WO2007018267A1 - Phase retardation film manufactured from cellulose derivative - Google Patents

Phase retardation film manufactured from cellulose derivative Download PDF

Info

Publication number
WO2007018267A1
WO2007018267A1 PCT/JP2006/315857 JP2006315857W WO2007018267A1 WO 2007018267 A1 WO2007018267 A1 WO 2007018267A1 JP 2006315857 W JP2006315857 W JP 2006315857W WO 2007018267 A1 WO2007018267 A1 WO 2007018267A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
group
retardation film
retardation
cellulose
Prior art date
Application number
PCT/JP2006/315857
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyoshi Fujisawa
Kouichi Tanaka
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Polatechno Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha, Polatechno Co., Ltd. filed Critical Nippon Kayaku Kabushiki Kaisha
Priority to JP2007529621A priority Critical patent/JPWO2007018267A1/en
Publication of WO2007018267A1 publication Critical patent/WO2007018267A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0031Refractive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis

Definitions

  • the present invention is obtained by biaxial stretching of an aliphatic acyl-substituted cellulose derivative of C5 to C20, and is optically biaxial in that the refractive index in the film normal direction is smaller than the refractive index in the fast axis direction.
  • the present invention relates to a retardation film having a polarizing plate, a polarizing plate using the same, and an image display device. Background art
  • Liquid crystal display devices are widely used in mobile applications such as mobile phones and PDAs (Personal Degital Assistance), car navigation monitors that require durability, and large-screen home TVs.
  • PDAs Personal Degital Assistance
  • TFT-TN mode liquid crystal displays have been used for applications that require high display quality, such as high contrast and high viewing angle.
  • the TFT-TN mode has a disadvantage that the viewing angle is poor in principle. Therefore, when observed from an oblique direction, it causes a decrease in contrast and gradation inversion. For this reason, a new liquid crystal mode is required to replace the TFT-TN mode, one of which is the vertical alignment nematic (VA mode) liquid crystal display device.
  • VA mode vertical alignment nematic
  • the VA mode is a display mode that can exhibit a wide viewing angle characteristic. For this reason, it has already been widely adopted in home TVs and recently used in small liquid crystal display devices such as mobile phones and digital camera monitors.
  • a retardation film can be used for viewing angle compensation as in other liquid crystal display systems, and has two elements to be compensated.
  • the first is compensation for so-called light leakage of the polarizing plate caused by the fact that the absorption axes of the two polarizing plates are apparently not orthogonal when the liquid crystal display device is observed from an oblique direction.
  • a retardation film called a positive A plate and a positive C plate is usually used.
  • Patent Document 1 a compensation method in which a positive A plate and a negative C plate are laminated with a specific combination of wavelength dispersion, a VA mode with high contrast and good color reproducibility without interference unevenness is realized. ing.
  • a compensation retardation film since it is used for a plurality of compensation retardation films, it does not provide a fundamental solution to the problems caused by using the plurality of retardation films.
  • Patent Document 2 proposes a method of compensating for the VA mode by using a retardation film containing a disc-like compound oriented in a special direction instead of a stretched birefringent film.
  • this method since the alignment of the liquid crystal can be controlled in a complicated manner, precise cell compensation becomes possible.
  • disk-like composites and processed products containing them are very expensive, and in the retardation film factory where both cost reduction and high performance are required, cost is reduced. The problem remains.
  • Patent Document 3 discloses a method for obtaining a viewing angle compensation phase difference film by stretching a norbornene-based cyclic olefin-based polymer and satisfying necessary optical characteristics with a single phase difference film. Yes.
  • Patent Document 3 discloses a method for obtaining a viewing angle compensation phase difference film by stretching a norbornene-based cyclic olefin-based polymer and satisfying necessary optical characteristics with a single phase difference film. Yes.
  • thinning and light weight of liquid crystal display members are strongly desired.
  • a polarizing element combined with a retardation film has a uniaxially stretched polyvinyl alcohol film containing a dichroic dye, and therefore has a low brittle temperature and moisture resistance, and thus a protective film such as triacetyl cellulose. The double-sided force is also pinched.
  • the polarizing element with the protective film is called a polarizing film.
  • the retardation film of Patent Document 3 is bonded using a polarizing film and an adhesive.
  • protective film If the retardation film can be directly bonded to the polarizing element instead of the film, a polarizing film integrated with the retardation film can be obtained which is made thinner by one protective film.
  • norbornene-based and other cyclic olefin-based polymer films have poor adhesion to polarizing elements, and it is not easy to integrate them while maintaining high durability.
  • Patent Document 4 discloses a method in which a retardation film integrated with a polarizing element is produced using a single cellulose acylate film, particularly cellulose acetate or cellulose propionate, and a VA cell is compensated.
  • Patent Document 5 discloses a method of compensating for a single VA cell using cellulose acetate propionate.
  • Patent Document 6 describes a force VA mode display device in which a retardation film obtained by uniaxially stretching a cellulose derivative in which a hydroxyl group is substituted by an aliphatic acyl group (A) having 5 to 20 carbon atoms is described. The effect is not sufficient for improving the viewing angle characteristics.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-326089
  • Patent Document 2 Japanese Patent No. 2866372
  • Patent Document 3 Japanese Patent Laid-Open No. 11-95208
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-134863
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-133171
  • Patent Document 6 WO2005Z022215
  • the cellulose-based retardation film described in Patent Document 4 and Patent Document 5 is not yet satisfactory in view angle compensation effect according to the study by the present inventors. There was also a problem in improving the viewing angle with a large change in the phase difference value (environment resistance) when the humidity was changed near room temperature. Therefore, it can be easily integrated on the non-protected surface of the polarizing film and has excellent viewing angle compensation effect. Development of a retardation film with little change in the thickness is desired.
  • the present inventors have substituted a hydroxyl group with an aliphatic acyl group having 5 to 20 carbon atoms, and the substitution degree of the hydroxyl group is 0 per cellulose monomer unit. 50-2.
  • a retardation film that is produced by biaxial stretching using a cellulose derivative that is 99 and that exhibits optical biaxiality has an excellent VA mode compensation effect, as well as film production.
  • the present inventors have found that a retardation film having excellent environmental resistance can be obtained by selecting an additive at the time.
  • a film comprising a cellulose derivative in which a hydroxyl group is substituted by an aliphatic acyl group having 5 to 20 carbon atoms (A), and the degree of substitution of the hydroxyl group is 0.50 to 2.99 per cellulose monomer unit.
  • Retardation value Re in the film plane represented by the following formula (1), which is produced by biaxial stretching, is Onm or more and 200 nm or less, and the retardation value in the film normal direction represented by formula (2) Rth force 3 ⁇ 4Onm or more
  • An optically biaxial retardation film that is 300 nm or less and nx> ny> nz, where each symbol has the following meaning:
  • nx Refractive index in the slow axis direction in the film plane
  • ny Refractive index in the fast axis direction in the film plane
  • nz refractive index in the film normal direction
  • the substituent of the cellulose derivative is either (1) an aliphatic acyl group having 5 to 20 carbon atoms (A) alone or (2) an aliphatic acyl group having 5 to 20 carbon atoms (A ) And other substituents (B), and the latter substituent (B) has a structure different from that of the aliphatic acyl group (A).
  • An aliphatic acyl group having 5 to 20 carbon atoms is a straight chain aliphatic acyl group having 5 to 7 carbon atoms.
  • the degree of substitution is 2.0 to 2.8, and in the case of an aliphatic acyl group having 7 carbon atoms, the degree of substitution is 1.
  • the retardation film according to (2) above which is a cellulose derivative that is 5 to 2.3.
  • thermosetting compound is a silane coupling agent
  • In-plane retardation value Re is 10 nm or more and 80 nm or less
  • film normal direction retardation value Rth is lOOnm or more and 250 nm or less
  • film thickness d is 30 ⁇ m or more and 110 m or less.
  • the retardation film according to any one of the above (1) to (10) and the protective film protective surface or the polarizing element unprotected surface constituting the polarizing film are used with an adhesive or an adhesive. , Functional polarizing film bonded together,
  • An optically biaxial retardation film produced using the cellulose derivative used in the present invention (hereinafter also simply referred to as a cellulose derivative) is more than a conventional retardation film for cellulose-based VA compensation. Also show a much better viewing angle compensation effect. Since it is a cellulose derivative, it can be adhered to the polarizing element after the saponification treatment, and a retardation film integrated polarizing film can be produced.
  • the retardation film of the present invention comprising a film obtained by polymerizing or cross-linking (hereinafter, also simply referred to as polymerization) a cellulose derivative containing a reactive monomer such as a silane coupling agent is durable and / or environmental resistant. Excellent performance and more preferable.
  • Sarakuko has a sufficient viewing angle compensation effect with a single-use retardation film, which can contribute to thinning of the liquid crystal display device.
  • Sarakuko is a cellulose derivative, it is soluble in non-halogen solvents, so it has excellent processability and environmental friendliness.
  • FIG. 1 VA mode using a polarizing film having a compensation function (Invention Example 4 and Comparative Example 1) and a polarizing film having a compensation function (Comparative Example 2), respectively, bonded with a retardation film
  • This is a graph of the cross-section of the black luminance distribution in the normal direction of the film at 45 ° clockwise of the absorption axial force of the polarizing plate, based on the black luminance measurement data in all directions in the liquid crystal display device.
  • FIG. 2 shows the change in retardation value Re in the film surface in each environmental resistance test of the retardation film of Example 7 of the present invention and the retardation film of cellulose acetate propionate of Comparative Example 1 It is a graph.
  • FIG. 3 shows changes in the retardation value Rth in the film normal direction in each environmental resistance test of the retardation film of Example 7 of the present invention and the retardation film of the cellulose acetate propionate of Comparative Example 1 It is a graph. Explanation of symbols
  • the number after A indicates the number of times.
  • the number after B indicates the number of times.
  • init Indicates the initial value.
  • a hydroxyl group is substituted by an aliphatic acyl group (A) having 5 to 20 carbon atoms used as a raw material for a retardation film, and the substitution degree of the hydroxyl group is 0.50-2.99 per one monomer unit of cellulose.
  • the cellulose derivative is described in Patent Document 6 or is described, and in this case, it can be produced in accordance with it.
  • Cellulose that can be used as a starting material for the cellulose derivative is as shown in formula (6) regardless of the crystal form and the degree of polymerization.
  • Specific examples include natural cellulose, powdered cellulose, crystalline cellulose, regenerated cellulose, cellulose hydrate, and rayon.
  • the cellulose derivative used for the production of the retardation film of the present invention is one in which the hydroxyl group of cellulose is substituted as shown in the formula (7).
  • Rl, R2, and R3 are hydrogen atoms or substituents, and Rl, R2, and R3 may be the same or different, but all of Rl, R2, and R3 Is not a hydrogen atom, and at least one is an aliphatic acyl group having 5 to 20 carbon atoms.
  • these substituents may contain a substituent different from the aliphatic acyl group having 5 to 20 carbon atoms. When the different substituents are included, the abundance ratio of each substituent may be an arbitrary ratio.
  • the sum of the number of substituents per unit of cellulose is 0.50-2.99, preferably Is 1. 00-2.90. In some cases, the degree of substitution is preferably in the range of 1.5 to 2.95, more preferably 2.0 to 2.8.
  • Substituent is the aliphatic group It may be a sil group alone or may contain other substituents. When other substituents are included, the aliphatic acyl group preferably accounts for 40% or more, preferably 50% or more of the total substituents. Most preferred is a C5-C7 aliphatic acyl group.
  • n is preferably an integer of 10 or more, more preferably 50 or more, and even more preferably 100 or more. In some cases, 300 or more, 400 or more, and more preferably 500 or more are preferable. Although there is no particular upper limit, it is usually 10,000 or less, preferably 5000 or less, more preferably 2000 or less. Accordingly, 300 to 10,000 is a preferable range of the degree of polymerization n, and more preferably 500 to 5,000.
  • n usually represents the weight average degree of polymerization.
  • the aliphatic acyl group having 5 to 20 carbon atoms is a C5-C16 aliphatic acyl group, more preferably a C5-C12 aliphatic acyl group, more preferably a carbon number of 5-7.
  • An aliphatic acyl group (preferably a linear aliphatic acyl group).
  • the degree of substitution is 2.0 to 2.8, preferably 2.0 to 2.6, and in the case of an aliphatic acyl group having 7 carbon atoms.
  • the degree of substitution is 1.5 or more and less than 2.5, preferably 1.5 to 2.3.
  • aliphatic acyl group having 5 to 7 carbon atoms examples include n-pentanol group, n-hexanol group and n-heptanol group, and n-hexanol having 6 carbon atoms. Groups are most preferred.
  • the degree of substitution with an n-pentanol or n-hexanol group should be in the above range !, but is preferably about 1.8 to 2.9, more preferably 2.0 to 2. About 8, more preferably about 2.0 to 2.6.
  • the degree of substitution with the n-heptanol group is preferably about 1.5 to 2.5.
  • acyl group other than the aliphatic acyl group (A) having 5 to 20 carbon atoms for example, an acyl group having a structure different from that of the aliphatic acyl group (A) (for example, an aliphatic acyl group, An aromatic acyl group, an acyl group having a tolan skeleton or a acyl group having a biphenyl skeleton), a rubamoyl group (for example, a substituent having 1 to 10 carbon atoms which may have a substituent such as a phenyl group or a halogen atom) Group or aromatic force rubamoyl group), or a polymerizable group, and more preferably those described as preferred in the next section describing the cellulose derivative of formula (7).
  • an acyl group having a structure different from that of the aliphatic acyl group (A) for example, an aliphatic acyl group, An aromatic acyl group, an acyl group having a to
  • substituents other than aliphatic acyl groups having 5 to 20 carbon atoms are rubamoyl groups, and alkyl groups other than aliphatic acyl groups having 5 to 20 carbon atoms are preferred.
  • Rl, R2, and R3 in the formula (7) are provided that at least one is substituted with an aliphatic acyl group having 5 to 20 carbon atoms.
  • Y represents a substituted or unsubstituted hydrocarbon residue having 1 to 20 carbon atoms, for example, vinyl group, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl.
  • Examples of the acyl group having an aromatic group such as a group, and examples of Z include an aliphatic group having 1 to 10 carbon atoms which may have a substituent (for example, a phenyl group, a halogen atom, etc.).
  • a substituent for example, a phenyl group, a halogen atom, etc.
  • substituents are appropriately selected according to the purpose in consideration of the birefringence, wavelength dispersion characteristics, viscosity, ease of orientation, processability, reactivity, etc. of the cellulose derivative used in the present invention. 1 type or multiple types. Cellulose hydroxyl group Similarly, the degree of substitution with these substituents is also appropriately selected according to the purpose.
  • the cellulose derivatives used in the present invention are all known as described in WO2005Z022215 and the like, or can be easily synthesized according to the method described in the publication.
  • cellulose as a starting material is dissolved in an organic solvent.
  • Any organic solvent may be used as long as it is a non-alcohol solvent.
  • 1S A halogen solvent such as chloroform or dichloromethane, dimethylacetamide or dimethylformamide, acetone or cyclopentanone. Polar solvents are preferred. It is preferable that cellulose is impregnated with the organic solvent before dissolution because the solubility of cellulose is improved.
  • Using the organic solvent a 20% by weight, preferably 5 10% by weight, cell mouth solution is prepared.
  • a reagent for introducing a substituent is added to this cellulose solution, and the reaction is carried out at a constant temperature.
  • Substituent introduction reagents are acylating agents such as carboxylic acid anhydrides and carboxylic acid chlorides, and strong rumomoissing agents such as isocyanates and di-n-butyltin dilaurate.
  • the reaction temperature is appropriately set according to the reactivity of cellulose and the reagent for introducing a substituent.
  • reprecipitation is performed by adding a reaction solution in water or methanol, and the precipitated solid is dried, whereby the cellulose derivative used in the present invention can be obtained.
  • Adjustment of the degree of substitution of the cellulose derivative used in the present invention can be achieved by adjusting the amount of the substituent introduction reagent used in the synthesis of the cellulose derivative.
  • the reagent for introducing substituents can be used in a range of 0.5 to: LOO equivalent to the amount of cellulose hydroxyl group used as a reaction raw material, and the greater the amount used, the higher the degree of substitution cellulose derivatives can be obtained. Since the reactivity with the cellulose hydroxyl group varies depending on the type of the group introduction reagent, the amount of the substituent introduction reagent necessary to achieve a certain degree of substitution varies.
  • cellulose nxanate having a substitution degree of 2.14 when obtaining cellulose nxanate having a substitution degree of 2.14, the reaction is carried out for at least 4 hours using 1.05 equivalents of nxanoyl chloride relative to the hydroxyl group of cellulose.
  • cellulose nxanate having a degree of substitution of 2.74 when obtaining cellulose nxanate having a degree of substitution of 2.74, use 1.50 equivalents of nxanoyl chloride for the hydroxyl group of cellulose for at least 4 hours.
  • the alignment state is fixed by irradiating with ultraviolet rays after the alignment treatment in the presence of a photopolymerization initiator, thereby fixing the mechanical strength and reliability.
  • a retardation film having excellent solvent resistance can be obtained.
  • the polymerizable group include those in which Y or Z is a bulu group, that is, an attaloyl group or a meta attaroyl group.
  • the photopolymerization initiator a compound used in a normal ultraviolet curable resin can be used.
  • Specific examples of compounds that can be used include 2-methyl-1 [4 (methylthio) phenyl] -2- morpholinopropane-1 (Irgacure 907 manufactured by Ciba Specialty Chemicals), 1 hydroxycyclohexyl phenyl ketone (Cibas Specialty Chemicals Irgacure 1 184), 4- (2 Hydroxyethoxy) 1-phenyl (2 Hydroxy 2-propyl) Ketone (Ivasacure 1959 from Ciba Specialty Chemicals), 1- (4 dodecyl phenol) 2-Hydroxy-2-methylpropane 1-one (Merck's Darochi Your 953), 1- (4-Isopropylphenol) 2 Hydroxy 2-Methylpropane 1-one (Merck Darocur 1116), 2-Hydroxy-2 Methyl 1 Fuel Propan — 1—On (Irgacure 1173 from Ciba Specialty Chemicals) or Jet Such as acetophenone compounds such as acetophenone
  • Benzophenone compounds such as MBP), thixanesone, 2-chlorothioxanthone (Nippon Kayaku Cacure 1 CTX), 2-methyl thixanthone, 2,4 dimethylthioxanthone (cacure) RTX), isopropyl thixanthone, 2,4 dicyclothixanthone (Nippon Kayaku Cacaure 1 CTX), 2,4 jetylthioxanthone (Nippon Kayaku Cacure 1 DETX), or 2,4 diisopropylpropyl thoxane Thixanesone compounds such as Sung (Nippon Yakuyaku Kaicure 1 DITX) are listed. These photopolymerization initiators can be used singly or in combination at any ratio.
  • an auxiliary agent can be used in combination to promote the photopolymerization reaction.
  • auxiliaries For example, triethanolamine, methyljetanolamine, triisopropanolamine, n-butylamine, n-methyljetanolamine, jetylaminoethyl metaarylate, Michler's ketone, 4, 4, -jetylamine.
  • amine compounds such as enone, 4-dimethylaminobenzoyl ethyl, 4 dimethylaminobenzoic acid (n-butoxy) ethyl or isoamyl 4-dimethylaminobenzoate.
  • the content of the photopolymerization initiator is preferably 0.5 parts by weight or more with respect to 100 parts by weight of the (meth) alkyl toy compound (including an attaloyl group in the polymer).
  • the amount is preferably 10 parts by weight or less, more preferably 2 parts by weight or more and 8 parts by weight or less.
  • the auxiliary agent is preferably about 0.5 to 2 times the amount of the photopolymerization initiator.
  • the irradiation amount of ultraviolet rays varies depending on the type of the liquid crystalline compounding composition, the type and addition amount of the photopolymerization initiator, and the film thickness, but is preferably about 100 to 1000 mjZcm2.
  • the atmosphere during UV irradiation may be air or an inert gas such as nitrogen.
  • the film thickness is reduced, it will not cure sufficiently due to oxygen damage. In such a case, UV light is irradiated in an inert gas. And then let it harden.
  • a reactive monomer different from the cellulose derivative may be included in the cellulose derivative for producing the retardation film of the present invention.
  • the reactive monomer is preferably a compound that can be photopolymerized by ultraviolet irradiation or a compound that can be polymerized by heat treatment, in consideration of the treatment that can actually be performed on the production line.
  • a (meth) attarei toy compound can be mentioned.
