message fed back by the second terminal in response to the first RRC message, the first terminal sends the first RRC message to the second terminal.
  • the first terminal when the first terminal sends the first RRC message to the second terminal for the first time, the first terminal determines the target duration of the timer based on the sending path of the first RRC message, and configures the duration of the timer to the duration of the timer. Target duration.
  • the first terminal receives the RRCReconfigurationFailureSidelink message fed back by the second terminal in response to the first RRC message, the first terminal sends the first RRC message to the second terminal again.
  • the timing duration of the timer is configured as the preset duration sent by the second terminal.
  • the preset duration may be sent by the second terminal to the first terminal through a second RRC message.
  • the second RRC message may be an RRC reconfiguration message.
  • the RRC reconfiguration message may be a Sidelink RRC reconfiguration message.
  • the target duration of the timer is determined according to the transmission path of the first RRC message, and the duration of the timer is configured according to the target duration of the timer.
  • the duration of the timer is configured according to the preset duration sent by the second terminal. This allows the timer duration to match the sending path of the first RRC message, thereby avoiding triggering the RLF of the Sidelink in advance or delay.
  • Figure 11 is a block diagram of a Sidelink link configuration device according to some embodiments.
  • the device 1100 is applied to the first terminal and may include:
  • Determination module 1101 the determination module, is configured to determine the target duration of the timer according to the sending path of the first RRC message, wherein the first RRC message is a Sidelink link message sent by the first terminal to the second terminal. , and the timer is used to indicate that a wireless link failure occurs on the Sidelink link when the timer times out;
  • the timer configuration module 1102 is configured to configure the timer according to the target duration of the timer.
  • the determining module 1101 includes:
  • the first determination subunit is configured to determine the target duration of the timer based on the correspondence between different types of transmission paths and the duration of the timer.
  • the first determining subunit includes:
  • a first duration unit configured to determine the target duration of the timer based on the correspondence between the first Sidelink link and the duration of the timer when the transmission path includes a first Sidelink link,
  • the first Sidelink link is a link through which the first terminal directly sends the first RRC message to the second terminal.
  • the first determining subunit includes:
  • the second duration unit is configured to determine the target duration of the timer based on the correspondence between the second Sidelink link and the duration of the timer when the transmission path includes a second Sidelink link,
  • the second Sidelink link is a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal.
  • the determining module 1101 includes:
  • the second determination subunit is configured to determine the timer according to the type of relay terminals or the number of relay terminals included in the second Sidelink link when the transmission path includes a second Sidelink link.
  • the determining module 1101 includes:
  • the third determination subunit is configured to determine the value of the timer according to the type or the number of sub-links included in the second Sidelink link when the transmission path includes a second Sidelink link.
  • Target duration wherein the second Sidelink link is a link through which the first terminal sends the first RRC message to the second terminal through at least one relay terminal.
  • the determining module 1101 includes:
  • the fourth determination subunit is configured to determine the target of the timer according to the transmission path of the first RRC message when the first terminal sends the first RRC message to the second terminal for the first time. duration.
  • timer configuration module 1102 is also configured to:
  • the timer is configured according to a preset duration sent by the second terminal, wherein the preset duration is when the first terminal sends the first RRC message to the second terminal again. The corresponding duration of the timer.
  • the preset duration is sent by the second terminal to the first terminal through a second RRC message.
  • the first determining subunit includes at least one of the following:
  • the first receiving unit is configured to obtain the correspondence between different types of transmission paths and the duration of the timer based on the system message sent by the network side device;
  • the second receiving unit is configured to obtain the correspondence between different types of transmission paths and the duration of the timer according to the RRC reconfiguration message sent by the network side device;
  • the third receiving unit is configured to configure different timer durations for different types of transmission paths in advance, and obtain correspondences between different types of transmission paths and timer durations.
  • the timer is a T400 timer.
  • the first RRC message is an RRC reconfiguration message.
  • the present disclosure also provides a computer-readable storage medium on which computer program instructions are stored. When the program instructions are executed by a processor, the steps of the Sidelink link configuration method provided by the present disclosure are implemented.
  • Figure 12 is a block diagram of a terminal according to some embodiments.
  • the terminal 1200 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, a smart car, etc.
  • terminal 1200 may include one or more of the following components: processing component 1202, memory 1204, power supply component 1206, multimedia component 1208, audio component 1210, input/output interface 1212, sensor component 1214, and communication component 1216.
  • Processing component 1202 generally controls the overall operations of terminal 1200, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1202 may include one or more processors 1220 to execute instructions to complete all or part of the steps of the above Sidelink link configuration method.
  • processing component 1202 may include one or more modules that facilitate interaction between processing component 1202 and other components.
  • processing component 1202 may include a multimedia module to facilitate interaction between multimedia component 1208 and processing component 1202.
  • Memory 1204 is configured to store various types of data to support operations at terminal 1200. Examples of such data include instructions for any application or method operating on the terminal 1200, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1204 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 1206 provides power to various components of terminal 1200.
  • Power supply components 1206 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to terminal 1200.
  • Multimedia component 1208 includes a screen that provides an output interface between the terminal 1200 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 1208 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 1210 is configured to output and/or input audio signals.
  • the audio component 1210 includes a microphone (MIC) configured to receive external audio signals when the terminal 1200 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signals may be further stored in memory 1204 or sent via communications component 1216 .
  • audio component 1210 also includes a speaker for outputting audio signals.
  • the input/output interface 1212 provides an interface between the processing component 1202 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 1214 includes one or more sensors for providing various aspects of status assessment for terminal 1200 .
  • the sensor component 1214 can detect the open/closed state of the terminal 1200 and the relative positioning of components, such as the display and keypad of the terminal 1200.
  • the sensor component 1214 can also detect the position change of the terminal 1200 or a component of the terminal 1200. , the presence or absence of user contact with the terminal 1200, the terminal 1200 orientation or acceleration/deceleration and the temperature change of the terminal 1200.
  • Sensor assembly 1214 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1214 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1216 is configured to facilitate wired or wireless communication between the terminal 1200 and other devices.
  • the terminal 1200 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1216 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 1216 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal 1200 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above Sidelink link configuration method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above Sidelink link configuration method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1204 including instructions, which can be executed by the processor 1220 of the terminal 1200 to complete the above Sidelink link configuration method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.
