WO2024005409A1 - Polarizing plate and optical display device comprising same - Google Patents

Polarizing plate and optical display device comprising same Download PDF

Info

Publication number
WO2024005409A1
WO2024005409A1 PCT/KR2023/008280 KR2023008280W WO2024005409A1 WO 2024005409 A1 WO2024005409 A1 WO 2024005409A1 KR 2023008280 W KR2023008280 W KR 2023008280W WO 2024005409 A1 WO2024005409 A1 WO 2024005409A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
retardation layer
retardation
polarizing plate
phase difference
Prior art date
Application number
PCT/KR2023/008280
Other languages
French (fr)
Korean (ko)
Inventor
김봉춘
신광호
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2024005409A1 publication Critical patent/WO2024005409A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a polarizing plate and an optical display device including the same.
  • an anti-reflection function can be implemented by using a polarizer to lower the reflectance of reflected external light.
  • Polarizers are basically required to significantly improve screen quality by improving black visibility from the front.
  • the polarizer includes a polarizer and an anti-reflection layer laminated on a lower surface of the polarizer.
  • the anti-reflection layer may be a one-sheet type retardation layer or a two-sheet type retardation layer.
  • a single-sheet retardation layer mainly provides reverse wavelength characteristics, and a two-sheet retardation layer mostly provides reverse wavelength characteristics by stacking individual retardation layers each having a normal wavelength phase difference characteristic.
  • the thickness of the two-sheet type retardation layer will be relatively thicker than that of the one-sheet type retardation layer, but price competitiveness is secured by laminating the existing retardation layer with positive wavelength characteristics, which is cheaper than the one-sheet type retardation layer with reverse wavelength characteristics. and productivity can be improved.
  • the retardation layer can be manufactured by stretching an unstretched film formed of a composition containing a polymer resin, or by coating liquid crystal to a predetermined thickness on an alignment film and drying and/or curing it.
  • the retardation layer formed from two liquid crystal layers is relatively thinner than the retardation layer formed from two stretched films, but when left under high temperature and high humidity conditions, iodine eluted from the polarizer diffuses into the panel, causing corrosion of the electrode, reducing the durability of the panel. This could be the problem.
  • the background technology of the present invention is disclosed in Korean Patent Publication No. 10-2013-0103595, etc.
  • the purpose of the present invention is to provide a polarizing plate with excellent durability as there is no iodine elution after being left at high temperature and high humidity.
  • Another object of the present invention is to provide a thin polarizing plate.
  • Another object of the present invention is to provide a polarizer that provides an excellent anti-reflection effect by lowering the reflectance at the front and side.
  • Another object of the present invention is to provide a polarizer with excellent black visibility.
  • One aspect of the present invention is a polarizer.
  • Polyizer is a polarizer; and a first retardation layer and a second retardation layer sequentially stacked on the lower surface of the polarizer, wherein the slow axis of the laminate of the first retardation layer and the second retardation layer is 111 with respect to the light transmission axis of the polarizer.
  • ° to 113° and the front linear phase difference value of the laminate measured from the front at a wavelength of 550 nm is 140 nm to 160 nm, and the laminate is rotated ⁇ 40° with the slow axis of the laminate as the rotation axis at a wavelength of 550 nm.
  • the slope linear retardation value is 145 nm to 170 nm.
  • the first phase difference layer may have a lower thickness than the second phase difference layer.
  • the thickness of the first retardation layer may be 1% to 20% of the thickness of the second retardation layer.
  • the first phase difference layer may be a liquid crystal layer
  • the second phase difference layer may be a non-liquid crystal layer
  • the liquid crystal layer may be a discotic liquid crystal layer.
  • the non-liquid crystal layer is cellulose-based, polyester-based, cyclic polyolefin (COP)-based, cyclic olefin copolymer (COC)-based, polycarbonate-based, polyethersulfone-based, polysulfone-based, polyamide. It may include a stretched film formed of a composition containing one or more of the following resins: polyimide-based, polyolefin-based, polyarylate-based, polyvinyl alcohol-based, polyvinyl chloride-based, polyvinylidene chloride-based, and acrylic-based resin.
  • the first phase difference layer may have a negative birefringence value
  • the second phase difference layer may have a positive birefringence value
  • the second retardation layer may have a higher degree of biaxiality (NZ) at a wavelength of 550 nm compared to the first retardation layer.
  • the first phase difference layer may have a biaxiality degree of -0.1 to 0.1 at a wavelength of 550 nm
  • the second phase difference layer may have a biaxiality degree of 1 to 1.3 at a wavelength of 550 nm.
  • the first phase difference layer may have a biaxiality degree of 0 at a wavelength of 550 nm
  • the second phase difference layer may have a biaxiality degree of 1 to 1.3 at a wavelength of 550 nm.
  • the first phase difference layer may be a negative A plate
  • the second phase difference layer may be a negative B plate.
  • the first retardation layer may have a front in-plane retardation of 200 nm to 280 nm at a wavelength of 550 nm
  • the second retardation layer may have a front in-plane retardation of 100 nm to 150 nm at a wavelength of 550 nm.
  • the angle formed by the slow axis of the first retardation layer with respect to the light transmission axis of the polarizer may be 10° to 20°.
  • the angle formed by the slow axis of the second retardation layer with respect to the light transmission axis of the polarizer may be 70° to 85°.
  • a buffer layer may be formed on the upper surface of the second phase difference layer.
  • One aspect of the present invention is an optical display device.
  • the optical display device includes the polarizing plate of the present invention.
  • the present invention provides a polarizing plate with excellent durability as there is no iodine elution after being left at high temperature and high humidity.
  • the present invention provides a thin polarizing plate.
  • the present invention provides a polarizing plate that provides an excellent anti-reflection effect by lowering the reflectance at the front and side.
  • the present invention provides a polarizer with excellent black visibility.
  • FIG. 1 is a cross-sectional view of a polarizing plate according to an embodiment of the present invention.
  • Figure 2 shows the maximum reflectance evaluation results from the side (incident angle 60°) of Example 1.
  • Figure 3 shows the maximum reflectance evaluation results from the side (incident angle of 60°) of Comparative Example 1.
  • Figure 4 shows the maximum reflectance evaluation results from the side (incident angle of 60°) of Comparative Example 2.
  • Figure 5 shows the maximum reflectance evaluation results from the side (incident angle of 60°) of Comparative Example 3.
  • NZ (nx - nz)/(nx - ny)
  • nx, ny, and nz are the refractive indexes in the slow axis direction, fast axis direction, and thickness direction of the single phase difference layer, respectively, at the measurement wavelength, and d is the single phase difference layer thickness (unit: nm).
  • the “Mueller Matrix of the phase difference layer” is expressed by the following equation D, and can be directly measured without difficulty with an Axoscan, which is an example of a phase difference measurement device:
  • linear retardation (R L ) is expressed by the following formula E.
  • Linear phase difference is well known to those skilled in the art, and can be directly measured without difficulty with Axoscan, an example of a phase difference measuring device:
  • the measurement wavelength may be 450 nm, 550 nm, or 650 nm.
  • a laminate containing two retardation layers with different retardation values and slow axes has different characteristics compared to a single layer retardation layer. Therefore, in order to obtain the retardation value measured for the laminate, a different definition is needed compared to the retardation layer of a single layer.
  • the concepts introduced at this time are linear retardation, circular retardation, and total retardation.
  • a single-layer phase difference layer has the same total phase difference value and linear phase difference value, and there is no circular phase difference value.
  • a laminate of two phase difference layers with different physical characteristics e.g., phase difference value > 0
  • phase difference value > 0
  • the linear phase difference value is also '0'. This is not the case.
  • a method of calculating the phase difference layer by converting it into a Mueller Matrix can be considered. It can be easily measured using Axoscan (Axometrices, Inc., USA), a Mueller Matrix-based phase difference measurement device.
  • the axis with the highest refractive index among the in-plane directions is defined as the 'slow axis'
  • the axis with the lowest refractive index among the in-plane directions is defined as the 'fast axis'. Since the 'solar axis' and the 'true axis' are generally orthogonal, if you know the angle of the 'solar axis', you can also know the angle of the 'true axis'.
  • X to Y means greater than X and less than or equal to Y (X ⁇ and ⁇ Y).
  • the polarizing plate of the present invention includes a polarizer; and a first retardation layer and a second retardation layer sequentially laminated on the lower surface of the polarizer.
  • the first phase difference layer is a liquid crystal layer.
  • the second retardation layer is a non-liquid crystal layer and is preferably a stretched resin film. Therefore, the polarizing plate of the present invention is a laminate of a retardation layer, and compared to a polarizing plate having a laminate of a liquid crystal layer and a liquid crystal layer, there is no problem such as iodine elution after being left for a long period of time at high temperature and high humidity, so it can be excellent in durability.
  • the 'iodine elution' can be evaluated from the degree to which iodine is decolorized by observing the edge of the polarizing plate under a microscope after leaving the polarizing plate in a high temperature and high humidity (60°C and 90% relative humidity) chamber for 250 hours.
  • the polarizing plate of the present invention includes a laminate of a liquid crystal layer and a non-liquid crystal layer, which inevitably has a relatively thick thickness compared to a polarizing plate including a laminate of a liquid crystal layer and a liquid crystal layer.
  • the laminate of the liquid crystal layer and the non-liquid crystal layer controls both the frontal linear retardation value measured from the front at a wavelength of 550 nm and the inclined linear retardation value when the laminate is rotated ⁇ 40° with the slow axis of the laminate as the rotation axis. By doing so, the reflectance from the side was lowered and black visibility was improved. Therefore, the polarizing plate of the present invention can be used as an anti-reflection polarizing plate in a light-emitting display device equipped with a light-emitting device.
  • the 'front linear retardation value' is calculated when light is incident in the direction normal to the in-plane direction of the first retardation layer while the laminate of the first retardation layer and the second retardation layer is fixed without moving due to rotation, etc. It is a value calculated by equation E.
  • the 'inclined linear retardation value' is the value of the first phase difference layer in a laminate of a first phase contrast layer and a second phase contrast layer in a state where the slow axis of the laminate is rotated at +40° and -40°, respectively. This is the value calculated by the equation E above when light is incident in the direction normal to the in-plane direction.
  • the polarizing plate of the present invention includes a polarizer; and a retardation layer stack sequentially laminated on a lower surface of the polarizer, wherein the retardation layer stack includes a first retardation layer and a second retardation layer, and the first retardation layer and the second retardation layer.
  • the slow axis of the laminate is 111° to 113° with respect to the light transmission axis of the polarizer, the laminate has a front linear retardation value of 140 nm to 160 nm measured from the front at a wavelength of 550 nm, and the laminate has a When rotated ⁇ 40° using the slow axis as the rotation axis, the inclined linear phase difference value is 145 nm to 170 nm.
  • the polarizer includes a polarizer 130, a protective film 140 laminated on the upper surface of the polarizer 130, and a retardation layer stack laminated on the lower surface of the polarizer 130.
  • the 'upper surface of the polarizer' is the surface on which external light is first incident on the polarizer or the surface on which light emitted from the light emitting device is emitted through the polarizer.
  • the 'lower surface of the polarizer' is the surface on which light emitted from the light emitting device is incident on the polarizer or the surface on which external light is first emitted after being incident on the polarizer.
  • the retardation layer laminate is a two-layer retardation layer consisting of a first retardation layer 110 and a second retardation layer 120 sequentially stacked from the lower surface of the polarizer 130. It may be a stack of layers.
  • the retardation layer stack includes a first retardation layer and a second retardation layer sequentially stacked from the lower surface of the polarizer, between the polarizer and the first retardation layer, and between the first retardation layer and the second retardation layer.
  • a base layer may be further laminated on the lower surface of the second retardation layer.
  • the base layer supports each of the first retardation layer and the second retardation layer, and may be a retardation film with no retardation or a front in-plane retardation of 30 nm or less at a wavelength of 550 nm, specifically 0 nm to 10 nm.
  • the protective film 140 may correspond to one specific example of a protective layer including a protective coating layer. If there is no problem with the function of the polarizer, the protective film 140 may be omitted.
  • an adhesive layer or adhesive layer may be additionally laminated on the lower surface of the second retardation layer 120 to adhere the polarizer to the optical display panel.
  • the first retardation layer 110 and the second retardation layer 120 are stacked on the lower surface of the polarizer to provide an anti-reflection effect by circularly polarizing linearly polarized external light emitted through the polarizer.
  • the first phase difference layer 110 may be a liquid crystal layer
  • the second phase difference layer 120 may be a non-liquid crystal layer.
  • the polarizing plate of the present invention has excellent durability because it does not have problems such as iodine elution compared to a polarizing plate having a laminate of a liquid crystal layer and a liquid crystal layer as a retardation layer, and is composed of a resin film of a non-liquid crystal layer and a resin film of a non-liquid crystal layer as a retardation layer. A thinner effect can be realized compared to a polarizer having a laminate.
  • the liquid crystal layer for the first phase difference layer 110 may include a wide disk-shaped liquid crystal.
  • the liquid crystal may include a monomer, an oligomer, or a polymer.
  • the liquid crystal layer may include reactive mesogen liquid crystal.
  • the liquid crystal may have one or more reactive crosslinking groups.
  • the reactive mesogenic liquid crystal is, for example, a rod-shaped aromatic derivative having one or more reactive crosslinking groups, propylene glycol 1-methyl, propylene glycol 2-acetate, and a compound represented by P1-A1-(Z1-A2)n-P2 (where P1 and P2 each independently include acrylate, methacrylate, vinyl, vinyloxy, epoxy, or a combination thereof, and A1 and A2 each independently include 1.
  • Z1 is a single bond, -COO-, -OCO- or these It may include at least one of combinations, and n is 0, 1, or 2), but is not limited thereto.
  • the liquid crystal layer may be formed of a composition for a liquid crystal layer that further includes commonly included additives, such as a photoinitiator and a surface control agent, in addition to the above-mentioned reactive mesogen liquid crystal.
  • the composition for the liquid crystal layer may include a solvent to facilitate the manufacture of a liquid crystal layer with a uniform surface.
  • the liquid crystal layer may include a discotic liquid crystal layer.
  • the discotic liquid crystal layer has a degree of biaxiality within a predetermined range, making it easier to lower the reflectance on the side and improve black visibility in the laminate of the first and second retardation layers of the present invention.
  • the first phase difference layer 110 has a degree of biaxiality (NZ) of -0.1 to 0.1 at a wavelength of 550 nm, for example -0.1, -0.09, -0.08, -0.07, -0.06, -0.05, -0.04, -0.03, It may be -0.02, -0.01, 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, preferably -0.05 to 0.05, and more preferably 0. Within the above range, it may be easier to lower the reflectance on the side and improve black visibility in the laminate of the first and second retardation layers of the present invention.
  • NZ degree of biaxiality
  • the first phase difference layer 110 has constant wavelength dispersion, and Re (450) > Re (550) > Re (650) [Re (450), Re (550), and Re (650) are each of the first phase difference layer. [It is the frontal in-plane phase difference at wavelengths of 450nm, 550nm, and 650nm].
  • the laminate of the first retardation layer and the second retardation layer exhibits reverse wavelength dispersion, so that the polarizer can significantly lower the reflectance on the front and side surfaces, improving black visibility and improving screen quality.
  • the first phase difference layer 110 may be a negative A plate having a refractive index relationship nx ⁇ nz>ny.
  • nx, ny, and nz are the refractive index in the slow axis direction, the refractive index in the fast axis direction, and the thickness direction of the first retardation layer, respectively, at a wavelength of 550 nm.
  • the first phase difference layer 110 has a front in-plane phase difference at a wavelength of 550 nm compared to the second phase difference layer, and is 200 nm to 280 nm, for example, 200, 210, 220, 230, 240, 250, 260, 270, 280 nm, preferably It can be 220nm to 260nm. Within the above range, it can be easy to significantly lower the reflectance from the front and sides to improve black visibility and increase screen quality.
  • the first phase difference layer 110 has a slow axis and a fast axis in the in-plane direction.
  • the angle formed by the slow axis of the first retardation layer with respect to the light transmission axis of the polarizer is 10° to 20°, for example, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20°, Preferably it may be 15° to 19°. Within the above range, it can be easy to significantly lower the reflectance from the front and sides to improve black visibility and increase screen quality.
  • the first phase difference layer 110 has a significantly lower thickness than the second phase difference layer 120. This is because the first retardation layer 110 is manufactured by applying a liquid crystal layer composition to a predetermined thickness, as will be explained below, while the second retardation layer 120 is manufactured from a resin film. In one embodiment, the thickness of the first retardation layer 110 is 1% to 20% of the thickness of the second retardation layer 120, for example, 1, 2, 3, 4, 5, 6, 7, 8, It may be 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20%, preferably 10% to 20%.
  • the first phase difference layer 110 may have a thickness of 1 ⁇ m to 5 ⁇ m, preferably 2 ⁇ m to 3 ⁇ m. Within the above range, the above-described phase difference can be implemented.
  • the first retardation layer 110 may be manufactured by applying the above-described liquid crystal layer composition to the upper surface of the second retardation layer to a predetermined thickness and then drying and/or curing it.
  • the first phase difference layer 110 may be formed directly on the second phase difference layer.
  • the term 'directly formed' means that no adhesive layer, adhesive layer, or adhesive layer is formed between the first phase difference layer and the second phase difference layer.
  • the second retardation layer may further include an alignment film on the upper surface to form the first retardation layer, as described below.
  • the first phase difference layer may have negative birefringence
  • the second phase difference layer may have positive birefringence
  • the second phase difference layer 120 is a non-liquid crystal layer.
  • the second retardation layer 120 not only provides the anti-reflection effect of the present invention together with the first retardation layer, but can also be used as a base film or support to form the first retardation layer.
  • the 'non-liquid crystal' is not one or more of liquid crystal monomers, liquid crystal oligomers, and liquid crystal polymers, and may include materials that are not converted into liquid crystal monomers, liquid crystal oligomers, or liquid crystal polymers by light irradiation or heat treatment.
  • the second phase difference layer 120 is a cellulose-based material including triacetylcellulose, polyester-based material including polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate (PET), polybutylene naphthalate, and cyclic polyolefin.
  • COP cyclic olefin copolymer
  • COC cyclic olefin copolymer
  • It may include a stretched film formed of a composition containing one or more of vinyl-based, polyvinylidene chloride-based, and acrylic-based resins.
  • a cyclic polyolefin-based resin may be included. Cyclic polyolefin-based resin can facilitate the implementation of the effects of the present invention.
  • the second phase difference layer 120 may have a significantly higher thickness than the first phase difference layer 110.
  • the second retardation layer 120 may have a thickness of 15 ⁇ m to 35 ⁇ m, preferably 15 ⁇ m to 25 ⁇ m. Within the above range, it can provide a phase difference of the second phase difference layer described below and function as a base film or support.
  • the second phase contrast layer 120 may have a higher degree of biaxiality (NZ) than the first phase contrast layer 110 at a wavelength of 550 nm. Through this, it can be easy to provide the effects of improving reflectance and light leakage and improving black visibility of the present invention.
  • the second phase difference layer 120 has a degree of biaxiality of 1 or more and less than 1.3 at a wavelength of 550 nm, for example, 1, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.2, 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, preferably 1.05 to 1. .25, more preferably 1.05 to 1.2, most preferably 1.1 to 1.15.
  • the second phase difference layer 120 is flat or has a constant wavelength dispersion, and Re (450) ⁇ Re (550 ⁇ Re (650) [Re (450), Re (550), and Re (650) are each the second phase difference layer. is the front in-plane phase difference at the wavelengths of 450 nm, 550 nm, and 650 nm.]
  • the laminate of the first phase contrast layer and the second phase contrast layer exhibits reverse wavelength dispersion, so that the polarizer can be By significantly lowering the reflectance, black visibility can be improved and screen quality can be improved.
  • the second phase difference layer 120 may be a negative B plate having a refractive index relationship of nx>ny>nz.
  • nx, ny, and nz are the refractive index in the slow axis direction, the refractive index in the fast axis direction, and the thickness direction, respectively, of the second retardation layer at a wavelength of 550 nm.
  • the second phase difference layer 110 has a front in-plane phase difference lower than that of the first phase difference layer at a wavelength of 550 nm, and is 100 nm to 150 nm, for example, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, It may be 150 nm, preferably 110 nm to 130 nm. Within the above range, it can be easy to significantly lower the reflectance from the front and sides to improve black visibility and increase screen quality.
  • the second phase difference layer 120 has a slow axis and a fast axis in the in-plane direction.
  • the angle formed by the slow axis of the second retardation layer 120 with respect to the light transmission axis of the polarizer is 70° to 85°, for example, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, It may be 80, 81, 82, 83, 84, 85°, preferably 75° to 80°.
  • it can be easy to significantly lower the reflectance from the front and sides to improve black visibility and increase screen quality.
  • the angle formed by the slow axis of the first phase difference layer 110 and the slow axis of the second phase difference layer 120 is 50° to 80°, for example, 50, 51, 52, 53, 54, 55. , 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 °, preferably 55° to 75°.
  • the second retardation layer 120 may be manufactured by stretching an unstretched film for the second retardation layer by MD 1-axis, TD 1-axis, oblique stretching, or a combination thereof.
  • the stretching method can be performed by conventional methods known to those skilled in the art.
  • the second phase difference layer 110 may further include an alignment film for forming the first phase difference layer 110 on its upper surface.
  • the alignment layer may be formed of a common composition for forming an alignment layer known to those skilled in the art.
  • the alignment film can be manufactured by applying the composition for forming an alignment film to a predetermined thickness and then physically aligning it by rubbing, or by applying the composition for forming an alignment film to a predetermined thickness and then photo-aligning it.
  • the laminate of the first phase difference layer 110 and the second phase difference layer 120 may exhibit reverse wavelength dispersion. Through this, it can be easy to significantly lower the reflectance from the front and sides to improve black visibility and increase screen quality.
  • Reverse wavelength dispersion means that the short wavelength dispersion of the laminate of the first phase difference layer 110 and the second phase difference layer 120 has a lower value than the long wavelength dispersion.
  • the 'reverse wavelength dispersion' means that the laminate has the following relationship: inclined linear phase difference at a wavelength of 450 nm ⁇ inclined linear phase difference at a wavelength of 550 nm ⁇ inclined linear phase difference at a wavelength of 650 nm.
  • R L (450), R L (550), and R L (650) are the front linear retardation values of the laminate at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
  • the slow axis of the laminate of the first retardation layer 110 and the second retardation layer 120 forms an angle of 111° to 113° with respect to the light transmission axis of the polarizer, and the first retardation layer 110
  • the laminate of the second phase difference layer 120 has a front linear phase difference value of 140 nm to 160 nm, measured from the front at a wavelength of 550 nm, and the laminate is rotated ⁇ 40° with the slow axis of the laminate as a rotation axis at a wavelength of 550 nm.
  • the slope linear retardation value is 145 nm to 170 nm.
  • the front linear phase difference value, and the inclined linear phase difference value reflectance at the front and sides can be lowered to provide an excellent anti-reflection effect and excellent black visibility. If any one of the angle range, the front linear phase difference value, and the oblique linear phase difference value does not satisfy the range of the present invention, the anti-reflection effect and the black visibility improvement effect of the present invention may be significantly reduced.
  • the slow axis of the laminate may be 111, 111.5, 112, 112.5, or 113° with respect to the light transmission axis of the polarizer.
  • the laminate has a front-on linear retardation value, measured from the front at a wavelength of 550 nm, of 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, It can be 154, 155, 156, 157, 158, 159, 160nm.
  • the laminate has an inclined linear retardation value of 145, 146, 147, 148, 149, 150, 151, 152, 153 when rotated ⁇ 40° with the slow axis of the laminate as the rotation axis at a wavelength of 550 nm. It can be 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 169, 170 nm.
  • the front phase difference or in-plane phase difference referred to in a laminate of conventional retardation layers is a phase difference measured in the direction normal to the in-plane direction of the laminate.
  • the present invention adjusts the slow axis angle with respect to the laminate having the first phase difference layer 110 and the second phase difference layer 120 of the present invention described above, and not only the phase difference measured in the normal direction with respect to the in-plane direction of the laminate.
  • both the tilt phase difference measured when the slow axis of the laminate is rotated both the anti-reflection effect and the black visibility improvement effect are improved.
  • the first liquid crystal layer may be a liquid crystal layer, preferably a discotic liquid crystal layer, and the second liquid crystal layer may be a non-liquid crystal layer, preferably a stretched film or a stretched coating layer.
  • the first liquid crystal layer may have a biaxiality degree (NZ) of -0.1 to 0.1 at a wavelength of 550 nm
  • the second liquid crystal layer may have a biaxiality degree (NZ) of 1 to 1.3 at a wavelength of 550 nm.
  • the first phase difference layer may be a negative A plate and the second phase difference layer may be a negative B plate.
  • the two linear retardation values of the laminate can be implemented by adjusting the front in-plane retardation of each of the first retardation layer and the second retardation layer, the slow axis relationship between the first retardation layer and the second retardation layer, etc.
  • the first retardation layer 110 may be formed by coating one surface of the second retardation layer 120 with a first retardation layer composition, that is, a liquid crystal layer composition, to a predetermined thickness and then drying and/or curing it.
  • a first retardation layer composition that is, a liquid crystal layer composition
  • the liquid crystal layer composition is applied to one surface of the second retardation layer to a predetermined thickness.
  • one surface of the second retardation layer is eroded by the solvent contained in the liquid crystal layer composition and becomes a buffer layer. This can be formed.
  • the polarizer 130 converts incident natural light or polarized light into linearly polarized light in a specific direction, and may be manufactured from a polymer film containing polyvinyl alcohol-based resin as a main component.
  • the polarizer 110 can be manufactured by dyeing the polymer film with iodine or a dichroic dye and stretching it in MD (machine direction). Specifically, it can be manufactured through a swelling process, a dyeing step, a stretching step, and a cross-linking step.
  • the polarizer 130 has a light absorption axis and a light transmission axis in the in-plane direction.
  • the light absorption axis may be the MD of the polarizer, and the light transmission axis may be the TD of the polarizer.
  • the polarizer 130 may have a light transmittance of 40% or more, for example, 40% to 46%, and a polarization degree of 95% or more, for example, 95% to 99.9%. Within the above range, anti-reflection performance can be improved when combined with the first phase difference layer and the second phase difference layer.
  • the “light transmittance” and “polarization degree” are values reflecting visibility at a wavelength of 380 nm to 780 nm.
  • the polarizer 130 may have a thickness of 2 ⁇ m to 30 ⁇ m, specifically 4 ⁇ m to 25 ⁇ m, and can be used in the polarizing plate within this range.
  • the polarizer 130 may be bonded to a laminate of the first phase difference layer and the second phase difference layer by an adhesive layer.
  • the adhesive layer may be formed of one or more of a water-based adhesive and a photocurable adhesive.
  • the adhesive layer is formed of a photocurable adhesive, so that adhesion between the protective film and the polarizer and between the polarizer and the first phase difference layer can be achieved by a single irradiation of light, thereby improving the manufacturing process of the polarizer.
  • the first adhesive layer may have a thickness of 0.1 ⁇ m to 10 ⁇ m, specifically 0.5 ⁇ m to 5 ⁇ m. Within the above range, it can be used in a polarizing plate.
  • the protective film 140 may be formed on the upper surface of the polarizer 130, thereby protecting the polarizer from the external environment and increasing the mechanical strength of the polarizer.
  • the protective film 140 protects the polarizer from the external environment and is an optically transparent film, for example, cellulose-based including triacetylcellulose (TAC), polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene oxide.
  • cellulose-based including triacetylcellulose (TAC), polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene oxide.
  • It may be a film made of one or more of polyvinyl alcohol-based, polyvinyl chloride-based, and polyvinylidene chloride-based resins.
  • TAC and PET films can be used.
  • the protective film 140 may have a thickness of 5 ⁇ m to 70 ⁇ m, specifically 15 ⁇ m to 45 ⁇ m, and can be used in the polarizing plate within this range.
  • a functional coating layer is formed on the upper surface of the protective film 140 to provide additional functions to the polarizer.
  • the functional coating layer includes a hard coating layer, an anti-fingerprint layer, an anti-reflection layer, and an anti-glare layer. etc., and they may be formed singly or by stacking two or more types.
  • the protective film 140 may be attached to the polarizer 110 through an adhesive layer.
  • the adhesive layer may be formed of one or more of a water-based adhesive and a photocurable adhesive.
  • the adhesive layer may have a thickness of 0.1 ⁇ m to 10 ⁇ m, specifically 0.1 ⁇ m to 5 ⁇ m. Within the above range, it can be used in a polarizing plate.
  • the optical display device of the present invention includes the polarizing plate of the embodiment of the present invention.
  • Optical displays may include organic light emitting diode (OLED) displays and liquid crystal displays.
  • an organic light emitting device display device may include an organic light emitting device panel including a flexible substrate, and a polarizing plate of the present invention stacked on the organic light emitting device panel.
  • an organic light emitting device display device may include an organic light emitting device panel including a non-flexible substrate, and a polarizing plate of the present invention stacked on the organic light emitting device panel.
  • a polyvinyl alcohol-based film (PS#60, Kuraray, Japan, thickness before stretching: 60 ⁇ m) was stretched 6 times along the MD of the film in an iodine aqueous solution at 55°C to prepare a polarizer with a light transmittance of 45%.
  • An unstretched cyclic polyolefin (COP)-based film was prepared, and oblique stretching and MD stretching were sequentially performed on the MD of the film to prepare a second retardation layer (negative B plate).
  • COP cyclic polyolefin
  • An alignment film is formed on the upper surface of the manufactured second retardation layer, the composition for the discotic liquid crystal layer is applied and then cured, and a first retardation layer (negative A plate, positive wavelength), which is a discotic liquid crystal layer, is formed on the upper surface of the second retardation layer.
  • An HC-TAC film (Toppan, 25FJCHCN-TC, thickness: 32 ⁇ m) was laminated as a protective film on the upper surface of the prepared polarizer, and a laminate of the first and second retardation layers was laminated on the lower surface of the polarizer.
  • a polarizing plate was manufactured by (a first retardation layer and a second retardation layer were sequentially stacked on the lower surface of the polarizer).
  • Example 1 except that the stretching ratio, stretching temperature, etc. were changed when manufacturing the second retardation layer, and the thickness, etc. was changed when manufacturing the first retardation layer, so that the first retardation layer and the second retardation layer were changed as shown in Table 1 below.
  • a polarizing plate was manufactured by performing the same method as Example 1.
  • Example 1 except that the stretching ratio, stretching temperature, etc. were changed when manufacturing the second retardation layer, and the thickness, etc. was changed when manufacturing the first retardation layer, so that the first retardation layer and the second retardation layer were changed as shown in Table 1 below.
  • a polarizing plate was manufactured by performing the same method as Example 1.
  • Re and NZ of each of the first and second phase difference layers are values obtained at a wavelength of 550 nm using AXOSCAN.
  • Front linear retardation value and inclined linear retardation value of the laminate (unit: nm, @550nm): a Mueller Matrix-based measuring device for the laminate of the first and second retardation layers of the examples and comparative examples. Measured with Axoscan.
  • Slow axis angle The angle formed by the slow axis of the laminate based on the light transmission axis of the polarizer, which can be obtained using the equation E and F above.
  • 3Angle 2 The angle formed by the slow axis of the second retardation layer based on the light transmission axis of the polarizer
  • the polarizing plate of the present invention was excellent in durability without iodine elution, had a significant effect of improving reflectance and light leakage from the side, and had excellent black visibility.
  • Comparative Examples 1 and 2 which were outside the phase difference ranges for the frontal linear phase difference and oblique linear phase difference at the wavelength of 550 nm of the present invention, had a problem in that black vision was significantly reduced.
  • Comparative Example 3 which deviated from the slow axis angle of the present invention, the effect of improving reflectance and light leakage from the side and the effect of improving black visibility were weak.
  • the polarizer of the example provided excellent black visibility from the side and low reflectance.
  • the polarizer of the comparative example had a strong yellow or red color, resulting in poor black visibility and a high reflectance.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)

Abstract

Provided are a polarizing plate and an optical display device comprising same, the polarizing plate comprising: a polarizer; and a first phase difference layer and a second phase difference layer which are sequentially stacked on the lower surface of the polarizer, wherein the slow axis of the stack of the first phase difference layer and the second phase difference layer forms 111° to 113° with respect to a light transmission axis of the polarizer, and a front linear phase difference value of the stack, measured from the front at a wavelength of 550 nm, is 140 nm to 160 nm, and when the stack is rotated ±40° with the slow axis of the stack as a rotation axis at a wavelength of 550 nm, an inclined linear phase difference value of the stack is 145 nm to 170 nm.