  • Examples of the (meth) atalyte toy compound include trimethylolpropane tri (meth) atrelate, pentaerythritol tri (meth) atarylate, pentaerythritol tetra (meth) atarylate, ditrimethylolpropane tetra ( (Meth) acrylate, dipentaerythritol penta acrylate, dipentaerythritol hexa acrylate, pentaerythritol tri (meth) acrylate and 1, 6 hexamethylene diisocyanate reaction product, penta erythritol Reaction product of rutri (meth) atalylate with isophorone diisocyanate, reaction product of tris (atarilochetyl) isocyanurate, tris (metaatari mouthkistil) isocyanurate, glycerol triglycidyl ether and (meth)
  • the cellulose derivative solution is used as a composition containing a compound that can be polymerized (including cross-linked) by heat treatment or the like (both heat-polymerizable compounds), heat treatment for producing a film by a solvent casting method.
  • the film can be cured, contributing to the improvement of the durability of the film, and the process is simplified.
  • This method may be selected if it is more effective to perform thermosetting crosslinking after film stretching.
  • thermally polymerizable compounds include isocyanate compounds.
  • isocyanate compounds for example, as hexamethylene isocyanate-based polyisocyanates, Asahi Kasei Biuret type isocyanates 24A-100, 22A-75PX, 21S-75E, 18H-70B, isocyanurate type isocyanates ⁇ -100, THA-100, MFA — 90X, TSA—100, TSS—100, TS E—100, adduct isocyanurate P—301—75E, E—402—90T, ⁇ —405—8—, bifunctional prepolymer isocyanate D—101, D— 201, block type isocyanate M7B-60PX, TPA-B80X, MF-B60X, MF-K60X, 402-402- ⁇ 80 ⁇ , water-dispersed isocyanate WB40-100 or monomer isocyanate 50.
  • an epoxy compound or an aldehyde compound can be used as long as it exhibits thermal polymerization crosslinkability. These compounds may be used alone or in combination.
  • a reactive compound for polymerization (crosslinking) under appropriate conditions such as heating, the orientation in the retardation film of the present invention can be fixed in a desired state, and the film It is possible to improve durability and heat resistance or environmental resistance performance under the heating conditions and wet heat conditions.
  • the thermosetting temperature is usually in the range of 20 to 200 ° C, preferably 40 to 180 ° C, more preferably 60 to 160 ° C for the purpose of preventing thermal decomposition of the cellulose derivative.
  • the thermosetting time is usually within 24 hours, preferably within 12 hours, and more preferably within 3 hours.
  • the environmental resistance even if the phase difference film is repeatedly exposed to a dry environment and high humidity environment, a change in the in-plane average retardation value R e and film normal direction of the retardation value Rth is It is a performance that shows whether or not it can withstand a certain amount of conditions.
  • a retardation film is repeatedly exposed to dry and high-humidity environments, its Re and Rth may vary greatly depending on the type of film, etc., and is constantly stable regardless of environmental changes. Shi In order to obtain the compensation performance, it is desirable that the change in the phase difference value is small.
  • the retardation film of the present invention to which a reactive polymer is added can improve the environmental resistance performance by this additive.
  • any compound can be used as long as it is highly fat-compatible with the cellulose derivative of the present invention.
  • silane coupling agent can be used as a thermally polymerizable compound other than isocyanate.
  • silane coupling agents include butyltrichlorosilane, butylmethoxysilane, vinyltriethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypro.
  • Pinolemetinoregetoxysilane 3 glycidoxypropinoletriethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-Methacryloxypropyltrimethoxysilane, 3-Methacryloxypropylmethyl jetoxysilane, 3-Methacryloxypropyltriethoxysilane, 3-Atalyloxypropyltrimethoxysilane, N-2 (aminoethyl) 3 Aminopropylmethyl Dimethoxysilane, N—2 (aminoethyl) 3 aminopropyltrimethoxysilane, N—2 (aminoethyl) 3 aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3 aminopropyltriethoxys
  • an alkoxy oligomer type can also be used, and examples thereof include X-41-1053 and X-41-1056 manufactured by Shin-Etsu Chemical Co., Ltd. Better Preferred examples include 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, 3-glycidyloxyxypropyltriethoxysilane, X-41-1053, and X-41 1056.
  • the amount of the silane coupling agent added is 0.1 to 50 parts by weight, more preferably 1 to 40 parts by weight, and even more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the cellulose derivative.
  • the oligomer type is relatively mild and requires a catalyst to react well with cellulose.
  • the catalyst include organic metal-based, acid-based, and amine-based compounds.
  • the catalyst used in the present invention is preferably an acid-based catalyst.
  • the acid catalyst include X 40-2309A (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the amount to be added is about 0.1 to 50 parts by weight, preferably about 0.2 to 1 part by weight, based on 100 parts by weight of the silane coupling agent.
  • the silane coupling agent may be added when the cellulose derivative is dissolved, or may be added to the cellulose derivative solution.
  • the retardation film produced from the cellulose derivative of the present invention is optically biaxial.
  • an optically biaxial film means that the refractive index in the slow axis direction in the film plane is nx, the refractive index in the fast axis direction in the film plane is ny, and the refractive index in the film normal direction. It is a film in which nx, ny, and nz show different values when nz is nz.
  • the retardation film of the present onset bright also shows an optical biaxial property, but among them the film normal direction refractive index is smallest, and satisfies a relationship of nx> n y> nz.
  • the retardation value Re in the retardation film plane and the retardation value Rth in the normal direction are:
  • Re and Rth of the biaxial retardation film can be calculated from the measurement results using an automatic birefringence meter (for example, KOBRA-21ADH manufactured by Oji Scientific Instruments).
  • Re is usually Onm or more and 200 nm or less, preferably 5 nm or more and 150 nm or less, more preferably 10 nm or more and 80 nm or less. Further, in some cases, 40 to 8 Onm is preferable.
  • Rth is usually 80 nm or more and 300 nm or less, preferably 90 nm or more and 275 nm or less, and more preferably lOOnm or more and 250 nm or less. Further, in some cases, a force of 120 to 200 nm is preferable, and more preferably 135 to 200 nm.
  • Re and R When th indicates a value in the above range, a phase difference film showing an excellent viewing angle compensation effect is obtained.
  • the Rth value is larger than the Re value.
  • the thickness of the Finolem is usually 20 to 200 ⁇ m, preferably 20 to 150 ⁇ m, and more preferably 30 to L0 / zm. In some cases, 30 ⁇ : LOO / z m power is most preferred! / ⁇ .
  • An ordinary material for producing a retardation film has a so-called positive wavelength in which a large retardation value is exhibited with respect to a short wavelength component of incident light, and a small retardation value is exhibited with a longer wavelength component. Dispersion characteristics are shown.
  • the retardation film of the present invention has a reverse wavelength dispersibility, which shows a small retardation value with respect to the short wavelength component of incident light and a large retardation value as the wavelength component becomes longer.
  • the chromatic dispersion is determined by using, for example, an automatic birefringence meter (such as KOBRA-21ADH manufactured by Oji Scientific Instruments) with a phase difference value Re450 for incident light having a wavelength of 450 nm and a phase difference value Re550 for incident light having a wavelength of 550 nm.
  • the phase difference value Re750 for incident light at 750 nm can be measured and evaluated using the values of the phase difference ratios Re450ZRe550 and Re750ZRe550.
  • a value larger than Re450 / Re550 force is shown, / J from Re750 / Re550 force, and a small value indicates positive wavelength dispersion. Further, when it is less than Re450 / Re550 force and shows a value larger than Re750 / Re550 force S1, it is reverse wavelength dispersion.
  • the retardation film of the present invention always exhibits reverse wavelength dispersion.
  • the reverse wavelength dispersion is preferably 0.5 ⁇ Re450 / Re550 ⁇ 0.99 and powerfully 1.00 ⁇ Re750 / Re550 ⁇ 1.50, more preferably 0. 65 ⁇ Re450 / Re550 ⁇ 0. 99 and force 1. 0 ⁇ Re750 / Re550 ⁇ l. 35, even more preferred ⁇ until 0.8 ⁇ Re450 / Re550 ⁇ 0. 99 Yes, if Rel. 00 ⁇ 750 / Re550 ⁇ 1.20.
  • the retardation film of the present invention using a cellulose derivative is produced by forming a cellulose derivative solution and performing an alignment treatment.
  • a cellulose derivative is dissolved in an appropriate solvent to obtain a cellulose derivative solution.
  • Solvents include acetates such as ethyl acetate, butyl acetate or methyl acetate, alcohols such as methanol, ethanol, propanol, isopropanol or benzyl alcohol, 2-butanoic acid.
  • Ketones such as acetone, acetone, cyclopentanone or cyclohexanone, basic solvents such as benzylamine, triethylamine or pyridine, cyclohexane, benzene, toluene, xylene, azole, hexane or heptane.
  • Non-polar solvents The weight concentration of the cellulose derivative is usually 1 to 99%, preferably 2.5 to 80%, more preferably 5 to 50%. More preferably, it is about 10% to 30%. These compounds may be blended alone or in combination with multiple components. Further, if necessary, necessary additives such as the above-mentioned reactive monomer, polymerization catalyst or plasticizer may be added.
  • Plasticizers include phthalates such as dimethyl phthalate and jetyl phthalate, trimellitic esters such as tris (2-ethylhexyl) trimellitate, and dibasic aliphatic bases such as dimethyl adipate and dibutyl adipate. Examples include acid esters, orthophosphate esters such as tributyl phosphate and triphenyl phosphate, and acetate esters such as glyceryl triacetate and 2-ethylhexyl acetate. Only one kind of these compounds may be blended, or a plurality of components may be blended. The amount of the additive added as necessary is about 0 to 50 parts, preferably about 0 to 30 parts, per 100 parts (weight) of the cellulose derivative.
  • the solvent is removed by natural drying or heat drying to obtain a transparent cellulose derivative film. Since the retardation film in the present invention can achieve a sufficient compensation effect only with the cellulose derivative used in the present invention, the orientation compound other than the cellulose derivative or the retardation value increasing agent (lettering value increasing) It is not necessary to add any agent. Further, since the retardation film of the present invention has a degree of flexibility that is usually required, it is usually unnecessary to add a plasticizer or the like.
  • a reactive monomer preferably a silane coupling agent
  • the film is subjected to biaxial orientation treatment, preferably biaxial stretching, so that the relationship between the refractive indexes (three-dimensional refractive indexes) satisfies nx>ny> nz.
  • biaxial orientation treatment in the present invention Biaxial stretching can be mentioned.
  • the biaxial stretching in the present invention includes all cases where stress is applied in two directions, ie, a stretching direction and a direction perpendicular thereto, and the stretching is substantially performed in two directions.
  • simultaneous biaxial stretching or sequential biaxial stretching for example, in order to suppress shrinkage in the direction perpendicular to the stretching direction, the film is stretched in one direction while fixing both ends on the non-stretched side of the film using a tenter or chuck.
  • the method of doing is also included.
  • Simultaneous biaxial stretching is a method of simultaneously stretching in the direction perpendicular to each other in the film plane.
  • Sequential biaxial stretching is a method in which a film first stretched in one direction is then stretched in a direction perpendicular to that direction. Each stretching process may be a multistage process.
  • Preferred biaxial stretching is simultaneous biaxial stretching or sequential biaxial stretching.
  • the stretching temperature can be arbitrarily selected as long as the cellulose derivative does not yellow due to thermal decomposition or seizure.
  • Optimum stretching temperature varies depending on the substituent and degree of substitution of the cellulose derivative. In the case of cellulose n-hexanate, it is usually 50 to 200 ° C, preferably 70 to 180 ° C, more preferably 90 to 160 ° C, more preferably It is about 90-140 ° C.
  • the film is stretched at a magnification of 1.05 to 5.0 in one direction, and stretched at a magnification of 1.04 to 4.8 in the direction perpendicular to this direction so that the stretching ratios in both directions are different. Is preferred.
  • the film is stretched in one direction at a magnification of 1.1 to 4.0 times, and stretched in a direction perpendicular to this direction at a magnification of 1.08 to 3.8 times.
  • the film is stretched at a magnification of 1.2 to 3.0 times in one direction, and stretched at a magnification of 1.18 to 2.8 times in a direction orthogonal to this direction.
  • the stretching ratio in both directions is 1.4 times or more, more preferably 1.5 times or more, stretching within 3 times, preferably within 2.5 times, and the stretching ratio in one side is stretched in the other direction. It is preferable to use less than magnification. If the difference in draw ratio in both directions is too large, the refractive index condition of the present invention may not be satisfied.Therefore, the difference in draw ratio in both directions is preferably within a range of 2 times, preferably less. Is within 1 times, more preferably within 0.5 times, in some cases within 0.4 times or 0.3 times, It is preferably in the range of at least twice, preferably 0.05 times or more.
  • the above draw ratio means a value obtained by dividing the length after stretching by the length before stretching.
  • the length after stretching is the value obtained by dividing the length after stretching in the orthogonal direction.
  • the three-dimensional refractive index that is, the relationship between the above nx, ny and nz can be controlled by the draw ratio.
  • the three-dimensional refractive index of a uniaxially stretched film is expressed as follows: na> nb ⁇ where the refractive index in the maximum stretching direction is na, the refractive index in the direction perpendicular to the film plane is nb, and the refractive index in the thickness direction is nc Force indicating nc relationship
  • the stretching ratio in one direction (the refractive index in this direction is na) is fixed, and the stretching ratio in the direction perpendicular to this (the refractive index in this direction is set as the refractive index).
  • n j8) becomes larger than 1.0 times, ⁇ ⁇ ⁇ ⁇ > ⁇ ⁇ (refractive index in the thickness direction) or ⁇ ⁇ > ⁇ > ⁇ ⁇ ,> ⁇ ⁇ > ⁇ ⁇ Axiality is exhibited, and when the draw ratio in the orthogonal direction exceeds a certain value, the properties of the uniaxially stretched film are again approached as> ⁇ ⁇ ⁇ ⁇ .
  • the draw ratio in one direction is 1.7
  • the draw ratio in the direction perpendicular thereto is 1.
  • a retardation film having a relationship of nj 8> ⁇ ⁇ > ⁇ ⁇ can be obtained.
  • the direction showing the maximum value of the refractive index is the slow axis.
  • the retardation film of the present invention can be used in an image display device depending on its optical characteristics.
  • the optically biaxial retardation film of the present invention has a retardation value Re in the film plane at 550 nm of about 50 nm and a retardation value Rth in the film normal direction of about 170 nm. Relationship between the absorption axis of the film and the slow axis of the retardation film By laminating with roll-to-roll so as to be orthogonal, a functional polarizing film having a function of widening the viewing angle of a liquid crystal display device is obtained. Can do.
  • polarizing film for example, a film in which both surfaces of the polarizing element are sandwiched by protective films such as triacetyl cellulose film may be used, or only one surface may be protected.
  • the retardation film of the present invention is bonded to a polarizing element by using, for example, a ken treatment, and using a polybutyl alcohol adhesive in the same manner as a triacetyl cellulose film generally used as a protective film. It has the feature that it can be combined.
  • the adhesive is not limited to the polyvinyl alcohol type, and is not particularly limited as long as it can adhere the polarizing element such as urethane type or isocyanate type adhesive and the retardation film of the present invention.
  • the film obtained by integrating the retardation film and the polarizing element of the present invention thus obtained is called a functional polarizing film, and contributes to cost reduction and yield improvement by thinning the entire liquid crystal display device and reducing processing steps. it can.
  • the surface of the retardation film is preferably activated by a cane treatment, a corona discharge treatment or a plasma treatment, and then adhered using a polyvinyl alcohol-based adhesive.
  • Any adhesive can be used as long as it can directly bond the non-protective surface of the polarizing film and the retardation film of the present invention to the polybulal alcohol type.
  • the retardation film and functional polarizing film of the present invention can greatly contribute to widening the viewing angle of an image display device.
  • a transmission-type liquid crystal display device has a structure in which a liquid crystal cell is sandwiched between two polarizing films.
  • light can leak significantly when observed at an angle of 45 ° to the left and right from the absorption axis of the polarizing film.
  • the ability to place the retardation film of the present invention between polarizing films, and more preferably, if the functional polarizing film of the present invention is used instead of the polarizing film light leakage can be greatly improved.
  • the wide viewing angle of the liquid crystal display device can be achieved.
  • the retardation film of the present invention functions as a protective film and a retardation film of the polarizing film, and therefore the functional polarizing film is used.
  • the liquid crystal display device can be made thinner because it has the same function in thickness and thickness.
  • the functional polarizing film using the retardation film of the present invention can achieve a reduction in the thickness of the entire cell, while being necessary for a VA cell.
  • Two compensations can also be achieved by the film, and the force is particularly suitable because it can achieve a very wide viewing angle effect as compared with the conventional products.
  • the reaction mixture was analyzed by gas chromatography immediately before reprecipitation, and the reaction rate was calculated for the reduction force of n-hexanol chloride.
  • the degree of substitution of cellulose n-hexanate (replacement of n-xanthate per cellulose monomer unit) Number) was 2.30.
  • Example 2 The cellulose n-xanate synthesized in Example 1 was dissolved in cyclopentanone to form a 25% by weight solution of the polymer. Cellulose n-xanate solution on PET film After being cast with a dope thickness of 1.7 mm, it was dried at 110 ° C. for 40 minutes to produce a transparent film of cellulose n-hexanate.
  • the cast film obtained in Example 2 was stretched at 120 ° C until a magnification of 1.7, and then at a magnification of 1.6 at 100 ° C in a direction perpendicular to the initial stretching direction.
  • a retardation film having optically biaxial properties was obtained.
  • Re4 50ZRe550 0.97 and Re750ZRe550 was 1.03, indicating reverse wavelength dispersion. showed that . Re showed 56 nm.
  • the Rth calculated from the measurement result of the tilt phase difference value was 173 nm.
  • the thickness d of the film was 58 ⁇ m.
  • the absorption film of the polarizing film and the slow axis of the retardation film are orthogonal to each other through the adhesive layer of the polarizing film UDN-10143P made only from one side protected with triacetylcellulose.
  • a functional polarizing film of the present invention using cellulose n-hexanate was produced.
  • Example 5 Compensation performance evaluation by measuring the viewing angle when VA cell is not driven using cellulose n-hexanate
  • the liquid crystal cell is left, and all other retardation films and polarizing films are removed.
  • the retardation film of the present invention is applied to one side prepared in Example 4 on the observation surface.
  • the polarizing film (functional polarizing film) is placed so that the retardation film surface is on the cell side.
  • a polarizing film (SKN18243T) made by Boratechno was attached so that the absorption axes of the polarizing films were orthogonal to each other.
  • the black luminance distribution in all directions was measured using Ez-contrast 60R manufactured by ELDIM.
  • Figure 1 shows a graph of the cross-section of the black luminance distribution in the film normal direction, 45 ° clockwise from the absorption axis of the polarizing plate, from the black luminance measurement data in all directions.
  • Example 6 Production of cast film containing silane coupling agent (thermopolymerizable compound) using cellulose n xanate
  • Cell mouth n-xanate synthesized in Example 1 was 25% by weight, 3-glycidoxypropyltriethoxysilane (silane coupling agent KBE-403 manufactured by Shin-Etsu Chemical Co., Ltd.) was 4% by weight, triphenyl phosphate 2
  • the compounded solution was prepared by dissolving in cyclopentanone so as to be in% by weight.
  • the cellulose n-xanate solution was cast on a release PET film with a dope thickness of 1.7 mm and dried at 110 ° C for 40 minutes to produce a transparent film of cellulose n-hexanate.
  • the cast film obtained in Example 6 is stretched at 120 ° C until the magnification becomes 1.7, and then the magnification is 1.6 at 100 ° C in the direction perpendicular to the first stretching direction.
  • a retardation film having optically biaxial properties was obtained.
  • Re4 50ZRe550 0.97 and Re750ZRe550 was 1.03, indicating reverse wavelength dispersion.
  • Re showed 61 nm.
  • the Rth calculated from the measurement result of the tilt phase difference value was 140 nm.
  • the film thickness d was 100 ⁇ m.
  • Example 8 Environmental Resistance Test of Retardation Film Consisting of Cellulose nxanate Thermally Polymerized with Silane Coupling Agent
  • the retardation film produced in Example 7 was repeatedly held under a room temperature vacuum condition and a high humidity condition at room temperature humidity of 60% or more, and the change rates of the plane average retardation values Re and Rth were measured. The results are shown in Figs.
  • Cellulose phase difference film KC8UC R-3 (thickness 80 ⁇ m) (phase difference film made of cellulose acetate propionate) manufactured by Co-Camino Norta Holdings Co., Ltd.
  • KC8UCR-3 Re is 38nm
  • Rth is
  • Comparative Example 3 Viewing Angle Measurement of Polarizing Films Produced in Comparative Example 1 and Comparative Example 2 when VA Cell is not Driven
  • the polarizing film of Comparative Example 3 has no compensation effect in the case of using the retardation film integrated polarizing film of the present invention and in the case of a polarizing film using a retardation film made of cellulose acetate propionate.
  • low luminance is maintained in a wide range with little increase in luminance around the circle in the figure at the time of inclination, and it can be seen that the luminance expression is excellent. In other words, light leakage during tilt observation, which is the cause of contrast reduction, is reduced, and a wide viewing angle is achieved.
