WO2024005470A1 - Catalyst for applying electrochemical reaction and preparation method therefor - Google Patents

Catalyst for applying electrochemical reaction and preparation method therefor Download PDF

Info

Publication number
WO2024005470A1
WO2024005470A1 PCT/KR2023/008828 KR2023008828W WO2024005470A1 WO 2024005470 A1 WO2024005470 A1 WO 2024005470A1 KR 2023008828 W KR2023008828 W KR 2023008828W WO 2024005470 A1 WO2024005470 A1 WO 2024005470A1
Authority
WO
WIPO (PCT)
Prior art keywords
sad
catalyst
metal
single atom
xps analysis
Prior art date
Application number
PCT/KR2023/008828
Other languages
French (fr)
Korean (ko)
Inventor
이효영
쿠마아쉬와니
실람바라산 페루말
Original Assignee
성균관대학교산학협력단
기초과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단, 기초과학연구원 filed Critical 성균관대학교산학협력단
Publication of WO2024005470A1 publication Critical patent/WO2024005470A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Definitions

  • the present invention relates to catalysts and methods for their preparation for applications in electrochemical reactions.
  • hydrogen (H 2 ) fuel from water electrolysis has been considered the most promising alternative to fossil fuels.
  • the hydrogen evolution reaction refers to a reaction that electrochemically splits water for energy conversion.
  • the environment in which the hydrogen generation reaction takes place can be divided into strong acid, neutral, and strong base.
  • Water can be electrolyzed in various environments, such as proton exchange membrane electrolysis in strong acid, seawater electrolysis in neutral medium, and commercial water electrolysis in strong base.
  • HER catalysts that have excellent performance in acidic and alkaline media and are versatile at pH are attracting attention.
  • platinum (Pt) and Pt-based catalysts are attracting attention.
  • they require limited availability and high cost to produce hydrogen. This is a factor that hinders the commercialization of the reaction.
  • SACs single atom catalysts
  • M-NC carbon matrix
  • Korean Patent Publication No. 10-2182553 which is the background technology of this application, is about a method for producing a single atom catalyst supported on a carbon carrier.
  • the registered patent discloses a method of supporting heterogeneous elements other than carbon on a carbon carrier through a dry gas phase process.
  • the purpose of the present application is to solve the problems of the prior art described above and to provide a catalyst containing a single atom metal and a method for producing the same.
  • the present application aims to provide a catalyst for hydrogen generation reaction comprising the above catalyst.
  • the present application aims to provide a catalyst for carbon dioxide reduction comprising the above catalyst.
  • the present application aims to provide a catalyst for nitrogen reduction, including the catalyst.
  • the present application aims to provide a catalyst for electrochemical reaction, including the catalyst.
  • the present application provides a catalyst.
  • the catalyst may include a nitrogen-doped carbon matrix and a single atom metal bonded to nitrogen in the carbon matrix.
  • the single atom metal may include one type of single atom metal or a single atom dimer in which two types of single atom metals are combined.
  • the single atom dimer includes a first single atom metal bonded to nitrogen in the carbon matrix, and a second single atom metal bonded to nitrogen that is not bonded to the first single atom metal, It may include a combination of the first single atomic metal and the second single atomic metal.
  • the first single-atomic metal and the second single-atomic metal may include different elements.
  • the first single-atomic metal and the second single-atomic metal may include the same metal.
  • EXAFS Extended It can include big things.
  • the catalyst may include one in which no chemical bond is observed between the single-atom metal and carbon as a result of XPS analysis.
  • the single atomic metal is Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd , Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and It may contain atoms selected from the group consisting of combinations thereof.
  • the catalyst may include one used in a reaction to reduce water (H 2 O) to produce hydrogen (H 2 ).
  • the catalyst may include one used in a reaction to reduce carbon dioxide (CO 2 ) to produce ethanol and acetone.
  • CO 2 carbon dioxide
  • the catalyst may include one used in a reaction to reduce nitrogen (N 2 ) to produce ammonia.
  • the catalyst includes a base structure in which some of the carbon constituting the carbon matrix is replaced with nitrogen, and a single atom dimer bonded to nitrogen in the base structure, wherein the single The atomic dimer includes a first single-atomic metal bonded to nitrogen in the base structure, and a second single-atomic metal bonded to nitrogen that is not bonded to the first single-atomic metal, wherein the first single-atomic metal and the It may include a second single-atom metal bonded thereto.
  • the present application provides a method for producing a catalyst.
  • the method for preparing the catalyst includes mixing a precursor of a carbon matrix and a precursor of a single-atom metal, self-polymerizing the precursor of the carbon matrix to form a carbon polymer, and the carbon polymer and a nitrogen source. It may include mixing and heat treatment.
  • the carbon polymer may include a precursor of the single-atom metal therein.
  • the precursor of the single atom metal becomes a single atom dimer of one type of single atom metal or two types of single atom metal, and the carbon polymer is a carbon matrix. It can be.
  • the precursor of the carbon matrix may include dopamine, and the carbon polymer may include poly dopamine.
  • the catalyst according to the present application is for electrochemical hydrogen evolution reaction (HER) in acid and alkaline media, and has pH-general performance similar to that of the Pt/C catalyst and compared to the expensive Pt metal. Since inexpensive metals can be used, manufacturing costs can be lowered.
  • HER electrochemical hydrogen evolution reaction
  • the method for producing a catalyst according to the present disclosure can provide a method for synthesizing a new single atom dimer (SAD) catalyst containing two metals linked to each other.
  • SAD single atom dimer
  • the electrode for hydrogen generation reaction containing the catalyst according to the present disclosure shows high stability in an acidic or basic environment, has high reproducibility, and can have a constant degree of hydrogen generation.
  • the catalyst according to the present disclosure comprises a single atom dimer.
  • the HER mass activity (i.e., HER production per gm of metal) of the dimer can be similar to or higher than that of common commercial Pt and/or nanoparticles.
  • the method for preparing a catalyst according to the present disclosure can provide a general synthetic route for obtaining various single atom dimers for complex catalytic reactions.
  • the catalyst according to the present disclosure can be used in a reaction that reduces carbon dioxide (CO 2 ) to produce ethanol and acetone.
  • the catalyst according to the present disclosure can be used in a reaction that reduces nitrogen (N 2 ) to produce ammonia.
  • FIGS. 1A and 1B are schematic diagrams of a catalyst according to an embodiment of the present application.
  • Figure 2 is a flowchart showing a method for producing a catalyst according to an embodiment of the present application.
  • Figure 3 is a schematic diagram showing a method for producing a catalyst according to an embodiment of the present application.
  • Figure 4 is a schematic diagram showing a method for producing a catalyst containing metal nanoparticles.
  • Figures 5a and 5b are graphs showing XRD patterns of catalysts according to an example and a comparative example of the present application.
  • Figure 5c is a HADDF-STEM image of a catalyst according to an example of the present application.
  • FIG. 5D is an intensity profile and electron energy spectrum graph for site A in FIG. 5C.
  • FIG. 5E is an intensity profile and electron energy spectrum graph for site B in FIG. 5C.
  • Figure 5f is a graph showing the average dimer distance of a catalyst according to an example of the present application.
  • Figure 5g is an EDS image of a catalyst according to an example of the present application.
  • Figure 6a is a XANES (X-ray absorption near edge structure) spectrum graph of a catalyst according to an example and a comparative example of the present application.
  • Figure 6b is a XANES spectrum graph of a catalyst according to an example and a comparative example of the present application.
  • Figure 6c is a Fourier transform EXAFS (Extended X-ray. Absorption Fine Structure) spectrum graph of a catalyst according to an example and a comparative example of the present application.
  • EXAFS Extended X-ray. Absorption Fine Structure
  • Figure 6d is a Fourier transform EXAFS spectrum graph of a catalyst according to an example and a comparative example of the present application.
  • Figure 6e is a WT-EXAFS image of a catalyst according to an example and a comparative example of the present application.
  • Figure 7a is a graph showing the LSV polarization curve of a catalyst for hydrogen generation reaction according to an example and a comparative example of the present application.
  • Figure 7b is a graph showing the overpotential required for the catalyst for hydrogen generation reaction according to an example and comparative example of the present application.
  • Figure 7c is a graph showing the Tafel slope of a catalyst for hydrogen generation reaction according to an example and a comparative example of the present application.
  • Figure 7d is a graph showing the LSV polarization curve of a catalyst for hydrogen generation reaction according to an example and a comparative example of the present application.
  • Figure 7e is a graph showing the overpotential required for the catalyst for hydrogen generation reaction according to an example and comparative example of the present application.
  • Figure 7f is a graph showing the Tafel slope of a catalyst for hydrogen generation reaction according to an example and a comparative example of the present application.
  • Figure 7g is a graph showing the degree of hydrogen generation over time of the catalyst for hydrogen generation reaction according to an example and comparative example of the present application.
  • Figure 7h is a graph showing the degree of hydrogen generation over time by the catalyst for hydrogen generation reaction according to an embodiment of the present application.
  • 8A and 8B are graphs showing the LSV polarization curve of a catalyst for hydrogen generation according to an embodiment of the present application.
  • Figure 9 is SEM images of NC, NiNi-SAD-NC, MnMn-SAD-NC, and MnNi-SAD-NC.
  • Figures 10 and 11 are STEM images of MnNi-SAD-NC.
  • Figure 12 shows the XPS analysis results of MnAg-SAD-NC.
  • Figure 13 shows the XPS analysis results of NiAg-SAD-NC.
  • Figure 14 shows the XPS analysis results of PdMn-SAD-NC.
  • Figure 15 shows the XPS analysis results of NiPd-SAD-NC.
  • Figure 16 shows the XPS analysis results of CoPd-SAD-NC.
  • Figure 17 shows the XPS analysis results of CuPd-SAD-NC.
  • Figure 18 shows the XPS analysis results of AgPd-SAD-NC.
  • Figure 19 shows the XPS analysis results of FeAu-SAD-NC.
  • Figure 20 shows the XPS analysis results of NiAu-SAD-NC.
  • Figure 21 shows the XPS analysis results of CoAu-SAD-NC.
  • Figure 22 is the XPS analysis result of CuAu-SAD-NC.
  • Figure 23 is the XPS analysis result of AgAu-SAD-NC.
  • Figure 24 shows the XPS analysis results of PdAu-SAD-NC.
  • Figure 25 shows the XPS analysis results of MnPt-SAD-NC.
  • Figure 26 is the XPS analysis result of NiPt-SAD-NC.
  • Figure 27 is the XPS analysis result of CoPt-SAD-NC.
  • Figure 28 shows the XPS analysis results of CuPt-SAD-NC.
  • Figure 29 shows the XPS analysis results of AgPt-SAD-NC.
  • Figure 30 shows the XPS analysis results of PdPt-SAD-NC.
  • Figure 31 shows the XPS analysis results of AuPt-SAD-NC.
  • Figure 32 is the XPS analysis result of NiRu-SAD-NC.
  • Figure 33 shows the XPS analysis results of CoRu-SAD-NC.
  • Figure 34 is the XPS analysis result of CuRu-SAD-NC.
  • Figure 35 is the XPS analysis result of AgRu-SAD-NC.
  • Figure 36 shows the XPS analysis results of PdRu-SAD-NC.
  • Figure 37 is the XPS analysis result of AuRu-SAD-NC.
  • Figure 38 shows the XPS analysis results of PtRu-SAD-NC.
  • Figure 39 shows the XPS analysis results of FeIr-SAD-NC.
  • Figure 40 shows the XPS analysis results of MnIr-SAD-NC.
  • Figure 41 shows the XPS analysis results of NiIr-SAD-NC.
  • Figure 42 is the XPS analysis result of CoIr-SAD-NC.
  • Figure 43 is the XPS analysis result of CuIr-SAD-NC.
  • Figure 44 shows the XPS analysis results of AgIr-SAD-NC.
  • Figure 45 is the XPS analysis result of PdIr-SAD-NC.
  • Figure 46 is the XPS analysis result of SnPt-SAD-NC.
  • Figure 47 is the XPS analysis result of SnRu-SAD-NC.
  • Figure 48 is the XPS analysis result of SnIr-SAD-NC.
  • Figure 49 is the XPS analysis result of InMn-SAD-NC.
  • Figure 50 shows the XPS analysis results of InNi-SAD-NC.
  • Figure 51 shows the XPS analysis results of InCo-SAD-NC.
  • Figure 52 is the XPS analysis result of InCu-SAD-NC.
  • Figure 53 shows the XPS analysis results of InAg-SAD-NC.
  • Figure 54 is the XPS analysis result of InPd-SAD-NC.
  • Figure 55 is the XPS analysis result of IrAu-SAD-NC.
  • Figure 56 is the XPS analysis result of IrPt-SAD-NC.
  • Figure 57 is the XPS analysis result of IrRu-SAD-NC.
  • Figure 58 is the XPS analysis result of MnSn-SAD-NC.
  • Figure 59 is the XPS analysis result of NiSn-SAD-NC.
  • Figure 60 shows the XPS analysis results of CoSn-SAD-NC.
  • Figure 61 is the XPS analysis result of CuSn-SAD-NC.
  • Figure 62 is the XPS analysis result of AgSn-SAD-NC.
  • Figure 63 is the XPS analysis result of PdSn-SAD-NC.
  • Figure 64 is the XPS analysis result of AuSn-SAD-NC.
  • Figure 65 is the XPS analysis result of BiRu-SAD-NC.
  • Figure 66 shows the XPS analysis results of BiIr-SAD-NC.
  • Figure 67 is the XPS analysis result of BiSn-SAD-NC.
  • Figure 68 is the XPS analysis result of BiIn-SAD-NC.
  • Figure 69 shows the XPS analysis results of PbMn-SAD-NC.
  • Figure 70 is the XPS analysis result of PbNi-SAD-NC.
  • Figure 71 is the XPS analysis result of PbCo-SAD-NC.
  • Figure 72 is the XPS analysis result of PbCu-SAD-NC.
  • Figure 73 is the XPS analysis result of PbAg-SAD-NC.
  • Figure 74 is the XPS analysis result of PbPd-SAD-NC.
  • Figure 75 is the XPS analysis result of PbAu-SAD-NC.
  • Figure 76 is the XPS analysis result of PbPt-SAD-NC.
  • Figure 77 is the XPS analysis result of InAu-SAD-NC.
  • Figure 78 is the XPS analysis result of InPt-SAD-NC.
  • Figure 79 is the XPS analysis result of InRu-SAD-NC.
  • Figure 80 shows the XPS analysis results of InIr-SAD-NC.
  • Figure 81 is the XPS analysis result of InSn-SAD-NC.
  • Figure 82 is the XPS analysis result of BiMn-SAD-NC.
  • Figure 83 is the XPS analysis result of BiNi-SAD-NC.
  • Figure 84 is the XPS analysis result of BiCo-SAD-NC.
  • Figure 85 is the XPS analysis result of BiCu-SAD-NC.
  • Figure 86 is the XPS analysis result of BiAg-SAD-NC.
  • Figure 87 is the XPS analysis result of BiPd-SAD-NC.
  • Figure 88 is the XPS analysis result of BiAu-SAD-NC.
  • Figure 89 shows the XPS analysis results of BiPt-SAD-NC.
  • Figure 90 shows the XPS analysis results of PbRu-SAD-NC.
  • Figure 91 shows the XPS analysis results of PbIr-SAD-NC.
  • Figure 92 is the XPS analysis result of PbSn-SAD-NC.
  • Figure 93 is the XPS analysis result of PbIn-SAD-NC.
  • Figure 94 is the XPS analysis result of PbBi-SAD-NC.
  • Figure 95 is the XPS analysis result of RhMn-SAD-NC.
  • Figure 96 is the XPS analysis result of RhNi-SAD-NC.
  • Figure 97 is the XPS analysis result of RhCo-SAD-NC.
  • Figure 98 is the XPS analysis result of RhCu-SAD-NC.
  • Figure 99 shows the XPS analysis results of RhAg-SAD-NC.
  • Figure 100 shows the XPS analysis results of RhPd-SAD-NC.
  • Figure 101 is the XPS analysis result of RhAu-SAD-NC.
  • Figure 102 is the XPS analysis result of RhPt-SAD-NC.
  • Figure 103 is the XPS analysis result of RhRu-SAD-NC.
  • Figure 104 shows the XPS analysis results of RhIr-SAD-NC.
  • Figure 105 is the XPS analysis result of RhSn-SAD-NC.
  • Figure 106 is the XPS analysis result of RhIn-SAD-NC.
  • Figure 107 is the XPS analysis result of MnNi-SAD-NC.
  • Figure 108 is the XPS analysis result of NiNi-SAD-NC.
  • Figure 109 is the XPS analysis result of MnMn-SAD-NC.
  • EXAFS Extended X-ray. Absorption Fine Structure
  • Figure 111 shows the XRD analysis results of FeNi-SAD-NC, FeCo-SAD-NC, FeMn-SAD-NC, CuNi-SAD-NC, and FeCu-SAD-NC.
  • Figure 112 is the XRD analysis results of MnCu-SAD-NC, CuNi-SAD-NC, MnNi-SAD-NC, MnCo-SAD-NC, and NiCo-SAD-NC.
  • Figure 113 shows the XRD analysis results of MnMn-SAD-NC, NiNi-SAD-NC, CoCu-SAD-NC, CoAg-SAD-NC, and FeAg-SAD-NC.
  • Figure 114 shows the XRD analysis results of CuAg-SAD-NC, MnAg-SAD-NC, NiAg-SAD-NC, PdFe-SAD-NC, and PdMn-SAD-NC.
  • Figure 115 is the XRD analysis results of PdNi-SAD-NC, PdCo-SAD-NC, PdCu-SAD-NC, PdAg-SAD-NC, and AuFe-SAD-NC.
  • Figure 116 shows the XRD analysis results of AuMn-SAD-NC, AuNi-SAD-NC, AuCo-SAD-NC, AuCu-SAD-NC, and AuAg-SAD-NC.
  • Figure 117 shows the XRD analysis results of AuPd-SAD-NC, PtFe-SAD-NC, PtMn-SAD-NC, PtNi-SAD-NC, and PtCo-SAD-NC.
  • Figure 118 shows the XRD analysis results of PtCu-SAD-NC, PtAg-SAD-NC, PtPd-SAD-NC, PtAu-SAD-NC, and RuFe-SAD-NC.
  • RuMn-SAD-NC shows RuMn-SAD-NC, RuNi-SAD-NC, RuCo-SAD-NC, RuCu-SAD-NC, RuAg-SAD-NC, RuPd-SAD-NC, RuAu-SAD-NC, RuPt-SAD-NC , XRD analysis results of IrFe-SAD-NC and IrMn-SAD-NC.
  • IrNi-SAD-NC shows IrNi-SAD-NC, IrCo-SAD-NC, IrCu-SAD-NC, IrAg-SAD-NC, IrPd-SAD-NC, IrAu-SAD-NC, IrPt-SAD-NC, IrRu-SAD-NC , XRD analysis results of SnFe-SAD-NC and SnMn-SAD-NC.
  • Figure 121 shows SnNi-SAD-NC, SnCo-SAD-NC, SnCu-SAD-NC, SnAg-SAD-NC, SnPd-SAD-NC, SnAu-SAD-NC, SnPt-SAD-NC, SnRu-SAD-NC , XRD analysis results of SnIr-SAD-NC and InFe-SAD-NC.
  • Figure 122 shows InMn-SAD-NC, InNi-SAD-NC, InCo-SAD-NC, InCu-SAD-NC, InAg-SAD-NC, InPd-SAD-NC, InAu-SAD-NC, InPt-SAD-NC , XRD analysis results of InRu-SAD-NC and InIr-SAD-NC.
  • Figure 123 shows InSn-SAD-NC, BiFe-SAD-NC, BiMn-SAD-NC, BiNi-SAD-NC, BiCo-SAD-NC, BiCu-SAD-NC, BiAg-SAD-NC, BiPd-SAD-NC , XRD analysis results of BiAu-SAD-NC and BiPt-SAD-NC.
  • Figure 124 shows BiRu-SAD-NC, BiIr-SAD-NC, BiSn-SAD-NC, BiIn-SAD-NC, PbFe-SAD-NC, PbMn-SAD-NC, PbNi-SAD-NC, PbCo-SAD-NC , XRD analysis results of PbCu-SAD-NC and PbAg-SAD-NC.
  • Figure 125 shows PbPd-SAD-NC, PbAu-SAD-NC, PbPt-SAD-NC, PbRu-SAD-NC, PbIr-SAD-NC, PbSn-SAD-NC, PbIn-SAD-NC, PbBi-SAD-NC , XRD analysis results of RhFe-SAD-NC and RhMn-SAD-NC.
  • Figure 126 shows RhNi-SAD-NC, RhCo-SAD-NC, RhCu-SAD-NC, RhAg-SAD-NC, RhPd-SAD-NC, RhAu-SAD-NC, RhPt-SAD-NC, RhRu-SAD-NC , RhIr-SAD-NC, RhSn-SAD-NC, RhIn-SAD-NC, RhBi-SAD-NC, and RhPb-SAD-NC.
  • Figure 127 is a graph to confirm the carbon dioxide reduction reaction activity of the MnNi-SAD-NC catalyst.
  • Figures 128 and 129 show the results of gas chromatography analysis of the product of the carbon dioxide reduction reaction using the MnNi-SAD-NC catalyst.
  • Figure 130 is a gas chromatography-mass spectrometry result for the product of a carbon dioxide reduction reaction using a MnNi-SAD-NC catalyst.
  • Figure 131 is a graph explaining the selectivity of product distribution of the carbon dioxide reduction reaction using the MnNi-SAD-NC catalyst.
  • Figure 132 is a graph to explain the long-term stability of the MnNi-SAD-NC catalyst.
  • Figure 133 is a 1 H-NMR and 13 C-NMR graph for product analysis of carbon dioxide reduction reaction using a MnNi-SAD-NC catalyst.
  • the term "combination thereof" included in the Markushi format expression means a mixture or combination of one or more components selected from the group consisting of the components described in the Markushi format expression, It means including one or more selected from the group consisting of.
  • the first aspect of the present application includes a nitrogen-doped carbon matrix; and a single atom metal bonded to nitrogen in the carbon matrix.
  • FIGS. 1A and 1B are schematic diagrams of a catalyst according to an embodiment of the present application.
  • Figure 1a is a schematic diagram of a catalyst comprising a single-atom dimer containing two types of metal atoms as a single-atom metal.
  • Figure 1 shows a first single-atom metal (M 1 ) and a second single atom metal.
  • a catalyst containing SAD (single atom dimer) to which an atomic metal (M 2 ) is bound is expressed.
  • Figure 1B relates to a catalyst comprising one type of single atom metal (eg, a first single atom metal, M 1 ).
  • the single atom dimer includes a first single atom metal (M 1 ) bonded to nitrogen in the carbon matrix, and a second single atom metal (M 2 ) bonded to nitrogen that is not bonded to the first single atom metal (M 1 ). ), and may include a combination of the first single-atomic metal (M 1 ) and the second single-atomic metal (M 1 ).
  • the first single atomic metal (M 1 ) and the second single atomic metal (M 2 ) are each selected from Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, It may include any one of Dy, Ho, Er, Tm, Yb, and Lu.
  • the first single-atomic metal (M 1 ) and the second single-atomic metal (M 2 ) may be different from each other.
  • the first single-atomic metal (M 1 ) and the second single-atomic metal (M 2 ) may be the same.
  • the single atom dimers include Fe-Ni, Fe-Co, Fe-Mn, Cu-Ni, Fe-Cu, Mn-Cu, Cu-Ni, Mn-Ni, Mn-Co, Ni-Co, Mn -Mn, Ni-Ni, Co-Cu, Co-Ag, Fe-Ag, Cu-Ag, Mn-Ag, Ni-Ag, Pd-Fe, Pd-Mn, Pd-Ni, Pd-Co, Pd-Cu , Pd-Ag, Au-Fe, Au-Mn, Au-Ni, Au-Co, Au-Cu, Au-Ag, Au-Pd, Pt-Fe, Pt-Mn, Pt-Ni, Pt-Co, Pt -Cu, Pt-Ag, Pt-Pd, Pt-Au, Ru-Fe, Ru-Mn, Ru-Ni, Ru-Co, Ru-Cu, Ru-Ag, Ru-Pd, Ru-Au, Ru-Fe
  • the synthesis of SADs based on different transition metals should be able to generate the desired dimer sites by varying the appropriate combination of metal precursors and metals used.
  • the ratio of the precursor (for example, dopamine with a metal ion bound or poly dopamine with a metal ion bound) and dicandiamide may vary depending on the type of the transition metal, and when a heavy metal is used among the transition metals, stabilization More dicandiamide may be needed for this.
  • the synthesis of SAD based on the same transition metal can be produced by controlling the concentration of the metal precursor.
  • the catalyst can be used as a catalyst for hydrogen generation reaction.
  • platinum (Pt)-based catalysts are used as catalysts for hydrogen generation reactions, but their limited availability and high cost are required, which increases the unit cost of hydrogen generation. In order to reduce the unit cost of hydrogen generation, it is necessary to develop a catalyst that has similar or superior performance to platinum-based catalysts while using inexpensive materials.
  • the catalyst according to the present disclosure is a catalyst that can be included in a catalyst for a hydrogen evolution reaction, and includes a carbon matrix and a single atom metal bound on the carbon matrix. As will be described later, the catalyst can adsorb water molecules and reduce the energy required for the decomposition reaction of water molecules, thereby reducing the energy required for hydrogen generation.
  • the single atom metal may include one type of single atom metal or a single atom dimer of two types of single atom metals combined, but is not limited thereto.
  • the single-atomic metal according to the present application refers to one or two types of metal atoms, and the single-atomic metal is different from metal nanoparticles in which a plurality of metal atoms or ions of metal atoms are bonded.
  • the single-atom dimer means that two different metal atoms are metallically bonded to each other by electrons, and the number of metal atoms included is two.
  • the metal nanoparticle is one in which a plurality of metal atoms are combined with a metal, and may have a relatively bulky structure because it contains a large number of metal atoms compared to a single atom dimer or a single type of single atom metal.
  • the single atomic metal according to the present application refers to one or two metal atoms, and when a plurality of metal atoms are combined, the metal atoms can expand into metal nanoparticles through a nanoparticle cluster.
  • the single-atom metal may have high atom economy because it is composed of only one or two metal atoms that participate in the reaction.
  • the catalyst may include 1 to 20 parts by weight of the single atom metal based on 100 parts by weight of the carbon matrix, but is not limited thereto.
  • the mass of single atomic metal included in the catalyst may be about 1% to about 20%, about 2% to about 20%, about 3% to about 20%, about 4% to about 20% of the mass of the carbon matrix, About 5% to about 20%, about 6% to about 20%, about 7% to about 20%, about 8% to about 20%, about 9% to about 20%, about 10% to about 20%, about 12 % to about 20%, about 14% to about 20%, about 16% to about 20%, about 18% to about 20%, about 1% to about 2%, about 1% to about 3%, about 1% to About 4%, about 1% to about 5%, about 1% to about 6%, about 1% to about 7%, about 1% to about 8%, about 1% to about 9%, about 1% to about 10 %, about 1% to about 12%, about 1% to about 14%, about 1% to to
  • the carbon matrix according to the present application is formed by heat treatment of poly dopamine, and may have a three-dimensional structure or a two-dimensional structure. At this time, because the poly dopamine contains nitrogen, the carbon matrix may contain carbon and nitrogen.
  • the carbon matrix may be nitrogen-doped, but is not limited thereto.
  • the position of the single atom metal confined on the carbon matrix may be controlled by the doped nitrogen, but is not limited thereto.
  • the single atom metal may combine with the doped nitrogen, but is not limited thereto.
  • the carbon matrix when the carbon matrix contains nitrogen, the position of a single metal atom can be created at an optimal nitrogen position. However, if the carbon matrix does not contain nitrogen, metal ions may aggregate with each other to form clusters and nanoparticles of the carbon matrix.
  • the nitrogen may bond to the single metal atom.
  • the single-atom metal may adsorb water molecules or reduce the decomposition reaction energy of the water molecules, but is not limited thereto.
  • the single atom metal is Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag , Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu , and combinations thereof, but is not limited thereto.
  • the single-atom metal is a single-atom dimer containing Ni and Co
  • the Co site adsorbs a water molecule, and after the water is dissociated, the H* site moves to the Ni site to provide energy required for water dissociation. Barriers can be reduced.
  • the single atom metal is composed of a single metal atom containing either Ni or Co, adsorption and reduction of water may occur at the position of the single metal atom.
  • the single atom dimer may include a metal-metal bond of 0.2 nm to 0.4 nm, but is not limited thereto.
  • the second aspect of the present application relates to a catalyst for hydrogen generation reaction, including the catalyst according to the first aspect.
  • the catalyst for the hydrogen evolution reaction requires a low overpotential of 50 mV to 65 mV and 110 mV to 200 mV, respectively, to reach -10 mA/cm 2 and -100 mA/cm 2 , which is 20% Pt-C.
  • it is similar to the overpotential requirements required for Pt single metal atom catalysts to reach -10 mA/cm 2 and -100 mA/cm 2 .
  • a catalyst for hydrogen generation containing a catalyst containing metal nanoparticles instead of a single atom metal requires a higher overpotential compared to a catalyst for hydrogen generation reaction containing the catalyst according to the first aspect, which is due to the metal nano particle. This means that more energy is required for the hydrogen generation reaction when using particles.
  • the catalyst for hydrogen generation reaction may operate in a pH range of more than 0 and less than or equal to 14, but is not limited thereto.
  • neutrality 7
  • electrolyte conductivity may decrease.
  • the water splitting reaction may begin with the adsorption of protons on the catalyst.
  • the water decomposition reaction may begin with H 2 O adsorption and dissociation reaction on the catalyst, so the catalyst has a reaction mechanism when located in an acidic environment and when located in a basic environment. This may be different.
  • the catalyst for hydrogen generation can generate hydrogen with high efficiency when supported in a 1 M KOH solution and a 0.5 M H 2 SO 4 solution.
  • a third aspect of the present application relates to a method for producing a catalyst according to the first aspect, comprising mixing a precursor of a carbon matrix and a precursor of a single atom metal; self-polymerizing the carbon matrix precursor to form a carbon polymer; and mixing the carbon polymer and the nitrogen source and heat treating the catalyst.
  • FIG. 2 is a flowchart showing a method for producing a catalyst according to an embodiment of the present application
  • FIG. 3 is a schematic diagram showing a method for producing a catalyst according to an embodiment of the present application
  • FIG. 4 is a flowchart showing a method for producing a catalyst containing metal nanoparticles. This is a schematic diagram showing the method.
  • FIG. 3 shows a method for producing a catalyst containing a single-atom metal according to the first aspect
  • FIG. 4 shows a method for producing a catalyst containing metal nanoparticles instead of a single-atom metal.
  • the precursor of the carbon matrix and the precursor of the single atom metal are mixed (S100).
  • the precursor of the carbon matrix and the precursor of the single atom metal may be mixed in a liquid phase, but are not limited thereto.
  • the environment in which the two precursors are mixed may be inside a Tris buffer solution, but is not limited thereto.
  • the precursor of the carbon matrix may include dopamine, but is not limited thereto.
  • Dopamine refers to an organic compound of the catecholamine series with the molecular formula of C 8 H 11 NO 2 . As will be described later, when the dopamine is injected into a Tris buffer solution and stirred at room temperature, it can be stirred on its own to form polydopamine.
  • the precursor of the single atom metal is Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd , Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb , Lu, and combinations thereof may include ions of elements selected from the group, but are not limited thereto.
  • the precursor of the single-atom metal may include one type of metal ion or two types of metal ions depending on the structure of the single-atom metal of the finished catalyst.
  • the precursor of the carbon matrix is self-polymerized to form a carbon polymer (S200).
  • the carbon polymer may include a precursor of the single-atom metal therein, but is not limited thereto.
  • the carbon matrix precursor and the single-atom metal precursor When the carbon matrix precursor and the single-atom metal precursor are stirred at room temperature, the carbon matrix precursor may self-polymerize to become a carbon polymer. At this time, the precursor of the single-atom metal, that is, the metal ion, may combine with the carbon polymer.
  • the carbon polymer may include poly dopamine, but is not limited thereto.
  • the carbon polymer is poly dopamine
  • the metal ion of the single-atomic metal precursor can be combined with the nitrogen of the poly dopamine.
  • the nitrogen source is a material for additionally supplying nitrogen to the carbon polymer.
  • a catalyst containing metal nanoparticles can be produced as shown in FIG. 4. As described above, catalysts containing metal nanoparticles may have lower hydrogen generation efficiency due to lower atomic economy than catalysts containing single-atom metals.
  • the mass ratio of the carbon polymer and the nitrogen source may be 1:5 to 1:10, but is not limited thereto.
  • the mass ratio between the carbon polymer (poly dopamine bound to metal ions) and the nitrogen source (e.g. dicandiamide) may be 1:7.
  • the precursor of the single atom metal may become a single atom dimer of one type of single atom metal or two types of single atom metals combined, but is limited thereto. It doesn't work.
  • the carbon polymer may be a carbon matrix, but is not limited thereto.
  • the nitrogen source may include a material consisting of cyanoguanidine (dicyandiamide), guanidine, and combinations thereof, but is not limited thereto.
  • the poly dopamine when a carbon polymer containing poly dopamine to which Ni ions and Co ions are bonded is mixed with cyanoguanidine and heat treated, the poly dopamine may be converted into a nitrogen-doped two-dimensional carbon matrix.
  • the number of nitrogens is increased by the cyanoguanidine compared to poly-dopamine, and the phenomenon of agglomeration of the Ni ions and Co ions is suppressed by the increased nitrogen position, resulting in a single atomic metal, that is, a Ni-Co dimer, instead of a metal nanoparticle. can be formed.
  • the heat treatment temperature may be 700°C to 900°C, but is not limited thereto.
  • the catalyst according to the present disclosure can be used in a reaction that reduces carbon dioxide (CO 2 ) to produce ethanol and acetone.
  • CO 2 carbon dioxide
  • a reaction as shown in ⁇ Formula 1> below occurs on the anode side
  • a reaction as shown in ⁇ Formula 2> below occurs on the cathode side. It can happen.
  • the catalyst according to the present disclosure can be used in a reaction that reduces nitrogen (N 2 ) to produce ammonia.
  • Tris buffer 1.21 g was dissolved in 135 ml of DI water, and then 5 ml of a solution containing a metal salt was added. At this time, the concentration of the metal salt-containing solution is 2 mg/ml, and it contains Ni(NO 3 ) 2 ⁇ 6H 2 O and Co(NO 3 ) 2 ⁇ 6H 2 O in a ratio of 1:1.
  • the carbon polymer prepared by the method according to Example 1-1 and cyanoguanidine were mixed at a ratio of 1:7, and heat treated in a vacuum environment at 800°C for 2 hours to increase the temperature by 5°C per minute to obtain NiCo-SAD-NC. was formed.
  • Example 1-1 The metal salt-containing solution in Example 1-1 was changed and prepared in the same manner as Example 1-2. At this time, the name of the catalyst for each example and the type and ratio of the metal salt contained in the metal salt-containing solution are shown in Table 1 below.
  • Example 2 NiCo-SAD-NC(1:2) Ni(NO 3 ) 2 ⁇ 6H 2 O and Co(NO 3 ) 2 ⁇ 6H 2 O 1:2
  • Example 3 NiCo-SAD-NC(2:1) Ni(NO 3 ) 2 ⁇ 6H 2 O and Co(NO 3 ) 2 ⁇ 6H 2 O 2:1
  • Example 4 Ni-SA-NC Ni(NO 3 ) 2 ⁇ 6H 2 O -
  • Example 5 Co-SA-NC Co(NO 3 ) 2 ⁇ 6H 2 O -
  • Example 6 CoFe-SAD-NC Co(NO 3 ) 2 ⁇ 6H 2 O and Fe(NO 3 ) 3 ⁇ 9H 2 O 1:1
  • Example 7 CoMn-SAD-NC Co(NO 3 ) 2 ⁇ 6H 2 O and Mn(NO 3 ) 2 ⁇ 4H 2 O 1:1
  • Example 8 Pt-SA H2PtCl6 _ -
  • Example 8 the mixing ratio of carbon polymer and cyanoguanidine is 1:20.
  • Example 9 the mixing ratio of carbon polymer and cyanoguanidine is 1:20.
  • Example 2 The same steps as in Example 1 were performed, but heat treatment was performed without adding cyanoguanidine in the steps of Example 1-2.
  • Pure polydopamine was prepared by following the same steps as in Example 1, but without including metal salts when forming the carbon polymer. Next, pure polydopamine was mixed with cyanoguanidine at a ratio of 1:7 and then heat treated.
  • Figures 5a and 5b are graphs showing the It is an intensity profile and electron energy spectrum graph for site A, and Figure 5e is an intensity profile and electron energy spectrum graph for site B in Figure 5c,
  • NiCo-NP-NC has peaks of (111), (200), and (220), which are peaks formed by NiCo metal nanoparticles.
  • NiCo-SAD-NC, Ni-SA-NC, and Co-SA-NC are similar to the XRD pattern of carbon matrix NC and no separate peaks are identified, the difference between metal nano atoms and single atom metal cannot be confirmed. You can.
  • NiCo-SAD-NC N, Ni, and Co atoms are each localized and uniformly dispersed on the NC.
  • Figure 6a is a XANES (X-ray absorption near edge structure) spectrum graph of a catalyst according to an example and a comparative example of the present application
  • Figure 6b is a XANES spectrum graph of a catalyst according to an example and a comparative example of the present application
  • 6c is a Fourier transform EXAFS (Extended It is a graph
  • FIG. 6e is a WT-EXAFS image of a catalyst according to an example and a comparative example of the present application.
  • the K-only XANES spectra of Ni and Co of Ni-SA-NC, Co-SA-NC, NiCo-NP-NC, and NiCo-SAD-NC are, It was confirmed that it showed a similar trend to the spectrum.
  • a pre-edge peak around 8333.8 eV is observed in the Ni-edge XANES spectra of NiCo-SA-NC, Ni-SA-NC and standard nickel phthalocyanine (NiPC). It can be.
  • Ni-SA-NC In contrast to Ni-SA-NC, the perihelion and white line identified in the Ni K-edge XANES spectrum of NiCo-SAD-NC show positive changes, which means that the oxidation state of Ni in Ni-SAD-NC -This may mean higher than NC.
  • Ni-SA-NC it can be seen that a similar pre-peak appears at about 7705 eV, and it can be confirmed that the X-ray absorption Co center is centered in four coordinations (N or metal). At this time, the perihelion and white line features of the Co K-edge .
  • NiCo-SAD-NC NiCo-SAD-NC
  • Co-SA-NC Co-SA-NC
  • NiCo-NP-NC NiCo-NP-NC
  • Co Co
  • Ni Ni.
  • the average Ni-N bond length is significantly shifted for NiCo-SAD-NC compared to Ni-SA-NC, which is consistent with the simultaneous appearance of a Ni-metal peak at 2.18 ⁇ that is not found in Ni-SA-NC. Together, the distorted D4h local symmetry of Ni atomic sites was confirmed.
  • can be measured in impedance spectroscopy using a Nyquist plot, and as ⁇ is smaller, the conductivity of the catalyst can be improved.
  • the peak value of NiCo-SAD-NC between 1 and 2 radial distance ( ⁇ ) is larger than the peak value between 2 and 3 radial distance ( ⁇ ), while the peak value of NiCo-NP-NC is between 1 and 2 radial distance ( ⁇ ). It can be seen that the peak value between distance ( ⁇ ) is smaller than the peak value between 2 and 3 Radial distance ( ⁇ ).
  • the Co-N bond was stretched from 1.48 ⁇ (Co-SA-NC) to 1.56 ⁇ (NiCo-SAD-NC), indicating that the local symmetry of the center of Co-N was similar to that of Co-Ni bond 2. This means that it was distorted as it was formed additionally in ⁇ .
  • NiCo dimer the formation of NiCo dimer can be confirmed.
  • Figure 7a is a graph showing the LSV polarization curve of the catalyst for hydrogen generation reaction according to an example and comparative example of the present application
  • Figure 7b is a graph showing the overvoltage (over voltage) required for the catalyst for hydrogen generation reaction according to an example and comparative example of the present application. potential
  • Figure 7c is a graph showing the Tafel slope of the catalyst for hydrogen generation reaction according to an example and comparative example of the present application
  • Figure 7d is a graph showing the Tafel slope according to an example and comparative example of the present application.
  • Figure 7e is a graph showing the overpotential required for the catalyst for hydrogen generation reaction according to an example and comparative example of the present application
  • Figure 7f is an example of the present application
  • Figure 7g shows the degree of hydrogen generation over time of the catalyst for hydrogen generation reaction according to the Example and Comparative Example of the present application. This is the graph shown.
  • Figures 7a to 7c measure the degree of hydrogen generation in a basic solution of 1 M KOH
  • Figures 7d to 7f measure the degree of hydrogen generation in an acidic solution of 0.5 M H2SO4
  • Figures 7g and 7h is a measure of the degree of hydrogen generation in both solutions.
  • the four graphs in Figure 7g are NiCo-SAD-NC (0.5 M H2SO4), NiCo-SAD-NC (1 M KOH), NiCo-NP-NC (0.5 M H2SO4), and NiCo-NP in order from the top.
  • -NC stands for (1 M KOH).
  • a catalyst such as NiCo-SAD-NC has similar performance to a conventional Pt/C catalyst or a catalyst using a Pt monoatomic metal, and NiCo-NP-NC and It can be confirmed that it has superior performance compared to catalysts using metal nanoparticles.
  • catalysts such as NiCo-SAD-NC have similar performance to conventional Pt/C catalysts or catalysts using Pt monoatomic metal, while NiCo-NP- It can be confirmed that it has superior performance compared to catalysts using metal nanoparticles such as NC.
  • the NiCo-SAD-NC catalyst is superior to the NiCo-NP-NC catalyst in generating hydrogen generation reaction.
  • the Faradaic efficiency is about 99% over about 1200 seconds, regardless of the pH of the supported solution, and about 180 ⁇ mol of hydrogen is produced in a 1 M KOH and 0.5 M H2SO4 solution. You can confirm that it has occurred.
  • the NiCo-SAD-NC catalyst according to the present application can have comparable water decomposition performance in both acidic and basic environments.
  • FIGS 8A and 8B are graphs showing the LSV polarization curve of a catalyst for hydrogen generation according to an embodiment of the present application.
  • Figures 8a and 8b are graphs comparing three catalysts using Ni-SA-NC, Co-SA-NC, and NiCo-SAD-NC, where Figure 8a is in a 1 M KOH solution and Figure 8b is in a 1 M KOH solution. Measured in 0.5 M H2SO4 solution.
  • catalysts using single-atom metals show lower HER performance compared to dimer catalysts (NiCo-SAD-NC).
  • catalysts were prepared using various metals.
  • the catalyst preparation method was the same as the above-described examples, but a different type of metal precursor was used.
  • catalysts combining the same metal e.g., NiNi, MnMn, etc.
  • M 1 M 2 e.g., NiCo
  • M 1 precursor Ni precursor
  • M 2 precursor Co precursor
  • M 1 in the case of M 1 (eg, NiNi) it was prepared using a M 1 precursor (Ni precursor) at a concentration of 0.2 wt%.
  • the types of metal components are shown in ⁇ Table 2> below.
  • Figure 9 is SEM images of NC, NiNi-SAD-NC, MnMn-SAD-NC, and MnNi-SAD-NC.
  • Figure 9(a) shows the SEM (Scanning Electron Microscope) image of NC
  • Figure 9(b) shows the SEM image of NiNi-SAD-NC
  • Figure 9(c) shows it. Shows the SEM image of MnMn-SAD-NC
  • Figure 9 shows the SEM image of MnNi-SAD-NC.
  • Figures 10 and 11 are STEM images of MnNi-SAD-NC.
  • FIGS 10 and 11 show STEM (Scanning Transmission Electron Microscopy) images of MnNi-SAD-NC.
  • Figure 10 shows a case where the total content of the Mn precursor and Ni precursor is 0.2 wt% or less
  • Figure 11 shows a case where the total content of the Mn precursor and Ni precursor is more than 0.2 wt%.
  • Figure 10 when it is less than 0.2 wt%, it exists in the form of SAD, whereas when it exceeds 0.2 wt%, it exists in the form of a cluster.
  • Figures 12 to 109 show the results of XPS analysis to confirm various combinations of single-atom dimers, and it can be confirmed that various combinations of metals can be used as single-atom dimers.
  • both metal atoms including but not limited to Mn, Fe, Co, Ni, Cu, Ag, Pd, Ru, Rh, Ir, Pt, Au, Sn, In, Bi, Pb-NC, are present in the 2p XPS spectrum. It can be seen that one shows 2p 3/2 and 2 p1/2 peak characteristics.
  • the binding energy for a metal atom in one of the samples shifts to positive after N is introduced to confine a single atom site, indicating the formation of an -N bond.
  • Figure 12 shows the XPS analysis results of MnAg-SAD-NC.
  • Figure 13 shows the XPS analysis results of NiAg-SAD-NC.
  • Figure 14 shows the XPS analysis results of PdMn-SAD-NC.
  • Figure 15 shows the XPS analysis results of NiPd-SAD-NC.
  • Figure 16 shows the XPS analysis results of CoPd-SAD-NC.
  • Figure 17 shows the XPS analysis results of CuPd-SAD-NC.
  • Figure 18 shows the XPS analysis results of AgPd-SAD-NC.
  • Figure 19 shows the XPS analysis results of FeAu-SAD-NC.
  • Figure 20 shows the XPS analysis results of NiAu-SAD-NC.
  • Figure 21 shows the XPS analysis results of CoAu-SAD-NC.
  • Figure 22 is the XPS analysis result of CuAu-SAD-NC.
  • Figure 23 is the XPS analysis result of AgAu-SAD-NC.
  • Figure 24 shows the XPS analysis results of PdAu-SAD-NC.
  • Figure 25 is the XPS analysis result of MnPt-SAD-NC.
  • Figure 26 is the XPS analysis result of NiPt-SAD-NC.
  • Figure 27 is the XPS analysis result of CoPt-SAD-NC.
  • Figure 28 shows the XPS analysis results of CuPt-SAD-NC.
  • Figure 29 shows the XPS analysis results of AgPt-SAD-NC.
  • Figure 30 shows the XPS analysis results of PdPt-SAD-NC.
  • Figure 31 shows the XPS analysis results of AuPt-SAD-NC.
  • Figure 32 is the XPS analysis result of NiRu-SAD-NC.
  • Figure 33 shows the XPS analysis results of CoRu-SAD-NC.
  • Figure 34 is the XPS analysis result of CuRu-SAD-NC.
  • Figure 35 is the XPS analysis result of AgRu-SAD-NC.
  • Figure 36 shows the XPS analysis results of PdRu-SAD-NC.
  • Figure 37 is the XPS analysis result of AuRu-SAD-NC.
  • Figure 38 shows the XPS analysis results of PtRu-SAD-NC.
  • Figure 39 shows the XPS analysis results of FeIr-SAD-NC.
  • Figure 40 shows the XPS analysis results of MnIr-SAD-NC.
  • Figure 41 shows the XPS analysis results of NiIr-SAD-NC.
  • Figure 42 is the XPS analysis result of CoIr-SAD-NC.
  • Figure 43 is the XPS analysis result of CuIr-SAD-NC.
  • Figure 44 shows the XPS analysis results of AgIr-SAD-NC.
  • Figure 45 is the XPS analysis result of PdIr-SAD-NC.
  • Figure 46 is the XPS analysis result of SnPt-SAD-NC.
  • Figure 47 is the XPS analysis result of SnRu-SAD-NC.
  • Figure 48 is the XPS analysis result of SnIr-SAD-NC.
  • Figure 49 is the XPS analysis result of InMn-SAD-NC.
  • Figure 50 shows the XPS analysis results of InNi-SAD-NC.
  • Figure 51 shows the XPS analysis results of InCo-SAD-NC.
  • Figure 52 is the XPS analysis result of InCu-SAD-NC.
  • Figure 53 shows the XPS analysis results of InAg-SAD-NC.
  • Figure 54 is the XPS analysis result of InPd-SAD-NC.
  • Figure 55 is the XPS analysis result of IrAu-SAD-NC.
  • Figure 56 is the XPS analysis result of IrPt-SAD-NC.
  • Figure 57 is the XPS analysis result of IrRu-SAD-NC.
  • Figure 58 is the XPS analysis result of MnSn-SAD-NC.
  • Figure 59 is the XPS analysis result of NiSn-SAD-NC.
  • Figure 60 shows the XPS analysis results of CoSn-SAD-NC.
  • Figure 61 is the XPS analysis result of CuSn-SAD-NC.
  • Figure 62 is the XPS analysis result of AgSn-SAD-NC.
  • Figure 63 is the XPS analysis result of PdSn-SAD-NC.
  • Figure 64 is the XPS analysis result of AuSn-SAD-NC.
  • Figure 65 is the XPS analysis result of BiRu-SAD-NC.
  • Figure 66 shows the XPS analysis results of BiIr-SAD-NC.
  • Figure 67 is the XPS analysis result of BiSn-SAD-NC.
  • Figure 68 is the XPS analysis result of BiIn-SAD-NC.
  • Figure 69 shows the XPS analysis results of PbMn-SAD-NC.
  • Figure 70 is the XPS analysis result of PbNi-SAD-NC.
  • Figure 71 is the XPS analysis result of PbCo-SAD-NC.
  • Figure 72 is the XPS analysis result of PbCu-SAD-NC.
  • Figure 73 is the XPS analysis result of PbAg-SAD-NC.
  • Figure 74 is the XPS analysis result of PbPd-SAD-NC.
  • Figure 75 is the XPS analysis result of PbAu-SAD-NC.
  • Figure 76 is the XPS analysis result of PbPt-SAD-NC.
  • Figure 77 is the XPS analysis result of InAu-SAD-NC.
  • Figure 78 is the XPS analysis result of InPt-SAD-NC.
  • Figure 79 is the XPS analysis result of InRu-SAD-NC.
  • Figure 80 shows the XPS analysis results of InIr-SAD-NC.
  • Figure 81 is the XPS analysis result of InSn-SAD-NC.
  • Figure 82 is the XPS analysis result of BiMn-SAD-NC.
  • Figure 83 is the XPS analysis result of BiNi-SAD-NC.
  • Figure 84 is the XPS analysis result of BiCo-SAD-NC.
  • Figure 85 is the XPS analysis result of BiCu-SAD-NC.
  • Figure 86 is the XPS analysis result of BiAg-SAD-NC.
  • Figure 87 is the XPS analysis result of BiPd-SAD-NC.
  • Figure 88 is the XPS analysis result of BiAu-SAD-NC.
  • Figure 89 shows the XPS analysis results of BiPt-SAD-NC.
  • Figure 90 shows the XPS analysis results of PbRu-SAD-NC.
  • Figure 91 shows the XPS analysis results of PbIr-SAD-NC.
  • Figure 92 is the XPS analysis result of PbSn-SAD-NC.
  • Figure 93 is the XPS analysis result of PbIn-SAD-NC.
  • Figure 94 is the XPS analysis result of PbBi-SAD-NC.
  • Figure 95 is the XPS analysis result of RhMn-SAD-NC.
  • Figure 96 is the XPS analysis result of RhNi-SAD-NC.
  • Figure 97 is the XPS analysis result of RhCo-SAD-NC.
  • Figure 98 is the XPS analysis result of RhCu-SAD-NC.
  • Figure 99 shows the XPS analysis results of RhAg-SAD-NC.
  • Figure 100 shows the XPS analysis results of RhPd-SAD-NC.
  • Figure 101 is the XPS analysis result of RhAu-SAD-NC.
  • Figure 102 is the XPS analysis result of RhPt-SAD-NC.
  • Figure 103 is the XPS analysis result of RhRu-SAD-NC.
  • Figure 104 shows the XPS analysis results of RhIr-SAD-NC.
  • Figure 105 is the XPS analysis result of RhSn-SAD-NC.
  • Figure 106 is the XPS analysis result of RhIn-SAD-NC.
  • Figure 107 is the XPS analysis result of MnNi-SAD-NC.
  • Figure 108 is the XPS analysis result of NiNi-SAD-NC.
  • Figure 109 is the XPS analysis result of MnMn-SAD-NC.
  • EXAFS Extended X-ray. Absorption Fine Structure
  • Figures 111 to 126 show the results of XRD analysis to confirm various combinations of single-atom dimers, and it can be confirmed that various combinations of metals can be used as single-atom dimers.
  • the order of each single atom dimer indicates the order from bottom to top.
  • Figure 111 shows the XRD analysis results of FeNi-SAD-NC, FeCo-SAD-NC, FeMn-SAD-NC, CuNi-SAD-NC, and FeCu-SAD-NC.
  • Figure 112 is the XRD analysis results of MnCu-SAD-NC, CuNi-SAD-NC, MnNi-SAD-NC, MnCo-SAD-NC, and NiCo-SAD-NC.
  • Figure 113 shows the XRD analysis results of MnMn-SAD-NC, NiNi-SAD-NC, CoCu-SAD-NC, CoAg-SAD-NC, and FeAg-SAD-NC.
  • Figure 114 shows the XRD analysis results of CuAg-SAD-NC, MnAg-SAD-NC, NiAg-SAD-NC, PdFe-SAD-NC, and PdMn-SAD-NC.
  • Figure 115 is the XRD analysis results of PdNi-SAD-NC, PdCo-SAD-NC, PdCu-SAD-NC, PdAg-SAD-NC, and AuFe-SAD-NC.
  • Figure 116 shows the XRD analysis results of AuMn-SAD-NC, AuNi-SAD-NC, AuCo-SAD-NC, AuCu-SAD-NC, and AuAg-SAD-NC.
  • Figure 117 shows the XRD analysis results of AuPd-SAD-NC, PtFe-SAD-NC, PtMn-SAD-NC, PtNi-SAD-NC, and PtCo-SAD-NC.
  • Figure 118 shows the XRD analysis results of PtCu-SAD-NC, PtAg-SAD-NC, PtPd-SAD-NC, PtAu-SAD-NC, and RuFe-SAD-NC.
  • RuMn-SAD-NC shows RuMn-SAD-NC, RuNi-SAD-NC, RuCo-SAD-NC, RuCu-SAD-NC, RuAg-SAD-NC, RuPd-SAD-NC, RuAu-SAD-NC, RuPt-SAD-NC , XRD analysis results of IrFe-SAD-NC and IrMn-SAD-NC.
  • IrNi-SAD-NC shows IrNi-SAD-NC, IrCo-SAD-NC, IrCu-SAD-NC, IrAg-SAD-NC, IrPd-SAD-NC, IrAu-SAD-NC, IrPt-SAD-NC, IrRu-SAD-NC , XRD analysis results of SnFe-SAD-NC and SnMn-SAD-NC.
  • Figure 121 shows SnNi-SAD-NC, SnCo-SAD-NC, SnCu-SAD-NC, SnAg-SAD-NC, SnPd-SAD-NC, SnAu-SAD-NC, SnPt-SAD-NC, SnRu-SAD-NC , XRD analysis results of SnIr-SAD-NC and InFe-SAD-NC.
  • Figure 122 shows InMn-SAD-NC, InNi-SAD-NC, InCo-SAD-NC, InCu-SAD-NC, InAg-SAD-NC, InPd-SAD-NC, InAu-SAD-NC, InPt-SAD-NC , XRD analysis results of InRu-SAD-NC and InIr-SAD-NC.
  • Figure 123 shows InSn-SAD-NC, BiFe-SAD-NC, BiMn-SAD-NC, BiNi-SAD-NC, BiCo-SAD-NC, BiCu-SAD-NC, BiAg-SAD-NC, BiPd-SAD-NC , XRD analysis results of BiAu-SAD-NC and BiPt-SAD-NC.
  • Figure 124 shows BiRu-SAD-NC, BiIr-SAD-NC, BiSn-SAD-NC, BiIn-SAD-NC, PbFe-SAD-NC, PbMn-SAD-NC, PbNi-SAD-NC, PbCo-SAD-NC , XRD analysis results of PbCu-SAD-NC and PbAg-SAD-NC.
  • Figure 125 shows PbPd-SAD-NC, PbAu-SAD-NC, PbPt-SAD-NC, PbRu-SAD-NC, PbIr-SAD-NC, PbSn-SAD-NC, PbIn-SAD-NC, PbBi-SAD-NC , XRD analysis results of RhFe-SAD-NC and RhMn-SAD-NC.
  • Figure 126 shows RhNi-SAD-NC, RhCo-SAD-NC, RhCu-SAD-NC, RhAg-SAD-NC, RhPd-SAD-NC, RhAu-SAD-NC, RhPt-SAD-NC, RhRu-SAD-NC , RhIr-SAD-NC, RhSn-SAD-NC, RhIn-SAD-NC, RhBi-SAD-NC, and RhPb-SAD-NC.
  • Figure 127 is a graph to confirm the carbon dioxide reduction reaction activity of the MnNi-SAD-NC catalyst.
  • Figures 128 and 129 show the results of gas chromatography analysis of the product of the carbon dioxide reduction reaction using the MnNi-SAD-NC catalyst.
  • the electrolyte system was continuously purged with CO 2 while the chronopositron measurements were performed in a gas chromatograph (GC) system.
  • GC gas chromatograph
  • the gaseous products resulting from CO 2 reduction were transferred to an attached 0.6L Teldar® PLV gas sampling bag using CO 2 as a carrier gas.
  • the gas bag was then sealed and extracted using the tested 2 mL sample.
  • gas chromatography (GC) results it can be confirmed that acetone is included in the product of the carbon dioxide reduction reaction.
  • Figure 129 it can be confirmed that ethanol is included in the product of the carbon dioxide reduction reaction.
  • Figure 130 is a gas chromatography-mass spectrometry result for the product of a carbon dioxide reduction reaction using a MnNi-SAD-NC catalyst.
  • gas chromatography-mass spectrometry was used to identify the products of the CO2RR reaction using one of the above catalysts. Chronoamphetomics measurements were performed in a GC system with the electrolyte system continuously purged with CO 2 . CO 2 was used as a carrier gas to direct the gaseous products from CO 2 reduction into an attached 0.6L Teldar® PLV gas sampling bag. The gas bag was then sealed and extracted using the tested 2 mL sample. Through GC-MS results, it can be confirmed that acetone is included in the product of the carbon dioxide reduction reaction.
  • GC-MS gas chromatography-mass spectrometry
  • Figure 131 is a graph explaining the selectivity of product distribution of the carbon dioxide reduction reaction using the MnNi-SAD-NC catalyst.
  • the selectivity of product distribution as a function of polarization potential is shown using the MnNi-SAD-NC catalyst. It can be seen that the selectivity to acetone at -0.75 V is about 90%. This shows product selectivity for various metal concentrations. In addition, it can be seen that as the loading amount increases, the acetone formation rate also accelerates.
  • Figure 132 is a graph to explain the long-term stability of the MnNi-SAD-NC catalyst.
  • Figure 133 is a 1 H-NMR and 13 C-NMR graph for product analysis of carbon dioxide reduction reaction using a MnNi-SAD-NC catalyst.
  • 1 H-NMR and 13 C-NMR analyzes were used to identify acetone in the product of the MnNi-SAD-NC catalyzed carbon dioxide reduction reaction, calibrated with an internal standard of the chemical of known concentration. .
  • 200 ⁇ l of electrolyte sample was added to 1.6 ml CDCl 3 .
  • the catalyst and its manufacturing method according to embodiments of the present invention can be applied to industrial fields where electrochemical reactions occur.