Description

편광판 및 이를 포함하는 광학표시장치Polarizer and optical display device containing the same
본 발명은 편광판 및 이를 포함하는 광학표시장치에 관한 것이다.The present invention relates to a polarizing plate and an optical display device including the same.
유기발광소자 표시장치는 외부광의 반사로 인하여 시인성과 콘트라스트가 떨어질 수 있다. 이를 해소하기 위해 편광판을 사용함으로써 반사된 외부광의 반사율을 낮추어 반사 방지 기능을 구현할 수 있다. 편광판은 정면에서의 블랙 시감을 개선함으로써 화면 품질을 현저하게 개선하는 것이 기본적으로 요구된다.The visibility and contrast of an organic light emitting display device may be reduced due to reflection of external light. To solve this problem, an anti-reflection function can be implemented by using a polarizer to lower the reflectance of reflected external light. Polarizers are basically required to significantly improve screen quality by improving black visibility from the front.
편광판은 편광자 및 편광자의 하부면에 적층된 반사 방지층을 포함한다. 반사 방지층은 1매형의 위상차층 또는 2매형의 위상차층이 될 수 있다. 1매형 위상차층은 주로 역파장의 특성을 제공하며, 2매형 위상차층은 대부분 각각 정파장의 위상차 특성을 가지는 각각의 위상차층을 적층하여 역파장 특성을 구현한다. 2매형의 위상차층은 1매형의 위상차층 대비 두께가 상대적으로 두꺼워질 가능성이 있지만 역파장 특성을 가지는 1매형의 위상차층 대비 가격이 저렴한 기존의 정파장 특성을 가지는 위상차층을 적층함으로써 가격 경쟁력 확보와 생산성 향상을 꾀할 수 있다. The polarizer includes a polarizer and an anti-reflection layer laminated on a lower surface of the polarizer. The anti-reflection layer may be a one-sheet type retardation layer or a two-sheet type retardation layer. A single-sheet retardation layer mainly provides reverse wavelength characteristics, and a two-sheet retardation layer mostly provides reverse wavelength characteristics by stacking individual retardation layers each having a normal wavelength phase difference characteristic. There is a possibility that the thickness of the two-sheet type retardation layer will be relatively thicker than that of the one-sheet type retardation layer, but price competitiveness is secured by laminating the existing retardation layer with positive wavelength characteristics, which is cheaper than the one-sheet type retardation layer with reverse wavelength characteristics. and productivity can be improved.
위상차층은 고분자 수지를 포함하는 조성물로 형성된 미연신된 필름을 연신시켜 제조되거나 또는 배향막 상에 액정을 소정의 두께로 코팅하고 건조 및/또는 경화시켜 제조될 수 있다. 액정층 2매로 형성된 위상차층은 연신된 필름 2매로 형성된 위상차층 대비 상대적으로 두께가 얇지만, 고온 고습 조건에서 방치될 경우 편광자로부터 용출된 요오드가 패널 내로 확산되어 전극의 부식 등을 발생시킴으로써 패널 내구성이 문제가 될 수 있다.The retardation layer can be manufactured by stretching an unstretched film formed of a composition containing a polymer resin, or by coating liquid crystal to a predetermined thickness on an alignment film and drying and/or curing it. The retardation layer formed from two liquid crystal layers is relatively thinner than the retardation layer formed from two stretched films, but when left under high temperature and high humidity conditions, iodine eluted from the polarizer diffuses into the panel, causing corrosion of the electrode, reducing the durability of the panel. This could be the problem.
본 발명의 배경기술은 한국공개특허 10-2013-0103595호 등에 개시되어 있다.The background technology of the present invention is disclosed in Korean Patent Publication No. 10-2013-0103595, etc.
본 발명의 목적은 고온 고습 방치 후 요오드 용출 등이 없어 내구성이 우수한 편광판을 제공하는 것이다.The purpose of the present invention is to provide a polarizing plate with excellent durability as there is no iodine elution after being left at high temperature and high humidity.
본 발명의 다른 목적은 두께가 얇은 편광판을 제공하는 것이다.Another object of the present invention is to provide a thin polarizing plate.
본 발명의 다른 목적은 정면 및 측면에서의 반사율을 낮추어 우수한 반사 방지 효과를 제공하는 편광판을 제공하는 것이다. Another object of the present invention is to provide a polarizer that provides an excellent anti-reflection effect by lowering the reflectance at the front and side.
본 발명의 또 다른 목적은 블랙 시감이 우수한 편광판을 제공하는 것이다.Another object of the present invention is to provide a polarizer with excellent black visibility.
본 발명의 일 관점은 편광판이다.One aspect of the present invention is a polarizer.
1.편광판은 편광자; 및 상기 편광자의 하부면에 순차적으로 적층된 제1 위상차층 및 제2 위상차층을 포함하고, 상기 제1 위상차층과 상기 제2 위상차층의 적층체의 지상축은 상기 편광자의 광 투과축에 대해 111° 내지 113°를 이루고, 상기 적층체는 파장 550nm에서 정면에서 측정된 정면 선형 위상차값이 140nm 내지 160nm이고, 상기 적층체는 파장 550nm에서 상기 적층체의 지상축을 회전축으로 하여 ±40° 회전시켰을 때 경사 선형 위상차값이 145nm 내지 170nm이다.1.Polarizer is a polarizer; and a first retardation layer and a second retardation layer sequentially stacked on the lower surface of the polarizer, wherein the slow axis of the laminate of the first retardation layer and the second retardation layer is 111 with respect to the light transmission axis of the polarizer. ° to 113°, and the front linear phase difference value of the laminate measured from the front at a wavelength of 550 nm is 140 nm to 160 nm, and the laminate is rotated ±40° with the slow axis of the laminate as the rotation axis at a wavelength of 550 nm. The slope linear retardation value is 145 nm to 170 nm.
2.1에서, 상기 제1 위상차층은 상기 제2 위상차층 대비 더 낮은 두께를 가질 수 있다.In 2.1, the first phase difference layer may have a lower thickness than the second phase difference layer.
3.1-2에서, 상기 제1 위상차층의 두께는 상기 제2 위상차층의 두께의 1% 내지 20%일 수 있다.In 3.1-2, the thickness of the first retardation layer may be 1% to 20% of the thickness of the second retardation layer.
4.1-3에서, 상기 제1 위상차층은 액정층이고, 상기 제2 위상차층은 비 액정층일 수 있다.In 4.1-3, the first phase difference layer may be a liquid crystal layer, and the second phase difference layer may be a non-liquid crystal layer.
5.4에서, 상기 액정층은 디스코틱 액정층일 수 있다.In 5.4, the liquid crystal layer may be a discotic liquid crystal layer.
6.1-5에서, 상기 비 액정층은 셀룰로오스계, 폴리에스테르계, 고리형 폴리올레핀(COP)계, 고리형 올레핀 코폴리머(COC)계, 폴리카보네이트계, 폴리에테르술폰계, 폴리술폰계, 폴리아미드계, 폴리이미드계, 폴리올레핀계, 폴리아릴레이트계, 폴리비닐알코올계, 폴리염화비닐계, 폴리염화비닐리덴계, 아크릴계 중 하나 이상의 수지를 포함하는 조성물로 형성된 연신된 필름을 포함할 수 있다.In 6.1-5, the non-liquid crystal layer is cellulose-based, polyester-based, cyclic polyolefin (COP)-based, cyclic olefin copolymer (COC)-based, polycarbonate-based, polyethersulfone-based, polysulfone-based, polyamide. It may include a stretched film formed of a composition containing one or more of the following resins: polyimide-based, polyolefin-based, polyarylate-based, polyvinyl alcohol-based, polyvinyl chloride-based, polyvinylidene chloride-based, and acrylic-based resin.
7.1-6에서, 상기 제1 위상차층은 음의 복굴절 값을 가지며, 상기 제2 위상차층은 양의 복굴절 값을 가질 수 있다.In 7.1-6, the first phase difference layer may have a negative birefringence value, and the second phase difference layer may have a positive birefringence value.
8.1-7에서, 상기 제2 위상차층은 상기 제1 위상차층 대비 파장 550nm에서 이축성 정도(NZ)가 더 높을 수 있다.In 8.1-7, the second retardation layer may have a higher degree of biaxiality (NZ) at a wavelength of 550 nm compared to the first retardation layer.
9.8에서, 상기 제1 위상차층은 파장 550nm에서 이축성 정도가 -0.1 내지 0.1이고, 상기 제2 위상차층은 파장 550nm에서 이축성 정도가 1 이상 1.3 미만일 수 있다.In 9.8, the first phase difference layer may have a biaxiality degree of -0.1 to 0.1 at a wavelength of 550 nm, and the second phase difference layer may have a biaxiality degree of 1 to 1.3 at a wavelength of 550 nm.
10.9에서, 상기 제1 위상차층은 파장 550nm에서 이축성 정도가 0이고, 상기 제2 위상차층은 파장 550nm에서 이축성 정도가 1 이상 1.3 미만일 수 있다.In 10.9, the first phase difference layer may have a biaxiality degree of 0 at a wavelength of 550 nm, and the second phase difference layer may have a biaxiality degree of 1 to 1.3 at a wavelength of 550 nm.
11.1-10에서, 상기 제1 위상차층은 네가티브 A 플레이트이고, 상기 제2위상차층은 네가티브 B 플레이트일 수 있다.11.1-10, the first phase difference layer may be a negative A plate, and the second phase difference layer may be a negative B plate.
12.1-11에서, 상기 제1 위상차층은 파장 550nm에서 정면 면내 위상차가 200nm 내지 280nm이고, 상기 제2 위상차층은 파장 550nm에서 정면 면내 위상차가 100nm 내지 150nm일 수 있다.12.1-11, the first retardation layer may have a front in-plane retardation of 200 nm to 280 nm at a wavelength of 550 nm, and the second retardation layer may have a front in-plane retardation of 100 nm to 150 nm at a wavelength of 550 nm.
13.1-12에서, 상기 편광자의 광 투과축에 대하여 상기 제1 위상차층의 지상축이 이루는 각도는 10° 내지 20°일 수 있다.In 13.1-12, the angle formed by the slow axis of the first retardation layer with respect to the light transmission axis of the polarizer may be 10° to 20°.
14.1-13에서, 상기 편광자의 광 투과축에 대하여 상기 제2 위상차층의 지상축이 이루는 각도는 70° 내지 85°일 수 있다.In 14.1-13, the angle formed by the slow axis of the second retardation layer with respect to the light transmission axis of the polarizer may be 70° to 85°.
15.1-14에서, 상기 제2 위상차층의 상부면에 버퍼층이 형성될 수 있다.In 15.1-14, a buffer layer may be formed on the upper surface of the second phase difference layer.
본 발명의 일 관점은 광학표시장치이다.One aspect of the present invention is an optical display device.
광학표시장치는 본 발명의 편광판을 포함한다.The optical display device includes the polarizing plate of the present invention.
본 발명은 고온 고습 방치 후 요오드 용출 등이 없어 내구성이 우수한 편광판을 제공하였다.The present invention provides a polarizing plate with excellent durability as there is no iodine elution after being left at high temperature and high humidity.
본 발명은 두께가 얇은 편광판을 제공하였다.The present invention provides a thin polarizing plate.
본 발명은 정면 및 측면에서의 반사율을 낮추어 우수한 반사 방지 효과를 제공하는 편광판을 제공하였다. The present invention provides a polarizing plate that provides an excellent anti-reflection effect by lowering the reflectance at the front and side.
본 발명은 블랙 시감이 우수한 편광판을 제공하였다.The present invention provides a polarizer with excellent black visibility.
도 1은 본 발명 일 실시예의 편광판의 단면도이다.1 is a cross-sectional view of a polarizing plate according to an embodiment of the present invention.
도 2는 실시예 1의 측면(입사각 60°)에서의 최대 반사율 평가 결과이다.Figure 2 shows the maximum reflectance evaluation results from the side (incident angle 60°) of Example 1.
도 3은 비교예 1의 측면(입사각 60°)에서의 최대 반사율 평가 결과이다.Figure 3 shows the maximum reflectance evaluation results from the side (incident angle of 60°) of Comparative Example 1.
도 4는 비교예 2의 측면(입사각 60°)에서의 최대 반사율 평가 결과이다.Figure 4 shows the maximum reflectance evaluation results from the side (incident angle of 60°) of Comparative Example 2.
도 5는 비교예 3의 측면(입사각 60°)에서의 최대 반사율 평가 결과이다.Figure 5 shows the maximum reflectance evaluation results from the side (incident angle of 60°) of Comparative Example 3.
첨부한 도면을 참고하여 본 발명을 실시예에 의해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.With reference to the attached drawings, the present invention will be described in detail through examples so that those skilled in the art can easily practice it. The present invention may be implemented in many different forms and is not limited to the embodiments described herein.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 명칭을 사용하였다. 도면에서 각 구성 요소의 길이, 크기는 본 발명을 설명하기 위한 것으로 본 발명이 도면에 기재된 각 구성 요소의 길이, 크기에 제한되는 것은 아니다.In order to clearly explain the present invention in the drawings, parts not related to the description are omitted, and the same names are used for identical or similar components throughout the specification. The length and size of each component in the drawings are for illustrative purposes only, and the present invention is not limited to the length and size of each component depicted in the drawings.
본 명세서에서 "상부"와 "하부"는 도면을 기준으로 정의한 것이고, 보는 시각에 따라 "상부"가 "하부"로 "하부"가 "상부"로 변경될 수 있다.In this specification, “upper” and “lower” are defined based on the drawings, and “upper” may be changed to “lower” and “lower” may be changed to “upper” depending on the viewing angle.
여기서 사용되는 용어는 단지 예시적인 구현예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terminology used herein is for the purpose of describing example implementations only and is not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 명세서에서 단일층의 위상차층에 대하여, "정면 면내 위상차(Re)"는 하기 식 A로 표시되고, "이축성 정도(NZ)"는 하기 식 B로 표시되고, "두께 방향 위상차(Rth)"는 하기 식 C로 표시된다:For the single-layer retardation layer in this specification, “front in-plane retardation (Re)” is expressed by the following formula A, “degree of biaxiality (NZ)” is expressed by the following formula B, and “thickness direction retardation (Rth)” is expressed by the following formula A. " is expressed by the following formula C:
[식 A][Formula A]
Re = (nx - ny) × dRe = (nx - ny) × d
[식 B][Formula B]
NZ = (nx - nz)/(nx - ny)NZ = (nx - nz)/(nx - ny)
[식 C][Formula C]
Rth = ((nx + ny)/2 - nz) × dRth = ((nx + ny)/2 - nz) × d
(상기 식 A 내지 식 C에서, nx, ny, nz는 측정 파장에서 각각 단일 위상차층의 지상축(slow axis) 방향, 진상축(fast axis) 방향, 두께 방향의 굴절률이고, d는 단일 위상차층의 두께(단위: nm)이다).(In the above formulas A to C, nx, ny, and nz are the refractive indexes in the slow axis direction, fast axis direction, and thickness direction of the single phase difference layer, respectively, at the measurement wavelength, and d is the single phase difference layer thickness (unit: nm).
본 명세서에서 "위상차층의 Mueller Matrix"는 하기 식 D로 표시되고, 위상차 측정 장치의 일 예인 Axoscan 등으로 어려움없이 바로 측정될 수 있다:In this specification, the “Mueller Matrix of the phase difference layer” is expressed by the following equation D, and can be directly measured without difficulty with an Axoscan, which is an example of a phase difference measurement device:
[식 D][Formula D]
Figure PCTKR2023008280-appb-img-000001
Figure PCTKR2023008280-appb-img-000001
본 명세서에서 "선형 위상차(linear retardation, RL)"는 하기 식 E로 표시된다. 선형 위상차는 당업자에게 잘 알려져 있고, 위상차 측정 장치의 일 예인 Axoscan 등으로 어려움없이 바로 측정될 수 있다:In this specification, “linear retardation (R L )” is expressed by the following formula E. Linear phase difference is well known to those skilled in the art, and can be directly measured without difficulty with Axoscan, an example of a phase difference measuring device:
[식 E][Formula E]
