WO2020130462A1 - Polarizing plate and optical display device including same - Google Patents

Polarizing plate and optical display device including same Download PDF

Info

Publication number
WO2020130462A1
WO2020130462A1 PCT/KR2019/017387 KR2019017387W WO2020130462A1 WO 2020130462 A1 WO2020130462 A1 WO 2020130462A1 KR 2019017387 W KR2019017387 W KR 2019017387W WO 2020130462 A1 WO2020130462 A1 WO 2020130462A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive
layer
retardation layer
retardation
rth
Prior art date
Application number
PCT/KR2019/017387
Other languages
French (fr)
Korean (ko)
Inventor
이상흠
구준모
유정훈
신동윤
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN201980084033.XA priority Critical patent/CN113242988A/en
Publication of WO2020130462A1 publication Critical patent/WO2020130462A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a polarizing plate and an optical display device including the same. More specifically, the present invention is excellent in durability and reliability of the amount of retardation change, the adhesive strength between the reverse wavelength dispersibility positive A retardation layer and positive C retardation layer, excellent in thinning and bending reliability, a polarizing plate and an optical display device including the same It is about.
  • the OLED display device it is necessary for the OLED display device to include a polarizing plate in order to produce an anti-reflective effect by external light.
  • the anti-reflection effect may improve the screen quality of the OLED display device.
  • the polarizing plate includes a two-sheet laminate in which a reverse wavelength dispersion 1/4 phase difference layer and a positive C phase difference layer are stacked on the lower surface of the polarizer, or a two-sheet laminate in which a 1/2 phase difference layer and a 1/4 phase difference layer are stacked. It can contain.
  • a liquid crystal type positive C retardation layer is used as a positive C retardation layer.
  • the reverse wavelength dispersibility quarter retardation layer may be a stretched film or a liquid crystal film. However, it was confirmed that the retardation can be changed when the stretched film is left at high temperature or high temperature and high humidity for a long period of time due to shrinkage or axial distortion due to stretching. Since the liquid crystal film also exhibits a phase difference depending on the alignment of the liquid crystal, when left at high temperature or high temperature and high humidity for a long period of time, the liquid crystal alignment may be distorted and the phase difference may change. The phase difference change can also adversely affect the screen quality when applied to an optical display device by causing a phase difference change in a two-layer stacked structure of a reverse wavelength dispersion 1/4 phase difference layer and a positive C phase difference layer.
  • a polarizing plate having poor flexibility may cause cracks or cracks when applied to a flexible optical display device, which may adversely affect the screen quality.
  • An object of the present invention is to provide a polarizing plate excellent in durability and reliability because the amount of phase difference change is low when left at high temperature and high temperature and high humidity for a long time.
  • Another object of the present invention is to provide a polarizing plate having excellent adhesion and thinning effect between the reverse wavelength dispersive positive A(+A) retardation layer and the positive C(+C) retardation layer.
  • Another object of the present invention is to provide a polarizing plate having excellent bending reliability by suppressing the occurrence of mura caused by heat on the side and preventing cracks or cracks due to bending.
  • One aspect of the present invention is a polarizing plate.
  • the polarizing plate includes a polarizing film and a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer formed on the lower surface of the polarizing film, and the reverse wavelength dispersing positive A retardation layer is the positive C retardation layer It is formed directly on, the laminate of the reverse wavelength dispersion positive A retardation layer and the positive C retardation layer satisfies the following Equation 1 and Equation 2:
  • Rth[0] is the initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the laminate
  • Rth [500] is the phase difference (unit: nm) in the thickness direction at a wavelength of 550 nm of the laminate when the laminate is left at 85° C. for 500 hours,
  • Rth[0] is the initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the laminate
  • Rth[500] is the phase difference (unit: nm) in the thickness direction at a wavelength of 550 nm of the laminate when the laminate is left at 60°C and 95% relative humidity for 500 hours.
  • the reverse wavelength dispersibility positive A retardation layer may have a thickness direction retardation change amount ( ⁇ Rth) according to Equation 3 below 5 nm.
  • Amount of retardation change in thickness direction ( ⁇ Rth)
  • Rth[0] is an initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer,
  • Rth[500] is the thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer when the reverse wavelength dispersive positive A retardation layer is left at 85° C. for 500 hours.
  • the reverse wavelength dispersibility positive A retardation layer may have a thickness direction retardation change amount ( ⁇ Rth) according to Equation 4 below 2 nm.
  • Amount of retardation change in thickness direction ( ⁇ Rth)
  • Rth[0] is an initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer,
  • Rth[500] is a thickness direction phase difference at a wavelength of 550 nm of the reverse wavelength dispersive positive A phase difference layer when the reverse wavelength dispersive positive A phase difference layer is left at 60°C and 95% relative humidity for 500 hours (unit: nm). .
  • the reverse wavelength dispersibility positive A retardation layer may have an in-plane retardation change ( ⁇ Re) according to Equation 5 below 5 nm or more:
  • Re[0] is the wavelength of the MD x TD x (3cm x 3cm x 50 ⁇ m) inverse wavelength dispersibility positive
  • Re[1] is added dropwise with 1 drop of methyl ethyl ketone to the specimen of the reverse wavelength dispersible positive A retardation layer at 25° C., and after standing for 1 hour, Re(1) at wavelength 550nm of the specimen of the reverse wavelength dispersible positive A retardation layer. Unit:nm))).
  • the reverse wavelength dispersive positive A phase difference layer is a non-modified polycarbonate-based resin, cyclic olefin polymer resin, modified polycarbonate-based resin, isosorbide-based resin, cellulose-based resin, flu It may include a polymer film formed of at least one of an orene-based resin, a polyester-based resin.
  • the reverse wavelength dispersibility positive A phase difference layer may include a liquid crystal layer formed of at least one liquid crystal among nematic liquid crystal, smectic liquid crystal, and cholesteric liquid crystal.
  • the reverse wavelength dispersive positive A retardation layer may have an nx of 0.001 to 0.002, ny of -0.002 to -0.001, and nz of -0.002 to -0.001 at a wavelength of 550 nm.
  • the positive C retardation layer is a non-liquid crystal layer and may not have an alignment layer.
  • the positive C retardation layer may include a coating layer formed of a composition comprising at least one of a cellulose ester or a polymer thereof and an aromatic polymer.
  • the cellulose ester may include at least one of cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate.
  • the positive C phase difference layer may have an nx of -0.002 to -0.001, ny of -0.002 to -0.001, and nz of 0.001 to 0.002 at a wavelength of 550 nm.
  • the stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer may have an Rth of -50 nm to 50 nm at a wavelength of 550 nm.
  • the reverse wavelength dispersive positive A phase difference layer and the positive C phase difference layer may be sequentially formed on the lower surface of the polarizing film.
  • the reverse wavelength dispersion positive A retardation layer may further include a buffer layer on one surface in contact with the positive C retardation layer.
  • the buffer layer may have an in-plane retardation Re of 5 nm or less at a wavelength of 550 nm.
  • the buffer layer may occupy 1% to 20% of the total thickness of the inverse wavelength dispersion positive A retardation layer.
  • the optical display device of the present invention includes the polarizing plate of the present invention.
  • the present invention provides a polarizer having excellent durability and reliability due to a low amount of phase difference when left for a long time at high temperature and high temperature and high humidity.
  • the present invention provides a polarizing plate having excellent adhesion between the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer and thinning.
  • the present invention provides a polarizing plate having excellent bending reliability by suppressing the occurrence of mura due to heat on the side and preventing cracks or cracks due to bending.
  • FIG. 1 shows Rth at a wavelength of 550 nm according to the standing time when the reverse wavelength dispersive positive A phase difference layer of Example 1 was left at 85°C.
  • Figure 2 shows the Rth at a wavelength of 550nm of the reverse wavelength dispersion positive A phase difference layer according to the standing time when the reverse wavelength dispersion positive A retardation layer of Example 1 was left at 60 °C and 95% relative humidity.
  • FIG. 3 shows the Rth at a wavelength of 550 nm of the stack according to the standing time when the stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer of Example 1 was left at 85°C.
  • Figure 4 shows the Rth at a wavelength of 550nm of the laminate according to the standing time when the stack of the reverse wavelength dispersibility positive A phase difference layer and the positive C phase difference layer of Example 1 was left at 60 °C and 95% relative humidity will be.
  • Equation A in-plane retardation (Re)
  • Thickness phase retardation (Rth) is represented by Equation B below
  • NZ degree of biaxiality
  • NZ (nx-nz)/(nx-ny)
  • nx, ny, and nz are the refractive indexes of the slow axis direction, the fast axis direction, and the thickness direction of the optical element, respectively, at the measurement wavelength, and d is the thickness of the optical element (unit: nm)).
  • the “measurement wavelength” may mean a wavelength of 450 nm, 550 nm or 650 nm.
  • the “optical device” may mean a reverse wavelength dispersive A retardation layer, a positive C retardation layer, or a stack of a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer.
  • X to Y means X or more and Y or less (X ⁇ and ⁇ Y).
  • the inventor of the present invention has a reversed-wavelength dispersibility positive A phase difference layer having low durability and low reliability when the thickness direction retardation (Rth) change amount is high for high temperature and high temperature and high humidity, respectively, in the reverse wavelength dispersion positive
  • Rth thickness direction retardation
  • the positive C retardation layer is formed by directly coating the composition for the positive C retardation layer on the reverse wavelength dispersive positive A retardation layer.
  • the amount of change in the thickness direction retardation (Rth) of the reverse wavelength dispersive positive A retardation layer is low.
  • the laminate of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer is left at high temperature and high temperature for a long period of time, the laminate It can be confirmed that the Rth change amount is low.
  • the polarizing plate includes a polarizing film and an inverse wavelength dispersive positive A retardation layer and a positive C retardation layer laminated on the lower surface of the polarizing film, and the reverse wavelength dispersing positive A retardation layer is formed directly on the positive C retardation layer It is done.
  • the "directly formed” means that any other adhesive layer, adhesive layer, adhesive layer, or the like is not formed between the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer.
  • a stack of a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer is formed on a lower surface of a polarizing film to improve screen quality in a display device to which a polarizing plate is applied. If the stack of the reverse wavelength dispersibility positive A retardation layer and positive C retardation layer secures a retardation within a predetermined range, it is possible to improve screen quality by preventing reflection of external light. However, in order to secure the reliability of the polarizing plate, the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer, respectively, are left even if the stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer is left at high temperature and high temperature and high humidity for a long time.
  • the amount of phase difference in the thickness direction of the stack of the reverse wavelength dispersibility positive A retardation layer and the positive C retardation layer should be low, so that the side screen quality improvement effect can be stably exhibited even when left at high temperature and high temperature and high humidity for a long time.
  • the present inventor directly forms a specific positive C retardation layer on the reverse wavelength dispersive positive A retardation layer, so that the laminate of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer satisfies Equations 1 and 2 below. It was confirmed that:
  • Rth[0] is the initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the laminate
  • Rth [500] is the phase difference (unit: nm) in the thickness direction at a wavelength of 550 nm of the laminate when the laminate is left at 85° C. for 500 hours,
  • Rth[0] is the initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the laminate
  • Rth[500] is the phase difference (unit: nm) in the thickness direction at a wavelength of 550 nm of the laminate when the laminate is left at 60° C. and 95% relative humidity for 500 hours,
  • Equation 2 When Rth[0]-Rth[500]
  • Equation 1 may be 0 nm to 3 nm.
  • a stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer is positive C on the reverse wavelength dispersibility positive A retardation layer It can be prepared by directly coating and curing the composition for the retardation layer.
  • the stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer comprises a composition for the reverse wavelength dispersibility positive A retardation layer on the positive C retardation layer. It can be prepared by directly coating and curing.
  • the stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer may have Rth[0] of Equation 1 and Equation 2 of -50 nm to 50 nm, preferably -40 nm to 30 nm. In the above range, when applied to a display device, it is possible to improve screen quality by acting on external light.
  • the stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer may have Rth [500] of Equation 1 and Equation 2 of -50 nm to 50 nm, specifically -40 nm to 30 nm. In the above range, when applied to a display device, it is possible to improve screen quality by acting on external light.
  • the stack of the reverse wavelength dispersion positive A retardation layer and the positive C retardation layer may have an in-plane retardation (Re) of 110 nm to 170 nm, specifically 130 nm to 140 nm at a wavelength of 550 nm.
  • Re in-plane retardation
  • the stack of the reverse wavelength dispersive positive A retardation layer and positive C retardation layer may have a thickness of 1 ⁇ m to 90 ⁇ m, specifically 1 ⁇ m to 60 ⁇ m, and more specifically 5 ⁇ m to 60 ⁇ m. In the above range, it may be used in a polarizing plate and may have a thinning effect.
  • a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer may be sequentially stacked on the lower surface of the polarizing film.
  • the screen quality improvement effect may be better when sequentially stacked in the order of the reverse wavelength dispersion positive A retardation layer and positive C retardation layer from the lower surface of the polarizing film.
  • the reverse wavelength dispersibility positive A retardation layer may be a reverse wavelength dispersion and a positive A retardation layer having nx>ny ⁇ nz.
  • The'nx, ny, nz' are slow axis, fast axis, and refractive index in the thickness direction at a wavelength of 550 nm of the inverse wavelength dispersion positive A phase difference layer, respectively.
  • the “reverse wavelength dispersion” is the ratio of the in-plane retardation Re(450) at the wavelength 450nm to the in-plane retardation Re(550) at the wavelength 550nm of the reverse wavelength dispersibility positive A retardation layer (Re(450)/Re(550) )) may be 0.7 to 1.0.
  • the reverse wavelength dispersive positive A retardation layer may have Re(450)/Re(550) of 0.7 to 0.9, more preferably 0.8 to 0.9. In the above range, it is possible to increase the antireflection effect together with the positive C phase difference layer.
  • the "reverse wavelength dispersibility” is the ratio of the in-plane retardation Re(650) at the wavelength 650nm to the in-plane retardation Re(550) at the wavelength 550nm of the reverse wavelength dispersibility positive
  • a retardation layer (Re(650)/Re(550) )) may be 1.0 to 1.4, preferably 1.0 to 1.1. In the above range, it is possible to increase the antireflection effect together with the positive C phase difference layer.
  • the “reverse wavelength dispersion” may be Re(450)/Re(550) ⁇ Re(650)/Re(550).
  • the reverse wavelength dispersive positive A retardation layer may have an in-plane retardation Re(550) of 110 nm to 170 nm, for example, 130 nm to 155 nm, 130 nm to 150 nm, 130 nm to 140 nm at a wavelength of 550 nm. In the above range, it is possible to increase the antireflection effect together with the positive C phase difference layer.
  • the reverse wavelength dispersive positive A retardation layer may have a thickness direction retardation Rth of 60 nm to 100 nm, for example, 70 nm to 95 nm at a wavelength of 550 nm. In the above range, it is possible to increase the antireflection effect together with the positive C phase difference layer.
  • the reverse wavelength dispersive positive A retardation layer may have a degree of biaxiality NZ of 0.6 to 1.4, for example, 0.8 to 1.2 at a wavelength of 550 nm. In the above range, it may be effective to further reduce the reflectance when laminated to a polarizing film.
  • the reverse wavelength dispersive positive A retardation layer may have an nx of 0.001 to 0.002, ny of -0.002 to -0.001, and nz of -0.002 to -0.001 at a wavelength of 550 nm.
  • the reverse wavelength dispersion positive A phase difference implementation of the present invention may be possible.
  • the reverse wavelength dispersive positive A retardation layer may have a thickness direction retardation variation according to Equation 3 below greater than 5 nm, for example greater than 5 nm and less than 20 nm.
  • Amount of retardation change in thickness direction ( ⁇ Rth)
  • Rth[0] is an initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer,
  • Rth[500] is the thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer when the reverse wavelength dispersive positive A retardation layer is left at 85° C. for 500 hours.
  • the reverse wavelength dispersive positive A retardation layer may have a thickness direction retardation variation according to Equation 4 below greater than 2 nm, for example greater than 2 nm and less than 20 nm.
  • Amount of retardation change in thickness direction ( ⁇ Rth)
  • Rth[0] is an initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer,
  • Rth[500] is a thickness direction phase difference at a wavelength of 550 nm of the reverse wavelength dispersive positive A phase difference layer when the reverse wavelength dispersive positive A phase difference layer is left at 60°C and 95% relative humidity for 500 hours (unit: nm). .
  • the reverse wavelength dispersive positive A retardation layer can be a polymer film or a liquid crystal film.
  • the reverse wavelength dispersive positive A retardation layer can be a polymer film.
  • the polymer film is a polycarbonate-based resin (non-modified polycarbonate-based resin), a cyclic olefin polymer resin, a modified polycarbonate-based resin, an isosorbide-based resin, a cellulose-based resin including a triacetyl cellulose-based resin, and a fluorene-based resin. It may be a polymer film formed of at least one of resins and polyester resins. These films had a large amount of retardation in the thickness direction when they were left for a long time at high temperature and high temperature and high humidity.
  • the reverse wavelength dispersive positive A retardation layer is a film formed of a polycarbonate-based resin, a triacetylcellulose-based resin, etc., more preferably a film formed of a composition comprising a modified polycarbonate-based resin or a modified polycarbonate-based resin.
  • the reverse wavelength dispersive positive A retardation layer may be prepared by uniaxially or biaxially stretching or obliquely stretching the polymer film in an unstretched state.
  • the stretching method may be dry stretching or wet stretching, and detailed methods are known to those skilled in the art.
  • the optical axis when the machine direction (MD) of the reverse wavelength dispersive positive A retardation layer is 0°, the optical axis (slow axis of the reverse wavelength dispersive positive A retardation layer) is -5° to 5° or 40° to An angle of 50°, for example -5 to 5° or 45 ⁇ 3° (42° to 48°) can be achieved.
  • the reverse wavelength dispersive positive A retardation layer having an optical axis of 0° with respect to the MD of the reverse wavelength dispersing positive A retardation layer means a film stretched with MD of the reverse wavelength dispersing positive A retardation layer.
  • the reverse wavelength dispersive positive A retardation layer having an optical axis of -5° or more but less than 0°, more than 0° and less than 5°, and 40° to 50° means an obliquely stretched film do.
  • an anti-reflection effect can be obtained.
  • the reverse wavelength dispersive positive A retardation layer can be a liquid crystal film.
  • the amount of retardation may be increased as the alignment of the liquid crystal is distorted.
  • the present invention lowers the amount of phase difference change when left at high temperature or high temperature and high humidity for a long time by directly forming a specific positive C retardation layer on such a liquid crystal film.
  • an alignment layer may be formed on one surface of the liquid crystal film or there may be no alignment layer.
  • the liquid crystal film may be a liquid crystal layer formed of a liquid crystal composition including at least one of nematic liquid crystal, smectic liquid crystal, and cholesteric liquid crystal.
  • the liquid crystal may be either a temperature-transfer type liquid crystal in which a liquid crystal phase is expressed according to a change in temperature, or a concentration-transition type liquid crystal in which a liquid crystal phase is expressed according to the concentration of a solute in a solution state.
  • the liquid crystal composition includes a liquid crystal, and the content of the liquid crystal may be included in 40 parts by weight to 100 parts by weight based on 100 parts by weight of the solid content of the liquid crystal composition.
  • the liquid crystal composition further contains a chiral agent, so that a film having a desired refractive index can be obtained.
  • the liquid crystal composition may further include additives such as a leveling agent, a polymerization initiator, an alignment aid, a heat stabilizer, a lubricant, a plasticizer, and an antistatic agent.
  • the reverse wavelength dispersive positive A retardation layer may have a thickness of 1 ⁇ m to 90 ⁇ m.
  • the thickness when the reverse wavelength dispersive positive A retardation layer is a polymer film, the thickness may be 20 ⁇ m to 70 ⁇ m, more preferably 20 ⁇ m to 60 ⁇ m. In the above range, it can be used for a polarizing plate, and a thinning effect of the polarizing plate can be obtained.
  • the thickness may be 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m. In the above range, it can be used for a polarizing plate, and a thinning effect of the polarizing plate can be obtained.
  • An adhesive layer, an adhesive layer, or a point adhesive layer is additionally formed on the other side of the reverse wavelength dispersive positive A retardation layer, that is, a surface that does not directly contact the positive C retardation layer, thereby depositing a reverse wavelength dispersive positive A retardation layer (for example, Polarizing film).
  • a reverse wavelength dispersive positive A retardation layer for example, Polarizing film
  • the positive C retardation layer may be a positive C retardation layer having a refractive index relationship of nx ⁇ ny ⁇ nz. Through this, the positive C retardation layer may have an anti-reflective effect by interacting with a reverse wavelength dispersive positive A retardation layer.
  • The'nx, ny, nz' are slow axis, fast axis, and refractive index in the thickness direction at a wavelength of 550 nm of the positive C phase difference layer, respectively.
  • the positive C retardation layer may have an nx of -0.002 to -0.001, ny of -0.002 to -0.001, and nz of 0.001 to 0.002 at a wavelength of 550 nm. In the above range, there may be a control effect of the lateral phase difference by the positive C layer.
  • the positive C retardation layer may have an in-plane retardation (Re) of 10 nm or less, for example, 4 nm or less, and 0 nm to 4 nm at a wavelength of 550 nm.
  • Re in-plane retardation
  • the anti-reflection effect can be achieved by interacting with the reverse wavelength dispersive positive A phase difference layer.
  • the positive C retardation layer may have a thickness direction retardation (Rth) of -150 nm to -5 nm, for example -100 nm to -5 nm, for example -100 nm to -10 nm, -100 nm to -40 nm at a wavelength of 550 nm.
  • Rth thickness direction retardation
  • the positive C phase difference layer may have a thickness of more than 0 ⁇ m and 15 ⁇ m or less, preferably 1 ⁇ m to 8 ⁇ m, more preferably 2 ⁇ m to 6 ⁇ m. In the above range, it can be used as a positive C phase difference layer, and a thinning effect of the polarizing plate can be obtained.
  • the positive C phase difference layer may be a non-liquid crystal layer.
  • the positive C phase difference layer is formed of a liquid crystal, it may be difficult to satisfy Equations 1 and 2 above.
  • the positive C retardation layer does not have an alignment layer.
  • the positive C retardation layer is formed directly on the reverse wavelength dispersive positive A retardation layer.
  • the positive C retardation layer may be an unstretched layer.
  • the positive C retardation layer is a coating layer formed by coating and curing the composition for the positive C retardation layer described below, and does not require a stretching process in the manufacturing process.
  • the positive C retardation layer may be formed of at least one of a cellulose ester or a polymer thereof and an aromatic polymer.
  • the inventor of the present invention was looking for a material capable of producing the effects of Equations 1 and 2 when directly coated on the reverse wavelength dispersive positive A retardation layer among several materials capable of forming a positive C retardation layer. Or the polymer or aromatic polymer was found.
  • the positive C retardation layer can be formed of a cellulose ester or a polymer thereof.
  • the positive C retardation layer is made of liquid crystal by satisfying the above expressions 1 and 2, it is possible to suppress generation of mura due to heat on the side of contrast and to prevent cracks or cracks caused by bending, so that bending reliability can be excellent.
  • the cellulose ester or a polymer or an aromatic polymer thereof may improve adhesion between a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer, and lower the interfacial reflectance between the layers to increase the light transmittance of the polarizing plate.
  • the polarizing plate may have a light transmittance of 41% or more, for example, 42% to 46%.
  • Cellulose ester refers to the condensation reaction product from the reaction of hydroxyl groups on cellulose with carboxylic acid groups of carboxylic acids.
  • Cellulose esters can be substituted position-wise or randomly. Position selectivity can be measured by determining the relative degree of substitution in C6, C3, C2 on cellulose esters by carbon 13 NMR.
  • Cellulose esters can be prepared by conventional methods by contacting the cellulosic solution with one or more C1 to C20 acylating agents for a contact time sufficient to provide a cellulose ester with the desired degree of substitution and degree of polymerization.
  • Preferred acylating agents are one or more C1 to C20 straight or branched chain alkyl or aryl carboxylic anhydrides, carboxylic acid halides, diketones, or acetoacetic acid esters.
  • anhydrides of carboxylic acids include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, hexanoic anhydride, 2-ethylhexanoic anhydride, nonanoic anhydride, lauric anhydride, palmitic anhydride, Stearic anhydride, benzoic anhydride, substituted benzoic anhydride, phthalic anhydride, isophthalic anhydride.
  • carboxylic acid halides include acetyl, propionyl, butyryl, hexanoyl, 2-ethylhexanoyl, lauroyl, palmitoyl, benzoyl, substituted benzoyl, and stearoyl chloride.
  • acetoacetic acid esters may include methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, butyl acetoacetate, tertiary butyl acetoacetate.
  • acylating agents are C2 to C9 straight or branched chain alkyl carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, 2-ethylhexanoic anhydride, nonanoic anhydride, stearic anhydride, and the like.
  • cellulose esters may include, but are not limited to, one or more of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB).
  • CA cellulose acetate
  • CAP cellulose acetate propionate
  • CAB cellulose acetate butyrate
  • the positive C retardation layer may further include an additive having an aromatic fused ring in addition to the cellulose ester or a polymer thereof or an aromatic polymer.
  • the additive may serve to control the Rth expression rate and wavelength dispersion of the positive C retardation layer.
  • the aromatic fused ring may include naphthalene, anthracene, phenanthrene, pyrene, Formula 1 or Formula 2 below.
  • Examples of the additive may include, but are not limited to, 2-naphthyl benzoate, 2,6-naphthalene dicarboxylic acid diester of Formula 3, naphthalene, abietic acid ester of Formula 4 below, and the like:
  • R is C1 to C20 alkyl or C6 to C20 aryl, n is an integer from 0 to 6)
  • R is C1 to C20 alkyl or C6 to C20 aryl
  • At least one of the cellulose ester or its polymer and aromatic polymer has a linear change in the thickness direction retardation (Rth) at a wavelength of 550 nm according to the thickness of the positive C retardation layer, thereby realizing the retardation in the manufacturing process during manufacture of the positive C retardation layer. For high reliability.
  • the positive C retardation layer may be formed of a composition for a positive C retardation layer comprising at least one of the aforementioned cellulose ester or a polymer or aromatic polymer thereof.
  • the composition for the positive C retardation layer may include a solvent capable of improving the coatability of the composition in addition to the cellulose ester or a polymer or aromatic polymer described above.
  • the solvent may include, but is not limited to, organic solvents commonly used by those skilled in the art.
  • the solid content in the composition for the positive C retardation layer may be included in an amount of 0.1% to 20% by weight, preferably 5% to 20% by weight, and 9% to 15% by weight. In this range, the interface between the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer may be uniform.
  • composition for the positive C retardation layer may further include additives such as plasticizers, stabilizers, UV absorbers, block inhibitors, slip agents, lubricants, dyes, pigments, and delay improvers.
  • additives such as plasticizers, stabilizers, UV absorbers, block inhibitors, slip agents, lubricants, dyes, pigments, and delay improvers.
  • An adhesive layer, an adhesive layer, or a point adhesive layer is additionally formed on the other surface of the positive C retardation layer, that is, the surface that does not directly contact the reverse wavelength dispersion positive A retardation layer, thereby adhering the polarizing plate to an adherend, for example, an OLED panel, a liquid crystal panel, etc. I can do it.
  • the polarizing film may include a polyvinyl alcohol-based polarizer prepared by uniaxially stretching a polyvinyl alcohol-based film, or a polyene-based polarizer produced by dehydrating a polyvinyl alcohol-based film.
  • the polarizing film may have a thickness of 5 ⁇ m to 40 ⁇ m. In the above range, it can be used for a display device.
  • a protective layer may be additionally laminated on at least one surface of the polarizing film.
  • the protective layer protects the polarizing film, thereby increasing the reliability of the polarizing plate and increasing the mechanical strength of the polarizing plate.
  • the protective layer can include one or more of an optically transparent, protective film or protective coating layer.
  • the protective film includes a cellulose ester-based resin including triacetyl cellulose (TAC), a cyclic polyolefin-based resin including amorphous cyclic polyolefin (COP), a polycarbonate-based resin, polyethylene terephthalate (PET), and the like.
  • TAC triacetyl cellulose
  • COP cyclic polyolefin-based resin including amorphous cyclic polyolefin
  • PET polyethylene terephthalate
  • Poly(meth)acrylate-based resins including polyester-based resins, polyethersulfone-based resins, polysulfone-based resins, polyamide-based resins, polyimide-based resins, acyclic-polyolefin-based resins, and polymethylmethacrylate resins
  • a film formed of at least one of a resin, a polyvinyl alcohol-based resin, a polyvinyl chloride-based resin, and a polyvinylidene chloride-based resin may be included, but is not limited thereto.
  • the protective coating layer may be formed of an active energy ray-curable resin composition comprising an active energy ray-curable compound and a polymerization initiator.
  • the active energy ray-curable compound may include at least one of a cationically polymerizable curable compound, a radically polymerizable curable compound, a urethane resin, and a silicone resin.
  • a functional coating layer may be additionally formed on the other side of the polarizing film.
  • the functional coating layer may include, but is not limited to, one or more of a primer layer, a hard coating layer, an anti-fingerprint layer, an anti-reflection layer, an anti-glare layer, a low reflection layer, and an ultra low reflection layer.
  • the polarizing plate includes a polarizing film and an inverse wavelength dispersive positive A retardation layer and a positive C retardation layer sequentially stacked on a lower surface of the polarizing film, and the inverse wavelength dispersing positive A retardation layer is direct to the positive C retardation layer.
  • a stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer satisfies Equations 1 and 2, and the reverse wavelength dispersive positive A retardation layer dissolves when contacted with an organic solvent. And/or a polymer film or liquid crystal film that is susceptible to erosion.
  • the reverse wavelength dispersive positive A retardation layer may have an in-plane retardation change ( ⁇ Re) according to Equation 5 below 5 nm, for example, 20 nm to 200 nm, 20 nm to 150 nm:
  • Re[0] is the wavelength of the MD x TD x (3cm x 3cm x 50 ⁇ m) inverse wavelength dispersibility positive
  • Re[1] is added dropwise with 1 drop of methyl ethyl ketone to the specimen of the reverse wavelength dispersive positive A phase difference layer at 25° C., and after standing for 1 hour, Re (unit) at a wavelength of 550 nm of the specimen of the reverse wavelength dispersibility positive A phase difference layer. :nm).
  • the 1 drop may mean 0.001ml to 10ml, but is not limited thereto.
  • the reverse wavelength dispersive positive A retardation layer may include the polymer film of the reverse wavelength dispersive positive A retardation layer described above.
  • the positive C retardation layer is formed of a composition for a positive C retardation layer comprising at least one of a cellulose ester or a polymer thereof, an aromatic polymer, and a solvent, the solvent being a ketone solvent such as methyl isopropyl ketone (MIPK), acetone, propylene Ether-based solvents such as glycol methyl ether (PGME) and methyl tertiary butyl ether (t-BME), and at least one solvent of propylene glycol methyl ether acetate (PGMEA) may be used, but is not limited thereto.
  • the solvent may secure adhesion between a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer.
  • the reverse wavelength dispersion positive A retardation layer may further include a buffer layer on one surface in contact with the positive C retardation layer.
  • the buffer layer may be a solvent erosion layer formed by eroding a portion of the reverse wavelength dispersive positive A retardation layer when coating the composition for the positive C retardation layer on the reverse wavelength dispersive positive A retardation layer.
  • the buffer layer may have a thickness of 10 ⁇ m or less. In the above range, the adhesion between the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer can be increased.
  • the buffer layer may have an in-plane retardation Re of 5 nm or less, preferably 0 nm or more and 3 nm or less at a wavelength of 550 nm. In the above range, the reverse wavelength dispersibility positive A phase difference layer and the positive C phase difference layer may serve as a buffer layer without affecting the phase difference of each.
  • the buffer layer may occupy 1% to 20% of the total thickness of the reverse wavelength dispersive positive A retardation layer. In the above range, it is possible to increase the adhesion while realizing the phase difference of the reverse wavelength dispersibility positive A phase difference layer.
  • the buffer layer may be present in the solvent of 1ppm to 30,000ppm, preferably 300ppm to 10,000ppm. In the above range, when left at high temperature or high temperature and high humidity for a long time, deformation of the polarizing plate due to solvent volatilization, reverse wavelength dispersibility positive A retardation layer, or positive C retardation layer may be prevented, and adhesion may not be affected.
  • the solvent may be a mixture of a ketone-based solvent and an ether-based solvent.
  • the ketone solvent is 40% to 70% by weight in the mixture, preferably 45% to 55% by weight
  • the ether solvent is 30% to 60% by weight in the mixture, preferably 45% to 55% by weight It may be included in weight percent.
  • the adhesion between the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer may be good.
  • the solvent may include methyl ethyl isopropyl ketone alone, a mixture of methyl isopropyl ketone and propylene glycol methyl ether, or a mixture of acetone and propylene glycol methyl ether.
  • One or more of methyl isopropyl ketone and acetone in the mixture may include 40% to 70% by weight, preferably 45% to 55% by weight.
  • Propylene glycol methyl ether in the mixture may include 30% to 60% by weight, preferably 45% to 55% by weight. In the above range, the adhesion between the reverse wavelength dispersive positive A retardation layer and the positive C layer may be good.
  • optical display device of the present invention will be described.
  • the optical display device of the present invention may include one or more of the polarizing plates of the present invention.
  • the optical display device may include a liquid crystal display device, a light emitting device display device, and preferably a light emitting device display device.
  • the liquid crystal display device may include a liquid crystal display device having liquid crystal for IPS (In Place Switching).
  • the light emitting device display device includes an organic or organic light emitting device, and includes, for example, light emitting diodes (LEDs), organic light emitting diodes (OLEDs), quantum dot light emitting diodes (QLEDs), and phosphors. It may mean a light emitting device.
  • phase difference was measured using Axoscan.
  • PC polycarbonate-based film
  • Re 140 nm
  • Rth 85 nm
  • NZ 1.1
  • Re (450)/Re (550) 0.85
  • the reverse wavelength dispersive positive A phase difference layer had a ⁇ Re of 5 nm or more by Equation 5 above.
  • a composition for positive C retardation layer having a solid content of 10% by weight was prepared by uniformly mixing VM (Eastman, cellulose acetate-based) and solvent MIPK (methyl isopropyl ketone).
  • the "solid content” means the weight ratio of the content of the VM in the composition for the positive C retardation layer.
  • a triacetylcellulose (TAC) film (KC2UAW, Konica Minolta Opto, Inc.) was attached to the upper surface of the polarizer, and the reverse wavelength dispersive positive A retardation layer was attached to the lower surface of the polarizer.
  • TAC triacetylcellulose
  • Re 0 nm
  • Rth -70 nm
  • a retardation layer-positive C retardation layer was sequentially stacked polarizing plate was prepared.
  • the reverse wavelength dispersibility positive A liquid crystal film had ⁇ Re of the above formula 5 of 5 nm or more.
  • a polarizer was prepared in the same manner as in Example 1.
  • PET polyethylene terephthalate
  • a triacetylcellulose (TAC) film (KC2UAW, Konica Minolta Opto, Inc.) was adhered to the upper surface of the prepared polarizer, and the reverse wavelength dispersive positive A phase difference layer as in Example 1 was adhered to the lower surface of the polarizer.
  • TAC triacetylcellulose
  • TAC film-polarizer-reverse wavelength dispersive positive A retardation layer by adhering the laminate of the prepared positive C retardation layer and release film to the lower surface of the reverse wavelength dispersive positive A retardation layer with an acrylic adhesive and peeling the release film -Acrylic adhesive layer-A positive C phase difference layer (cellulose acetate-based) was sequentially formed polarizing plate.
  • a polarizing plate was manufactured in the same manner as in Example 1, except that the positive C retardation layer was formed of a homeotropic liquid crystal (Merck). TAC film-polarizer-reverse wavelength dispersive positive A retardation layer by sequentially coating the alignment film 2 ⁇ m, liquid crystal 0.5 ⁇ m on the PET film, laminating the adhesive layer on the reverse wavelength dispersibility positive A retardation layer and transferring the coated liquid crystal -A polarizing plate in which positive C retardation layers (homeotropic liquid crystals) were sequentially stacked was prepared.
  • Example 1 the composition for the positive C retardation layer was changed to a methyl methacrylate-based composition, and the thickness of the positive C retardation layer was changed as shown in Table 1 below.
  • -Polarizer-Reverse wavelength dispersibility Positive A retardation layer-A positive C retardation layer (methyl methacrylate-based) was sequentially laminated polarizing plate was prepared.
  • the inverse wavelength dispersion positive A retardation layer of Example 1 was left at 85° C. and the thickness direction retardation (Rth) was measured at a wavelength of 550 nm according to the standing time. The results are shown in FIG. 1.
  • the reverse wavelength dispersion positive A retardation layer rapidly increased in a thickness direction retardation (Rth) after standing at 85° C. for 24 hours.
  • the reverse wavelength dispersibility positive A phase difference layer of Example 1 was 7 nm of Equation 3 when left at 85° C. for 500 hours.
  • the reverse wavelength dispersion positive A retardation layer of Example 1 was measured at a thickness of 550 nm according to the standing time while standing at 60° C. and 95% relative humidity. The results are shown in FIG. 2.
  • the reverse wavelength dispersive positive A phase difference layer rapidly increased Rth after standing at 60° C. and 95% relative humidity for 24 hours.
  • the reverse wavelength dispersibility positive A phase difference layer of Example 1 was about 2.5 nm when the Rth change in Equation 4 was left at 60° C. and 95% relative humidity for 500 hours.
  • Table 1 The physical properties of Table 1 below were evaluated for the laminate and polarizing plate of the reverse wavelength dispersibility A phase difference layer and the positive C phase difference layer prepared in Examples and Comparative Examples. The results are shown in Tables 1, 3 and 4 below.
  • Durability 1 (unit: nm): Reverse wavelength dispersibility A layered phase difference was measured at a wavelength of 550 nm of the layered product while leaving the layered product of the A phase difference layer and the positive C phase difference layer at 85°C. The thickness direction retardation at 0 hours and the thickness direction retardation after 500 hours were determined. The amount of retardation in the thickness direction
  • Adhesion (unit: number): The adhesion was evaluated for the polarizing plates prepared in Examples and Comparative Examples.
  • the polarizing plate was cut into a square shape of length x width (10 cm x 10 cm), and an adhesive tape (Nichi Ichibang) was attached to the positive C layer side of the polarizing plate.
  • the back-wave dispersion dispersive positive A phase difference layer was cut into 10 rows and 10 rows.
  • the adhesive tape was detached, the number of detached specimens among 100 specimens was evaluated. The larger the adhesion between the positive C retardation layer and the reverse wavelength dispersibility positive A retardation layer, the more the 100 specimens are detached.
  • Example Comparative example One 2 3 One 2 3 Reverse wavelength dispersion +A material Denatured PC film LCD film Denatured PC film Denatured PC film Denatured PC film Denatured PC film ⁇ Rth @85°C in Equation 3, 500HR 7 9 7 7 7 7 ⁇ Rth of Equation 4 @60°C,95%, 500HR 2.5 3.0 2.5 2.5 2.5 2.5 +C phase difference layer Cellulose acetate system Cellulose acetate system Cellulose acetate system Cellulose acetate system Homeotropic LCD Methyl methacrylate system +C phase difference layer thickness ( ⁇ m) 3 3 5 3 0.5 40 Durability 1 (Equation 1, nm) One 3 One 6 8 7 Durability 2 (Equation 2, nm) One 2 0.5 5 7 6 Flexural reliability 0 0 0 0 4 5 Adhesion 0 0 0 0 0 0 0 0 0 0 0
  • the amount of phase difference change is low, so durability and reliability are excellent, and cracks can be prevented from being cracked even by bending.
  • the adhesion between the wavelength-dispersive positive A retardation layer and the positive C retardation layer is excellent and has a thinning effect. Referring to FIGS. 3 and 4, it can be seen that the amount of change in Rth of the reverse wavelength dispersive positive A retardation layer and positive C retardation layer was very low according to 24 hours, 120 hours, 250 hours, and 500 hours.
  • Comparative Example 2 and Comparative Example 3 without the positive C retardation layer of the present invention Comparative Example 1 in which the positive C retardation layer of the present invention is not formed directly on the reverse wavelength dispersive positive A retardation layer is described above. All the effects of the present invention could not be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

Provided are: a polarizing plate comprising a polarizing film, and a reverse-wavelength dispersible positive A phase difference layer and a positive C phase difference layer which are formed on the lower surface of the polarizing film, wherein the reverse-wavelength dispersible positive A phase difference layer is directly formed on the positive C phase difference layer, and a laminate having the reverse-wavelength dispersible positive A phase difference layer and the positive C phase difference layer satisfies formula 1 and formula 2; and an optical display device including same.