  • the code part of the Sidelink link configuration method is also provided, the computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种Sidelink链路配置方法、装置、存储介质以及终端,该方法包括:根据第一RRC消息的发送路径,确定定时器的目标时长,其中,第一RRC消息是第一终端向第二终端发送的Sidelink链路的消息,并且定时器用于在计时超时的情况下,指示Sidelink链路发生无线链路失败,根据定时器的目标时长,配置定时器。

Description

Sidelink链路配置方法、装置、存储介质以及终端 技术领域
本公开涉及通信技术领域,尤其涉及一种Sidelink链路配置方法、装置、存储介质以及终端。
背景技术
随着无线通信技术的发展,移动通信网络逐渐向5G NR(New Radio,新空口)系统演进。在5G NR系统中,引入了Sidelink(直连链路)技术,即用户终端(User Equipment,UE)之间通过无线资源直接通信。
在相关技术中,在用户终端向目标终端发送RRC重配消息以请求建立Sidelink链路时,启动定时器。在定时器超时的情况下,触发Sidelink链路发生无线链路失败(Radio Link Failur,RLF)。因此,如何配置定时器的时长成为亟需解决的技术问题。
发明内容
为克服相关技术中存在的问题,本公开提供一种Sidelink链路配置方法、装置、存储介质以及终端。
根据本公开实施例的第一方面,提供一种Sidelink链路配置方法,包括:
根据第一RRC消息的发送路径,确定定时器的目标时长,其中,所述第一RRC消息是所述第一终端向第二终端发送的Sidelink链路的消息,并且所述定时器用于在计时超时的情况下,指示所述Sidelink链路发生无线链路失败;
根据所述定时器的目标时长,配置所述定时器。
可选地,所述根据第一RRC消息的发送路径,确定定时器的目标时长,包括:
依据不同类型的发送路径与定时器的时长之间的对应关系,确定所述定时器的目标时长。
可选地,所述依据不同类型的发送路径与定时器的时长之间的对应关系,确定所述定时器的目标时长,包括:
在所述发送路径包括第一Sidelink链路的情况下,根据所述第一Sidelink链路与定时器的时长之间的对应关系,确定所述定时器的目标时长,其中,所述第一Sidelink链路为所述第一终端直接向所述第二终端发送所述第一RRC消息的链路。
可选地,所述依据不同类型的发送路径与定时器的时长之间的对应关系,确定所述定时器的目标时长,包括:
在所述发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路与定时器的时长之间的对应关系,确定所述定时器的目标时长,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
可选地,所述根据第一RRC消息的发送路径,确定定时器的目标时长,包括:
在所述发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路包括的中继终端的类型或中继终端的数量,确定所述定时器的目标时长,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
可选地,所述根据第一RRC消息的发送路径,确定定时器的目标时长,包括:
在所述发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路包括的子链路的类型或子链路的数量,确定所述定时器的目标时长,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
可选地,所述根据第一RRC消息的发送路径,确定定时器的目标时长,包括:
在所述第一终端初次向所述第二终端发送所述第一RRC消息的情况下,根据所述第一RRC消息的发送路径,确定所述定时器的目标时长。
可选地,在根据所述第一RRC消息的发送路径,确定所述定时器的目标时长之后,所述方法还包括:
根据所述第二终端发送的预设时长,配置所述定时器,其中,所述预设时长为在所述第一终端再次向所述第二终端发送所述第一RRC消息时,所述定时器对应的时长。
可选地,所述预设时长是所述第二终端通过第二RRC消息向所述第一终端发送的。
可选地,所述对应关系通过以下步骤中的至少一项获得:
根据网络侧设备发送的系统消息,获得不同类型的发送路径与定时器的时长之间的对应关系;
根据所述网络侧设备发送的RRC重配消息,获得不同类型的发送路径与定时器的时长之间的对应关系;
预先为不同类型的发送路径配置不同的定时器的时长,获得不同类型的发送路径与定时器的时长之间的对应关系。
可选地,所述定时器为T400定时器。
可选地,所述第一RRC消息为Sidelink RRC重配消息。
根据本公开实施例的第二方面,提供一种Sidelink链路配置装置,应用于第一终端,包括:
确定模块,配置为根据第一RRC消息的发送路径,确定定时器的目标时长,其中,所述第一RRC消息是所述第一终端向第二终端发送的Sidelink链路的消息,并且所述定时器用于在计时超时的情况下,指示所述Sidelink链路发生无线链路失败;
定时器配置模块,配置为根据所述定时器的目标时长,配置所述定时器。
根据本公开实施例的第三方面,提供一种终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述可执行指令,以实现本公开第一方面所提供的Sidelink链路配置方法。
根据本公开实施例的第四方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开第一方面所提供的Sidelink链路配置方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:通过根据第一RRC消息的发送路径,确定定时器的目标时长,并根据该定时器的目标时长,配置定时器,以使定时器的计时时长能够与第一RRC消息的发送路径相匹配,从而避免提前或者延迟触发Sidelink的RLF。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据一些实施例示出的一种Sidelink链路配置方法所适用的应用场景。
图2是根据又一些实施例示出的一种Sidelink链路配置方法所适用的应用场景。
图3是根据一些实施例示出的一种Sidelink链路配置方法的流程图。
图4是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。
图5是根据另一些实施例示出的一种Sidelink链路配置方法的流程图。
图6是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。
图7是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。
图8是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。
图9是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。
图10是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。
图11是根据一些实施例示出的一种Sidelink链路配置装置的框图。
图12是根据一些实施例示出的一种终端的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在相关技术中,为了支持UE1与UE2之间的直接通信,引入了Sidelink技术。其中,UE1与UE2使用的接口为PC5。在UE1与UE2建立单播连接之后,UE1可以向UE2发送RRCReconfigurationSidelink消息(RRC重配消息),在该RRCReconfigurationSidelink消息中携带发送给UE2的配置信息,该配置信息包括逻辑信道标识等。UE1在发送该RRCReconfigurationSidelink消息之后,启动定时器。
当UE1接收到UE2发送的RRCReconfigurationCompleteSidelink消息或者RRCReconfigurationFailureSidelink消息时,定时器停止计时。如果定时器超时,则触发Sidelink链路发生无线链路失败,释放PC5接口以及用于Sidelink链路的资源。
其中,当UE2接收到UE1发送的RRCReconfigurationSidelink消息时,如果RRCReconfigurationSidelink消息上携带的配置信息适用,则向UE1回复RRCReconfigurationCompleteSidelink消息,配置信息生效,UE1停止定时器计时。
当UE2接收到UE1发送的RRCReconfigurationSidelink消息时,如果RRCReconfigurationSidelink消息上携带的配置信息不适用,则向UE1回复RRCReconfigurationFailureSidelink消息,配置信息不生效,UE1停止定时器计时。
在相关技术中,定时器的时长一般是由网络侧设备或者对端UE配置的。一般来说,配置的时长是固定的,这就导致在某些情况下,用户终端实际已经发生RLF,但由于定时器的时长过长,而导致用户终端延迟触发RLF。或者是,在某些情况下,用户终端还未发生RLF,但由于定时器的时长过短,而导致定时器出现提前超时,从而提前触发用户终端触发RLF。