Figure PCTKR2023008280-appb-img-000002
Figure PCTKR2023008280-appb-img-000002
Figure PCTKR2023008280-appb-img-000003
Figure PCTKR2023008280-appb-img-000003
Figure PCTKR2023008280-appb-img-000004
Figure PCTKR2023008280-appb-img-000004
Figure PCTKR2023008280-appb-img-000005
Figure PCTKR2023008280-appb-img-000005
(상기 식 E에서, m23, m32, m31, m13, m11, m22 및 m33은 상기 식 D로부터 구해지는 값이다)(In the above formula E, m23, m32, m31, m13, m11, m22 and m33 are values obtained from the above formula D)
상기 식 A 내지 식 E에서 측정 파장은 450nm, 550nm 또는 650nm가 될 수 있다. In Equations A to E, the measurement wavelength may be 450 nm, 550 nm, or 650 nm.
위상차값 및 지상축이 서로 다른 두 개의 위상차층을 포함하는 적층체는 단일층의 위상차층 대비 특성이 다르다. 따라서, 상기 적층체에 대해 측정되는 위상차 값을 구하기 위해서는 단일층의 위상차층 대비 다른 정의가 필요하다. 이 때 도입되는 개념이 선형 위상차(Linear Retardation), 원형 위상차(Circular Retardation), 토탈 위상차(Total Retardation)이다.A laminate containing two retardation layers with different retardation values and slow axes has different characteristics compared to a single layer retardation layer. Therefore, in order to obtain the retardation value measured for the laminate, a different definition is needed compared to the retardation layer of a single layer. The concepts introduced at this time are linear retardation, circular retardation, and total retardation.
단일층의 위상차층은 토탈 위상차값과 선형 위상차값이 서로 동일하며, 원형 위상차값은 존재하지 않는다. 하지만, 위상차값 및 지상축이 서로 다른 물리적 특성(예를 들면, 위상차값>0)을 갖는 두 개의 위상차층의 적층체는 선형 위상차값과 토탈 위상차값이 서로 다르며, 선형 위상차값도 '0'이 아니게 된다. 위상차 값들을 산출하기 위해서는 위상차층을 Mueller Matrix로 변환해서 계산하는 방법이 고려될 수 있다. Mueller Matrix 기반의 위상차값 측정 장치인 Axoscan(Axometrices, Inc사, 미국)을 이용한다면 쉽게 측정이 가능하다.A single-layer phase difference layer has the same total phase difference value and linear phase difference value, and there is no circular phase difference value. However, a laminate of two phase difference layers with different physical characteristics (e.g., phase difference value > 0) in terms of phase difference value and slow axis has different linear phase difference values and total phase difference values, and the linear phase difference value is also '0'. This is not the case. In order to calculate phase difference values, a method of calculating the phase difference layer by converting it into a Mueller Matrix can be considered. It can be easily measured using Axoscan (Axometrices, Inc., USA), a Mueller Matrix-based phase difference measurement device.
본 명세서에서 면내 방향 중 굴절률이 가장 높은 축은 '지상축', 면내 방향 중 굴절률이 가장 낮은 축은 '진상축'으로 정의된다. '지상축'과 '진상축'은 일반적으로 직교하기 때문에 '지상축'의 각도를 안다면 '진상축'의 각도도 알 수 있다. In this specification, the axis with the highest refractive index among the in-plane directions is defined as the 'slow axis', and the axis with the lowest refractive index among the in-plane directions is defined as the 'fast axis'. Since the 'solar axis' and the 'true axis' are generally orthogonal, if you know the angle of the 'solar axis', you can also know the angle of the 'true axis'.
단일층의 위상차층의 경우 '지상축'의 측정 및 계산은 매우 용이하다. 그러나, 위상차값 및 지상축이 서로 다른 물리적 특성(예를 들면, 위상차값>0)을 갖는 두 개의 위상차층이 적층된 적층체의 경우에는 상기 적층체의 지상축은 하기 식 F에 의해 계산된다:In the case of a single-layer phase contrast layer, measuring and calculating the 'ground axis' is very easy. However, in the case of a laminate in which two phase difference layers with different physical properties (e.g., phase difference value > 0) are stacked, the slow axis of the laminate is calculated by the following equation F:
[식 F][Formula F]
Figure PCTKR2023008280-appb-img-000006
Figure PCTKR2023008280-appb-img-000006
(상기 식 F에서, a1, a2는 각각 상기 식 E에에서 구해지는 값이다)(In the above equation F, a1 and a2 are values obtained from the above equation E, respectively)
본 명세서에서 수치 범위를 나타낼 때 "X 내지 Y"는 X 이상 Y 이하(X≤ 그리고 ≤Y)를 의미한다.In this specification, when indicating a numerical range, “X to Y” means greater than X and less than or equal to Y (X≤ and ≤Y).
본 발명의 편광판은 편광자; 및 상기 편광자의 하부면에 적층된 순차적으로 적층된 제1 위상차층 및 제2 위상차층을 포함한다.The polarizing plate of the present invention includes a polarizer; and a first retardation layer and a second retardation layer sequentially laminated on the lower surface of the polarizer.
하기에서 설명되겠지만, 제1 위상차층은 액정층이다. 제2 위상차층은 비 액정층으로서 바람직하게는 연신된 수지 필름이다. 따라서, 본 발명의 편광판은 위상차층의 적층체로서 액정층과 액정층의 적층체를 구비하는 편광판 대비 고온 고습에서 장기간 방치 후 요오드 용출 등의 문제점이 없어 내구성이 우수할 수 있다. 상기 '요오드 용출'은 편광판을 고온 고습(60℃ 및 90% 상대습도) 챔버에서 250시간 방치 후 편광판의 가장자리 부분을 현미경으로 관찰하여 요오드가 탈색된 정도로부터 평가될 수 있다.As will be explained below, the first phase difference layer is a liquid crystal layer. The second retardation layer is a non-liquid crystal layer and is preferably a stretched resin film. Therefore, the polarizing plate of the present invention is a laminate of a retardation layer, and compared to a polarizing plate having a laminate of a liquid crystal layer and a liquid crystal layer, there is no problem such as iodine elution after being left for a long period of time at high temperature and high humidity, so it can be excellent in durability. The 'iodine elution' can be evaluated from the degree to which iodine is decolorized by observing the edge of the polarizing plate under a microscope after leaving the polarizing plate in a high temperature and high humidity (60°C and 90% relative humidity) chamber for 250 hours.
본 발명의 편광판은 액정층과 액정층의 적층체를 구비하는 편광판 대비, 상대적으로 두께가 두꺼울 수 밖에 없는 액정층과 비 액정층의 적층체를 구비한다. 그러나, 액정층과 비 액정층의 적층체는 파장 550nm에서 정면에서 측정된 정면 선형 위상차값 및 상기 적층체를 상기 적층체의 지상축을 회전축으로 하여 ±40° 회전시켰을 때 경사 선형 위상차값 둘다를 제어함으로써 측면에서의 반사율을 낮추고 블랙 시감을 개선하였다. 따라서, 본 발명의 편광판은 발광 소자를 구비하는 발광소자 표시 장치에 있어서 반사 방지용 편광판으로 사용될 수 있다. The polarizing plate of the present invention includes a laminate of a liquid crystal layer and a non-liquid crystal layer, which inevitably has a relatively thick thickness compared to a polarizing plate including a laminate of a liquid crystal layer and a liquid crystal layer. However, the laminate of the liquid crystal layer and the non-liquid crystal layer controls both the frontal linear retardation value measured from the front at a wavelength of 550 nm and the inclined linear retardation value when the laminate is rotated ±40° with the slow axis of the laminate as the rotation axis. By doing so, the reflectance from the side was lowered and black visibility was improved. Therefore, the polarizing plate of the present invention can be used as an anti-reflection polarizing plate in a light-emitting display device equipped with a light-emitting device.
상기 '정면 선형 위상차값'은 제1 위상차층과 제2 위상차층의 적층체를 회전 등에 의해 움직이지 않고 고정시킨 상태에서, 제1 위상차층의 면내 방향에 대한 법선 방향으로 광을 입사시켰을 때 상기 식 E에 의해 계산되는 값이다. The 'front linear retardation value' is calculated when light is incident in the direction normal to the in-plane direction of the first retardation layer while the laminate of the first retardation layer and the second retardation layer is fixed without moving due to rotation, etc. It is a value calculated by equation E.
상기 '경사 선형 위상차값'은 제1 위상차층과 제2 위상차층의 적층체에 있어서, 상기 적층체의 지상축을 회전축으로 하여 +40°, -40°로 각각 회전시키는 상태에서 제1 위상차층의 면내 방향에 대한 법선 방향으로 광을 입사시켰을 때 상기 식 E에 의해 계산되는 값이다.The 'inclined linear retardation value' is the value of the first phase difference layer in a laminate of a first phase contrast layer and a second phase contrast layer in a state where the slow axis of the laminate is rotated at +40° and -40°, respectively. This is the value calculated by the equation E above when light is incident in the direction normal to the in-plane direction.
본 발명의 편광판은 편광자; 및 상기 편광자의 하부면에 순차적으로 적층된 위상차층 적층체를 포함하고, 상기 위상차층 적층체는 제1 위상차층 및 제2 위상차층을 포함하고, 상기 제1 위상차층과 상기 제2 위상차층의 적층체의 지상축은 상기 편광자의 광 투과축에 대해 111° 내지 113°를 이루고, 상기 적층체는 파장 550nm에서 정면에서 측정된 정면 선형 위상차값이 140nm 내지 160nm이고, 상기 적층체는 상기 적층체의 지상축을 회전축으로 하여 ±40° 회전시켰을 때 경사 선형 위상차값이 145nm 내지 170nm이다.The polarizing plate of the present invention includes a polarizer; and a retardation layer stack sequentially laminated on a lower surface of the polarizer, wherein the retardation layer stack includes a first retardation layer and a second retardation layer, and the first retardation layer and the second retardation layer. The slow axis of the laminate is 111° to 113° with respect to the light transmission axis of the polarizer, the laminate has a front linear retardation value of 140 nm to 160 nm measured from the front at a wavelength of 550 nm, and the laminate has a When rotated ±40° using the slow axis as the rotation axis, the inclined linear phase difference value is 145 nm to 170 nm.
이하, 본 발명 일 실시예의 편광판을 도 1을 참고하여 설명한다.Hereinafter, a polarizing plate of an embodiment of the present invention will be described with reference to FIG. 1.
도 1을 참고하면, 편광판은 편광자(130), 편광자(130)의 상부면에 적층된 보호 필름(140) 및 편광자(130)의 하부면에 적층된 위상차층 적층체를 포함한다.Referring to FIG. 1, the polarizer includes a polarizer 130, a protective film 140 laminated on the upper surface of the polarizer 130, and a retardation layer stack laminated on the lower surface of the polarizer 130.
본 명세서에서 '편광자의 상부면'은 외부광이 편광자에 최초 입사되는 면 또는 발광소자로부터 출사된 광이 편광자를 통해 출사되는 면이다. In this specification, the 'upper surface of the polarizer' is the surface on which external light is first incident on the polarizer or the surface on which light emitted from the light emitting device is emitted through the polarizer.
본 명세서에서 '편광자의 하부면'은 발광소자로부터 출사된 광이 편광자에 입사되는 면 또는 외부광이 편광자에 입사된 다음 최초 출사되는 면이다.In this specification, the 'lower surface of the polarizer' is the surface on which light emitted from the light emitting device is incident on the polarizer or the surface on which external light is first emitted after being incident on the polarizer.
일 구체예에서, 도 1에서 보여지는 바와 같이 위상차층 적층체는 편광자(130)의 하부면으로부터 순차적으로 적층된 제1 위상차층(110)과 제2 위상차층(120)으로 이루어진 2층의 위상차층의 적층체일 수 있다.In one embodiment, as shown in FIG. 1, the retardation layer laminate is a two-layer retardation layer consisting of a first retardation layer 110 and a second retardation layer 120 sequentially stacked from the lower surface of the polarizer 130. It may be a stack of layers.
다른 구체예에서, 위상차층 적층체는 편광자의 하부면으로부터 순차적으로 적층된 제1 위상차층 및 제2 위상차층을 포함하고, 편광자와 제1 위상차층 사이, 제1 위상차층과 제2 위상차층 사이, 및/또는 제2 위상차층의 하부면에는 기재층이 더 적층될 수 있다. 상기 기재층은 제1 위상차층, 제2 위상차층 각각을 지지하는 것으로, 무 위상차 또는 파장 550nm에서 정면 면내 위상차가 30nm 이하, 구체적으로 0nm 내지 10nm인 위상차 필름이 될 수 있다.In another embodiment, the retardation layer stack includes a first retardation layer and a second retardation layer sequentially stacked from the lower surface of the polarizer, between the polarizer and the first retardation layer, and between the first retardation layer and the second retardation layer. , and/or a base layer may be further laminated on the lower surface of the second retardation layer. The base layer supports each of the first retardation layer and the second retardation layer, and may be a retardation film with no retardation or a front in-plane retardation of 30 nm or less at a wavelength of 550 nm, specifically 0 nm to 10 nm.
보호 필름(140)은 보호 코팅층 등을 포함하는 보호층의 일 구체예에 해당될 수 있다. 편광판의 기능에 문제가 없다면, 보호 필름(140)은 생략될 수도 있다.The protective film 140 may correspond to one specific example of a protective layer including a protective coating layer. If there is no problem with the function of the polarizer, the protective film 140 may be omitted.
도 1에서 도시되지 않았지만, 제2 위상차층(120)의 하부면에는 점착층 또는 접착층이 추가로 적층되어 편광판을 광학표시장치용 패널에 점착시킬 수도 있다.Although not shown in FIG. 1, an adhesive layer or adhesive layer may be additionally laminated on the lower surface of the second retardation layer 120 to adhere the polarizer to the optical display panel.
제1 위상차층(110)과 제2 위상차층(120)은 편광자의 하부면에 적층되어 외부광이 편광자를 통해 출사된 선편광을 원편광시킴으로서 반사 방지 효과를 제공할 수 있다.The first retardation layer 110 and the second retardation layer 120 are stacked on the lower surface of the polarizer to provide an anti-reflection effect by circularly polarizing linearly polarized external light emitted through the polarizer.
제1 위상차층(110)은 액정층이고, 제2 위상차층(120)은 비 액정층일 수 있다. 본 발명의 편광판은 위상차층으로서 액정층과 액정층의 적층체를 구비하는 편광판 대비 요오드 용출 등의 문제점이 없어 내구성이 우수하고, 위상차층으로서 비 액정층의 수지 필름과 비 액정층의 수지 필름의 적층체를 구비하는 편광판 대비 박형화 효과를 구현할 수 있다.The first phase difference layer 110 may be a liquid crystal layer, and the second phase difference layer 120 may be a non-liquid crystal layer. The polarizing plate of the present invention has excellent durability because it does not have problems such as iodine elution compared to a polarizing plate having a laminate of a liquid crystal layer and a liquid crystal layer as a retardation layer, and is composed of a resin film of a non-liquid crystal layer and a resin film of a non-liquid crystal layer as a retardation layer. A thinner effect can be realized compared to a polarizer having a laminate.
제1 위상차층(110)용 액정층은 넓적한 디스크 모양의 액정을 포함할 수 있으며, 예를 들면 상기 액정은 모노머, 올리고머 또는 중합체를 포함할 수 있다. The liquid crystal layer for the first phase difference layer 110 may include a wide disk-shaped liquid crystal. For example, the liquid crystal may include a monomer, an oligomer, or a polymer.