  • the polarizing film of the present invention has the advantage that it can be directly adhered to the polarizing film, as in the case of the cellulose-based retardation film of Comparative Example 1, and the performance is greatly improved as a compensation film for VA. is doing.
  • Example 7 of the present invention polymerized (crosslinked) with a thermally polymerizable compound was obtained.
  • the retardation film is a polymerized film that has superior environmental resistance performance compared to a retardation film made of cellulose acetate propionate, and has little change in retardation value and Rth even in a high humidity environment. It can be seen that the optical performance can be exhibited stably. That is, according to the present invention, the environmental conditions of vacuum drying conditions (10 mmHg, temperature 30 ° C, humidity 27%) for 20 hours and high humidity conditions (normal pressure, humidity 80%, temperature 30 ° C) for 2 hours.
  • the change rate of the average retardation value Re in the film is within 10%, preferably within 8%, within the normal value of the retardation value Rth in the film normal direction, preferably 3 A retardation film within%, more preferably within 2% can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Disclosed is a phase retardation film which is manufactured using a cellulose derivative having a hydroxyl group substituted by an aliphatic acyl group having 5 to 20 carbon atoms (A) at a substitution degree of 0.50 to 2.99 hydroxyl group per cellulose monomer unit. The film has an optically biaxial property which satisfies the following relationship: nx>ny>nz, wherein nx represents a refraction index in the slow axis direction on the film surface; ny represents a refraction index in the direction orthogonal to the slow axis direction on the film surface; and nz represents a refraction index in the thickness-wise direction. The film can be used as a phase retardation film for the compensation of VA mode. In such a film, when black display is performed under the VA cell-undriven state, the leakage of light occurring at the the observation at an inclined angle, which causes the deterioration in contrast, can be largely prevented in a wide range to keep a low brightness level, compared to conventional cellulose-containing phase retardation film, leading to the attainment of a wide view angle.

Description

明 細 書  Specification
セルロース誘導体から得られる位相差フィルム 技術分野  Retardation film obtained from cellulose derivatives
[0001] 本発明は、 C5〜C20の脂肪族ァシル置換セルロース誘導体の 2軸延伸により得ら れ、かつフィルム法線方向の屈折率が進相軸方向の屈折率より小さい光学的に二軸 性を有する位相差フィルムおよびこれを用いた偏光板、画像表示装置に関する。 背景技術  [0001] The present invention is obtained by biaxial stretching of an aliphatic acyl-substituted cellulose derivative of C5 to C20, and is optically biaxial in that the refractive index in the film normal direction is smaller than the refractive index in the fast axis direction. The present invention relates to a retardation film having a polarizing plate, a polarizing plate using the same, and an image display device. Background art
[0002] 液晶表示装置は携帯電話や PDA (Personal Degital Assistance)に用いられるモバ ィル用途や、耐久性が要求されるカーナビゲーシヨン用モニター、大画面の家庭用 テレビ等に広く用いられている。中でも高コントラストや高視野角と言った、高い表示 品位を求められる用途についてはねじれネマチック型 (TFT— TNモード)液晶表示 装置が使われてきた。  [0002] Liquid crystal display devices are widely used in mobile applications such as mobile phones and PDAs (Personal Degital Assistance), car navigation monitors that require durability, and large-screen home TVs. . In particular, twisted nematic (TFT-TN mode) liquid crystal displays have been used for applications that require high display quality, such as high contrast and high viewing angle.
[0003] しかし TFT—TNモードは原理的に視野角が悪いという欠点を有している。そのた め、斜めから観察した場合には、コントラストの低下や階調の反転を引き起こす。この ため、 TFT— TNモードに代わる新しい液晶モードが要求されており、その一つが垂 直配向ネマチック型 (VAモード)液晶表示装置である。 VAモードは、広い視野角特 性を発現できる表示モードである。そのため、家庭用テレビなどに既に広く取り入れ られ、最近では携帯電話やデジタルカメラのモニターなど、小型の液晶表示装置にも 採用されている。  [0003] However, the TFT-TN mode has a disadvantage that the viewing angle is poor in principle. Therefore, when observed from an oblique direction, it causes a decrease in contrast and gradation inversion. For this reason, a new liquid crystal mode is required to replace the TFT-TN mode, one of which is the vertical alignment nematic (VA mode) liquid crystal display device. The VA mode is a display mode that can exhibit a wide viewing angle characteristic. For this reason, it has already been widely adopted in home TVs and recently used in small liquid crystal display devices such as mobile phones and digital camera monitors.
[0004] VAモードでも、他の液晶表示方式と同じく位相差フィルムを視野角補償に用いる ことができ、二つ補償するべき要素を持つ。一つ目は液晶表示装置を斜めから観察 した場合に、 2枚の偏光板の吸収軸が、見かけ上直交ではなくなることに起因する、 所謂偏光板の光抜けの補償である。この補償のためには通常、正の Aプレートと正の Cプレートと呼ばれる位相差フィルムが用いられる。  [0004] In the VA mode, a retardation film can be used for viewing angle compensation as in other liquid crystal display systems, and has two elements to be compensated. The first is compensation for so-called light leakage of the polarizing plate caused by the fact that the absorption axes of the two polarizing plates are apparently not orthogonal when the liquid crystal display device is observed from an oblique direction. For this compensation, a retardation film called a positive A plate and a positive C plate is usually used.
[0005] 二つ目は VAセルを斜め方向から観察すると、液晶分子の複屈折が増加して、黒 表示時にセル起因の光洩れが起こり、コントラストの低下が見られるために必要な補 償である。垂直配向している液晶の複屈折を補償するためには、負の Cプレートと呼 ばれる位相差フィルムが必要になる。負の cプレートは位相差フィルムの積層で簡単 に得られる力 しかし、粘着剤などを用いて多数のフィルムとセルを張り合わせると、 屈折率差により界面反射が生じ、コントラストが全体的に低下したり、干渉ムラが発生 するという問題点があった。さらには複数の位相差フィルムを用いることで、生産コスト の上昇が顕著になり、光学部材の一部に過ぎない位相差フィルムのために多額の投 資を余儀なくされる。また、貼り合せ工程が増えるほどに歩留まりの低下が避けられな い。なお、正の Aプレート、負の Cプレート等の用語については、下記特許文献 1に 説明されている。 [0005] Secondly, when the VA cell is observed from an oblique direction, the birefringence of the liquid crystal molecules increases, and light leakage due to the cell occurs at the time of black display. is there. To compensate for the birefringence of vertically aligned liquid crystals, it is called a negative C plate. A phase difference film is required. Negative c-plate is a force that can be easily obtained by laminating retardation films. However, if a large number of films and cells are stuck together using an adhesive or the like, interface reflection occurs due to the difference in refractive index, and the contrast is reduced overall. There is also a problem that uneven interference occurs. Furthermore, by using a plurality of retardation films, the increase in production cost becomes remarkable, and a large amount of investment is required for the retardation film that is only a part of the optical member. In addition, the yield is inevitably lowered as the number of bonding steps increases. Terms such as positive A plate and negative C plate are described in Patent Document 1 below.
[0006] 特許文献 1では、正の Aプレートと負の Cプレートを特定の波長分散の組み合わせ で積層する補償方法により、高コントラストで干渉ムラがなぐ色再現性の良い VAモ ードを実現している。し力しながら、複数枚の補償用の位相差フィルムに使うため、上 記複数の位相差フィルムを用いることにより生じる問題点に対しては根本的な解決と はなっていない。  [0006] In Patent Document 1, a compensation method in which a positive A plate and a negative C plate are laminated with a specific combination of wavelength dispersion, a VA mode with high contrast and good color reproducibility without interference unevenness is realized. ing. However, since it is used for a plurality of compensation retardation films, it does not provide a fundamental solution to the problems caused by using the plurality of retardation films.
[0007] 特許文献 2では延伸複屈折フィルムに変えて、特殊な方向に配向した円盤状ィ匕合 物を含む位相差フィルムを用いて VAモードを補償する方法が提案されて ヽる。この 方法では、液晶の配向を複雑に制御できるため、精密なセル補償が可能になる。し 力しながら、一般的に円盤状ィ匕合物や、これを含む加工品は非常に高価であり、コス トダウンと高性能化の両立が求められる位相差フィルム巿場においては、コスト面で の問題が残る。  [0007] Patent Document 2 proposes a method of compensating for the VA mode by using a retardation film containing a disc-like compound oriented in a special direction instead of a stretched birefringent film. In this method, since the alignment of the liquid crystal can be controlled in a complicated manner, precise cell compensation becomes possible. However, in general, disk-like composites and processed products containing them are very expensive, and in the retardation film factory where both cost reduction and high performance are required, cost is reduced. The problem remains.
[0008] 特許文献 3ではノルボルネン系の環状ォレフィン系高分子を延伸して、 1枚の位相 差フィルムによって必要な光学特性を満足する、視野角補償用位相差フィルムを得 る方法が開示されている。しかし、液晶表示用部材に対する薄型化や軽量ィ匕が強く 望まれる現在の状況では、下記する問題点がある。  [0008] Patent Document 3 discloses a method for obtaining a viewing angle compensation phase difference film by stretching a norbornene-based cyclic olefin-based polymer and satisfying necessary optical characteristics with a single phase difference film. Yes. However, there are the following problems in the current situation where thinning and light weight of liquid crystal display members are strongly desired.
[0009] 位相差フィルムと組み合わせる偏光素子は二色性色素を含有した一軸延伸された ポリビニルアルコールフィルム力 なるため、非常に脆ぐ温度や水分に対する耐久 性に劣るため、トリァセチルセルロース等の保護フィルムで両面力も挟持されている。 該保護フィルム付きの偏光素子を偏光フィルムと呼ぶ。特許文献 3の位相差フィルム は偏光フィルムと粘着剤を用いて張り合わせることになる。ここで、例えば保護フィル ムの代わりに位相差フィルムを直接偏光素子に接着できれば、保護フィルム一層分 の薄型化された、位相差フィルム一体型偏光フィルムが得られる。しカゝしながら、ノル ボルネン系等、環状ォレフィン系の高分子フィルムは、偏光素子との接着性に乏しく 、高 、耐久性を維持したままでの一体ィ匕は容易ではな 、。 [0009] A polarizing element combined with a retardation film has a uniaxially stretched polyvinyl alcohol film containing a dichroic dye, and therefore has a low brittle temperature and moisture resistance, and thus a protective film such as triacetyl cellulose. The double-sided force is also pinched. The polarizing element with the protective film is called a polarizing film. The retardation film of Patent Document 3 is bonded using a polarizing film and an adhesive. Here, for example, protective film If the retardation film can be directly bonded to the polarizing element instead of the film, a polarizing film integrated with the retardation film can be obtained which is made thinner by one protective film. However, norbornene-based and other cyclic olefin-based polymer films have poor adhesion to polarizing elements, and it is not easy to integrate them while maintaining high durability.
[0010] 偏光素子との一体化が可能な位相差フィルム素材としては、セルロース系ポリマー がある。保護フィルムによく用いられているトリァセチルセルロースは、フィルム表面を ケンィ匕処理した後に、ポリビニルアルコール系の接着剤を使って、偏光素子と接着で きることが知られている。特許文献 4では、一枚のセルロースァシレートフィルム、特に セルロースアセテートやセルロースプロピオネートを用いて偏光素子一体型の位相 差フィルムを作製し、 VAセルを補償する方法が開示されている。また、特許文献 5に は特にセルロースアセテートプロピオネートを用いて VAセルを一枚で補償する方法 が開示されている。  As a retardation film material that can be integrated with a polarizing element, there is a cellulose polymer. It is known that triacetyl cellulose, which is often used for protective films, can be bonded to a polarizing element using a polyvinyl alcohol-based adhesive after the surface of the film is subjected to a ken treatment. Patent Document 4 discloses a method in which a retardation film integrated with a polarizing element is produced using a single cellulose acylate film, particularly cellulose acetate or cellulose propionate, and a VA cell is compensated. Patent Document 5 discloses a method of compensating for a single VA cell using cellulose acetate propionate.
また、特許文献 6には炭素数が 5から 20の脂肪族ァシル基 (A)により水酸基が置 換されたセルロース誘導体を、一軸延伸した位相差フィルムが記載されている力 V Aモードの表示装置の視野角特性改善には効果が十分でない。  Patent Document 6 describes a force VA mode display device in which a retardation film obtained by uniaxially stretching a cellulose derivative in which a hydroxyl group is substituted by an aliphatic acyl group (A) having 5 to 20 carbon atoms is described. The effect is not sufficient for improving the viewing angle characteristics.
特許文献 1:特開 2004— 326089号公報  Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-326089
特許文献 2:特許第 2866372号公報  Patent Document 2: Japanese Patent No. 2866372
特許文献 3:特開平 11― 95208号公報  Patent Document 3: Japanese Patent Laid-Open No. 11-95208
特許文献 4:特開 2005— 134863号公報  Patent Document 4: Japanese Patent Laid-Open No. 2005-134863
特許文献 5:特開 2004— 133171号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 2004-133171
特許文献 6: WO2005Z022215号公報  Patent Document 6: WO2005Z022215
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] しカゝしながら、特許文献 4や特許文献 5に記載のセルロース系位相差フィルムは、 本発明者等の検討によれば、視野角の補償効果がまだ満足すべきものではなぐ更 に、室温付近で湿度が変化した場合の位相差値の変化 (耐環境性)が大きぐ安定し た視野角改善にも問題があった。そのため、偏光フィルムの保護無し面に、容易に一 体化することが出来、かつ視野角補償効果に優れると共に、環境変化にも位相差値 の変化の少ない位相差フィルムの開発が望まれる。 However, the cellulose-based retardation film described in Patent Document 4 and Patent Document 5 is not yet satisfactory in view angle compensation effect according to the study by the present inventors. There was also a problem in improving the viewing angle with a large change in the phase difference value (environment resistance) when the humidity was changed near room temperature. Therefore, it can be easily integrated on the non-protected surface of the polarizing film and has excellent viewing angle compensation effect. Development of a retardation film with little change in the thickness is desired.
課題を解決するための手段  Means for solving the problem
[0012] 本発明者等は前記の課題を解決すべく鋭意研究の結果、炭素数が 5から 20の脂 肪族ァシル基により水酸基が置換され、該水酸基の置換度がセルロース 1モノマー ユニット当り 0. 50-2. 99であるセルロース誘導体を用いて、二軸延伸により作製さ れる、光学的に二軸性を示す位相差フィルムが、優れた VAモードの補償効果を有 すること、さらにフィルム作成の際の添加剤の選択により、耐環境性にも優れる位相 差フィルムとすることができることを見出し本発明に至った。  [0012] As a result of diligent research to solve the above-mentioned problems, the present inventors have substituted a hydroxyl group with an aliphatic acyl group having 5 to 20 carbon atoms, and the substitution degree of the hydroxyl group is 0 per cellulose monomer unit. 50-2. A retardation film that is produced by biaxial stretching using a cellulose derivative that is 99 and that exhibits optical biaxiality has an excellent VA mode compensation effect, as well as film production. The present inventors have found that a retardation film having excellent environmental resistance can be obtained by selecting an additive at the time.
[0013] 即ち、本発明は  [0013] That is, the present invention provides
(1)炭素数が 5から 20の脂肪族ァシル基 (A)により水酸基が置換され、該水酸基の 置換度がセルロース 1モノマーユニット当り 0. 50〜2. 99であるセルロース誘導体か らなるフィルムの 2軸延伸により作製され、下記式(1)で示されるフィルム面内の位相 差値 Reが Onm以上 200nm以下であり、式(2)で示されるフィルム法線方向の位相 差値 Rth力 ¾Onm以上 300nm以下であり、かつ、 nx>ny>nzである光学的に二軸 性を有する位相差フィルム、ただし、各記号は下記の意味を表す、  (1) A film comprising a cellulose derivative in which a hydroxyl group is substituted by an aliphatic acyl group having 5 to 20 carbon atoms (A), and the degree of substitution of the hydroxyl group is 0.50 to 2.99 per cellulose monomer unit. Retardation value Re in the film plane represented by the following formula (1), which is produced by biaxial stretching, is Onm or more and 200 nm or less, and the retardation value in the film normal direction represented by formula (2) Rth force ¾Onm or more An optically biaxial retardation film that is 300 nm or less and nx> ny> nz, where each symbol has the following meaning:
Re = (nx-ny) X d (1)  Re = (nx-ny) X d (1)
Rth = [ (nx+ny) /2-nz] X d (2)  Rth = [(nx + ny) / 2-nz] X d (2)
nx:フィルム面内の遅相軸方向の屈折率  nx: Refractive index in the slow axis direction in the film plane
ny:フィルム面内の進相軸方向の屈折率  ny: Refractive index in the fast axis direction in the film plane
nz:フィルム法線方向の屈折率  nz: refractive index in the film normal direction
d:フィルムの厚み  d: Film thickness
(2)セルロース誘導体の置換基が、(1)炭素数が 5から 20の脂肪族ァシル基 (A)単 独であるか、又は(2)炭素数が 5から 20の脂肪族ァシル基 (A)及びそれ以外の置換 基 (B)の両者のいずれかであり、かつ、後者の置換基 (B)が該脂肪族ァシル基 (A) とは構造の異なる脂肪族ァシル基、芳香族ァシル基、アルキル力ルバモイル基、芳 香族力ルバモイル基、トラン骨格を有するァシル基、ビフエニル骨格を有するァシル 基または重合性基の 、ずれかである上記(1)の位相差フィルム、  (2) The substituent of the cellulose derivative is either (1) an aliphatic acyl group having 5 to 20 carbon atoms (A) alone or (2) an aliphatic acyl group having 5 to 20 carbon atoms (A ) And other substituents (B), and the latter substituent (B) has a structure different from that of the aliphatic acyl group (A). The retardation film according to the above (1), wherein the alkyl group is a rubermoyl group, an aromatic group rubermoyl group, an acyl group having a tolan skeleton, an acyl group having a biphenyl skeleton, or a polymerizable group,
(3)炭素数が 5から 20の脂肪族ァシル基 (A)が、炭素数 5〜7の直鎖の脂肪族ァシ ル基であり、炭素数 5又は 6の直鎖の脂肪族ァシル基の場合、その置換度が 2. 0〜2 . 8で有り、炭素数 7の脂肪族ァシル基の場合、その置換度が 1. 5〜2. 3であるセル ロース誘導体である上記(2)に記載の位相差フィルム、 (3) An aliphatic acyl group having 5 to 20 carbon atoms (A) is a straight chain aliphatic acyl group having 5 to 7 carbon atoms. In the case of a linear aliphatic acyl group having 5 or 6 carbon atoms, the degree of substitution is 2.0 to 2.8, and in the case of an aliphatic acyl group having 7 carbon atoms, the degree of substitution is 1. The retardation film according to (2) above, which is a cellulose derivative that is 5 to 2.3.
(4)前記セルロース誘導体力 なるフィルム力 前記セルロース誘導体と、反応性モ ノマー若しくは反応性モノマーおよび重合開始剤の両者を含む榭脂組成物により作 製されたものである上記(1)〜(3)の 、ずれか 1項に記載の位相差フィルム、 (4) The above-mentioned cellulose derivative force Film force The above-mentioned (1) to (3) produced by a resin composition containing both the cellulose derivative and a reactive monomer or monomer and a polymerization initiator. ) Of the retardation film according to item 1,
(5)前記反応性モノマーが熱硬化性ィヒ合物である上記 (4)に記載の位相差フィルム (5) The retardation film according to (4), wherein the reactive monomer is a thermosetting compound.
(6)前記熱硬化性ィ匕合物がシランカップリング剤である上記(5)に記載の位相差フィ ノレム、 (6) The retardation film according to the above (5), wherein the thermosetting compound is a silane coupling agent,
(7)前記脂肪族ァシル基 (A)が n—へキサノィル基であり、 n—へキサノィル基による 水酸基の置換度が 1. 80-2. 90である上記(1)〜(6)に記載の位相差フィルム、 (7) The above (1) to (6), wherein the aliphatic acyl group (A) is an n-hexanol group, and the degree of substitution of the hydroxyl group with the n-hexanol group is 1.80-2.90. Retardation film,
(8)フィルム面内の位相差値 Reが 10nm以上 80nm以下であり、フィルム法線方向 の位相差値 Rthが lOOnm以上 250nm以下であり、フィルムの厚み dが 30 μ m以上 110 m以下である上記(1)〜(7)の!、ずれか一項に記載の位相差フィルム、(8) In-plane retardation value Re is 10 nm or more and 80 nm or less, film normal direction retardation value Rth is lOOnm or more and 250 nm or less, and film thickness d is 30 μm or more and 110 m or less. The retardation film according to any one of (1) to (7) above,
(9)波長 450nmにおける位相差値を Re450、波長 550nmにおける位相差値を Re 550、波長 750nmにおける位相差値を Re750としたときに、下記式(3)、(4)及び( 5)の関係を満たすことを特徴とする、 (1)〜(7)のいずれか一項に記載の位相差フィ ノレム、 (9) When the phase difference value at a wavelength of 450 nm is Re450, the phase difference value at a wavelength of 550 nm is Re 550, and the phase difference value at a wavelength of 750 nm is Re750, the following equations (3), (4), and (5) The retardation film according to any one of (1) to (7), characterized in that:
Re450≤Re550≤Re750 (3)  Re450≤Re550≤Re750 (3)
0. 50≤Re450/Re550< 0. 99 (4) 0. 50≤Re450 / Re550 <0. 99 (4)
1. 00<Re750/Re550≤l. 50 (5) 1. 00 <Re750 / Re550≤l. 50 (5)
(10)前記セルロース誘導体力 なるフィルムが溶剤キャスト法により作製されたフィ ルムである上記(1)〜(9)の!、ずれか一項に記載の位相差フィルム。  (10) The retardation film according to any one of (1) to (9) above, wherein the film having the cellulose derivative strength is a film produced by a solvent casting method.