Abstract

The present invention is for providing a catalyst comprising a single atom metal and a preparation method therefor, the catalyst comprising: a nitrogen-doped carbon matrix; and a single atom metal bonded to nitrogen in the carbon matrix.

Description

전기화학 반응의 적용을 위한 촉매 및 이의 제조 방법Catalysts for application in electrochemical reactions and methods for their preparation
본 발명은 전기화학 반응의 적용을 위한 촉매 및 이의 제조 방법에 관련된 것이다. The present invention relates to catalysts and methods for their preparation for applications in electrochemical reactions.
높은 에너지 저장 밀도와 제로 탄소 배출 때문에, 물 전기 분해로 인한 수소(H2) 연료는 화석 연료에 대한 가장 유망한 대안으로 여겨져 왔다. 이와 관련하여, 수소 생성 반응(HER)은 에너지 전환을 위해 전기 화학적으로 물을 분해하는 반응을 의미한다.Because of its high energy storage density and zero carbon emissions, hydrogen (H 2 ) fuel from water electrolysis has been considered the most promising alternative to fossil fuels. In this regard, the hydrogen evolution reaction (HER) refers to a reaction that electrochemically splits water for energy conversion.
수소 생성 반응이 이루어지는 환경은 강산, 중성, 및 강염기로 나뉠 수 있으며, 강산에서는 양성자 교환막 전기분해, 중성배지에서는 해수 전기분해, 강염기에서는 상업용수 전기분해 등 다양한 환경에서 물이 전기분해될 수 있다. 이러한 요구 사항을 충족시키기 위해 산성 및 알칼리 배지에서 우수한 성능을 가져 pH에 범용적인 HER 촉매가 주목받고, 이 중에서는 플래티넘(Pt) 및 Pt 기반 촉매가 있으나, 이들은 제한된 가용성과 높은 비용을 요구하여 수소 발생 반응의 상용화에 장애가 되는 요인이다. The environment in which the hydrogen generation reaction takes place can be divided into strong acid, neutral, and strong base. Water can be electrolyzed in various environments, such as proton exchange membrane electrolysis in strong acid, seawater electrolysis in neutral medium, and commercial water electrolysis in strong base. To meet these requirements, HER catalysts that have excellent performance in acidic and alkaline media and are versatile at pH are attracting attention. Among these, there are platinum (Pt) and Pt-based catalysts, but they require limited availability and high cost to produce hydrogen. This is a factor that hinders the commercialization of the reaction.
한편, 일반적인 나노 입자(NP)와 비교하여 원자 경제성이 거의 100%이고 고유한 전자 특성을 가진 단일 원자 촉매(Single Atom Catlayst, SAC)가 다양한 분야에서 연구되고 있다. 구체적으로, 대부분의 SAC는 탄소 매트릭스(M-NC)에서 인접한 질소 원자와 조정된 고립된 단일 금속 부위를 포함하고 있으며, 이는 단순한 기초 반응만으로도 촉매 반응을 유도할 수 있다. 그러나, 단일 원자의 단순성으로 인해 SAC에서 활성 부위를 추가로 수정할 수 있는 가능성이 매우 제한되는 한계가 존재한다.Meanwhile, single atom catalysts (SACs), which have nearly 100% atomic economy and unique electronic properties compared to typical nanoparticles (NPs), are being studied in various fields. Specifically, most SACs contain an isolated single metal moiety coordinated with adjacent nitrogen atoms in a carbon matrix (M-NC), which can drive catalytic reactions with simple elementary reactions alone. However, limitations exist that severely limit the possibilities for further modification of the active site in SAC due to the simplicity of the single atom.
본원의 배경이 되는 기술인 한국등록특허공보 제10-2182553호는 탄소 담체 상에 담지된 단일원자 촉매의 제조 방법에 대한 것이다. 상기 등록특허는 건식 기상 공정을 통해 탄소 담체 상에 탄소 외의 이종 원소를 담지시키는 방법을 개시하고 있다.Korean Patent Publication No. 10-2182553, which is the background technology of this application, is about a method for producing a single atom catalyst supported on a carbon carrier. The registered patent discloses a method of supporting heterogeneous elements other than carbon on a carbon carrier through a dry gas phase process.
본원은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 단일 원자 금속을 포함하는 촉매 및 이의 제조 방법을 제공하는 것을 목적으로 한다.The purpose of the present application is to solve the problems of the prior art described above and to provide a catalyst containing a single atom metal and a method for producing the same.
또한, 본원은 상기 촉매를 포함하는, 수소 발생 반응용 촉매를 제공하는 것을 목적으로 한다.In addition, the present application aims to provide a catalyst for hydrogen generation reaction comprising the above catalyst.
또한, 본원은 상기 촉매를 포함하는, 이산화탄소 환원용 촉매를 제공하는 것을 목적으로 한다. In addition, the present application aims to provide a catalyst for carbon dioxide reduction comprising the above catalyst.
또한, 본원은 상기 촉매를 포함하는, 질소 환원용 촉매를 제공하는 것을 목적으로 한다. Additionally, the present application aims to provide a catalyst for nitrogen reduction, including the catalyst.
또한, 본원은 상기 촉매를 포함하는, 전기화학 반응용 촉매를 제공하는 것을 목적으로 한다. In addition, the present application aims to provide a catalyst for electrochemical reaction, including the catalyst.
다만, 본원의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical challenges sought to be achieved by the embodiments of the present application are not limited to the technical challenges described above, and other technical challenges may exist.
상술된 기술적 과제들을 해결하기 위해 본원은 촉매를 제공한다. To solve the above-described technical challenges, the present application provides a catalyst.
일 실시 예에 따르면, 상기 촉매는 질소가 도핑된 탄소 매트릭스(carbon matrix), 및 상기 탄소 매트릭스 내 질소와 결합된 단일 원자(single atom) 금속을 포함할 수 있다. According to one embodiment, the catalyst may include a nitrogen-doped carbon matrix and a single atom metal bonded to nitrogen in the carbon matrix.
일 실시 예에 따르면, 상기 단일 원자 금속은 1 종의 단일 원자 금속 또는 2 종의 단일 원자 금속이 결합한 단일 원자 이합체(single atom dimer)를 포함할 수 있다. According to one embodiment, the single atom metal may include one type of single atom metal or a single atom dimer in which two types of single atom metals are combined.
일 실시 예에 따르면, 상기 단일 원자 이합체는, 상기 탄소 매트릭스 내 질소와 결합된 제1 단일 원자 금속, 및 상기 제1 단일 원자 금속과 결합되지 않은 질소와 결합된 제2 단일 원자 금속을 포함하고, 상기 제1 단일 원자 금속 및 상기 제2 단일 원자 금속이 결합된 것을 포함할 수 있다. According to one embodiment, the single atom dimer includes a first single atom metal bonded to nitrogen in the carbon matrix, and a second single atom metal bonded to nitrogen that is not bonded to the first single atom metal, It may include a combination of the first single atomic metal and the second single atomic metal.
일 실시 예에 따르면, 상기 제1 단일 원자 금속 및 상기 제2 단일 원자 금속은 서로 다른 것을 포함할 수 있다. According to one embodiment, the first single-atomic metal and the second single-atomic metal may include different elements.
일 실시 예에 따르면, 상기 제1 단일 원자 금속 및 상기 제2 단일 원자 금속은 서로 같은 것을 포함할 수 있다. According to one embodiment, the first single-atomic metal and the second single-atomic metal may include the same metal.
일 실시 예에 따르면, 상기 촉매는 퓨리에 변환 EXAFS(Extended X-ray Absorption Fine Structure) 분석 결과, 1 내지 2 Radial distance(Å) 사이의 피크값이 2 내지 3 Radial distance(Å) 사이의 피크값 보다 큰 것을 포함할 수 있다. According to one embodiment, as a result of Fourier transform EXAFS (Extended It can include big things.
일 실시 예에 따르면, 상기 촉매는 XPS 분석 결과 상기 단일 원자 금속과 탄소 사이의 화학적 결합이 관찰되지 않는 것을 포함할 수 있다. According to one embodiment, the catalyst may include one in which no chemical bond is observed between the single-atom metal and carbon as a result of XPS analysis.
일 실시 예에 따르면, 상기 단일 원자 금속은 Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, 및 이들의 조합들로 이루어진 군에서 선택된 원자를 포함할 수 있다. According to one embodiment, the single atomic metal is Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd , Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and It may contain atoms selected from the group consisting of combinations thereof.
일 실시 예에 따르면, 상기 촉매는 물(H2O)을 환원시켜 수소(H2)를 생성하는 반응에 사용되는 것을 포함할 수 있다. According to one embodiment, the catalyst may include one used in a reaction to reduce water (H 2 O) to produce hydrogen (H 2 ).
일 실시 예에 따르면, 상기 촉매는 이산화탄소(CO2)를 환원시켜 에탄올 및 아세톤을 생성하는 반응에 사용되는 것을 포함할 수 있다. According to one embodiment, the catalyst may include one used in a reaction to reduce carbon dioxide (CO 2 ) to produce ethanol and acetone.
일 실시 예에 따르면, 상기 촉매는 질소(N2)를 환원시켜 암모니아를 생성하는 반응에 사용되는 것을 포함할 수 있다. According to one embodiment, the catalyst may include one used in a reaction to reduce nitrogen (N 2 ) to produce ammonia.
다른 실시 예에 따르면, 상기 촉매는 탄소 매트릭스(matrix)를 이루는 탄소 중 일부가 질소로 치환된 베이스 구조체, 및 상기 베이스 구조체 내 질소와 결합된 단일 원자 이합체(single atom dimer)를 포함하되, 상기 단일 원자 이합체는, 상기 베이스 구조체 내 질소와 결합된 제1 단일 원자 금속, 및 상기 제1 단일 원자 금속과 결합되지 않은 질소와 결합된 제2 단일 원자 금속을 포함하고, 상기 제1 단일 원자 금속 및 상기 제2 단일 원자 금속이 결합된 것을 포함할 수 있다. According to another embodiment, the catalyst includes a base structure in which some of the carbon constituting the carbon matrix is replaced with nitrogen, and a single atom dimer bonded to nitrogen in the base structure, wherein the single The atomic dimer includes a first single-atomic metal bonded to nitrogen in the base structure, and a second single-atomic metal bonded to nitrogen that is not bonded to the first single-atomic metal, wherein the first single-atomic metal and the It may include a second single-atom metal bonded thereto.
상술된 기술적 과제들을 해결하기 위해 본원은 촉매의 제조 방법을 제공한다. In order to solve the above-mentioned technical problems, the present application provides a method for producing a catalyst.
일 실시 예에 따르면, 상기 촉매의 제조 방법은 탄소 매트릭스의 전구체 및 단일 원자 금속의 전구체를 혼합하는 단계, 상기 탄소 매트릭스의 전구체를 자가 중합시켜 탄소 중합체를 형성하는 단계, 및 상기 탄소 중합체 및 질소 공급원을 혼합하고 열처리하는 단계를 포함할 수 있다. According to one embodiment, the method for preparing the catalyst includes mixing a precursor of a carbon matrix and a precursor of a single-atom metal, self-polymerizing the precursor of the carbon matrix to form a carbon polymer, and the carbon polymer and a nitrogen source. It may include mixing and heat treatment.
일 실시 예에 따르면, 상기 탄소 중합체는 내부에 상기 단일 원자 금속의 전구체를 포함할 수 있다. According to one embodiment, the carbon polymer may include a precursor of the single-atom metal therein.
일 실시 예에 따르면, 상기 열처리에 의해, 상기 단일 원자 금속의 전구체는 1 종의 단일 원자 금속 또는 2 종의 단일 원자 금속이 결합한 단일 원자 이합체(single atom dimer)가 되고, 상기 탄소 중합체는 탄소 매트릭스가 될 수 있다. According to one embodiment, by the heat treatment, the precursor of the single atom metal becomes a single atom dimer of one type of single atom metal or two types of single atom metal, and the carbon polymer is a carbon matrix. It can be.
일 실시 예에 따르면, 상기 탄소 매트릭스의 전구체는 도파민을 포함하고, 상기 탄소 중합체는 폴리 도파민을 포함할 수 있다. According to one embodiment, the precursor of the carbon matrix may include dopamine, and the carbon polymer may include poly dopamine.
전술한 본원의 과제 해결 수단에 의하면, 본원에 따른 촉매는, 산과 알칼리성 매체에서 전기 화학적 수소 발생 반응(HER)을 위한 것으로서, pH-범용 성능은 Pt/C 촉매와 유사하면서 고가의 Pt 금속에 비해 저렴한 금속을 사용할 수 있어 제조 단가를 낮출 수 있다.According to the above-described means of solving the problem of the present application, the catalyst according to the present application is for electrochemical hydrogen evolution reaction (HER) in acid and alkaline media, and has pH-general performance similar to that of the Pt/C catalyst and compared to the expensive Pt metal. Since inexpensive metals can be used, manufacturing costs can be lowered.
또한, 본원에 따른 촉매의 제조 방법은, 서로 연결된 두 금속을 포함하는 새로운 단일 원자 이량체(SAD) 촉매를 합성하는 방법을 제공할 수 있다.In addition, the method for producing a catalyst according to the present disclosure can provide a method for synthesizing a new single atom dimer (SAD) catalyst containing two metals linked to each other.
또한, 본원에 따른 촉매를 포함하는 수소 발생 반응용 전극은, 산성 환경 또는 염기성 환경에서 높은 안정성을 보이고, 재현성이 높으며, 일정한 수소 발생 정도를 가질 수 있다.In addition, the electrode for hydrogen generation reaction containing the catalyst according to the present disclosure shows high stability in an acidic or basic environment, has high reproducibility, and can have a constant degree of hydrogen generation.
또한, 본원에 따른 촉매는 단일 원자 이량체를 포함하는 것이다. 이와 관련하여 상기 단일 원자 이량체 금속의 작은 로딩에 의해, 상기 이량체의 HER 질량 활성(즉, 금속 gm 당 HER 생성량)은 일반적인 상용 Pt 및/또는 나노 입자와 유사 또는 더 높을 수 있다.Additionally, the catalyst according to the present disclosure comprises a single atom dimer. In this regard, with small loadings of the single atom dimeric metal, the HER mass activity (i.e., HER production per gm of metal) of the dimer can be similar to or higher than that of common commercial Pt and/or nanoparticles.
또한, 본원에 따른 촉매의 제조 방법은, 복잡한 촉매 반응을 위한 다양한 단일 원자 이량체를 얻기 위한 일반적인 합성 경로를 제공할 수 있다.Additionally, the method for preparing a catalyst according to the present disclosure can provide a general synthetic route for obtaining various single atom dimers for complex catalytic reactions.
또한, 본원에 따른 촉매는 이산화탄소(CO2)를 환원시켜 에탄올 및 아세톤을 생성하는 반응에 사용될 수 있다. Additionally, the catalyst according to the present disclosure can be used in a reaction that reduces carbon dioxide (CO 2 ) to produce ethanol and acetone.
또한, 본원에 따른 촉매는 질소(N2)를 환원시켜 암모니아를 생성하는 반응에 사용될 수 있다. Additionally, the catalyst according to the present disclosure can be used in a reaction that reduces nitrogen (N 2 ) to produce ammonia.
다만, 본원에서 얻을 수 있는 효과는 상기된 바와 같은 효과들로 한정되지 않으며, 또 다른 효과들이 존재할 수 있다.However, the effects that can be obtained herein are not limited to the effects described above, and other effects may exist.
도 1a 및 도 1b는 본원의 일 구현예에 따른 촉매의 모식도이다.1A and 1B are schematic diagrams of a catalyst according to an embodiment of the present application.
도 2는 본원의 일 구현예에 따른 촉매의 제조 방법을 나타낸 순서도이다.Figure 2 is a flowchart showing a method for producing a catalyst according to an embodiment of the present application.
도 3은 본원의 일 구현예에 따른 촉매의 제조 방법을 나타낸 모식도이다.Figure 3 is a schematic diagram showing a method for producing a catalyst according to an embodiment of the present application.
도 4는 금속 나노 입자를 포함하는 촉매의 제조 방법을 나타낸 모식도이다.Figure 4 is a schematic diagram showing a method for producing a catalyst containing metal nanoparticles.
도 5a 및 도 5b는 본원의 일 실시예 및 비교예에 따른 촉매의 XRD 패턴을 나타낸 그래프이다.Figures 5a and 5b are graphs showing XRD patterns of catalysts according to an example and a comparative example of the present application.
도 5c는 본원의 일 실시예에 따른 촉매의 HADDF-STEM 이미지이다.Figure 5c is a HADDF-STEM image of a catalyst according to an example of the present application.
도 5d는 도 5c의 site A에 대한 강도 프로파일 및 전자 에너지 스펙트럼 그래프이다.FIG. 5D is an intensity profile and electron energy spectrum graph for site A in FIG. 5C.
도 5e는 도 5c의 site B에 대한 강도 프로파일 및 전자 에너지 스펙트럼 그래프이다.FIG. 5E is an intensity profile and electron energy spectrum graph for site B in FIG. 5C.
도 5f는 본원의 일 실시예에 따른 촉매의 평균 이량체 거리를 나타낸 그래프이다.Figure 5f is a graph showing the average dimer distance of a catalyst according to an example of the present application.
도 5g는 본원의 일 실시예에 따른 촉매의 EDS 이미지이다.Figure 5g is an EDS image of a catalyst according to an example of the present application.
도 6a는 본원의 일 실시예 및 비교예에 따른 촉매의 XANES(X-ray absorption near edge structure) 스펙트럼 그래프이다.Figure 6a is a XANES (X-ray absorption near edge structure) spectrum graph of a catalyst according to an example and a comparative example of the present application.
도 6b는 본원의 일 실시예 및 비교예에 따른 촉매의 XANES 스펙트럼 그래프이다.Figure 6b is a XANES spectrum graph of a catalyst according to an example and a comparative example of the present application.
도 6c는 본원의 일 실시예 및 비교예에 따른 촉매의 퓨리에 변환 EXAFS(Extended X-ray. Absorption Fine Structure) 스펙트럼 그래프이다.Figure 6c is a Fourier transform EXAFS (Extended X-ray. Absorption Fine Structure) spectrum graph of a catalyst according to an example and a comparative example of the present application.
도 6d는 본원의 일 실시예 및 비교예에 따른 촉매의 퓨리에 변환 EXAFS 스펙트럼 그래프이다.Figure 6d is a Fourier transform EXAFS spectrum graph of a catalyst according to an example and a comparative example of the present application.
도 6e는 본원의 일 실시예 및 비교예에 따른 촉매의 WT-EXAFS 이미지이다.Figure 6e is a WT-EXAFS image of a catalyst according to an example and a comparative example of the present application.
도 7a는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매의 LSV 편광 곡선을 나타낸 그래프이다.Figure 7a is a graph showing the LSV polarization curve of a catalyst for hydrogen generation reaction according to an example and a comparative example of the present application.
도 7b는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매에 필요한 과전압(over potential)을 나타낸 그래프이다.Figure 7b is a graph showing the overpotential required for the catalyst for hydrogen generation reaction according to an example and comparative example of the present application.
도 7c는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매의 타펠 곡선(tafel slope)을 나타낸 그래프이다.Figure 7c is a graph showing the Tafel slope of a catalyst for hydrogen generation reaction according to an example and a comparative example of the present application.
도 7d는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매의 LSV 편광 곡선을 나타낸 그래프이다.Figure 7d is a graph showing the LSV polarization curve of a catalyst for hydrogen generation reaction according to an example and a comparative example of the present application.
도 7e는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매에 필요한 과전압(over potential)을 나타낸 그래프이다.Figure 7e is a graph showing the overpotential required for the catalyst for hydrogen generation reaction according to an example and comparative example of the present application.
도 7f는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매의 타펠 곡선(tafel slope)을 나타낸 그래프이다.Figure 7f is a graph showing the Tafel slope of a catalyst for hydrogen generation reaction according to an example and a comparative example of the present application.
도 7g는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매의 시간에 따른 수소 발생 정도를 나타낸 그래프이다.Figure 7g is a graph showing the degree of hydrogen generation over time of the catalyst for hydrogen generation reaction according to an example and comparative example of the present application.
도 7h는 본원의 일 실시예에 따른 수소 발생 반응용 촉매의 시간에 따른 수소 발생 정도를 나타낸 그래프이다.Figure 7h is a graph showing the degree of hydrogen generation over time by the catalyst for hydrogen generation reaction according to an embodiment of the present application.
도 8a 및 도 8b는 본원의 일 실시예에 따른 수소 발생용 촉매의 LSV 편광 곡선을 나타낸 그래프이다.8A and 8B are graphs showing the LSV polarization curve of a catalyst for hydrogen generation according to an embodiment of the present application.
도 9는 NC, NiNi-SAD-NC, MnMn-SAD-NC, 및 MnNi-SAD-NC의 SEM 이미지이다. Figure 9 is SEM images of NC, NiNi-SAD-NC, MnMn-SAD-NC, and MnNi-SAD-NC.
도 10 및 도 11은 MnNi-SAD-NC의 STEM 이미지이다. Figures 10 and 11 are STEM images of MnNi-SAD-NC.
도 12는 MnAg-SAD-NC의 XPS 분석 결과이다. Figure 12 shows the XPS analysis results of MnAg-SAD-NC.
도 13은 NiAg-SAD-NC의 XPS 분석 결과이다. Figure 13 shows the XPS analysis results of NiAg-SAD-NC.
도 14는 PdMn-SAD-NC의 XPS 분석 결과이다. Figure 14 shows the XPS analysis results of PdMn-SAD-NC.
도 15는 NiPd-SAD-NC의 XPS 분석 결과이다. Figure 15 shows the XPS analysis results of NiPd-SAD-NC.
도 16은 CoPd-SAD-NC의 XPS 분석 결과이다. Figure 16 shows the XPS analysis results of CoPd-SAD-NC.
도 17은 CuPd-SAD-NC의 XPS 분석 결과이다. Figure 17 shows the XPS analysis results of CuPd-SAD-NC.
도 18은 AgPd-SAD-NC의 XPS 분석 결과이다. Figure 18 shows the XPS analysis results of AgPd-SAD-NC.
도 19는 FeAu-SAD-NC의 XPS 분석 결과이다. Figure 19 shows the XPS analysis results of FeAu-SAD-NC.
도 20은 NiAu-SAD-NC의 XPS 분석 결과이다. Figure 20 shows the XPS analysis results of NiAu-SAD-NC.
도 21은 CoAu-SAD-NC의 XPS 분석 결과이다. Figure 21 shows the XPS analysis results of CoAu-SAD-NC.
도 22는 CuAu-SAD-NC의 XPS 분석 결과이다. Figure 22 is the XPS analysis result of CuAu-SAD-NC.
도 23은 AgAu-SAD-NC의 XPS 분석 결과이다. Figure 23 is the XPS analysis result of AgAu-SAD-NC.
도 24는 PdAu-SAD-NC의 XPS 분석 결과이다. Figure 24 shows the XPS analysis results of PdAu-SAD-NC.
도 25는 MnPt-SAD-NC의 XPS 분석 결과이다. Figure 25 shows the XPS analysis results of MnPt-SAD-NC.
도 26은 NiPt-SAD-NC의 XPS 분석 결과이다. Figure 26 is the XPS analysis result of NiPt-SAD-NC.
도 27은 CoPt-SAD-NC의 XPS 분석 결과이다. Figure 27 is the XPS analysis result of CoPt-SAD-NC.
도 28은 CuPt-SAD-NC의 XPS 분석 결과이다. Figure 28 shows the XPS analysis results of CuPt-SAD-NC.
도 29는 AgPt-SAD-NC의 XPS 분석 결과이다. Figure 29 shows the XPS analysis results of AgPt-SAD-NC.
도 30은 PdPt-SAD-NC의 XPS 분석 결과이다. Figure 30 shows the XPS analysis results of PdPt-SAD-NC.
도 31은 AuPt-SAD-NC의 XPS 분석 결과이다. Figure 31 shows the XPS analysis results of AuPt-SAD-NC.
도 32는 NiRu-SAD-NC의 XPS 분석 결과이다. Figure 32 is the XPS analysis result of NiRu-SAD-NC.
도 33은 CoRu-SAD-NC의 XPS 분석 결과이다. Figure 33 shows the XPS analysis results of CoRu-SAD-NC.
도 34는 CuRu-SAD-NC의 XPS 분석 결과이다. Figure 34 is the XPS analysis result of CuRu-SAD-NC.
도 35는 AgRu-SAD-NC의 XPS 분석 결과이다. Figure 35 is the XPS analysis result of AgRu-SAD-NC.
도 36은 PdRu-SAD-NC의 XPS 분석 결과이다. Figure 36 shows the XPS analysis results of PdRu-SAD-NC.
도 37은 AuRu-SAD-NC의 XPS 분석 결과이다. Figure 37 is the XPS analysis result of AuRu-SAD-NC.
도 38은 PtRu-SAD-NC의 XPS 분석 결과이다. Figure 38 shows the XPS analysis results of PtRu-SAD-NC.
도 39는 FeIr-SAD-NC의 XPS 분석 결과이다. Figure 39 shows the XPS analysis results of FeIr-SAD-NC.
도 40은 MnIr-SAD-NC의 XPS 분석 결과이다. Figure 40 shows the XPS analysis results of MnIr-SAD-NC.
도 41은 NiIr-SAD-NC의 XPS 분석 결과이다. Figure 41 shows the XPS analysis results of NiIr-SAD-NC.
도 42는 CoIr-SAD-NC의 XPS 분석 결과이다. Figure 42 is the XPS analysis result of CoIr-SAD-NC.
도 43은 CuIr-SAD-NC의 XPS 분석 결과이다. Figure 43 is the XPS analysis result of CuIr-SAD-NC.
도 44는 AgIr-SAD-NC의 XPS 분석 결과이다. Figure 44 shows the XPS analysis results of AgIr-SAD-NC.
도 45는 PdIr-SAD-NC의 XPS 분석 결과이다. Figure 45 is the XPS analysis result of PdIr-SAD-NC.
도 46은 SnPt-SAD-NC의 XPS 분석 결과이다. Figure 46 is the XPS analysis result of SnPt-SAD-NC.