상기 액정층은 반응성 메조겐(reactive mesogen) 액정을 포함할 수 있다. 예컨대 상기 액정은 하나 이상의 반응성 가교기를 가질 수 있다. 상기 반응성 메조겐 액정은 예컨대 하나 이상의 반응성 가교기를 갖는 막대형의 방향족 유도체, 프로필렌글리콜 1-메틸, 프로필렌글리콜 2-아세테이트 및 P1-A1-(Z1-A2)n-P2로 표현되는 화합물(여기서 P1과 P2는 각각 독립적으로 아크릴레이트(acrylate), 메타크릴레이트(methacrylate), 비닐(vinyl), 비닐옥시(vinyloxy), 에폭시(epoxy) 또는 이들의 조합을 포함하고, A1과 A2는 각각 독립적으로 1,4-페닐렌(1,4-phenylene), 나프탈렌(naphthalene)-2,6-디일(diyl)기 또는 이들의 조합을 포함하고, Z1은 단일결합, -COO-, -OCO- 또는 이들의 조합을 포함하고, n은 0, 1 또는 2이다) 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.The liquid crystal layer may include reactive mesogen liquid crystal. For example, the liquid crystal may have one or more reactive crosslinking groups. The reactive mesogenic liquid crystal is, for example, a rod-shaped aromatic derivative having one or more reactive crosslinking groups, propylene glycol 1-methyl, propylene glycol 2-acetate, and a compound represented by P1-A1-(Z1-A2)n-P2 (where P1 and P2 each independently include acrylate, methacrylate, vinyl, vinyloxy, epoxy, or a combination thereof, and A1 and A2 each independently include 1. , 4-phenylene (1,4-phenylene), naphthalene (naphthalene)-2,6-diyl (diyl) group or a combination thereof, Z1 is a single bond, -COO-, -OCO- or these It may include at least one of combinations, and n is 0, 1, or 2), but is not limited thereto.
상기 액정층은 상술 반응성 메조겐 액정 이외에 통상적으로 포함되는 첨가제 예를 들면 광 개시제, 표면 조절제 등을 더 포함하는 액정층용 조성물로 형성될 수 있다. 액정층용 조성물은 균일한 표면을 갖는 액정층 제조의 용이성을 위해 용매를 포함할 수 있다.The liquid crystal layer may be formed of a composition for a liquid crystal layer that further includes commonly included additives, such as a photoinitiator and a surface control agent, in addition to the above-mentioned reactive mesogen liquid crystal. The composition for the liquid crystal layer may include a solvent to facilitate the manufacture of a liquid crystal layer with a uniform surface.
바람직하게는, 상기 액정층은 디스코틱 액정층을 포함할 수 있다. 디스코틱 액정층은 소정 범위의 이축성 정도를 가짐으로써 본 발명의 제1 위상차층 및 제2 위상차층의 적층체에서 측면에서의 반사율을 낮추고 블랙 시감을 개선하는데 보다 용이할 수 있다.Preferably, the liquid crystal layer may include a discotic liquid crystal layer. The discotic liquid crystal layer has a degree of biaxiality within a predetermined range, making it easier to lower the reflectance on the side and improve black visibility in the laminate of the first and second retardation layers of the present invention.
제1 위상차층(110)은 파장 550nm에서 이축성 정도(NZ)가 -0.1 내지 0.1, 예를 들면 -0.1, -0.09, -0.08, -0.07, -0.06, -0.05, -0.04, -0.03, -0.02, -0.01, 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 바람직하게는 -0.05 내지 0.05, 더 바람직하게는 0이 될 수 있다. 상기 범위에서, 본 발명의 제1 위상차층 및 제2 위상차층의 적층체에서 측면에서의 반사율을 낮추고 블랙 시감을 개선하는데 보다 용이할 수 있다.The first phase difference layer 110 has a degree of biaxiality (NZ) of -0.1 to 0.1 at a wavelength of 550 nm, for example -0.1, -0.09, -0.08, -0.07, -0.06, -0.05, -0.04, -0.03, It may be -0.02, -0.01, 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, preferably -0.05 to 0.05, and more preferably 0. Within the above range, it may be easier to lower the reflectance on the side and improve black visibility in the laminate of the first and second retardation layers of the present invention.
제1 위상차층(110)은 정파장 분산성으로서, Re(450)>Re(550)> Re(650)[Re(450), Re(550), Re(650)은 각각 제1 위상차층의 파장 450nm, 550nm, 650nm에서의 정면 면내 위상차이다]이 될 수 있다. 이를 통해, 제1 위상차층과 제2 위상차층의 적층체는 역파장 분산성을 나타냄으로써, 편광판은 정면 및 측면에서 반사율을 현저하게 낮추어 블랙 시감을 개선하고 화면 품질을 높일 수 있다. The first phase difference layer 110 has constant wavelength dispersion, and Re (450) > Re (550) > Re (650) [Re (450), Re (550), and Re (650) are each of the first phase difference layer. [It is the frontal in-plane phase difference at wavelengths of 450nm, 550nm, and 650nm]. Through this, the laminate of the first retardation layer and the second retardation layer exhibits reverse wavelength dispersion, so that the polarizer can significantly lower the reflectance on the front and side surfaces, improving black visibility and improving screen quality.
제1 위상차층(110)은 nx≒nz>ny 굴절률 관계를 갖는 네가티브 A 플레이트일 수 있다. 여기에서, nx, ny, nz는 각각 파장 550nm에서 제1 위상차층의 지상축(slow axis) 방향 굴절률, 진상축(fast axis) 방향 굴절률 및 두께 방향 굴절률이다. The first phase difference layer 110 may be a negative A plate having a refractive index relationship nx≒nz>ny. Here, nx, ny, and nz are the refractive index in the slow axis direction, the refractive index in the fast axis direction, and the thickness direction of the first retardation layer, respectively, at a wavelength of 550 nm.
제1 위상차층(110)은 파장 550nm에서 정면 면내 위상차가 제2 위상차층 대비 높으며, 200nm 내지 280nm, 예를 들면 200, 210, 220, 230, 240, 250, 260, 270, 280nm, 바람직하게는 220nm 내지 260nm가 될 수 있다. 상기 범위에서, 정면 및 측면에서 반사율을 현저하게 낮추어 블랙 시감을 개선하고 화면 품질을 높이는데 용이할 수 있다.The first phase difference layer 110 has a front in-plane phase difference at a wavelength of 550 nm compared to the second phase difference layer, and is 200 nm to 280 nm, for example, 200, 210, 220, 230, 240, 250, 260, 270, 280 nm, preferably It can be 220nm to 260nm. Within the above range, it can be easy to significantly lower the reflectance from the front and sides to improve black visibility and increase screen quality.
제1 위상차층(110)은 면내 방향 중 지상축과 진상축을 갖는다. 편광자의 광 투과축에 대하여 제1 위상차층의 지상축이 이루는 각도는 10° 내지 20°, 예를 들면 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20°, 바람직하게는 15° 내지 19°가 될 수 있다. 상기 범위에서, 정면 및 측면에서 반사율을 현저하게 낮추어 블랙 시감을 개선하고 화면 품질을 높이는데 용이할 수 있다.The first phase difference layer 110 has a slow axis and a fast axis in the in-plane direction. The angle formed by the slow axis of the first retardation layer with respect to the light transmission axis of the polarizer is 10° to 20°, for example, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20°, Preferably it may be 15° to 19°. Within the above range, it can be easy to significantly lower the reflectance from the front and sides to improve black visibility and increase screen quality.
제1 위상차층(110)은 제2 위상차층(120) 대비 두께가 현저하게 낮다. 이것은 제1 위상차층(110)은 하기에서 설명되는 바와 같이 액정층용 조성물을 소정의 두께로 도포하여 제조되는 반면에, 제2 위상차층(120)은 수지 필름으로부터 제조되기 때문이다. 일 구체예에서, 제1 위상차층(110)의 두께는 제2 위상차층(120)의 두께의 1% 내지 20%, 예를 들면 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20%, 바람직하게는 10% 내지 20%가 될 수 있다.The first phase difference layer 110 has a significantly lower thickness than the second phase difference layer 120. This is because the first retardation layer 110 is manufactured by applying a liquid crystal layer composition to a predetermined thickness, as will be explained below, while the second retardation layer 120 is manufactured from a resin film. In one embodiment, the thickness of the first retardation layer 110 is 1% to 20% of the thickness of the second retardation layer 120, for example, 1, 2, 3, 4, 5, 6, 7, 8, It may be 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20%, preferably 10% to 20%.
제1 위상차층(110)은 두께가 1㎛ 내지 5㎛, 바람직하게는 2㎛ 내지 3㎛가 될 수 있다. 상기 범위에서, 상술 위상차를 구현할 수 있다.The first phase difference layer 110 may have a thickness of 1㎛ to 5㎛, preferably 2㎛ to 3㎛. Within the above range, the above-described phase difference can be implemented.
제1 위상차층(110)은 상술 액정층용 조성물을 제2 위상차층의 상부면에 소정의 두께로 도포한 다음 건조 및/또는 경화시켜 제조될 수 있다. 일 구체예에서, 제1 위상차층(110)은 제2 위상차층에 직접적으로 형성될 수 있다. 상기 '직접적으로 형성'은 제1 위상차층과 제2 위상차층 사이에 임의의 점착층, 접착층 또는 점접착층이 형성되지 않음을 의미한다.The first retardation layer 110 may be manufactured by applying the above-described liquid crystal layer composition to the upper surface of the second retardation layer to a predetermined thickness and then drying and/or curing it. In one embodiment, the first phase difference layer 110 may be formed directly on the second phase difference layer. The term 'directly formed' means that no adhesive layer, adhesive layer, or adhesive layer is formed between the first phase difference layer and the second phase difference layer.
제2 위상차층은 제1 위상차층 형성을 위하여 상부면에 하기에서 설명되는 바와 같이 배향막을 더 포함할 수도 있다.The second retardation layer may further include an alignment film on the upper surface to form the first retardation layer, as described below.
제1위상차층은 음의 복굴절을 가지며, 제2위상차층은 양의 복굴절을 가질 수 있다.The first phase difference layer may have negative birefringence, and the second phase difference layer may have positive birefringence.
제2 위상차층(120)은 비 액정층이다. 제2 위상차층(120)은 제1 위상차층과 함께 본 발명의 반사 방지 효과를 제공하는 기능뿐만 아니라 제1 위상차층을 형성하기 기재 필름 또는 지지체로 사용될 수 있다. 상기 '비 액정'은 액정 모노머, 액정 올리고머, 액정 폴리머 중 1종 이상이 아니며 광 조사 또는 열 처리 등에 의해 액정 모노머, 액정 올리고머 또는 액정 폴리머로 변환되지 않는 물질을 포함할 수 있다.The second phase difference layer 120 is a non-liquid crystal layer. The second retardation layer 120 not only provides the anti-reflection effect of the present invention together with the first retardation layer, but can also be used as a base film or support to form the first retardation layer. The 'non-liquid crystal' is not one or more of liquid crystal monomers, liquid crystal oligomers, and liquid crystal polymers, and may include materials that are not converted into liquid crystal monomers, liquid crystal oligomers, or liquid crystal polymers by light irradiation or heat treatment.
제2 위상차층(120)은 트리아세틸셀룰로스 등을 포함하는 셀룰로오스계, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트(PET), 폴리부틸렌나프탈레이트 등을 포함하는 폴리에스테르계, 고리형 폴리올레핀(COP)계, 고리형 올레핀 코폴리머(COC)계, 폴리카보네이트계, 폴리에테르술폰계, 폴리술폰계, 폴리아미드계, 폴리이미드계, 폴리올레핀계, 폴리아릴레이트계, 폴리비닐알코올계, 폴리염화비닐계, 폴리염화비닐리덴계, 아크릴계 중 하나 이상의 수지를 포함하는 조성물로 형성된 연신된 필름을 포함할 수 있다. 바람직하게는, 하기에서 설명되는 파장 분산성 및 위상차의 구현 용이성을 위하여, 고리형 폴리올레핀계 수지를 포함할 수 있다. 고리형 폴리올레핀계 수지는 본 발명의 효과를 구현함에 있어서 용이할 수 있다.The second phase difference layer 120 is a cellulose-based material including triacetylcellulose, polyester-based material including polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate (PET), polybutylene naphthalate, and cyclic polyolefin. (COP)-based, cyclic olefin copolymer (COC)-based, polycarbonate-based, polyethersulfone-based, polysulfone-based, polyamide-based, polyimide-based, polyolefin-based, polyarylate-based, polyvinyl alcohol-based, polychlorinated It may include a stretched film formed of a composition containing one or more of vinyl-based, polyvinylidene chloride-based, and acrylic-based resins. Preferably, in order to facilitate the implementation of wavelength dispersion and phase difference described below, a cyclic polyolefin-based resin may be included. Cyclic polyolefin-based resin can facilitate the implementation of the effects of the present invention.
제2 위상차층(120)은 제1 위상차층(110) 대비 두께가 현저하게 높을 수 있다. 일 구체예에서, 제2 위상차층(120)은 두께가 15㎛ 내지 35㎛, 바람직하게는 15㎛ 내지 25㎛가 될 수 있다. 상기 범위에서, 하기 설명되는 제2 위상차층의 위상차를 제공하고 기재 필름 또는 지지체로 기능할 수 있다.The second phase difference layer 120 may have a significantly higher thickness than the first phase difference layer 110. In one embodiment, the second retardation layer 120 may have a thickness of 15 ㎛ to 35 ㎛, preferably 15 ㎛ to 25 ㎛. Within the above range, it can provide a phase difference of the second phase difference layer described below and function as a base film or support.
제2 위상차층(120)은 파장 550nm에서 이축성 정도(NZ)가 제1 위상차층(110) 대비 높을 수 있다. 이를 통해, 본 발명의 반사율 및 빛샘 개선과 블랙 시감 개선 효과를 제공하는데 용이할 수 있다.The second phase contrast layer 120 may have a higher degree of biaxiality (NZ) than the first phase contrast layer 110 at a wavelength of 550 nm. Through this, it can be easy to provide the effects of improving reflectance and light leakage and improving black visibility of the present invention.
일 구체예에서, 제2 위상차층(120)은 파장 550nm에서 이축성 정도가 1 이상 1.3 미만, 예를 들면 1, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.2, 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, 바람직하게는 1.05 내지 1.25, 더 바람직하게는 1.05 내지 1.2, 가장 바람직하게는 1.1 내지 1.15가 될 수 있다. 상기 범위에서, 본 발명의 제1 위상차층 및 제2 위상차층의 적층체의 정면 및 경사 선형 위상차 범위에 용이하게 도달되도록 하고, 측면에서의 반사율 및 빛샘을 낮추고 블랙 시감을 개선하는데 용이할 수 있다.In one embodiment, the second phase difference layer 120 has a degree of biaxiality of 1 or more and less than 1.3 at a wavelength of 550 nm, for example, 1, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.1, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.2, 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, preferably 1.05 to 1. .25, more preferably 1.05 to 1.2, most preferably 1.1 to 1.15. In the above range, it is possible to easily reach the front and oblique linear retardation ranges of the laminate of the first retardation layer and the second retardation layer of the present invention, reduce reflectance and light leakage from the side, and improve black visibility. .
제2 위상차층(120)은 플랫 혹은 정파장 분산성으로서, Re(450) ≥ Re(550 ≥ Re(650)[Re(450), Re(550), Re(650)은 각각 제2 위상차층의 파장 450nm, 550nm, 650nm에서의 정면 면내 위상차이다.]이 될 수 있다. 이를 통해, 제1 위상차층과 제2 위상차층의 적층체는 역파장 분산성을 나타냄으로써, 편광판은 정면 및 측면에서 반사율을 현저하게 낮추어 블랙 시감을 개선하고 화면 품질을 높일 수 있다. The second phase difference layer 120 is flat or has a constant wavelength dispersion, and Re (450) ≥ Re (550 ≥ Re (650) [Re (450), Re (550), and Re (650) are each the second phase difference layer. is the front in-plane phase difference at the wavelengths of 450 nm, 550 nm, and 650 nm.] Through this, the laminate of the first phase contrast layer and the second phase contrast layer exhibits reverse wavelength dispersion, so that the polarizer can be By significantly lowering the reflectance, black visibility can be improved and screen quality can be improved.
제2 위상차층(120)은 nx>ny>nz의 굴절률 관계를 갖는 네가티브 B 플레이트일 수 있다. 여기에서, nx, ny, nz는 각각 파장 550nm에서 제2 위상차층의 지상축 방향 굴절률, 진상축 방향 굴절률 및 두께 방향 굴절률이다.The second phase difference layer 120 may be a negative B plate having a refractive index relationship of nx>ny>nz. Here, nx, ny, and nz are the refractive index in the slow axis direction, the refractive index in the fast axis direction, and the thickness direction, respectively, of the second retardation layer at a wavelength of 550 nm.