正是针对上述技术问题,本公开提出了一种Sidelink链路配置方法,通过根据第一RRC消息的发送路径,确定定时器的目标时长,并根据该定时器的目标时长,配置定时器的时长,以使定时器的时长能够根据第一RRC消息的发送路径来确定,从而避免提前或者延迟触发Sidelink的RLF。
请参见图1,图1是根据一些实施例示出的一种Sidelink链路配置方法所适用的应用场景。为了便于说明,仅示出了与本实施例相关的部分。
如图1所示,该应用场景包括第一终端11以及第二终端12,其中,第一终端11和第二终端12之间可以通过PC5接口并使用Sidelink通信。应当理解的是,在图1所示的应用场景中,第一终端11和第二终端12直接通过Sidelink通信。
第一终端11和第二终端12可以是用户终端(User Equipment,UE)或者其他终端侧 设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)、智能汽车、车载设备或者机器人等终端侧设备。值得说明的是,在本公开中,并不限定终端的具体类型。
请参见图2,图2是根据又一些实施例示出的一种Sidelink链路配置方法所适用的应用场景。为了便于说明,仅示出了与本实施例相关的部分。
如图2所示,该应用场景包括第三终端21、中继终端22以及第四终端23,其中,第三终端21和中继终端22之间可以通过PC5接口并使用Sidelink通信。中继终端22和第四终端23之间可以通过PC5接口并使用Sidelink通信。
应当理解的是,在图2所示的应用场景中,第三终端21和第四终端23通过中继终端22的中继实现Sidelink通信,这种架构称为U2U(UE to UE)中继。值得说明的是,虽然在图2中仅示出了一个中继终端22,但是在实际应用过程中,可以通过多个中继终端实现第三终端21和第四终端23之间的Sidelink通信。
图3是根据一些实施例示出的一种Sidelink链路配置方法的流程图。如图3所示,该Sidelink链路配置方法可以用于第一终端中,包括以下步骤。
在步骤310中,根据第一RRC消息的发送路径,确定定时器的目标时长,其中,所述第一RRC消息是所述第一终端向第二终端发送的Sidelink链路的消息,并且所述定时器用于在计时超时的情况下,指示所述Sidelink链路发生无线链路失败。
这里,当第一终端与第二终端之间的Sidelink链路的参数配置发生变化时,第一终端可以向第二终端发送第一RRC消息。其中,第一RRC消息可以为Sidelink RRC重配消息,例如,第一RRC消息可以为RRCReconfigurationSidelink消息。在第一RRC消息中可以携带用于Sidelink通信的配置信息。
第一RRC消息的发送路径至少可以包括两种类型,分别为第一Sidelink链路以及第二Sidelink链路。其中,第一Sidelink链路是指第一终端直接向第二终端发送第一RRC消息的链路。在第一Sidelink链路中,第一终端直接与第二终端保持单播连接。当然,在某些术语中,第一Sidelink链路也可以称为Sidelink直连链路。值得说明的是,第一终端直接向第二终端发送第一RRC消息是指第一终端无需经过中继终端向第二终端发生第一RRC消息。第二Sidelink链路是指第一终端通过至少一个中继终端向第二终端发送第一RRC消息的链路。在第二Sidelink链路中,第一终端通过至少一个中继终端与第二终端保持单播连接。当然,在某些术语中,第二Sidelink链路也可以称为Sidelink间接链路。
针对不同的第一RRC消息的发送路径,可以确定到不同的定时器的目标时长。值得说明的是,该定时器的目标时长可以是指在该发送路径上完成发送第一RRC消息以及接收到第二终端反馈的RRC消息的所需时长。
在步骤320中,根据所述定时器的目标时长,配置所述定时器。
这里,根据定时器的目标时长配置定时器是将定时器的计时时长设置为目标时长,并启动定时器。其中,该定时器用于在计时超时的情况下,指示Sidelink链路发生无线链路失败。在一些实施例中,所述定时器可以为T400定时器。
示例性地,当第一终端向第二终端发送第一RRC消息时,根据第一RRC消息的发送路径,确定定时器的目标时长,并将定时器的计时时长设置为目标时长,启动定时器。若第一终端收到第二终端响应于第一RRC消息而反馈的RRC消息,则停止定时器计时。例如,当第一终端接收到第二终端回复的RRCReconfigurationCompleteSidelink或者RRCReconfigurationFailureSidelink消息时,停止定时器计时。若第一终端未收到第二终端反馈的RRC消息,则定时器计时超时,触发Sidelink链路发生无线链路失败(RLF)。
应当理解的是,定时器停止计时并不意味着第一RRC消息中携带的配置信息生效, 其需要根据第二终端回复的信息确定。例如,当第二终端回复RRCReconfigurationCompleteSidelink消息时,说明第一RRC消息中的配置信息有效,建立Sidelink通信。当第二终端回复RRCReconfigurationFailureSidelink消息时,说明第一RRC消息中的配置信息无效。
由此,根据第一RRC消息的发送路径,确定定时器的目标时长,并根据该定时器的目标时长,配置定时器,以使定时器的计时时长能够与第一RRC消息的发送路径相匹配,从而避免提前或者延迟触发Sidelink的RLF。例如,第二Sidelink链路所需的时长比第一Sidelink链路所需的时长更长,如果使用统一的定时器时长,则会提前第二Sidelink链路的RLF或者延迟触发第一Sidelink链路的RLF。基于本公开实施例提出的Sidelink链路配置方法,可以根据不同的发送路径,针对性配置对应的定时器时长,以避免提前或者延迟触发Sidelink的RLF。
图4是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。如图4所示,该Sidelink链路配置方法可以包括以下步骤。
在步骤410中,依据不同类型的发送路径与定时器的时长之间的对应关系,确定第一RRC消息的发送路径对应的定时器的目标时长。
这里,关于第一RRC消息的定义可以参考图3所示的实施例的步骤310中的相关描述,在此不再赘述。
第一终端可以根据不同类型的发送路径与定时器时长之间的对应关系来确定第一RRC消息的发送路径对应的定时器的目标时长。例如,根据第一RRC消息的发送路径在该对应关系中查找得到该发送路径对应的定时器的时长。
其中,发送路径的类型至少包括第一Sidelink链路以及第二Sidelink链路。其中,第一Sidelink链路是指第一终端直接向第二终端发送第一RRC消息的链路。在第一Sidelink链路中,第一终端直接与第二终端保持单播连接。当然,在某些术语中,第一Sidelink链路也可以称为Sidelink直连链路。值得说明的是,第一终端直接向第二终端发送第一RRC消息是指第一终端无需经过中继终端向第二终端发生第一RRC消息。第二Sidelink链路是指第一终端通过至少一个中继终端向第二终端发送第一RRC消息的链路。在第二Sidelink链路中,第一终端通过至少一个中继终端与第二终端保持单播连接。当然,在某些术语中,第二Sidelink链路也可以称为Sidelink间接链路。
在对应关系中,包括不同类型的发送路径及该发送路径对应的定时器的时长。例如,第一Sidelink链路对应定时器的第一时长,第二Sidelink链路对应定时器的第二时长。
在一些可以实现的实施方式中,在每一类型的发送路径下,还可以根据每一发送路径的具体路径来匹配对应的定时器的时长。例如,在第二Sidelink链路中,可以包括由一个中继终端构成的第二Sidelink链路以及由多个中继终端构成的第二Sidelink链路。则针对由一个中继终端构成的第二Sidelink链路,可以匹配定时器的第三时长,针对由多个中继终端构成的第二Sidelink链路,可以匹配定时器的第四时长。
需要说明的是,第三时长以及第四时长是可以根据对应的第二Sidelink链路包含的子链路获得的。其中,该子链路包括第一终端与中继终端之间的链路、中继终端与中继终端之间的链路以及中继终端与第二终端之间的链路。
在一些实施例中,可以根据网络侧设备发送的系统消息,获得不同类型的发送路径与定时器的时长之间的对应关系。
其中,第一终端可以从网络侧设备发送的系统消息中获得对应关系。在该系统消息中携带有不同类型的发送路径与定时器的时长之间的对应关系。
在一些实施例中,可以根据所述网络侧设备发送的RRC重配消息,获得不同类型的发送路径与定时器的时长之间的对应关系。
其中,第一终端可以从网络侧设备发送的RRC重配消息中获得对应关系。该RRC重配消息中携带有不同类型的发送路径与定时器时长之间的对应关系。值得说明的是,该RRC重配消息可以为Sidelink RRC重配消息。
在一些实施例中,可以预先为不同类型的发送路径配置不同的定时器的时长,获得不同类型的发送路径与定时器的时长之间的对应关系。
其中,第一终端可以存储有不同类型的发送路径与定时器的时长之间的对应关系,该对应关系是预先配置好的。针对不同类型的发送路径,可以为该发送路径配置对应的定时器的时长。
在步骤420中,根据所述定时器的目标时长,配置所述定时器。
这里,根据定时器的目标时长配置定时器是将定时器的计时时长设置为定时器的目标时长,并启动定时器。其中,该定时器用于在计时超时的情况下,指示Sidelink链路发生无线链路失败。在一些实施例中,所述定时器可以为T400定时器。
应当理解的是,关于定时器如何在计时超时的情况下,指示Sidelink链路发生无线链路失败,可以参见图3所示实施例中关于步骤320的相关描述,在此不再赘述。