(11)上記(1)〜(10)のいずれか一項に記載の位相差フィルムと偏光フィルムを構 成する保護フィルム保護面または偏光素子未保護面とを、接着剤または粘着剤を用 V、て貼り合わせた機能性偏光フィルム、  (11) The retardation film according to any one of the above (1) to (10) and the protective film protective surface or the polarizing element unprotected surface constituting the polarizing film are used with an adhesive or an adhesive. , Functional polarizing film bonded together,
(12) (1)乃至(10)のいずれか一項に記載の位相差フィルム、(9)に記載の機能性 偏光フィルムを備えてなる画像表示装置、 (12) The retardation film according to any one of (1) to (10), and the functionality according to (9) An image display device comprising a polarizing film;
(13)画像表示装置が垂直配向ネマチック (VA)型液晶表示装置である上記( 12)に 記載の画像表示装置、  (13) The image display device according to (12), wherein the image display device is a vertical alignment nematic (VA) type liquid crystal display device,
に関する。  About.
発明の効果  The invention's effect
[0014] 前記本発明で使用するセルロース誘導体 (以下単にセルロース誘導体とも言う)を 用いて作製される光学的に二軸性を有する位相差フィルムは、従来のセルロース系 VA補償用の位相差フィルムよりも大幅に優れた視野角補償効果を示す。セルロース 誘導体であることから、ケン化処理後は偏光素子と密着可能で、位相差フィルム一体 型偏光フィルムを作製することができる。また、反応性モノマー、例えばシランカツプリ ング剤を含むセルロース誘導体を重合又は架橋(以下同様な意味で、単に重合とも 言う)したフィルムカゝらなる本発明の位相差フィルムは耐久性及び/又は耐環境性能 に優れ、より好ましい。さら〖こは、一枚使いの位相差フィルムで充分な視野角補償効 果を有するために、液晶表示装置の薄型化に寄与できる。また、セルロース誘導体 でありながら、非ハロゲン系の溶剤に溶解可能であるため、加工性、対環境性にも優 れている。  [0014] An optically biaxial retardation film produced using the cellulose derivative used in the present invention (hereinafter also simply referred to as a cellulose derivative) is more than a conventional retardation film for cellulose-based VA compensation. Also show a much better viewing angle compensation effect. Since it is a cellulose derivative, it can be adhered to the polarizing element after the saponification treatment, and a retardation film integrated polarizing film can be produced. In addition, the retardation film of the present invention comprising a film obtained by polymerizing or cross-linking (hereinafter, also simply referred to as polymerization) a cellulose derivative containing a reactive monomer such as a silane coupling agent is durable and / or environmental resistant. Excellent performance and more preferable. Sarakuko has a sufficient viewing angle compensation effect with a single-use retardation film, which can contribute to thinning of the liquid crystal display device. In addition, although it is a cellulose derivative, it is soluble in non-halogen solvents, so it has excellent processability and environmental friendliness.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]位相差フィルムを貼り合わせた補償機能を有する偏光フィルム (本発明実施例 4及び比較例 1)及び補償機能のな ヽ偏光フィルム(比較例 2)をそれぞれ用いた VA モードの液晶表示装置における、それぞれの全方位の黒輝度測定データから、偏光 板の吸収軸力 右回り 45° の、フィルム法線方向への黒輝度分布の断面をグラフ化 したものである。  [0015] [FIG. 1] VA mode using a polarizing film having a compensation function (Invention Example 4 and Comparative Example 1) and a polarizing film having a compensation function (Comparative Example 2), respectively, bonded with a retardation film This is a graph of the cross-section of the black luminance distribution in the normal direction of the film at 45 ° clockwise of the absorption axial force of the polarizing plate, based on the black luminance measurement data in all directions in the liquid crystal display device.
[図 2]実施例 7の本発明の位相差フィルムおよび、比較例 1のセルロースアセテートプ 口ピオネートよりなる位相差フィルムのそれぞれの耐環境試験におけるフィルム面内 の位相差値 Reの変化を示したグラフである。  FIG. 2 shows the change in retardation value Re in the film surface in each environmental resistance test of the retardation film of Example 7 of the present invention and the retardation film of cellulose acetate propionate of Comparative Example 1 It is a graph.
[図 3]実施例 7の本発明の位相差フィルムおよび、比較例 1のセルロースアセテートプ 口ピオネートよりなる位相差フィルムのそれぞれの耐環境試験におけるフィルム法線 方向の位相差値 Rthの変化を示したグラフである。 符号の説明 FIG. 3 shows changes in the retardation value Rth in the film normal direction in each environmental resistance test of the retardation film of Example 7 of the present invention and the retardation film of the cellulose acetate propionate of Comparative Example 1 It is a graph. Explanation of symbols
[0016] 図 1  [0016] FIG.
□:実施例 4の機能性偏光フィルム  □: Functional polarizing film of Example 4
(実施例 3の位相差フィルムを貼り合わせた偏光フィルム)  (Polarized film bonded with the retardation film of Example 3)
〇:比較例 1の、公知の位相差フィルムを貼り合わせた偏光フィルム  A: Polarizing film obtained by bonding a known retardation film of Comparative Example 1
X:比較例 2の、補償機能を持たない偏光フィルム  X: Polarizing film having no compensation function of Comparative Example 2
図 2及び図 3  2 and 3
O:実施例 7の位相差フィルム  O: Retardation film of Example 7
〇:比較例 4の位相差フィルム  ○: Retardation film of Comparative Example 4
A:真空乾燥条件(10mmHg、 湿度 27%、温度 30°C、 )  A: Vacuum drying conditions (10mmHg, humidity 27%, temperature 30 ° C,)
Aの後の数値は回数を示す。  The number after A indicates the number of times.
B :高湿度条件(常圧、湿度 80 %、 温度 30°C)  B: High humidity condition (normal pressure, humidity 80%, temperature 30 ° C)
Bの後の数値は回数を示す。  The number after B indicates the number of times.
init:初期値を示す。  init: Indicates the initial value.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明を詳細に説明する。 [0017] The present invention will be described in detail.
本発明において位相差フィルムの原料として使用する、炭素数が 5から 20の脂肪 族ァシル基 (A)により水酸基が置換され、該水酸基の置換度がセルロース 1モノマー ユニット当り 0. 50-2. 99であるセルロース誘導体は特許文献 6に記載されているか 若しくは記載されて 、な 、場合はそれに準じて製造することが出来る。  In the present invention, a hydroxyl group is substituted by an aliphatic acyl group (A) having 5 to 20 carbon atoms used as a raw material for a retardation film, and the substitution degree of the hydroxyl group is 0.50-2.99 per one monomer unit of cellulose. The cellulose derivative is described in Patent Document 6 or is described, and in this case, it can be produced in accordance with it.
該セルロース誘導体の出発原料として使用しうるセルロースとしては、結晶形態や 重合度に関わらず、式 (6)に示すように  Cellulose that can be used as a starting material for the cellulose derivative is as shown in formula (6) regardless of the crystal form and the degree of polymerization.
[0018] [化 1] [0018] [Chemical 1]
Figure imgf000010_0001
Figure imgf000010_0001
[0019] D—ダルコビラノースが /3 — 1, 4結合で連結した構造であれば用いることができる。 [0019] Any structure in which D-darcoviranose is linked by a -3, 1, 4 bond can be used.
具体的には天然セルロース、粉末セルロース、結晶セルロース、再生セルロース、セ ルロース水和物、レーヨン等が挙げられる。  Specific examples include natural cellulose, powdered cellulose, crystalline cellulose, regenerated cellulose, cellulose hydrate, and rayon.
[0020] 本発明の位相差フィルム作製に用いるセルロース誘導体は式(7)に示すようにセ ルロースの水酸基を置換したものである。  [0020] The cellulose derivative used for the production of the retardation film of the present invention is one in which the hydroxyl group of cellulose is substituted as shown in the formula (7).
[0021] [化 2]  [0021] [Chemical 2]
Figure imgf000010_0002
Figure imgf000010_0002
[0022] 式(7)中 Rl, R2,及び R3は水素原子又は置換基であり、 Rl, R2,及び R3は同じ であっても異なっていても良いが、 Rl, R2,及び R3の全てが水素原子ということは 無ぐ少なくとも 1つは炭素数が 5以上 20以下の脂肪族ァシル基である。また、これら の置換基は、炭素数が 5以上 20以下の脂肪族ァシル基とは異なる置換基含んで ヽ ても良い。該異なる置換基を含む場合、それぞれの置換基の存在比は任意の割合 で良い。また、少なくとも 1種類の炭素数 5以上 20以下の脂肪族ァシル基を持つセル ロース誘導体において、セルロース 1ユニットあたりの置換基数の和(置換度)は、 0. 50-2. 99であり、好ましくは 1. 00-2. 90である。また、場合により該置換度は 1. 5〜2. 95の範囲が好ましぐより好ましくは 2. 0〜2. 8である。置換基は該脂肪族ァ シル基だけであっても、また、他の置換基を含んでいてもよい。他の置換基を含む場 合、該脂肪族ァシル基が置換基全体の 4割以上、好ましくは 5割以上占めることが好 まし 、。最も好ましくは C5— C7脂肪族ァシル基だけのばぁ 、である。 In formula (7), Rl, R2, and R3 are hydrogen atoms or substituents, and Rl, R2, and R3 may be the same or different, but all of Rl, R2, and R3 Is not a hydrogen atom, and at least one is an aliphatic acyl group having 5 to 20 carbon atoms. In addition, these substituents may contain a substituent different from the aliphatic acyl group having 5 to 20 carbon atoms. When the different substituents are included, the abundance ratio of each substituent may be an arbitrary ratio. In the cellulose derivative having at least one kind of aliphatic acyl group having 5 to 20 carbon atoms, the sum of the number of substituents per unit of cellulose (degree of substitution) is 0.50-2.99, preferably Is 1. 00-2.90. In some cases, the degree of substitution is preferably in the range of 1.5 to 2.95, more preferably 2.0 to 2.8. Substituent is the aliphatic group It may be a sil group alone or may contain other substituents. When other substituents are included, the aliphatic acyl group preferably accounts for 40% or more, preferably 50% or more of the total substituents. Most preferred is a C5-C7 aliphatic acyl group.
また nは 10以上の整数であることが好ましぐより好ましくは 50以上、さらに好ましく は 100以上であるのが良い。また場合により、 300以上、又は 400以上、更には 500 以上が好ましい。上限は特にないが通常は 10000以下、好ましくは 5000以下、より 好ましくは 2000以下である。従って、 300〜10000は重合度 nの好ましい 1つの範囲 であり、より好ましくは 500〜5000の範囲である。なお、 nは通常重量平均重合度を 示す。  Further, n is preferably an integer of 10 or more, more preferably 50 or more, and even more preferably 100 or more. In some cases, 300 or more, 400 or more, and more preferably 500 or more are preferable. Although there is no particular upper limit, it is usually 10,000 or less, preferably 5000 or less, more preferably 2000 or less. Accordingly, 300 to 10,000 is a preferable range of the degree of polymerization n, and more preferably 500 to 5,000. Here, n usually represents the weight average degree of polymerization.
炭素数が 5以上 20以下の脂肪族ァシル基として好ましいものは、 C5〜C16の脂肪 族ァシル基、さらに好ましくは C5〜C12の脂肪族ァシル基であり、更に好ましくは炭 素数が 5〜7の脂肪族ァシル基 (好ましくは直鎖の脂肪族ァシル基)である。炭素数 5 又は 6の直鎖の脂肪族ァシル基の場合、その置換度が 2. 0〜2. 8、好ましくは 2. 0 〜2. 6で有り、炭素数 7の脂肪族ァシル基の場合、その置換度が 1. 5以上で 2. 5よ り小さぐ好ましくは 1. 5〜2. 3である場合より好ましい。炭素数が 5〜7の脂肪族ァシ ル基としては具体的には n—ペンタノィル基、 n—へキサノィル基、 n—ヘプタノィル 基を挙げることが出来、炭素数が 6である n—へキサノィル基が最も好ましい。 n—ぺ ンタノィル基又は n—へキサノィル基での置換度は上記の範囲であればよ!、が、好ま しくは 1. 8〜2. 9程度であり、より好ましくは 2. 0〜2. 8程度であり、更に好ましくは 2 . 0〜2. 6程度である。また、 n—ヘプタノィル基での置換度は 1. 5〜2. 5程度が好 ましい。  Preferred as the aliphatic acyl group having 5 to 20 carbon atoms is a C5-C16 aliphatic acyl group, more preferably a C5-C12 aliphatic acyl group, more preferably a carbon number of 5-7. An aliphatic acyl group (preferably a linear aliphatic acyl group). In the case of a linear aliphatic acyl group having 5 or 6 carbon atoms, the degree of substitution is 2.0 to 2.8, preferably 2.0 to 2.6, and in the case of an aliphatic acyl group having 7 carbon atoms. The degree of substitution is 1.5 or more and less than 2.5, preferably 1.5 to 2.3. Specific examples of the aliphatic acyl group having 5 to 7 carbon atoms include n-pentanol group, n-hexanol group and n-heptanol group, and n-hexanol having 6 carbon atoms. Groups are most preferred. The degree of substitution with an n-pentanol or n-hexanol group should be in the above range !, but is preferably about 1.8 to 2.9, more preferably 2.0 to 2. About 8, more preferably about 2.0 to 2.6. The degree of substitution with the n-heptanol group is preferably about 1.5 to 2.5.
本発明にお 、て炭素数 5〜20の脂肪族ァシル基 (A)以外のァシル基としては、例 えば該脂肪族ァシル基 (A)とは構造の異なるァシル基 (例えば脂肪族ァシル基、芳 香族ァシル基、トラン骨格を有するァシル基又はビフヱニル骨格を有するァシル基) 、力ルバモイル基 (例えば置換基フエニル基又はハロゲン原子などの置換基を有して もよい炭素数 1〜10の脂肪族基又は芳香族力ルバモイル基)、または重合性基等を 挙げることができ、更に、式(7)のセルロース誘導体について記載した次の項で、好 ま 、として記載されるものはより好ま 、。 式 (7)にお 、て炭素数が 5以上 20以下の脂肪族ァシル基以外の置換基としては好 ましいものは力ルバモイル基、炭素数が 5以上 20以下の脂肪族ァシル基以外のァシ ル基又は重合性基であり、より好ましくは力ルバモイル基又は炭素数が 5以上 20以 下の脂肪族ァシル基以外のァシル基である。 In the present invention, as the acyl group other than the aliphatic acyl group (A) having 5 to 20 carbon atoms, for example, an acyl group having a structure different from that of the aliphatic acyl group (A) (for example, an aliphatic acyl group, An aromatic acyl group, an acyl group having a tolan skeleton or a acyl group having a biphenyl skeleton), a rubamoyl group (for example, a substituent having 1 to 10 carbon atoms which may have a substituent such as a phenyl group or a halogen atom) Group or aromatic force rubamoyl group), or a polymerizable group, and more preferably those described as preferred in the next section describing the cellulose derivative of formula (7). . In formula (7), preferred substituents other than aliphatic acyl groups having 5 to 20 carbon atoms are rubamoyl groups, and alkyl groups other than aliphatic acyl groups having 5 to 20 carbon atoms are preferred. A silyl group or a polymerizable group, more preferably a strong rubermoyl group or an acyl group other than an aliphatic asil group having 5 to 20 carbon atoms.
好ましいセルロース誘導体としては、具体的には、式(7)における Rl, R2,及び R 3が、少なくとも 1つは炭素数が 5以上 20以下の脂肪族ァシル基で置換されているこ とを条件に、 Y— CO 基単独、又は Y— CO 基及び Z— NH— CO 基の両者で 置換されている化合物であり、より好ましくは Y— CO に含まれる基のみで置換され て!、るものが好ま 、。ここで Yは置換又は非置換の炭素数 1〜20の炭化水素残基 を表し、例えばビニル基、メチル基、ェチル基、プロピル基、イソプロピル基、 n—ブチ ル基、イソブチル基、 tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シ クロへキシル基、ォクチル基、ノ-ル基、デシル基、ベンジル基、 1 ナフチルメチル 基、トリフルォロメチル基、アミノメチル基、 2 ァミノ一ェチル基、 3 ァミノ一 n—プロ ピル基又は 4 ァミノ n ブチル基、若しくはそれらのァミノ基がさらにアミドゃウレ タンに変換された置換基、ヒドロキシ置換 (C1〜C4)アルキル基、若しくはそのヒドロ キシル基が更に(C1〜C14)ァシル基若しくは(C1〜C14)アルキル基で置換された 基、(C1〜C3)アルキル基で置換されていてもよいビュル基、シァノビフエ-ルォキ シ(C3〜C10)アルキル基、アセチレン基及びシンナモイル基等の炭素数 1〜10の 不飽和結合を有する脂肪族基、フ ニル基、ナフチル基、アントラセニル基、フルォ レニル基、ビフエニル基又は 4—トリフルォロメチルフエニル基等の芳香族基を有する ァシル基が、又 Zとしては、置換基 (例えばフエニル基、ハロゲン原子など)を有しても よい炭素数 1〜10の脂肪族基を挙げることが出来、例えば、ビニル基、メチル基、ェ チル基、プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 tert-ブチル基、 ペンチル基、ネオペンチル基、へキシル基、シクロへキシル基、ォクチル基、ノ-ル 基、デシル基、ベンジル基、 1 ナフチルメチル基又はトリフルォロメチル基等がそれ ぞれ挙げられる。これら置換基は、本発明で使用されるセルロース誘導体の複屈折 性、波長分散特性、粘度、配向のし易さ、加工性、反応性等を考慮して、 目的にに応 じて適宜選択され、 1種であっても、また複数であってもよい。又、セルロース水酸基 の、それら置換基での置換度も、同様に目的に応じて適宜選択される。 As a preferable cellulose derivative, specifically, Rl, R2, and R3 in the formula (7) are provided that at least one is substituted with an aliphatic acyl group having 5 to 20 carbon atoms. In addition, Y-CO group alone or a compound substituted with both Y-CO group and Z-NH-CO group, more preferably only substituted with a group contained in Y-CO! Preferred. Y represents a substituted or unsubstituted hydrocarbon residue having 1 to 20 carbon atoms, for example, vinyl group, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl. Group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nor group, decyl group, benzyl group, 1 naphthylmethyl group, trifluoromethyl group, aminomethyl group, 2-amino group An ethyl group, a 3-amino-1-n-propyl group, a 4-amino-n-butyl group, a substituent in which those amino groups are further converted to amidourethan, a hydroxy-substituted (C1-C4) alkyl group, or a hydroxy group thereof A group further substituted with a (C1 to C14) acyl group or (C1 to C14) alkyl group, (C1 to C3) a bur group optionally substituted with an alkyl group, Cyanobiphenol (C3 to C10) A An aliphatic group having an unsaturated bond having 1 to 10 carbon atoms, such as a kill group, acetylene group and cinnamoyl group, a phenyl group, a naphthyl group, an anthracenyl group, a fluorenyl group, a biphenyl group or a 4-trifluoromethylphenyl group. Examples of the acyl group having an aromatic group such as a group, and examples of Z include an aliphatic group having 1 to 10 carbon atoms which may have a substituent (for example, a phenyl group, a halogen atom, etc.). , Vinyl group, methyl group, ethyl group, propyl group, isopropyl group, n butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nor Group, decyl group, benzyl group, 1-naphthylmethyl group, trifluoromethyl group and the like. These substituents are appropriately selected according to the purpose in consideration of the birefringence, wavelength dispersion characteristics, viscosity, ease of orientation, processability, reactivity, etc. of the cellulose derivative used in the present invention. 1 type or multiple types. Cellulose hydroxyl group Similarly, the degree of substitution with these substituents is also appropriately selected according to the purpose.