제2 위상차층(110)은 파장 550nm에서 정면 면내 위상차가 제1 위상차층 대비 낮으며, 100nm 내지 150nm, 예를 들면 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150nm, 바람직하게는 110nm 내지 130nm가 될 수 있다. 상기 범위에서, 정면 및 측면에서 반사율을 현저하게 낮추어 블랙 시감을 개선하고 화면 품질을 높이는데 용이할 수 있다.The second phase difference layer 110 has a front in-plane phase difference lower than that of the first phase difference layer at a wavelength of 550 nm, and is 100 nm to 150 nm, for example, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, It may be 150 nm, preferably 110 nm to 130 nm. Within the above range, it can be easy to significantly lower the reflectance from the front and sides to improve black visibility and increase screen quality.
제2 위상차층(120)은 면내 방향 중 지상축과 진상축을 갖는다. 편광자의 광 투과축에 대하여 제2 위상차층(120)의 지상축이 이루는 각도는 70° 내지 85°, 예를 들면 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85°, 바람직하게는 75° 내지 80°가 될 수 있다. 상기 범위에서, 정면 및 측면에서 반사율을 현저하게 낮추어 블랙 시감을 개선하고 화면 품질을 높이는데 용이할 수 있다.The second phase difference layer 120 has a slow axis and a fast axis in the in-plane direction. The angle formed by the slow axis of the second retardation layer 120 with respect to the light transmission axis of the polarizer is 70° to 85°, for example, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, It may be 80, 81, 82, 83, 84, 85°, preferably 75° to 80°. Within the above range, it can be easy to significantly lower the reflectance from the front and sides to improve black visibility and increase screen quality.
일 구체예에서, 제1 위상차층(110)의 지상축과 제2 위상차층(120)의 지상축이 이루는 각도는 50° 내지 80°, 예를 들면 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80°, 바람직하게는 55° 내지 75°가 될 수 있다. 상기 범위에서, 본 발명의 효과 구현이 용이할 수 있다.In one embodiment, the angle formed by the slow axis of the first phase difference layer 110 and the slow axis of the second phase difference layer 120 is 50° to 80°, for example, 50, 51, 52, 53, 54, 55. , 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 °, preferably 55° to 75°. Within the above range, it can be easy to implement the effects of the present invention.
제2 위상차층(120)은 제2 위상차층용 미 연신된 필름을 MD 1축, TD 1축, 경사 연신 또는 이들의 조합에 의해 연신시켜 제조될 수 있다. 연신 방법은 당업자에게 알려진 통상의 방법으로 수행될 수 있다.The second retardation layer 120 may be manufactured by stretching an unstretched film for the second retardation layer by MD 1-axis, TD 1-axis, oblique stretching, or a combination thereof. The stretching method can be performed by conventional methods known to those skilled in the art.
제2 위상차층(110)은 상부면에 제1 위상차층(110)의 형성을 위한 배향막을 더 포함할 수도 있다. 배향막은 당업자에게 알려진 통상의 배향막 형성용 조성물로 형성될 수 있다. 배향막은 배향막 형성용 조성물을 소정의 두께로 도포한 다음 러빙 처리에 의해 물리적 배향하거나 배향막 형성용 조성물을 소정의 두께로 도포한 다음 광 배향시킴으로써 제조될 수 있다.The second phase difference layer 110 may further include an alignment film for forming the first phase difference layer 110 on its upper surface. The alignment layer may be formed of a common composition for forming an alignment layer known to those skilled in the art. The alignment film can be manufactured by applying the composition for forming an alignment film to a predetermined thickness and then physically aligning it by rubbing, or by applying the composition for forming an alignment film to a predetermined thickness and then photo-aligning it.
제1 위상차층(110)과 제2 위상차층(120)의 적층체는 역파장 분산성을 나타낼 수 있다. 이를 통해, 정면 및 측면에서 반사율을 현저하게 낮추어 블랙 시감을 개선하고 화면 품질을 높이는데 용이할 수 있다. 역파장 분산성은 제1 위상차층(110)과 제2 위상차층(120)의 적층체의 단파장 분산성이 장파장 분산성 대비 낮은 값을 갖는 것이다. 상기 '역파장 분산성'은 상기 적층체의 파장 450nm에서의 경사 선형 위상차<파장 550nm에서의 경사 선형 위상차<파장 650nm에서의 경사 선형 위상차의 관계를 갖는 것을 의미한다. 단 적층체의 정면에서의 선형 위상차의 경우 RL(550)<RL(450)<RL(650)의 값을 가질 수 있다. RL(450), RL(550), RL(650)은 각각 상기 적층체의 파장 450nm, 550nm, 650nm에서의 정면 선형 위상차값이다.The laminate of the first phase difference layer 110 and the second phase difference layer 120 may exhibit reverse wavelength dispersion. Through this, it can be easy to significantly lower the reflectance from the front and sides to improve black visibility and increase screen quality. Reverse wavelength dispersion means that the short wavelength dispersion of the laminate of the first phase difference layer 110 and the second phase difference layer 120 has a lower value than the long wavelength dispersion. The 'reverse wavelength dispersion' means that the laminate has the following relationship: inclined linear phase difference at a wavelength of 450 nm < inclined linear phase difference at a wavelength of 550 nm < inclined linear phase difference at a wavelength of 650 nm. However, in the case of a linear phase difference at the front of the laminate, it may have a value of R L (550) < R L (450) < R L (650). R L (450), R L (550), and R L (650) are the front linear retardation values of the laminate at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
제1 위상차층(110)과 제2 위상차층(120)의 적층체의 지상축(slow axis)은 편광자의 광 투과축에 대해 111° 내지 113°의 각도를 이루고, 제1 위상차층(110)과 제2 위상차층(120)의 적층체는 파장 550nm에서 정면에서 측정된, 정면 선형 위상차값이 140nm 내지 160nm이고, 상기 적층체는 파장 550nm에서 상기 적층체의 지상축을 회전축으로 하여 ±40° 회전시켰을 때 경사 선형 위상차값이 145nm 내지 170nm이다. 상기 각도 범위, 상기 정면 선형 위상차값 및 상기 경사 선형 위상차값을 모두 만족함으로써, 정면 및 측면에서의 반사율을 낮추어 우수한 반사 방지 효과 및 블랙 시감이 우수한 효과를 제공할 수 있다. 상기 각도 범위, 상기 정면 선형 위상차값 및 상기 경사 선형 위상차값 중 어느 하나라도 본 발명의 범위를 만족하지 않으면, 본 발명의 반사 방지 효과, 블랙 시감 개선 효과가 현저하게 낮아질 수 있다. The slow axis of the laminate of the first retardation layer 110 and the second retardation layer 120 forms an angle of 111° to 113° with respect to the light transmission axis of the polarizer, and the first retardation layer 110 The laminate of the second phase difference layer 120 has a front linear phase difference value of 140 nm to 160 nm, measured from the front at a wavelength of 550 nm, and the laminate is rotated ±40° with the slow axis of the laminate as a rotation axis at a wavelength of 550 nm. When applied, the slope linear retardation value is 145 nm to 170 nm. By satisfying all of the angle range, the front linear phase difference value, and the inclined linear phase difference value, reflectance at the front and sides can be lowered to provide an excellent anti-reflection effect and excellent black visibility. If any one of the angle range, the front linear phase difference value, and the oblique linear phase difference value does not satisfy the range of the present invention, the anti-reflection effect and the black visibility improvement effect of the present invention may be significantly reduced.
일 구체예에서, 상기 적층체의 지상축은 편광자의 광 투과축에 대해 111, 111.5, 112, 112.5, 113°를 이룰 수 있다.In one embodiment, the slow axis of the laminate may be 111, 111.5, 112, 112.5, or 113° with respect to the light transmission axis of the polarizer.
일 구체예에서, 상기 적층체는 파장 550nm에서 정면에서 측정된, 정면 선형 위상차값이 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160nm가 될 수 있다.In one embodiment, the laminate has a front-on linear retardation value, measured from the front at a wavelength of 550 nm, of 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, It can be 154, 155, 156, 157, 158, 159, 160nm.
일 구체예에서, 상기 적층체는 파장 550nm에서 상기 적층체의 지상축을 회전축으로 하여 ±40° 회전시켰을 때 경사 선형 위상차값이 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 169, 170nm가 될 수 있다.In one embodiment, the laminate has an inclined linear retardation value of 145, 146, 147, 148, 149, 150, 151, 152, 153 when rotated ±40° with the slow axis of the laminate as the rotation axis at a wavelength of 550 nm. It can be 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 169, 170 nm.
종래 위상차층의 적층체에서 언급되는 정면 위상차 또는 면내 위상차는 상기 적층체의 면내 방향에 대하여 법선 방향에서 측정되는 위상차이다. 본 발명은 상술한 본 발명의 제1 위상차층(110)과 제2 위상차층(120)를 구비하는 적층체에 대하여 지상축 각도를 조절하고 적층체의 면내 방향에 대하여 법선 방향에서 측정되는 위상차뿐만 아니라 상기 적층체의 지상축을 회전시켰을 때 측정되는 경사 위상차 모두를 제어함으로써, 반사 방지 효과, 블랙 시감 개선 효과를 모두 개선한 것이다. 일 구체예에서, 제1 액정층은 액정층 바람직하게는 디스코틱 액정층이고, 제2 액정층은 비 액정층 바람직하게는 연신된 필름 또는 연신된 코팅층일 수 있다. 일 구체예에서, 제1 액정층은 파장 550nm에서 이축성 정도(NZ)가 -0.1 내지 0.1, 제2 액정층은 파장 550nm에서 이축성 정도(NZ)가 1 이상 1.3 미만일 수 있다. 일 구체예에서, 제1 위상차층은 네가티브 A 플레이트, 제2 위상차층은 네가티브 B 플레이트일 수 있다.The front phase difference or in-plane phase difference referred to in a laminate of conventional retardation layers is a phase difference measured in the direction normal to the in-plane direction of the laminate. The present invention adjusts the slow axis angle with respect to the laminate having the first phase difference layer 110 and the second phase difference layer 120 of the present invention described above, and not only the phase difference measured in the normal direction with respect to the in-plane direction of the laminate In addition, by controlling both the tilt phase difference measured when the slow axis of the laminate is rotated, both the anti-reflection effect and the black visibility improvement effect are improved. In one embodiment, the first liquid crystal layer may be a liquid crystal layer, preferably a discotic liquid crystal layer, and the second liquid crystal layer may be a non-liquid crystal layer, preferably a stretched film or a stretched coating layer. In one embodiment, the first liquid crystal layer may have a biaxiality degree (NZ) of -0.1 to 0.1 at a wavelength of 550 nm, and the second liquid crystal layer may have a biaxiality degree (NZ) of 1 to 1.3 at a wavelength of 550 nm. In one embodiment, the first phase difference layer may be a negative A plate and the second phase difference layer may be a negative B plate.
상기 적층체의 선형 위상차값 2개는 제1 위상차층, 제2 위상차층 각각의 정면 면내 위상차, 제1 위상차층과 제2 위상차층의 지상축 관계 등을 조절함으로써 구현될 수 있다.The two linear retardation values of the laminate can be implemented by adjusting the front in-plane retardation of each of the first retardation layer and the second retardation layer, the slow axis relationship between the first retardation layer and the second retardation layer, etc.
제1 위상차층(110)은 제2 위상차층(120)의 일면에 제1 위상차층용 조성물 즉 액정층용 조성물을 소정의 두께로 코팅한 다음 건조 및/또는 경화시켜 형성될 수 있다.The first retardation layer 110 may be formed by coating one surface of the second retardation layer 120 with a first retardation layer composition, that is, a liquid crystal layer composition, to a predetermined thickness and then drying and/or curing it.
일 구체예에서, 제2 위상차층의 일면에 상기 액정층용 조성물을 소정의 두께로 도포하는데, 이 과정에서 액정층용 조성물 내에 함유된 용매에 의해 제2 위상차층의 일면은 용매에 의한 침식에 의해 버퍼층이 형성될 수 있다.In one embodiment, the liquid crystal layer composition is applied to one surface of the second retardation layer to a predetermined thickness. In this process, one surface of the second retardation layer is eroded by the solvent contained in the liquid crystal layer composition and becomes a buffer layer. This can be formed.
편광자(130)는 입사된 자연광 또는 편광을 중 특정 방향의 직선 편광으로 변환시키는 것으로, 폴리비닐알코올계 수지를 주성분으로 하는 고분자 필름으로부터 제조될 수 있다. 구체적으로, 편광자(110)는 상기 고분자 필름을 요오드나 이색성 염료를 염색시키고, 이를 MD(machine direction)로 연신시켜 제조될 수 있다. 구체적으로, 팽윤 과정, 염색 단계, 연신 단계, 가교 단계를 거쳐 제조될 수 있다.The polarizer 130 converts incident natural light or polarized light into linearly polarized light in a specific direction, and may be manufactured from a polymer film containing polyvinyl alcohol-based resin as a main component. Specifically, the polarizer 110 can be manufactured by dyeing the polymer film with iodine or a dichroic dye and stretching it in MD (machine direction). Specifically, it can be manufactured through a swelling process, a dyeing step, a stretching step, and a cross-linking step.
편광자(130)는 면내 방향 중 광 흡수축과 광 투과축을 가지며, 광 흡수축은 편광자의 MD, 광 투과축은 편광자의 TD가 될 수 있다.The polarizer 130 has a light absorption axis and a light transmission axis in the in-plane direction. The light absorption axis may be the MD of the polarizer, and the light transmission axis may be the TD of the polarizer.
편광자(130)는 광 투과율이 40% 이상, 예를 들면 40% 내지 46%, 편광도가 95% 이상, 예를 들면 95% 내지 99.9%가 될 수 있다. 상기 범위에서, 제1위상차층, 제2위상차층과 조합시 반사 방지 성능을 높일 수 있다. 상기 "광 투과율", "편광도"는 파장 380nm 내지 780nm에서의 시감도를 반영한 값이다.The polarizer 130 may have a light transmittance of 40% or more, for example, 40% to 46%, and a polarization degree of 95% or more, for example, 95% to 99.9%. Within the above range, anti-reflection performance can be improved when combined with the first phase difference layer and the second phase difference layer. The “light transmittance” and “polarization degree” are values reflecting visibility at a wavelength of 380 nm to 780 nm.
편광자(130)는 두께가 2㎛ 내지 30㎛, 구체적으로 4㎛ 내지 25㎛가 될 수 있고, 상기 범위에서 편광판에 사용될 수 있다.The polarizer 130 may have a thickness of 2㎛ to 30㎛, specifically 4㎛ to 25㎛, and can be used in the polarizing plate within this range.
도 1에서 도시되지 않았지만, 편광자(130)는 접착층에 의해 제1위상차층과 제2위상차층의 적층체에 접합될 수 있다. 접착층은 수계 접착제, 광경화형 접착제 중 1종 이상으로 형성될 수 있다. 바람직하게는, 접착층은 광경화형 접착제로 형성됨으로써, 보호필름과 편광자 간의 접착, 편광자와 제1위상차층 간의 접착을 1회의 광 조사에 의해 달성할 수 있어, 편광판의 제조 공정성을 개선할 수 있다. 제1접착층은 두께가 0.1㎛ 내지 10㎛, 구체적으로 0.5㎛ 내지 5㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다.Although not shown in FIG. 1, the polarizer 130 may be bonded to a laminate of the first phase difference layer and the second phase difference layer by an adhesive layer. The adhesive layer may be formed of one or more of a water-based adhesive and a photocurable adhesive. Preferably, the adhesive layer is formed of a photocurable adhesive, so that adhesion between the protective film and the polarizer and between the polarizer and the first phase difference layer can be achieved by a single irradiation of light, thereby improving the manufacturing process of the polarizer. The first adhesive layer may have a thickness of 0.1 ㎛ to 10 ㎛, specifically 0.5 ㎛ to 5 ㎛. Within the above range, it can be used in a polarizing plate.