Description

편광판 및 이를 포함하는 광학표시장치Polarizing plate and optical display device including same
본 발명은 편광판 및 이를 포함하는 광학표시장치에 관한 것이다. 보다 상세하게는, 본 발명은 위상차 변화량의 내구성과 신뢰성이 우수하고, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층 간의 부착력이 우수하고 박형화 및 굴곡 신뢰성이 우수한 편광판 및 이를 포함하는 광학표시장치에 관한 것이다.The present invention relates to a polarizing plate and an optical display device including the same. More specifically, the present invention is excellent in durability and reliability of the amount of retardation change, the adhesive strength between the reverse wavelength dispersibility positive A retardation layer and positive C retardation layer, excellent in thinning and bending reliability, a polarizing plate and an optical display device including the same It is about.
OLED 표시 장치는 외광에 의한 반사 방지 효과를 내기 위해 편광판을 구비할 필요가 있다. 반사 방지 효과는 OLED 표시 장치의 화면 품질을 개선할 수 있다. 편광판은 편광자의 하부면에 역파장 분산성 1/4 위상차 층과 포지티브 C 위상차 층이 적층된 2 매형 적층체를 포함하거나 1/2 위상차 층과 1/4 위상차 층이 적층된 2 매형 적층체를 포함할 수 있다. 역파장 분산성 1/4 위상차 층과 포지티브 C 위상차 층이 적층된 2 매형 적층체의 경우 포지티브 C 위상차 층으로서 액정형의 포지티브 C 위상차 층이 사용되고 있다.It is necessary for the OLED display device to include a polarizing plate in order to produce an anti-reflective effect by external light. The anti-reflection effect may improve the screen quality of the OLED display device. The polarizing plate includes a two-sheet laminate in which a reverse wavelength dispersion 1/4 phase difference layer and a positive C phase difference layer are stacked on the lower surface of the polarizer, or a two-sheet laminate in which a 1/2 phase difference layer and a 1/4 phase difference layer are stacked. It can contain. In the case of a two-layer laminate in which a reverse wavelength dispersibility 1/4 retardation layer and a positive C retardation layer are stacked, a liquid crystal type positive C retardation layer is used as a positive C retardation layer.
역파장 분산성 1/4 위상차 층은 연신 필름 또는 액정 필름이 될 수 있다. 그런데, 연신 필름은 고온 또는 고온 고습에서 장기간 방치할 경우 연신에 따른 수축 또는 축 틀어짐이 발생하여 위상차가 변화될 수 있음을 확인하였다. 액정 필름 역시 액정의 배향에 따라 위상차가 나타내어지므로 고온 또는 고온 고습에서 장기간 방치할 경우 액정 배향이 틀어져서 위상차가 변화될 수 있다. 위상차 변화는 역파장 분산성 1/4 위상차 층과 포지티브 C 위상차 층의 2 매형 적층체에도 위상차 변화를 일으킴으로써 광학표시장치에 적용시 화면 품질에 악영향을 줄 수 있다.The reverse wavelength dispersibility quarter retardation layer may be a stretched film or a liquid crystal film. However, it was confirmed that the retardation can be changed when the stretched film is left at high temperature or high temperature and high humidity for a long period of time due to shrinkage or axial distortion due to stretching. Since the liquid crystal film also exhibits a phase difference depending on the alignment of the liquid crystal, when left at high temperature or high temperature and high humidity for a long period of time, the liquid crystal alignment may be distorted and the phase difference may change. The phase difference change can also adversely affect the screen quality when applied to an optical display device by causing a phase difference change in a two-layer stacked structure of a reverse wavelength dispersion 1/4 phase difference layer and a positive C phase difference layer.
한편, 최근 플렉서블 광학표시장치에 대한 관심이 증폭되고 있는 만큼, 플렉서블 광학표시장치에 포함되는 편광판에 대해서도 굴곡성이 요구되고 있다. 굴곡성이 좋지 않은 편광판은 플렉서블 광학표시장치에 적용시 깨짐이나 크랙 등이 발생할 수 있어 화면 품질에 악영향을 줄 수 있다.On the other hand, as interest in a flexible optical display device has recently been amplified, flexibility for a polarizing plate included in the flexible optical display device is also required. A polarizing plate having poor flexibility may cause cracks or cracks when applied to a flexible optical display device, which may adversely affect the screen quality.
본 발명의 배경 기술은 한국공개특허 제10-2015-0122410호 등에 개시되어 있다.Background art of the present invention is disclosed in Korean Patent Publication No. 10-2015-0122410 and the like.
본 발명의 목적은 고온 및 고온 고습에서 장기간 방치할 경우 위상차 변화량이 낮아 내구성과 신뢰성이 우수한 편광판을 제공하는 것이다.An object of the present invention is to provide a polarizing plate excellent in durability and reliability because the amount of phase difference change is low when left at high temperature and high temperature and high humidity for a long time.
본 발명의 다른 목적은 역파장 분산성 포지티브 A(+A) 위상차 층과 포지티브 C(+C) 위상차 층 간의 부착력이 우수하고 박형화의 효과가 있는 편광판을 제공하는 것이다.Another object of the present invention is to provide a polarizing plate having excellent adhesion and thinning effect between the reverse wavelength dispersive positive A(+A) retardation layer and the positive C(+C) retardation layer.
본 발명의 또 다른 목적은 측면에서의 열에 의한 무라 발생을 억제하고, 굴곡에 의한 깨짐이나 크랙을 방지할 수 있어 굴곡 신뢰성이 우수한 편광판을 제공하는 것이다.Another object of the present invention is to provide a polarizing plate having excellent bending reliability by suppressing the occurrence of mura caused by heat on the side and preventing cracks or cracks due to bending.
본 발명의 일 관점은 편광판이다.One aspect of the present invention is a polarizing plate.
1 구체예에서, 편광판은 편광 필름 및 상기 편광 필름의 하부면에 형성된 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층을 포함하고, 상기 역파장 분산성 포지티브 A 위상차 층은 상기 포지티브 C 위상차 층에 직접적으로 형성되고, 상기 역파장 분산성 포지티브 A 위상차 층과 상기 포지티브 C 위상차 층의 적층체는 하기 식 1과 하기 식 2를 만족시킨다:In one embodiment, the polarizing plate includes a polarizing film and a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer formed on the lower surface of the polarizing film, and the reverse wavelength dispersing positive A retardation layer is the positive C retardation layer It is formed directly on, the laminate of the reverse wavelength dispersion positive A retardation layer and the positive C retardation layer satisfies the following Equation 1 and Equation 2:
[식 1][Equation 1]
0nm ≤ |Rth[0] - Rth[500]| ≤ 5nm0nm ≤ |Rth[0]-Rth[500]| ≤ 5nm
(상기 식 1에서, (Equation 1 above,
Rth[0]은 상기 적층체의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is the initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the laminate,
Rth[500]은 상기 적층체를 85℃에서 500시간 방치하였을 때 상기 적층체의 파장 550nm에서 두께 방향 위상차(단위:nm)),Rth [500] is the phase difference (unit: nm) in the thickness direction at a wavelength of 550 nm of the laminate when the laminate is left at 85° C. for 500 hours,
[식 2][Equation 2]
0nm ≤ |Rth[0] - Rth[500]| ≤ 2nm0nm ≤ |Rth[0]-Rth[500]| ≤ 2nm
(상기 식 2에서, (In Equation 2 above,
Rth[0]은 상기 적층체의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is the initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the laminate,
Rth[500]은 상기 적층체를 60℃ 및 95% 상대습도에서 500시간 방치하였을 때 상기 적층체의 파장 550nm에서 두께 방향 위상차(단위:nm)).Rth[500] is the phase difference (unit: nm) in the thickness direction at a wavelength of 550 nm of the laminate when the laminate is left at 60°C and 95% relative humidity for 500 hours.
2. 상기 1 구체예에서, 상기 역파장 분산성 포지티브 A 위상차 층은 하기 식 3에 따른 두께 방향 위상차 변화량(△Rth)이 5nm 초과일 수 있다.2. In the above 1 embodiment, the reverse wavelength dispersibility positive A retardation layer may have a thickness direction retardation change amount (ΔRth) according to Equation 3 below 5 nm.
[식 3][Equation 3]
두께 방향 위상차 변화량(△Rth) = |Rth[0] - Rth[500]|Amount of retardation change in thickness direction (△Rth) = |Rth[0]-Rth[500]|
(상기 식 3에서,(Equation 3 above,
Rth[0]은 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is an initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer,
Rth[500]은 상기 역파장 분산성 포지티브 A 위상차 층을 85℃에서 500시간 방치하였을 때 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 두께 방향 위상차(단위:nm)).Rth[500] is the thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer when the reverse wavelength dispersive positive A retardation layer is left at 85° C. for 500 hours.
3.상기 1-2 구체예에서, 상기 역파장 분산성 포지티브 A 위상차 층은 하기 식 4에 따른 두께 방향 위상차 변화량(△Rth)이 2nm 초과일 수 있다.3. In the above 1-2 embodiments, the reverse wavelength dispersibility positive A retardation layer may have a thickness direction retardation change amount (ΔRth) according to Equation 4 below 2 nm.
[식 4][Equation 4]
두께 방향 위상차 변화량(△Rth) = |Rth[0] - Rth[500]|Amount of retardation change in thickness direction (△Rth) = |Rth[0]-Rth[500]|
(상기 식 4에서, (In the above equation 4,
Rth[0]은 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is an initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer,
Rth[500]은 상기 역파장 분산성 포지티브 A 위상차 층을 60℃ 및 95% 상대습도에서 500시간 방치하였을 때 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 두께 방향 위상차(단위:nm)).Rth[500] is a thickness direction phase difference at a wavelength of 550 nm of the reverse wavelength dispersive positive A phase difference layer when the reverse wavelength dispersive positive A phase difference layer is left at 60°C and 95% relative humidity for 500 hours (unit: nm). .
4.상기 1-3 구체예에서, 상기 역파장 분산성 포지티브 A 위상차 층은 하기 식 5에 따른 면내 위상차 변화량(△Re)이 5nm 이상일 수 있다:4. In the above 1-3 embodiments, the reverse wavelength dispersibility positive A retardation layer may have an in-plane retardation change (ΔRe) according to Equation 5 below 5 nm or more:
[식 5][Equation 5]
면내 위상차 변화량(△Re) = |Re[0] - Re[1]|In-plane phase difference change amount (△Re) = |Re[0]-Re[1]|
(상기 식 5에서, (Equation 5 above,
Re[0]은 MD x TD x 두께 (3cm x 3cm x 50㎛)의 역파장 분산성 포지티브 A 위상차 층 시편의 파장 550nm에서 Re(단위:nm)Re[0] is the wavelength of the MD x TD x (3cm x 3cm x 50㎛) inverse wavelength dispersibility positive A phase difference layer Re (at:550nm wavelength 550nm)
Re[1]은 25℃에서 상기 역파장 분산성 포지티브 A 위상차 층의 시편에 메틸에틸케톤을 1방울 적가하고 1 시간 방치 후 상기 역파장 분산성 포지티트 A 위상차 층의 시편의 파장 550nm에서 Re(단위:nm))).Re[1] is added dropwise with 1 drop of methyl ethyl ketone to the specimen of the reverse wavelength dispersible positive A retardation layer at 25° C., and after standing for 1 hour, Re(1) at wavelength 550nm of the specimen of the reverse wavelength dispersible positive A retardation layer. Unit:nm))).
5. 상기 1-4 구체예에서, 상기 역파장 분산성 포지티브 A 위상차 층은 비변성 폴리카보네이트계 수지, 시클릭올레핀폴리머 수지, 변성 폴리카보네이트계 수지, 이소소르비드계 수지, 셀룰로오스계 수지, 플루오렌계 수지, 폴리에스테르계 수지 중 1종 이상으로 형성된 폴리머 필름을 포함할 수 있다.5. In the above 1-4 embodiment, the reverse wavelength dispersive positive A phase difference layer is a non-modified polycarbonate-based resin, cyclic olefin polymer resin, modified polycarbonate-based resin, isosorbide-based resin, cellulose-based resin, flu It may include a polymer film formed of at least one of an orene-based resin, a polyester-based resin.
6. 상기 1-5 구체예에서, 상기 역파장 분산성 포지티브 A 위상차 층은 네마틱 액정, 스메틱 액정, 콜레스테릭 액정 중 1종 이상의 액정으로 형성된 액정층을 포함할 수 있다.6. In the above 1-5 embodiment, the reverse wavelength dispersibility positive A phase difference layer may include a liquid crystal layer formed of at least one liquid crystal among nematic liquid crystal, smectic liquid crystal, and cholesteric liquid crystal.
7. 상기 1-6 구체예에서, 상기 역파장 분산성 포지티브 A 위상차 층은 파장 550nm에서 nx가 0.001 내지 0.002, ny가 -0.002 내지 -0.001, nz가 -0.002 내지 -0.001일 수 있다.7. In the above 1-6 embodiment, the reverse wavelength dispersive positive A retardation layer may have an nx of 0.001 to 0.002, ny of -0.002 to -0.001, and nz of -0.002 to -0.001 at a wavelength of 550 nm.
8. 상기 1-7 구체예에서, 상기 포지티브 C 위상차 층은 비 액정층이고 배향막이 없을 수 있다.8. In the above 1-7 embodiment, the positive C retardation layer is a non-liquid crystal layer and may not have an alignment layer.
9. 상기 1-8 구체예에서, 상기 포지티브 C 위상차 층은 셀룰로스 에스테르 또는 그의 중합체, 방향족 중합체 중 1종 이상으로 포함하는 조성물로 형성된 코팅층을 포함할 수 있다.9. In the above 1-8 embodiment, the positive C retardation layer may include a coating layer formed of a composition comprising at least one of a cellulose ester or a polymer thereof and an aromatic polymer.
10. 상기 9 구체예에서, 상기 셀룰로스 에스테르는 셀룰로스 아세테이트, 셀룰로스 아세테이트 프로피오네이트, 셀룰로스 아세테이트 부티레이트 중 1종 이상을 포함할 수 있다.10. In the above 9 embodiment, the cellulose ester may include at least one of cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate.
11. 상기 1-10 구체예에서, 상기 포지티브 C 위상차 층은 파장 550nm에서 nx가 -0.002 내지 -0.001, ny가 -0.002 내지 -0.001, nz가 0.001 내지 0.002일 수 있다.11. In the embodiment 1-10, the positive C phase difference layer may have an nx of -0.002 to -0.001, ny of -0.002 to -0.001, and nz of 0.001 to 0.002 at a wavelength of 550 nm.
12. 상기 1-11 구체예에서, 상기 역파장 분산성 포지티브A 위상차 층과 상기 포지티브 C 위상차 층의 적층체는 파장 550nm에서 Rth가 -50nm 내지 50nm일 수 있다.12. In the embodiment 1-11, the stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer may have an Rth of -50 nm to 50 nm at a wavelength of 550 nm.
13. 상기 1-12 구체예에서, 상기 편광 필름의 하부면에 상기 역파장 분산성 포지티브 A 위상차 층과 상기 포지티브 C위상차 층이 순차적으로 형성될 수 있다.13. In the embodiment 1-12, the reverse wavelength dispersive positive A phase difference layer and the positive C phase difference layer may be sequentially formed on the lower surface of the polarizing film.
14. 상기 1-13 구체예에서, 상기 역파장 분산성 포지티브 A 위상차 층은 상기 포지티브 C 위상차 층과 접하는 일면에 버퍼층이 더 형성될 수 있다.14. In the embodiment 1-13, the reverse wavelength dispersion positive A retardation layer may further include a buffer layer on one surface in contact with the positive C retardation layer.
15. 상기 14 구체예에서, 상기 버퍼층은 파장 550nm에서 면내 위상차 Re가 5nm 이하일 수 있다.15. In the above 14 embodiment, the buffer layer may have an in-plane retardation Re of 5 nm or less at a wavelength of 550 nm.
16. 상기 14 구체예에서, 상기 버퍼층은 상기 역파장 분산성 포지티브 A 위상차 층의 전체 두께의 1% 내지 20%를 차지할 수 있다. 16. In the 14 embodiment, the buffer layer may occupy 1% to 20% of the total thickness of the inverse wavelength dispersion positive A retardation layer.
본 발명의 광학표시장치는 본 발명의 편광판을 포함한다.The optical display device of the present invention includes the polarizing plate of the present invention.
본 발명은 고온 및 고온 고습에서 장기간 방치할 경우 위상차 변화량이 낮아 내구성과 신뢰성이 우수한 편광판을 제공하였다.The present invention provides a polarizer having excellent durability and reliability due to a low amount of phase difference when left for a long time at high temperature and high temperature and high humidity.
본 발명은 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층 간의 부착력이 우수하고 박형화가 가능한 편광판을 제공하였다.The present invention provides a polarizing plate having excellent adhesion between the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer and thinning.
본 발명은 측면에서의 열에 의한 무라 발생을 억제하고, 굴곡에 의한 깨짐이나 크랙을 방지할 수 있어 굴곡 신뢰성이 우수한 편광판을 제공하였다.The present invention provides a polarizing plate having excellent bending reliability by suppressing the occurrence of mura due to heat on the side and preventing cracks or cracks due to bending.
도 1은 실시예 1의 역파장 분산성 포지티브 A 위상차 층을 85℃에서 방치하였을 때 방치 시간에 따른 파장 550nm에서의 Rth를 나타낸 것이다.FIG. 1 shows Rth at a wavelength of 550 nm according to the standing time when the reverse wavelength dispersive positive A phase difference layer of Example 1 was left at 85°C.
도 2는 실시예 1의 역파장 분산성 포지티브 A 위상차 층을 60℃ 및 95% 상대습도에서 방치하였을 때 방치 시간에 따른 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서의 Rth를 나타낸 것이다.Figure 2 shows the Rth at a wavelength of 550nm of the reverse wavelength dispersion positive A phase difference layer according to the standing time when the reverse wavelength dispersion positive A retardation layer of Example 1 was left at 60 ℃ and 95% relative humidity.
도 3은 실시예 1의 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체를 85℃에서 방치하였을 때 방치 시간에 따른 상기 적층체의 파장 550nm에서의 Rth를 나타낸 것이다.FIG. 3 shows the Rth at a wavelength of 550 nm of the stack according to the standing time when the stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer of Example 1 was left at 85°C.
도 4는 실시예 1의 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체를 60℃ 및 95% 상대습도에서 방치하였을 때 방치 시간에 따른 상기 적층체의 파장 550nm에서의 Rth를 나타낸 것이다.Figure 4 shows the Rth at a wavelength of 550nm of the laminate according to the standing time when the stack of the reverse wavelength dispersibility positive A phase difference layer and the positive C phase difference layer of Example 1 was left at 60 °C and 95% relative humidity will be.
첨부한 도면을 참조하여, 하기 실시예에 의하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. With reference to the accompanying drawings, it will be described in detail so that those skilled in the art to which the present invention pertains can be easily implemented by the following examples. The present invention can be implemented in many different forms and is not limited to the embodiments described herein.
본 명세서에서 "면내 위상차(Re)"는 하기 식 A로 표시되고, "두께 방향 위상차(Rth)"는 하기 식 B로 표시되고, "이축성 정도(NZ)"는 하기 식 C로 표시될 수 있다:In this specification, "in-plane retardation (Re)" is represented by Equation A below, "thickness phase retardation (Rth)" is represented by Equation B below, and "degree of biaxiality (NZ)" can be represented by Equation C below. have:
[식 A][Equation A]
Re = (nx - ny) x dRe = (nx-ny) x d
[식 B][Equation B]
Rth = ((nx + ny)/2 - nz) x dRth = ((nx + ny)/2-nz) x d
[식 C][Equation C]
NZ = (nx - nz)/(nx - ny)NZ = (nx-nz)/(nx-ny)