[0024] 本発明で使用されるセルロース誘導体は WO2005Z022215号公報等に記載さ れ何れも公知であるか、若しくは該公報に記載の方法に準じて容易に合成すること が出来る。例えば、はじめに出発原料であるセルロースを有機溶剤へ溶解する。有 機溶剤としては、アルコール系以外の溶剤であれば、どのようなものを用いても良い 1S クロ口ホルムゃジクロロメタン等のハロゲン溶媒、ジメチルァセトアミドゃジメチルホ ルムアミド、アセトン又はシクロペンタノン等の極性溶剤が好ましい。溶解前にあらか じめセルロースが該有機溶媒を含浸していると、セルロースの溶解性が向上するため に好ましい。該有機溶媒を用いて 2 20重量%、好ましくは 5 10重量%のセル口 ース溶液を調製する。このセルロース溶液に置換基導入用試薬を加え、一定の温度 に保持して反応を行う。置換基導入用試薬とはカルボン酸無水物やカルボン酸クロリ ドなどのァシル化剤や、イソシアン酸エステルとジラウリン酸ジー n—ブチルすずのよ うな力ルバモイル化剤である。反応温度はセルロースと置換基導入用試薬の反応性 に応じて適宜設定される。反応後、水またはメタノール中に反応溶液を添加すること で再沈殿を行い、析出する固形分を乾燥すると、本発明で使用されるセルロース誘 導体を得ることができる。  [0024] The cellulose derivatives used in the present invention are all known as described in WO2005Z022215 and the like, or can be easily synthesized according to the method described in the publication. For example, first, cellulose as a starting material is dissolved in an organic solvent. Any organic solvent may be used as long as it is a non-alcohol solvent. 1S A halogen solvent such as chloroform or dichloromethane, dimethylacetamide or dimethylformamide, acetone or cyclopentanone. Polar solvents are preferred. It is preferable that cellulose is impregnated with the organic solvent before dissolution because the solubility of cellulose is improved. Using the organic solvent, a 20% by weight, preferably 5 10% by weight, cell mouth solution is prepared. A reagent for introducing a substituent is added to this cellulose solution, and the reaction is carried out at a constant temperature. Substituent introduction reagents are acylating agents such as carboxylic acid anhydrides and carboxylic acid chlorides, and strong rumomoissing agents such as isocyanates and di-n-butyltin dilaurate. The reaction temperature is appropriately set according to the reactivity of cellulose and the reagent for introducing a substituent. After the reaction, reprecipitation is performed by adding a reaction solution in water or methanol, and the precipitated solid is dried, whereby the cellulose derivative used in the present invention can be obtained.
本発明で使用されるセルロース誘導体の置換度調整は、該セルロース誘導体合成 時に用いる置換基導入用試薬の量を調整することにより達成される。置換基導入用 試薬は反応原料に用いるセルロースの水酸基量に対して、 0. 5〜: LOO当量の範囲 で用いることができ、多く用いるほど高い置換度のセルロース誘導体を得ることができ る力 置換基導入用試薬の種類によってセルロース水酸基との反応性が異なるため 、ある置換度を達成するために必要な置換基導入用試薬の量はそれぞれ異なる。例 えば、置換度 2. 14のセルロース n キサネートを得る場合、セルロースの水酸基 に対して 1. 05当量の n キサノイルク口リドを用いて、 4時間以上反応を行う。一 方、置換度 2. 74のセルロース n キサネートを得る場合には、セルロースの水酸 基に対して、 1. 50当量の n キサノイルク口リドを用いて、 4時間以上反応を行う。  Adjustment of the degree of substitution of the cellulose derivative used in the present invention can be achieved by adjusting the amount of the substituent introduction reagent used in the synthesis of the cellulose derivative. The reagent for introducing substituents can be used in a range of 0.5 to: LOO equivalent to the amount of cellulose hydroxyl group used as a reaction raw material, and the greater the amount used, the higher the degree of substitution cellulose derivatives can be obtained. Since the reactivity with the cellulose hydroxyl group varies depending on the type of the group introduction reagent, the amount of the substituent introduction reagent necessary to achieve a certain degree of substitution varies. For example, when obtaining cellulose nxanate having a substitution degree of 2.14, the reaction is carried out for at least 4 hours using 1.05 equivalents of nxanoyl chloride relative to the hydroxyl group of cellulose. On the other hand, when obtaining cellulose nxanate having a degree of substitution of 2.74, use 1.50 equivalents of nxanoyl chloride for the hydroxyl group of cellulose for at least 4 hours.
[0025] セルロース誘導体に重合性基を導入することにより、光重合開始剤の存在下、配向 処理後に紫外線を照射して重合させて配向状態を固定化し、機械的強度や信頼性 、耐溶剤性に優れた位相差フィルムを得ることができる。重合性基としては、例えば 上記 Yや Zがビュル基のもの、即ちアタリロイル基ゃメタアタリロイル基が挙げられる。 光重合開始剤としては、通常の紫外線硬化型榭脂に使用される化合物を用いること ができる。用いうる化合物の具体例としては、 2—メチルー 1 [4 (メチルチオ)フエ 二ル]— 2—モルホリノプロパン— 1 (チバスぺシャリティーケミカルズ製ィルガキュア一 907)、 1 ヒドロキシシクロへキシルフェニルケトン(チバスぺシャリティーケミカルズ 製ィルガキュア一 184)、 4— (2 ヒドロキシエトキシ)一フエ-ル(2 ヒドロキシ一 2 —プロピル)ケトン(チバスぺシャリティーケミカルズ製ィルガキュア一 2959)、 1— (4 ードデシルフエ-ル) 2—ヒドロキシー 2—メチルプロパン 1 オン (メルク製ダロキ ユア一 953)、 1— (4—イソプロピルフエ-ル) 2 ヒドロキシ一 2—メチルプロパン一 1 オン (メルク製ダロキュア一 1116)、 2 ヒドロキシー 2 メチル 1 フエ-ルプロ パン— 1—オン(チバスぺシャリティーケミカルズ製ィルガキュア一 1173)又はジエト キシァセトフエノン等のァセトフエノン系化合物、ベンゾイン、ベンゾインメチルエーテ ル、ベンゾインェチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブ チルエーテル又は 2, 2 ジメトキシ 2—フエ-ルァセトフエノン(チバスぺシャリティ 一ケミカルズ製ィルガキュア一 651)等のベンゾイン系化合物、ベンゾィル安息香酸 、ベンゾィル安息香酸メチル、 4—フエ-ルペンゾフエノン、ヒドロキシベンゾフエノン、 4一べンゾィルー 4'ーメチルジフエ二ルサルファイド又は 3, 3' ジメチルー 4ーメトキ シベンゾフヱノン(日本化薬製カャキュア一 MBP)等のベンゾフヱノン系化合物、チ ォキサンソン、 2—クロルチオキサンソン(日本化薬製カャキュア一 CTX)、 2—メチル チォキサンソン、 2, 4 ジメチルチオキサンソン(カャキュア一 RTX)、イソプロピルチ ォキサンソン、 2, 4 ジクロォチォキサンソン(日本化薬製カャキュア一 CTX)、 2, 4 ジェチルチオキサンソン(日本化薬製カャキュア一 DETX)又は 2, 4 ジイソプロ ピルチオキサンソン(日本ィ匕薬製カャキュア一 DITX)等のチォキサンソン系化合物 等が挙げられる。これらの光重合開始剤は 1種類でも複数でも任意の割合で混合し て使用することができる。 [0025] By introducing a polymerizable group into the cellulose derivative, the alignment state is fixed by irradiating with ultraviolet rays after the alignment treatment in the presence of a photopolymerization initiator, thereby fixing the mechanical strength and reliability. A retardation film having excellent solvent resistance can be obtained. Examples of the polymerizable group include those in which Y or Z is a bulu group, that is, an attaloyl group or a meta attaroyl group. As the photopolymerization initiator, a compound used in a normal ultraviolet curable resin can be used. Specific examples of compounds that can be used include 2-methyl-1 [4 (methylthio) phenyl] -2- morpholinopropane-1 (Irgacure 907 manufactured by Ciba Specialty Chemicals), 1 hydroxycyclohexyl phenyl ketone (Cibas Specialty Chemicals Irgacure 1 184), 4- (2 Hydroxyethoxy) 1-phenyl (2 Hydroxy 2-propyl) Ketone (Ivasacure 1959 from Ciba Specialty Chemicals), 1- (4 dodecyl phenol) 2-Hydroxy-2-methylpropane 1-one (Merck's Darochi Your 953), 1- (4-Isopropylphenol) 2 Hydroxy 2-Methylpropane 1-one (Merck Darocur 1116), 2-Hydroxy-2 Methyl 1 Fuel Propan — 1—On (Irgacure 1173 from Ciba Specialty Chemicals) or Jet Such as acetophenone compounds such as acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether or 2,2 dimethoxy 2-phenylacetophenone (Irgacure 651 from Ciba Specialty One Chemicals) Benzoin compounds, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenol penzophenone, hydroxybenzophenone, 4-benzoyl 4'-methyldiphenylsulfide, or 3, 3 'dimethyl 4-methoxy benzophenone (Nippon Kayaku Co., Ltd. Benzophenone compounds such as MBP), thixanesone, 2-chlorothioxanthone (Nippon Kayaku Cacure 1 CTX), 2-methyl thixanthone, 2,4 dimethylthioxanthone (cacure) RTX), isopropyl thixanthone, 2,4 dicyclothixanthone (Nippon Kayaku Cacaure 1 CTX), 2,4 jetylthioxanthone (Nippon Kayaku Cacure 1 DETX), or 2,4 diisopropylpropyl thoxane Thixanesone compounds such as Sung (Nippon Yakuyaku Kaicure 1 DITX) are listed. These photopolymerization initiators can be used singly or in combination at any ratio.
ベンゾフエノン系化合物やチォキサンソン系化合物を用いる場合には、光重合反 応を促進させるために、助剤を併用することも可能である。そのような助剤としては例 えば、トリエタノールァミン、メチルジェタノールァミン、トリイソプロパノールァミン、 n— ブチルァミン、 n—メチルジェタノールァミン、ジェチルアミノエチルメタアタリレート、ミ ヒラーケトン、 4, 4,ージェチルァミノフエノン、 4ージメチルァミノ安息香酸ェチル、 4 ジメチルァミノ安息香酸 (n ブトキシ)ェチル又は 4 ジメチルァミノ安息香酸イソ ァミル等のアミン系化合物が挙げられる。前記光重合開始剤の含有量は、(メタ)ァク リレートイ匕合物(ポリマー中にアタリロイル基がある場合には、これも含む) 100重量部 に対して、好ましくは 0. 5重量部以上 10重量部以下、より好ましくは 2重量部以上 8 重量部以下程度がよい。また、助剤は光重合開始剤に対して、 0. 5〜2倍量程度が よい。 When a benzophenone compound or thixanthone compound is used, an auxiliary agent can be used in combination to promote the photopolymerization reaction. Examples of such auxiliaries For example, triethanolamine, methyljetanolamine, triisopropanolamine, n-butylamine, n-methyljetanolamine, jetylaminoethyl metaarylate, Michler's ketone, 4, 4, -jetylamine. Examples thereof include amine compounds such as enone, 4-dimethylaminobenzoyl ethyl, 4 dimethylaminobenzoic acid (n-butoxy) ethyl or isoamyl 4-dimethylaminobenzoate. The content of the photopolymerization initiator is preferably 0.5 parts by weight or more with respect to 100 parts by weight of the (meth) alkyl toy compound (including an attaloyl group in the polymer). The amount is preferably 10 parts by weight or less, more preferably 2 parts by weight or more and 8 parts by weight or less. Further, the auxiliary agent is preferably about 0.5 to 2 times the amount of the photopolymerization initiator.
[0027] また、紫外線の照射量は、該液晶性配合組成物の種類、光重合開始剤の種類と添 加量、膜厚によって異なるが、 100〜1000mjZcm2程度がよい。また、紫外線照射 時の雰囲気は空気中でも窒素などの不活性ガス中でもよいが、膜厚が薄くなると、酸 素障害により十分に硬化しないため、そのような場合は不活性ガス中で紫外線を照 射して硬化させるのが好まし 、。  [0027] The irradiation amount of ultraviolet rays varies depending on the type of the liquid crystalline compounding composition, the type and addition amount of the photopolymerization initiator, and the film thickness, but is preferably about 100 to 1000 mjZcm2. In addition, the atmosphere during UV irradiation may be air or an inert gas such as nitrogen. However, if the film thickness is reduced, it will not cure sufficiently due to oxygen damage. In such a case, UV light is irradiated in an inert gas. And then let it harden.
[0028] 本発明の位相差フィルムを作製するためのセルロース誘導体には、上記光重合開 始剤の他に、セルロース誘導体とは異なる反応性モノマーをカ卩えることも可能である 。反応性モノマーとしては、現実的に生産ラインで可能な処理を考慮して、紫外線照 射による光重合可能な化合物および、熱処理により重合可能な化合物が好ま 、。 光重合可能な化合物としては例えば、(メタ)アタリレートイ匕合物が挙げられる。これら を含むセルロース誘導体から本発明の位相差フィルムを作製する場合は、後記する セルロース誘導体からの本発明の位相差フィルムの作製の際に、該セルロース誘導 体溶液の代わりに、これらの添加剤を含む該セルロース誘導体溶液を使用して、同 様にして行えばよい。  [0028] In addition to the photopolymerization initiator, a reactive monomer different from the cellulose derivative may be included in the cellulose derivative for producing the retardation film of the present invention. The reactive monomer is preferably a compound that can be photopolymerized by ultraviolet irradiation or a compound that can be polymerized by heat treatment, in consideration of the treatment that can actually be performed on the production line. As the photopolymerizable compound, for example, a (meth) attarei toy compound can be mentioned. When the retardation film of the present invention is prepared from a cellulose derivative containing these, these additives are used in place of the cellulose derivative solution in the preparation of the retardation film of the present invention from the cellulose derivative described later. The cellulose derivative solution that is contained may be used in the same manner.
[0029] (メタ)アタリレートイ匕合物としては例えば、トリメチロールプロパントリ(メタ)アタリレー ト、ペンタエリスリトールトリ(メタ)アタリレート、ペンタエリスリトールテトラ(メタ)アタリレ ート、ジトリメチロールプロパンテトラ(メタ)アタリレート、ジペンタエリスリトールペンタ アタリレート、ジペンタエリスリトールへキサアタリレート、ペンタエリスリトールトリ (メタ)ァ タリレートと 1, 6 へキサメチレンジイソシァネートとの反応生成物、ペンタエリスリトー ルトリ (メタ)アタリレートとイソホロンジイソシァネートとの反応生成物、トリス (アタリロキ シェチル)イソシァヌレート、トリス(メタアタリ口キシェチル)イソシァヌレート、グリセ口 ールトリグリシジルエーテルと (メタ)アクリル酸との反応生成物、力プロラタトン変性トリ ルと(メタ)アクリル酸との反応生成物、トリグリセロールジ (メタ)アタリレート、プロピレ ングリコールジグリシジルエーテルと (メタ)アクリル酸との反応生成物、ポリプロピレン グリコールジ (メタ)アタリレート、トリプロピレングリコールジ (メタ)アタリレート、ポリェチ レングリコールジ (メタ)アタリレート、テトラエチレングリコールジ (メタ)アタリレート、トリ エチレングリコールジ (メタ)アタリレート、ペンタエリスリトールジ (メタ)アタリレート、 1, 6—へキサンジオールジグリシジルエーテルと(メタ)アクリル酸との反応生成物、 1, 6 —へキサンジオールジ (メタ)アタリレート、グリセロールジ (メタ)アタリレート、エチレン グリコールジグリシジルエーテルと (メタ)アクリル酸との反応生成物、ジエチレングリコ 一ルジグリシジルエーテルと (メタ)アクリル酸との反応生成物、ビス(アタリロキシェチ ル)ヒドロキシェチルイソシァヌレート、ビス(メタアタリ口キシェチル)ヒドロキシェチルイ ソシァヌレート、ビスフエノール Aジグリシジルエーテルと (メタ)アクリル酸との反応生成 物、テトラヒドロフルフリル (メタ)アタリレート、力プロラタトン変性テトラヒドロフルフリル( メタ)アタリレート、 2—ヒドロキシェチル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ )アタリレート、ポリプロピレングリコール (メタ)アタリレート、ポリエチレングリコール (メ タ)アタリレート、フエノキシヒドロキシプロピル (メタ)アタリレート、アタリロイルモルホリン 、メトキシポリエチレングリコール (メタ)アタリレート、メトキシテトラエチレングリコール( メタ)アタリレート、メトキシトリエチレングリコール (メタ)アタリレート、メトキシエチレング リコール (メタ)アタリレート、メトキシェチル (メタ)アタリレート、グリシジル (メタ)アタリレ ート、グリセロール(メタ)アタリレート、ェチルカルビトール (メタ)アタリレート、 2—エト キシェチル (メタ)アタリレート、 N, N—ジメチルアミノエチル (メタ)アタリレート、 2—シ ァノエチル (メタ)アタリレート、ブチルダリシジルエーテルと (メタ)アクリル酸との反応 生成物、ブトキシトリエチレングリコール (メタ)アタリレート又はブタンジオールモノ (メ タ)アタリレート等が挙げられる。これらの化合物は単独で用いても良いし、複数を混 合して用いても良い。このような反応性化合物を用い、適切な条件下で重合させるこ とにより、所望の配向状態を固定ィ匕することができる。 [0029] Examples of the (meth) atalyte toy compound include trimethylolpropane tri (meth) atrelate, pentaerythritol tri (meth) atarylate, pentaerythritol tetra (meth) atarylate, ditrimethylolpropane tetra ( (Meth) acrylate, dipentaerythritol penta acrylate, dipentaerythritol hexa acrylate, pentaerythritol tri (meth) acrylate and 1, 6 hexamethylene diisocyanate reaction product, penta erythritol Reaction product of rutri (meth) atalylate with isophorone diisocyanate, reaction product of tris (atarilochetyl) isocyanurate, tris (metaatari mouthkistil) isocyanurate, glycerol triglycidyl ether and (meth) acrylic acid , Reaction product of force prolatatone modified tolyl with (meth) acrylic acid, reaction product of triglycerol di (meth) acrylate, propylene glycol diglycidyl ether and (meth) acrylic acid, polypropylene glycol di (meth ) Atarylate, Tripropylene glycol di (meth) acrylate, Polyethylene glycol di (meth) acrylate, Tetraethylene glycol di (meth) acrylate, Triethylene glycol di (meth) acrylate, Pentaerythritol di ( T) Atalylate, 1, 6-Hexanediol diglycidyl ether and (meth) acrylic acid reaction product, 1, 6-Hexanediol di (meth) acrylate, glycerol di (meth) acrylate, ethylene Reaction product of glycol diglycidyl ether and (meth) acrylic acid, reaction product of diethyleneglycol diglycidyl ether and (meth) acrylic acid, bis (atalyloxychetyl) hydroxyethyl isocyanurate, bis (metaatari mouth chechtil) ) Hydroxyethylsyanurate, reaction product of bisphenol A diglycidyl ether with (meth) acrylic acid, tetrahydrofurfuryl (meth) acrylate, force prolataton modified tetrahydrofurfuryl (meth) acrylate, 2-hydroxy ester Chill (meta) atelate , 2-Hydroxypropyl (meth) acrylate, Polypropylene glycol (meth) acrylate, Polyethylene glycol (meth) acrylate, Phenoxyhydroxypropyl (meth) acrylate, Ataliloyl morpholine, Methoxy polyethylene glycol (meth) ate , Methoxytetraethylene glycol (meth) acrylate, methoxy triethylene glycol (meth) acrylate, methoxy ethylene glycol (meth) acrylate, methoxyethyl (meth) acrylate, glycidyl (meth) acrylate, glycerol (meta ) Atarylate, ethylcarbitol (meth) acrylate, 2-ethoxetyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate Rate, reaction products of butyl Dali ether and (meth) acrylic acid, butoxy triethylene glycol (meth) Atari rate or butanediol mono (meth) Atari rate, and the like. These compounds may be used alone or in combination. Such reactive compounds can be used for polymerization under appropriate conditions. Thus, the desired orientation state can be fixed.
[0030] またセルロース誘導体溶液を、熱処理等により重合 (架橋も含む)可能な化合物 (熱 重合可能な化合物とも ヽぅ)を含む組成物として用いると、フィルムを溶剤キャスト法 により作製する際の熱処理と同時にフィルムを硬化でき、フィルムの耐久性向上にも 寄与でき、また、プロセスが簡便になるという利点がある。フィルム延伸後に熱硬化性 架橋処理する方がより効果的であれば、この方法を選択しても良い。  [0030] When the cellulose derivative solution is used as a composition containing a compound that can be polymerized (including cross-linked) by heat treatment or the like (both heat-polymerizable compounds), heat treatment for producing a film by a solvent casting method. At the same time, the film can be cured, contributing to the improvement of the durability of the film, and the process is simplified. This method may be selected if it is more effective to perform thermosetting crosslinking after film stretching.