도 47은 SnRu-SAD-NC의 XPS 분석 결과이다. Figure 47 is the XPS analysis result of SnRu-SAD-NC.
도 48은 SnIr-SAD-NC의 XPS 분석 결과이다. Figure 48 is the XPS analysis result of SnIr-SAD-NC.
도 49는 InMn-SAD-NC의 XPS 분석 결과이다. Figure 49 is the XPS analysis result of InMn-SAD-NC.
도 50은 InNi-SAD-NC의 XPS 분석 결과이다. Figure 50 shows the XPS analysis results of InNi-SAD-NC.
도 51은 InCo-SAD-NC의 XPS 분석 결과이다. Figure 51 shows the XPS analysis results of InCo-SAD-NC.
도 52는 InCu-SAD-NC의 XPS 분석 결과이다. Figure 52 is the XPS analysis result of InCu-SAD-NC.
도 53은 InAg-SAD-NC의 XPS 분석 결과이다. Figure 53 shows the XPS analysis results of InAg-SAD-NC.
도 54는 InPd-SAD-NC의 XPS 분석 결과이다. Figure 54 is the XPS analysis result of InPd-SAD-NC.
도 55는 IrAu-SAD-NC의 XPS 분석 결과이다. Figure 55 is the XPS analysis result of IrAu-SAD-NC.
도 56은 IrPt-SAD-NC의 XPS 분석 결과이다. Figure 56 is the XPS analysis result of IrPt-SAD-NC.
도 57은 IrRu-SAD-NC의 XPS 분석 결과이다. Figure 57 is the XPS analysis result of IrRu-SAD-NC.
도 58은 MnSn-SAD-NC의 XPS 분석 결과이다. Figure 58 is the XPS analysis result of MnSn-SAD-NC.
도 59는 NiSn-SAD-NC의 XPS 분석 결과이다. Figure 59 is the XPS analysis result of NiSn-SAD-NC.
도 60은 CoSn-SAD-NC의 XPS 분석 결과이다. Figure 60 shows the XPS analysis results of CoSn-SAD-NC.
도 61은 CuSn-SAD-NC의 XPS 분석 결과이다. Figure 61 is the XPS analysis result of CuSn-SAD-NC.
도 62는 AgSn-SAD-NC의 XPS 분석 결과이다. Figure 62 is the XPS analysis result of AgSn-SAD-NC.
도 63은 PdSn-SAD-NC의 XPS 분석 결과이다. Figure 63 is the XPS analysis result of PdSn-SAD-NC.
도 64는 AuSn-SAD-NC의 XPS 분석 결과이다.Figure 64 is the XPS analysis result of AuSn-SAD-NC.
도 65는 BiRu-SAD-NC의 XPS 분석 결과이다.Figure 65 is the XPS analysis result of BiRu-SAD-NC.
도 66은 BiIr-SAD-NC의 XPS 분석 결과이다. Figure 66 shows the XPS analysis results of BiIr-SAD-NC.
도 67은 BiSn-SAD-NC의 XPS 분석 결과이다.Figure 67 is the XPS analysis result of BiSn-SAD-NC.
도 68은 BiIn-SAD-NC의 XPS 분석 결과이다.Figure 68 is the XPS analysis result of BiIn-SAD-NC.
도 69는 PbMn-SAD-NC의 XPS 분석 결과이다.Figure 69 shows the XPS analysis results of PbMn-SAD-NC.
도 70은 PbNi-SAD-NC의 XPS 분석 결과이다.Figure 70 is the XPS analysis result of PbNi-SAD-NC.
도 71은 PbCo-SAD-NC의 XPS 분석 결과이다.Figure 71 is the XPS analysis result of PbCo-SAD-NC.
도 72는 PbCu-SAD-NC의 XPS 분석 결과이다.Figure 72 is the XPS analysis result of PbCu-SAD-NC.
도 73은 PbAg-SAD-NC의 XPS 분석 결과이다.Figure 73 is the XPS analysis result of PbAg-SAD-NC.
도 74는 PbPd-SAD-NC의 XPS 분석 결과이다.Figure 74 is the XPS analysis result of PbPd-SAD-NC.
도 75는 PbAu-SAD-NC의 XPS 분석 결과이다.Figure 75 is the XPS analysis result of PbAu-SAD-NC.
도 76은 PbPt-SAD-NC의 XPS 분석 결과이다.Figure 76 is the XPS analysis result of PbPt-SAD-NC.
도 77은 InAu-SAD-NC의 XPS 분석 결과이다.Figure 77 is the XPS analysis result of InAu-SAD-NC.
도 78은 InPt-SAD-NC의 XPS 분석 결과이다.Figure 78 is the XPS analysis result of InPt-SAD-NC.
도 79는 InRu-SAD-NC의 XPS 분석 결과이다.Figure 79 is the XPS analysis result of InRu-SAD-NC.
도 80은 InIr-SAD-NC의 XPS 분석 결과이다.Figure 80 shows the XPS analysis results of InIr-SAD-NC.
도 81은 InSn-SAD-NC의 XPS 분석 결과이다.Figure 81 is the XPS analysis result of InSn-SAD-NC.
도 82는 BiMn-SAD-NC의 XPS 분석 결과이다.Figure 82 is the XPS analysis result of BiMn-SAD-NC.
도 83은 BiNi-SAD-NC의 XPS 분석 결과이다.Figure 83 is the XPS analysis result of BiNi-SAD-NC.
도 84는 BiCo-SAD-NC의 XPS 분석 결과이다.Figure 84 is the XPS analysis result of BiCo-SAD-NC.
도 85는 BiCu-SAD-NC의 XPS 분석 결과이다.Figure 85 is the XPS analysis result of BiCu-SAD-NC.
도 86은 BiAg-SAD-NC의 XPS 분석 결과이다.Figure 86 is the XPS analysis result of BiAg-SAD-NC.
도 87은 BiPd-SAD-NC의 XPS 분석 결과이다.Figure 87 is the XPS analysis result of BiPd-SAD-NC.
도 88은 BiAu-SAD-NC의 XPS 분석 결과이다.Figure 88 is the XPS analysis result of BiAu-SAD-NC.
도 89는 BiPt-SAD-NC의 XPS 분석 결과이다.Figure 89 shows the XPS analysis results of BiPt-SAD-NC.
도 90은 PbRu-SAD-NC의 XPS 분석 결과이다.Figure 90 shows the XPS analysis results of PbRu-SAD-NC.
도 91은 PbIr-SAD-NC의 XPS 분석 결과이다.Figure 91 shows the XPS analysis results of PbIr-SAD-NC.
도 92는 PbSn-SAD-NC의 XPS 분석 결과이다.Figure 92 is the XPS analysis result of PbSn-SAD-NC.
도 93은 PbIn-SAD-NC의 XPS 분석 결과이다.Figure 93 is the XPS analysis result of PbIn-SAD-NC.
도 94는 PbBi-SAD-NC의 XPS 분석 결과이다.Figure 94 is the XPS analysis result of PbBi-SAD-NC.
도 95는 RhMn-SAD-NC의 XPS 분석 결과이다.Figure 95 is the XPS analysis result of RhMn-SAD-NC.
도 96은 RhNi-SAD-NC의 XPS 분석 결과이다.Figure 96 is the XPS analysis result of RhNi-SAD-NC.
도 97은 RhCo-SAD-NC의 XPS 분석 결과이다.Figure 97 is the XPS analysis result of RhCo-SAD-NC.
도 98은 RhCu-SAD-NC의 XPS 분석 결과이다.Figure 98 is the XPS analysis result of RhCu-SAD-NC.
도 99는 RhAg-SAD-NC의 XPS 분석 결과이다.Figure 99 shows the XPS analysis results of RhAg-SAD-NC.
도 100은 RhPd-SAD-NC의 XPS 분석 결과이다.Figure 100 shows the XPS analysis results of RhPd-SAD-NC.
도 101은 RhAu-SAD-NC의 XPS 분석 결과이다.Figure 101 is the XPS analysis result of RhAu-SAD-NC.
도 102는 RhPt-SAD-NC의 XPS 분석 결과이다.Figure 102 is the XPS analysis result of RhPt-SAD-NC.
도 103은 RhRu-SAD-NC의 XPS 분석 결과이다.Figure 103 is the XPS analysis result of RhRu-SAD-NC.
도 104는 RhIr-SAD-NC의 XPS 분석 결과이다.Figure 104 shows the XPS analysis results of RhIr-SAD-NC.
도 105는 RhSn-SAD-NC의 XPS 분석 결과이다.Figure 105 is the XPS analysis result of RhSn-SAD-NC.
도 106은 RhIn-SAD-NC의 XPS 분석 결과이다.Figure 106 is the XPS analysis result of RhIn-SAD-NC.
도 107은 MnNi-SAD-NC의 XPS 분석 결과이다.Figure 107 is the XPS analysis result of MnNi-SAD-NC.
도 108은 NiNi-SAD-NC의 XPS 분석 결과이다.Figure 108 is the XPS analysis result of NiNi-SAD-NC.
도 109는 MnMn-SAD-NC의 XPS 분석 결과이다.Figure 109 is the XPS analysis result of MnMn-SAD-NC.
도 110은 MnMn-SAD-NC, MnNi-SAD-NC, 및 NiNi-SAD-NC의 퓨리에 변환 EXAFS(Extended X-ray. Absorption Fine Structure) 스펙트럼 그래프 및 XANES(X-ray absorption near edge structure) 스펙트럼 그래프이다.110 is a Fourier transform EXAFS (Extended X-ray. Absorption Fine Structure) spectrum graph and a am.
도 111은 FeNi-SAD-NC, FeCo-SAD-NC, FeMn-SAD-NC, CuNi-SAD-NC, 및 FeCu-SAD-NC의 XRD 분석 결과이다. Figure 111 shows the XRD analysis results of FeNi-SAD-NC, FeCo-SAD-NC, FeMn-SAD-NC, CuNi-SAD-NC, and FeCu-SAD-NC.
도 112는 MnCu-SAD-NC, CuNi-SAD-NC, MnNi-SAD-NC, MnCo-SAD-NC, 및 NiCo-SAD-NC의 XRD 분석 결과이다. Figure 112 is the XRD analysis results of MnCu-SAD-NC, CuNi-SAD-NC, MnNi-SAD-NC, MnCo-SAD-NC, and NiCo-SAD-NC.
도 113은 MnMn-SAD-NC, NiNi-SAD-NC, CoCu-SAD-NC, CoAg-SAD-NC, 및 FeAg-SAD-NC의 XRD 분석 결과이다. Figure 113 shows the XRD analysis results of MnMn-SAD-NC, NiNi-SAD-NC, CoCu-SAD-NC, CoAg-SAD-NC, and FeAg-SAD-NC.
도 114는 CuAg-SAD-NC, MnAg-SAD-NC, NiAg-SAD-NC, PdFe-SAD-NC, 및 PdMn-SAD-NC의 XRD 분석 결과이다. Figure 114 shows the XRD analysis results of CuAg-SAD-NC, MnAg-SAD-NC, NiAg-SAD-NC, PdFe-SAD-NC, and PdMn-SAD-NC.
도 115는 PdNi-SAD-NC, PdCo-SAD-NC, PdCu-SAD-NC, PdAg-SAD-NC, 및 AuFe-SAD-NC의 XRD 분석 결과이다. Figure 115 is the XRD analysis results of PdNi-SAD-NC, PdCo-SAD-NC, PdCu-SAD-NC, PdAg-SAD-NC, and AuFe-SAD-NC.
도 116은 AuMn-SAD-NC, AuNi-SAD-NC, AuCo-SAD-NC, AuCu-SAD-NC, 및 AuAg-SAD-NC의 XRD 분석 결과이다. Figure 116 shows the XRD analysis results of AuMn-SAD-NC, AuNi-SAD-NC, AuCo-SAD-NC, AuCu-SAD-NC, and AuAg-SAD-NC.
도 117은 AuPd-SAD-NC, PtFe-SAD-NC, PtMn-SAD-NC, PtNi-SAD-NC, 및 PtCo-SAD-NC의 XRD 분석 결과이다. Figure 117 shows the XRD analysis results of AuPd-SAD-NC, PtFe-SAD-NC, PtMn-SAD-NC, PtNi-SAD-NC, and PtCo-SAD-NC.
도 118은 PtCu-SAD-NC, PtAg-SAD-NC, PtPd-SAD-NC, PtAu-SAD-NC, 및 RuFe-SAD-NC의 XRD 분석 결과이다. Figure 118 shows the XRD analysis results of PtCu-SAD-NC, PtAg-SAD-NC, PtPd-SAD-NC, PtAu-SAD-NC, and RuFe-SAD-NC.
도 119는 RuMn-SAD-NC, RuNi-SAD-NC, RuCo-SAD-NC, RuCu-SAD-NC, RuAg-SAD-NC, RuPd-SAD-NC, RuAu-SAD-NC, RuPt-SAD-NC, IrFe-SAD-NC 및 IrMn-SAD-NC의 XRD 분석 결과이다. 119 shows RuMn-SAD-NC, RuNi-SAD-NC, RuCo-SAD-NC, RuCu-SAD-NC, RuAg-SAD-NC, RuPd-SAD-NC, RuAu-SAD-NC, RuPt-SAD-NC , XRD analysis results of IrFe-SAD-NC and IrMn-SAD-NC.
도 120은 IrNi-SAD-NC, IrCo-SAD-NC, IrCu-SAD-NC, IrAg-SAD-NC, IrPd-SAD-NC, IrAu-SAD-NC, IrPt-SAD-NC, IrRu-SAD-NC, SnFe-SAD-NC 및 SnMn-SAD-NC의 XRD 분석 결과이다. 120 shows IrNi-SAD-NC, IrCo-SAD-NC, IrCu-SAD-NC, IrAg-SAD-NC, IrPd-SAD-NC, IrAu-SAD-NC, IrPt-SAD-NC, IrRu-SAD-NC , XRD analysis results of SnFe-SAD-NC and SnMn-SAD-NC.
도 121은 SnNi-SAD-NC, SnCo-SAD-NC, SnCu-SAD-NC, SnAg-SAD-NC, SnPd-SAD-NC, SnAu-SAD-NC, SnPt-SAD-NC, SnRu-SAD-NC, SnIr-SAD-NC 및 InFe-SAD-NC의 XRD 분석 결과이다. Figure 121 shows SnNi-SAD-NC, SnCo-SAD-NC, SnCu-SAD-NC, SnAg-SAD-NC, SnPd-SAD-NC, SnAu-SAD-NC, SnPt-SAD-NC, SnRu-SAD-NC , XRD analysis results of SnIr-SAD-NC and InFe-SAD-NC.
도 122는 InMn-SAD-NC, InNi-SAD-NC, InCo-SAD-NC, InCu-SAD-NC, InAg-SAD-NC, InPd-SAD-NC, InAu-SAD-NC, InPt-SAD-NC, InRu-SAD-NC 및 InIr-SAD-NC의 XRD 분석 결과이다. Figure 122 shows InMn-SAD-NC, InNi-SAD-NC, InCo-SAD-NC, InCu-SAD-NC, InAg-SAD-NC, InPd-SAD-NC, InAu-SAD-NC, InPt-SAD-NC , XRD analysis results of InRu-SAD-NC and InIr-SAD-NC.
도 123은 InSn-SAD-NC, BiFe-SAD-NC, BiMn-SAD-NC, BiNi-SAD-NC, BiCo-SAD-NC, BiCu-SAD-NC, BiAg-SAD-NC, BiPd-SAD-NC, BiAu-SAD-NC 및 BiPt-SAD-NC의 XRD 분석 결과이다. Figure 123 shows InSn-SAD-NC, BiFe-SAD-NC, BiMn-SAD-NC, BiNi-SAD-NC, BiCo-SAD-NC, BiCu-SAD-NC, BiAg-SAD-NC, BiPd-SAD-NC , XRD analysis results of BiAu-SAD-NC and BiPt-SAD-NC.
도 124는 BiRu-SAD-NC, BiIr-SAD-NC, BiSn-SAD-NC, BiIn-SAD-NC, PbFe-SAD-NC, PbMn-SAD-NC, PbNi-SAD-NC, PbCo-SAD-NC, PbCu-SAD-NC 및 PbAg-SAD-NC의 XRD 분석 결과이다. Figure 124 shows BiRu-SAD-NC, BiIr-SAD-NC, BiSn-SAD-NC, BiIn-SAD-NC, PbFe-SAD-NC, PbMn-SAD-NC, PbNi-SAD-NC, PbCo-SAD-NC , XRD analysis results of PbCu-SAD-NC and PbAg-SAD-NC.
도 125는 PbPd-SAD-NC, PbAu-SAD-NC, PbPt-SAD-NC, PbRu-SAD-NC, PbIr-SAD-NC, PbSn-SAD-NC, PbIn-SAD-NC, PbBi-SAD-NC, RhFe-SAD-NC 및 RhMn-SAD-NC의 XRD 분석 결과이다. Figure 125 shows PbPd-SAD-NC, PbAu-SAD-NC, PbPt-SAD-NC, PbRu-SAD-NC, PbIr-SAD-NC, PbSn-SAD-NC, PbIn-SAD-NC, PbBi-SAD-NC , XRD analysis results of RhFe-SAD-NC and RhMn-SAD-NC.
도 126은 RhNi-SAD-NC, RhCo-SAD-NC, RhCu-SAD-NC, RhAg-SAD-NC, RhPd-SAD-NC, RhAu-SAD-NC, RhPt-SAD-NC, RhRu-SAD-NC, RhIr-SAD-NC, RhSn-SAD-NC, RhIn-SAD-NC, RhBi-SAD-NC, 및 RhPb-SAD-NC의 XRD 분석 결과이다. Figure 126 shows RhNi-SAD-NC, RhCo-SAD-NC, RhCu-SAD-NC, RhAg-SAD-NC, RhPd-SAD-NC, RhAu-SAD-NC, RhPt-SAD-NC, RhRu-SAD-NC , RhIr-SAD-NC, RhSn-SAD-NC, RhIn-SAD-NC, RhBi-SAD-NC, and RhPb-SAD-NC.
도 127은 MnNi-SAD-NC 촉매의 이산화탄소 환원 반응 활성을 확인하기 위한 그래프이다. Figure 127 is a graph to confirm the carbon dioxide reduction reaction activity of the MnNi-SAD-NC catalyst.
도 128 및 도 129는 MnNi-SAD-NC 촉매를 이용한 이산화탄소 환원 반응의 생성물에 대한 가스 크로마토그래프 분석 결과이다. Figures 128 and 129 show the results of gas chromatography analysis of the product of the carbon dioxide reduction reaction using the MnNi-SAD-NC catalyst.
도 130은 MnNi-SAD-NC 촉매를 이용한 이산화탄소 환원 반응의 생성물에 대한 가스 크로마토그래피-질량 분석 결과이다. Figure 130 is a gas chromatography-mass spectrometry result for the product of a carbon dioxide reduction reaction using a MnNi-SAD-NC catalyst.
도 131은 MnNi-SAD-NC 촉매를 이용한 이산화탄소 환원 반응의 생성물 분포의 선택도를 설명하는 그래프이다. Figure 131 is a graph explaining the selectivity of product distribution of the carbon dioxide reduction reaction using the MnNi-SAD-NC catalyst.
도 132는 MnNi-SAD-NC 촉매의 장기간 안정성을 설명하기 위한 그래프이다. Figure 132 is a graph to explain the long-term stability of the MnNi-SAD-NC catalyst.
도 133은 MnNi-SAD-NC 촉매를 이용한 이산화탄소 환원 반응의 생성물 분석을 위한 1H-NMR 및 13C-NMR 그래프이다. Figure 133 is a 1 H-NMR and 13 C-NMR graph for product analysis of carbon dioxide reduction reaction using a MnNi-SAD-NC catalyst.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. Below, with reference to the attached drawings, embodiments of the present application will be described in detail so that those skilled in the art can easily implement them.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.However, the present application may be implemented in various different forms and is not limited to the embodiments described herein. In order to clearly explain the present application in the drawings, parts that are not related to the description are omitted, and similar reference numerals are assigned to similar parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.Throughout this specification, when a part is said to be “connected” to another part, this includes not only the case where it is “directly connected,” but also the case where it is “electrically connected” with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is said to be located “on”, “above”, “at the top”, “below”, “at the bottom”, or “at the bottom” of another member, this means that a member is located on another member. This includes not only cases where they are in contact, but also cases where another member exists between two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification of the present application, when a part "includes" a certain component, this means that it may further include other components rather than excluding other components unless specifically stated to the contrary.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다. As used herein, the terms “about,” “substantially,” and the like are used to mean at or close to a numerical value when manufacturing and material tolerances inherent in the stated meaning are presented, and to aid understanding of the present application. It is used to prevent unscrupulous infringers from unfairly exploiting disclosures in which precise or absolute figures are mentioned. Additionally, throughout the specification herein, “a step of” or “a step of” does not mean “a step for.”
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination thereof" included in the Markushi format expression means a mixture or combination of one or more components selected from the group consisting of the components described in the Markushi format expression, It means including one or more selected from the group consisting of.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는, A 및 B"를 의미한다.Throughout this specification, the description of “A and/or B” means “A or B, or A and B.”
이하에서는 본원의 촉매, 이의 제조 방법, 및 이를 포함하는 수소 발생 반응용 촉매에 대하여, 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다.Hereinafter, the catalyst of the present application, its production method, and the catalyst for hydrogen generation reaction including the same will be described in detail with reference to embodiments, examples, and drawings. However, the present application is not limited to these embodiments, examples, and drawings.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은 질소가 도핑된 탄소 매트릭스(carbon matrix); 및 상기 탄소 매트릭스 내 질소와 결합된 단일 원자(single atom) 금속을 포함하는, 촉매에 대한 것이다.As a technical means for achieving the above-mentioned technical problem, the first aspect of the present application includes a nitrogen-doped carbon matrix; and a single atom metal bonded to nitrogen in the carbon matrix.
도 1a 및 도 1b 은 본원의 일 구현예에 따른 촉매의 모식도이다. 구체적으로, 도 1a는 단일 원자 금속으로서, 2 종의 금속 원자를 포함하는 단일 원자 이합체를 포함하는 촉매의 모식도로서, 촉매의 예로서 도 1 은 제1 단일 원자 금속(M1)과 제2 단일 원자 금속(M2)이 결합된 SAD(single atom dimer)를 포함하는 촉매를 표현하였다. 또한, 도 1b는 1 종의 단일 원자 금속(예를 들어, 제1 단일 원자 금속, M1)을 포함하는 촉매에 대한 것이다.1A and 1B are schematic diagrams of a catalyst according to an embodiment of the present application. Specifically, Figure 1a is a schematic diagram of a catalyst comprising a single-atom dimer containing two types of metal atoms as a single-atom metal. As an example of a catalyst, Figure 1 shows a first single-atom metal (M 1 ) and a second single atom metal. A catalyst containing SAD (single atom dimer) to which an atomic metal (M 2 ) is bound is expressed. Additionally, Figure 1B relates to a catalyst comprising one type of single atom metal (eg, a first single atom metal, M 1 ).
상기 단일 원자 이합체는 상기 탄소 매트릭스 내 질소와 결합된 제1 단일 원자 금속(M1), 및 상기 제1 단일 원자 금속(M1)과 결합되지 않은 질소와 결합된 제2 단일 원자 금속(M2)을 포함하고, 상기 제1 단일 원자 금속(M1) 및 상기 제2 단일 원자 금속(M1)이 결합된 것을 포함할 수 있다. The single atom dimer includes a first single atom metal (M 1 ) bonded to nitrogen in the carbon matrix, and a second single atom metal (M 2 ) bonded to nitrogen that is not bonded to the first single atom metal (M 1 ). ), and may include a combination of the first single-atomic metal (M 1 ) and the second single-atomic metal (M 1 ).
상기 제1 단일 원자 금속(M1) 및 상기 제2 단일 원자 금속(M2)은 각각, Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, 및 Lu 중 어느 하나를 포함할 수 있다. The first single atomic metal (M 1 ) and the second single atomic metal (M 2 ) are each selected from Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, It may include any one of Dy, Ho, Er, Tm, Yb, and Lu.
일 실시 예에 따르면, 상기 제1 단일 원자 금속(M1) 및 상기 제2 단일 원자 금속(M2)은 서로 다를 수 있다. 이와 달리, 다른 실시 예에 따르면, 상기 제1 단일 원자 금속(M1) 및 상기 제2 단일 원자 금속(M2)은 서로 같을 수 있다. According to one embodiment, the first single-atomic metal (M 1 ) and the second single-atomic metal (M 2 ) may be different from each other. In contrast, according to another embodiment, the first single-atomic metal (M 1 ) and the second single-atomic metal (M 2 ) may be the same.
예를 들어, 상기 단일 원자 이합체로서 Fe-Ni, Fe-Co, Fe-Mn, Cu-Ni, Fe-Cu, Mn-Cu, Cu-Ni, Mn-Ni, Mn-Co, Ni-Co, Mn-Mn, Ni-Ni, Co-Cu, Co-Ag, Fe-Ag, Cu-Ag, Mn-Ag, Ni-Ag, Pd-Fe, Pd-Mn, Pd-Ni, Pd-Co, Pd-Cu, Pd-Ag, Au-Fe, Au-Mn, Au-Ni, Au-Co, Au-Cu, Au-Ag, Au-Pd, Pt-Fe, Pt-Mn, Pt-Ni, Pt-Co, Pt-Cu, Pt-Ag, Pt-Pd, Pt-Au, Ru-Fe, Ru-Mn, Ru-Ni, Ru-Co, Ru-Cu, Ru-Ag, Ru-Pd, Ru-Au, Ru-Pt, Ir-Fe, Ir-Mn, Ir-Ni, Ir-Co, Ir-Cu, Ir-Ag, Ir-Pd, Ir-Au, Ir-Pt, Ir- Ru, Sn-Fe, Sn-Mn, Sn-Ni, Sn-Co, Sn-Cu, Sn-Ag, Sn-Pd, Sn-Au, Sn-Pt, Sn-Ru, Sn-Ir, In-Fe, In-Mn, In-Ni, In-Co, In-Cu, In-Ag, In-Pd, In-Au, In-Pt, In-Ru, In-Ir, In-Sn, Bi-Fe, Bi-Mn, Bi-Ni, Bi-Co, Bi-Cu, Bi-Ag, Bi-Pd, Bi-Au, Bi-Pt, Bi-Ru, Bi-Ir, Bi-Sn, Bi-In, Pb-Fe, Pb-Mn, Pb-Ni, Pb-Co, Pb-Cu, Pb-Ag, Pb-Pd, Pb-Au, Pb-Pt, Pb-Ru, Pb-Ir, Pb-Sn, Pb-In, Pb-Bi, Rh-Fe, Rh-Mn, Rh-Ni, Rh-Co, Rh-Cu, Rh-Ag, Rh-Pd, Rh-Au, Rh-Pt, Rh-Ru, Rh-Ir, Rh-Sn, Rh-In, Rh-Bi, 및 Rh-Pb 등이 사용될 수 있다. For example, the single atom dimers include Fe-Ni, Fe-Co, Fe-Mn, Cu-Ni, Fe-Cu, Mn-Cu, Cu-Ni, Mn-Ni, Mn-Co, Ni-Co, Mn -Mn, Ni-Ni, Co-Cu, Co-Ag, Fe-Ag, Cu-Ag, Mn-Ag, Ni-Ag, Pd-Fe, Pd-Mn, Pd-Ni, Pd-Co, Pd-Cu , Pd-Ag, Au-Fe, Au-Mn, Au-Ni, Au-Co, Au-Cu, Au-Ag, Au-Pd, Pt-Fe, Pt-Mn, Pt-Ni, Pt-Co, Pt -Cu, Pt-Ag, Pt-Pd, Pt-Au, Ru-Fe, Ru-Mn, Ru-Ni, Ru-Co, Ru-Cu, Ru-Ag, Ru-Pd, Ru-Au, Ru-Pt , Ir-Fe, Ir-Mn, Ir-Ni, Ir-Co, Ir-Cu, Ir-Ag, Ir-Pd, Ir-Au, Ir-Pt, Ir-Ru, Sn-Fe, Sn-Mn, Sn -Ni, Sn-Co, Sn-Cu, Sn-Ag, Sn-Pd, Sn-Au, Sn-Pt, Sn-Ru, Sn-Ir, In-Fe, In-Mn, In-Ni, In-Co , In-Cu, In-Ag, In-Pd, In-Au, In-Pt, In-Ru, In-Ir, In-Sn, Bi-Fe, Bi-Mn, Bi-Ni, Bi-Co, Bi -Cu, Bi-Ag, Bi-Pd, Bi-Au, Bi-Pt, Bi-Ru, Bi-Ir, Bi-Sn, Bi-In, Pb-Fe, Pb-Mn, Pb-Ni, Pb-Co , Pb-Cu, Pb-Ag, Pb-Pd, Pb-Au, Pb-Pt, Pb-Ru, Pb-Ir, Pb-Sn, Pb-In, Pb-Bi, Rh-Fe, Rh-Mn, Rh -Ni, Rh-Co, Rh-Cu, Rh-Ag, Rh-Pd, Rh-Au, Rh-Pt, Rh-Ru, Rh-Ir, Rh-Sn, Rh-In, Rh-Bi, and Rh- Pb, etc. may be used.
이와 관련하여, 다른 전이 금속을 기반으로 하는 SAD의 합성은, 금속 전구체와 사용되는 금속의 적절한 조합을 변경함으로써 원하는 이량체 사이트를 생성할 수 있어야 한다. 또한, 전구체(예를 들어 금속 이온이 결합된 도파민 또는 금속 이온이 결합된 폴리 도파민)와 디칸디아미드의 비율은 상기 전이 금속의 유형에 따라 달라질 수 있으며, 상기 전이 금속 중 중금속을 사용할 경우 안정화를 위해 더 많은 디칸디아미드가 필요할 수 있다. 이와 달리, 같은 전이 금속을 기반으로 하는 SAD의 합성은, 금속 전구체의 농도를 제어함으로써 생성할 수 있다. In this regard, the synthesis of SADs based on different transition metals should be able to generate the desired dimer sites by varying the appropriate combination of metal precursors and metals used. In addition, the ratio of the precursor (for example, dopamine with a metal ion bound or poly dopamine with a metal ion bound) and dicandiamide may vary depending on the type of the transition metal, and when a heavy metal is used among the transition metals, stabilization More dicandiamide may be needed for this. In contrast, the synthesis of SAD based on the same transition metal can be produced by controlling the concentration of the metal precursor.
후술하겠지만, 상기 촉매는 수소 발생 반응용 촉매로서 사용될 수 있다.As will be described later, the catalyst can be used as a catalyst for hydrogen generation reaction.
일반적으로 수소 발생 반응용 촉매는 백금(Pt) 기반의 촉매가 사용되고 있으나, 제한된 가용성 및 높은 비용이 요구되어 수소 발생 단가를 높이는 원인이다. 수소 발생 단가를 낮추기 위해, 저렴한 재료를 사용하면서 백금 기반의 촉매와 유사 또는 우수한 성능을 갖는 촉매를 개발할 필요가 있다.Generally, platinum (Pt)-based catalysts are used as catalysts for hydrogen generation reactions, but their limited availability and high cost are required, which increases the unit cost of hydrogen generation. In order to reduce the unit cost of hydrogen generation, it is necessary to develop a catalyst that has similar or superior performance to platinum-based catalysts while using inexpensive materials.
본원에 따른 촉매는 수소 발생 반응용 촉매에 포함될 수 있는 촉매로서, 탄소 매트릭스 및 상기 탄소 매트릭스 상에 구속된 단일 원자 금속을 포함하는 것이다. 후술하겠지만 상기 촉매는 물 분자를 흡착시키고, 물 분자의 분해 반응에 필요한 에너지를 감소시켜 수소 발생에 필요한 에너지를 감소시킬 수 있다.The catalyst according to the present disclosure is a catalyst that can be included in a catalyst for a hydrogen evolution reaction, and includes a carbon matrix and a single atom metal bound on the carbon matrix. As will be described later, the catalyst can adsorb water molecules and reduce the energy required for the decomposition reaction of water molecules, thereby reducing the energy required for hydrogen generation.