(상기 식 A 내지 식 C에서, nx, ny, nz는 측정 파장에서 각각 광학 소자의 지상축 방향, 진상축 방향, 두께 방향의 굴절률이고, d는 광학 소자의 두께(단위:nm)이다). (In the above formulas A to C, nx, ny, and nz are the refractive indexes of the slow axis direction, the fast axis direction, and the thickness direction of the optical element, respectively, at the measurement wavelength, and d is the thickness of the optical element (unit: nm)).
상기 "측정 파장"은 파장 450nm, 550nm 또는 650nm를 의미할 수 있다. 상기 "광학 소자"는 역파장 분산성 A 위상차 층, 포지티브 C 위상차 층, 또는 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체를 의미할 수 있다.The “measurement wavelength” may mean a wavelength of 450 nm, 550 nm or 650 nm. The "optical device" may mean a reverse wavelength dispersive A retardation layer, a positive C retardation layer, or a stack of a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer.
본 명세서에서 수치 범위 기재 시 "X 내지 Y"는 X 이상 Y 이하(X≤ 그리고 ≤Y)를 의미한다.When describing a numerical range in this specification, "X to Y" means X or more and Y or less (X≤ and ≤Y).
본 발명의 발명자는 고온 및 고온 고습에서 각각 장기간 방치할 경우 두께 방향 위상차(Rth) 변화량이 커서 내구성과 신뢰성이 낮은 역파장 분산성 포지티브 A 위상차 층을 포함하는 편광판에 있어서, 상기 역파장 분산성 포지티브 A 위상차 층에 특정 포지티브 C 위상차 층을 직접적으로 형성함으로써 역파장 분산성 포지티브 A 위상차 층을 고온 및 고온 고습에서 장기간 방치할 경우에도 두께 방향 위상차(Rth) 변화량이 낮으며, 굴곡 신뢰성이 우수하고, 측면에서 열에 의한 무라 발생을 억제하는 효과가 있음을 확인하고 본 발명을 완성하였다.The inventor of the present invention has a reversed-wavelength dispersibility positive A phase difference layer having low durability and low reliability when the thickness direction retardation (Rth) change amount is high for high temperature and high temperature and high humidity, respectively, in the reverse wavelength dispersion positive By forming a specific positive C retardation layer directly on the A retardation layer, even when the reverse wavelength dispersion positive A retardation layer is left for a long time at high temperature and high temperature and high humidity, the thickness direction retardation (Rth) change amount is low, and the bending reliability is excellent, From the side, it was confirmed that there is an effect of suppressing the occurrence of mura caused by heat, and the present invention was completed.
상기 포지티브 C 위상차 층은 상기 역파장 분산성 포지티브 A 위상차 층에 상기 포지티브 C 위상차 층을 위한 조성물을 직접 코팅함으로써 형성된다. 역파장 분산성 포지티브 A 위상차 층의 두께 방향 위상차(Rth) 변화량이 낮다는 것은 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체를 고온 및 고온 고습에서 장기간 방치할 경우 상기 적층체의 Rth 변화량이 낮다는 것으로 확인할 수 있다.The positive C retardation layer is formed by directly coating the composition for the positive C retardation layer on the reverse wavelength dispersive positive A retardation layer. The amount of change in the thickness direction retardation (Rth) of the reverse wavelength dispersive positive A retardation layer is low. When the laminate of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer is left at high temperature and high temperature for a long period of time, the laminate It can be confirmed that the Rth change amount is low.
이하, 본 발명의 일 실시예의 편광판을 설명한다.Hereinafter, a polarizing plate of an embodiment of the present invention will be described.
편광판은 편광 필름 및 상기 편광 필름의 하부면에 적층된 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층을 포함하고, 상기 역파장 분산성 포지티브 A 위상차 층은 상기 포지티브 C 위상차 층에 직접적으로 형성되어 있다. 상기 "직접적으로 형성"은 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층 사이에 임의의 다른 점착층, 접착층 또는 점착층 등이 형성되지 않음을 의미한다.The polarizing plate includes a polarizing film and an inverse wavelength dispersive positive A retardation layer and a positive C retardation layer laminated on the lower surface of the polarizing film, and the reverse wavelength dispersing positive A retardation layer is formed directly on the positive C retardation layer It is done. The "directly formed" means that any other adhesive layer, adhesive layer, adhesive layer, or the like is not formed between the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer.
역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체는 편광 필름의 하부면에 형성되어 편광판이 적용된 디스플레이 장치에서 화면 품질을 개선할 수 있다. 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체가 소정 범위의 위상차를 확보한다면 외광의 반사를 방지함으로써 화면 품질을 개선할 수 있다. 그러나 편광판의 신뢰성을 확보하기 위해서는, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체를 고온 및 고온 고습에서 장시간 동안 방치하더라도 역파장 분산성 포지티브 A 위상차 층, 포지티브 C 위상차 층 각각의 위상차가 변화되지 않고 안정적으로 발현되어야 한다. 특히, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체의 두께 방향 위상차 변화량이 낮아야 고온 및 고온 고습에서 장기간 방치하더라도 측면 화면 품질 개선 효과가 안정적으로 발현될 수 있다.A stack of a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer is formed on a lower surface of a polarizing film to improve screen quality in a display device to which a polarizing plate is applied. If the stack of the reverse wavelength dispersibility positive A retardation layer and positive C retardation layer secures a retardation within a predetermined range, it is possible to improve screen quality by preventing reflection of external light. However, in order to secure the reliability of the polarizing plate, the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer, respectively, are left even if the stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer is left at high temperature and high temperature and high humidity for a long time. It should be stably expressed without changing the phase difference. In particular, the amount of phase difference in the thickness direction of the stack of the reverse wavelength dispersibility positive A retardation layer and the positive C retardation layer should be low, so that the side screen quality improvement effect can be stably exhibited even when left at high temperature and high temperature and high humidity for a long time.
본 발명자는 역파장 분산성 포지티브 A 위상차 층에 특정 포지티브 C 위상차 층을 직접적으로 형성함으로써, 상기 역파장 분산성 포지티브 A 위상차 층과 상기 포지티브 C 위상차 층의 적층체가 하기 식 1과 하기 식 2를 만족할 수 있음을 확인하였다:The present inventor directly forms a specific positive C retardation layer on the reverse wavelength dispersive positive A retardation layer, so that the laminate of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer satisfies Equations 1 and 2 below. It was confirmed that:
[식 1][Equation 1]
0nm ≤ |Rth[0] - Rth[500]| ≤ 5nm0nm ≤ |Rth[0]-Rth[500]| ≤ 5nm
(상기 식 1에서,(Equation 1 above,
Rth[0]은 상기 적층체의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is the initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the laminate,
Rth[500]은 상기 적층체를 85℃에서 500시간 방치하였을 때 상기 적층체의 파장 550nm에서 두께 방향 위상차(단위:nm)),Rth [500] is the phase difference (unit: nm) in the thickness direction at a wavelength of 550 nm of the laminate when the laminate is left at 85° C. for 500 hours,
[식 2][Equation 2]
0nm ≤ |Rth[0] - Rth[500]| ≤ 2nm0nm ≤ |Rth[0]-Rth[500]| ≤ 2nm
(상기 식 2에서, (In Equation 2 above,
Rth[0]은 상기 적층체의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is the initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the laminate,
Rth[500]은 상기 적층체를 60℃ 및 95% 상대습도에서 500시간 방치하였을 때 상기 적층체의 파장 550nm에서 두께 방향 위상차(단위:nm)),Rth[500] is the phase difference (unit: nm) in the thickness direction at a wavelength of 550 nm of the laminate when the laminate is left at 60° C. and 95% relative humidity for 500 hours,
상기 식 1과 식 2를 만족함으로써 편광판을 고온 및 고온 고습에서 장시간 방치하더라도 위상차 변화량이 낮아서 화면 품질 유지의 내구성과 신뢰성을 높일 수 있다. 상기 식 1의 |Rth[0] - Rth[500]|이 0nm 내지 5nm라는 것은 하기 식 3에 따른 두께 방향 위상차 변화량이 5nm 초과인 역파장 분산성 포지티브 A 위상차 층의 두께 방향 위상차 변화량을 낮출 수 있음을 의미한다. 상기 식 2의 |Rth[0] - Rth[500]|이 0nm 내지 2nm 라는 것은 하기 식 4에 따른 두께 방향 위상차 변화량이 2nm 초과인 역파장 분산성 포지티브 A 위상차 층의 두께 방향 위상차 변화량을 낮출 수 있음을 의미한다.By satisfying the above Equations 1 and 2, even if the polarizing plate is left at high temperature and high temperature and high humidity for a long time, the amount of phase difference change is low, thereby improving durability and reliability of maintaining screen quality. In the expression 1, |Rth[0]-Rth[500]| is 0 nm to 5 nm, the thickness direction phase difference change amount of the reverse wavelength dispersion positive A phase difference layer in which the thickness direction phase difference change amount according to the following equation 3 is more than 5 nm can be lowered. It means there is. When Rth[0]-Rth[500]| of Equation 2 is 0 nm to 2 nm, the amount of retardation in the thickness direction of the reverse wavelength dispersion positive A retardation layer in which the amount of retardation in the thickness direction according to Equation 4 is greater than 2 nm can be lowered. It means there is.
구체적으로, 상기 식 1의 |Rth[0] - Rth[500]|은 0nm 내지 3nm가 될 수 있다. Specifically, |Rth[0]-Rth[500]| in Equation 1 may be 0 nm to 3 nm.
일 구체예에서, 역파장 분산성 포지티브 A 위상차 층이 연신 필름 또는 액정 필름일 경우, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체는 역파장 분산성 포지티브 A 위상차 층에 포지티브 C 위상차 층용 조성물을 직접 코팅하고 경화시킴으로써 제조될 수 있다.In one embodiment, when the reverse wavelength dispersive positive A retardation layer is a stretched film or a liquid crystal film, a stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer is positive C on the reverse wavelength dispersibility positive A retardation layer It can be prepared by directly coating and curing the composition for the retardation layer.
다른 구체예에서, 역파장 분산성 포지티브 A 위상차 층이 액정 코팅층일 경우, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체는 포지티브 C 위상차 층에 역파장 분산성 포지티브 A 위상차 층용 조성물을 직접 코팅하고 경화시킴으로써 제조될 수 있다.In another embodiment, when the reverse wavelength dispersive positive A retardation layer is a liquid crystal coating layer, the stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer comprises a composition for the reverse wavelength dispersibility positive A retardation layer on the positive C retardation layer. It can be prepared by directly coating and curing.
역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체는 상기 식 1, 상기 식 2의 Rth[0]가 -50nm 내지 50nm, 바람직하게는 -40nm 내지 30nm가 될 수 있다. 상기 범위에서, 디스플레이 장치에 적용시 외부 광에 작용하여 화면 품질을 개선할 수 있다.The stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer may have Rth[0] of Equation 1 and Equation 2 of -50 nm to 50 nm, preferably -40 nm to 30 nm. In the above range, when applied to a display device, it is possible to improve screen quality by acting on external light.
역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체는 상기 식 1, 상기 식 2의 Rth[500]가 -50nm 내지 50nm, 구체적으로 -40nm 내지 30nm가 될 수 있다. 상기 범위에서, 디스플레이 장치에 적용시 외부 광에 작용하여 화면 품질을 개선할 수 있다.The stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer may have Rth [500] of Equation 1 and Equation 2 of -50 nm to 50 nm, specifically -40 nm to 30 nm. In the above range, when applied to a display device, it is possible to improve screen quality by acting on external light.
역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체는 파장 550nm에서 면내 위상차(Re)가 110nm 내지 170nm, 구체적으로 130nm 내지 140nm가 될 수 있다. 상기 범위에서, 디스플레이 장치에 적용시 외부 광에 작용하여 화면 품질을 개선할 수 있다.The stack of the reverse wavelength dispersion positive A retardation layer and the positive C retardation layer may have an in-plane retardation (Re) of 110 nm to 170 nm, specifically 130 nm to 140 nm at a wavelength of 550 nm. In the above range, when applied to a display device, it is possible to improve screen quality by acting on external light.
역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체는 두께가 1㎛ 내지 90㎛, 구체적으로 1㎛ 내지 60㎛, 더 구체적으로 5㎛ 내지 60㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있고 박형화 효과가 있을 수 있다. The stack of the reverse wavelength dispersive positive A retardation layer and positive C retardation layer may have a thickness of 1 μm to 90 μm, specifically 1 μm to 60 μm, and more specifically 5 μm to 60 μm. In the above range, it may be used in a polarizing plate and may have a thinning effect.
일 구체예에서, 편광 필름의 하부면에 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층이 순차적으로 적층될 수 있다. 본 발명이 이에 제한되는 것은 아니지만, 편광 필름의 하부면에서부터 역파장 분산성 포지티브 A 위상차 층, 포지티브 C 위상차 층의 순서로 순차적으로 적층될 경우 화면 품질 개선 효과가 더 우수할 수 있다.In one embodiment, a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer may be sequentially stacked on the lower surface of the polarizing film. Although the present invention is not limited thereto, the screen quality improvement effect may be better when sequentially stacked in the order of the reverse wavelength dispersion positive A retardation layer and positive C retardation layer from the lower surface of the polarizing film.
역파장 분산성 포지티브 A 위상차 층Inverse wavelength dispersion positive A phase difference layer
이하, 본 발명의 역파장 분산성 포지티브 A 위상차 층에 대해 상세히 설명한다.Hereinafter, the reverse wavelength dispersion positive A phase difference layer of the present invention will be described in detail.
역파장 분산성 포지티브 A 위상차 층은 역파장 분산성이고, nx>ny≒nz인 포지티브 A 위상차 층일 수 있다. 상기 'nx, ny, nz'는 각각 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 slow axis, fast axis, 두께 방향 굴절률이다.The reverse wavelength dispersibility positive A retardation layer may be a reverse wavelength dispersion and a positive A retardation layer having nx>ny≒nz. The'nx, ny, nz' are slow axis, fast axis, and refractive index in the thickness direction at a wavelength of 550 nm of the inverse wavelength dispersion positive A phase difference layer, respectively.
상기 "역파장 분산성"은 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서의 면내 위상차 Re(550)에 대한 파장 450nm에서의 면내 위상차 Re(450)의 비(Re(450)/Re(550))가 0.7 내지 1.0이 됨을 의미할 수 있다. 구체적으로, 역파장 분산성 포지티브 A 위상차 층은 Re(450)/Re(550)가 0.7 내지 0.9, 더 바람직하게는 0.8 내지 0.9가 될 수 있다. 상기 범위에서, 포지티브 C 위상차 층과 함께 반사 방지 효과를 높일 수 있다.The "reverse wavelength dispersion" is the ratio of the in-plane retardation Re(450) at the wavelength 450nm to the in-plane retardation Re(550) at the wavelength 550nm of the reverse wavelength dispersibility positive A retardation layer (Re(450)/Re(550) )) may be 0.7 to 1.0. Specifically, the reverse wavelength dispersive positive A retardation layer may have Re(450)/Re(550) of 0.7 to 0.9, more preferably 0.8 to 0.9. In the above range, it is possible to increase the antireflection effect together with the positive C phase difference layer.
상기 "역파장 분산성"은 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서의 면내 위상차 Re(550)에 대한 파장 650nm에서의 면내 위상차 Re(650)의 비(Re(650)/Re(550))가 1.0 내지 1.4, 바람직하게는 1.0 내지 1.1이 됨을 의미할 수 있다. 상기 범위에서, 포지티브 C 위상차 층과 함께 반사 방지 효과를 높일 수 있다.The "reverse wavelength dispersibility" is the ratio of the in-plane retardation Re(650) at the wavelength 650nm to the in-plane retardation Re(550) at the wavelength 550nm of the reverse wavelength dispersibility positive A retardation layer (Re(650)/Re(550) )) may be 1.0 to 1.4, preferably 1.0 to 1.1. In the above range, it is possible to increase the antireflection effect together with the positive C phase difference layer.
상기 "역파장 분산성"은 Re(450)/Re(550) < Re(650)/Re(550)가 될 수 있다.The “reverse wavelength dispersion” may be Re(450)/Re(550) <Re(650)/Re(550).
역파장 분산성 포지티브 A 위상차 층은 파장 550nm에서 면내 위상차 Re(550)이 110nm 내지 170nm, 예를 들면 130nm 내지 155nm, 130nm 내지 150nm, 130nm 내지 140nm가 될 수 있다. 상기 범위에서, 포지티브 C 위상차 층과 함께 반사 방지 효과를 높일 수 있다.The reverse wavelength dispersive positive A retardation layer may have an in-plane retardation Re(550) of 110 nm to 170 nm, for example, 130 nm to 155 nm, 130 nm to 150 nm, 130 nm to 140 nm at a wavelength of 550 nm. In the above range, it is possible to increase the antireflection effect together with the positive C phase difference layer.
역파장 분산성 포지티브 A 위상차 층은 파장 550nm에서 두께 방향 위상차 Rth가 60nm 내지 100nm, 예를 들면 70nm 내지 95nm가 될 수 있다. 상기 범위에서, 포지티브 C 위상차 층과 함께 반사 방지 효과를 높일 수 있다. The reverse wavelength dispersive positive A retardation layer may have a thickness direction retardation Rth of 60 nm to 100 nm, for example, 70 nm to 95 nm at a wavelength of 550 nm. In the above range, it is possible to increase the antireflection effect together with the positive C phase difference layer.
역파장 분산성 포지티브 A 위상차 층은 파장 550nm에서 이축성 정도 NZ가 0.6 내지 1.4, 예를 들면 0.8 내지 1.2가 될 수 있다. 상기 범위에서, 편광필름에 적층시 반사율을 더 낮추는 효과가 있을 수 있다.The reverse wavelength dispersive positive A retardation layer may have a degree of biaxiality NZ of 0.6 to 1.4, for example, 0.8 to 1.2 at a wavelength of 550 nm. In the above range, it may be effective to further reduce the reflectance when laminated to a polarizing film.
역파장 분산성 포지티브 A 위상차 층은 파장 550nm에서 nx가 0.001 내지 0.002, ny가 -0.002 내지 -0.001, nz가 -0.002 내지 -0.001이 될 수 있다. 상기 범위에서, 본 발명의 역파장 분산성 포지티브 A 위상차 구현이 가능할 수 있다.The reverse wavelength dispersive positive A retardation layer may have an nx of 0.001 to 0.002, ny of -0.002 to -0.001, and nz of -0.002 to -0.001 at a wavelength of 550 nm. In the above range, the reverse wavelength dispersion positive A phase difference implementation of the present invention may be possible.
역파장 분산성 포지티브 A 위상차 층은 하기 식 3에 따른 두께 방향 위상차 변화량이 5nm 초과, 예를 들면 5nm 초과 20nm 이하가 될 수 있다.The reverse wavelength dispersive positive A retardation layer may have a thickness direction retardation variation according to Equation 3 below greater than 5 nm, for example greater than 5 nm and less than 20 nm.
[식 3][Equation 3]