[0031] 熱重合可能な化合物としては例えば、イソシァネート系化合物がある。例えば、へ キサメチレンイソシァネート系ポリイソシァネートとして、旭化成製ビウレット型イソシァ ネート 24A— 100、 22A- 75PX, 21S— 75E、 18H— 70B、イソシァヌレート型イソ シァネー ΓΡΑ— 100、 THA— 100、 MFA— 90X、 TSA— 100、 TSS— 100、 TS E— 100、ァダクト型イソシァヌレート P— 301— 75E、 E— 402— 90T、 Ε— 405— 8 ΟΤ、 2官能プレポリマー型イソシァネート D— 101、 D— 201、ブロック型イソシァネー M7B-60PX, TPA— B80X、 MF— B60X、 MF— K60X、 Ε— 402— Β80Τ、水 分散型イソシァネート WB40— 100又はモノマーイソシァネート 50Μが挙げられる。 これらに限らず、熱重合架橋性を示すものであれば、エポキシ系化合物やアルデヒド 系化合物を用いることができる。これらの化合物は単独で用いても良いし、複数を混 合して用いても良い。このような反応性化合物を用い、加熱等の適切な条件下で重 合 (架橋)させることにより、本発明の位相差フィルムにおける配向を所望の状態に固 定化することができると共に、該フィルムの加熱条件下や湿熱条件下での耐久性及 び Ζ又は耐環境性能を向上させることができる。熱硬化温度としては、セルロース誘 導体の熱分解を防ぐ目的で通常 20〜200°Cの範囲、好ましくは 40〜180°C、より好 ましくは 60〜160°Cである。また熱硬化時間は、通常 24時間以内、好ましくは 12時 間以内、より好ましくは 3時間以内である。  [0031] Examples of thermally polymerizable compounds include isocyanate compounds. For example, as hexamethylene isocyanate-based polyisocyanates, Asahi Kasei Biuret type isocyanates 24A-100, 22A-75PX, 21S-75E, 18H-70B, isocyanurate type isocyanates ΓΡΑ-100, THA-100, MFA — 90X, TSA—100, TSS—100, TS E—100, adduct isocyanurate P—301—75E, E—402—90T, Ε—405—8—, bifunctional prepolymer isocyanate D—101, D— 201, block type isocyanate M7B-60PX, TPA-B80X, MF-B60X, MF-K60X, 402-402-Β80Τ, water-dispersed isocyanate WB40-100 or monomer isocyanate 50. Not limited to these, an epoxy compound or an aldehyde compound can be used as long as it exhibits thermal polymerization crosslinkability. These compounds may be used alone or in combination. By using such a reactive compound for polymerization (crosslinking) under appropriate conditions such as heating, the orientation in the retardation film of the present invention can be fixed in a desired state, and the film It is possible to improve durability and heat resistance or environmental resistance performance under the heating conditions and wet heat conditions. The thermosetting temperature is usually in the range of 20 to 200 ° C, preferably 40 to 180 ° C, more preferably 60 to 160 ° C for the purpose of preventing thermal decomposition of the cellulose derivative. The thermosetting time is usually within 24 hours, preferably within 12 hours, and more preferably within 3 hours.
なお、耐環境性能とは、位相差フィルムが乾燥環境下及び高湿度環境下に繰り返し 曝された場合にも、面内平均位相差値 Reおよびフィルム法線方向の位相差値 Rth の変化が少な 、状態で耐えうる力否かを示す性能である。位相差フィルムが乾燥環 境下及び高湿度環境下に繰り返し曝された場合に、その Reおよび Rthがフィルムの 種類等により大きく変動する場合が有り、環境変化に左右されずに、恒常的に安定し た補償性能を得るためには、それらの位相差値変化が少ないほうが望ましい。反応 性ポリマーを添加した本発明の位相差フィルムはこの添カ卩により耐環境性能を向上さ せることが出来る。 Note that the environmental resistance, even if the phase difference film is repeatedly exposed to a dry environment and high humidity environment, a change in the in-plane average retardation value R e and film normal direction of the retardation value Rth is It is a performance that shows whether or not it can withstand a certain amount of conditions. When a retardation film is repeatedly exposed to dry and high-humidity environments, its Re and Rth may vary greatly depending on the type of film, etc., and is constantly stable regardless of environmental changes. Shi In order to obtain the compensation performance, it is desirable that the change in the phase difference value is small. The retardation film of the present invention to which a reactive polymer is added can improve the environmental resistance performance by this additive.
反応性ポリマーとしては、本発明のセルロース誘導体との相溶する脂溶性の高いも のであれば、どのような化合物でも利用することが出来る。 As the reactive polymer, any compound can be used as long as it is highly fat-compatible with the cellulose derivative of the present invention.
好ましくは上記 (メタ)アタリレートイ匕合物やイソシァネート系化合物、シランカップリン グ剤等であり、シランカップリング剤はより好ましい。これらの化合物は本発明の位相 差フィルムの耐環境性能を向上させて、位相差値変化を抑える効果がある。 Preferred are the above (meth) atalytotoy compounds, isocyanate compounds, silane coupling agents, and the like, with silane coupling agents being more preferred. These compounds have the effect of improving the environmental resistance performance of the retardation film of the present invention and suppressing the change in retardation value.
また、イソシァネート系以外の熱重合可能な化合物としては、シランカップリング剤 を用いることができる。シランカップリング剤としては、ビュルトリクロルシラン、ビュルメ トキシシラン、ビニルトリエトキシシラン、 2— (3, 4エポキシシクロへキシル)ェチルトリ メトキシシラン、 3—グリシドキシプロピルトリメトキシシラン、 3—グリシドキシプロピノレメ チノレジェトキシシラン、 3 グリシドキシプロピノレトリエトキシシラン、 2— (3、 4エポキシ シクロへキシル)ェチルトリメトキシシラン、 p—スチリルトリメトキシシラン、 3—メタクリロ キシプロピルメチルジメトキシシラン、 3—メタクリロキシプロピルトリメトキシシラン、 3— メタクリロキシプロピルメチルジェトキシシラン、 3—メタクリロキシプロピルトリエトキシシ ラン、 3—アタリロキシプロピルトリメトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピ ルメチルジメトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピルトリメトキシシラン、 N — 2 (アミノエチル) 3 ァミノプロピルトリエトキシシラン、 3—ァミノプロピルトリメトキシ シラン、 3 ァミノプロピルトリエトキシシラン、 3 トリエトキシシリル一 N— (1, 3 ジメ チル ブチリデン)プロピルァミン、 N -フエニル 3—ァミノプロピルトリメトキシシラン 、 N— (ビュルベンジル) 2 アミノエチル一 3 ァミノプロピルトリメトキシシランの塩 酸塩、 3—ウレイドプロピルトリエトキシシラン、 3—クロ口プロピルトリメトキシシラン、 3 —メルカプトプロピルメチルジメトキシシラン、 3—メルカプトプロピルトリメトキシシラン 、ビス(トリエトキシシリルプロピル)テトラスルフイド、 3—イソシァネートプロピルトリエト キシシラン等のモノマータイプのシランカップリング剤を用いることができる。モノマー タイプ以外にも、アルコキシオリゴマータイプを用いることも可能で、そのような例とし ては、信越ィ匕学工業社製の X— 41— 1053や X— 41— 1056等が挙げられる。より好 ましくは、 2— (3, 4エポキシシクロへキシル)ェチルトリメトキシシラン、 3—グリシドキ リシドキシプロピルトリエトキシシラン、 X— 41— 1053や X— 41 1056が挙げられる 。シランカップリング剤の添カ卩量は、セルロース誘導体 100重量部に対して 0. 1から 5 0重量部、より好ましくは 1から 40重量部、さらに好ましくは 5から 30重両部である。ォ リゴマータイプは比較的反応性が穏やかであり、十分にセルロースと反応させるため には触媒が必要である。触媒としては有機金属系や酸系、アミン系化合物等が挙げ られる力 本発明に用いる触媒としては酸系触媒が好ましい。酸触媒として例えば X 40— 2309A (信越ィ匕学工業製)等が挙げられる。添加する量はシランカップリング剤 100重量部に対して 0. 1から 50重量部程度、好ましくは 0. 2〜1重量部程度の量で 添加する。シランカップリング剤は、セルロース誘導体溶解時に添加しても良いし、セ ルロース誘導体溶液に添加しても良 、。 Moreover, a silane coupling agent can be used as a thermally polymerizable compound other than isocyanate. Examples of silane coupling agents include butyltrichlorosilane, butylmethoxysilane, vinyltriethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypro. Pinolemetinoregetoxysilane, 3 glycidoxypropinoletriethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-Methacryloxypropyltrimethoxysilane, 3-Methacryloxypropylmethyl jetoxysilane, 3-Methacryloxypropyltriethoxysilane, 3-Atalyloxypropyltrimethoxysilane, N-2 (aminoethyl) 3 Aminopropylmethyl Dimethoxysilane, N—2 (aminoethyl) 3 aminopropyltrimethoxysilane, N—2 (aminoethyl) 3 aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3 aminopropyltriethoxysilane, 3 Triethoxysilyl mono N— (1,3 dimethyl butylidene) propylamine, N-phenyl 3-aminopropyltrimethoxysilane, N— (bulubenzyl) 2 aminoethyl mono 3-aminopropyl trimethoxysilane hydrochloride , 3-ureidopropyltriethoxysilane, 3-cyclopropylpropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatepropyltrie Such as oxysilane A monomer type silane coupling agent can be used. In addition to the monomer type, an alkoxy oligomer type can also be used, and examples thereof include X-41-1053 and X-41-1056 manufactured by Shin-Etsu Chemical Co., Ltd. Better Preferred examples include 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, 3-glycidyloxyxypropyltriethoxysilane, X-41-1053, and X-41 1056. The amount of the silane coupling agent added is 0.1 to 50 parts by weight, more preferably 1 to 40 parts by weight, and even more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the cellulose derivative. The oligomer type is relatively mild and requires a catalyst to react well with cellulose. Examples of the catalyst include organic metal-based, acid-based, and amine-based compounds. The catalyst used in the present invention is preferably an acid-based catalyst. Examples of the acid catalyst include X 40-2309A (manufactured by Shin-Etsu Chemical Co., Ltd.). The amount to be added is about 0.1 to 50 parts by weight, preferably about 0.2 to 1 part by weight, based on 100 parts by weight of the silane coupling agent. The silane coupling agent may be added when the cellulose derivative is dissolved, or may be added to the cellulose derivative solution.
[0033] 本発明のセルロース誘導体より作製される位相差フィルムは、光学的に二軸性を有 する。一般的に光学的に二軸性を有するフィルムとは、フィルム面内の遅相軸方向の 屈折率を nx、フィルム面内の進相軸方向の屈折率を ny、フィルム法線方向の屈折率 を nzとしたときに、 nxおよび ny、 nzがそれぞれ異なる値を示すフィルムである。本発 明の位相差フィルムも光学的な二軸性を示すが、中でもフィルム法線方向の屈折率 が最も小さくなり、 nx>ny>nzの関係を満たすことを特徴とする。 [0033] The retardation film produced from the cellulose derivative of the present invention is optically biaxial. In general, an optically biaxial film means that the refractive index in the slow axis direction in the film plane is nx, the refractive index in the fast axis direction in the film plane is ny, and the refractive index in the film normal direction. It is a film in which nx, ny, and nz show different values when nz is nz. The retardation film of the present onset bright also shows an optical biaxial property, but among them the film normal direction refractive index is smallest, and satisfies a relationship of nx> n y> nz.
[0034] 位相差フィルム面内の位相差値 Reおよび法線方向の位相差値 Rthは、  [0034] The retardation value Re in the retardation film plane and the retardation value Rth in the normal direction are:
Re = 、nx— ny) X d  Re =, nx—ny) X d
Rth = [ (nx+ny) /2-nz] X d  Rth = [(nx + ny) / 2-nz] X d
で表される。二軸性位相差フィルムの Reおよび Rthは、自動複屈折計 (例えば王子 計測機器製 KOBRA— 21ADH等)を用いた測定結果カゝら算出できる。本発明の位 相差フィルムでは、 Reは通常 Onm以上 200nm以下であり、好ましくは 5nm以上 150 nm以下であり、より好ましくは 10nm以上 80nm以下である。更に場合により、 40〜8 Onmが好ましい。また、 Rthは通常 80nm以上 300nm以下であり、好ましくは 90nm 以上 275nm以下であり、より好ましくは lOOnm以上 250nm以下である。更に場合 により、 120〜200nm力 S好ましく、更に好ましく ίま 135〜200nmである。 Reおよび R thが上記の範囲の値を示すことにより、優れた視野角補償効果を示す位相差フィル ムになる。 It is represented by Re and Rth of the biaxial retardation film can be calculated from the measurement results using an automatic birefringence meter (for example, KOBRA-21ADH manufactured by Oji Scientific Instruments). In the phase difference film of the present invention, Re is usually Onm or more and 200 nm or less, preferably 5 nm or more and 150 nm or less, more preferably 10 nm or more and 80 nm or less. Further, in some cases, 40 to 8 Onm is preferable. Rth is usually 80 nm or more and 300 nm or less, preferably 90 nm or more and 275 nm or less, and more preferably lOOnm or more and 250 nm or less. Further, in some cases, a force of 120 to 200 nm is preferable, and more preferably 135 to 200 nm. Re and R When th indicates a value in the above range, a phase difference film showing an excellent viewing angle compensation effect is obtained.
また、 Reの値と Rthの値の関係では、 Reの値より Rthの値が大きい方が好ましい。 フイノレムの厚さは通常、 20〜200 μ m、好ましくは 20〜150 μ m、更に好ましくは 3 0〜: L lO /z mである。場合により、 30〜: LOO /z m程度力最も好まし!/ヽ。  In addition, in the relationship between the Re value and the Rth value, it is preferable that the Rth value is larger than the Re value. The thickness of the Finolem is usually 20 to 200 μm, preferably 20 to 150 μm, and more preferably 30 to L0 / zm. In some cases, 30 ~: LOO / z m power is most preferred! / ヽ.
[0035] 通常の位相差フィルム作製用の材料は、入射する光の短波長成分に対しては大き い位相差値を示し、長波長成分になるにつれて小さい位相差値を示すという、所謂 正波長分散特性を示す。しかしながら、本発明の位相差フィルムは、入射する光の 短波長成分に対しては小さ ヽ位相差値を示し、長波長成分になるにつれて大き!ヽ位 相差値を示す、逆波長分散性を有する特徴がある。  [0035] An ordinary material for producing a retardation film has a so-called positive wavelength in which a large retardation value is exhibited with respect to a short wavelength component of incident light, and a small retardation value is exhibited with a longer wavelength component. Dispersion characteristics are shown. However, the retardation film of the present invention has a reverse wavelength dispersibility, which shows a small retardation value with respect to the short wavelength component of incident light and a large retardation value as the wavelength component becomes longer. There are features.
[0036] 波長分散は、例えば、自動複屈折計 (王子計測機器製 KOBRA— 21ADH等)を 用いて、波長 450nmの入射光に対する位相差値 Re450および波長 550nmの入射 光に対する位相差値 Re550、波長 750nmの入射光に対する位相差値 Re750を測 定し、位相差比 Re450ZRe550および Re750ZRe550の値を用いて評価できる。 Re450/Re550力 より大きい値を示し、 Re750/Re550力 より/ J、さい値を示すと さ ίま正波長分散である。また、 Re450/Re550力 未満であり、 Re750/Re550力 S 1より大きい値を示すときは逆波長分散である。  [0036] The chromatic dispersion is determined by using, for example, an automatic birefringence meter (such as KOBRA-21ADH manufactured by Oji Scientific Instruments) with a phase difference value Re450 for incident light having a wavelength of 450 nm and a phase difference value Re550 for incident light having a wavelength of 550 nm. The phase difference value Re750 for incident light at 750 nm can be measured and evaluated using the values of the phase difference ratios Re450ZRe550 and Re750ZRe550. A value larger than Re450 / Re550 force is shown, / J from Re750 / Re550 force, and a small value indicates positive wavelength dispersion. Further, when it is less than Re450 / Re550 force and shows a value larger than Re750 / Re550 force S1, it is reverse wavelength dispersion.
[0037] 本発明の位相差フィルムは常に逆波長分散性を示す。好ま 、逆波長分散性とし ては、好ましくは 0. 5≤Re450/Re550< 0. 99であり、力つ 1. 00<Re750/Re 550≤1. 50である場合であり、より好ましくは 0. 65≤Re450/Re550< 0. 99であ り、力つ 1. 0<Re750/Re550≤l. 35である場合であり、よりさらに好ましく ίま 0. 8 ≤Re450/Re550< 0. 99であり、力つ Rel. 00≤750/Re550< 1. 20である場 合である。  [0037] The retardation film of the present invention always exhibits reverse wavelength dispersion. Preferably, the reverse wavelength dispersion is preferably 0.5≤Re450 / Re550 <0.99 and powerfully 1.00 <Re750 / Re550≤1.50, more preferably 0. 65≤Re450 / Re550 <0. 99 and force 1. 0 <Re750 / Re550≤l. 35, even more preferred ί until 0.8 ≤ Re450 / Re550 <0. 99 Yes, if Rel. 00≤750 / Re550 <1.20.
[0038] セルロース誘導体を用いた本発明の位相差フィルムの作製はセルロース誘導体溶 液の製膜と配向処理により行われる。具体的な方法としては、まずセルロース誘導体 を適当な溶剤に溶解し、セルロース誘導体溶液とする。溶剤としては、酢酸ェチル、 酢酸ブチル又は酢酸メチルのような酢酸エステル類、メタノール、エタノール、プロパ ノール、イソプロパノール又はべンジルアルコールのようなアルコール類、 2—ブタノ ン、アセトン、シクロペンタノン又はシクロへキサノンのようなケトン類、ベンジルァミン、 トリェチルァミン又はピリジンのような塩基系溶媒、シクロへキサン、ベンゼン、トルェ ン、キシレン、ァ-ソール、へキサン又はヘプタンのような非極性溶媒が挙げられる。 セルロース誘導体の重量濃度は通常 1〜99%、好ましくは 2. 5〜80%、より好ましく は 5〜50%である。更に好ましくは 10%〜30%程度である。これらの化合物は 1種 類のみ配合しても良いし、複数成分を配合しても良い。さらに必要に応じて、必要な 添加剤、例えば上記反応性モノマー、重合触媒あるいは可塑剤等を加えても良い。 可塑剤としてはジメチルフタレートゃジェチルフタレートのようなフタル酸エステル、ト リス(2—ェチルへキシル)トリメリテートのようなトリメリット酸エステル、ジメチルアジべ ートゃジブチルアジペートのような脂肪族二塩基酸エステル、トリブチルホスフェート やトリフエ-ルホスフェートのような正燐酸エステル、グリセルトリアセテートや 2—ェチ ルへキシルアセテートのような酢酸エステルが挙げられる。これらの化合物は 1種類 のみ配合しても良いし、複数成分を配合しても良い。こられ必要に応じて添加される 添加剤の量は、セルロース誘導体 100部(重量)に対して、 0〜50部程度、好ましく は 0〜30部程度である。次 ヽで該セルロース誘導体溶液を表面の平坦な離形性の ある基板の上に塗布した後、 自然乾燥又は加熱乾燥にて溶媒を除去して透明なセ ルロース誘導体フィルムとする。本発明における位相差フィルムは、本発明で使用す るセルロース誘導体だけで十分な補償効果を達成しうるので、該セルロース誘導体 以外の配向性ィ匕合物又は位相差値上昇剤(レターデーシヨン上昇剤)等を添加する 必要はない。また、本発明の位相差フィルムは通常必要とされる程度の柔軟性を有 するので、通常可塑剤等は添加をしなくてもよい。従って本発明の位相差フィルム作 製に使用される好ましいセルロース誘導体フィルムとしては、通常これらを含まない前 記セルロース誘導体力 なるセルロース誘導体フィルム及びこれらを含まず、反応性 モノマー(好ましくはシランカップリング剤)を含むセルロース誘導体フィルムが挙げら れる。ただし、これらの添加を排除するものではない。 [0038] The retardation film of the present invention using a cellulose derivative is produced by forming a cellulose derivative solution and performing an alignment treatment. As a specific method, first, a cellulose derivative is dissolved in an appropriate solvent to obtain a cellulose derivative solution. Solvents include acetates such as ethyl acetate, butyl acetate or methyl acetate, alcohols such as methanol, ethanol, propanol, isopropanol or benzyl alcohol, 2-butanoic acid. Ketones such as acetone, acetone, cyclopentanone or cyclohexanone, basic solvents such as benzylamine, triethylamine or pyridine, cyclohexane, benzene, toluene, xylene, azole, hexane or heptane. Non-polar solvents. The weight concentration of the cellulose derivative is usually 1 to 99%, preferably 2.5 to 80%, more preferably 5 to 50%. More preferably, it is about 10% to 30%. These compounds may be blended alone or in combination with multiple components. Further, if necessary, necessary additives such as the above-mentioned reactive monomer, polymerization catalyst or plasticizer may be added. Plasticizers include phthalates such as dimethyl phthalate and jetyl phthalate, trimellitic esters such as tris (2-ethylhexyl) trimellitate, and dibasic aliphatic bases such as dimethyl adipate and dibutyl adipate. Examples include acid esters, orthophosphate esters such as tributyl phosphate and triphenyl phosphate, and acetate esters such as glyceryl triacetate and 2-ethylhexyl acetate. Only one kind of these compounds may be blended, or a plurality of components may be blended. The amount of the additive added as necessary is about 0 to 50 parts, preferably about 0 to 30 parts, per 100 parts (weight) of the cellulose derivative. Next, after the cellulose derivative solution is applied on a flat substrate having a releasability, the solvent is removed by natural drying or heat drying to obtain a transparent cellulose derivative film. Since the retardation film in the present invention can achieve a sufficient compensation effect only with the cellulose derivative used in the present invention, the orientation compound other than the cellulose derivative or the retardation value increasing agent (lettering value increasing) It is not necessary to add any agent. Further, since the retardation film of the present invention has a degree of flexibility that is usually required, it is usually unnecessary to add a plasticizer or the like. Therefore, as a preferable cellulose derivative film used for producing the retardation film of the present invention, the cellulose derivative film which does not normally contain these and the cellulose derivative film which does not contain these, and a reactive monomer (preferably a silane coupling agent). ) -Containing cellulose derivative film. However, these additions are not excluded.