보호 필름(140)은 편광자(130)의 상부면에 형성됨으로써, 편광자를 외부 환경으로부터 보호하고, 편광판의 기계적 강도를 높이는 효과가 더 있을 수 있다. The protective film 140 may be formed on the upper surface of the polarizer 130, thereby protecting the polarizer from the external environment and increasing the mechanical strength of the polarizer.
보호 필름(140)은 편광자를 외부 환경으로부터 보호하는데, 광학적 투명 필름으로서, 예를 들면 트리아세틸셀룰로스(TAC) 등을 포함하는 셀룰로오스계, 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트(PEN), 폴리부틸렌나프탈레이트 등을 포함하는 폴리에스테르계, 고리형 폴리올레핀계, 폴리카보네이트계, 폴리에테르술폰계, 폴리술폰계, 폴리아미드계, 폴리이미드계, 폴리올레핀계, 폴리아릴레이트계, 폴리비닐알코올계, 폴리염화비닐계, 폴리염화비닐리덴계 중 하나 이상의 수지로 된 필름이 될 수 있다. 구체적으로, TAC, PET 필름을 사용할 수 있다.The protective film 140 protects the polarizer from the external environment and is an optically transparent film, for example, cellulose-based including triacetylcellulose (TAC), polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene oxide. Polyester-based, cyclic polyolefin-based, polycarbonate-based, polyethersulfone-based, polysulfone-based, polyamide-based, polyimide-based, polyolefin-based, polyarylate-based, including phthalate (PEN), polybutylene naphthalate, etc. It may be a film made of one or more of polyvinyl alcohol-based, polyvinyl chloride-based, and polyvinylidene chloride-based resins. Specifically, TAC and PET films can be used.
보호 필름(140)은 두께가 5㎛ 내지 70㎛, 구체적으로 15㎛ 내지 45㎛가 될 수 있고, 상기 범위에서 편광판에 사용할 수 있다.The protective film 140 may have a thickness of 5㎛ to 70㎛, specifically 15㎛ to 45㎛, and can be used in the polarizing plate within this range.
도 1에서 도시되지 않았지만, 보호 필름(140)의 상부면에는 기능성 코팅층이 형성되어 편광판에 추가 기능을 제공할 수 있는데, 예를 들면 기능성 코팅층은 하드코팅층, 내지문성층, 반사방지층, 안티글레어층 등이 될 수 있고, 이들은 단독 또는 2종 이상으로 적층되어 형성될 수 있다.Although not shown in FIG. 1, a functional coating layer is formed on the upper surface of the protective film 140 to provide additional functions to the polarizer. For example, the functional coating layer includes a hard coating layer, an anti-fingerprint layer, an anti-reflection layer, and an anti-glare layer. etc., and they may be formed singly or by stacking two or more types.
도 1에서 도시되지 않았지만, 보호 필름(140)은 편광자(110)에 접착층을 통해 접착될 수 있다. 접착층은 수계 접착제, 광경화형 접착제 중 1종 이상으로 형성될 수 있다. Although not shown in FIG. 1, the protective film 140 may be attached to the polarizer 110 through an adhesive layer. The adhesive layer may be formed of one or more of a water-based adhesive and a photocurable adhesive.
접착층은 두께가 0.1㎛ 내지 10㎛, 구체적으로 0.1㎛ 내지 5㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다.The adhesive layer may have a thickness of 0.1 ㎛ to 10 ㎛, specifically 0.1 ㎛ to 5 ㎛. Within the above range, it can be used in a polarizing plate.
본 발명의 광학표시장치는 본 발명 실시예의 편광판을 포함한다. 광학표시장치는 유기발광소자(OLED) 표시장치, 액정표시장치를 포함할 수 있다.The optical display device of the present invention includes the polarizing plate of the embodiment of the present invention. Optical displays may include organic light emitting diode (OLED) displays and liquid crystal displays.
일 구체예에서, 유기발광소자 표시장치는 플렉서블형 기판을 포함하는 유기발광소자 패널, 상기 유기발광소자 패널 상에 적층된 본 발명의 편광판을 포함할 수 있다.In one embodiment, an organic light emitting device display device may include an organic light emitting device panel including a flexible substrate, and a polarizing plate of the present invention stacked on the organic light emitting device panel.
다른 구체예에서, 유기발광소자 표시장치는 비-플렉서블형 기판을 포함하는 유기발광소자 패널, 상기 유기발광소자 패널 상에 적층된 본 발명의 편광판을 포함할 수 있다.In another embodiment, an organic light emitting device display device may include an organic light emitting device panel including a non-flexible substrate, and a polarizing plate of the present invention stacked on the organic light emitting device panel.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred embodiments of the present invention. However, this is presented as a preferred example of the present invention and should not be construed as limiting the present invention in any way.
실시예 1Example 1
폴리비닐알코올계 필름(PS#60, 일본 Kuraray社, 연신 전 두께: 60㎛)을 55℃요오드 수용액에서 상기 필름의 MD로 1축으로 6배로 연신하여 광 투과율 45%의 편광자를 제조하였다.A polyvinyl alcohol-based film (PS#60, Kuraray, Japan, thickness before stretching: 60㎛) was stretched 6 times along the MD of the film in an iodine aqueous solution at 55°C to prepare a polarizer with a light transmittance of 45%.
고리형 폴리올레핀(COP)계 미연신된 필름을 준비하고 상기 필름의 MD에 대해 경사 연신 및 MD 연신을 순차적으로 실시하여 제2 위상차층(네가티브 B 플레이트)을 제조하였다.An unstretched cyclic polyolefin (COP)-based film was prepared, and oblique stretching and MD stretching were sequentially performed on the MD of the film to prepare a second retardation layer (negative B plate).
제조된 제2 위상차층의 상부면에 배향막을 형성하고 디스코틱 액정층용 조성물을 도포한 다음 경화시켜, 제2 위상차층의 상부면에 디스코틱 액정층인 제1 위상차층(네가티브 A 플레이트, 정파장 분산성)이 적층된, 제1 위상차층과 제2 위상차층의 적층체를 제조하였다.An alignment film is formed on the upper surface of the manufactured second retardation layer, the composition for the discotic liquid crystal layer is applied and then cured, and a first retardation layer (negative A plate, positive wavelength), which is a discotic liquid crystal layer, is formed on the upper surface of the second retardation layer. A laminate of a first phase difference layer and a second phase difference layer, in which dispersibility) was laminated, was manufactured.
상기 제조한 편광자의 상부면에 보호 필름으로 HC-TAC 필름(Toppan, 25FJCHCN-TC, 두께: 32㎛)을 합지하고, 편광자의 하부면에 제1 위상차층과 제2 위상차층의 적층체를 합지(편광자의 하부면에 제1 위상차층, 제2위상차층이 순차적으로 적층됨)시켜 편광판을 제조하였다.An HC-TAC film (Toppan, 25FJCHCN-TC, thickness: 32㎛) was laminated as a protective film on the upper surface of the prepared polarizer, and a laminate of the first and second retardation layers was laminated on the lower surface of the polarizer. A polarizing plate was manufactured by (a first retardation layer and a second retardation layer were sequentially stacked on the lower surface of the polarizer).
실시예 2 내지 실시예 4Examples 2 to 4
실시예 1에서, 제2 위상차층 제조시 연신비, 연신 온도 등을 변경하고 제1 위상차층 제조시 두께 등을 변경시켜 제1 위상차층과 제2 위상차층을 하기 표 1과 같이 변경한 것을 제외하고는 실시예 1과 동일한 방법을 실시하여 편광판을 제조하였다.In Example 1, except that the stretching ratio, stretching temperature, etc. were changed when manufacturing the second retardation layer, and the thickness, etc. was changed when manufacturing the first retardation layer, so that the first retardation layer and the second retardation layer were changed as shown in Table 1 below. A polarizing plate was manufactured by performing the same method as Example 1.
비교예 1 내지 비교예 3Comparative Examples 1 to 3
실시예 1에서, 제2 위상차층 제조시 연신비, 연신 온도 등을 변경하고 제1 위상차층 제조시 두께 등을 변경시켜 제1 위상차층과 제2 위상차층을 하기 표 1과 같이 변경한 것을 제외하고는 실시예 1과 동일한 방법을 실시하여 편광판을 제조하였다.In Example 1, except that the stretching ratio, stretching temperature, etc. were changed when manufacturing the second retardation layer, and the thickness, etc. was changed when manufacturing the first retardation layer, so that the first retardation layer and the second retardation layer were changed as shown in Table 1 below. A polarizing plate was manufactured by performing the same method as Example 1.
제1위상차층과 제2위상차층 각각의 Re, NZ는 AXOSCAN을 사용해서 파장 550nm에서 된 값이다.Re and NZ of each of the first and second phase difference layers are values obtained at a wavelength of 550 nm using AXOSCAN.
실시예와 비교예의 적층체 및 편광판을 가지고 아래 물성을 평가하고 하기 표 1 및 도 2 내지 도 5에 나타내었다.The following physical properties were evaluated using the laminates and polarizers of Examples and Comparative Examples and are shown in Table 1 and Figures 2 to 5 below.
(1)적층체의 정면 선형 위상차값과 경사 선형 위상차값(단위: nm, @550nm): 실시예와 비교예의 제1 위상차층과 제2 위상차층의 적층체에 대해 Mueller Matrix 기반의 측정 장치인 Axoscan으로 측정했다. (1) Front linear retardation value and inclined linear retardation value of the laminate (unit: nm, @550nm): a Mueller Matrix-based measuring device for the laminate of the first and second retardation layers of the examples and comparative examples. Measured with Axoscan.
(2)요오드 용출: 실시예와 비교예에서 제조한 편광판을 고온 고습(60℃ 및 상대습도 90%) 챔버에서 250시간 방치 후 편광판의 가장자리 부분을 현미경으로 관찰하여 요오드 탈색 정도를 비교 평가하였다.(2) Iodine elution: The polarizing plates prepared in Examples and Comparative Examples were left in a high-temperature, high-humidity (60°C and 90% relative humidity) chamber for 250 hours, and then the edges of the polarizing plates were observed under a microscope to compare and evaluate the degree of iodine decolorization.
(3)측면에서의 반사율: 실시예와 비교예에서 제조한 편광판에 대해 시뮬레이션 프로그램 Techwiz 1D(사나이시스템, 대한민국)을 통해 1차 반사를 제외한 내부에 입사한 외광의 반사율을 모든 방향에서 측정했을 때 최대가 되는 방향에서의 반사율 값을 계산하였다. 반사율이 6% 미만, 바람직하게는 5.6% 이하가 되는 것이 바람직하다.(3) Reflectance from the side: When the reflectance of external light incident on the inside, excluding primary reflection, was measured in all directions using the simulation program Techwiz 1D (Sanai System, Korea) for the polarizers manufactured in Examples and Comparative Examples. The reflectance value in the direction of maximum was calculated. It is desirable for the reflectance to be less than 6%, preferably less than 5.6%.
(4)블랙 시감: 실시예와 비교예에서 제조한 편광판에 대해 점착제를 이용하여 알루미늄 판에 붙여 목시로 시감 평가를 진행했다. 파란색 및/또는 노란색이 시인되지 않고 완전히 블랙으로 보이는 경우 '우수'로 평가했다.(4) Black visual perception: The polarizers manufactured in Examples and Comparative Examples were attached to an aluminum plate using an adhesive and visually evaluated for visual perception. If blue and/or yellow were not visible and appeared completely black, it was rated as 'excellent'.
실시예Example 비교예Comparative example
1One 22 33 44 1One 22 33
제1위상차층1st phase difference layer Re(nm)Re(nm) 240240 240240 240240 240240 240240 240240 240240
NZ NZ 00 00 00 00 00 00 00
두께
(㎛)
thickness
(㎛)
2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5
제2위상차층2nd phase difference layer Re(nm)Re(nm) 120120 125125 110110 120120 110110 130130 140140
NZNZ 1.11.1 1.11.1 1.11.1 1.21.2 1.31.3 1.31.3 1.11.1
두께
(㎛)
thickness
(㎛)
2121 2323 1919 2121 1919 2323 2525
각도 1angle 1 17.5°17.5° 17.5°17.5° 17.5°17.5° 17.5°17.5° 17.5°17.5° 17.5°17.5° 17.5°17.5°
각도 2angle 2 78°78° 79°79° 78°78° 78°78° 75.5°75.5° 78°78° 78°78°
적층체의 정면 선형 위상차값(nm)Front linear retardation value of the laminate (nm) 150.4150.4 143.7143.7 159.5159.5 150.4150.4 164.9164.9 141.1141.1 131.6
131.6
지상축 각도ground axis angle 111.9°111.9° 112.1°112.1° 111.4°111.4° 111.9°111.9° 111.5°111.5° 112.5°112.5° 113.2°113.2°
적층체의 경사 선형 위상차값(nm)Inclined linear retardation value of the laminate (nm) 159.0159.0 151.7151.7 169.3169.3 157.1157.1 171.0171.0 144.6144.6 137.9137.9
요오드 용출iodine elution 없음doesn't exist 없음doesn't exist 없음doesn't exist 없음doesn't exist 없음doesn't exist 없음doesn't exist 없음doesn't exist
측면(입사각 60°)에서의 최대 반사율Maximum reflectance from the side (angle of incidence 60°) 4.1%4.1% 5.5%5.5% 5.6%5.6% 4.9%4.9% 6.8%6.8% 10.4%10.4% 12.0%12.0%
블랙 시감Black Persimmon 우수Great 우수Great 우수Great 우수Great 파란색 시인이 강함Blue poet is strong 노란색 시인이 강함yellow poet is strong 노란색 시인이 강함 yellow poet is strong
*표 1에서,*In Table 1,
①지상축 각도: 편광자의 광 투과축을 기준으로 적층체의 지상축이 이루는 각도로서 상기 식 E 및 상기 식 F에 의해 구할 수 있다.① Slow axis angle: The angle formed by the slow axis of the laminate based on the light transmission axis of the polarizer, which can be obtained using the equation E and F above.
②각도 1: 편광자의 광 투과축을 기준으로 제1 위상차층의 지상축이 이루는 각도②Angle 1: The angle formed by the slow axis of the first retardation layer based on the light transmission axis of the polarizer
③각도 2: 편광자의 광 투과축을 기준으로 제2 위상차층의 지상축이 이루는 각도③Angle 2: The angle formed by the slow axis of the second retardation layer based on the light transmission axis of the polarizer
상기 표 1에서와 같이, 본 발명의 편광판은 요오드 용출 등이 없어 내구성이 우수하고, 측면에서의 반사율 및 빛샘 개선 효과가 현저하며, 블랙 시감이 우수하였다.As shown in Table 1, the polarizing plate of the present invention was excellent in durability without iodine elution, had a significant effect of improving reflectance and light leakage from the side, and had excellent black visibility.
반면에, 본 발명의 파장 550nm에서 정면 선형 위상차, 경사 선형 위상차에서의 위상차 범위를 벗어나는 비교예 1과 비교예 2는 블랙시감이 현저히 떨어지는 문제점이 있었다. 본 발명의 지상축 각도를 벗어나는 비교예 3은 측면에서의 반사율 및 빛샘 개선 효과, 블랙 시감 개선 효과가 미약하였다.On the other hand, Comparative Examples 1 and 2, which were outside the phase difference ranges for the frontal linear phase difference and oblique linear phase difference at the wavelength of 550 nm of the present invention, had a problem in that black vision was significantly reduced. In Comparative Example 3, which deviated from the slow axis angle of the present invention, the effect of improving reflectance and light leakage from the side and the effect of improving black visibility were weak.
도 2에서 보여지는 바와 같이, 실시예의 편광판은 측면에서 우수한 블랙 시감을 제공하고 낮은 반사율을 제공했다. 반면에, 도 3 내지 도 5에서 보여지는 바와 같이 비교예의 편광판은 노란색 또는 적색 시인이 강해서 블랙 시감이 좋지 않고 반사율도 높았음을 확인할 수 있다. As shown in Figure 2, the polarizer of the example provided excellent black visibility from the side and low reflectance. On the other hand, as shown in Figures 3 to 5, it can be confirmed that the polarizer of the comparative example had a strong yellow or red color, resulting in poor black visibility and a high reflectance.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다. Simple modifications or changes to the present invention can be easily implemented by those skilled in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (16)