두께 방향 위상차 변화량(△Rth) = |Rth[0] - Rth[500]|Amount of retardation change in thickness direction (△Rth) = |Rth[0]-Rth[500]|
(상기 식 3에서, (Equation 3 above,
Rth[0]은 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is an initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer,
Rth[500]은 상기 역파장 분산성 포지티브 A 위상차 층을 85℃에서 500시간 방치하였을 때 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 두께 방향 위상차(단위:nm)).Rth[500] is the thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer when the reverse wavelength dispersive positive A retardation layer is left at 85° C. for 500 hours.
역파장 분산성 포지티브 A 위상차 층은 하기 식 4에 따른 두께 방향 위상차 변화량이 2nm 초과, 예를 들면 2nm 초과 20nm 이하가 될 수 있다.The reverse wavelength dispersive positive A retardation layer may have a thickness direction retardation variation according to Equation 4 below greater than 2 nm, for example greater than 2 nm and less than 20 nm.
[식 4][Equation 4]
두께 방향 위상차 변화량(△Rth) = |Rth[0] - Rth[500]|Amount of retardation change in thickness direction (△Rth) = |Rth[0]-Rth[500]|
(상기 식 4에서, (In the above equation 4,
Rth[0]은 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is an initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer,
Rth[500]은 상기 역파장 분산성 포지티브 A 위상차 층을 60℃ 및 95% 상대습도에서 500시간 방치하였을 때 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 두께 방향 위상차(단위:nm)).Rth[500] is a thickness direction phase difference at a wavelength of 550 nm of the reverse wavelength dispersive positive A phase difference layer when the reverse wavelength dispersive positive A phase difference layer is left at 60°C and 95% relative humidity for 500 hours (unit: nm). .
일 구체예에서, 역파장 분산성 포지티브 A 위상차 층은 폴리머 필름 또는 액정 필름일 수 있다. In one embodiment, the reverse wavelength dispersive positive A retardation layer can be a polymer film or a liquid crystal film.
일 구체예에서, 역파장 분산성 포지티브 A 위상차 층은 폴리머 필름이 될 수 있다. 폴리머 필름은 폴리카보네이트계 수지(비변성 폴리카보네이트계 수지), 시클릭올레핀폴리머 수지, 변성 폴리카보네이트계 수지, 이소소르비드계 수지, 트리아세틸셀룰로스계 수지 등을 포함하는 셀룰로오스계 수지, 플루오렌계 수지, 폴리에스테르계 수지 중 1종 이상으로 형성된 폴리머 필름일 수 있다. 이들 필름은 고온 및 고온 고습에서 장기간 방치시 두께 방향 위상차 변화량이 심하였다.In one embodiment, the reverse wavelength dispersive positive A retardation layer can be a polymer film. The polymer film is a polycarbonate-based resin (non-modified polycarbonate-based resin), a cyclic olefin polymer resin, a modified polycarbonate-based resin, an isosorbide-based resin, a cellulose-based resin including a triacetyl cellulose-based resin, and a fluorene-based resin. It may be a polymer film formed of at least one of resins and polyester resins. These films had a large amount of retardation in the thickness direction when they were left for a long time at high temperature and high temperature and high humidity.
바람직하게는, 역파장 분산성 포지티브 A 위상차 층은 폴리카보네이트계 수지, 트리아세틸셀룰로스계 수지 등으로 형성된 필름, 더 바람직하게는 변성 폴리카보네이트계 수지 또는 변성 폴리카보네이트계 수지를 포함하는 조성물로 형성된 필름일 수 있다. Preferably, the reverse wavelength dispersive positive A retardation layer is a film formed of a polycarbonate-based resin, a triacetylcellulose-based resin, etc., more preferably a film formed of a composition comprising a modified polycarbonate-based resin or a modified polycarbonate-based resin. Can be
역파장 분산성 포지티브A 위상차 층은 미연신 상태의 상기 폴리머 필름을 1축 연신 또는 2축 연신 또는 경사 연신시켜 제조될 수 있다. 연신 방법은 건식 연신 또는 습식 연신이 될 수 있고, 상세 방법은 당업자에게 알려진 바와 같다.The reverse wavelength dispersive positive A retardation layer may be prepared by uniaxially or biaxially stretching or obliquely stretching the polymer film in an unstretched state. The stretching method may be dry stretching or wet stretching, and detailed methods are known to those skilled in the art.
일 실시예에서, 역파장 분산성 포지티브 A 위상차 층의 MD(machine direction)를 0°라고 할 때 광축(역파장 분산성 포지티브 A 위상차 층의 slow axis)이 -5° 내지 5° 또는 40° 내지 50°, 예를 들면 -5 내지 5° 또는 45±3°(42° 내지 48°)의 각도를 이룰 수 있다. 역파장 분산성 포지티브 A 위상차 층의 MD에 대해 광축이 0°인 역파장 분산성 포지티브 A 위상차 층은 역파장 분산성 포지티브 A 위상차 층의 MD로 연신된 필름을 의미한다. 역파장 분산성 포지티브 A 위상차 층의 MD에 대해 광축이 -5° 이상 0° 미만, 0° 초과 5° 이하, 40° 내지 50°인 역파장 분산성 포지티브 A 위상차 층은 경사 연신된 필름을 의미한다. 상기 각도 범위에서, 포지티브 C층과 결합시 반사 방지 효과를 낼 수 있다. In one embodiment, when the machine direction (MD) of the reverse wavelength dispersive positive A retardation layer is 0°, the optical axis (slow axis of the reverse wavelength dispersive positive A retardation layer) is -5° to 5° or 40° to An angle of 50°, for example -5 to 5° or 45±3° (42° to 48°) can be achieved. The reverse wavelength dispersive positive A retardation layer having an optical axis of 0° with respect to the MD of the reverse wavelength dispersing positive A retardation layer means a film stretched with MD of the reverse wavelength dispersing positive A retardation layer. For the MD of the reverse wavelength dispersible positive A retardation layer, the reverse wavelength dispersive positive A retardation layer having an optical axis of -5° or more but less than 0°, more than 0° and less than 5°, and 40° to 50° means an obliquely stretched film do. In the angular range, when combined with the positive C layer, an anti-reflection effect can be obtained.
다른 구체예에서, 역파장 분산성 포지티브 A 위상차 층은 액정 필름이 될 수 있다. 액정 필름은 고온 또는 고온 고습에서 장기간 방치할 경우 액정 배향이 틀어지면서 위상차 변화량이 심해질 수 있다. 본 발명은 이러한 액정 필름에 특정 포지티브 C 위상차 층을 직접 형성함으로써 고온 또는 고온 고습에서 장기간 방치한 경우 위상차 변화량을 낮춘 것이다.In another embodiment, the reverse wavelength dispersive positive A retardation layer can be a liquid crystal film. When the liquid crystal film is left for a long time at high temperature or high temperature and high humidity, the amount of retardation may be increased as the alignment of the liquid crystal is distorted. The present invention lowers the amount of phase difference change when left at high temperature or high temperature and high humidity for a long time by directly forming a specific positive C retardation layer on such a liquid crystal film.
액정 필름은 액정 필름의 일면에 배향막이 형성되거나 배향막이 없을 수 있다. In the liquid crystal film, an alignment layer may be formed on one surface of the liquid crystal film or there may be no alignment layer.
액정 필름은 네마틱 액정, 스메틱 액정, 콜레스테릭 액정 중 1종 이상을 포함하는 액정 조성물로 형성된 액정층일 수 있다. 액정은 온도 변화에 따라 액정상이 발현되는 온도 전이형 액정, 또는 용액 상태에서 용질의 농도에 따라 액정상이 발현되는 농도 전이형 액정 중 어느 것이어도 된다. 액정성 조성물은 액정을 포함하고, 액정의 함유량은 액정성 조성물의 고형분 100중량부에 대해 40중량부 내지 100중량부로 포함될 수 있다. 액정성 조성물은 키랄제를 추가로 함유하여, 요구되는 굴절률을 갖는 필름을 얻을 수 있다. 액정성 조성물은 레벨링제, 중합개시제, 배향 보조제, 열안정제, 윤활제, 가소제, 대전방지제 등의 첨가제를 더 포함할 수도 있다.The liquid crystal film may be a liquid crystal layer formed of a liquid crystal composition including at least one of nematic liquid crystal, smectic liquid crystal, and cholesteric liquid crystal. The liquid crystal may be either a temperature-transfer type liquid crystal in which a liquid crystal phase is expressed according to a change in temperature, or a concentration-transition type liquid crystal in which a liquid crystal phase is expressed according to the concentration of a solute in a solution state. The liquid crystal composition includes a liquid crystal, and the content of the liquid crystal may be included in 40 parts by weight to 100 parts by weight based on 100 parts by weight of the solid content of the liquid crystal composition. The liquid crystal composition further contains a chiral agent, so that a film having a desired refractive index can be obtained. The liquid crystal composition may further include additives such as a leveling agent, a polymerization initiator, an alignment aid, a heat stabilizer, a lubricant, a plasticizer, and an antistatic agent.
역파장 분산성 포지티브 A 위상차 층은 두께가 1㎛ 내지 90㎛가 될 수 있다.The reverse wavelength dispersive positive A retardation layer may have a thickness of 1 μm to 90 μm.
일 구체예에서, 역파장 분산성 포지티브 A 위상차 층이 폴리머 필름일 경우 두께는 20㎛ 내지 70㎛, 더 바람직하게는 20㎛ 내지 60㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있고, 편광판의 박형화 효과를 얻을 수 있다. In one embodiment, when the reverse wavelength dispersive positive A retardation layer is a polymer film, the thickness may be 20 μm to 70 μm, more preferably 20 μm to 60 μm. In the above range, it can be used for a polarizing plate, and a thinning effect of the polarizing plate can be obtained.
다른 구체예에서, 역파장 분산성 포지티브 A 위상차 층이 액정 필름일 경우 두께는 1㎛ 내지 50㎛, 더 바람직하게는 1㎛ 내지 10㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있고, 편광판의 박형화 효과를 얻을 수 있다.In another embodiment, when the reverse wavelength dispersive positive A retardation layer is a liquid crystal film, the thickness may be 1 μm to 50 μm, more preferably 1 μm to 10 μm. In the above range, it can be used for a polarizing plate, and a thinning effect of the polarizing plate can be obtained.
역파장 분산성 포지티브 A 위상차 층의 다른 일면 즉 포지티브 C 위상차 층과 직접적으로 접촉하지 않는 면에는 점착층, 접착층 또는 점접착층이 추가로 형성됨으로써 역파장 분산성 포지티브 A 위상차 층을 피착체(예:편광 필름)에 점착시킬 수 있다.An adhesive layer, an adhesive layer, or a point adhesive layer is additionally formed on the other side of the reverse wavelength dispersive positive A retardation layer, that is, a surface that does not directly contact the positive C retardation layer, thereby depositing a reverse wavelength dispersive positive A retardation layer (for example, Polarizing film).
포지티브 C 위상차 층Positive C retardation layer
이하, 본 발명의 포지티브 C 위상차 층에 대해 상세히 설명한다.Hereinafter, the positive C phase difference layer of the present invention will be described in detail.
포지티브 C 위상차 층은 nx ≒ ny < nz 의 굴절률 관계를 갖는 포지티브 C 위상차 층일 수 있다. 이를 통해 포지티브 C 위상차 층은 역파장 분산성 포지티브 A 위상차 층과 상호 작용함으로써 반사 방지 효과를 낼 수 있다. 상기 'nx, ny, nz'는 각각 포지티브 C 위상차 층의 파장 550nm에서 slow axis, fast axis, 두께 방향 굴절률이다.The positive C retardation layer may be a positive C retardation layer having a refractive index relationship of nx ≒ ny <nz. Through this, the positive C retardation layer may have an anti-reflective effect by interacting with a reverse wavelength dispersive positive A retardation layer. The'nx, ny, nz' are slow axis, fast axis, and refractive index in the thickness direction at a wavelength of 550 nm of the positive C phase difference layer, respectively.
포지티브 C 위상차 층은 파장 550nm에서 nx가 -0.002 내지 -0.001, ny가 -0.002 내지 -0.001, nz가 0.001 내지 0.002이 될 수 있다. 상기 범위에서, 포지티브 C 층에 의한 측면 위상차의 제어 효과가 있을 수 있다.The positive C retardation layer may have an nx of -0.002 to -0.001, ny of -0.002 to -0.001, and nz of 0.001 to 0.002 at a wavelength of 550 nm. In the above range, there may be a control effect of the lateral phase difference by the positive C layer.
포지티브 C 위상차 층은 파장 550nm에서 면내 위상차(Re)가 10nm 이하, 예를 들면 4nm 이하, 0nm 내지 4nm가 될 수 있다. 상기 범위에서, 역파장 분산성 포지티브 A 위상차 층과 상호 작용함으로써 반사 방지 효과를 낼 수 있다. The positive C retardation layer may have an in-plane retardation (Re) of 10 nm or less, for example, 4 nm or less, and 0 nm to 4 nm at a wavelength of 550 nm. In the above range, the anti-reflection effect can be achieved by interacting with the reverse wavelength dispersive positive A phase difference layer.
포지티브 C 위상차 층은 파장 550nm에서 두께 방향 위상차(Rth)가 -150nm 내지 -5nm, 예를 들면 -100nm 내지 -5nm, 예를 들면 -100nm 내지 -10nm, -100nm 내지 -40nm가 될 수 있다. 상기 범위에서, 측면 반사 방지 효과가 있을 수 있다.The positive C retardation layer may have a thickness direction retardation (Rth) of -150 nm to -5 nm, for example -100 nm to -5 nm, for example -100 nm to -10 nm, -100 nm to -40 nm at a wavelength of 550 nm. In the above range, there may be a side anti-reflection effect.
포지티브 C 위상차 층은 두께가 0㎛ 초과 15㎛ 이하, 바람직하게는 1㎛ 내지 8㎛, 더 바람직하게는 2㎛ 내지 6㎛가 될 수 있다. 상기 범위에서, 포지티브 C 위상차 층으로 사용될 수 있고, 편광판의 박형화 효과를 얻을 수 있다.The positive C phase difference layer may have a thickness of more than 0 μm and 15 μm or less, preferably 1 μm to 8 μm, more preferably 2 μm to 6 μm. In the above range, it can be used as a positive C phase difference layer, and a thinning effect of the polarizing plate can be obtained.
포지티브 C 위상차 층은 비 액정층일 수 있다. 포지티브 C 위상차 층을 액정으로 형성하는 경우 상기 식 1, 상기 식 2를 만족하기 어려울 수 있다.The positive C phase difference layer may be a non-liquid crystal layer. When the positive C phase difference layer is formed of a liquid crystal, it may be difficult to satisfy Equations 1 and 2 above.
포지티브 C 위상차 층은 배향막이 존재하지 않는다. 포지티브 C 위상차 층은 역파장 분산성 포지티브 A 위상차 층에 직접적으로 형성된다.The positive C retardation layer does not have an alignment layer. The positive C retardation layer is formed directly on the reverse wavelength dispersive positive A retardation layer.
포지티브 C 위상차 층은 미 연신 층일 수 있다. 포지티브 C 위상차 층은 하기 상술되는 포지티브 C 위상차 층용 조성물을 코팅하고 경화시켜 형성된 코팅층으로서, 제조 과정에서 연신 과정이 필요하지 않다.The positive C retardation layer may be an unstretched layer. The positive C retardation layer is a coating layer formed by coating and curing the composition for the positive C retardation layer described below, and does not require a stretching process in the manufacturing process.
포지티브 C 위상차 층은 셀룰로스 에스테르 또는 그의 중합체, 방향족 중합체 중 1종 이상으로 형성될 수 있다. 본 발명의 발명자는 포지티브 C 위상차 층을 형성할 수 있는 수개의 소재 중에서도 역파장 분산성 포지티브 A 위상차 층에 직접 코팅하였을 때 상기 식 1, 상기 식 2의 효과를 낼 수 있는 소재를 찾던 중 셀룰로스 에스테르 또는 그의 중합체, 또는 방향족 중합체를 찾아내었다. 바람직하게는 포지티브 C 위상차 층은 셀룰로스 에스테르 또는 그의 중합체로 형성될 수 있다. 상기 식 1, 상기 식 2를 만족함으로써 포지티브 C 위상차 층을 액정으로 만든 경우 대비 측면에서의 열에 의한 무라 발생을 억제하고, 굴곡에 의한 깨짐이나 크랙을 방지할 수 있어 굴곡 신뢰성이 우수할 수 있다.The positive C retardation layer may be formed of at least one of a cellulose ester or a polymer thereof and an aromatic polymer. The inventor of the present invention was looking for a material capable of producing the effects of Equations 1 and 2 when directly coated on the reverse wavelength dispersive positive A retardation layer among several materials capable of forming a positive C retardation layer. Or the polymer or aromatic polymer was found. Preferably, the positive C retardation layer can be formed of a cellulose ester or a polymer thereof. When the positive C retardation layer is made of liquid crystal by satisfying the above expressions 1 and 2, it is possible to suppress generation of mura due to heat on the side of contrast and to prevent cracks or cracks caused by bending, so that bending reliability can be excellent.
특히, 셀룰로스 에스테르 또는 그의 중합체, 방향족 중합체는 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층 간의 부착력도 개선할 수 있으며 층 간의 계면 반사율을 낮추어 편광판의 광 투과율을 높일 수 있다. 일 구체예에서, 편광판은 광 투과율이 41% 이상, 예를 들면 42% 내지 46%가 될 수 있다.In particular, the cellulose ester or a polymer or an aromatic polymer thereof may improve adhesion between a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer, and lower the interfacial reflectance between the layers to increase the light transmittance of the polarizing plate. In one embodiment, the polarizing plate may have a light transmittance of 41% or more, for example, 42% to 46%.
셀룰로스 에스테르는 셀룰로스 상의 하이드록실기와 카복실산의 카복신산 기의 반응으로부터의 축합 반응 생성물을 지칭한다. 셀룰로스 에스테르는 위치 선택적으로 또는 랜덤(random)하게 치환될 수 있다. 위치 선택성은 탄소 13 NMR에 의해 셀룰로스 에스테르 상의 C6, C3, C2에서의 상대적인 치환도를 결정함으로써 측정할 수 있다. 셀룰로스 에스테르는 원하는 치환도 및 중합도를 가진 셀룰로스 에스테르를 제공하기에 충분한 접촉 시간 동안 셀룰로스 용액과 하나 이상의 C1 내지 C20의 아실화제를 접촉시킴으로써 통상적인 방법에 의해 제조될 수 있다. 바람직한 아실화제는 하나 이상의 C1 내지 C20의 직쇄 또는 분지쇄 알킬 또는 아릴 카르복실산 무수물, 카르복실산 할라이드, 다이케톤, 또는 아세토아세트산 에스테르이다. 카복실산의 무수물의 예는 아세트산 무수물, 프로피온산 무수물, 부티르산 무수물, 이소브티르산 무수물, 발레르산 무수물, 헥사노산 무수물, 2-에틸헥사노산 무수물, 노나노산 무수물, 라우르산 무수물, 팔미트산 무수물, 스테아르산 무수물, 벤조산 무수물, 치환된 벤조산 무수물, 프탈산 무수물, 이소프탈산 무수물을 포함할 수 있다. 카르복실산 할라이드의 예는 아세틸, 프로피오닐, 부티릴, 헥사노일, 2-에틸헥사노일, 라우로일, 팔미토일, 벤조일, 치환된 벤조일, 및 스테아로일 클로라이드를 포함한다. 아세토아세트산 에스테르의 예는 메틸아세토아세테이트, 에틸아세토아세테이트, 프로필아세토아세테이트, 부틸아세토아세테이트, 3급부틸아세토아세테이트를 포함할 수 있다. 가장 바람직한 아실화제는 아세트산 무수물, 프로피온산 무수물, 부티르산 무수물, 2-에틸헥사노산 무수물, 노나노산 무수물, 스테아르산 무수물 등의 C2 내지 C9 직쇄 또는 분지쇄 알킬 카르복실산 무수물이다. Cellulose ester refers to the condensation reaction product from the reaction of hydroxyl groups on cellulose with carboxylic acid groups of carboxylic acids. Cellulose esters can be substituted position-wise or randomly. Position selectivity can be measured by determining the relative degree of substitution in C6, C3, C2 on cellulose esters by carbon 13 NMR. Cellulose esters can be prepared by conventional methods by contacting the cellulosic solution with one or more C1 to C20 acylating agents for a contact time sufficient to provide a cellulose ester with the desired degree of substitution and degree of polymerization. Preferred acylating agents are one or more C1 to C20 straight or branched chain alkyl or aryl carboxylic anhydrides, carboxylic acid halides, diketones, or acetoacetic acid esters. Examples of anhydrides of carboxylic acids include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, hexanoic anhydride, 2-ethylhexanoic anhydride, nonanoic anhydride, lauric anhydride, palmitic anhydride, Stearic anhydride, benzoic anhydride, substituted benzoic anhydride, phthalic anhydride, isophthalic anhydride. Examples of carboxylic acid halides include acetyl, propionyl, butyryl, hexanoyl, 2-ethylhexanoyl, lauroyl, palmitoyl, benzoyl, substituted benzoyl, and stearoyl chloride. Examples of acetoacetic acid esters may include methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, butyl acetoacetate, tertiary butyl acetoacetate. Most preferred acylating agents are C2 to C9 straight or branched chain alkyl carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, 2-ethylhexanoic anhydride, nonanoic anhydride, stearic anhydride, and the like.