次にこのフィルムに二軸性の配向処理、好ましくは二軸延伸を施すことにより、前記 各屈折率 (三次元屈折率)の関係が nx >ny> nzを満たすようにすることにより、本発 明の位相差フィルムを得ることができる。本発明における二軸性の配向処理としては 二軸延伸を挙げることができる。本発明における二軸延伸としては、延伸方向及びそ れと直交する方向の 2つの方向に応力を加えて、 2方向に実質的に延伸する場合は 全て含まれる。例えば、同時二軸延伸または逐次二軸延伸の他、例えば延伸方向と 直行する方向の収縮を抑えるために、テンターやチャックを用いてフィルムの延伸し ない側の両端を固定しながら一方向に延伸する方法も含まれる。この方法は、延伸 方向と直行する方向の両側を固定ィヒすることで、固定方向の収縮による寸法変化( 通常の一軸延伸の際に生ずるネックイン (収縮))を抑えるので、その方向にも実質的 に延伸され、フィルムに二軸性を与える。同時二軸延伸は、フィルム面内においてお 互いに直行する方向に同時に延伸処理する方法である。逐次二軸延伸とは、はじめ に一方向に延伸したフィルムを、次にその方向と直行する方向に延伸する方法であ る。各延伸プロセスは、多段処理になっても良い。好ましい二軸延伸は同時ニ軸延 伸または逐次二軸延伸である。 Next, the film is subjected to biaxial orientation treatment, preferably biaxial stretching, so that the relationship between the refractive indexes (three-dimensional refractive indexes) satisfies nx>ny> nz. A bright retardation film can be obtained. As the biaxial orientation treatment in the present invention, Biaxial stretching can be mentioned. The biaxial stretching in the present invention includes all cases where stress is applied in two directions, ie, a stretching direction and a direction perpendicular thereto, and the stretching is substantially performed in two directions. For example, in addition to simultaneous biaxial stretching or sequential biaxial stretching, for example, in order to suppress shrinkage in the direction perpendicular to the stretching direction, the film is stretched in one direction while fixing both ends on the non-stretched side of the film using a tenter or chuck. The method of doing is also included. In this method, by fixing both sides in the direction perpendicular to the stretching direction, dimensional changes due to shrinkage in the fixing direction (neck-in (shrinkage) that occurs during normal uniaxial stretching) are suppressed. It is substantially stretched to give the film biaxiality. Simultaneous biaxial stretching is a method of simultaneously stretching in the direction perpendicular to each other in the film plane. Sequential biaxial stretching is a method in which a film first stretched in one direction is then stretched in a direction perpendicular to that direction. Each stretching process may be a multistage process. Preferred biaxial stretching is simultaneous biaxial stretching or sequential biaxial stretching.
[0040] 延伸温度は、セルロース誘導体の熱分解や焼き付きによる黄変がない範囲で任意 に選択することができる。セルロース誘導体の置換基や置換度によって最適な延伸 温度は異なる力 セルロース n—へキサネートの場合通常 50〜200°C、好ましくは 70 〜180°C、より好ましくは 90〜160°C、更に好ましくは 90〜140°C程度である。  [0040] The stretching temperature can be arbitrarily selected as long as the cellulose derivative does not yellow due to thermal decomposition or seizure. Optimum stretching temperature varies depending on the substituent and degree of substitution of the cellulose derivative. In the case of cellulose n-hexanate, it is usually 50 to 200 ° C, preferably 70 to 180 ° C, more preferably 90 to 160 ° C, more preferably It is about 90-140 ° C.
[0041] セルロース誘導体の置換基や置換度によって最適な延伸倍率は異なり、一概には いえないが、本発明の条件を満たす限り特に限定はない。通常一方向に 1. 05から 5 . 0倍の倍率で延伸し、この方向と直交する方向に 1. 04〜4. 8倍の倍率で延伸し、 両方向への延伸倍率が異なるようにするのが好ましい。好ましくは一方向に 1. 1〜4 . 0倍の倍率で延伸し、この方向と直行する方向に 1. 08〜3. 8倍の倍率で延伸する 。より好ましくは一方向に 1. 2〜3.0倍の倍率で延伸し、この方向と直交する方向に 1 . 18〜2. 8倍の倍率で延伸する。更に場合により、両方向への延伸倍率を 1. 4倍以 上、より好ましくは 1. 5倍以上で、 3倍以内、好ましくは 2. 5倍以内に延伸し、片方の 延伸倍率を他方の延伸倍率より少なくすることが好まし 、。両方向への延伸倍率の 差があまり大きいと本発明の屈折率の条件を満たさなくおそれがあるので、あまり大き くない方が好ましぐ両方向への延伸倍率の差は 2倍の範囲内、好ましくは 1倍以内、 更に好ましくは 0. 5倍以内、場合によっては 0. 4倍以内又は 0. 3倍以内で、 0. 01 倍以上、好ましくは 0. 05倍以上の範囲内が好ましい。 [0041] The optimum draw ratio varies depending on the substituent and degree of substitution of the cellulose derivative and cannot be generally specified, but is not particularly limited as long as the conditions of the present invention are satisfied. Usually, the film is stretched at a magnification of 1.05 to 5.0 in one direction, and stretched at a magnification of 1.04 to 4.8 in the direction perpendicular to this direction so that the stretching ratios in both directions are different. Is preferred. Preferably, the film is stretched in one direction at a magnification of 1.1 to 4.0 times, and stretched in a direction perpendicular to this direction at a magnification of 1.08 to 3.8 times. More preferably, the film is stretched at a magnification of 1.2 to 3.0 times in one direction, and stretched at a magnification of 1.18 to 2.8 times in a direction orthogonal to this direction. Further, in some cases, the stretching ratio in both directions is 1.4 times or more, more preferably 1.5 times or more, stretching within 3 times, preferably within 2.5 times, and the stretching ratio in one side is stretched in the other direction. It is preferable to use less than magnification. If the difference in draw ratio in both directions is too large, the refractive index condition of the present invention may not be satisfied.Therefore, the difference in draw ratio in both directions is preferably within a range of 2 times, preferably less. Is within 1 times, more preferably within 0.5 times, in some cases within 0.4 times or 0.3 times, It is preferably in the range of at least twice, preferably 0.05 times or more.
なお、上記の延伸倍率は延伸後の長さを延伸前の長さで割った値を意味する。一方 向への延伸での、それと直交する方向に収縮が生じる場合は該収縮後の長さで、直 交方向への延伸後の長さを割った値である。  The above draw ratio means a value obtained by dividing the length after stretching by the length before stretching. When contraction occurs in the direction orthogonal to the stretching in one direction, the length after stretching is the value obtained by dividing the length after stretching in the orthogonal direction.
[0042] 延伸倍率により、三次元屈折率、すなわち上記の nx、 nyおよび nzの関係を制御す ることができる。通常一軸延伸フィルムの三次元屈折率は、最大の延伸方向の屈折 率を na、それとフィルム面内で直交する方向の屈折率を nb、厚さ方向の屈折率を nc とすると、 na >nb ^ncの関係を示す力 二軸性を有するフィルム作製時は、一方向 の延伸倍率 (この方向の屈折率を n a )を固定し、これと直交する方向の延伸倍率 (こ の方向の屈折率を n j8 )が 1. 0倍より大きくなるにつれ、 η α ^η >η γ (厚さ方向の 屈折率)または η α >η >η γ 、 >η α >η γのように光学的に二軸性を示すよ うになり、直交する方向への延伸倍率がある値を超えたところで、 >η α η γの ように、再び一軸延伸フィルムの性質に近づく。一例として、セルロース η—へキサネ ートを用いて光学的に強い二軸性を示すフィルムを作製する場合、一方向の延伸倍 率を 1. 7、これと直行する方向の延伸倍率を 1. 6にすると、 n j8 >η α >η γの関係 を有する位相差フィルムが得られる。なお、これら屈折率の最大値を示す方向が遅 相軸になる。 [0042] The three-dimensional refractive index, that is, the relationship between the above nx, ny and nz can be controlled by the draw ratio. Normally, the three-dimensional refractive index of a uniaxially stretched film is expressed as follows: na> nb ^ where the refractive index in the maximum stretching direction is na, the refractive index in the direction perpendicular to the film plane is nb, and the refractive index in the thickness direction is nc Force indicating nc relationship When producing a biaxial film, the stretching ratio in one direction (the refractive index in this direction is na) is fixed, and the stretching ratio in the direction perpendicular to this (the refractive index in this direction is set as the refractive index). n j8) becomes larger than 1.0 times, η α ^ η> η γ (refractive index in the thickness direction) or η α>η> η γ,> η α> η γ Axiality is exhibited, and when the draw ratio in the orthogonal direction exceeds a certain value, the properties of the uniaxially stretched film are again approached as> η α η γ. As an example, when producing a film having optically strong biaxiality using cellulose η-hexane, the draw ratio in one direction is 1.7, and the draw ratio in the direction perpendicular thereto is 1. When it is 6, a retardation film having a relationship of nj 8> η α > η γ can be obtained. The direction showing the maximum value of the refractive index is the slow axis.
[0043] 本発明の位相差フィルムは、その光学特性に応じて画像表示装置に使用すること ができる。例えば、上記光学的に二軸性を有する本発明の位相差フィルムの 550nm におけるフィルム面内の位相差値 Reを約 50nmに、フィルム法線方向の位相差値 Rt hを約 170nmにして、偏光フィルムの吸収軸と該位相差フィルムの遅相軸との関係 力 直交になるようにロールッゥロールで積層することにより、液晶表示装置の広視野 角化の機能を持つ機能性偏光フィルムを得ることができる。  [0043] The retardation film of the present invention can be used in an image display device depending on its optical characteristics. For example, the optically biaxial retardation film of the present invention has a retardation value Re in the film plane at 550 nm of about 50 nm and a retardation value Rth in the film normal direction of about 170 nm. Relationship between the absorption axis of the film and the slow axis of the retardation film By laminating with roll-to-roll so as to be orthogonal, a functional polarizing film having a function of widening the viewing angle of a liquid crystal display device is obtained. Can do.
[0044] 偏光フィルムとしては、例えば上記偏光素子の両面がトリァセチルセルロースフィル ムのような保護フィルムで両面挟持されているものを用いることもできるし、片面のみ 保護されているものでもよい。  [0044] As the polarizing film, for example, a film in which both surfaces of the polarizing element are sandwiched by protective films such as triacetyl cellulose film may be used, or only one surface may be protected.
両面保護されて!ヽる偏光フィルムの場合には、一般的に粘着剤を用いて ヽずれか 一方の保護フィルム上に位相差フィルムと貼り合せればよい。 しかし、本発明の位相差フィルムは、例えばケンィ匕処理することにより、保護フィル ムとして一般的に用いられているトリァセチルセルロースフィルムと同様にポリビュル アルコール系接着剤等を用いて、偏光素子と貼りあわせることができるという特徴を 有する。従って、現行の偏光フィルムの製造プロセスをなんら変更することなぐ偏光 素子の片面をケンィ匕処理したトリァセチルセルロースフィルムで保護し、もう片面をケ ン化した本発明の位相差フィルムで保護することが可能であり、このようにすることに より、本発明の位相差フィルムと偏光素子とを一体ィ匕した機能性偏光フィルムのフィ ルムの厚さを薄くすることができ、より好ましい。ただし、接着剤はポリビニルアルコー ル系に限定されるわけではなぐウレタン系やイソシァネート系の接着剤等偏光素子 と本発明の位相差フィルムとを接着することができるものであれば特に制限は無い。 こうして得られた本発明の位相差フィルムと偏光素子とを一体ィ匕したフィルムは機能 性偏光フィルムと呼ばれ、液晶表示装置全体の薄型化および加工工程の削減による 低コスト化、歩留まり向上に寄与できる。 In the case of a polarizing film that is protected on both sides, it is generally sufficient to use a pressure-sensitive adhesive to attach the retardation film on one of the protective films. However, the retardation film of the present invention is bonded to a polarizing element by using, for example, a ken treatment, and using a polybutyl alcohol adhesive in the same manner as a triacetyl cellulose film generally used as a protective film. It has the feature that it can be combined. Therefore, it is possible to protect one side of a polarizing element without any change in the manufacturing process of the present polarizing film with a triacetyl cellulose film that has been subjected to a ken treatment, and to protect the other side with the retardation film of the present invention that has been saponified. This is possible, and the thickness of the film of the functional polarizing film in which the retardation film of the present invention and the polarizing element are integrated can be reduced, which is more preferable. However, the adhesive is not limited to the polyvinyl alcohol type, and is not particularly limited as long as it can adhere the polarizing element such as urethane type or isocyanate type adhesive and the retardation film of the present invention. The film obtained by integrating the retardation film and the polarizing element of the present invention thus obtained is called a functional polarizing film, and contributes to cost reduction and yield improvement by thinning the entire liquid crystal display device and reducing processing steps. it can.
また、片面保護の偏光フィルムの未保護面に粘着剤等で張り合わせることも可能で あるが、耐久性等の点で接着剤等で直接接着する方が好ましい。直接接着する場合 は、好ましくは位相差フィルム表面をケンィ匕処理、コロナ放電処理またはプラズマ処 理により活性ィ匕した後、ポリビニルアルコール系接着剤を用いて接着することができ る。接着剤をポリビュルアルコール系に限定する必要はなぐ偏光フィルムの非保護 面と、本発明の位相差フィルムを直接接着可能なものであれば、どのような接着剤を 用いてもよ!ヽ。本発明の位相差フィルムを偏光フィルムの未保護面に直接接着また は貼り合わせることにより、位相差フィルム一体型の機能性偏光フィルムを得ることが でき、セル全体の薄型化に寄与できる。  Further, although it is possible to attach the non-protected surface of the single-side protected polarizing film with an adhesive or the like, it is preferable to directly bond with an adhesive or the like in terms of durability. In the case of direct bonding, the surface of the retardation film is preferably activated by a cane treatment, a corona discharge treatment or a plasma treatment, and then adhered using a polyvinyl alcohol-based adhesive. Any adhesive can be used as long as it can directly bond the non-protective surface of the polarizing film and the retardation film of the present invention to the polybulal alcohol type. By directly adhering or bonding the retardation film of the present invention to the unprotected surface of the polarizing film, a functional polarizing film integrated with the retardation film can be obtained, which contributes to the reduction in thickness of the entire cell.
本発明の位相差フィルムおよび機能性偏光フィルムは、画像表示装置の広視野角 化に大きく寄与できる。例えば、透過型の液晶表示装置は 2枚の偏光フィルムの間に 液晶セルを狭持する構造で、原理上偏光フィルムの吸収軸から左右 45° の軸上か ら傾斜して観察すると大きく光洩れする。偏光フィルムの間に本発明の位相差フィル ムを配置する力、より好ましくは偏光フィルムの代わりに本発明の機能性偏光フィルム を用いると、光洩れを大きく改善できるため、黒輝度表現およびコントラストについて 、液晶表示装置の広視野角化が達成できる。 The retardation film and functional polarizing film of the present invention can greatly contribute to widening the viewing angle of an image display device. For example, a transmission-type liquid crystal display device has a structure in which a liquid crystal cell is sandwiched between two polarizing films. In principle, light can leak significantly when observed at an angle of 45 ° to the left and right from the absorption axis of the polarizing film. To do. The ability to place the retardation film of the present invention between polarizing films, and more preferably, if the functional polarizing film of the present invention is used instead of the polarizing film, light leakage can be greatly improved. The wide viewing angle of the liquid crystal display device can be achieved.
[0046] 本発明の位相差フィルムを一体ィ匕した機能性偏光フィルムにおいては、本発明の 位相差フィルムが偏光フィルムの保護フィルム兼位相差フィルムとして作用するので 、該機能性偏光フィルムを用いる場合、両面に保護フィルムを持つ通常の偏光フィル ムおよび位相差フィルムをそれぞれ用いる場合に比べて、薄 、厚みで同じ機能を有 するため、液晶表示装置の薄型化が達成できる。例えば VAセルを用いた液晶表示 装置につ ヽては、本発明の位相差フィルムを用いた該機能性偏光フィルムを用いる と、セル全体の薄型化を達成できる一方で、 VAセルに必要な 2つの補償も該フィル ムにより達成することができ、し力も従来品に比べて非常に優れた広視野角化の効果 を達成できるために特に適して 、る。  [0046] In the functional polarizing film in which the retardation film of the present invention is integrated, the retardation film of the present invention functions as a protective film and a retardation film of the polarizing film, and therefore the functional polarizing film is used. Compared to the case of using a normal polarizing film and a retardation film each having a protective film on both sides, the liquid crystal display device can be made thinner because it has the same function in thickness and thickness. For example, in the case of a liquid crystal display device using a VA cell, the functional polarizing film using the retardation film of the present invention can achieve a reduction in the thickness of the entire cell, while being necessary for a VA cell. Two compensations can also be achieved by the film, and the force is particularly suitable because it can achieve a very wide viewing angle effect as compared with the conventional products.
実施例  Example
[0047] 以下実施例により本発明を更に詳細に説明するが、本発明がこれらに限定されるも のではない。  [0047] The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
[0048] 実施例 1 セルロース n キサネート(置換度 2. 30)の合成と置換度の測定  Example 1 Synthesis of cellulose n-xanate (degree of substitution 2.30) and measurement of degree of substitution
塩化リチウム 126gを Ν,Ν'—ジメチルァセトアミド 1. 51に添加し 80°Cにて 30分撹 拌して完全に溶解した後、 Ν,Ν'—ジメチルァセトアミド含浸セルロース(セルロース 含有率: 56. 4重量%) 30. Ogを添加した。 50°Cにて 30分間撹拌した後、塩化 n— へキサノィル 47. 6g (セルロース水酸基に対して)をカ卩ぇ再び 80°Cに昇温後 4時間 撹拌した。撹拌を停止して反応内容物を水 21に注いでセルロース n キサネートを 再沈殿させた。ろ取後、水 100mlにて 3回、メタノール 50mlにて 2回洗浄して得られ た固形分を 6時間真空乾燥し、セルロース n—へキサネートの白色粉末 35. Ogを得 た。  Add 126 g of lithium chloride to Ν, Ν'-dimethylacetamide 1.51 and stir at 80 ° C for 30 minutes to completely dissolve. Then, Ν, Ν'-dimethylacetamide impregnated cellulose (containing cellulose) (Rate: 56.4 wt%) 30. Og was added. After stirring at 50 ° C for 30 minutes, 47.6 g of n-hexanol chloride (relative to the cellulose hydroxyl group) was heated again to 80 ° C and stirred for 4 hours. Stirring was stopped and the reaction contents were poured into water 21 to reprecipitate cellulose n-xanate. After filtration, the solid content obtained by washing three times with 100 ml of water and twice with 50 ml of methanol was vacuum-dried for 6 hours to obtain 35. Og of a white powder of cellulose n-hexanate.
再沈殿直前にガスクロマトグラフィーにて反応液を分析し、塩化 n—へキサノィルの減 少量力も反応率を算出したところ、セルロース n—へキサネートの置換度(セルロース 1モノマーユニットあたりの n キサネートによる置換数)は 2. 30であった。  The reaction mixture was analyzed by gas chromatography immediately before reprecipitation, and the reaction rate was calculated for the reduction force of n-hexanol chloride. The degree of substitution of cellulose n-hexanate (replacement of n-xanthate per cellulose monomer unit) Number) was 2.30.