示例性地,当第一终端向第二终端发送第一RRC消息时,根据第一RRC消息的发送路径,确定定时器的目标时长,并将定时器的计时时长设置为定时器的目标时长,启动定时器。若第一终端收到第二终端响应于第一RRC消息而反馈的RRC消息,则停止定时器计时。例如,当第一终端接收到第二终端回复的RRCReconfigurationCompleteSidelink或者RRCReconfigurationFailureSidelink消息时,停止定时器计时。若第一终端未收到第二终端反馈的RRC消息,则定时器计时超时,触发Sidelink链路发生无线链路失败(RLF)。
应当理解的是,定时器停止计时并不意味着第一RRC消息中携带的配置信息生效,其需要根据第二终端回复的信息确定。例如,当第二终端回复RRCReconfigurationCompleteSidelink消息时,说明第一RRC消息中的配置信息有效,建立Sidelink通信。当第二终端回复RRCReconfigurationFailureSidelink消息时,说明第一RRC消息中的配置信息无效。
值得说明的是,第一终端每一次向第二终端发送第一RRC消息,均可以根据第一RRC消息的发送路径确定定时器的目标时长。当然,也可以是在第一终端初次向第二终端发送第一RRC消息时,根据第一RRC消息的发送路径确定定时器的目标时长,在再次向第二终端发送第一RRC消息之前,则可以根据第二终端发送的时长确定定时器的目标时长。
由此,根据第一RRC消息的发送路径,确定定时器的目标时长,并根据该定时器的目标时长,配置定时器,以使定时器的计时时长能够与第一RRC消息的发送路径相匹配,从而避免提前或者延迟触发Sidelink的RLF。例如,第二Sidelink链路所需的时长比第一Sidelink链路所需的时长更长,如果使用统一的定时器时长,则会提前第二Sidelink链路的RLF或者延迟触发第一Sidelink链路的RLF。基于本公开实施例提出的Sidelink链路配置方法,可以根据不同的发送路径,针对性配置对应的定时器时长,以避免提前或者延迟触发Sidelink的RLF。
图5是根据另一些实施例示出的一种Sidelink链路配置方法的流程图。如图5所示,该Sidelink链路配置方法可以包括以下步骤。
在步骤510中,在第一RRC消息的发送路径包括第一Sidelink链路的情况下,根据所述第一Sidelink链路与定时器的时长之间的对应关系,确定所述定时器的目标时长,其中,所述第一Sidelink链路为所述第一终端直接向所述第二终端发送所述第一RRC消息的链路。
这里,关于第一RRC消息的定义可以参考图3所示的实施例的步骤310中的相关描述,在此不再赘述。
第一Sidelink链路是指第一终端直接向第二终端发送第一RRC消息的链路。在第一Sidelink链路中,第一终端直接与第二终端保持单播连接。当然,在某些术语中,第一Sidelink链路也可以称为Sidelink直连链路。值得说明的是,第一终端直接向第二终端发送第一RRC消息是指第一终端无需经过中继终端向第二终端发生第一RRC消息。
当第一RRC消息的发送路径为第一Sidelink链路时,根据第一Sidelink链路与定时器的时长之间的对应关系,确定第一RRC消息的发送路径对应的定时器的目标时长。
在一些实施例中,第一Sidelink链路这一类型的直连链路可以对应同一定时器的时长。当然,在另一些实施例中,第一Sidelink链路中不同的直连链路也可以分别对应不同定时器的时长。
值得说明的是,第一Sidelink链路与定时器的时长之间的对应关系可以是预先配置的,也可以是根据网络侧设备发送的系统消息获得的,还可以是根据网络侧设备发送的RRC重配消息获得的。
在步骤520中,根据所述定时器的目标时长,配置所述定时器。
这里,根据定时器的目标时长配置定时器是将定时器的计时时长设置为目标时长,并启动定时器。其中,该定时器用于在计时超时的情况下,指示Sidelink链路发生无线链路失败。在一些实施例中,所述定时器可以为T400定时器。
应当理解的是,关于定时器如何在计时超时的情况下,指示Sidelink链路发生无线链路失败,可以参见图3所示实施例中关于步骤320的相关描述,在此不再赘述。
值得说明的是,第一终端每一次通过第一Sidelink链路向第二终端发送第一RRC消息,均可以根据第一RRC消息的第一Sidelink链路确定定时器的目标时长。当然,也可以是在第一终端初次向第二终端发送第一RRC消息时,根据第一RRC消息的第一Sidelink链路确定定时器的目标时长,在第一终端再次向第二终端发送第一RRC消息之前,则可以根据第二终端发送的时长确定定时器的目标时长。
由此,在第一RRC消息的发送路径为第一Sidelink链路的情况下,根据第一Sidelink链路与定时器的时长之间的对应关系,确定定时器的目标时长,可以使得定时器的计时时长与通过第一Sidelink链路发送第一RRC消息的时长相匹配,从而避免提前或者延迟触发Sidelink的RLF。
图6是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。如图6所示,该Sidelink链路配置方法可以包括以下步骤。
在步骤610中,在第一RRC消息的发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路与定时器的时长之间的对应关系,确定所述第二Sidelink链路对应的定时器的目标时长,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
这里,关于第一RRC消息的定义可以参考图3所示的实施例的步骤310中的相关描述,在此不再赘述。
第二Sidelink链路是指第一终端通过至少一个中继终端向第二终端发送第一RRC消息的链路。在第二Sidelink链路中,第一终端通过至少一个中继终端与第二终端保持单播连接。当然,在某些术语中,第二Sidelink链路也可以称为Sidelink间接链路。
当第一RRC消息的发送路径为第二Sidelink链路时,根据第二Sidelink链路与定时器的时长之间的对应关系,确定第一RRC消息的发送路径对应的定时器的目标时长。
在一些实施例中,第二Sidelink链路这一类型的间接链路可以对应同一定时器的时长。即只要属于第二Sidelink链路,则对应同一定时器的时长。当然,在另一些实施例中,第二Sidelink链路中不同的间接链路也可以分别对应不同定时器的时长。例如,在第二Sidelink链路中,可以包括由一个中继终端构成的第二Sidelink链路以及由多个中继终端构 成的第二Sidelink链路。则针对由一个中继终端构成的第二Sidelink链路,可以匹配定时器的第三时长,针对由多个中继终端构成的第二Sidelink链路,可以匹配定时器的第四时长。
值得说明的是,第二Sidelink链路与定时器的时长之间的对应关系可以是预先配置的,也可以是根据网络侧设备发送的系统消息获得的,还可以是根据网络侧设备发送的RRC重配消息获得的。
在步骤620中,根据所述定时器的目标时长,配置所述定时器。
这里,根据定时器的目标时长配置定时器是将定时器的计时时长设置为目标时长,并启动定时器。其中,该定时器用于在计时超时的情况下,指示Sidelink链路发生无线链路失败。在一些实施例中,所述定时器可以为T400定时器。
应当理解的是,关于定时器如何在计时超时的情况下,指示Sidelink链路发生无线链路失败,可以参见图3所示实施例中关于步骤320的相关描述,在此不再赘述。
值得说明的是,第一终端每一次通过第二Sidelink链路向第二终端发送第一RRC消息,均可以根据第一RRC消息的第二Sidelink链路确定定时器的目标时长。当然,也可以是在第一终端初次向第二终端发送第一RRC消息时,根据第一RRC消息的第二Sidelink链路确定定时器的目标时长,在第一终端再次向第二终端发送第一RRC消息之前,则可以根据第二终端发送的时长确定定时器的目标时长。
由此,在第一RRC消息的发送路径为第二Sidelink链路的情况下,根据第二Sidelink链路与定时器的时长之间的对应关系,确定定时器的目标时长,可以使得定时器的计时时长与通过第二Sidelink链路发送第一RRC消息的时长相匹配,从而避免提前或者延迟触发Sidelink的RLF。
图7是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。如图7所示,该Sidelink链路配置方法可以包括以下步骤。
在步骤710中,在第一RRC消息的发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路包括的中继终端的类型或中继终端的数量,确定所述第二Sidelink链路对应的定时器的目标时长,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
这里,关于第一RRC消息的定义可以参考图3所示的实施例的步骤310中的相关描述,在此不再赘述。
第二Sidelink链路是指第一终端通过至少一个中继终端向第二终端发送第一RRC消息的链路。在第二Sidelink链路中,第一终端通过至少一个中继终端与第二终端保持单播连接。当然,在某些术语中,第二Sidelink链路也可以称为Sidelink间接链路。
在一些实施例中,可以根据第二Sidelink链路包括的中继终端的类型以及不同的中继终端的类型与定时器的时长之间的对应关系,确定定时器的目标时长。