  1. 편광자; 및 상기 편광자의 하부면에 순차적으로 적층된 제1 위상차층 및 제2 위상차층을 포함하고,polarizer; and a first retardation layer and a second retardation layer sequentially stacked on the lower surface of the polarizer,
    상기 제1 위상차층과 상기 제2 위상차층의 적층체의 지상축은 상기 편광자의 광 투과축에 대해 111° 내지 113°를 이루고,The slow axis of the laminate of the first retardation layer and the second retardation layer is 111° to 113° with respect to the light transmission axis of the polarizer,
    상기 적층체는 파장 550nm에서 정면에서 측정된 정면 선형 위상차값이 140nm 내지 160nm이고, 상기 적층체는 파장 550nm에서 상기 적층체의 지상축을 회전축으로 하여 ±40° 회전시켰을 때 경사 선형 위상차값이 145nm 내지 170nm인 것인, 편광판.The laminate has a frontal linear retardation value of 140 nm to 160 nm measured from the front at a wavelength of 550 nm, and the inclined linear retardation value of the laminate is 145 nm to 160 nm when rotated ±40° with the slow axis of the laminate as a rotation axis at a wavelength of 550 nm. Polarizer, which is 170nm.
  2. 제1항에 있어서, 상기 제1 위상차층은 상기 제2 위상차층 대비 더 낮은 두께를 갖는 것인, 편광판.The polarizing plate of claim 1, wherein the first retardation layer has a lower thickness than the second retardation layer.
  3. 제1항에 있어서, 상기 제1 위상차층의 두께는 상기 제2 위상차층의 두께의 1% 내지 20%인 것인, 편광판.The polarizing plate of claim 1, wherein the thickness of the first retardation layer is 1% to 20% of the thickness of the second retardation layer.
  4. 제1항에 있어서, 상기 제1 위상차층은 액정층이고, 상기 제2 위상차층은 비 액정층인 것인, 편광판.The polarizing plate of claim 1, wherein the first retardation layer is a liquid crystal layer, and the second retardation layer is a non-liquid crystal layer.
  5. 제4항에 있어서, 상기 액정층은 디스코틱 액정층인 것인, 편광판.The polarizing plate of claim 4, wherein the liquid crystal layer is a discotic liquid crystal layer.
  6. 제4항에 있어서, 상기 비 액정층은 셀룰로오스계, 폴리에스테르계, 고리형 폴리올레핀(COP)계, 고리형 올레핀 코폴리머(COC)계, 폴리카보네이트계, 폴리에테르술폰계, 폴리술폰계, 폴리아미드계, 폴리이미드계, 폴리올레핀계, 폴리아릴레이트계, 폴리비닐알코올계, 폴리염화비닐계, 폴리염화비닐리덴계, 아크릴계 중 하나 이상의 수지를 포함하는 조성물로 형성된 연신된 필름을 포함하는 것인, 편광판.The method of claim 4, wherein the non-liquid crystal layer is cellulose-based, polyester-based, cyclic polyolefin (COP)-based, cyclic olefin copolymer (COC)-based, polycarbonate-based, polyethersulfone-based, polysulfone-based, poly Comprising a stretched film formed of a composition containing one or more of amide-based, polyimide-based, polyolefin-based, polyarylate-based, polyvinyl alcohol-based, polyvinyl chloride-based, polyvinylidene chloride-based, and acrylic-based resins, Polarizer.
  7. 제1항에 있어서, 상기 제1 위상차층은 음의 복굴절 값을 가지며, 상기 제2 위상차층은 양의 복굴절 값을 갖는 것인, 편광판.The polarizing plate of claim 1, wherein the first phase difference layer has a negative birefringence value, and the second phase difference layer has a positive birefringence value.
  8. 제1항에 있어서, 상기 제2 위상차층은 상기 제1 위상차층 대비 파장 550nm에서 이축성 정도(NZ)가 더 높은 것인, 편광판.The polarizing plate of claim 1, wherein the second retardation layer has a higher degree of biaxiality (NZ) at a wavelength of 550 nm compared to the first retardation layer.
  9. 제8항에 있어서, 상기 제1 위상차층은 파장 550nm에서 이축성 정도가 -0.1 내지 0.1이고, 상기 제2 위상차층은 파장 550nm에서 이축성 정도가 1 이상 1.3 미만인 것인, 편광판.The polarizing plate of claim 8, wherein the first retardation layer has a biaxiality degree of -0.1 to 0.1 at a wavelength of 550 nm, and the second retardation layer has a biaxiality degree of 1 to 1.3 at a wavelength of 550 nm.
  10. 제9항에 있어서, 상기 제1 위상차층은 파장 550nm에서 이축성 정도가 0이고, 상기 제2 위상차층은 파장 550nm에서 이축성 정도가 1 이상 1.3 미만인 것인, 편광판.The polarizing plate of claim 9, wherein the first retardation layer has a biaxiality degree of 0 at a wavelength of 550 nm, and the second retardation layer has a biaxiality degree of 1 to 1.3 at a wavelength of 550 nm.
  11. 제1항에 있어서, 상기 제1 위상차층은 네가티브 A 플레이트이고, 상기 제2위상차층은 네가티브 B 플레이트인 것인, 편광판.The polarizing plate of claim 1, wherein the first retardation layer is a negative A plate, and the second retardation layer is a negative B plate.
  12. 제1항에 있어서, 상기 제1 위상차층은 파장 550nm에서 정면 면내 위상차가 200nm 내지 280nm이고, 상기 제2 위상차층은 파장 550nm에서 정면 면내 위상차가 100nm 내지 150nm인 것인, 편광판.The polarizing plate of claim 1, wherein the first retardation layer has a front in-plane retardation of 200 nm to 280 nm at a wavelength of 550 nm, and the second retardation layer has a front in-plane retardation of 100 nm to 150 nm at a wavelength of 550 nm.
  13. 제1항에 있어서, 상기 편광자의 광 투과축에 대하여 상기 제1 위상차층의 지상축이 이루는 각도는 10° 내지 20°인 것인, 편광판.The polarizing plate of claim 1, wherein the angle formed by the slow axis of the first retardation layer with respect to the light transmission axis of the polarizer is 10° to 20°.
  14. 제1항에 있어서, 상기 편광자의 광 투과축에 대하여 상기 제2 위상차층의 지상축이 이루는 각도는 70° 내지 85°인 것인, 편광판.The polarizing plate of claim 1, wherein an angle formed by the slow axis of the second retardation layer with respect to the light transmission axis of the polarizer is 70° to 85°.
  15. 제1항에 있어서, 상기 제2 위상차층의 상부면에 버퍼층이 형성된 것인, 편광판.The polarizing plate of claim 1, wherein a buffer layer is formed on the upper surface of the second retardation layer.
  16. 제1항 내지 제15항 중 어느 한 항의 편광판을 포함하는 광학표시장치.An optical display device comprising the polarizing plate of any one of claims 1 to 15.
PCT/KR2023/008280 2022-07-01 2023-06-15 Polarizing plate and optical display device comprising same WO2024005409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0081303 2022-07-01
KR1020220081303A KR20240003567A (en) 2022-07-01 2022-07-01 Polarizing plate and optical display apparatus comprising the polarizing plate