셀룰로스 에스테르의 바람직한 예는 셀룰로스 아세테이트(CA), 셀룰로스 아세테이트 프로피오네이트(CAP), 셀룰로스 아세테이트 부티레이트(CAB) 중 1종 이상을 포함할 수 있지만, 이에 제한되지 않는다. 상기 셀룰로스 아세테이트(CA), 셀룰로스 아세테이트 프로피오네이트(CAP), 셀룰로스 아세테이트 부티레이트(CAB) 중 1종 이상은 상기 식 1, 상기 식 2에 용이하게 도달할 수 있으며 박형화 효과 및 열에 의한 무라 발생을 억제할 수 있다.Preferred examples of cellulose esters may include, but are not limited to, one or more of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB). One or more of the cellulose acetate (CA), cellulose acetate propionate (CAP), and cellulose acetate butyrate (CAB) can easily reach Equations 1 and 2 and suppress the thinning effect and heat generation of mura can do.
포지티브 C 위상차 층은 셀룰로스 에스테르 또는 그의 중합체, 방향족 중합체 이외에 방향족계 융합 고리를 갖는 첨가제를 더 포함할 수 있다. 상기 첨가제는 포지티브 C 위상차 층의 Rth 발현율과 파장 분산성을 조절하는 역할을 수행할 수 있다. 상기 방향족계 융합 고리는 나프탈렌, 안트라센, 페난트렌, 피렌, 하기 화학식 1 또는 하기 화학식2를 포함할 수 있다. 상기 첨가제로는 2-나프틸 벤조에이트, 하기 화학식 3의 2,6-나프탈렌 다이카르복실산 다이에스테르, 나프탈렌, 하기 화학식 4의 아비에트산 에스테르 등을 포함할 수 있지만, 이에 제한되지 않는다: The positive C retardation layer may further include an additive having an aromatic fused ring in addition to the cellulose ester or a polymer thereof or an aromatic polymer. The additive may serve to control the Rth expression rate and wavelength dispersion of the positive C retardation layer. The aromatic fused ring may include naphthalene, anthracene, phenanthrene, pyrene, Formula 1 or Formula 2 below. Examples of the additive may include, but are not limited to, 2-naphthyl benzoate, 2,6-naphthalene dicarboxylic acid diester of Formula 3, naphthalene, abietic acid ester of Formula 4 below, and the like:
<화학식 1><Formula 1>
Figure PCTKR2019017387-appb-I000001
Figure PCTKR2019017387-appb-I000001
<화학식 2><Formula 2>
Figure PCTKR2019017387-appb-I000002
Figure PCTKR2019017387-appb-I000002
<화학식 3><Formula 3>
Figure PCTKR2019017387-appb-I000003
Figure PCTKR2019017387-appb-I000003
(상기 화학식 3에서, R은 C1 내지 C20의 알킬 또는 C6 내지 C20의 아릴, n은 0 내지 6의 정수)(In Formula 3, R is C1 to C20 alkyl or C6 to C20 aryl, n is an integer from 0 to 6)
<화학식 4><Formula 4>
Figure PCTKR2019017387-appb-I000004
Figure PCTKR2019017387-appb-I000004
(상기 화학식 4에서, R은 C1 내지 C20의 알킬 또는 C6 내지 C20의 아릴)(In the above formula 4, R is C1 to C20 alkyl or C6 to C20 aryl)
셀룰로스 에스테르 또는 그의 중합체, 방향족 중합체 중 1종 이상은 포지티브 C 위상차 층의 두께에 따른 파장 550nm에서 두께 방향 위상차(Rth)의 변화가 선형이 됨으로써 포지티브 C 위상차 층의 제조시 제조 과정에서의 위상차 구현을 위한 신뢰성이 높을 수 있다.At least one of the cellulose ester or its polymer and aromatic polymer has a linear change in the thickness direction retardation (Rth) at a wavelength of 550 nm according to the thickness of the positive C retardation layer, thereby realizing the retardation in the manufacturing process during manufacture of the positive C retardation layer. For high reliability.
포지티브 C 위상차 층은 상술한 셀룰로스 에스테르 또는 그의 중합체, 방향족 중합체 중 1종 이상을 포함하는 포지티브 C 위상차 층용 조성물로 형성될 수 있다.The positive C retardation layer may be formed of a composition for a positive C retardation layer comprising at least one of the aforementioned cellulose ester or a polymer or aromatic polymer thereof.
포지티브 C 위상차 층용 조성물은 상술한 셀룰로스 에스테르 또는 그의 중합체, 방향족 중합체 이외에 조성물의 도포성을 좋게 할 수 있는 용매를 포함할 수 있다. 상기 용매는 당업자에게 통상적으로 사용되는 유기 용매를 포함할 수 있지만, 이에 제한되지 않는다.The composition for the positive C retardation layer may include a solvent capable of improving the coatability of the composition in addition to the cellulose ester or a polymer or aromatic polymer described above. The solvent may include, but is not limited to, organic solvents commonly used by those skilled in the art.
포지티브 C 위상차 층용 조성물 중 고형분 함량은 0.1중량% 내지 20중량%, 바람직하게는 5중량% 내지 20중량%, 9중량% 내지 15중량%로 포함될 수 있다. 상기 범위에서, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층 간의 계면이 균일해질 수 있다.The solid content in the composition for the positive C retardation layer may be included in an amount of 0.1% to 20% by weight, preferably 5% to 20% by weight, and 9% to 15% by weight. In this range, the interface between the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer may be uniform.
포지티브 C 위상차 층용 조성물은 가소화제, 안정제, UV 흡수제, 블록 방지제, 슬립제, 윤활제, 염료, 안료, 지연 개선제 등의 첨가제를 추가로 포함할 수도 있다.The composition for the positive C retardation layer may further include additives such as plasticizers, stabilizers, UV absorbers, block inhibitors, slip agents, lubricants, dyes, pigments, and delay improvers.
포지티브 C 위상차 층의 다른 일면 즉 역파장 분산성 포지티브 A 위상차 층과 직접적으로 접촉하지 않는 면에는 점착층, 접착층 또는 점 접착층이 추가로 형성됨으로써 편광판을 피착체 예를 들면 OLED 패널, 액정 패널 등에 점착시킬 수 있다.An adhesive layer, an adhesive layer, or a point adhesive layer is additionally formed on the other surface of the positive C retardation layer, that is, the surface that does not directly contact the reverse wavelength dispersion positive A retardation layer, thereby adhering the polarizing plate to an adherend, for example, an OLED panel, a liquid crystal panel, etc. I can do it.
이하, 본 발명의 편광 필름에 대해 설명한다.Hereinafter, the polarizing film of the present invention will be described.
편광 필름은 폴리비닐알콜계 필름을 1축 연신하여 제조되는 폴리비닐알콜계 편광자, 또는 폴리비닐알콜계 필름을 탈수하여 제조되는 폴리엔계 편광자를 포함할 수 있다. 편광 필름은 두께가 5㎛ 내지 40㎛가 될 수 있다. 상기 범위에서, 디스플레이 장치에 사용될 수 있다.The polarizing film may include a polyvinyl alcohol-based polarizer prepared by uniaxially stretching a polyvinyl alcohol-based film, or a polyene-based polarizer produced by dehydrating a polyvinyl alcohol-based film. The polarizing film may have a thickness of 5 μm to 40 μm. In the above range, it can be used for a display device.
편광 필름의 적어도 일면에는 보호층이 추가로 적층될 수 있다. 보호층은 편광 필름을 보호하여 편광판의 신뢰성을 높이고 편광판의 기계적 강도를 높일 수 있다. A protective layer may be additionally laminated on at least one surface of the polarizing film. The protective layer protects the polarizing film, thereby increasing the reliability of the polarizing plate and increasing the mechanical strength of the polarizing plate.
보호층은 광학적으로 투명한, 보호 필름 또는 보호 코팅층 중 하나 이상을 포함할 수 있다. 보호 필름은 트리아세틸셀룰로스(TAC) 등을 포함하는 셀룰로스 에스테르계 수지, 비정성 환상 폴리올레핀(COP) 등을 포함하는 고리형 폴리올레핀계 수지, 폴리카보네이트계 수지, 폴리에틸렌테레프탈레이트(PET) 등을 포함하는 폴리에스테르계 수지, 폴리에테르술폰계 수지, 폴리술폰계 수지, 폴리아미드계 수지, 폴리이미드계 수지, 비환형-폴리올레핀계 수지, 폴리메틸메타아크릴레이트 수지 등을 포함하는 폴리(메타)아크릴레이트계 수지, 폴리비닐알코올계 수지, 폴리염화비닐계 수지, 폴리염화비닐리덴계 수지 중 하나 이상으로 형성된 필름을 포함할 수 있지만, 이에 제한되지 않는다. 보호 코팅층은 활성 에너지선 경화성 화합물과 중합 개시제를 포함하는 활성 에너지선 경화성 수지 조성물로 형성될 수 있다. 활성 에너지선 경화성 화합물은 양이온 중합성 경화성 화합물, 라디칼 중합성의 경화성 화합물, 우레탄 수지, 실리콘계 수지 중 하나 이상을 포함할 수 있다.The protective layer can include one or more of an optically transparent, protective film or protective coating layer. The protective film includes a cellulose ester-based resin including triacetyl cellulose (TAC), a cyclic polyolefin-based resin including amorphous cyclic polyolefin (COP), a polycarbonate-based resin, polyethylene terephthalate (PET), and the like. Poly(meth)acrylate-based resins including polyester-based resins, polyethersulfone-based resins, polysulfone-based resins, polyamide-based resins, polyimide-based resins, acyclic-polyolefin-based resins, and polymethylmethacrylate resins A film formed of at least one of a resin, a polyvinyl alcohol-based resin, a polyvinyl chloride-based resin, and a polyvinylidene chloride-based resin may be included, but is not limited thereto. The protective coating layer may be formed of an active energy ray-curable resin composition comprising an active energy ray-curable compound and a polymerization initiator. The active energy ray-curable compound may include at least one of a cationically polymerizable curable compound, a radically polymerizable curable compound, a urethane resin, and a silicone resin.
편광 필름의 다른 일면에는 기능성 코팅층이 추가로 형성될 수 있다. 기능성 코팅층은 프라이머층, 하드코팅층, 내지문성층, 반사방지층, 안티글레어층, 저반사층, 초저반사층 중 1종 이상을 포함할 수 있지만 이에 제한되지 않는다.A functional coating layer may be additionally formed on the other side of the polarizing film. The functional coating layer may include, but is not limited to, one or more of a primer layer, a hard coating layer, an anti-fingerprint layer, an anti-reflection layer, an anti-glare layer, a low reflection layer, and an ultra low reflection layer.
이하, 본 발명의 다른 실시예에 따른 편광판을 설명한다.Hereinafter, a polarizing plate according to another embodiment of the present invention will be described.
편광판은 편광필름 및 상기 편광필름의 하부면에 순차적으로 적층된 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층을 포함하고, 상기 역파장 분산성 포지티브 A 위상차 층은 상기 포지티브 C 위상차 층에 직접적으로 형성되고, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 적층체는 상기 식 1, 상기 식 2를 만족하고, 상기 역파장 분산성 포지티브 A 위상차 층은 유기 용매와 접촉하였을 때 용해 및/또는 침식되기 쉬운 폴리머 필름 또는 액정 필름을 포함할 수 있다.The polarizing plate includes a polarizing film and an inverse wavelength dispersive positive A retardation layer and a positive C retardation layer sequentially stacked on a lower surface of the polarizing film, and the inverse wavelength dispersing positive A retardation layer is direct to the positive C retardation layer. And a stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer satisfies Equations 1 and 2, and the reverse wavelength dispersive positive A retardation layer dissolves when contacted with an organic solvent. And/or a polymer film or liquid crystal film that is susceptible to erosion.
일 구체예에서, 역파장 분산성 포지티브 A 위상차 층은 하기 식 5에 따른 면내 위상차 변화량(△Re)이 5nm 이상, 예를 들면 20nm 내지 200nm, 20nm 내지 150nm가 될 수 있다:In one embodiment, the reverse wavelength dispersive positive A retardation layer may have an in-plane retardation change (ΔRe) according to Equation 5 below 5 nm, for example, 20 nm to 200 nm, 20 nm to 150 nm:
[식 5][Equation 5]
면내 위상차 변화량(△Re) = |Re[0] - Re[1]|In-plane phase difference change amount (△Re) = |Re[0]-Re[1]|
(상기 식 5에서, (Equation 5 above,
Re[0]은 MD x TD x 두께 (3cm x 3cm x 50㎛)의 역파장 분산성 포지티브 A 위상차 층 시편의 파장 550nm에서 Re(단위:nm)Re[0] is the wavelength of the MD x TD x (3cm x 3cm x 50㎛) inverse wavelength dispersibility positive A phase difference layer Re (at:550nm wavelength 550nm)
Re[1]은 25℃에서 상기 역파장 분산성 포지티브 A 위상차 층의 시편에 메틸에틸케톤을 1방울 적가하고 1시간 방치 후 상기 역파장 분산성 포지티브 A 위상차 층의 시편의 파장 550nm에서 Re(단위:nm). Re[1] is added dropwise with 1 drop of methyl ethyl ketone to the specimen of the reverse wavelength dispersive positive A phase difference layer at 25° C., and after standing for 1 hour, Re (unit) at a wavelength of 550 nm of the specimen of the reverse wavelength dispersibility positive A phase difference layer. :nm).
상기 1방울은 0.001ml 내지 10ml를 의미할 수 있지만, 이에 제한되지 않는다.The 1 drop may mean 0.001ml to 10ml, but is not limited thereto.
역파장 분산성 포지티브 A 위상차 층은 상술한 역파장 분산성 포지티브 A 위상차 층의 폴리머 필름을 포함할 수 있다.The reverse wavelength dispersive positive A retardation layer may include the polymer film of the reverse wavelength dispersive positive A retardation layer described above.
포지티브 C 위상차 층은 셀룰로스 에스테르 또는 그의 중합체, 방향족 중합체 중 1종 이상과 용매를 포함하는 포지티브 C 위상차 층용 조성물로 형성되고, 상기 용매는 메틸이소프로필케톤(MIPK), 아세톤 등의 케톤계 용매, 프로필렌글리콜메틸에테르(PGME), 메틸 3차 부틸 에테르(t-BME) 등의 에테르계 용매, 프로필렌글리콜메틸에테르아세테이트(PGMEA) 중 1이상의 용매를 사용할 수 있지만, 이에 제한되지 않는다. 상기 용매는 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층 간의 밀착력을 확보할 수 있다.The positive C retardation layer is formed of a composition for a positive C retardation layer comprising at least one of a cellulose ester or a polymer thereof, an aromatic polymer, and a solvent, the solvent being a ketone solvent such as methyl isopropyl ketone (MIPK), acetone, propylene Ether-based solvents such as glycol methyl ether (PGME) and methyl tertiary butyl ether (t-BME), and at least one solvent of propylene glycol methyl ether acetate (PGMEA) may be used, but is not limited thereto. The solvent may secure adhesion between a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer.
일 구체예에서, 역파장 분산성 포지티브 A 위상차 층은 포지티브 C 위상차 층과 접하는 일면에 버퍼층이 더 형성될 수 있다. 버퍼층은 포지티브 C 위상차 층용 조성물을 역파장 분산성 포지티브 A 위상차 층에 코팅시 역파장 분산성 포지티브 A 위상차 층의 일부를 침식시킴으로써 형성된, 용매 침식층일 수 있다.In one embodiment, the reverse wavelength dispersion positive A retardation layer may further include a buffer layer on one surface in contact with the positive C retardation layer. The buffer layer may be a solvent erosion layer formed by eroding a portion of the reverse wavelength dispersive positive A retardation layer when coating the composition for the positive C retardation layer on the reverse wavelength dispersive positive A retardation layer.
버퍼층은 두께가 10㎛ 이하가 될 수 있다. 상기 범위에서, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층 간의 밀착력을 높일 수 있다. 버퍼층은 파장 550nm에서 면내 위상차 Re가 5nm 이하, 바람직하게는 0nm 이상 3nm 이하가 될 수 있다. 상기 범위에서, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층 각각의 위상차에 영향을 주지 않으면서 버퍼층으로 역할을 할 수 있다. 버퍼층은 역파장 분산성 포지티브 A 위상차 층의 전체 두께의 1% 내지 20%을 차지할 수 있다. 상기 범위에서, 역파장 분산성 포지티브 A 위상차 층의 위상차를 구현하면서도 밀착력을 높일 수 있다.The buffer layer may have a thickness of 10 μm or less. In the above range, the adhesion between the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer can be increased. The buffer layer may have an in-plane retardation Re of 5 nm or less, preferably 0 nm or more and 3 nm or less at a wavelength of 550 nm. In the above range, the reverse wavelength dispersibility positive A phase difference layer and the positive C phase difference layer may serve as a buffer layer without affecting the phase difference of each. The buffer layer may occupy 1% to 20% of the total thickness of the reverse wavelength dispersive positive A retardation layer. In the above range, it is possible to increase the adhesion while realizing the phase difference of the reverse wavelength dispersibility positive A phase difference layer.
버퍼층은 상기 용매가 1ppm 내지 30,000ppm, 바람직하게는 300ppm 내지 10,000ppm으로 존재할 수 있다. 상기 범위에서, 고온 또는 고온 고습에서 장기간 방치할 경우 용매 휘발에 의한 편광판, 역파장 분산성 포지티브 A 위상차 층, 또는 포지티브 C 위상차 층의 변형을 막고, 밀착력에 영향을 주지 않을 수 있다.The buffer layer may be present in the solvent of 1ppm to 30,000ppm, preferably 300ppm to 10,000ppm. In the above range, when left at high temperature or high temperature and high humidity for a long time, deformation of the polarizing plate due to solvent volatilization, reverse wavelength dispersibility positive A retardation layer, or positive C retardation layer may be prevented, and adhesion may not be affected.
일 구체예에서, 상기 용매는 케톤계 용매와 에테르계 용매의 혼합물을 사용할 수 있다. 상기 케톤계 용매는 상기 혼합물 중 40중량% 내지 70중량% 바람직하게는 45중량% 내지 55중량%, 상기 에테르계 용매는 상기 혼합물 중 30중량% 내지 60중량%, 바람직하게는 45중량% 내지 55중량%로 포함될 수 있다. 상기 범위에서, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층 간의 부착력이 좋을 수 있다.In one embodiment, the solvent may be a mixture of a ketone-based solvent and an ether-based solvent. The ketone solvent is 40% to 70% by weight in the mixture, preferably 45% to 55% by weight, and the ether solvent is 30% to 60% by weight in the mixture, preferably 45% to 55% by weight It may be included in weight percent. In the above range, the adhesion between the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer may be good.
바람직하게는, 상기 용매는 메틸에틸이소프로필케톤 단독, 메틸이소프로필케톤과 프로필렌글리콜메틸에테르의 혼합물 또는 아세톤과 프로필렌글리콜메틸에테르의 혼합물을 포함할 수 있다. 상기 혼합물 중 메틸이소프로필케톤, 아세톤 중 1종 이상은 40중량% 내지 70중량%, 바람직하게는 45중량% 내지 55중량%를 포함할 수 있다. 상기 혼합물 중 프로필렌글리콜메틸에테르는 30중량% 내지 60중량%, 바람직하게는 45중량% 내지 55중량%를 포함할 수 있다. 상기 범위에서, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 층 간의 부착력이 좋을 수 있다.Preferably, the solvent may include methyl ethyl isopropyl ketone alone, a mixture of methyl isopropyl ketone and propylene glycol methyl ether, or a mixture of acetone and propylene glycol methyl ether. One or more of methyl isopropyl ketone and acetone in the mixture may include 40% to 70% by weight, preferably 45% to 55% by weight. Propylene glycol methyl ether in the mixture may include 30% to 60% by weight, preferably 45% to 55% by weight. In the above range, the adhesion between the reverse wavelength dispersive positive A retardation layer and the positive C layer may be good.
이하, 본 발명의 광학표시장치를 설명한다.Hereinafter, the optical display device of the present invention will be described.
본 발명의 광학표시장치는 본 발명의 편광판 중 하나 이상을 포함할 수 있다. The optical display device of the present invention may include one or more of the polarizing plates of the present invention.