其中,中继终端的类型是指具体的中继终端。例如,对于“第一终端---中继终端A---第二终端”的第二Sidelink链路,其包括的中继终端的类型为“中继终端A”,对于“第一终端---中继终端B---第二终端”的第二Sidelink链路,其包括的中继终端的类型为“中继终端B”,对于“第一终端---中继终端A---中继终端B---第二终端”的第二Sidelink链路,其包括的中继终端的类型为“中继终端A”和“中继终端B”。则该对应关系可以是:“第一终端---中继终端A---第二终端”的第二Sidelink链路对应一个定时器的时长,“第一终端---中继终端B---第二终端”的第二Sidelink链路对应一个定时器的时长。
应当理解的是,通过第二Sidelink链路包括的中继终端的类型,可以区分不同的第二Sidelink链路。例如,“第一终端---中继终端A---第二终端”的第二Sidelink链路与“第一终端---中继终端B---第二终端”的第二Sidelink链路不同,则对应的定时器的时长不同。
值得说明的是,不同的中继终端的类型与定时器的时长之间的对应关系可以是预先配置的,也可以是根据网络侧设备发送的系统消息获得的,还可以是根据网络侧设备发送的RRC重配消息获得的。
作为一些示例,不同的中继终端的类型与定时器的时长之间的对应关系可以是通过以下步骤获得的:根据中继终端的类型,确定到第二Sidelink链路包括的子链路,进而根据子链路对应的时长,确定对应的定时器的时长,然后根据确定到的定时器的时长与中继终端的类型获得该对应关系。
例如,对于“第一终端---中继终端A---中继终端B---第二终端”的第二Sidelink链路,其包括的子链路分别为“第一终端---中继终端A”、“中继终端A---中继终端B”以及“中继终端B---第二终端”。每一子链路对应的时长可以不同,则第二Sidelink链路对应的定时器的时长可以是根据每一子链路对应的时长的和来获得。
应当理解的是,不同第二Sidelink链路中,由于中继终端的数量和/或类型不同,子链路的数量和/或时长也会不一致,对应的定时器的时长也不一致。例如,对于“第一终端---中继终端A---第二终端”的第二Sidelink链路以及“第一终端---中继终端B---第二终端”的第二Sidelink链路,虽然子链路的数量一致,但是由于子链路的时长不一致,则对应的定时器的时长也不一致。
在一些实施例中,可以根据第二Sidelink链路包括的中继终端的数量以及不同中继终端的数量与定时器的时长之间的对应关系,确定定时器的目标时长。
其中,可以根据第二Sidelink链路包括的中继终端的数量在不同中继终端的数量与定时器的时长之间的对应关系中查找到定时器的目标时长。
值得说明的,不同中继终端的数量与定时器的时长之间的对应关系是指不同数量的中继终端对应不同的定时器时长。例如,对于“第一终端---中继终端A---中继终端B---第二终端”的第二Sidelink链路,中继终端的数量为2,对于“第一终端---中继终端A---第二终端”的第二Sidelink链路,中继终端的数量为1,则“第一终端---中继终端A---中继终端B---第二终端”的第二Sidelink链路对应的定时器的时长与“第一终端---中继终端A---第二终端”的第二Sidelink链路对应的定时器的时长不一致。而对于“第一终端---中继终端A---第二终端”的第二Sidelink链路和“第一终端---中继终端B---第二终端”的第二Sidelink链路,由于中继终端的数量一致,则该两条第二Sidelink链路对应的定时器的时长一致。
应当理解的是,不同中继终端的数量与定时器的时长之间的对应关系可以是预先配置的,也可以是根据网络侧设备发送的系统消息获得的,还可以是根据网络侧设备发送的RRC重配消息获得的。
在步骤720中,根据所述定时器的目标时长,配置所述定时器。
这里,根据定时器的目标时长配置定时器是将定时器的计时时长设置为目标时长,并启动定时器。其中,该定时器用于在计时超时的情况下,指示Sidelink链路发生无线链路失败。在一些实施例中,所述定时器可以为T400定时器。
应当理解的是,关于定时器如何在计时超时的情况下,指示Sidelink链路发生无线链路失败,可以参见图3所示实施例中关于步骤320的相关描述,在此不再赘述。
值得说明的是,第一终端每一次通过第一Sidelink链路向第二终端发送第一RRC消息,均可以根据第一RRC消息的第一Sidelink链路确定定时器的目标时长。当然,也可以是在第一终端初次向第二终端发送第一RRC消息时,根据第一RRC消息的第一Sidelink链路确定定时器的目标时长,在第一终端再次向第二终端发送第一RRC消息之前,则可以根据第二终端发送的时长确定定时器的目标时长。
由此,在第一RRC消息的发送路径为第二Sidelink链路的情况下,根据第二Sidelink 链路中包括的中继终端的类型或终端的数量来确定第二Sidelink链路对应的定时器的目标时长,可以针对不同的第二Sidelink链路,确定定时器的目标时长,使得定时器的计时时长与通过第二Sidelink链路发送第一RRC消息的时长相匹配,从而避免提前或者延迟触发Sidelink的RLF。
图8是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。如图8所示,该Sidelink链路配置方法可以包括以下步骤。
在步骤810中,在第一RRC消息的发送路径包括第二Sidelink链路的情况下,确定所述第二Sidelink链路包括的子链路的类型或子链路的数量,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
这里,关于第一RRC消息的定义可以参考图3所示的实施例的步骤310中的相关描述,在此不再赘述。
第二Sidelink链路是指第一终端通过至少一个中继终端向第二终端发送第一RRC消息的链路。在第二Sidelink链路中,第一终端通过至少一个中继终端与第二终端保持单播连接。当然,在某些术语中,第二Sidelink链路也可以称为Sidelink间接链路。
其中,子链路的类型是指构成子链路的两个终端的类型。针对不同的子链路,由于构成该子链路的终端的不同,其对应的子链路的类型也不同。例如,对于“第一终端---中继终端A---中继终端B---第二终端”的第二Sidelink链路,其子链路的类型包括“第一终端---中继终端A”、“中继终端A---中继终端B”以及“中继终端B---第二终端”。
在一些实施例中,可以根据第二Sidelink链路包括的子链路的类型以及不同的子链路的类型与定时器的时长之间的对应关系,确定定时器的目标时长。
其中,可以根据第二Sidelink链路包括的子链路的类型在不同的子链路的类型与定时器的时长之间的对应关系中查找到定时器的目标时长。
值得说明的是,通过第二Sidelink链路包括的子链路的类型可以区分不同的第二Sidelink链路。例如,对于“第一终端---中继终端A---中继终端B---第二终端”的第二Sidelink链路,其子链路的类型包括“第一终端---中继终端A”、“中继终端A---中继终端B”以及“中继终端B---第二终端”,则“第一终端---中继终端A”、“中继终端A---中继终端B”以及“中继终端B---第二终端”的子链路的类型对应一个定时器的时长。对于“第一终端---中继终端A---第二终端”的第二Sidelink链路,其子链路的类型包括“第一终端---中继终端A”以及“中继终端A---第二终端”,则“第一终端---中继终端A”以及“中继终端A---第二终端”的子链路的类型对应一个定时器的时长。
示例性地,不同的子链路的类型与定时器的时长之间的对应关系可以是预先配置的,也可以是根据网络侧设备发送的系统消息获得的,还可以是根据网络侧设备发送的RRC重配消息获得的。
作为一些示例,不同的子链路的类型与定时器的时长之间的对应关系可以是通过以下步骤获得的:根据子链路的类型,确定到第二Sidelink链路包括的子链路,进而根据子链路对应的时长,确定对应的定时器的时长,然后根据确定到的定时器的时长与中继终端的类型获得该对应关系。
例如,对于“第一终端---中继终端A---中继终端B---第二终端”的第二Sidelink链路,其包括的子链路的类型为“第一终端---中继终端A”、“中继终端A---中继终端B”以及“中继终端B---第二终端”。每一子链路对应的时长可以不同,则第二Sidelink链路对应的定时器的时长可以是根据每一子链路对应的时长的和来获得。
在一些实施例中,可以根据第二Sidelink链路包括的子链路的数量以及不同子链路的数量与定时器的时长之间的对应关系,确定定时器的目标时长。
其中,可以根据第二Sidelink链路包括的子链路的数量在不同子链路的数量与定时器 的时长之间的对应关系中查找到定时器的目标时长。
值得说明的是,不同子链路的数量与定时器的时长之间的对应关系是指不同数量的子链路对应不同的定时器时长。例如,对于“第一终端---中继终端A---中继终端B---第二终端”的第二Sidelink链路,子链路的数量为3,对于“第一终端---中继终端A---第二终端”的第二Sidelink链路,子链路的数量为2,则“第一终端---中继终端A---中继终端B---第二终端”的第二Sidelink链路对应的定时器的时长与“第一终端---中继终端A---第二终端”的第二Sidelink链路对应的定时器的时长不一致。而对于“第一终端---中继终端A---第二终端”的第二Sidelink链路和“第一终端---中继终端B---第二终端”的第二Sidelink链路,由于子链路的数量一致,则该两条第二Sidelink链路对应的定时器的时长一致。
应当理解的是,不同子链路的数量与定时器的时长之间的对应关系可以是预先配置的,也可以是根据网络侧设备发送的系统消息获得的,还可以是根据网络侧设备发送的RRC重配消息获得的。
在步骤820中,根据所述定时器的目标时长,配置所述定时器。