본원의 일 구현예에 따르면, 상기 단일 원자 금속은 1 종의 단일 원자 금속 또는 2 종의 단일 원자 금속이 결합한 단일 원자 이합체(single atom dimer)를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the single atom metal may include one type of single atom metal or a single atom dimer of two types of single atom metals combined, but is not limited thereto.
본원에 따른 단일 원자 금속은, 1 종 또는 2 종의 금속 원자 한 개체를 의미하는 것으로서, 단일 원자 금속은 금속 원자 또는 금속 원자의 이온이 복수개 결합된 금속 나노 입자와는 상이한 것이다. The single-atomic metal according to the present application refers to one or two types of metal atoms, and the single-atomic metal is different from metal nanoparticles in which a plurality of metal atoms or ions of metal atoms are bonded.
상기 단일 원자 이합체는, 서로 다른 금속 원자 2 개체가 전자(electron)에 의해 서로 금속 결합된 것으로서, 포함하는 금속 원자의 수가 2 개인 것을 의미한다. 반면, 상기 금속 나노 입자는 복수의 금속 원자가 금속 결합된 것으로서, 단일 원자 이합체 또는 1 종의 단일 원자 금속에 비해 다수의 금속 원자를 포함하기 때문에 상대적으로 벌크한 구조를 가질 수 있다.The single-atom dimer means that two different metal atoms are metallically bonded to each other by electrons, and the number of metal atoms included is two. On the other hand, the metal nanoparticle is one in which a plurality of metal atoms are combined with a metal, and may have a relatively bulky structure because it contains a large number of metal atoms compared to a single atom dimer or a single type of single atom metal.
즉, 본원에 따른 단일 원자 금속은 금속 원자 1 개체 또는 2 개체를 의미하는 것으로서, 복수의 금속 원자가 결합하면 나노 입자 클러스터를 거쳐 금속 나노 입자로 확대될 수 있다.In other words, the single atomic metal according to the present application refers to one or two metal atoms, and when a plurality of metal atoms are combined, the metal atoms can expand into metal nanoparticles through a nanoparticle cluster.
표면 상에 위치한 원자 만이 반응에 참여하는 금속 나노 입자와 달리, 상기 단일 원자 금속은 반응에 참여하는 하나 내지 둘의 금속 원자 만으로 구성되었기 때문에 원자 경제성이 높을 수 있다.Unlike metal nanoparticles in which only atoms located on the surface participate in the reaction, the single-atom metal may have high atom economy because it is composed of only one or two metal atoms that participate in the reaction.
본원의 일 구현예에 따르면, 상기 촉매는 탄소 매트릭스 100 중량부를 기준으로, 상기 단일 원자 금속을 1 중량부 내지 20 중량부만큼 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 촉매에 포함된 단일 원자 금속의 질량은, 상기 탄소 매트릭스의 질량의 약 1% 내지 약 20%, 약 2% 내지 약 20%, 약 3% 내지 약 20%, 약 4% 내지 약 20%, 약 5% 내지 약 20%, 약 6% 내지 약 20%, 약 7% 내지 약 20%, 약 8% 내지 약 20%, 약 9% 내지 약 20%, 약 10% 내지 약 20%, 약 12% 내지 약 20%, 약 14% 내지 약 20%, 약 16% 내지 약 20%, 약 18% 내지 약 20%, 약 1% 내지 약 2%, 약 1% 내지 약 3%, 약 1% 내지 약 4%, 약 1% 내지 약 5%, 약 1% 내지 약 6%, 약 1% 내지 약 7%, 약 1% 내지 약 8%, 약 1% 내지 약 9%, 약 1% 내지 약 10%, 약 1% 내지 약 12%, 약 1% 내지 약 14%, 약 1% 내지 약 16%, 약 1% 내지 약 18%, 약 2% 내지 약 18%, 약 3% 내지 약 16%, 약 4% 내지 약 14%, 약 5% 내지 약 12%, 약 6% 내지 약 10%, 약 7% 내지 약 9%, 또는 약 8% 일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the catalyst may include 1 to 20 parts by weight of the single atom metal based on 100 parts by weight of the carbon matrix, but is not limited thereto. The mass of single atomic metal included in the catalyst may be about 1% to about 20%, about 2% to about 20%, about 3% to about 20%, about 4% to about 20% of the mass of the carbon matrix, About 5% to about 20%, about 6% to about 20%, about 7% to about 20%, about 8% to about 20%, about 9% to about 20%, about 10% to about 20%, about 12 % to about 20%, about 14% to about 20%, about 16% to about 20%, about 18% to about 20%, about 1% to about 2%, about 1% to about 3%, about 1% to About 4%, about 1% to about 5%, about 1% to about 6%, about 1% to about 7%, about 1% to about 8%, about 1% to about 9%, about 1% to about 10 %, about 1% to about 12%, about 1% to about 14%, about 1% to about 16%, about 1% to about 18%, about 2% to about 18%, about 3% to about 16%, It may be about 4% to about 14%, about 5% to about 12%, about 6% to about 10%, about 7% to about 9%, or about 8%, but is not limited thereto.
본원에 따른 탄소 매트릭스는, 후술하겠지만 폴리 도파민이 열처리되어 형성된 것으로서, 3차원 구조 또는 2 차원 구조를 가질 수 있다. 이 때, 상기 폴리 도파민은 질소를 포함하기 때문에, 상기 탄소 매트릭스는 탄소 및 질소를 포함할 수 있다.The carbon matrix according to the present application, as will be described later, is formed by heat treatment of poly dopamine, and may have a three-dimensional structure or a two-dimensional structure. At this time, because the poly dopamine contains nitrogen, the carbon matrix may contain carbon and nitrogen.
본원의 일 구현예에 따르면, 상기 탄소 매트릭스는 질소 도핑된 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the carbon matrix may be nitrogen-doped, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 탄소 매트릭스 상에서 구속된 단일 원자 금속의 위치는 상기 도핑된 질소에 의해 제어될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the position of the single atom metal confined on the carbon matrix may be controlled by the doped nitrogen, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 단일 원자 금속은 상기 도핑된 질소와 결합할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the single atom metal may combine with the doped nitrogen, but is not limited thereto.
구체적으로, 상기 탄소 매트릭스가 질소를 포함할 경우, 단일 금속 원자의 위치가 최적의 질소 위치에서 생성될 수 있다. 그러나 상기 탄소 매트릭스가 질소를 포함하지 않을 경우, 금속 이온끼리 서로 응집되어 탄소 매트릭스의 클러스터 및 나노 입자가 형성될 수 있다.Specifically, when the carbon matrix contains nitrogen, the position of a single metal atom can be created at an optimal nitrogen position. However, if the carbon matrix does not contain nitrogen, metal ions may aggregate with each other to form clusters and nanoparticles of the carbon matrix.
구체적으로, 상기 탄소 매트릭스에 질소가 도핑되면, 상기 질소가 상기 단일 금속 원자와 결합할 수 있다.Specifically, when the carbon matrix is doped with nitrogen, the nitrogen may bond to the single metal atom.
본원의 일 구현 예에 따르면, 상기 단일 원자 금속은 물 분자를 흡착시키거나, 또는 상기 물 분자의 분해 반응 에너지를 감소시킬 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the single-atom metal may adsorb water molecules or reduce the decomposition reaction energy of the water molecules, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 단일 원자 금속은 Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, 및 이들의 조합들로 이루어진 군에서 선택된 원자를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the single atom metal is Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag , Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu , and combinations thereof, but is not limited thereto.
예를 들어, 상기 단일 원자 금속이 Ni 및 Co를 포함하는 단일 원자 이합체일 경우, 상기 Co 부위는 물 분자를 흡착하고, 물이 해리된 후 H* 부위는 Ni 부위로 이동하여 물 해리에 필요한 에너지 장벽을 감소시킬 수 있다.For example, when the single-atom metal is a single-atom dimer containing Ni and Co, the Co site adsorbs a water molecule, and after the water is dissociated, the H* site moves to the Ni site to provide energy required for water dissociation. Barriers can be reduced.
또한, 상기 단일 원자 금속이 Ni 또는 Co 중 어느 하나를 포함하는 단일 금속 원자로 구성된 경우, 상기 단일 금속 원자의 위치에서 물의 흡착 및 환원이 발생할 수 있다.Additionally, when the single atom metal is composed of a single metal atom containing either Ni or Co, adsorption and reduction of water may occur at the position of the single metal atom.
본원의 일 구현예에 따르면, 상기 단일 원자 이합체는 0.2 nm 내지 0.4 nm 의 금속-금속 결합을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the single atom dimer may include a metal-metal bond of 0.2 nm to 0.4 nm, but is not limited thereto.
또한, 본원의 제 2 측면은, 상기 제 1 측면에 따른 촉매를 포함하는, 수소 발생 반응용 촉매에 대한 것이다.Additionally, the second aspect of the present application relates to a catalyst for hydrogen generation reaction, including the catalyst according to the first aspect.
본원의 제 2 측면에 따른 수소 발생 반응용 촉매에 대하여, 본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 본원의 제 1 측면에 기재된 내용은 본원의 제 2 측면에 동일하게 적용될 수 있다.With respect to the catalyst for hydrogen generation reaction according to the second aspect of the present application, detailed description of parts overlapping with the first aspect of the present application has been omitted. However, even if the description is omitted, the content described in the first aspect of the present application is the same as the first aspect of the present application. The same can be applied to both sides.
상기 수소 발생 반응용 촉매는 -10 mA/cm2 및 -100 mA/cm2에 도달하기 위해 각각 50 mV 내지 65 mV 및 110 mV 내지 200 mV의 낮은 과전위가 필요하며, 이는 20% Pt-C 또는 Pt 단일 금속 원자 촉매가 -10 mA/cm2 및 -100 mA/cm2에 도달하기 위해 필요한 과전위 요구값과 유사하다. 그러나, 단일 원자 금속 대신 금속 나노 입자를 포함하는 촉매를 포함하는 수소 발생용 촉매는, 상기 제 1 측면에 따른 촉매를 포함하는 수소 발생 반응용 촉매에 비해 더 높은 과전위를 요구하며, 이는 금속 나노 입자 사용시 수소 발생 반응에 더 많은 에너지를 요구하는 것을 의미한다.The catalyst for the hydrogen evolution reaction requires a low overpotential of 50 mV to 65 mV and 110 mV to 200 mV, respectively, to reach -10 mA/cm 2 and -100 mA/cm 2 , which is 20% Pt-C. Alternatively, it is similar to the overpotential requirements required for Pt single metal atom catalysts to reach -10 mA/cm 2 and -100 mA/cm 2 . However, a catalyst for hydrogen generation containing a catalyst containing metal nanoparticles instead of a single atom metal requires a higher overpotential compared to a catalyst for hydrogen generation reaction containing the catalyst according to the first aspect, which is due to the metal nano particle. This means that more energy is required for the hydrogen generation reaction when using particles.
본원의 일 구현예에 따르면, 상기 수소 발생 반응용 촉매는 0 초과 14 이하의 pH 범위에서 작동할 수 있으나, 이에 제한되는 것은 아니다. 다만, 상기 수소 발생용 촉매의 작동 환경이 중성(pH=7)에 가까워질수록, 전해질 전도도가 낮아질 수 있는 문제가 발생한다.According to one embodiment of the present application, the catalyst for hydrogen generation reaction may operate in a pH range of more than 0 and less than or equal to 14, but is not limited thereto. However, as the operating environment of the catalyst for hydrogen generation approaches neutrality (pH = 7), a problem occurs in which electrolyte conductivity may decrease.
pH 가 7 미만인 산성 환경의 경우, 물 분해 반응이 상기 촉매 상에 양성자가 흡착되는 반응부터 시작될 수 있다. 그러나 pH 가 7 초과인 염기성 환경의 경우, 물 분해 반응이 촉매 상에 H2O 흡착 및 해리 반응부터 시작될 수 있기 때문에, 상기 촉매는 산성 환경에 위치하였을 때와 염기성 환경에 위치하였을 때의 반응 메커니즘이 상이할 수 있다.In an acidic environment where the pH is less than 7, the water splitting reaction may begin with the adsorption of protons on the catalyst. However, in the case of a basic environment where the pH is greater than 7, the water decomposition reaction may begin with H 2 O adsorption and dissociation reaction on the catalyst, so the catalyst has a reaction mechanism when located in an acidic environment and when located in a basic environment. This may be different.
상기 수소 발생용 촉매는 1 M의 KOH 용액 및 0.5 M의 H2SO4 용액에 담지된 상태에서 높은 효율로 수소를 생성할 수 있다.The catalyst for hydrogen generation can generate hydrogen with high efficiency when supported in a 1 M KOH solution and a 0.5 M H 2 SO 4 solution.
또한, 본원의 제 3 측면은 상기 제 1 측면에 따른 촉매의 제조 방법에 대한 것으로서, 탄소 매트릭스의 전구체 및 단일 원자 금속의 전구체를 혼합하는 단계; 상기 탄소 매트릭스의 전구체를 자가 중합시켜 탄소 중합체를 형성하는 단계; 및 상기 탄소 중합체 및 질소 공급원을 혼합하고 열처리하는 단계를 포함하는 것인, 촉매의 제조 방법에 대한 것이다.Additionally, a third aspect of the present application relates to a method for producing a catalyst according to the first aspect, comprising mixing a precursor of a carbon matrix and a precursor of a single atom metal; self-polymerizing the carbon matrix precursor to form a carbon polymer; and mixing the carbon polymer and the nitrogen source and heat treating the catalyst.
본원의 제 3 측면에 따른 촉매의 제조 방법에 대하여, 본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 본원의 제 1 측면에 기재된 내용은 본원의 제 2 측면에 동일하게 적용될 수 있다.Regarding the method for producing a catalyst according to the third aspect of the present application, detailed description of parts overlapping with the first aspect of the present application has been omitted. However, even if the description is omitted, the content described in the first aspect of the present application is the same as the second aspect of the present application. The same can be applied to the side.
도 2는 본원의 일 구현예에 따른 촉매의 제조 방법을 나타낸 순서도이고, 도 3은 본원의 일 구현예에 따른 촉매의 제조 방법을 나타낸 모식도이며, 도 4는 금속 나노 입자를 포함하는 촉매의 제조 방법을 나타낸 모식도이다. 이 때, 도 3은 상기 제 1 측면에 따른 단일 원자 금속을 포함하는 촉매의 제조 방법이고, 도 4는 단일 원자 금속 대신 금속 나노 입자를 포함하는 촉매의 제조 방법이다.FIG. 2 is a flowchart showing a method for producing a catalyst according to an embodiment of the present application, FIG. 3 is a schematic diagram showing a method for producing a catalyst according to an embodiment of the present application, and FIG. 4 is a flowchart showing a method for producing a catalyst containing metal nanoparticles. This is a schematic diagram showing the method. At this time, FIG. 3 shows a method for producing a catalyst containing a single-atom metal according to the first aspect, and FIG. 4 shows a method for producing a catalyst containing metal nanoparticles instead of a single-atom metal.
먼저, 탄소 매트릭스의 전구체 및 단일 원자 금속의 전구체를 혼합한다 (S100).First, the precursor of the carbon matrix and the precursor of the single atom metal are mixed (S100).
본원의 일 구현예에 따르면, 상기 탄소 매트릭스의 전구체 및 상기 단일 원자 금속의 전구체는 액상에서 혼합되는 것일 수 있으나, 이에 제한되는 것은 아니다. 이 때, 두 전구체가 혼합되는 환경은 트리스 버퍼 용액(Tris buffer solution)의 내부일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the precursor of the carbon matrix and the precursor of the single atom metal may be mixed in a liquid phase, but are not limited thereto. At this time, the environment in which the two precursors are mixed may be inside a Tris buffer solution, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 탄소 매트릭스의 전구체는 도파민을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the precursor of the carbon matrix may include dopamine, but is not limited thereto.
도파민은 C8H11NO2의 분자식을 갖는 카테콜아민 계열의 유기 화합물을 의미한다. 후술하겠지만, 상기 도파민을 트리스 버퍼 용액에 주입하고, 상온에서 교반하면 자체적으로 교반되어 폴리도파민을 형성할 수 있다.Dopamine refers to an organic compound of the catecholamine series with the molecular formula of C 8 H 11 NO 2 . As will be described later, when the dopamine is injected into a Tris buffer solution and stirred at room temperature, it can be stirred on its own to form polydopamine.
본원의 일 구현예에 따르면, 상기 단일 원자 금속의 전구체는 Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, 및 이들의 조합들로 이루어진 군에서 선택된 원소의 이온을 포함할 수 있으나, 이에 제한되는 것은 아니다. 이 때, 상기 단일 원자 금속의 전구체는 완성된 촉매의 단일 원자 금속의 구조에 따라 한 종류의 금속 이온 또는 두 종류의 금속 이온을 포함할 수 있다.According to one embodiment of the present application, the precursor of the single atom metal is Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd , Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb , Lu, and combinations thereof may include ions of elements selected from the group, but are not limited thereto. At this time, the precursor of the single-atom metal may include one type of metal ion or two types of metal ions depending on the structure of the single-atom metal of the finished catalyst.
이어서, 탄소 매트릭스의 전구체를 자가 중합시켜 탄소 중합체를 형성한다 (S200).Subsequently, the precursor of the carbon matrix is self-polymerized to form a carbon polymer (S200).
본원의 일 구현예에 따르면, 상기 탄소 중합체는 내부에 상기 단일 원자 금속의 전구체를 포함할 수 있으나, 이에 제한되는 것은 아니다. According to one embodiment of the present application, the carbon polymer may include a precursor of the single-atom metal therein, but is not limited thereto.
상기 탄소 매트릭스의 전구체 및 상기 단일 원자 금속의 전구체를 상온에서 교반하면, 상기 탄소 매트릭스의 전구체가 자가 중합되어 탄소 중합체가 될 수 있다. 이 때, 상기 단일 원자 금속의 전구체, 즉 금속 이온은 상기 탄소 중합체와 결합할 수 있다.When the carbon matrix precursor and the single-atom metal precursor are stirred at room temperature, the carbon matrix precursor may self-polymerize to become a carbon polymer. At this time, the precursor of the single-atom metal, that is, the metal ion, may combine with the carbon polymer.
본원의 일 구현예에 따르면, 상기 탄소 중합체는 폴리 도파민을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the carbon polymer may include poly dopamine, but is not limited thereto.
이와 관련하여, 상기 탄소 중합체가 폴리 도파민일 경우, 도 3 및 도 4에서 확인할 수 있듯 상기 단일 원자 금속의 전구체의 금속 이온이 상기 폴리 도파민의 질소와 결합될 수 있다.In this regard, when the carbon polymer is poly dopamine, as can be seen in FIGS. 3 and 4, the metal ion of the single-atomic metal precursor can be combined with the nitrogen of the poly dopamine.
이어서, 상기 탄소 중합체 및 질소 공급원을 혼합하고 열처리한다(S300).Next, the carbon polymer and nitrogen source are mixed and heat treated (S300).
상기 질소 공급원은 상기 탄소 중합체 상에 질소를 추가 공급하기 위한 물질로서, 상기 질소 공급원 없이 상기 탄소 중합체 만을 열처리할 경우 도 4와 같이 금속 나노 입자를 포함하는 촉매가 제조될 수 있다. 상술하였듯, 금속 나노 입자를 포함하는 촉매는 단일 원자 금속을 포함하는 촉매에 비해 원자 경제성이 낮아 수소 발생 효율이 낮을 수 있다.The nitrogen source is a material for additionally supplying nitrogen to the carbon polymer. When the carbon polymer alone is heat treated without the nitrogen source, a catalyst containing metal nanoparticles can be produced as shown in FIG. 4. As described above, catalysts containing metal nanoparticles may have lower hydrogen generation efficiency due to lower atomic economy than catalysts containing single-atom metals.
본원의 일 구현예에 따르면, 상기 탄소 중합체와 상기 질소 공급원의 질량 비율은 1:5 내지 1:10 일 수 있으나, 이에 제한되는 것은 아니다. 바람직하게는, 상기 탄소 중합체(금속 이온이 결합된 폴리 도파민)과 질소 공급원(예를 들어 다이칸다이아미드) 사이의 질량 비율은 1 : 7 일 수 있다.According to one embodiment of the present application, the mass ratio of the carbon polymer and the nitrogen source may be 1:5 to 1:10, but is not limited thereto. Preferably, the mass ratio between the carbon polymer (poly dopamine bound to metal ions) and the nitrogen source (e.g. dicandiamide) may be 1:7.
본원의 일 구현예에 따르면, 상기 열처리에 의해, 상기 단일 원자 금속의 전구체는 1 종의 단일 원자 금속 또는 2 종의 단일 원자 금속이 결합한 단일 원자 이합체(single atom dimer)가 될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, by the heat treatment, the precursor of the single atom metal may become a single atom dimer of one type of single atom metal or two types of single atom metals combined, but is limited thereto. It doesn't work.
본원의 일 구현예에 따르면, 상기 탄소 중합체는 탄소 매트릭스가 될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the carbon polymer may be a carbon matrix, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 질소 공급원은 시아노구아니딘(dicyandiamide), 구아니딘, 및 이들의 조합들로 이루어진 물질을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the nitrogen source may include a material consisting of cyanoguanidine (dicyandiamide), guanidine, and combinations thereof, but is not limited thereto.
예를 들어, Ni 이온 및 Co 이온이 결합된 폴리 도파민을 포함하는 탄소 중합체를 시아노구아니딘과 혼합하고 열처리할 경우, 상기 폴리 도파민이 질소 도핑된 2 차원 탄소 매트릭스의 형태로 전환될 수 있다. 이 때 상기 시아노구아니딘에 의해 폴리 도파민에 비해 질소의 수가 증가하고, 상기 증가한 질소 위치에 의해 상기 Ni 이온 및 Co 이온들이 응집되는 현상이 억제되어 금속 나노 입자 대신 단일 원자 금속, 즉 Ni-Co 이합체가 형성될 수 있다.For example, when a carbon polymer containing poly dopamine to which Ni ions and Co ions are bonded is mixed with cyanoguanidine and heat treated, the poly dopamine may be converted into a nitrogen-doped two-dimensional carbon matrix. At this time, the number of nitrogens is increased by the cyanoguanidine compared to poly-dopamine, and the phenomenon of agglomeration of the Ni ions and Co ions is suppressed by the increased nitrogen position, resulting in a single atomic metal, that is, a Ni-Co dimer, instead of a metal nanoparticle. can be formed.
본원의 일 구현예에 따르면, 상기 열처리 온도는 700℃ 내지 900℃ 일 수 있으나, 이에 제한되는 것은 아니다. According to one embodiment of the present application, the heat treatment temperature may be 700°C to 900°C, but is not limited thereto.
또한, 본원에 따른 촉매는 이산화탄소(CO2)를 환원시켜 에탄올 및 아세톤을 생성하는 반응에 사용될 수 있다. 구체적으로, 본원에 따른 촉매를 사용하여 이산화탄소를 환원시켜 에탄올 및 아세톤을 생성하는 반응에서, 애노드 측은 아래의 <화학식 1>과 같은 반응이 발생되고, 캐소드 측은 아래의 <화학식 2>와 같은 반응이 발생될 수 있다. Additionally, the catalyst according to the present disclosure can be used in a reaction that reduces carbon dioxide (CO 2 ) to produce ethanol and acetone. Specifically, in the reaction of producing ethanol and acetone by reducing carbon dioxide using the catalyst according to the present application, a reaction as shown in <Formula 1> below occurs on the anode side, and a reaction as shown in <Formula 2> below occurs on the cathode side. It can happen.
<화학식 1><Formula 1>
8H2O -> 4O2 + 16H+ + 16e- 8H 2 O -> 4O 2 + 16H + + 16e -
<화학식 2><Formula 2>
3CO2 + 16H+ + 16e- -> CH3COCH3 + 5H2O3CO 2 + 16H + + 16e - -> CH 3 COCH 3 + 5H 2 O
또한, 본원에 따른 촉매는 질소(N2)를 환원시켜 암모니아를 생성하는 반응에 사용될 수 있다. Additionally, the catalyst according to the present disclosure can be used in a reaction that reduces nitrogen (N 2 ) to produce ammonia.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.The present invention will be described in more detail through the following examples. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the present application.
[실시예 1][Example 1]
[실시예 1-1] : 탄소 중합체(Ni2+ Co2+@폴리도파민) 형성[Example 1-1]: Formation of carbon polymer (Ni2+ Co2+@polydopamine)
트리스 버퍼 1.21 g 을, DI water 135 ml 에 용해시킨 후, 5 ml 의 금속 염 함유 용액을 첨가하였다. 이 때 상기 금속 염 함유 용액의 농도는 2 mg/ml 이고, Ni(NO3)2·6H2O 및 Co(NO3)2·6H2O 를 1 : 1 의 비율로 포함한 것이다.1.21 g of Tris buffer was dissolved in 135 ml of DI water, and then 5 ml of a solution containing a metal salt was added. At this time, the concentration of the metal salt-containing solution is 2 mg/ml, and it contains Ni(NO 3 ) 2 ·6H 2 O and Co(NO 3 ) 2 ·6H 2 O in a ratio of 1:1.
이어서, 도파민 하이드로클라라이드(dopamine hydrochloride) 70 mg 을 빠르게 첨가하고, 자석으로 24 시간 동안 교반하였다.Then, 70 mg of dopamine hydrochloride was quickly added, and the mixture was stirred with a magnet for 24 hours.