일 실시예에서 광학표시장치는 액정표시장치, 발광소자 표시 장치, 바람직하게는 발광소자 표시 장치 등을 포함할 수 있다. 상기 액정표시장치는 IPS(In Place Switching) 용 액정을 갖는 액정표시장치를 포함할 수 있다. 상기 발광소자 표시 장치는 유기 또는 유무기 발광소자를 포함하고, 예를 들면 LED(light emitting diode), OLED(organic light emitting diode), QLED(quantum dot light emitting diode), 형광체 등의 발광물질을 포함하는 발광소자를 의미할 수 있다.In one embodiment, the optical display device may include a liquid crystal display device, a light emitting device display device, and preferably a light emitting device display device. The liquid crystal display device may include a liquid crystal display device having liquid crystal for IPS (In Place Switching). The light emitting device display device includes an organic or organic light emitting device, and includes, for example, light emitting diodes (LEDs), organic light emitting diodes (OLEDs), quantum dot light emitting diodes (QLEDs), and phosphors. It may mean a light emitting device.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위가 하기 실시예에 한정되지는 않는다.Hereinafter, the configuration and operation of the present invention through a preferred embodiment of the present invention will be described in more detail. However, the following examples are intended to help the understanding of the present invention, and the scope of the present invention is not limited to the following examples.
이하에서 위상차는 Axoscan을 사용해서 측정하였다.Below, the phase difference was measured using Axoscan.
실시예 1Example 1
역파장 분산성 포지티브 A 위상차 층으로 변성 PC(폴리카보네이트)계 필름(Konica minolta社, 파장 550nm에서 Re = 140nm, Rth = 85nm, NZ = 1.1, Re(450)/Re(550) = 0.85, Re(650)/Re(550) = 1.04, 두께 = 55㎛)을 사용하였다. 역파장 분산성 포지티브 A 위상차 층은 상기 식 5에 의한 △Re가 5nm 이상이었다.PC (polycarbonate)-based film (Konica minolta, modified with reverse wavelength dispersive positive A retardation layer, Re = 140 nm, Rth = 85 nm, NZ = 1.1, Re (450)/Re (550) = 0.85, Re at wavelength 550 nm (650)/Re(550)=1.04, thickness=55 μm) was used. The reverse wavelength dispersive positive A phase difference layer had a ΔRe of 5 nm or more by Equation 5 above.
VM(Eastman社, 셀룰로스 아세테이트계)과 용매 MIPK(메틸이소프로필케톤)을 균일하게 혼합하여 고형분 함량이 10중량%인 포지티브 C 위상차 층용 조성물을 제조하였다. 상기 "고형분 함량"은 상기 포지티브 C 위상차 층용 조성물 중 상기 VM의 함량의 중량 비율을 의미한다.A composition for positive C retardation layer having a solid content of 10% by weight was prepared by uniformly mixing VM (Eastman, cellulose acetate-based) and solvent MIPK (methyl isopropyl ketone). The "solid content" means the weight ratio of the content of the VM in the composition for the positive C retardation layer.
폴리비닐알콜 필름을 60℃에서 3배 연신하고 요오드를 흡착시킨 후 40℃의 붕산 수용액에서 2.5배 연신하여 편광자(두께 = 12㎛)를 제조하였다.The polyvinyl alcohol film was stretched 3 times at 60°C, adsorbed iodine, and then stretched 2.5 times in a boric acid aqueous solution at 40°C to prepare a polarizer (thickness = 12 µm).
편광자의 상부면에 트리아세틸셀룰로스(TAC) 필름(KC2UAW, Konica Minolta Opto, Inc.)을 접착시키고, 편광자의 하부면에 상기 역파장 분산성 포지티브 A 위상차 층을 접착시켰다.A triacetylcellulose (TAC) film (KC2UAW, Konica Minolta Opto, Inc.) was attached to the upper surface of the polarizer, and the reverse wavelength dispersive positive A retardation layer was attached to the lower surface of the polarizer.
상기 역파장 분산성 포지티브 A 위상차 층의 하부면에 상기 제조한 포지티브 C 위상차 층용 조성물을 소정 두께로 직접 코팅하고 60℃에서 3분 동안 건조(또는 경화)시켜, 포지티브 C 위상차 층(두께 = 3㎛, 파장 550nm에서 Re = 0nm, Rth = -70nm)을 형성함으로써, TAC 필름 - 편광자 - 역파장 분산성 포지티브 A 위상차 층 - 포지티브 C 위상차 층이 순차적으로 적층된 편광판을 제조하였다.A positive C retardation layer (thickness = 3 μm) was coated on the lower surface of the reverse wavelength dispersive positive A retardation layer by directly coating the prepared composition for a positive C retardation layer to a predetermined thickness and drying (or curing) at 60° C. for 3 minutes. , Re = 0 nm, Rth = -70 nm) at a wavelength of 550 nm, TAC film-polarizer-reverse wavelength dispersibility positive A retardation layer-positive C retardation layer was sequentially stacked polarizing plate was prepared.
실시예 2Example 2
실시예 1에서, 변성 PC계 필름(Konica minolta社, 파장 550nm에서 Re = 140nm, Rth = 85nm, Re(450)/Re(550) = 0.85, Re(650)/Re(550) = 1.04, NZ = 1.1, 두께 = 55㎛) 대신에, 역파장 분산성 포지티브 A 액정 필름(Merck社, 파장 550nm에서 Re = 140nm, Rth = 70nm, Re(450)/Re(550) = 0.83, Re(650)/Re(550) = 1.04, 두께 = 3㎛)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 편광판을 제조하였다. 상기 역파장 분산성 포지티브 A 액정 필름은 상기 식 5에 의한 △Re가 5nm 이상이었다.In Example 1, a modified PC-based film (Konica minolta, Re = 140 nm, Rth = 85 nm, Re (450) / Re (550) = 0.85, Re (650) / Re (550) = 1.04, NZ at a wavelength of 550 nm = 1.1, thickness = 55 μm), instead of reverse wavelength dispersive positive A liquid crystal film (Merck, Re = 140 nm at wavelength 550 nm, Rth = 70 nm, Re (450) / Re (550) = 0.83, Re (650) /Re (550) = 1.04, thickness = 3㎛) was prepared in the same manner as in Example 1, except for using a polarizing plate. The reverse wavelength dispersibility positive A liquid crystal film had ΔRe of the above formula 5 of 5 nm or more.
실시예 3 Example 3
실시예 1에서 포지티브 C 위상차 층의 코팅 두께를 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 편광판을 제조하였다. 이때, 포지티브 C 위상차 층은 두께: 5㎛, 파장 550nm에서 Re=0nm, Rth= -100nm이다.A polarizing plate was manufactured in the same manner as in Example 1, except that the coating thickness of the positive C retardation layer was changed in Example 1. At this time, the positive C retardation layer has a thickness: 5 μm and Re=0 nm and Rth= -100 nm at a wavelength of 550 nm.
비교예 1Comparative Example 1
실시예 1과 동일한 방법으로 편광자를 제조하였다.A polarizer was prepared in the same manner as in Example 1.
이형 필름으로 폴리에틸렌테레프탈레이트(PET) 필름에 실시예 1과 동일한 포지티브 C 위상차 층용 조성물을 소정 두께로 직접 코팅하고 60℃에서 3분 동안 건조(또는 경화)시켜, 이형 필름 상에 포지티브 C 위상차 층(두께 = 3㎛, 파장 550nm에서 Re = 0nm, Rth = -70nm)을 형성하였다.A polyethylene terephthalate (PET) film with a release film was directly coated with the same composition for the positive C retardation layer as in Example 1 to a predetermined thickness and dried (or cured) at 60° C. for 3 minutes to form a positive C retardation layer on the release film ( Re = 0 nm, Rth = -70 nm) was formed at a thickness of 3 μm and a wavelength of 550 nm.
제조한 편광자의 상부면에 트리아세틸셀룰로스(TAC) 필름(KC2UAW, Konica Minolta Opto, Inc.)을 접착시키고, 편광자의 하부면에 실시예 1과 동일한 역파장 분산성 포지티브 A 위상차 층을 접착시켰다.A triacetylcellulose (TAC) film (KC2UAW, Konica Minolta Opto, Inc.) was adhered to the upper surface of the prepared polarizer, and the reverse wavelength dispersive positive A phase difference layer as in Example 1 was adhered to the lower surface of the polarizer.
역파장 분산성 포지티브 A 위상차 층의 하부면에 상기 제조한 포지티브 C 위상차 층과 이형 필름의 적층체를 아크릴계 점착제로 점착시키고 상기 이형 필름을 박리하여 TAC 필름 - 편광자 - 역파장 분산성 포지티브 A 위상차 층 - 아크릴계 점착층 - 포지티브 C 위상차 층(셀룰로스 아세테이트계)이 순차적으로 형성된 편광판을 제조하였다.TAC film-polarizer-reverse wavelength dispersive positive A retardation layer by adhering the laminate of the prepared positive C retardation layer and release film to the lower surface of the reverse wavelength dispersive positive A retardation layer with an acrylic adhesive and peeling the release film -Acrylic adhesive layer-A positive C phase difference layer (cellulose acetate-based) was sequentially formed polarizing plate.
비교예 2Comparative Example 2
실시예 1에서 포지티브 C 위상차 층을 호메오트로픽 액정(Merck社)으로 형성한 것을 제외하고는 동일한 방법으로 편광판을 제조하였다. PET 필름에 배향막 2㎛, 액정 0.5㎛을 순차적으로 코팅하고 역파장 분산성 포지티브 A 위상차 층에 점착제층을 적층하고 코팅한 액정을 전사시키는 방식으로 TAC 필름 - 편광자 - 역파장 분산성 포지티브 A 위상차 층 - 포지티브 C 위상차 층(호메오트로픽 액정)이 순차적으로 적층된 편광판을 제조하였다. 호메오트로픽 액정층은 포지티브 C 위상차 층이고, 두께 = 0.5㎛, 파장 550nm에서 Re = 0nm, Rth = -70nm이다.A polarizing plate was manufactured in the same manner as in Example 1, except that the positive C retardation layer was formed of a homeotropic liquid crystal (Merck). TAC film-polarizer-reverse wavelength dispersive positive A retardation layer by sequentially coating the alignment film 2 µm, liquid crystal 0.5 µm on the PET film, laminating the adhesive layer on the reverse wavelength dispersibility positive A retardation layer and transferring the coated liquid crystal -A polarizing plate in which positive C retardation layers (homeotropic liquid crystals) were sequentially stacked was prepared. The homeotropic liquid crystal layer is a positive C retardation layer, and has a thickness = 0.5 µm and Re = 0 nm and Rth = -70 nm at a wavelength of 550 nm.
비교예 3Comparative Example 3
실시예 1에서 포지티브 C 위상차 층용 조성물을 메틸메타아크릴레이트계 조성물로 변경하고 포지티브 C 위상차 층의 두께를 하기 표 1과 같이 변경한 메틸메타아크릴레이트계 필름을 사용한 것을 제외하고는 동일한 방법으로 TAC 필름 - 편광자 - 역파장 분산성 포지티브 A 위상차 층 - 포지티브 C 위상차 층(메틸메타아크릴레이트계)이 순차적으로 적층된 편광판을 제조하였다. 메틸메타아크릴레이트계 층은 포지티브 C 위상차 층이고, 두께: 40㎛, 파장 550nm에서 Re = 0nm, Rth= -70nm이다.In Example 1, the composition for the positive C retardation layer was changed to a methyl methacrylate-based composition, and the thickness of the positive C retardation layer was changed as shown in Table 1 below. -Polarizer-Reverse wavelength dispersibility Positive A retardation layer-A positive C retardation layer (methyl methacrylate-based) was sequentially laminated polarizing plate was prepared. The methyl methacrylate-based layer is a positive C retardation layer, and has a thickness of 40 µm and Re = 0 nm and Rth = -70 nm at a wavelength of 550 nm.
참조예 1Reference Example 1
실시예 1의 역파장 분산성 포지티브 A 위상차 층을 85℃에서 방치하면서 방치 시간에 따른 파장 550nm에서 두께 방향 위상차(Rth)를 측정하였다. 그 결과를 도 1에 나타내었다. 도 1을 참조하면, 역파장 분산성 포지티브 A 위상차 층은 85℃에서 24시간 방치 후 두께 방향 위상차(Rth)가 급격하게 증가하였다. 또한, 도 1을 참조하면, 실시예 1의 역파장 분산성 포지티브 A 위상차 층은 85℃에서 500시간 방치하였을 때 Rth 변화량이 상기 식 3의 7nm이었다.The inverse wavelength dispersion positive A retardation layer of Example 1 was left at 85° C. and the thickness direction retardation (Rth) was measured at a wavelength of 550 nm according to the standing time. The results are shown in FIG. 1. Referring to FIG. 1, the reverse wavelength dispersion positive A retardation layer rapidly increased in a thickness direction retardation (Rth) after standing at 85° C. for 24 hours. In addition, referring to FIG. 1, the reverse wavelength dispersibility positive A phase difference layer of Example 1 was 7 nm of Equation 3 when left at 85° C. for 500 hours.
참조예 2Reference Example 2
실시예 1의 역파장 분산성 포지티브 A 위상차 층을 60℃ 및 95% 상대 습도에서 방치하면서 방치 시간에 따른 파장 550nm에서 두께 방향 위상차를 측정하였다. 그 결과를 도 2에 나타내었다. 도 2를 참조하면, 역파장 분산성 포지티브 A 위상차 층은 60℃ 및 95% 상대 습도에서 24시간 방치 후 Rth가 급격하게 증가하였다. 또한, 도 2를 참조하면, 실시예 1의 역파장 분산성 포지티브 A 위상차 층은 60℃ 및 95% 상대습도에서 500시간 방치하였을 때 상기 식 4의 Rth 변화량이 약 2.5nm이었다.The reverse wavelength dispersion positive A retardation layer of Example 1 was measured at a thickness of 550 nm according to the standing time while standing at 60° C. and 95% relative humidity. The results are shown in FIG. 2. Referring to FIG. 2, the reverse wavelength dispersive positive A phase difference layer rapidly increased Rth after standing at 60° C. and 95% relative humidity for 24 hours. In addition, referring to FIG. 2, the reverse wavelength dispersibility positive A phase difference layer of Example 1 was about 2.5 nm when the Rth change in Equation 4 was left at 60° C. and 95% relative humidity for 500 hours.
실시예 2의 역파장 분산성 포지티브 A 액정 필름에 대해서도 상기 참조예 1, 참조예 2와 같이 동일한 방법으로 측정하였다. 그 결과를 하기 표 1에 나타내었다.The reverse wavelength dispersibility positive A liquid crystal film of Example 2 was also measured in the same manner as in Reference Example 1 and Reference Example 2 above. The results are shown in Table 1 below.
실시예와 비교예에서 제조한 역파장 분산성 A 위상차 층과 포지티브 C 위상차 층의 적층체 및 편광판에 대해 하기 표 1의 물성을 평가하였다. 그 결과를 하기 표 1, 도 3, 도 4에 나타내었다.The physical properties of Table 1 below were evaluated for the laminate and polarizing plate of the reverse wavelength dispersibility A phase difference layer and the positive C phase difference layer prepared in Examples and Comparative Examples. The results are shown in Tables 1, 3 and 4 below.
(1)내구성 1(단위:nm): 역파장 분산성 A 위상차 층과 포지티브 C 위상차 층의 적층체를 85℃에서 방치하면서 상기 적층체의 파장 550nm에서 두께 방향 위상차를 측정하였다. 0시간일 때의 두께 방향 위상차와 500시간 방치 후 두께 방향 위상차를 구하였다. 상기 식 1을 이용해서 두께 방향 위상차 변화량 |Rth[0] - Rth[500]|을 계산하였다.(1) Durability 1 (unit: nm): Reverse wavelength dispersibility A layered phase difference was measured at a wavelength of 550 nm of the layered product while leaving the layered product of the A phase difference layer and the positive C phase difference layer at 85°C. The thickness direction retardation at 0 hours and the thickness direction retardation after 500 hours were determined. The amount of retardation in the thickness direction |Rth[0]-Rth[500]| was calculated using Equation 1 above.
(2)내구성 2(단위:nm): (1)에서 적층체를 60℃ 및 95% 상대 습도에서 500시간 방치한 것을 제외하고는 동일한 방법으로 상기 식 2의 두께 방향 위상차 변화량 |Rth[0] - Rth[500]|을 계산하였다.(2) Durability 2 (unit: nm): The amount of retardation in the thickness direction of Equation 2 in the same manner as in (1) except that the laminate was left at 60°C and 95% relative humidity for 500 hours. Rth[0] -Rth[500]| was calculated.
(3)굴곡 신뢰성(단위:개): 실시예와 비교예의 편광판을 곡률 반경 1.5mm의 지그에 편광판 중 TAC 필름이 접촉하는 상태로 감고 25℃에서 1분 동안 방치한 후 편광판 중 역파장 분산성 A 위상차 층, 포지티브 C 위상차 층에 크랙 및/또는 깨짐이 발생하는지 여부를 평가하였다. 총 20개의 편광판으로 실험하고, 이중 크랙 및/또는 깨짐이 발생하는 편광판 개수를 기록하였다.(3) Flexibility (unit: piece): The polarizing plates of Examples and Comparative Examples were wound in a state in which the TAC film in the polarizing plate was in contact with a jig having a radius of curvature of 1.5 mm, and allowed to stand at 25° C. for 1 minute, followed by reverse wavelength dispersion in the polarizing plate It was evaluated whether cracks and/or cracks occurred in the A retardation layer and the positive C retardation layer. Experimented with a total of 20 polarizing plates, and the number of polarizing plates having double cracks and/or cracks was recorded.
(4)부착력(단위:개): 실시예와 비교예에서 제조한 편광판에 대하여 부착력을 평가하였다. 편광판을 길이 x 폭(10cm x 10cm)의 정사각형 모양으로 절단하고, 편광판 중 포지티브 C 층 면에 밀착 테이프(Nitto사 Ichibang)를 붙였다. 가로 10줄, 세로 10줄로 역파장 분산성 포지티브 A 위상차 층까지 절단하였다. 밀착 테이프를 탈착시켰을 때 100개의 시편 중 탈착되는 개수를 평가하였다. 포지티브 C 위상차 층과 역파장 분산성 포지티브 A 위상차 층 간의 부착력이 클수록 100개의 시편 중 탈착되는 시편이 없게 된다.(4) Adhesion (unit: number): The adhesion was evaluated for the polarizing plates prepared in Examples and Comparative Examples. The polarizing plate was cut into a square shape of length x width (10 cm x 10 cm), and an adhesive tape (Nichi Ichibang) was attached to the positive C layer side of the polarizing plate. The back-wave dispersion dispersive positive A phase difference layer was cut into 10 rows and 10 rows. When the adhesive tape was detached, the number of detached specimens among 100 specimens was evaluated. The larger the adhesion between the positive C retardation layer and the reverse wavelength dispersibility positive A retardation layer, the more the 100 specimens are detached.
실시예Example 비교예Comparative example
1One 22 33 1One 22 33
역파장 분산성 +AReverse wavelength dispersion +A 재질material 변성 PC 필름Denatured PC film 액정 필름LCD film 변성 PC 필름Denatured PC film 변성 PC 필름Denatured PC film 변성 PC 필름Denatured PC film 변성 PC 필름Denatured PC film
식 3의 △Rth @85℃, 500HR△Rth @85℃ in Equation 3, 500HR 77 99 77 77 77 77
식 4의 △Rth @60℃,95%, 500HR△Rth of Equation 4 @60℃,95%, 500HR 2.52.5 3.03.0 2.52.5 2.52.5 2.52.5 2.52.5
+C 위상차 층+C phase difference layer 셀롤로오스 아세테이트계Cellulose acetate system 셀롤로오스 아세테이트계Cellulose acetate system 셀롤로오스 아세테이트계Cellulose acetate system 셀롤로오스 아세테이트계Cellulose acetate system 호메오트로픽 액정Homeotropic LCD 메틸메타아크릴레이트계Methyl methacrylate system
+C 위상차 층 두께(㎛)+C phase difference layer thickness (㎛) 33 33 55 33 0.50.5 4040
내구성 1(식 1, nm)Durability 1 (Equation 1, nm) 1One 33 1One 66 88 77
내구성 2(식 2, nm)Durability 2 (Equation 2, nm) 1One 22 0.50.5 55 77 66
굴곡 신뢰성 Flexural reliability 00 00 00 00 44 55
부착력 Adhesion 00 00 00 00 00 00
상기 표 1에서와 같이, 본 발명의 편광판은 고온 및 고온 고습에서 장기간 방치할 경우 위상차 변화량이 낮아 내구성과 신뢰성이 우수하였으며, 굴곡에 의해서도 깨짐이 크랙을 방지할 수 있어 굴곡 신뢰성이 우수하며, 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층 간의 부착력이 우수하고 박형화 효과가 있다. 도 3, 도 4를 참조하면, 24시간, 120시간 250시간, 500시간에 따라 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층의 Rth 변화량이 매우 낮았음을 확인할 수 있다.As shown in Table 1, when the polarizing plate of the present invention is left at high temperature and high temperature and high humidity for a long period of time, the amount of phase difference change is low, so durability and reliability are excellent, and cracks can be prevented from being cracked even by bending. The adhesion between the wavelength-dispersive positive A retardation layer and the positive C retardation layer is excellent and has a thinning effect. Referring to FIGS. 3 and 4, it can be seen that the amount of change in Rth of the reverse wavelength dispersive positive A retardation layer and positive C retardation layer was very low according to 24 hours, 120 hours, 250 hours, and 500 hours.
반면에, 본 발명의 포지티브 C 위상차 층을 구비하지 않는 비교예 2와 비교예 3, 본 발명의 포지티브 C 위상차 층이 역파장 분산성 포지티브 A 위상차 층에 직접적으로 형성되지 않은 비교예 1은 상술한 본 발명의 효과를 모두 얻을 수 없었다.On the other hand, Comparative Example 2 and Comparative Example 3 without the positive C retardation layer of the present invention, Comparative Example 1 in which the positive C retardation layer of the present invention is not formed directly on the reverse wavelength dispersive positive A retardation layer is described above. All the effects of the present invention could not be obtained.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (17)