这里,根据定时器的目标时长配置定时器是将定时器的计时时长设置为目标时长,并启动定时器。其中,该定时器用于在计时超时的情况下,指示Sidelink链路发生无线链路失败。在一些实施例中,所述定时器可以为T400定时器。
应当理解的是,关于定时器如何在计时超时的情况下,指示Sidelink链路发生无线链路失败,可以参见图3所示实施例中关于步骤320的相关描述,在此不再赘述。
值得说明的是,第一终端每一次通过第一Sidelink链路向第二终端发送第一RRC消息,均可以根据第一RRC消息的第一Sidelink链路确定定时器的目标时长。当然,也可以是在第一终端初次向第二终端发送第一RRC消息时,根据第一RRC消息的第一Sidelink链路确定定时器的目标时长,在第一终端再次向第二终端发送第一RRC消息之前,则可以根据第二终端发送的时长确定定时器的目标时长。
由此,在第一RRC消息的发送路径为第二Sidelink链路的情况下,根据第二Sidelink链路中包括的子链路的类型或子链路的数量来确定第二Sidelink链路对应的定时器的目标时长,可以针对不同的第二Sidelink链路,确定定时器的目标时长,使得定时器的计时时长与通过第二Sidelink链路发送第一RRC消息的时长相匹配,从而避免提前或者延迟触发Sidelink的RLF。
图9是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。如图9所示,该Sidelink链路配置方法可以包括以下步骤。
在步骤910中,在第一终端初次向第二终端发送第一RRC消息的情况下,根据所述第一RRC消息的发送路径,确定所述发送路径对应的定时器的目标时长。
这里,关于第一RRC消息的定义可以参考图3所示的实施例的步骤310中的相关描述,在此不再赘述。
在第一终端初次向第二终端发送第一RRC消息时,第一终端根据第一RRC消息的发送路径,确定发送路径对应的定时器的目标时长。应当理解的是,第一终端初次向第二终端发送第一RRC消息,是指第一终端第一次向第二终端发送RRC消息。在第一终端接收到第二终端响应于第一RRC消息而反馈的消息的情况下,第一终端向第二终端发送第一RRC消息,不属于初次发送第一RRC消息。
其中,第一RRC消息的发送路径至少可以包括两种类型,分别为第一Sidelink链路以及第二Sidelink链路。其中,第一Sidelink链路是指第一终端直接向第二终端发送第一RRC消息的链路。在第一Sidelink链路中,第一终端直接与第二终端保持单播连接。当然,在某些术语中,第一Sidelink链路也可以称为Sidelink直连链路。值得说明的是,第一终端直接向第二终端发送第一RRC消息是指第一终端无需经过中继终端向第二终端发生第一 RRC消息。第二Sidelink链路是指第一终端通过至少一个中继终端向第二终端发送第一RRC消息的链路。在第二Sidelink链路中,第一终端通过至少一个中继终端与第二终端保持单播连接。当然,在某些术语中,第二Sidelink链路也可以称为Sidelink间接链路。
针对不同的第一RRC消息的发送路径,可以确定到不同的定时器的目标时长。值得说明的是,该定时器的目标时长可以是指在该发送路径上完成发送第一RRC消息以及接收到第二终端反馈的RRC消息的所需时长。
在一些实施例中,可以依据不同类型的发送路径与定时器的时长之间的对应关系,确定所述第一RRC消息的发送路径对应的定时器的目标时长。
在一些实施例中,在发送路径包括第一Sidelink链路的情况下,根据第一Sidelink链路与定时器的时长之间的对应关系,确定第一RRC消息的发送路径对应的定时器的目标时长。
在一些实施例中,在发送路径包括第二Sidelink链路的情况下,根据第二Sidelink链路与定时器的时长之间的对应关系,确定第一RRC消息的发送路径对应的定时器的目标时长。
在一些实施例中,在所述发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路包括的中继终端的类型或中继终端的数量,确定所述定时器的目标时长。
在一些实施例中,在发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路包括的子链路的类型或子链路的数量,确定所述定时器的目标时长。
在步骤920中,根据所述定时器的目标时长,配置所述定时器。
这里,根据定时器的目标时长配置定时器是将定时器的计时时长设置为定时器的目标时长,并启动定时器。其中,该定时器用于在计时超时的情况下,指示Sidelink链路发生无线链路失败。在一些实施例中,所述定时器可以为T400定时器。
应当理解的是,关于定时器如何在计时超时的情况下,指示Sidelink链路发生无线链路失败,可以参见图3所示实施例中关于步骤320的相关描述,在此不再赘述。
由此,根据第一RRC消息的发送路径,确定定时器的目标时长,并根据该定时器的目标时长,配置定时器的时长,以使定时器的计时时长能够与第一RRC消息的发送路径相匹配,从而避免提前或者延迟触发Sidelink的RLF。
图10是根据又一些实施例示出的一种Sidelink链路配置方法的流程图。如图10所示,该Sidelink链路配置方法可以包括以下步骤。
在步骤1010中,在第一终端初次向第二终端发送第一RRC消息的情况下,根据所述第一RRC消息的发送路径,确定所述发送路径对应的定时器的目标时长。
这里,关于第一RRC消息的定义可以参考图3所示的实施例的步骤310中的相关描述,在此不再赘述。
在第一终端初次向第二终端发送第一RRC消息时,第一终端根据第一RRC消息的发送路径,确定发送路径对应的定时器的目标时长。应当理解的是,第一终端初次向第二终端发送第一RRC消息,是指第一终端第一次向第二终端发送RRC消息。在第一终端接收到第二终端响应于第一RRC消息而反馈的消息的情况下,第一终端向第二终端发送第一RRC消息,不属于初次发送第一RRC消息。
其中,第一RRC消息的发送路径至少可以包括两种类型,分别为第一Sidelink链路以及第二Sidelink链路。其中,第一Sidelink链路是指第一终端直接向第二终端发送第一RRC消息的链路。在第一Sidelink链路中,第一终端直接与第二终端保持单播连接。当然,在某些术语中,第一Sidelink链路也可以称为Sidelink直连链路。值得说明的是,第一终端直接向第二终端发送第一RRC消息是指第一终端无需经过中继终端向第二终端发生第一RRC消息。第二Sidelink链路是指第一终端通过至少一个中继终端向第二终端发送第一 RRC消息的链路。在第二Sidelink链路中,第一终端通过至少一个中继终端与第二终端保持单播连接。当然,在某些术语中,第二Sidelink链路也可以称为Sidelink间接链路。
针对不同的第一RRC消息的发送路径,可以确定到不同的定时器的目标时长。值得说明的是,该定时器的目标时长可以是指在该发送路径上完成发送第一RRC消息以及接收到第二终端反馈的RRC消息的所需时长。
在一些实施例中,可以依据不同类型的发送路径与定时器的时长之间的对应关系,确定所述第一RRC消息的发送路径对应的定时器的目标时长。
在一些实施例中,在发送路径包括第一Sidelink链路的情况下,根据第一Sidelink链路与定时器的时长之间的对应关系,确定第一RRC消息的发送路径对应的定时器的目标时长。
在一些实施例中,在发送路径包括第二Sidelink链路的情况下,根据第二Sidelink链路与定时器的时长之间的对应关系,确定第一RRC消息的发送路径对应的定时器的目标时长。
在一些实施例中,在所述发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路包括的中继终端的类型或中继终端的数量,确定所述定时器的目标时长。
在一些实施例中,在发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路包括的子链路的类型或子链路的数量,确定所述定时器的目标时长。
在步骤1020中,根据所述定时器的目标时长,配置定时器。
这里,根据定时器的目标时长配置定时器是将定时器的计时时长设置为定时器的目标时长,并启动定时器。其中,该定时器用于在计时超时的情况下,指示Sidelink链路发生无线链路失败。在一些实施例中,所述定时器可以为T400定时器。
应当理解的是,关于定时器如何在计时超时的情况下,指示Sidelink链路发生无线链路失败,可以参见图3所示实施例中关于步骤320的相关描述,在此不再赘述。
在步骤1030中,根据所述第二终端发送的预设时长,配置所述定时器,其中,所述预设时长为在所述第一终端再次向所述第二终端发送所述第一RRC消息时,所述定时器对应的时长。
这里,第一终端再次向第二终端发送第一RRC消息时,第一终端根据第二终端发送的预设时长,配置定时器的时长。
其中,第一终端再次向第二终端发送第一RRC消息可以是指:在第一终端接收到第二终端响应于第一RRC消息而反馈的消息的情况下,第一终端向第二终端发送第一RRC消息。
示例性地,在第一终端初次向第二终端发送第一RRC消息时,第一终端根据第一RRC消息的发送路径确定定时器的目标时长,并将定时器的时长配置为该定时器的目标时长。当第一终端收到第二终端响应于第一RRC消息而反馈的RRCReconfigurationFailureSidelink消息时,第一终端再次向第二终端发送第一RRC消息。此时,定时器的计时时长被配置为第二终端发送的预设时长。
在一些实施例中,所述预设时长可以是所述第二终端通过第二RRC消息向所述第一终端发送的。
其中,第二RRC消息可以为RRC重配消息。该RRC重配消息可以为Sidelink RRC重配消息。