이어서, 필터링하고, DI water 및 에탄올을 이용해 2 차례 세척한 후, 60℃ 에서 밤새 건조하여 Ni2+ Co2+@폴리도파민을 수득하였다.Subsequently, it was filtered, washed twice with DI water and ethanol, and dried at 60°C overnight to obtain Ni 2+ Co 2+ @polydopamine.
[실시예 1-2] : 촉매(NiCo-SAD-NC) 형성[Example 1-2]: Formation of catalyst (NiCo-SAD-NC)
상기 실시예 1-1 에 따른 방법으로 제조된 탄소 중합체, 및 시아노구아니딘을 1 : 7 의 비율로 혼합하고, 분당 5℃ 씩 상승하도록 800℃ 2 시간동안 진공 환경에서 열처리하여 NiCo-SAD-NC 를 형성하였다.The carbon polymer prepared by the method according to Example 1-1 and cyanoguanidine were mixed at a ratio of 1:7, and heat treated in a vacuum environment at 800°C for 2 hours to increase the temperature by 5°C per minute to obtain NiCo-SAD-NC. was formed.
[실시예 2] 내지 [실시예 8][Example 2] to [Example 8]
실시예 1-1 에서 금속 염 함유 용액을 변경하고, 실시예 1-2 와 동일한 방법으로 제조하였다. 이 때, 각 실시예 별 촉매의 명칭, 금속염 함유 용액이 포함하는 금속염의 종류 및 비율은 하기 표 1 과 같다.The metal salt-containing solution in Example 1-1 was changed and prepared in the same manner as Example 1-2. At this time, the name of the catalyst for each example and the type and ratio of the metal salt contained in the metal salt-containing solution are shown in Table 1 below.
구분division 촉매 명칭Catalyst name 금속 염 종류Metal salt types 비율ratio
실시예2Example 2 NiCo-SAD-NC(1:2)NiCo-SAD-NC(1:2) Ni(NO3)2·6H2O 및 Co(NO3)2·6H2ONi(NO 3 ) 2 ·6H 2 O and Co(NO 3 ) 2 ·6H 2 O 1:21:2
실시예3Example 3 NiCo-SAD-NC(2:1)NiCo-SAD-NC(2:1) Ni(NO3)2·6H2O 및 Co(NO3)2·6H2ONi(NO 3 ) 2 ·6H 2 O and Co(NO 3 ) 2 ·6H 2 O 2:12:1
실시예4Example 4 Ni-SA-NCNi-SA-NC Ni(NO3)2·6H2ONi(NO 3 ) 2 ·6H 2 O --
실시예5Example 5 Co-SA-NCCo-SA-NC Co(NO3)2·6H2OCo(NO 3 ) 2 ·6H 2 O --
실시예6Example 6 CoFe-SAD-NCCoFe-SAD-NC Co(NO3)2·6H2O 및 Fe(NO3)3·9H2OCo(NO 3 ) 2 ·6H 2 O and Fe(NO 3 ) 3 ·9H 2 O 1:11:1
실시예7Example 7 CoMn-SAD-NCCoMn-SAD-NC Co(NO3)2·6H2O 및 Mn(NO3)2·4H2OCo(NO 3 ) 2 ·6H 2 O and Mn(NO 3 ) 2 ·4H 2 O 1:11:1
실시예8Example 8 Pt-SAPt-SA H2PtCl6 H2PtCl6 _ --
이와 관련하여, 실시예 8 의 경우 탄소 중합체와 시아노구아니딘의 혼합 비율이 1 : 20 이다.[실시예 9] 및 [실시예 10]In this regard, in Example 8, the mixing ratio of carbon polymer and cyanoguanidine is 1:20. [Example 9] and [Example 10]
실시예 1 과 동일하되, 금속 염 함유 용액이 Ni(NO3)2·6H2O 및 Co(NO3)2·6H2O 중 어느 하나만을 포함하도록 제조하였다. 이 때 실시예 9는 Ni-SA-NC이고, 실시예 10 은 Co-SA-NC이다.It was prepared in the same manner as in Example 1, except that the metal salt-containing solution contained only one of Ni(NO 3 ) 2 ·6H 2 O and Co(NO 3 ) 2 ·6H 2 O. At this time, Example 9 is Ni-SA-NC, and Example 10 is Co-SA-NC.
[비교예 1] : 금속 나노 입자를 포함하는 촉매(NiCo-NP-NC) 형성[Comparative Example 1]: Formation of catalyst (NiCo-NP-NC) containing metal nanoparticles
실시예 1 과 동일한 단계를 수행하되, 실시예 1-2 의 단계에서 시아노구아니딘의 첨가 없이 열처리하였다.The same steps as in Example 1 were performed, but heat treatment was performed without adding cyanoguanidine in the steps of Example 1-2.
[비교예 2] : 탄소 매트릭스(NC) 형성[Comparative Example 2]: Carbon matrix (NC) formation
실시예 1 과 동일한 단계를 수행하되, 탄소 중합체를 형성할 때 금속염을 포함하지 않고 순수한 폴리도파민을 제조하였다. 이어서, 순수한 폴리도파민을 시아노구아니딘과 1 : 7 의 비율로 혼합 후 열처리하였다.Pure polydopamine was prepared by following the same steps as in Example 1, but without including metal salts when forming the carbon polymer. Next, pure polydopamine was mixed with cyanoguanidine at a ratio of 1:7 and then heat treated.
[실험예 1][Experimental Example 1]
도 5a 및 도 5b는 본원의 일 실시예 및 비교예에 따른 촉매의 XRD 패턴을 나타낸 그래프이고, 도 5c 는 본원의 일 실시예에 따른 촉매의 HADDF-STEM 이미지이고, 도 5d 는 도 5c 의 site A 에 대한 강도 프로파일 및 전자 에너지 스펙트럼 그래프이고, 도 5e 는 도 5c 의 site B 에 대한 강도 프로파일 및 전자 에너지 스펙트럼 그래프이고, Figures 5a and 5b are graphs showing the It is an intensity profile and electron energy spectrum graph for site A, and Figure 5e is an intensity profile and electron energy spectrum graph for site B in Figure 5c,
도 5a 및 도 5b를 참조하면, NiCo-NP-NC 는 (111), (200), 및 (220) 피크를 갖고 있으며, 이는 NiCo 금속 나노 입자에 의해 형성된 피크이다. 그러나, NiCo-SAD-NC, Ni-SA-NC, 및 Co-SA-NC 는 탄소 매트릭스 NC 의 XRD 패턴과 유사하고 별도의 피크가 확인되지 않는 만큼, 금속 나노 원자와 단일 원자 금속의 차이를 확인할 수 있다.Referring to Figures 5a and 5b, NiCo-NP-NC has peaks of (111), (200), and (220), which are peaks formed by NiCo metal nanoparticles. However, since NiCo-SAD-NC, Ni-SA-NC, and Co-SA-NC are similar to the XRD pattern of carbon matrix NC and no separate peaks are identified, the difference between metal nano atoms and single atom metal cannot be confirmed. You can.
또한, 도 5c 내지 도 5e 를 참조하면, NC 상에 형성된 NiCo-SAD 뿐만 아니라 고립된 Ni 또는 Co 단일 원자 금속을 확인할 수 있고, 강도 프로파일 및 전자 에너지 손실 스펙트럼을 통해 Ni 및 Co 원자가 결합된 다이머를 확인할 수 있다.In addition, referring to Figures 5c to 5e, isolated Ni or Co single atom metals as well as NiCo-SAD formed on NC can be confirmed, and dimers in which Ni and Co atoms are bonded can be identified through intensity profiles and electron energy loss spectra. You can check it.
또한, 도 5f 를 참조하면, Ni 원자와 Co 원자가 결합된 SAD(single atom dimer)에서 Ni 원자와 Co 원자 사이의 간격이 0.241±0.024 nm 임을 확인할 수 있다.Additionally, referring to Figure 5f, it can be seen that the spacing between Ni and Co atoms in SAD (single atom dimer) in which Ni and Co atoms are combined is 0.241 ± 0.024 nm.
또한, 도 5g 를 참조하면, NiCo-SAD-NC 상에서 N, Ni, 및 Co 원자 각각은 NC 상에서 국소화되고 균일하게 분산된다.Additionally, referring to Figure 5g, on NiCo-SAD-NC, N, Ni, and Co atoms are each localized and uniformly dispersed on the NC.
[실험예 2][Experimental Example 2]
도 6a 는 본원의 일 실시예 및 비교예에 따른 촉매의 XANES(X-ray absorption near edge structure) 스펙트럼 그래프이고, 도 6b 는 본원의 일 실시예 및 비교예에 따른 촉매의 XANES 스펙트럼 그래프이고, 도 6c 는 본원의 일 실시예 및 비교예에 따른 촉매의 퓨리에 변환 EXAFS(Extended X-ray. Absorption Fine Structure) 스펙트럼 그래프이고, 도 6d 는 본원의 일 실시예 및 비교예에 따른 촉매의 퓨리에 변환 EXAFS 스펙트럼 그래프이며, 도 6e 는 본원의 일 실시예 및 비교예에 따른 촉매의 WT-EXAFS 이미지이다.Figure 6a is a XANES (X-ray absorption near edge structure) spectrum graph of a catalyst according to an example and a comparative example of the present application, and Figure 6b is a XANES spectrum graph of a catalyst according to an example and a comparative example of the present application. 6c is a Fourier transform EXAFS (Extended It is a graph, and FIG. 6e is a WT-EXAFS image of a catalyst according to an example and a comparative example of the present application.
도 6a 및 도 6b를 참조하면, Ni-SA-NC, Co-SA-NC, NiCo-NP-NC, 및 NiCo-SAD-NC 의 Ni 및 Co 의 K-단지 XANES 스펙트럼은, Ni 및 Co 의 XPS 스펙트럼과 유사한 경향을 보이는 것으로 확인되었다. 이와 관련하여, Ni 금속 및 NiCo-NP-NC와 비교하여, 약 8333.8 eV의 사전 에지 피크는 NiCo-SA-NC, Ni-SA-NC 및 표준 니켈 프탈로시아닌(NiPC)의 Ni-edge XANES 스펙트럼에서 관찰될 수 있다. Ni-SA-NC와 대조적으로 NiCo-SAD-NC의 Ni K-edge XANES 스펙트럼에서 확인되는 근일점과 백색선은 양의 변화를 보이고 있으며, 이는 Ni-SAD-NC에서 Ni의 산화 상태가 Ni-SA-NC에 비해 더 높음을 의미할 수 있다. 6A and 6B, the K-only XANES spectra of Ni and Co of Ni-SA-NC, Co-SA-NC, NiCo-NP-NC, and NiCo-SAD-NC are, It was confirmed that it showed a similar trend to the spectrum. In this regard, compared to Ni metal and NiCo-NP-NC, a pre-edge peak around 8333.8 eV is observed in the Ni-edge XANES spectra of NiCo-SA-NC, Ni-SA-NC and standard nickel phthalocyanine (NiPC). It can be. In contrast to Ni-SA-NC, the perihelion and white line identified in the Ni K-edge XANES spectrum of NiCo-SAD-NC show positive changes, which means that the oxidation state of Ni in Ni-SAD-NC -This may mean higher than NC.
한편 Ni-SA-NC의 경우 약 7705 eV에서 유사한 사전 피크가 나타남을 확인할 수 있으며, X선 흡수 Co 중심은 네 가지 배위(N 또는 금속)로 중심화됨을 확인할 수 있다. 이 때, NiCo-SAD-NC의 Co K-edge XANES 프로필의 근일점과 흰색 선 특징은 Co-SA-N 에 비해 음의 변화를 보였으며, 이는 NiCo-SAD-NC의 산화 상태가 낮음을 의미한다. Meanwhile, in the case of Ni-SA-NC, it can be seen that a similar pre-peak appears at about 7705 eV, and it can be confirmed that the X-ray absorption Co center is centered in four coordinations (N or metal). At this time, the perihelion and white line features of the Co K-edge .
또한, 도6c 및 도 6d 는, NiCo-SAD-NC, Co-SA-NC, NiCo-NP-NC, Co, 및 Ni 의 Ni 및 Co K-단지 푸리에 변환(FT) k3 가중치 EXAFS 스펙트럼을 표시한 것이다. Ni-K-edge FT-EXAFS 스펙트럼에 따르면 Ni-SA-NC 및 NiCo-SAD-NC에 대해 각각 약 1.46 Ω과 1.53 Ω의 R 공간에서 우세한 피크는 Ni-N 결합에 할당될 수 있다. 이와 관련하여, 평균 Ni-N 결합 길이는 Ni-SA-NC에 비해 NiCo-SAD-NC에 대해 크게 이동되었으며, 이는 Ni-SA-NC에서 찾을 수 없는 2.18 Ω 의 Ni-금속 피크의 동시 출현과 함께 Ni 원자 부위의 왜곡된 D4h 국소 대칭이 확인되었다.6C and 6D also display the Ni and Co K-only Fourier transform (FT) k3 weighted EXAFS spectra of NiCo-SAD-NC, Co-SA-NC, NiCo-NP-NC, Co, and Ni. will be. According to the Ni-K-edge FT-EXAFS spectra, the dominant peaks in the R space around 1.46 Ω and 1.53 Ω for Ni-SA-NC and NiCo-SAD-NC, respectively, can be assigned to Ni-N bonds. In this regard, the average Ni-N bond length is significantly shifted for NiCo-SAD-NC compared to Ni-SA-NC, which is consistent with the simultaneous appearance of a Ni-metal peak at 2.18 Ω that is not found in Ni-SA-NC. Together, the distorted D4h local symmetry of Ni atomic sites was confirmed.
이와 관련하여 상기 Ω 은 나이퀴스트 플롯을 사용한 임피던스 분광법에서 측정될 수 있으며, Ω 이 작을수록 촉매의 전도도가 향상될 수 있다.In this regard, Ω can be measured in impedance spectroscopy using a Nyquist plot, and as Ω is smaller, the conductivity of the catalyst can be improved.
또한, 도 6c에서 NiCo-SAD-NC는 1 내지 2 Radial distance(Å) 사이의 피크값이 2 내지 3 Radial distance(Å) 사이의 피크값 보다 큰 반면, NiCo-NP-NC는 1 내지 2 Radial distance(Å) 사이의 피크값이 2 내지 3 Radial distance(Å) 사이의 피크값 보다 작은 것을 확인할 수 있다. In addition, in Figure 6c, the peak value of NiCo-SAD-NC between 1 and 2 radial distance (Å) is larger than the peak value between 2 and 3 radial distance (Å), while the peak value of NiCo-NP-NC is between 1 and 2 radial distance (Å). It can be seen that the peak value between distance (Å) is smaller than the peak value between 2 and 3 Radial distance (Å).
한편, Co-K-EXAFS 스펙트럼에서 Co-N 결합이 1.48 Ω (Co-SA-NC)에서 1.56 Ω (NiCo-SAD-NC)로 신장된 것은 Co-N 중심부의 국소 대칭이 Co-Ni 결합 2 Ω에서 추가로 형성되면서 왜곡되었음을 의미한다. Meanwhile, in the Co-K-EXAFS spectrum, the Co-N bond was stretched from 1.48 Ω (Co-SA-NC) to 1.56 Ω (NiCo-SAD-NC), indicating that the local symmetry of the center of Co-N was similar to that of Co-Ni bond 2. This means that it was distorted as it was formed additionally in Ω.
도 6e 를 참조하면, NiCo 이량체의 형성을 확인할 수 있다.Referring to Figure 6e, the formation of NiCo dimer can be confirmed.
[실험예 3][Experimental Example 3]
실시예 1 내지 실시예 8, 및 비교예 1 및 2 의 촉매를 수소 발생 반응에 사용하였다.The catalysts of Examples 1 to 8 and Comparative Examples 1 and 2 were used in the hydrogen evolution reaction.
도 7a 는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매의 LSV 편광 곡선을 나타낸 그래프이고, 도 7b 는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매에 필요한 과전압(over potential)을 나타낸 그래프이고, 도 7c 는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매의 타펠 곡선(tafel slope)을 나타낸 그래프이고, 도 7d 는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매의 LSV 편광 곡선을 나타낸 그래프이고, 도 7e 는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매에 필요한 과전압(over potential)을 나타낸 그래프이고, 도 7f 는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매의 타펠 곡선(tafel slope)을 나타낸 그래프이며, 도 7g 는 본원의 일 실시예 및 비교예에 따른 수소 발생 반응용 촉매의 시간에 따른 수소 발생 정도를 나타낸 그래프이다. 구체적으로 도7a 내지 도7c 는 1 M 의 KOH 의 염기성 용액에서 수소 발생 정도를 측정한 것이고, 도 7d 내지 도 7f 는 0.5 M 의 H2SO4 의 산성 용액에서 수소 발생 정도를 측정한 것이며, 도 7g 및 7h 는 양 용액 모두에서 수소 발생 정도를 측정한 것이다. 또한, 도 7g 에서 4 개의 그래프는 위부터 차례대로 NiCo-SAD-NC(0.5 M H2SO4), NiCo-SAD-NC(1 M KOH), NiCo-NP-NC(0.5 M H2SO4), 및 NiCo-NP-NC(1 M KOH) 를 의미한다.Figure 7a is a graph showing the LSV polarization curve of the catalyst for hydrogen generation reaction according to an example and comparative example of the present application, and Figure 7b is a graph showing the overvoltage (over voltage) required for the catalyst for hydrogen generation reaction according to an example and comparative example of the present application. potential), and Figure 7c is a graph showing the Tafel slope of the catalyst for hydrogen generation reaction according to an example and comparative example of the present application, and Figure 7d is a graph showing the Tafel slope according to an example and comparative example of the present application. It is a graph showing the LSV polarization curve of the catalyst for hydrogen generation reaction, Figure 7e is a graph showing the overpotential required for the catalyst for hydrogen generation reaction according to an example and comparative example of the present application, and Figure 7f is an example of the present application It is a graph showing the Tafel slope of the catalyst for hydrogen generation reaction according to the Example and Comparative Example, and Figure 7g shows the degree of hydrogen generation over time of the catalyst for hydrogen generation reaction according to the Example and Comparative Example of the present application. This is the graph shown. Specifically, Figures 7a to 7c measure the degree of hydrogen generation in a basic solution of 1 M KOH, Figures 7d to 7f measure the degree of hydrogen generation in an acidic solution of 0.5 M H2SO4, and Figures 7g and 7h is a measure of the degree of hydrogen generation in both solutions. Additionally, the four graphs in Figure 7g are NiCo-SAD-NC (0.5 M H2SO4), NiCo-SAD-NC (1 M KOH), NiCo-NP-NC (0.5 M H2SO4), and NiCo-NP in order from the top. -NC stands for (1 M KOH).
도 7a 내지 도 7c 를 참조하면, 염기성 용액에서 NiCo-SAD-NC 와 같은 촉매는 종래의 Pt/C 촉매, 또는 Pt 단원자 금속을 사용하는 촉매와 유사한 성능을 가지면서, NiCo-NP-NC 와 같이 금속 나노 입자를 사용하는 촉매에 비해 우수한 성능을 가짐을 확인할 수 있다.Referring to FIGS. 7A to 7C, in a basic solution, a catalyst such as NiCo-SAD-NC has similar performance to a conventional Pt/C catalyst or a catalyst using a Pt monoatomic metal, and NiCo-NP-NC and It can be confirmed that it has superior performance compared to catalysts using metal nanoparticles.
또한, 도 7d 내지 도 7f 를 참조하면, 산성 용액에서도 NiCo-SAD-NC 와 같은 촉매는 종래의 Pt/C 촉매, 또는 Pt 단원자 금속을 사용하는 촉매와 유사한 성능을 가지면서, NiCo-NP-NC 와 같이 금속 나노 입자를 사용하는 촉매에 비해 우수한 성능을 가짐을 확인할 수 있다.In addition, referring to Figures 7d to 7f, even in acidic solutions, catalysts such as NiCo-SAD-NC have similar performance to conventional Pt/C catalysts or catalysts using Pt monoatomic metal, while NiCo-NP- It can be confirmed that it has superior performance compared to catalysts using metal nanoparticles such as NC.
도 7g 를 참조하면, NiCo-SAD-NC 촉매는 NiCo-NP-NC 촉매에 비해 수소 생성 반응 발생 정도가 우수하다.Referring to Figure 7g, the NiCo-SAD-NC catalyst is superior to the NiCo-NP-NC catalyst in generating hydrogen generation reaction.
또한, 도 7g 에 삽입된 그래프를 참조하면, 담지된 용액의 pH 와 무관하게 약 1200 초에 걸쳐서 페러데이 효율이 약 99%로서, 1 M 의 KOH 및 0.5 M 의 H2SO4 용액에서 약 180 μmol 의 수소가 발생하였음을 확인할 수 있다.Additionally, referring to the graph inserted in FIG. 7g, the Faradaic efficiency is about 99% over about 1200 seconds, regardless of the pH of the supported solution, and about 180 μmol of hydrogen is produced in a 1 M KOH and 0.5 M H2SO4 solution. You can confirm that it has occurred.
또한 도 7h 를 참조하면, 본원에 따른 NiCo-SAD-NC 촉매는 산성 환경 및 염기성 환경 양측에서 비등한 물 분해 성능을 가질 수 있다.Also, referring to FIG. 7h, the NiCo-SAD-NC catalyst according to the present application can have comparable water decomposition performance in both acidic and basic environments.
도 8a 및 도 8b 는 본원의 일 실시예에 따른 수소 발생용 촉매의 LSV 편광 곡선을 나타낸 그래프이다. 구체적으로, 도 8a 및 도 8b 는 Ni-SA-NC, Co-SA-NC, 및 NiCo-SAD-NC 를 사용한 세 촉매를 비교한 그래프로서, 도 8a 는 1 M 의 KOH 용액에서, 도 8b 는 0.5 M 의 H2SO4 용액에서 측정된 것이다. pH 와 무관하게, 단일 원자 금속을 사용한 촉매(Ni-SA-NC 및 Co-SA-NC)는 이량체 촉매(NiCo-SAD-NC) 대비 낮은 HER 성능을 보이고 있다. 8A and 8B are graphs showing the LSV polarization curve of a catalyst for hydrogen generation according to an embodiment of the present application. Specifically, Figures 8a and 8b are graphs comparing three catalysts using Ni-SA-NC, Co-SA-NC, and NiCo-SAD-NC, where Figure 8a is in a 1 M KOH solution and Figure 8b is in a 1 M KOH solution. Measured in 0.5 M H2SO4 solution. Regardless of pH, catalysts using single-atom metals (Ni-SA-NC and Co-SA-NC) show lower HER performance compared to dimer catalysts (NiCo-SAD-NC).
상술된 실시예들 외에도 다양한 금속들을 이용하여 촉매를 제조하였다. 촉매의 제조 방법은 상술된 실시예들과 같되, 금속 전구체의 종류를 달리 사용하였다. 또한, 동일한 금속이 결합된 촉매(예를 들어, NiNi, MnMn 등)의 경우 금속 전구체의 농도를 높게 사용하여 제조하였다. 구체적으로, M1M2(예를 들어, NiCo)의 경우 0.1 wt% 농도의 M1 전구체(Ni 전구체)와 0.1 wt% 농도의 M2 전구체(Co 전구체)를 사용하여 제조한 반면, M1M1(예를 들어, NiNi)의 경우 0.2 wt% 농도의 M1 전구체(Ni 전구체)를 사용하여 제조하였다. 금속 전체체들의 종류는 아래의 <표 2>와 같다. In addition to the examples described above, catalysts were prepared using various metals. The catalyst preparation method was the same as the above-described examples, but a different type of metal precursor was used. Additionally, catalysts combining the same metal (e.g., NiNi, MnMn, etc.) were manufactured using a high concentration of metal precursor. Specifically, in the case of M 1 M 2 (e.g., NiCo), it was manufactured using a M 1 precursor (Ni precursor) at a concentration of 0.1 wt% and an M 2 precursor (Co precursor) at a concentration of 0.1 wt%, whereas M 1 In the case of M 1 (eg, NiNi), it was prepared using a M 1 precursor (Ni precursor) at a concentration of 0.2 wt%. The types of metal components are shown in <Table 2> below.
금속metal 전구체precursor
MnMn Mn(NO3)2. 4H2OMn(NO3)2. 4H2O
AgAg AgNO3 AgNO 3
PdPD Pd(NO3)2. x H2OPd(NO3)2. x H2O
CuCu Cu(NO3)2. x H2OCu(NO3)2. x H2O
FeFe Fe(NO3)3. 9H2OFe(NO3)3. 9H2O
AuAu AuClAuCl
CoCo Co(NO3)2. 6 H2OCo(NO3)2. 6 H2O
PbPb Pb(NO3)2Pb(NO3)2
PtPt [Pt(NH3)4] (NO3)2[Pt(NH3)4] (NO3)2
RuRu RuCl3. x H2ORuCl3. x H2O
IrIR IrCl3. x H2OIrCl3. x H2O
SnSn SnCl2SnCl2
InIn In(NO3)3. x H2OIn(NO3)3. x H2O
BiBi Bi(NO3)3. 5 H2OBi(NO3)3. 5 H2O
RhRh Rh(NO3)3. x H2ORh(NO3)3. x H2O
도 9는 NC, NiNi-SAD-NC, MnMn-SAD-NC, 및 MnNi-SAD-NC의 SEM 이미지이다. Figure 9 is SEM images of NC, NiNi-SAD-NC, MnMn-SAD-NC, and MnNi-SAD-NC.
도 9의 (a)를 참조하면 NC의 SEM(Scanning Electron Microscope) 이미지를 나타내고, 도 9의 (b)를 참조하면 NiNi-SAD-NC의 SEM 이미지를 나타내고, 도 9의 (c)를 참조하면 MnMn-SAD-NC의 SEM 이미지를 나타내고, 도 9의 (d)를 참조하면 MnNi-SAD-NC의 SEM 이미지를 나타낸다. Referring to Figure 9(a), it shows the SEM (Scanning Electron Microscope) image of NC, Figure 9(b) shows the SEM image of NiNi-SAD-NC, and Figure 9(c) shows it. Shows the SEM image of MnMn-SAD-NC, and referring to (d) in Figure 9 shows the SEM image of MnNi-SAD-NC.
도 9의 (a) 내지 (d)에서 확인할 수 있듯이, 제1 단일 원자 금속 및 제2 단일 원자 금속이 같은(NiNi, MnMn) 단일 원자 이합체 또한 제조될 수 있음을 확인할 수 있다. As can be seen from (a) to (d) of FIG. 9, it can be confirmed that a single-atom dimer in which the first and second single-atom metals are the same (NiNi, MnMn) can also be produced.
도 10 및 도 11은 MnNi-SAD-NC의 STEM 이미지이다. Figures 10 and 11 are STEM images of MnNi-SAD-NC.
도 10 및 도 11을 참조하면, MnNi-SAD-NC의 STEM(Scanning Transmission Electron Microscopy) 이미지를 나타낸다. Referring to Figures 10 and 11, they show STEM (Scanning Transmission Electron Microscopy) images of MnNi-SAD-NC.
구체적으로, 도 10은 Mn 전구체 및 Ni 전구체의 전체 함량이 0.2 wt% 이하인 경우를 나타내고, 도 11은 Mn 전구체 및 Ni 전구체의 전체 함량이 0.2 wt% 초과인 경우를 나타낸다. 도 10에서 확인할 수 있듯이, 0.2 wt% 이하인 경우 SAD 형태로 존재하는 반면, 0.2 wt%를 초과하는 경우 클러스터 형태로 존재하는 것을 확인할 수 있다. Specifically, Figure 10 shows a case where the total content of the Mn precursor and Ni precursor is 0.2 wt% or less, and Figure 11 shows a case where the total content of the Mn precursor and Ni precursor is more than 0.2 wt%. As can be seen in Figure 10, when it is less than 0.2 wt%, it exists in the form of SAD, whereas when it exceeds 0.2 wt%, it exists in the form of a cluster.
도 12 내지 도 109는 다양한 조합의 단일 원자 이합체를 확인하기 위한 XPS 분석 결과로서, 단일 원자 이합체로서 다양한 금속들의 조합이 사용될 수 있음을 확인할 수 있다. Figures 12 to 109 show the results of XPS analysis to confirm various combinations of single-atom dimers, and it can be confirmed that various combinations of metals can be used as single-atom dimers.
또한, 도 12 내지 도 109를 통해 XPS 분석 결과 단일 원자 금속과 탄소 사이의 화학적 결합이 관찰되지 않는 것을 알 수 있고, NC 및 단일 원자-NC와 비교하여 FeNi-SAD-NC, FeCo-SAD-NC, FeMn-SAD-NC, CuNi-SAD-NC, FeCu-SAD-NC, MnCu-SAD-NC, CuNi-SAD-NC, MnNi-SAD-NC, MnCo-SAD-NC, NiCo-SAD-NC, MnMn-SAD-NC, NiNi-SAD-NC, CoCo-SAD-NC, 특히 MnNi-SAD-NC위 N 1s XPS 스펙트럼은 금속-질소 조정에 해당하는 포르피린-N과 함께 피리디닉-N에 의해 지배되는 것을 확인할 수 있다. In addition, it can be seen from Figures 12 to 109 that no chemical bond is observed between the single-atom metal and carbon as a result of XPS analysis, and compared to NC and single-atom-NC, FeNi-SAD-NC and FeCo-SAD-NC , FeMn-SAD-NC, CuNi-SAD-NC, FeCu-SAD-NC, MnCu-SAD-NC, CuNi-SAD-NC, MnNi-SAD-NC, MnCo-SAD-NC, NiCo-SAD-NC, MnMn -SAD-NC, NiNi-SAD-NC, CoCo-SAD-NC, and especially MnNi-SAD-NC, the N 1s You can check it.
또한, Mn, Fe, Co, Ni, Cu, Ag, Pd, Ru, Rh, Ir, Pt, Au, Sn, In, Bi, Pb-NC를 포함하되 이에 국한되지 않는 두 금속 원자 모두 2p XPS 스펙트럼 중 하나에서 2p3/2 및 2p1/2 피크 특성을 나타내는 것을 확인할 수 있다.Additionally, both metal atoms, including but not limited to Mn, Fe, Co, Ni, Cu, Ag, Pd, Ru, Rh, Ir, Pt, Au, Sn, In, Bi, Pb-NC, are present in the 2p XPS spectrum. It can be seen that one shows 2p 3/2 and 2 p1/2 peak characteristics.
또한, 상기 샘플들 중 하나의 금속 원자에 대한 결합 에너지는 단일 원자 부위를 가두기 위해 N을 도입한 후 양으로 이동하여 -N 결합 형성을 나타내는 것을 확인할 수 있다.Additionally, it can be seen that the binding energy for a metal atom in one of the samples shifts to positive after N is introduced to confine a single atom site, indicating the formation of an -N bond.