  1. 편광 필름 및 상기 편광 필름의 하부면에 형성된 역파장 분산성 포지티브 A 위상차 층과 포지티브 C 위상차 층을 포함하고,A polarizing film and a reverse wavelength dispersive positive A retardation layer and a positive C retardation layer formed on the lower surface of the polarizing film,
    상기 역파장 분산성 포지티브 A 위상차 층은 상기 포지티브 C 위상차 층에 직접적으로 형성되고, The reverse wavelength dispersion positive A retardation layer is formed directly on the positive C retardation layer,
    상기 역파장 분산성 포지티브 A 위상차 층과 상기 포지티브 C 위상차 층의 적층체는 하기 식 1과 하기 식 2를 만족시키는 것인, 편광판:A laminate of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer satisfies Expression 1 and Expression 2 below:
    [식 1][Equation 1]
    0nm ≤ |Rth[0] - Rth[500]| ≤ 5nm0nm ≤ |Rth[0]-Rth[500]| ≤ 5nm
    (상기 식 1에서, (Equation 1 above,
    Rth[0]은 상기 적층체의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is the initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the laminate,
    Rth[500]은 상기 적층체를 85℃에서 500시간 방치하였을 때 상기 적층체의 파장 550nm에서 두께 방향 위상차(단위:nm)),Rth [500] is the phase difference (unit: nm) in the thickness direction at a wavelength of 550 nm of the laminate when the laminate is left at 85° C. for 500 hours,
    [식 2][Equation 2]
    0nm ≤ |Rth[0] - Rth[500]| ≤ 2nm0nm ≤ |Rth[0]-Rth[500]| ≤ 2nm
    (상기 식 2에서, (In Equation 2 above,
    Rth[0]은 상기 적층체의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is the initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the laminate,
    Rth[500]은 상기 적층체를 60℃ 및 95% 상대습도에서 500시간 방치하였을 때 상기 적층체의 파장 550nm에서 두께 방향 위상차(단위:nm)).Rth[500] is the phase difference (unit: nm) in the thickness direction at a wavelength of 550 nm of the laminate when the laminate is left at 60°C and 95% relative humidity for 500 hours.
  2. 제1항에 있어서, 상기 역파장 분산성 포지티브 A 위상차 층은 하기 식 3에 따른 두께 방향 위상차 변화량(△Rth)이 5nm 초과인 것인, 편광판:The polarizing plate according to claim 1, wherein the reverse wavelength dispersive positive A phase difference layer has a thickness direction retardation change (ΔRth) according to Equation 3 greater than 5 nm:
    [식 3][Equation 3]
    두께 방향 위상차 변화량(△Rth) = |Rth[0] - Rth[500]|Amount of retardation change in thickness direction (△Rth) = |Rth[0]-Rth[500]|
    (상기 식 3에서,(Equation 3 above,
    Rth[0]은 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is an initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer,
    Rth[500]은 상기 역파장 분산성 포지티브 A 위상차 층을 85℃에서 500시간 방치하였을 때 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 두께 방향 위상차(단위:nm)).Rth[500] is the thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer when the reverse wavelength dispersive positive A retardation layer is left at 85° C. for 500 hours.
  3. 제1항에 있어서, 상기 역파장 분산성 포지티브 A 위상차 층은 하기 식 4에 따른 두께 방향 위상차 변화량(△Rth)이 2nm 초과인 것인, 편광판:The polarizing plate of claim 1, wherein the reverse wavelength dispersive positive A retardation layer has a thickness direction retardation change amount (ΔRth) according to Equation 4 below 2 nm:
    [식 4][Equation 4]
    두께 방향 위상차 변화량(△Rth) = |Rth[0] - Rth[500]|Amount of retardation change in thickness direction (△Rth) = |Rth[0]-Rth[500]|
    (상기 식 4에서, (In the above equation 4,
    Rth[0]은 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 최초 두께 방향 위상차(단위:nm)),Rth[0] is an initial thickness direction retardation (unit: nm) at a wavelength of 550 nm of the reverse wavelength dispersive positive A retardation layer,
    Rth[500]은 상기 역파장 분산성 포지티브 A 위상차 층을 60℃ 및 95% 상대습도에서 500시간 방치하였을 때 상기 역파장 분산성 포지티브 A 위상차 층의 파장 550nm에서 두께 방향 위상차(단위:nm)).Rth[500] is a thickness direction phase difference at a wavelength of 550 nm of the reverse wavelength dispersive positive A phase difference layer when the reverse wavelength dispersive positive A phase difference layer is left at 60°C and 95% relative humidity for 500 hours (unit: nm). .
  4. 제1항에 있어서, 상기 역파장 분산성 포지티브 A 위상차 층은 하기 식 5에 따른 면내 위상차 변화량(△Re)이 5nm 이상인 것인, 편광판:The polarizing plate according to claim 1, wherein the reverse wavelength dispersive positive A retardation layer has an in-plane retardation change (ΔRe) of 5 nm or more according to Equation 5 below:
    [식 5][Equation 5]
    면내 위상차 변화량(△Re) = |Re[0] - Re[1]|In-plane phase difference change amount (△Re) = |Re[0]-Re[1]|
    (상기 식 5에서, (Equation 5 above,
    Re[0]은 MD x TD x 두께 (3cm x 3cm x 50㎛)의 역파장 분산성 포지티브 A 위상차 층 시편의 파장 550nm에서 Re(단위:nm)Re[0] is the wavelength of the MD x TD x (3cm x 3cm x 50㎛) inverse wavelength dispersibility positive A phase difference layer Re (at:550nm wavelength 550nm)
    Re[1]은 25℃에서 상기 역파장 분산성 포지티브 A 위상차 층의 시편에 메틸에틸케톤을 1방울 적가하고 1 시간 방치 후 상기 역파장 분산성 포지티트 A 위상차 층의 시편의 파장 550nm에서 Re(단위:nm))).Re[1] is added dropwise with 1 drop of methyl ethyl ketone to the specimen of the reverse wavelength dispersible positive A retardation layer at 25° C., and after standing for 1 hour, Re(1) at wavelength 550nm of the specimen of the reverse wavelength dispersible positive A retardation layer. Unit:nm))).
  5. 제1항에 있어서, 상기 역파장 분산성 포지티브 A 위상차 층은 비변성 폴리카보네이트계 수지, 시클릭올레핀폴리머 수지, 변성 폴리카보네이트계 수지, 이소소르비드계 수지, 셀룰로오스계 수지, 플루오렌계 수지, 폴리에스테르계 수지 중 1종 이상으로 형성된 폴리머 필름을 포함하는 것인, 편광판.According to claim 1, The reverse wavelength dispersion positive A phase difference layer is a non-modified polycarbonate-based resin, cyclic olefin polymer resin, modified polycarbonate-based resin, isosorbide-based resin, cellulose-based resin, fluorene-based resin, A polarizing plate comprising a polymer film formed of at least one of polyester resins.
  6. 제1항에 있어서, 상기 역파장 분산성 포지티브 A 위상차 층은 네마틱 액정, 스메틱 액정, 콜레스테릭 액정 중 1종 이상의 액정으로 형성된 액정층을 포함하는 것인, 편광판.The polarizing plate of claim 1, wherein the reverse wavelength dispersive positive A phase difference layer includes a liquid crystal layer formed of at least one liquid crystal among nematic liquid crystal, smectic liquid crystal, and cholesteric liquid crystal.
  7. 제1항에 있어서, 상기 역파장 분산성 포지티브 A 위상차 층은 파장 550nm에서 nx가 0.001 내지 0.002, ny가 -0.002 내지 -0.001, nz가 -0.002 내지 -0.001인 것인, 편광판.The polarizing plate of claim 1, wherein the reverse wavelength dispersive positive A retardation layer has an nx of 0.001 to 0.002, ny of -0.002 to -0.001, and nz of -0.002 to -0.001 at a wavelength of 550 nm.
  8. 제1항에 있어서, 상기 포지티브 C 위상차 층은 비 액정층이고 배향막이 없는 것인, 편광판.The polarizing plate according to claim 1, wherein the positive C retardation layer is a non-liquid crystal layer and has no alignment layer.
  9. 제1항에 있어서, 상기 포지티브 C 위상차 층은 셀룰로스 에스테르 또는 그의 중합체, 방향족 중합체 중 1종 이상으로 포함하는 조성물로 형성된 코팅층을 포함하는 것인, 편광판.The polarizing plate of claim 1, wherein the positive C phase difference layer comprises a coating layer formed of a composition comprising at least one of a cellulose ester or a polymer or an aromatic polymer.
  10. 제9항에 있어서, 상기 셀룰로스 에스테르는 셀룰로스 아세테이트, 셀룰로스 아세테이트 프로피오네이트, 셀룰로스 아세테이트 부티레이트 중 1종 이상을 포함하는 것인, 편광판.The polarizing plate of claim 9, wherein the cellulose ester comprises at least one of cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate.
  11. 제1항에 있어서, 상기 포지티브 C 위상차 층은 파장 550nm에서 nx가 -0.002 내지 -0.001, ny가 -0.002 내지 -0.001, nz가 0.001 내지 0.002인 것인, 편광판.The polarizing plate of claim 1, wherein the positive C retardation layer has an nx of -0.002 to -0.001, ny of -0.002 to -0.001, and nz of 0.001 to 0.002 at a wavelength of 550 nm.
  12. 제1항에 있어서, 상기 역파장 분산성 포지티브 A 위상차 층과 상기 포지티브 C 위상차 층의 적층체는 파장 550nm에서 Rth가 -50nm 내지 50nm인 것인, 편광판.The polarizing plate of claim 1, wherein a stack of the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer has an Rth of -50 nm to 50 nm at a wavelength of 550 nm.
  13. 제1항에 있어서, 상기 편광 필름의 하부면에 상기 역파장 분산성 포지티브 A 위상차 층과 상기 포지티브 C 위상차 층이 순차적으로 형성된 것인, 편광판.The polarizing plate of claim 1, wherein the reverse wavelength dispersive positive A retardation layer and the positive C retardation layer are sequentially formed on a lower surface of the polarizing film.
  14. 제1항에 있어서, 상기 역파장 분산성 포지티브 A 위상차 층은 상기 포지티브 C 위상차 층과 접하는 일면에 버퍼층이 더 형성된 것인, 편광판.The polarizing plate of claim 1, wherein a buffer layer is further formed on one surface of the reverse wavelength dispersive positive A retardation layer in contact with the positive C retardation layer.
  15. 제14항에 있어서, 상기 버퍼층은 파장 550nm에서 면내 위상차 Re가 5nm 이하인 것인, 편광판.The polarizing plate according to claim 14, wherein the buffer layer has an in-plane retardation Re of 5 nm or less at a wavelength of 550 nm.
  16. 제14항에 있어서, 상기 버퍼층은 상기 역파장 분산성 포지티브 A 위상차 층의 전체 두께의 1% 내지 20%를 차지하는 것인, 편광판.The polarizing plate of claim 14, wherein the buffer layer occupies 1% to 20% of the total thickness of the reverse wavelength dispersive positive A phase difference layer.
  17. 제1항 내지 제16항 중 어느 한 항의 편광판을 포함하는 광학표시장치.An optical display device comprising the polarizing plate of any one of claims 1 to 16.
PCT/KR2019/017387 2018-12-18 2019-12-10 Polarizing plate and optical display device including same WO2020130462A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980084033.XA CN113242988A (en) 2018-12-18 2019-12-10 Polarizing plate and optical display apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180164596A KR102435570B1 (en) 2018-12-18 2018-12-18 Polarizing plate and optical display apparatus comprising the same
KR10-2018-0164596 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020130462A1 true WO2020130462A1 (en) 2020-06-25