由此,在第一终端初次向第二终端发送第一RRC消息时,根据第一RRC消息的发送路径,确定定时器的目标时长,并根据该定时器的目标时长,配置定时器的时长。当第一终端再次向第二终端发送第一RRC消息时,则根据第二终端发送的预设时长配置定时器的时长。以使定时器的计时时长能够与第一RRC消息的发送路径相匹配,从而避免提前 或者延迟触发Sidelink的RLF。
图11是根据一些实施例示出的一种Sidelink链路配置装置的框图。参照图11,该装置1100应用于第一终端,可以包括:
确定模块1101,确定模块,配置为根据第一RRC消息的发送路径,确定定时器的目标时长,其中,所述第一RRC消息是所述第一终端向第二终端发送的Sidelink链路的消息,并且所述定时器用于在计时超时的情况下,指示所述Sidelink链路发生无线链路失败;
定时器配置模块1102,配置为根据所述定时器的目标时长,配置所述定时器。
可选地,所述确定模块1101包括:
第一确定子单元,配置为依据不同类型的发送路径与定时器的时长之间的对应关系,确定所述定时器的目标时长。
可选地,所述第一确定子单元包括:
第一时长单元,配置为在所述发送路径包括第一Sidelink链路的情况下,根据所述第一Sidelink链路与定时器的时长之间的对应关系,确定所述定时器的目标时长,其中,所述第一Sidelink链路为所述第一终端直接向所述第二终端发送所述第一RRC消息的链路。
可选地,所述第一确定子单元包括:
第二时长单元,配置为在所述发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路与定时器的时长之间的对应关系,确定所述定时器的目标时长,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
可选地,所述确定模块1101包括:
第二确定子单元,配置为在所述发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路包括的中继终端的类型或中继终端的数量,确定所述定时器的目标时长,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
可选地,所述确定模块1101包括:
第三确定子单元,配置在所述发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路包括的子链路的类型或子链路的数量,确定所述定时器的目标时长,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
可选地,所述确定模块1101包括:
第四确定子单元,配置为在所述第一终端初次向所述第二终端发送所述第一RRC消息的情况下,根据所述第一RRC消息的发送路径,确定所述定时器的目标时长。
可选地,所述定时器配置模块1102还配置为:
根据所述第二终端发送的预设时长,配置所述定时器,其中,所述预设时长为在所述第一终端再次向所述第二终端发送所述第一RRC消息时,所述定时器对应的时长。
可选地,所述预设时长是所述第二终端通过第二RRC消息向所述第一终端发送的。
可选地,所述第一确定子单元包括以下至少一种:
第一接收单元,配置为根据网络侧设备发送的系统消息,获得不同类型的发送路径与定时器的时长之间的对应关系;
第二接收单元,配置为根据所述网络侧设备发送的RRC重配消息,获得不同类型的发送路径与定时器的时长之间的对应关系;
第三接收单元,配置为预先为不同类型的发送路径配置不同的定时器的时长,获得不同类型的发送路径与定时器的时长之间的对应关系。
可选地,所述定时器为T400定时器。
可选地,所述第一RRC消息为RRC重配消息。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开提供的Sidelink链路配置方法的步骤。
图12是根据一些实施例示出的一种终端的框图。例如,终端1200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理,智能汽车等。
参照图12,终端1200可以包括以下一个或多个组件:处理组件1202,存储器1204,电源组件1206,多媒体组件1208,音频组件1210,输入/输出接口1212,传感器组件1214,以及通信组件1216。
处理组件1202通常控制终端1200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1202可以包括一个或多个处理器1220来执行指令,以完成上述的Sidelink链路配置方法的全部或部分步骤。此外,处理组件1202可以包括一个或多个模块,便于处理组件1202和其他组件之间的交互。例如,处理组件1202可以包括多媒体模块,以方便多媒体组件1208和处理组件1202之间的交互。
存储器1204被配置为存储各种类型的数据以支持在终端1200的操作。这些数据的示例包括用于在终端1200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1206为终端1200的各种组件提供电力。电源组件1206可以包括电源管理系统,一个或多个电源,及其他与为终端1200生成、管理和分配电力相关联的组件。
多媒体组件1208包括在所述终端1200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1208包括一个前置摄像头和/或后置摄像头。当终端1200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1210被配置为输出和/或输入音频信号。例如,音频组件1210包括一个麦克风(MIC),当终端1200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1204或经由通信组件1216发送。在一些实施例中,音频组件1210还包括一个扬声器,用于输出音频信号。
输入/输出接口1212为处理组件1202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1214包括一个或多个传感器,用于为终端1200提供各个方面的状态评估。例如,传感器组件1214可以检测到终端1200的打开/关闭状态,组件的相对定位,例如所述组件为终端1200的显示器和小键盘,传感器组件1214还可以检测终端1200或终端1200一个组件的位置改变,用户与终端1200接触的存在或不存在,终端1200方位或加速/减速 和终端1200的温度变化。传感器组件1214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1216被配置为便于终端1200和其他设备之间有线或无线方式的通信。终端1200可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端1200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述Sidelink链路配置方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1204,上述指令可由终端1200的处理器1220执行以完成上述Sidelink链路配置方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的Sidelink链路配置方法的代码部分。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种Sidelink链路配置方法,其特征在于,应用于第一终端,包括:
    根据第一RRC消息的发送路径,确定定时器的目标时长,其中,所述第一RRC消息是所述第一终端向第二终端发送的Sidelink链路的消息,并且所述定时器用于在计时超时的情况下,指示所述Sidelink链路发生无线链路失败;
    根据所述定时器的目标时长,配置所述定时器。
  2. 根据权利要求1所述的Sidelink链路配置方法,其特征在于,所述根据第一RRC消息的发送路径,确定定时器的目标时长,包括:
    依据不同类型的发送路径与定时器的时长之间的对应关系,确定所述定时器的目标时长。
  3. 根据权利要求2所述的Sidelink链路配置方法,其特征在于,所述依据不同类型的发送路径与定时器的时长之间的对应关系,确定所述定时器的目标时长,包括:
    在所述发送路径包括第一Sidelink链路的情况下,根据所述第一Sidelink链路与定时器的时长之间的对应关系,确定所述定时器的目标时长,其中,所述第一Sidelink链路为所述第一终端直接向所述第二终端发送所述第一RRC消息的链路。
  4. 根据权利要求2所述的Sidelink链路配置方法,其特征在于,所述依据不同类型的发送路径与定时器的时长之间的对应关系,确定所述定时器的目标时长,包括:
    在所述发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路与定时器的时长之间的对应关系,确定所述定时器的目标时长,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
  5. 根据权利要求1所述的Sidelink链路配置方法,其特征在于,所述根据第一RRC消息的发送路径,确定定时器的目标时长,包括:
    在所述发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路包括的中继终端的类型或中继终端的数量,确定所述定时器的目标时长,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