그러나 이량체 부위를 형성한 후, 2p3/2 XPS 스펙트럼 중 한 개는 다른 이량체 시료의 금속 부위에 비해 산화 상태인 Fe, Ni, Co, Mn, Cu-NC를 포함하되 이에 국한되지 않는 양의 변화를 보인 반면, 2p3/2 XPS 스펙트럼 중 한 개는 산화 상태인 음의 변화를 보여 원자 수준에서 단일 결합 형성으로 인해 한 금속 부위에서 다른 금속 부위로 전자 이동이 일어난 것으로 추정됨을 알 수 있었다.However, after forming the dimer site, one of the 2p 3/2 While showing a change, one of the 2p 3/2 .
도 12는 MnAg-SAD-NC의 XPS 분석 결과이다. Figure 12 shows the XPS analysis results of MnAg-SAD-NC.
도 13은 NiAg-SAD-NC의 XPS 분석 결과이다. Figure 13 shows the XPS analysis results of NiAg-SAD-NC.
도 14는 PdMn-SAD-NC의 XPS 분석 결과이다. Figure 14 shows the XPS analysis results of PdMn-SAD-NC.
도 15는 NiPd-SAD-NC의 XPS 분석 결과이다. Figure 15 shows the XPS analysis results of NiPd-SAD-NC.
도 16은 CoPd-SAD-NC의 XPS 분석 결과이다. Figure 16 shows the XPS analysis results of CoPd-SAD-NC.
도 17은 CuPd-SAD-NC의 XPS 분석 결과이다. Figure 17 shows the XPS analysis results of CuPd-SAD-NC.
도 18은 AgPd-SAD-NC의 XPS 분석 결과이다. Figure 18 shows the XPS analysis results of AgPd-SAD-NC.
도 19는 FeAu-SAD-NC의 XPS 분석 결과이다. Figure 19 shows the XPS analysis results of FeAu-SAD-NC.
도 20은 NiAu-SAD-NC의 XPS 분석 결과이다. Figure 20 shows the XPS analysis results of NiAu-SAD-NC.
도 21은 CoAu-SAD-NC의 XPS 분석 결과이다. Figure 21 shows the XPS analysis results of CoAu-SAD-NC.
도 22는 CuAu-SAD-NC의 XPS 분석 결과이다. Figure 22 is the XPS analysis result of CuAu-SAD-NC.
도 23은 AgAu-SAD-NC의 XPS 분석 결과이다. Figure 23 is the XPS analysis result of AgAu-SAD-NC.
도 24는 PdAu-SAD-NC의 XPS 분석 결과이다. Figure 24 shows the XPS analysis results of PdAu-SAD-NC.
도 25는 MnPt-SAD-NC의 XPS 분석 결과이다. Figure 25 is the XPS analysis result of MnPt-SAD-NC.
도 26은 NiPt-SAD-NC의 XPS 분석 결과이다. Figure 26 is the XPS analysis result of NiPt-SAD-NC.
도 27은 CoPt-SAD-NC의 XPS 분석 결과이다. Figure 27 is the XPS analysis result of CoPt-SAD-NC.
도 28은 CuPt-SAD-NC의 XPS 분석 결과이다. Figure 28 shows the XPS analysis results of CuPt-SAD-NC.
도 29는 AgPt-SAD-NC의 XPS 분석 결과이다. Figure 29 shows the XPS analysis results of AgPt-SAD-NC.
도 30은 PdPt-SAD-NC의 XPS 분석 결과이다. Figure 30 shows the XPS analysis results of PdPt-SAD-NC.
도 31은 AuPt-SAD-NC의 XPS 분석 결과이다. Figure 31 shows the XPS analysis results of AuPt-SAD-NC.
도 32는 NiRu-SAD-NC의 XPS 분석 결과이다. Figure 32 is the XPS analysis result of NiRu-SAD-NC.
도 33은 CoRu-SAD-NC의 XPS 분석 결과이다. Figure 33 shows the XPS analysis results of CoRu-SAD-NC.
도 34는 CuRu-SAD-NC의 XPS 분석 결과이다. Figure 34 is the XPS analysis result of CuRu-SAD-NC.
도 35는 AgRu-SAD-NC의 XPS 분석 결과이다. Figure 35 is the XPS analysis result of AgRu-SAD-NC.
도 36은 PdRu-SAD-NC의 XPS 분석 결과이다. Figure 36 shows the XPS analysis results of PdRu-SAD-NC.
도 37은 AuRu-SAD-NC의 XPS 분석 결과이다. Figure 37 is the XPS analysis result of AuRu-SAD-NC.
도 38은 PtRu-SAD-NC의 XPS 분석 결과이다. Figure 38 shows the XPS analysis results of PtRu-SAD-NC.
도 39는 FeIr-SAD-NC의 XPS 분석 결과이다. Figure 39 shows the XPS analysis results of FeIr-SAD-NC.
도 40은 MnIr-SAD-NC의 XPS 분석 결과이다. Figure 40 shows the XPS analysis results of MnIr-SAD-NC.
도 41은 NiIr-SAD-NC의 XPS 분석 결과이다. Figure 41 shows the XPS analysis results of NiIr-SAD-NC.
도 42는 CoIr-SAD-NC의 XPS 분석 결과이다. Figure 42 is the XPS analysis result of CoIr-SAD-NC.
도 43은 CuIr-SAD-NC의 XPS 분석 결과이다. Figure 43 is the XPS analysis result of CuIr-SAD-NC.
도 44는 AgIr-SAD-NC의 XPS 분석 결과이다. Figure 44 shows the XPS analysis results of AgIr-SAD-NC.
도 45는 PdIr-SAD-NC의 XPS 분석 결과이다. Figure 45 is the XPS analysis result of PdIr-SAD-NC.
도 46은 SnPt-SAD-NC의 XPS 분석 결과이다. Figure 46 is the XPS analysis result of SnPt-SAD-NC.
도 47은 SnRu-SAD-NC의 XPS 분석 결과이다. Figure 47 is the XPS analysis result of SnRu-SAD-NC.
도 48은 SnIr-SAD-NC의 XPS 분석 결과이다. Figure 48 is the XPS analysis result of SnIr-SAD-NC.
도 49는 InMn-SAD-NC의 XPS 분석 결과이다. Figure 49 is the XPS analysis result of InMn-SAD-NC.
도 50은 InNi-SAD-NC의 XPS 분석 결과이다. Figure 50 shows the XPS analysis results of InNi-SAD-NC.
도 51은 InCo-SAD-NC의 XPS 분석 결과이다. Figure 51 shows the XPS analysis results of InCo-SAD-NC.
도 52는 InCu-SAD-NC의 XPS 분석 결과이다. Figure 52 is the XPS analysis result of InCu-SAD-NC.
도 53은 InAg-SAD-NC의 XPS 분석 결과이다. Figure 53 shows the XPS analysis results of InAg-SAD-NC.
도 54는 InPd-SAD-NC의 XPS 분석 결과이다. Figure 54 is the XPS analysis result of InPd-SAD-NC.
도 55는 IrAu-SAD-NC의 XPS 분석 결과이다. Figure 55 is the XPS analysis result of IrAu-SAD-NC.
도 56은 IrPt-SAD-NC의 XPS 분석 결과이다. Figure 56 is the XPS analysis result of IrPt-SAD-NC.
도 57은 IrRu-SAD-NC의 XPS 분석 결과이다. Figure 57 is the XPS analysis result of IrRu-SAD-NC.
도 58은 MnSn-SAD-NC의 XPS 분석 결과이다. Figure 58 is the XPS analysis result of MnSn-SAD-NC.
도 59는 NiSn-SAD-NC의 XPS 분석 결과이다. Figure 59 is the XPS analysis result of NiSn-SAD-NC.
도 60은 CoSn-SAD-NC의 XPS 분석 결과이다. Figure 60 shows the XPS analysis results of CoSn-SAD-NC.
도 61은 CuSn-SAD-NC의 XPS 분석 결과이다. Figure 61 is the XPS analysis result of CuSn-SAD-NC.
도 62는 AgSn-SAD-NC의 XPS 분석 결과이다. Figure 62 is the XPS analysis result of AgSn-SAD-NC.
도 63은 PdSn-SAD-NC의 XPS 분석 결과이다. Figure 63 is the XPS analysis result of PdSn-SAD-NC.
도 64는 AuSn-SAD-NC의 XPS 분석 결과이다.Figure 64 is the XPS analysis result of AuSn-SAD-NC.
도 65는 BiRu-SAD-NC의 XPS 분석 결과이다.Figure 65 is the XPS analysis result of BiRu-SAD-NC.
도 66은 BiIr-SAD-NC의 XPS 분석 결과이다. Figure 66 shows the XPS analysis results of BiIr-SAD-NC.
도 67은 BiSn-SAD-NC의 XPS 분석 결과이다.Figure 67 is the XPS analysis result of BiSn-SAD-NC.
도 68은 BiIn-SAD-NC의 XPS 분석 결과이다.Figure 68 is the XPS analysis result of BiIn-SAD-NC.
도 69는 PbMn-SAD-NC의 XPS 분석 결과이다.Figure 69 shows the XPS analysis results of PbMn-SAD-NC.
도 70은 PbNi-SAD-NC의 XPS 분석 결과이다.Figure 70 is the XPS analysis result of PbNi-SAD-NC.
도 71은 PbCo-SAD-NC의 XPS 분석 결과이다.Figure 71 is the XPS analysis result of PbCo-SAD-NC.
도 72는 PbCu-SAD-NC의 XPS 분석 결과이다.Figure 72 is the XPS analysis result of PbCu-SAD-NC.
도 73은 PbAg-SAD-NC의 XPS 분석 결과이다.Figure 73 is the XPS analysis result of PbAg-SAD-NC.
도 74는 PbPd-SAD-NC의 XPS 분석 결과이다.Figure 74 is the XPS analysis result of PbPd-SAD-NC.
도 75는 PbAu-SAD-NC의 XPS 분석 결과이다.Figure 75 is the XPS analysis result of PbAu-SAD-NC.
도 76은 PbPt-SAD-NC의 XPS 분석 결과이다.Figure 76 is the XPS analysis result of PbPt-SAD-NC.
도 77은 InAu-SAD-NC의 XPS 분석 결과이다.Figure 77 is the XPS analysis result of InAu-SAD-NC.
도 78은 InPt-SAD-NC의 XPS 분석 결과이다.Figure 78 is the XPS analysis result of InPt-SAD-NC.
도 79는 InRu-SAD-NC의 XPS 분석 결과이다.Figure 79 is the XPS analysis result of InRu-SAD-NC.
도 80은 InIr-SAD-NC의 XPS 분석 결과이다.Figure 80 shows the XPS analysis results of InIr-SAD-NC.
도 81은 InSn-SAD-NC의 XPS 분석 결과이다.Figure 81 is the XPS analysis result of InSn-SAD-NC.
도 82는 BiMn-SAD-NC의 XPS 분석 결과이다.Figure 82 is the XPS analysis result of BiMn-SAD-NC.
도 83은 BiNi-SAD-NC의 XPS 분석 결과이다.Figure 83 is the XPS analysis result of BiNi-SAD-NC.
도 84는 BiCo-SAD-NC의 XPS 분석 결과이다.Figure 84 is the XPS analysis result of BiCo-SAD-NC.
도 85는 BiCu-SAD-NC의 XPS 분석 결과이다.Figure 85 is the XPS analysis result of BiCu-SAD-NC.
도 86은 BiAg-SAD-NC의 XPS 분석 결과이다.Figure 86 is the XPS analysis result of BiAg-SAD-NC.
도 87은 BiPd-SAD-NC의 XPS 분석 결과이다.Figure 87 is the XPS analysis result of BiPd-SAD-NC.
도 88은 BiAu-SAD-NC의 XPS 분석 결과이다.Figure 88 is the XPS analysis result of BiAu-SAD-NC.
도 89는 BiPt-SAD-NC의 XPS 분석 결과이다.Figure 89 shows the XPS analysis results of BiPt-SAD-NC.
도 90은 PbRu-SAD-NC의 XPS 분석 결과이다.Figure 90 shows the XPS analysis results of PbRu-SAD-NC.
도 91은 PbIr-SAD-NC의 XPS 분석 결과이다.Figure 91 shows the XPS analysis results of PbIr-SAD-NC.
도 92는 PbSn-SAD-NC의 XPS 분석 결과이다.Figure 92 is the XPS analysis result of PbSn-SAD-NC.
도 93은 PbIn-SAD-NC의 XPS 분석 결과이다.Figure 93 is the XPS analysis result of PbIn-SAD-NC.
도 94는 PbBi-SAD-NC의 XPS 분석 결과이다.Figure 94 is the XPS analysis result of PbBi-SAD-NC.
도 95는 RhMn-SAD-NC의 XPS 분석 결과이다.Figure 95 is the XPS analysis result of RhMn-SAD-NC.
도 96은 RhNi-SAD-NC의 XPS 분석 결과이다.Figure 96 is the XPS analysis result of RhNi-SAD-NC.
도 97은 RhCo-SAD-NC의 XPS 분석 결과이다.Figure 97 is the XPS analysis result of RhCo-SAD-NC.
도 98은 RhCu-SAD-NC의 XPS 분석 결과이다.Figure 98 is the XPS analysis result of RhCu-SAD-NC.
도 99는 RhAg-SAD-NC의 XPS 분석 결과이다.Figure 99 shows the XPS analysis results of RhAg-SAD-NC.
도 100은 RhPd-SAD-NC의 XPS 분석 결과이다.Figure 100 shows the XPS analysis results of RhPd-SAD-NC.
도 101은 RhAu-SAD-NC의 XPS 분석 결과이다.Figure 101 is the XPS analysis result of RhAu-SAD-NC.
도 102는 RhPt-SAD-NC의 XPS 분석 결과이다.Figure 102 is the XPS analysis result of RhPt-SAD-NC.
도 103은 RhRu-SAD-NC의 XPS 분석 결과이다.Figure 103 is the XPS analysis result of RhRu-SAD-NC.
도 104는 RhIr-SAD-NC의 XPS 분석 결과이다.Figure 104 shows the XPS analysis results of RhIr-SAD-NC.
도 105는 RhSn-SAD-NC의 XPS 분석 결과이다.Figure 105 is the XPS analysis result of RhSn-SAD-NC.
도 106은 RhIn-SAD-NC의 XPS 분석 결과이다.Figure 106 is the XPS analysis result of RhIn-SAD-NC.
도 107은 MnNi-SAD-NC의 XPS 분석 결과이다.Figure 107 is the XPS analysis result of MnNi-SAD-NC.
도 108은 NiNi-SAD-NC의 XPS 분석 결과이다.Figure 108 is the XPS analysis result of NiNi-SAD-NC.
도 109는 MnMn-SAD-NC의 XPS 분석 결과이다.Figure 109 is the XPS analysis result of MnMn-SAD-NC.
도 110은 MnMn-SAD-NC, MnNi-SAD-NC, 및 NiNi-SAD-NC의 퓨리에 변환 EXAFS(Extended X-ray. Absorption Fine Structure) 스펙트럼 그래프 및 XANES(X-ray absorption near edge structure) 스펙트럼 그래프이다.110 is a Fourier transform EXAFS (Extended X-ray. Absorption Fine Structure) spectrum graph and a am.
Ni 및 Mn K- 에지 XANES 스펙트럼의 전체 XANES 스펙트럼이 해당 XPS 스펙트럼 함수와 유사한 경향을 나타냄을 보여준다. Ni K- 에지 XANES 스펙트럼에서 약 8333.8 eV의 프리 에지 피크가 관찰되는 것을 확인할 수 있다. 또한, 6545.4 eV 주위의 프리 에지 피크는 Mn K- 에지 XANES 스펙트럼에서 관찰되는 것을 확인할 수 있다. It shows that the overall XANES spectra of Ni and Mn K-edge XANES spectra show similar trends as the corresponding XPS spectral functions. It can be seen that a free edge peak of approximately 8333.8 eV is observed in the Ni K-edge XANES spectrum. Additionally, it can be confirmed that the free edge peak around 6545.4 eV is observed in the Mn K-edge XANES spectrum.
도 111 내지 도 126은 다양한 조합의 단일 원자 이합체를 확인하기 위한 XRD 분석 결과로서, 단일 원자 이합체로서 다양한 금속들의 조합이 사용될 수 있음을 확인할 수 있다. 아래의 구체적인 도면 설명에서 각 단일 원자 이합체들의 순서는 아래에서 위쪽 방향의 순서를 나타낸다. Figures 111 to 126 show the results of XRD analysis to confirm various combinations of single-atom dimers, and it can be confirmed that various combinations of metals can be used as single-atom dimers. In the detailed drawing description below, the order of each single atom dimer indicates the order from bottom to top.
도 111은 FeNi-SAD-NC, FeCo-SAD-NC, FeMn-SAD-NC, CuNi-SAD-NC, 및 FeCu-SAD-NC의 XRD 분석 결과이다. Figure 111 shows the XRD analysis results of FeNi-SAD-NC, FeCo-SAD-NC, FeMn-SAD-NC, CuNi-SAD-NC, and FeCu-SAD-NC.
도 112는 MnCu-SAD-NC, CuNi-SAD-NC, MnNi-SAD-NC, MnCo-SAD-NC, 및 NiCo-SAD-NC의 XRD 분석 결과이다. Figure 112 is the XRD analysis results of MnCu-SAD-NC, CuNi-SAD-NC, MnNi-SAD-NC, MnCo-SAD-NC, and NiCo-SAD-NC.
도 113은 MnMn-SAD-NC, NiNi-SAD-NC, CoCu-SAD-NC, CoAg-SAD-NC, 및 FeAg-SAD-NC의 XRD 분석 결과이다. Figure 113 shows the XRD analysis results of MnMn-SAD-NC, NiNi-SAD-NC, CoCu-SAD-NC, CoAg-SAD-NC, and FeAg-SAD-NC.
도 114는 CuAg-SAD-NC, MnAg-SAD-NC, NiAg-SAD-NC, PdFe-SAD-NC, 및 PdMn-SAD-NC의 XRD 분석 결과이다. Figure 114 shows the XRD analysis results of CuAg-SAD-NC, MnAg-SAD-NC, NiAg-SAD-NC, PdFe-SAD-NC, and PdMn-SAD-NC.
도 115는 PdNi-SAD-NC, PdCo-SAD-NC, PdCu-SAD-NC, PdAg-SAD-NC, 및 AuFe-SAD-NC의 XRD 분석 결과이다. Figure 115 is the XRD analysis results of PdNi-SAD-NC, PdCo-SAD-NC, PdCu-SAD-NC, PdAg-SAD-NC, and AuFe-SAD-NC.
도 116은 AuMn-SAD-NC, AuNi-SAD-NC, AuCo-SAD-NC, AuCu-SAD-NC, 및 AuAg-SAD-NC의 XRD 분석 결과이다. Figure 116 shows the XRD analysis results of AuMn-SAD-NC, AuNi-SAD-NC, AuCo-SAD-NC, AuCu-SAD-NC, and AuAg-SAD-NC.
도 117은 AuPd-SAD-NC, PtFe-SAD-NC, PtMn-SAD-NC, PtNi-SAD-NC, 및 PtCo-SAD-NC의 XRD 분석 결과이다. Figure 117 shows the XRD analysis results of AuPd-SAD-NC, PtFe-SAD-NC, PtMn-SAD-NC, PtNi-SAD-NC, and PtCo-SAD-NC.
도 118은 PtCu-SAD-NC, PtAg-SAD-NC, PtPd-SAD-NC, PtAu-SAD-NC, 및 RuFe-SAD-NC의 XRD 분석 결과이다. Figure 118 shows the XRD analysis results of PtCu-SAD-NC, PtAg-SAD-NC, PtPd-SAD-NC, PtAu-SAD-NC, and RuFe-SAD-NC.
도 119는 RuMn-SAD-NC, RuNi-SAD-NC, RuCo-SAD-NC, RuCu-SAD-NC, RuAg-SAD-NC, RuPd-SAD-NC, RuAu-SAD-NC, RuPt-SAD-NC, IrFe-SAD-NC 및 IrMn-SAD-NC의 XRD 분석 결과이다. 119 shows RuMn-SAD-NC, RuNi-SAD-NC, RuCo-SAD-NC, RuCu-SAD-NC, RuAg-SAD-NC, RuPd-SAD-NC, RuAu-SAD-NC, RuPt-SAD-NC , XRD analysis results of IrFe-SAD-NC and IrMn-SAD-NC.
도 120은 IrNi-SAD-NC, IrCo-SAD-NC, IrCu-SAD-NC, IrAg-SAD-NC, IrPd-SAD-NC, IrAu-SAD-NC, IrPt-SAD-NC, IrRu-SAD-NC, SnFe-SAD-NC 및 SnMn-SAD-NC의 XRD 분석 결과이다. 120 shows IrNi-SAD-NC, IrCo-SAD-NC, IrCu-SAD-NC, IrAg-SAD-NC, IrPd-SAD-NC, IrAu-SAD-NC, IrPt-SAD-NC, IrRu-SAD-NC , XRD analysis results of SnFe-SAD-NC and SnMn-SAD-NC.
도 121은 SnNi-SAD-NC, SnCo-SAD-NC, SnCu-SAD-NC, SnAg-SAD-NC, SnPd-SAD-NC, SnAu-SAD-NC, SnPt-SAD-NC, SnRu-SAD-NC, SnIr-SAD-NC 및 InFe-SAD-NC의 XRD 분석 결과이다. Figure 121 shows SnNi-SAD-NC, SnCo-SAD-NC, SnCu-SAD-NC, SnAg-SAD-NC, SnPd-SAD-NC, SnAu-SAD-NC, SnPt-SAD-NC, SnRu-SAD-NC , XRD analysis results of SnIr-SAD-NC and InFe-SAD-NC.
도 122는 InMn-SAD-NC, InNi-SAD-NC, InCo-SAD-NC, InCu-SAD-NC, InAg-SAD-NC, InPd-SAD-NC, InAu-SAD-NC, InPt-SAD-NC, InRu-SAD-NC 및 InIr-SAD-NC의 XRD 분석 결과이다. Figure 122 shows InMn-SAD-NC, InNi-SAD-NC, InCo-SAD-NC, InCu-SAD-NC, InAg-SAD-NC, InPd-SAD-NC, InAu-SAD-NC, InPt-SAD-NC , XRD analysis results of InRu-SAD-NC and InIr-SAD-NC.
도 123은 InSn-SAD-NC, BiFe-SAD-NC, BiMn-SAD-NC, BiNi-SAD-NC, BiCo-SAD-NC, BiCu-SAD-NC, BiAg-SAD-NC, BiPd-SAD-NC, BiAu-SAD-NC 및 BiPt-SAD-NC의 XRD 분석 결과이다. Figure 123 shows InSn-SAD-NC, BiFe-SAD-NC, BiMn-SAD-NC, BiNi-SAD-NC, BiCo-SAD-NC, BiCu-SAD-NC, BiAg-SAD-NC, BiPd-SAD-NC , XRD analysis results of BiAu-SAD-NC and BiPt-SAD-NC.
도 124는 BiRu-SAD-NC, BiIr-SAD-NC, BiSn-SAD-NC, BiIn-SAD-NC, PbFe-SAD-NC, PbMn-SAD-NC, PbNi-SAD-NC, PbCo-SAD-NC, PbCu-SAD-NC 및 PbAg-SAD-NC의 XRD 분석 결과이다. Figure 124 shows BiRu-SAD-NC, BiIr-SAD-NC, BiSn-SAD-NC, BiIn-SAD-NC, PbFe-SAD-NC, PbMn-SAD-NC, PbNi-SAD-NC, PbCo-SAD-NC , XRD analysis results of PbCu-SAD-NC and PbAg-SAD-NC.
도 125는 PbPd-SAD-NC, PbAu-SAD-NC, PbPt-SAD-NC, PbRu-SAD-NC, PbIr-SAD-NC, PbSn-SAD-NC, PbIn-SAD-NC, PbBi-SAD-NC, RhFe-SAD-NC 및 RhMn-SAD-NC의 XRD 분석 결과이다. Figure 125 shows PbPd-SAD-NC, PbAu-SAD-NC, PbPt-SAD-NC, PbRu-SAD-NC, PbIr-SAD-NC, PbSn-SAD-NC, PbIn-SAD-NC, PbBi-SAD-NC , XRD analysis results of RhFe-SAD-NC and RhMn-SAD-NC.
도 126은 RhNi-SAD-NC, RhCo-SAD-NC, RhCu-SAD-NC, RhAg-SAD-NC, RhPd-SAD-NC, RhAu-SAD-NC, RhPt-SAD-NC, RhRu-SAD-NC, RhIr-SAD-NC, RhSn-SAD-NC, RhIn-SAD-NC, RhBi-SAD-NC, 및 RhPb-SAD-NC의 XRD 분석 결과이다. Figure 126 shows RhNi-SAD-NC, RhCo-SAD-NC, RhCu-SAD-NC, RhAg-SAD-NC, RhPd-SAD-NC, RhAu-SAD-NC, RhPt-SAD-NC, RhRu-SAD-NC , RhIr-SAD-NC, RhSn-SAD-NC, RhIn-SAD-NC, RhBi-SAD-NC, and RhPb-SAD-NC.
도 127은 MnNi-SAD-NC 촉매의 이산화탄소 환원 반응 활성을 확인하기 위한 그래프이다. Figure 127 is a graph to confirm the carbon dioxide reduction reaction activity of the MnNi-SAD-NC catalyst.
도 127을 참조하면, 가역성 수소 전극(reversible hydrogen electrode, RHE)의 기준 전위에 대해 아르곤(Ar)과 이산화탄소(CO2)가 포화된 중탄산 나트륨 용액(sodium bicarbonate solution) 0.5M에서 H- 셀로 측정한 선형 스캔 볼타모그램(linear scan voltammogram)을 나타낸다. CV 곡선을 통해 전위 범위에서 CO2RR(CO2 reduction reaction)에 대한 명확한 활성을 나타내는 것을 확인할 수 있다. Referring to Figure 127, the linear voltage measured with the H-cell in 0.5M sodium bicarbonate solution saturated with argon (Ar) and carbon dioxide (CO2) relative to the reference potential of the reversible hydrogen electrode (RHE) Indicates a scan voltammogram (linear scan voltammogram). Through the CV curve, it can be seen that it shows clear activity for CO 2 RR (CO 2 reduction reaction) in the potential range.
도 128 및 도 129는 MnNi-SAD-NC 촉매를 이용한 이산화탄소 환원 반응의 생성물에 대한 가스 크로마토그래프 분석 결과이다. Figures 128 and 129 show the results of gas chromatography analysis of the product of the carbon dioxide reduction reaction using the MnNi-SAD-NC catalyst.
도 128을 참조하면, 크로노 양전자 측정을 수행하는 동안 전해질 시스템을 CO2로 지속적으로 퍼징하여 가스 크로마토그래프(GC)시스템에서 수행했다. CO2를 캐리어 가스로 사용하여 CO2 환원으로부터 생성된 기체 생성물을 부착된 0.6L Teldar® PLV 가스 샘플링 백으로 이동시켰다. 그런 다음 가스 백을 밀봉하고 테스트한 2mL 시료를 사용하여 추출했다. 가스 크로마토그래프(GC) 결과를 통해 이산화탄소 환원 반응의 생성물에 아세톤이 포함된 것을 확인할 수 있다. 또한, 도 129를 통해 이산화탄소 환원 반응의 생성물에 에탄올이 포함된 것을 확인할 수 있다. Referring to Figure 128, the electrolyte system was continuously purged with CO 2 while the chronopositron measurements were performed in a gas chromatograph (GC) system. The gaseous products resulting from CO 2 reduction were transferred to an attached 0.6L Teldar® PLV gas sampling bag using CO 2 as a carrier gas. The gas bag was then sealed and extracted using the tested 2 mL sample. Through gas chromatography (GC) results, it can be confirmed that acetone is included in the product of the carbon dioxide reduction reaction. Additionally, through Figure 129, it can be confirmed that ethanol is included in the product of the carbon dioxide reduction reaction.
도 130은 MnNi-SAD-NC 촉매를 이용한 이산화탄소 환원 반응의 생성물에 대한 가스 크로마토그래피-질량 분석 결과이다. Figure 130 is a gas chromatography-mass spectrometry result for the product of a carbon dioxide reduction reaction using a MnNi-SAD-NC catalyst.
도 130을 참조하면, 가스 크로마토그래피-질량 분석(GC-MS)은 상기 촉매 중 하나를 사용하여 CO2RR 반응의 생성물을 확인하기 위해 사용되었다. 크로노암페르토믹스 측정을 수행하면서 전해질 시스템을 CO2로 지속적으로 퍼징하여 GC 시스템에서 수행했다. CO2는 CO2 환원으로부터 생성된 기체 생성물을 부착된 0.6L Teldar® PLV 가스 샘플링 백으로 유도하기 위한 운반 가스로 사용되었다. 그런 다음 가스 백을 밀봉하고 테스트한 2mL 시료를 사용하여 추출했다. GC-MS 결과를 통해 이산화탄소 환원 반응의 생성물에 아세톤이 포함된 것을 확인할 수 있다. Referring to Figure 130, gas chromatography-mass spectrometry (GC-MS) was used to identify the products of the CO2RR reaction using one of the above catalysts. Chronoamphetomics measurements were performed in a GC system with the electrolyte system continuously purged with CO 2 . CO 2 was used as a carrier gas to direct the gaseous products from CO 2 reduction into an attached 0.6L Teldar® PLV gas sampling bag. The gas bag was then sealed and extracted using the tested 2 mL sample. Through GC-MS results, it can be confirmed that acetone is included in the product of the carbon dioxide reduction reaction.
도 131은 MnNi-SAD-NC 촉매를 이용한 이산화탄소 환원 반응의 생성물 분포의 선택도를 설명하는 그래프이다. Figure 131 is a graph explaining the selectivity of product distribution of the carbon dioxide reduction reaction using the MnNi-SAD-NC catalyst.
도 131을 참조하면, MnNi-SAD-NC 촉매를 사용하여 편광 전위의 함수로서 생성물 분포의 선택도를 나타낸다. -0.75 V에서 아세톤에 대한 선택도는 약 90%를 갖는 것을 확인할 수 있다. 이는 다양한 금속 농도에 대한 제품 선택성을 보여준다. 또한, 로딩양이 증가함에 따라 아세톤 형성 속도 또한 가속화되는 것을 확인할 수 있다. Referring to Figure 131, the selectivity of product distribution as a function of polarization potential is shown using the MnNi-SAD-NC catalyst. It can be seen that the selectivity to acetone at -0.75 V is about 90%. This shows product selectivity for various metal concentrations. In addition, it can be seen that as the loading amount increases, the acetone formation rate also accelerates.
도 132는 MnNi-SAD-NC 촉매의 장기간 안정성을 설명하기 위한 그래프이다. Figure 132 is a graph to explain the long-term stability of the MnNi-SAD-NC catalyst.
도 132를 참조하면, MnNi-SAD-NC 촉매의 CO2RR, NRR, 우레아 합성, OER/HER에 대한 장기간 안정성을 보여준다. CO2 반응물 전화과 그 활성은 10일 동안 안정적으로 유지되는 것을 확인할 수 있다. Referring to Figure 132, the long-term stability of the MnNi-SAD-NC catalyst for CO 2 RR, NRR, urea synthesis, and OER/HER is shown. It can be seen that CO 2 reactant conversion and its activity remain stable for 10 days.
도 133은 MnNi-SAD-NC 촉매를 이용한 이산화탄소 환원 반응의 생성물 분석을 위한 1H-NMR 및 13C-NMR 그래프이다. Figure 133 is a 1 H-NMR and 13 C-NMR graph for product analysis of carbon dioxide reduction reaction using a MnNi-SAD-NC catalyst.
도 133을 참조하면, 1H-NMR 및 13C-NMR 분석은 MnNi-SAD-NC 촉매를 이용한 이산화탄소 환원 반응의 생성물에서 아세톤을 확인하기 위해 사용되었으며, 농도가 알려진 화학 물질의 내부 표준으로 보정되었다. NMR 분석을 위해 1.6 ml CDCl3에 전해질 200 μl 샘플을 넣었다. Referring to Figure 133, 1 H-NMR and 13 C-NMR analyzes were used to identify acetone in the product of the MnNi-SAD-NC catalyzed carbon dioxide reduction reaction, calibrated with an internal standard of the chemical of known concentration. . For NMR analysis, 200 μl of electrolyte sample was added to 1.6 ml CDCl 3 .
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The description of the present application described above is for illustrative purposes, and those skilled in the art will understand that the present application can be easily modified into other specific forms without changing its technical idea or essential features. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. For example, each component described as unitary may be implemented in a distributed manner, and similarly, components described as distributed may also be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the claims described below rather than the detailed description above, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present application.
본 발명의 실시 예에 따른 촉매 및 이의 제조 방법은 전기화학 반응이 이루어지는 산업 분야에 적용될 수 있다. The catalyst and its manufacturing method according to embodiments of the present invention can be applied to industrial fields where electrochemical reactions occur.