Publications (1)

Publication Number Publication Date
WO2024005409A1 true WO2024005409A1 (en) 2024-01-04

Family

ID=89380765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008280 WO2024005409A1 (en) 2022-07-01 2023-06-15 Polarizing plate and optical display device comprising same

Country Status (2)

Country Link
KR (1) KR20240003567A (en)
WO (1) WO2024005409A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101361363B1 (en) * 2007-02-16 2014-02-10 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 Polarizing plate and liquid crystal display
KR20180122644A (en) * 2016-03-30 2018-11-13 니폰 제온 가부시키가이샤 Circular polarizer and image display device
KR20210014540A (en) * 2019-07-30 2021-02-09 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same
KR20210019356A (en) * 2019-08-12 2021-02-22 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same
KR20210087842A (en) * 2020-01-03 2021-07-13 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101361363B1 (en) * 2007-02-16 2014-02-10 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 Polarizing plate and liquid crystal display
KR20180122644A (en) * 2016-03-30 2018-11-13 니폰 제온 가부시키가이샤 Circular polarizer and image display device
KR20210014540A (en) * 2019-07-30 2021-02-09 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same
KR20210019356A (en) * 2019-08-12 2021-02-22 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same
KR20210087842A (en) * 2020-01-03 2021-07-13 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same

Also Published As

Publication number Publication date
KR20240003567A (en) 2024-01-09

Similar Documents

Publication Publication Date Title
WO2014109489A1 (en) Liquid crystal display
WO2016105017A1 (en) Optical film and oled display device comprising same
WO2019146977A1 (en) Multilayer liquid crystal film, polarizing plate and method for preparing polarizing plate
WO2019083160A1 (en) Liquid crystal phase difference film, polarizing plate for light-emitting display device including same, and light-emitting display device including same
WO2020138878A1 (en) Polarizing plate and optical display device including same
WO2019235809A1 (en) Stack and liquid crystal display device including same
WO2019235807A1 (en) Liquid crystal display device
WO2021034012A1 (en) Polarizing plate and optical display device including same
WO2020153639A1 (en) Liquid crystal display device
WO2017078290A1 (en) Polarizing plate and liquid crystal display device comprising same
WO2024005409A1 (en) Polarizing plate and optical display device comprising same
WO2016104976A1 (en) Optical sheet, and polarizing plate and liquid crystal display comprising same
WO2010128779A9 (en) Coupled polarizing plate set and blue phase liquid crystal mode liquid crystal display including the same
WO2018217053A1 (en) Optical polyester film, and prism sheet or polarized reflection sheet comprising same
WO2020204411A1 (en) Polarizing plate and optical display apparatus comprising same
WO2020171458A1 (en) Method for manufacturing polarizing plate
WO2021060779A1 (en) Polarizing plate
WO2020256337A1 (en) Polarizing plate and optical display device comprising same
WO2020130462A1 (en) Polarizing plate and optical display device including same
WO2019112163A1 (en) Polarizing plate for light-emitting display device, and light-emitting display device including same
WO2022019469A1 (en) Polarizing plate and optical display device comprising same
WO2020184862A1 (en) Polarizing plate and optical display device including same
WO2014088273A1 (en) Polarizing plate, and liquid crystal display device including same
WO2024043682A1 (en) Polarizing plate and optical display device
WO2019245145A1 (en) Optical film, polarizing plate including same, and display device including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831769

Country of ref document: EP

Kind code of ref document: A1