  6. 根据权利要求1所述的Sidelink链路配置方法,其特征在于,所述根据第一RRC消息的发送路径,确定定时器的目标时长,包括:
    在所述发送路径包括第二Sidelink链路的情况下,根据所述第二Sidelink链路包括的子链路的类型或子链路的数量,确定所述定时器的目标时长,其中,所述第二Sidelink链路为所述第一终端通过至少一个中继终端向所述第二终端发送所述第一RRC消息的链路。
  7. 根据权利要求1所述的Sidelink链路配置方法,其特征在于,所述根据第一RRC消息的发送路径,确定定时器的目标时长,包括:
    在所述第一终端初次向所述第二终端发送所述第一RRC消息的情况下,根据所述第一RRC消息的发送路径,确定所述定时器的目标时长。
  8. 根据权利要求7所述的Sidelink链路配置方法,其特征在于,在根据所述第 一RRC消息的发送路径,确定所述定时器的目标时长之后,所述方法还包括:
    根据所述第二终端发送的预设时长,配置所述定时器,其中,所述预设时长为在所述第一终端再次向所述第二终端发送所述第一RRC消息时,所述定时器对应的时长。
  9. 根据权利要求8所述的Sidelink链路配置方法,其特征在于,所述预设时长是所述第二终端通过第二RRC消息向所述第一终端发送的。
  10. 根据权利要求2所述的Sidelink链路配置方法,其特征在于,所述对应关系通过以下步骤中的至少一项获得:
    根据网络侧设备发送的系统消息,获得不同类型的发送路径与定时器的时长之间的对应关系;
    根据所述网络侧设备发送的RRC重配消息,获得不同类型的发送路径与定时器的时长之间的对应关系;
    预先为不同类型的发送路径配置不同的定时器的时长,获得不同类型的发送路径与定时器的时长之间的对应关系。
  11. 根据权利要求1至10中任一项所述的Sidelink链路配置方法,其特征在于,所述定时器为T400定时器。
  12. 根据权利要求1至10中任一项所述的Sidelink链路配置方法,其特征在于,所述第一RRC消息为Sidelink RRC重配消息。
  13. 一种Sidelink链路配置装置,其特征在于,应用于第一终端,包括:
    确定模块,配置为根据第一RRC消息的发送路径,确定定时器的目标时长,其中,所述第一RRC消息是所述第一终端向第二终端发送的Sidelink链路的消息,并且所述定时器用于在计时超时的情况下,指示所述Sidelink链路发生无线链路失败;
    定时器配置模块,配置为根据所述定时器的目标时长,配置所述定时器。
  14. 一种终端,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述可执行指令,以实现如权利要求1至12中任一项所述的Sidelink链路配置方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序指令被处理装置执行时实现权利要求1至12中任一项所述的Sidelink链路配置方法的步骤。
PCT/CN2022/104732 2022-07-08 2022-07-08 Sidelink链路配置方法、装置、存储介质以及终端 WO2024007331A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/104732 WO2024007331A1 (zh) 2022-07-08 2022-07-08 Sidelink链路配置方法、装置、存储介质以及终端
CN202280002274.7A CN115299172A (zh) 2022-07-08 2022-07-08 Sidelink链路配置方法、装置、存储介质以及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104732 WO2024007331A1 (zh) 2022-07-08 2022-07-08 Sidelink链路配置方法、装置、存储介质以及终端

Publications (1)

Publication Number Publication Date
WO2024007331A1 true WO2024007331A1 (zh) 2024-01-11

Family

ID=83819450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104732 WO2024007331A1 (zh) 2022-07-08 2022-07-08 Sidelink链路配置方法、装置、存储介质以及终端

Country Status (2)

Country Link
CN (1) CN115299172A (zh)
WO (1) WO2024007331A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210251039A1 (en) * 2018-11-01 2021-08-12 Vivo Mobile Communication Co., Ltd. Sidelink release method, terminal and network side device
CN114270896A (zh) * 2019-08-29 2022-04-01 高通股份有限公司 侧行链路无线电链路故障的处理
CN114448585A (zh) * 2020-11-05 2022-05-06 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210251039A1 (en) * 2018-11-01 2021-08-12 Vivo Mobile Communication Co., Ltd. Sidelink release method, terminal and network side device
CN114270896A (zh) * 2019-08-29 2022-04-01 高通股份有限公司 侧行链路无线电链路故障的处理
CN114448585A (zh) * 2020-11-05 2022-05-06 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Summary of [AT116-e][626][Relay] Direct-to-indirect path switch (Huawei)", 3GPP DRAFT; R2-2111380, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20211101 - 20211112, 11 November 2021 (2021-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052075798 *

Also Published As

Publication number Publication date
CN115299172A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2021026824A1 (zh) 非活动定时器的控制方法和装置
WO2019183854A1 (zh) 寻呼同步指示方法及装置、寻呼同步方法及装置和基站
WO2017071074A1 (zh) 建立连接的方法及装置
CN109314913B (zh) 接入控制限制方法及装置
WO2020087214A1 (zh) 控制波束失败恢复流程的方法及装置
WO2021012279A1 (zh) 随机接入方法、装置及存储介质
WO2022021387A1 (zh) 偏移指示确定方法和装置、偏移确定方法和装置
CN109582400B (zh) 程序调用方法及装置
WO2020097783A1 (zh) 资源配置方法及装置
WO2020082277A1 (zh) 网络参数配置方法、装置及计算机可读存储介质
WO2019153355A1 (zh) 随机接入时机的配置方法及装置、随机接入方法及装置
WO2020097810A1 (zh) 调度请求发送方法和装置
WO2019218366A1 (zh) 前导码和调度请求的发送方法及装置
WO2021081796A1 (zh) 寻呼信令接收方法和装置、寻呼信令发送方法和装置
WO2022193303A1 (zh) 一种随机接入方法、随机接入装置及存储介质
WO2020142997A1 (zh) 随机接入方法及装置
CN105578391B (zh) 信息处理方法、装置、系统及终端设备
CN108347718B (zh) 监听通信包的方法、装置以及存储介质
WO2020199080A1 (zh) 网络分离方法及装置
WO2020056667A1 (zh) 车联网同步方法及装置
WO2022067766A1 (zh) 定位参考信号配置方法、配置装置及存储介质
WO2022077274A1 (zh) 一种无线感知资源协调方法、装置及存储介质
WO2024007331A1 (zh) Sidelink链路配置方法、装置、存储介质以及终端
WO2020087469A1 (zh) 执行bfr流程的方法、装置、终端、基站及存储介质
WO2022120540A1 (zh) 连接建立方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949912

Country of ref document: EP

Kind code of ref document: A1