Claims (16)

  1. 질소가 도핑된 탄소 매트릭스(carbon matrix); 및 Nitrogen-doped carbon matrix; and
    상기 탄소 매트릭스 내 질소와 결합된 단일 원자(single atom) 금속을 포함하는, 촉매. A catalyst comprising a single atom metal bonded to nitrogen in the carbon matrix.
  2. 제 1 항에 있어서,According to claim 1,
    상기 단일 원자 금속은 1 종의 단일 원자 금속 또는 2 종의 단일 원자 금속이 결합한 단일 원자 이합체(single atom dimer)를 포함하는, 촉매.The single atom metal is a catalyst comprising one type of single atom metal or a single atom dimer in which two types of single atom metals are combined.
  3. 제 2 항에 있어서,According to claim 2,
    상기 단일 원자 이합체는, The single atom dimer is,
    상기 탄소 매트릭스 내 질소와 결합된 제1 단일 원자 금속, 및 상기 제1 단일 원자 금속과 결합되지 않은 질소와 결합된 제2 단일 원자 금속을 포함하고, a first single atom metal bonded to nitrogen in the carbon matrix, and a second single atom metal bonded to nitrogen that is not bonded to the first single atom metal,
    상기 제1 단일 원자 금속 및 상기 제2 단일 원자 금속이 결합된 것을 포함하는, 촉매. A catalyst comprising the first single atom metal and the second single atom metal combined.
  4. 제1 항에 있어서,According to claim 1,
    상기 제1 단일 원자 금속 및 상기 제2 단일 원자 금속은 서로 다른 것을 포함하는, 촉매.and wherein the first single atom metal and the second single atom metal are different from each other.
  5. 제1 항에 있어서,According to claim 1,
    상기 제1 단일 원자 금속 및 상기 제2 단일 원자 금속은 서로 같은 것을 포함하는, 촉매. and wherein the first single atomic metal and the second single atomic metal include the same thing.
  6. 제 1 항에 있어서,According to claim 1,
    퓨리에 변환 EXAFS(Extended X-ray Absorption Fine Structure) 분석 결과, 1 내지 2 Radial distance(Å) 사이의 피크값이 2 내지 3 Radial distance(Å) 사이의 피크값 보다 큰 것을 포함하는, 촉매. As a result of Fourier transform EXAFS (Extended
  7. 제 1 항에 있어서,According to claim 1,
    XPS 분석 결과 상기 단일 원자 금속과 탄소 사이의 화학적 결합이 관찰되지 않는 것을 포함하는, 촉매.A catalyst comprising: no chemical bond between the single atom metal and carbon is observed as a result of XPS analysis.
  8. 제 1 항에 있어서,According to claim 1,
    상기 단일 원자 금속은 Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, 및 이들의 조합들로 이루어진 군에서 선택된 원자를 포함하는, 촉매. The single atomic metals include Ni, Co, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W , Re, Os, Ir, Pt, Au, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and combinations thereof. A catalyst comprising an atom selected from the group.
  9. 제 1 항에 있어서,According to claim 1,
    물(H2O)을 환원시켜 수소(H2)를 생성하는 반응에 사용되는 것을 포함하는, 촉매. A catalyst, including one used in a reaction to reduce water (H 2 O) to produce hydrogen (H 2 ).
  10. 제 1 항에 있어서,According to claim 1,
    이산화탄소(CO2)를 환원시켜 에탄올 및 아세톤을 생성하는 반응에 사용되는 것을 포함하는, 촉매. Catalysts, including those used in reactions that reduce carbon dioxide (CO 2 ) to produce ethanol and acetone.
  11. 제 1 항에 있어서,According to claim 1,
    질소(N2)를 환원시켜 암모니아를 생성하는 반응에 사용되는 것을 포함하는, 촉매. A catalyst, including one used in a reaction to reduce nitrogen (N 2 ) to produce ammonia.
  12. 탄소 매트릭스(matrix)를 이루는 탄소 중 일부가 질소로 치환된 베이스 구조체; 및A base structure in which some of the carbon forming the carbon matrix is replaced with nitrogen; and
    상기 베이스 구조체 내 질소와 결합된 단일 원자 이합체(single atom dimer)를 포함하되, Includes a single atom dimer bonded to nitrogen in the base structure,
    상기 단일 원자 이합체는, 상기 베이스 구조체 내 질소와 결합된 제1 단일 원자 금속, 및 상기 제1 단일 원자 금속과 결합되지 않은 질소와 결합된 제2 단일 원자 금속을 포함하고, The single atom dimer includes a first single atom metal bonded to nitrogen in the base structure, and a second single atom metal bonded to nitrogen that is not bonded to the first single atom metal,
    상기 제1 단일 원자 금속 및 상기 제2 단일 원자 금속이 결합된 것을 포함하는, 촉매. A catalyst comprising the first single atom metal and the second single atom metal combined.
  13. 탄소 매트릭스의 전구체 및 단일 원자 금속의 전구체를 혼합하는 단계;mixing a precursor of a carbon matrix and a precursor of a single atom metal;
    상기 탄소 매트릭스의 전구체를 자가 중합시켜 탄소 중합체를 형성하는 단계; 및self-polymerizing the carbon matrix precursor to form a carbon polymer; and
    상기 탄소 중합체 및 질소 공급원을 혼합하고 열처리하는 단계를 포함하는, 촉매의 제조 방법.A method for producing a catalyst, comprising mixing the carbon polymer and a nitrogen source and heat treating.
  14. 제 13 항에 있어서,According to claim 13,
    상기 탄소 중합체는 내부에 상기 단일 원자 금속의 전구체를 포함하는, 촉매의 제조 방법.A method of producing a catalyst, wherein the carbon polymer includes therein a precursor of the single atom metal.
  15. 제 13 항에 있어서,According to claim 13,
    상기 열처리에 의해, 상기 단일 원자 금속의 전구체는 1 종의 단일 원자 금속 또는 2 종의 단일 원자 금속이 결합한 단일 원자 이합체(single atom dimer)가 되고, 상기 탄소 중합체는 탄소 매트릭스가 되는, 촉매의 제조 방법.By the heat treatment, the precursor of the single atom metal becomes a single atom dimer of one type of single atom metal or two types of single atom metals, and the carbon polymer becomes a carbon matrix. Preparation of a catalyst method.
  16. 제 13 항에 있어서,According to claim 13,
    상기 탄소 매트릭스의 전구체는 도파민을 포함하고, 상기 탄소 중합체는 폴리 도파민을 포함하는, 촉매의 제조 방법.A method for producing a catalyst, wherein the precursor of the carbon matrix includes dopamine, and the carbon polymer includes poly dopamine.
PCT/KR2023/008828 2022-06-27 2023-06-26 Catalyst for applying electrochemical reaction and preparation method therefor WO2024005470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0078497 2022-06-27
KR20220078497 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024005470A1 true WO2024005470A1 (en) 2024-01-04