Family

ID=71102886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017387 WO2020130462A1 (en) 2018-12-18 2019-12-10 Polarizing plate and optical display device including same

Country Status (3)

Country Link
KR (1) KR102435570B1 (en)
CN (1) CN113242988A (en)
WO (1) WO2020130462A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102664378B1 (en) * 2021-09-17 2024-05-07 동아대학교 산학협력단 Organic light emitting diode optic compensation film for improvement of optical properties

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080284948A1 (en) * 2005-02-25 2008-11-20 Nitto Denko Corporation Polarizing Element, Liquid Crystal Panel, Liquid Crystal Television, and Liquid Crystal Display Apparatus
KR101384875B1 (en) * 2006-06-29 2014-04-15 후지필름 가부시키가이샤 Retardation film, polarizing plate and liquid crystal display device
KR20150111954A (en) * 2013-01-24 2015-10-06 아크론 폴리머 시스템즈, 인코포레이티드 Wide-view optical film having reversed wavelength dispersion
KR101716124B1 (en) * 2015-07-20 2017-03-14 주식회사 효성 Substrate film for liquid crystal coating photo-alignment phase difference film
KR101851282B1 (en) * 2016-10-21 2018-06-07 동우 화인켐 주식회사 Laminate, a polarizing plate including thereof and preparing method for the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677050B1 (en) * 2003-10-22 2007-01-31 주식회사 엘지화학 In-plane switching liquid crystal display comprising compensation film for angular field of view using +a-plate and +c-plate
WO2007018267A1 (en) * 2005-08-11 2007-02-15 Nippon Kayaku Kabushiki Kaisha Phase retardation film manufactured from cellulose derivative
US20080113121A1 (en) * 2006-11-13 2008-05-15 Fujifilm Corporation Cyclic polyolefin film, and polarizing plate and liquid crystal display device using the same
JP2008255340A (en) * 2007-03-14 2008-10-23 Fujifilm Corp Cellulose acylate film, polarizing plate, and liquid crystal displaying device using the same
US8729253B2 (en) * 2011-04-13 2014-05-20 Eastman Chemical Company Cellulose ester optical films
JP5528606B2 (en) * 2012-06-21 2014-06-25 日東電工株式会社 Polarizing plate and organic EL panel
KR101436441B1 (en) * 2013-07-23 2014-09-02 동우 화인켐 주식회사 Antireflective polarizing plate and image display apparatus comprising the same
KR20150113886A (en) * 2014-03-31 2015-10-08 후지필름 가부시키가이샤 Optical film, polarizing plate, and method of producing optical film
JP6667983B2 (en) * 2014-05-30 2020-03-18 富士フイルム株式会社 Laminate and manufacturing method thereof, polarizing plate, liquid crystal display, organic EL display
KR102369639B1 (en) * 2015-02-09 2022-03-03 삼성디스플레이 주식회사 Display Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080284948A1 (en) * 2005-02-25 2008-11-20 Nitto Denko Corporation Polarizing Element, Liquid Crystal Panel, Liquid Crystal Television, and Liquid Crystal Display Apparatus
KR101384875B1 (en) * 2006-06-29 2014-04-15 후지필름 가부시키가이샤 Retardation film, polarizing plate and liquid crystal display device
KR20150111954A (en) * 2013-01-24 2015-10-06 아크론 폴리머 시스템즈, 인코포레이티드 Wide-view optical film having reversed wavelength dispersion
KR101716124B1 (en) * 2015-07-20 2017-03-14 주식회사 효성 Substrate film for liquid crystal coating photo-alignment phase difference film
KR101851282B1 (en) * 2016-10-21 2018-06-07 동우 화인켐 주식회사 Laminate, a polarizing plate including thereof and preparing method for the same

Also Published As

Publication number Publication date
KR20200075680A (en) 2020-06-26
KR102435570B1 (en) 2022-08-22
CN113242988A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2020138878A1 (en) Polarizing plate and optical display device including same
WO2017209473A1 (en) Polarizer protection film, polarizing plate comprising same, and display provided with same
WO2021034012A1 (en) Polarizing plate and optical display device including same
WO2014178517A1 (en) Polyester-based primer composition, optical film using same and polarizing plate comprising same
WO2010090449A2 (en) Polarization device, polarization plate and video display device having superior durability and heat resistance
WO2020153639A1 (en) Liquid crystal display device
WO2016105017A1 (en) Optical film and oled display device comprising same
WO2014204150A1 (en) Stretched laminate, preparation method for thin polarizer, thin polarizer prepared by using same and polarizing plate comprising same
WO2014204205A1 (en) Polarizing plate and image display apparatus comprising same
WO2019083160A1 (en) Liquid crystal phase difference film, polarizing plate for light-emitting display device including same, and light-emitting display device including same
WO2013094969A2 (en) Polarizing plate and image display device having same
WO2021029626A1 (en) Polarizing plate and optical display device comprising same
WO2020130462A1 (en) Polarizing plate and optical display device including same
WO2021045557A1 (en) Polyester protection film for flexible display device
WO2022098016A1 (en) Optical display device module and optical display device including same
WO2014204151A1 (en) Stretched laminated body, method for manufacturing thin polarizer, thin polarizer manufactured thereby, and polarizing plate containing same
WO2022203329A1 (en) Polarizing plate, and optical display device including same
WO2019245145A1 (en) Optical film, polarizing plate including same, and display device including same
WO2020138879A1 (en) Polarizing plate and liquid crystal display device including same
WO2020256337A1 (en) Polarizing plate and optical display device comprising same
WO2020184862A1 (en) Polarizing plate and optical display device including same
WO2020204411A1 (en) Polarizing plate and optical display apparatus comprising same
WO2023018080A1 (en) Polarizing plate and optical display device comprising same
WO2014088273A1 (en) Polarizing plate, and liquid crystal display device including same
WO2024123065A1 (en) Polarizing plate and optical display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898216

Country of ref document: EP

Kind code of ref document: A1