Family

ID=89380958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008828 WO2024005470A1 (en) 2022-06-27 2023-06-26 Catalyst for applying electrochemical reaction and preparation method therefor

Country Status (2)

Country Link
KR (1) KR20240001685A (en)
WO (1) WO2024005470A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210057653A (en) * 2019-11-12 2021-05-21 울산과학기술원 Multi-heteroatom-doped carbon catalyst from waste-yeast biomass for sustained water splitting, water splitting device comprising the same and producing method of the same
KR20210121697A (en) * 2020-03-31 2021-10-08 한국과학기술연구원 Manufacturing method of carbon composite co-doped with bimetallic transition metal and nitrogen and use thereof
KR20220039356A (en) * 2020-09-22 2022-03-29 전남대학교산학협력단 Electrocatalyst for hydrogen generation reaction comprising nitrogen-doped carbonized polydopamine structure
CN114515552A (en) * 2022-03-11 2022-05-20 山东大学 NiCo alloy @ nitrogen-doped graphene hierarchical pore aerogel, preparation method thereof and application thereof in zinc-air battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182553B1 (en) 2018-11-08 2020-11-24 한국과학기술연구원 Method for manufacturing single atom catalyst supported on carbon carrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210057653A (en) * 2019-11-12 2021-05-21 울산과학기술원 Multi-heteroatom-doped carbon catalyst from waste-yeast biomass for sustained water splitting, water splitting device comprising the same and producing method of the same
KR20210121697A (en) * 2020-03-31 2021-10-08 한국과학기술연구원 Manufacturing method of carbon composite co-doped with bimetallic transition metal and nitrogen and use thereof
KR20220039356A (en) * 2020-09-22 2022-03-29 전남대학교산학협력단 Electrocatalyst for hydrogen generation reaction comprising nitrogen-doped carbonized polydopamine structure
CN114515552A (en) * 2022-03-11 2022-05-20 山东大学 NiCo alloy @ nitrogen-doped graphene hierarchical pore aerogel, preparation method thereof and application thereof in zinc-air battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUMAR ASHWANI, BUI VIET Q., LEE JINSUN, WANG LINGLING, JADHAV AMOL R., LIU XINGHUI, SHAO XIAODONG, LIU YANG, YU JIANMIN, HWANG YOS: "Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution", NATURE COMMUNICATIONS, NATURE PUBLISHING GROUP, UK, vol. 12, no. 1, UK, XP093121551, ISSN: 2041-1723, DOI: 10.1038/s41467-021-27145-3 *
LI RUNZE, WANG DINGSHENG: "Superiority of Dual‐Atom Catalysts in Electrocatalysis: One Step Further Than Single‐Atom Catalysts", ADVANCED ENERGY MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 12, no. 9, 1 March 2022 (2022-03-01), DE , XP093121546, ISSN: 1614-6832, DOI: 10.1002/aenm.202103564 *

Also Published As

Publication number Publication date
KR20240001685A (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2016089153A1 (en) Polymer electrolyte membrane
WO2019022268A1 (en) Zinc oxide nanoparticle/reduced graphene oxide nanocomposite photocatalyst with controlled shape having high photocatalytic characteristics, and manufacturing method therefor
WO2020022822A1 (en) Carbon nanotube, method for preparing same, and cathode for primary battery comprising same
WO2019221484A1 (en) Organometallic compound and organic light emitting diode comprising same
WO2021246762A1 (en) Composition, deposition source, organic electroluminescent device including same, and manufacturing method therefor
WO2022265240A1 (en) Tricyclodecane dimethanol composition and method for preparing same
WO2018124459A1 (en) Perovskite compound and preparation method therefor, and solar cell comprising perovskite compound and manufacturing method therefor
WO2024005470A1 (en) Catalyst for applying electrochemical reaction and preparation method therefor
WO2019004781A1 (en) Perovskite solar cell
WO2017171290A1 (en) Block polymer and polymer electrolyte membrane comprising same
WO2014181986A1 (en) Organic electronic element comprising fullerene derivative
WO2015190900A1 (en) Precursor compound for film formation, and thin film formation method using same
WO2019125052A1 (en) Aerogel composition and preparation method therefor
WO2016144097A2 (en) Polymer and organic solar cell comprising same
WO2020046064A1 (en) Carbon dioxide reduction composite catalyst and manufacturing method thereof
WO2022025675A1 (en) Ammoxidation catalyst for propylene, manufacturing method of same catalyst, and propylene ammoxidation method using same catalyst
WO2017135638A1 (en) Transition metal complex containing sulfonamide or amide group for olefin double decomposition reaction and application thereof
WO2021137632A1 (en) Double metal cyanide catalyst, preparation method therefor, and method for preparing polyol
WO2021145639A1 (en) Polymer and organic light-emitting diode using same
WO2019098771A1 (en) Polymer and polymer separator comprising same
WO2021167432A1 (en) Electrode structure, electrode structure for positive electrode of metal-air battery comprising same, and methods for manufacturing same
WO2021145649A1 (en) Novel n-heterocyclic carbene, transition metal complex thereof, and method for preparing same
WO2024005308A1 (en) Crosslinked copolymer, polymer membrane comprising same, and anion exchange membrane comprising same polymer membrane
WO2021241874A1 (en) Mixed catalyst for fuel cell, method for preparing same, method for forming electrode by using same, and membrane-electrode assembly comprising same
WO2017052226A1 (en) Block polymer and polymer electrolyte membrane including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831830

Country of ref document: EP

Kind code of ref document: A1