[0049] 実施例 2 セルロース n キサネートを用いたキャストフィルムの作製 Example 2 Production of Cast Film Using Cellulose n Xanate
実施例 1で合成したセルロース n キサネートをシクロペンタノンに溶解し、ポリマ 一の 25重量%溶液とした。離形 PETフィルム上にセルロース n キサネート溶液 を 1. 7mmのドープ厚みでキャスト後、 110°Cにて 40分乾燥してセルロース n—へキ サネートの透明なフィルムを作製した。 The cellulose n-xanate synthesized in Example 1 was dissolved in cyclopentanone to form a 25% by weight solution of the polymer. Cellulose n-xanate solution on PET film After being cast with a dope thickness of 1.7 mm, it was dried at 110 ° C. for 40 minutes to produce a transparent film of cellulose n-hexanate.
[0050] 実施例 3 セルロース n—へキサネートを用いた光学的に二軸性を有する位相差フィ ノレムの作製 Example 3 Production of optically biaxial retardation film using cellulose n-hexanate
実施例 2で得たキャストフィルムを、 120°Cにて倍率 1. 7になるまで延伸処理し、つ いで、はじめの延伸方向と直交する方向に、 100°Cにて倍率 1. 6になるまで延伸処 理して、光学的に二軸性を有する位相差フィルムを得た。得られたフィルムは nx= l . 48500、 ny= l. 48404、 nz= l. 48154であった。次に自動複屈折計 (KOBRA - 21ADH,王子計測製)を用いて位相差フィルムの位相差比を求めたところ、 Re4 50ZRe550は 0. 97であり、 Re750ZRe550は 1. 03を示し逆波長分散性を示した 。 Reは 56nmを示した。また、傾斜位相差値の測定結果カゝら算出した Rthは 173nm であった。フィルムの厚み dは 58 μ mであった。  The cast film obtained in Example 2 was stretched at 120 ° C until a magnification of 1.7, and then at a magnification of 1.6 at 100 ° C in a direction perpendicular to the initial stretching direction. A retardation film having optically biaxial properties was obtained. The obtained films were nx = l. 48500, ny = l. 48404, nz = l. 48154. Next, when the retardation ratio of the retardation film was determined using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific), Re4 50ZRe550 was 0.97 and Re750ZRe550 was 1.03, indicating reverse wavelength dispersion. showed that . Re showed 56 nm. The Rth calculated from the measurement result of the tilt phase difference value was 173 nm. The thickness d of the film was 58 μm.
[0051] 実施例 4 機能性偏光フィルムの作製  Example 4 Production of functional polarizing film
実施例 3に記載の位相差フィルムを、片面のみトリアセチルセルロースで保護され たボラテクノ製偏光フィルム UDN— 10143Pに粘着層を介して、偏光フィルムの吸 収軸と位相差フィルムの遅相軸が直交するように積層し、セルロース n—へキサネー トを用いた本発明の機能性偏光フィルムを作製した。  The absorption film of the polarizing film and the slow axis of the retardation film are orthogonal to each other through the adhesive layer of the polarizing film UDN-10143P made only from one side protected with triacetylcellulose. Thus, a functional polarizing film of the present invention using cellulose n-hexanate was produced.
[0052] 実施例 5 セルロース n—へキサネートを用いた VAセル非駆動時の視野角測定によ る補償性能評価  [0052] Example 5: Compensation performance evaluation by measuring the viewing angle when VA cell is not driven using cellulose n-hexanate
市販の VA液晶表示装置から、液晶セルを残して、その他の位相差フィルム及び偏 光フィルム全てを取り除き、その代わりに、観察面に実施例 4で作製した片面に本発 明の位相差フィルムを持つ偏光フィルム (機能性偏光フィルム)を、位相差フィルム面 がセル側になるように配置した。裏面にはボラテクノ製偏光フィルム(SKN18243T) を各々の偏光フィルムの吸収軸が直交するように貼り付けた。このように作製した VA モードの液晶表示装置について、 ELDIM社製 Ez— contrastl60Rを用いて、全方 位の黒輝度分布を測定した。全方位の黒輝度測定データから、偏光板の吸収軸から 右回り 45° の、フィルム法線方向への黒輝度分布の断面をグラフ化したものを図 1に 示す。 [0053] 実施例 6 セルロース n キサネートを用いたシランカップリング剤 (熱重合可能な 化合物)入りキャストフィルムの作製 From the commercially available VA liquid crystal display device, the liquid crystal cell is left, and all other retardation films and polarizing films are removed. Instead, the retardation film of the present invention is applied to one side prepared in Example 4 on the observation surface. The polarizing film (functional polarizing film) is placed so that the retardation film surface is on the cell side. On the back surface, a polarizing film (SKN18243T) made by Boratechno was attached so that the absorption axes of the polarizing films were orthogonal to each other. With respect to the VA mode liquid crystal display device thus manufactured, the black luminance distribution in all directions was measured using Ez-contrast 60R manufactured by ELDIM. Figure 1 shows a graph of the cross-section of the black luminance distribution in the film normal direction, 45 ° clockwise from the absorption axis of the polarizing plate, from the black luminance measurement data in all directions. Example 6 Production of cast film containing silane coupling agent (thermopolymerizable compound) using cellulose n xanate
実施例 1で合成したセル口ース n キサネートが 25重量%、 3—グリシドキシプロ ピルトリエトキシシラン (信越ィ匕学工業製シランカップリング剤 KBE— 403)が 4重量 %、りん酸トリフエ-ル 2重量%となるようにシクロペンタノンに溶解して配合溶液を調 整した。離形 PETフィルム上にセルロース n キサネート溶液を 1. 7mmのドープ 厚みでキャスト後 110°Cにて 40分乾燥してセルロース n—へキサネートの透明なフィ ルムを作製した。  Cell mouth n-xanate synthesized in Example 1 was 25% by weight, 3-glycidoxypropyltriethoxysilane (silane coupling agent KBE-403 manufactured by Shin-Etsu Chemical Co., Ltd.) was 4% by weight, triphenyl phosphate 2 The compounded solution was prepared by dissolving in cyclopentanone so as to be in% by weight. The cellulose n-xanate solution was cast on a release PET film with a dope thickness of 1.7 mm and dried at 110 ° C for 40 minutes to produce a transparent film of cellulose n-hexanate.
[0054] 実施例 7 シランカップリング剤を入れて熱重合したセルロース n キサネートフィ ルムを用いた光学的に二軸性を有する位相差フィルムの作製  Example 7 Production of Optically Biaxial Retardation Film Using Cellulose n-xanate Film Thermally Polymerized with Silane Coupling Agent
実施例 6で得たキャストフィルムを、 120°Cにて倍率 1. 7になるまで延伸処理し、つ いで、はじめの延伸方向と直交する方向に、 100°Cにて倍率 1. 6になるまで延伸処 理して、光学的に二軸性を有する位相差フィルムを得た。得られたフィルムは nx= l . 48500 ny= l. 48440 nz= l. 48331であった。次に自動複屈折計 (KOBRA - 21ADH,王子計測製)を用いて位相差フィルムの位相差比を求めたところ、 Re4 50ZRe550は 0. 97であり、 Re750ZRe550は 1. 03を示し逆波長分散性を示した Reは 61nmを示した。また、傾斜位相差値の測定結果カゝら算出した Rthは 140nm であった。フィルムの厚み dは 100 μ mであった。  The cast film obtained in Example 6 is stretched at 120 ° C until the magnification becomes 1.7, and then the magnification is 1.6 at 100 ° C in the direction perpendicular to the first stretching direction. A retardation film having optically biaxial properties was obtained. The film obtained was nx = l. 48500 ny = l. 48440 nz = l. Next, when the retardation ratio of the retardation film was determined using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific), Re4 50ZRe550 was 0.97 and Re750ZRe550 was 1.03, indicating reverse wavelength dispersion. Re showed 61 nm. Further, the Rth calculated from the measurement result of the tilt phase difference value was 140 nm. The film thickness d was 100 μm.
[0055] 実施例 8 シランカップリング剤を入れて熱重合したセルロース n キサネートよりな る位相差フィルムの耐環境試験  [0055] Example 8 Environmental Resistance Test of Retardation Film Consisting of Cellulose nxanate Thermally Polymerized with Silane Coupling Agent
実施例 7で作製した位相差フィルムを、室温真空条件と室温湿度 60%以上の高湿 度条件にて繰り返し保持して、平面平均位相差値 Reおよび Rthの変化率を測定した 。その結果を図 2および図 3に示す。  The retardation film produced in Example 7 was repeatedly held under a room temperature vacuum condition and a high humidity condition at room temperature humidity of 60% or more, and the change rates of the plane average retardation values Re and Rth were measured. The results are shown in Figs.
[0056] 比較例 1 KC8UCR— 3を用いた位相差フィルム一体型偏光フィルムの作製  [0056] Comparative Example 1 Production of retardation film integrated polarizing film using KC8UCR-3
セルロース系位相差フィルムである、コ-カミノルタホールディングス社製 KC8UC R— 3(厚み 80 μ m) (セルロースアセテートプロピオネートよりなる位相差フィルム)を、 片面のみトリアセチルセルロースで保護されたボラテクノ製偏光フィルム UDN— 101 43Pの非保護面に粘着層を介して、偏光フィルムの吸収軸と KC8UCR— 3の遅相 軸が直交するように積層し、セルロース n—へキサネートを用いた VAセル補償用位 相差フィルム一体型偏光フィルムを作製した。 KC8UCR—3の Reは 38nm、 RthはCellulose phase difference film KC8UC R-3 (thickness 80 μm) (phase difference film made of cellulose acetate propionate) manufactured by Co-Camino Norta Holdings Co., Ltd. Polarizing film UDN—101 Absorption axis of polarizing film and slow phase of KC8UCR-3 through adhesive layer on non-protected surface of 43P Lamination was performed so that the axes were orthogonal to each other, and a retardation film integrated polarizing film for VA cell compensation using cellulose n-hexanate was produced. KC8UCR-3 Re is 38nm, Rth is
132nmであった。 It was 132 nm.
[0057] 比較例 2 比較用偏光フィルムの作製 [0057] Comparative Example 2 Preparation of Comparative Polarizing Film
トリァセチルセルロースフィルム (厚み 80 μ m)を、片面のみトリアセチルセルロース で保護されたボラテクノ製偏光フィルム UDN— 10143Pに粘着層を介して、偏光フィ ルムの吸収軸とトリァセチルセルロースの MD方向が平行になるように積層し、比較 用偏光フィルムを作製した。  A polarizing film UDN-10143P with triacetyl cellulose film (thickness 80 μm) protected on one side only with triacetyl cellulose UDN— 10143P through the adhesive layer, the polarizing film absorption axis is parallel to the MD direction of triacetyl cellulose Then, a comparative polarizing film was prepared.
[0058] 比較例 3 比較例 1および比較例 2にて作製した偏光フィルムの VAセル非駆動時に おける視野角測定 Comparative Example 3 Viewing Angle Measurement of Polarizing Films Produced in Comparative Example 1 and Comparative Example 2 when VA Cell is not Driven
実施例 4で作製した偏光フィルムの代わりに、比較例 1および 2で作製した偏光フィ ルムを用いる以外は、実施例 4と全く同一の方法で全方位の黒輝度分布を測定した 。その結果を図 1に示す。  An omnidirectional black luminance distribution was measured in exactly the same manner as in Example 4 except that the polarizing film prepared in Comparative Examples 1 and 2 was used instead of the polarizing film prepared in Example 4. The results are shown in Fig. 1.
[0059] 比較例 4 セルロースアセテートプロピオネートよりなる位相差フィルムの耐環境試験 実施例 7で作製した位相差フィルムの代わりに、セルロースアセテートプロピオネー トより作製されたフィルムを用いる以外は、実施例 8と同様の耐環境試験を行った。そ の結果を図 2および図 3に示す。 Comparative Example 4 Environmental Resistance Test of Retardation Film Comprising Cellulose Acetate Propionate Example except that a film made from cellulose acetate propionate was used instead of the retardation film produced in Example 7. The same environmental resistance test as in No. 8 was performed. The results are shown in Figs.
[0060] 試験結果の考察 [0060] Examination of test results
図 1から、本発明の位相差フィルム一体型偏光フィルムを用いる場合と、セルロース アセテートプロピオネートよりなる位相差フィルムを用いた偏光フィルムの場合には、 補償効果のな 、比較例 3の偏光フィルムを用いる場合に比べて、傾斜時の図中の円 周囲の輝度上昇が少なぐ広い範囲で低い輝度が維持され、輝度表現に優れている ことがわかる。すなわちコントラスト低下の原因である、傾斜観察時の光洩れが低減さ れ、広視野角化が達成されている。すなわち本発明の偏光フィルムは比較例 1のセ ルロース系位相差フィルムゃトリアセチルセルロースと同様に、偏光フィルムに直接 接着可能であるという利点を有するとともに、 VA用の補償フィルムとして大幅に性能 が向上している。  From FIG. 1, the polarizing film of Comparative Example 3 has no compensation effect in the case of using the retardation film integrated polarizing film of the present invention and in the case of a polarizing film using a retardation film made of cellulose acetate propionate. Compared to the case of using, low luminance is maintained in a wide range with little increase in luminance around the circle in the figure at the time of inclination, and it can be seen that the luminance expression is excellent. In other words, light leakage during tilt observation, which is the cause of contrast reduction, is reduced, and a wide viewing angle is achieved. In other words, the polarizing film of the present invention has the advantage that it can be directly adhered to the polarizing film, as in the case of the cellulose-based retardation film of Comparative Example 1, and the performance is greatly improved as a compensation film for VA. is doing.
また、図 2および図 3から、熱重合性ィ匕合物で重合 (架橋)した実施例 7の本発明の 位相差フィルムは、重合されて 、な 、セルロースアセテートプロピオネートよりなる位 相差フィルムに比べて、耐環境性能に優れ、湿度の高い環境でも位相差値および R thの変化が少なぐフィルムとしての光学性能を安定して発揮できることが分かる。即 ち、本発明によれば真空乾燥条件(10mmHg、温度 30°C、湿度 27%、)20時間及 び高湿度条件(常圧、湿度 80%、温度 30°C) 2時間の環境条件を、 4回繰り返した時 のフィルム面内平均位相差値 Reの変化率が 10%以内、好ましくは 8%以内、フィル ム法線方向の位相差値 Rthの変化率力 以内、このましくは 3%以内、より好ましく は 2%以内の位相差フィルムを得ることが出来る。 Further, from FIG. 2 and FIG. 3, Example 7 of the present invention polymerized (crosslinked) with a thermally polymerizable compound was obtained. The retardation film is a polymerized film that has superior environmental resistance performance compared to a retardation film made of cellulose acetate propionate, and has little change in retardation value and Rth even in a high humidity environment. It can be seen that the optical performance can be exhibited stably. That is, according to the present invention, the environmental conditions of vacuum drying conditions (10 mmHg, temperature 30 ° C, humidity 27%) for 20 hours and high humidity conditions (normal pressure, humidity 80%, temperature 30 ° C) for 2 hours. When the film is repeated four times, the change rate of the average retardation value Re in the film is within 10%, preferably within 8%, within the normal value of the retardation value Rth in the film normal direction, preferably 3 A retardation film within%, more preferably within 2% can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 炭素数が 5から 20の脂肪族ァシル基 (A)により水酸基が置換され、該水酸基の置換 度がセルロース 1モノマーユニット当り 0. 50〜2. 99であるセルロース誘導体からな るフィルムの 2軸延伸により作製され、下記式(1)で示されるフィルム面内の位相差値 Reが Onm以上 200nm以下であり、下記式(2)で示されるフィルム法線方向の位相 差値 Rth力 ¾Onm以上 300nm以下であり、かつ、 nx>ny>nzである光学的に二軸 性を有する位相差フィルム、ただし、各記号は下記の意味を表す。  [1] A film comprising a cellulose derivative in which a hydroxyl group is substituted by an aliphatic acyl group (A) having 5 to 20 carbon atoms, and the substitution degree of the hydroxyl group is 0.50 to 2.99 per cellulose monomer unit. The film in-plane retardation value Re represented by the following formula (1) is Onm or more and 200 nm or less, and the film normal direction retardation value represented by the following formula (2) Rth force ¾Onm More than 300 nm and less than 300 nm and nx> ny> nz and optically biaxial retardation film, where each symbol has the following meaning.
Re = (nx-ny) X d (1)  Re = (nx-ny) X d (1)
Rth = [ (nx+ny) /2-nz] X d (2)  Rth = [(nx + ny) / 2-nz] X d (2)
nx:フィルム面内の遅相軸方向の屈折率  nx: Refractive index in the slow axis direction in the film plane
ny:フィルム面内の進相軸方向の屈折率  ny: Refractive index in the fast axis direction in the film plane
nz:フィルム法線方向の屈折率  nz: refractive index in the film normal direction
d:フィルムの厚み  d: Film thickness
[2] セルロース誘導体の置換基が、(1)炭素数が 5から 20の脂肪族ァシル基 (A)単独で あるか、又は(2)炭素数が 5から 20の脂肪族ァシル基 (A)及びそれ以外の置換基 ( B)の両者のいずれかであり、かつ、後者の置換基 (B)が該脂肪族ァシル基 (A)とは 構造の異なる脂肪族ァシル基、芳香族ァシル基、アルキル力ルバモイル基、芳香族 力ルバモイル基、トラン骨格を有するァシル基、ビフ ニル骨格を有するァシル基ま たは重合性基の 、ずれかである請求項 1に記載の位相差フィルム。  [2] The substituent of the cellulose derivative is (1) an aliphatic acyl group having 5 to 20 carbon atoms (A) alone, or (2) an aliphatic acyl group having 5 to 20 carbon atoms (A) And the other substituent (B), and the latter substituent (B) has a structure different from that of the aliphatic acyl group (A), an aliphatic acyl group, an aromatic acyl group, 2. The retardation film according to claim 1, wherein the retardation film is any one of an alkyl-strength rubermoyl group, an aromatic-strength rubermoyl group, a acyl group having a tolan skeleton, a acyl group having a biphenyl skeleton, or a polymerizable group.
[3] 炭素数が 5から 20の脂肪族ァシル基 (A)が、炭素数 5〜7の直鎖の脂肪族ァシル基 であり、炭素数 5又は 6の直鎖の脂肪族ァシル基の場合、その置換度が 2. 0〜2. 8 で有り、炭素数 7の脂肪族ァシル基の場合、その置換度が 1. 5〜2. 3であるセル口 ース誘導体である請求項 2に記載の位相差フィルム。  [3] In the case where the aliphatic acyl group having 5 to 20 carbon atoms (A) is a linear aliphatic acyl group having 5 to 7 carbon atoms and a linear aliphatic acyl group having 5 or 6 carbon atoms The cell mouth derivative having a degree of substitution of 2.0 to 2.8 and an aliphatic asil group having 7 carbon atoms having a degree of substitution of 1.5 to 2.3. The retardation film described.
[4] 前記セルロース誘導体力 なるフィルム力 前記セルロース誘導体と、反応性モノマ 一若しくは反応性モノマーおよび重合開始剤の両者を含む榭脂組成物により作製さ れたものである請求項 1に記載の位相差フィルム。  [4] The film according to claim 1, wherein the cellulose derivative is made of a resin composition containing the cellulose derivative and a reactive monomer or a reactive monomer and a polymerization initiator. Phase difference film.
[5] 前記反応性モノマーが熱硬化性ィ匕合物である請求項 4に記載の位相差フィルム。  5. The retardation film according to claim 4, wherein the reactive monomer is a thermosetting compound.
[6] 熱硬化性ィ匕合物がシランカップリング剤である請求項 5に記載の位相差フィルム。 6. The retardation film according to claim 5, wherein the thermosetting compound is a silane coupling agent.
[7] 脂肪族ァシル基 (A)が n—へキサノィル基であり、 n—へキサノィル基による水酸基の 置換度が 1. 80-2. 90である請求項 1に記載の位相差フィルム。 7. The retardation film according to claim 1, wherein the aliphatic acyl group (A) is an n-hexanol group, and the degree of substitution of the hydroxyl group by the n-hexanol group is 1.80-2.90.
[8] フィルム面内の位相差値 Reが lOnm以上 80nm以下であり、フィルム法線方向の位 相差値 Rthが lOOnm以上 250nm以下であり、フィルムの厚み dが 30 μ m以上 110 ix m以下である請求項 1に記載の位相差フィルム。 [8] In-plane retardation value Re is lOnm or more and 80nm or less, film normal direction retardation value Rth is lOOnm or more and 250nm or less, and film thickness d is 30μm or more and 110ixm or less The retardation film according to claim 1.
[9] 波長 450nmにおける位相差値を Re450、波長 550nmにおける位相差値を Re550[9] Re450 for phase difference at 450 nm wavelength, Re550 for phase difference value at 550 nm wavelength
、波長 750nmにおける位相差値を Re750としたときに、下記式(3)、 (4)及び(5)の 関係を満たすことを特徴とする、請求項 1に記載の位相差フィルム。 2. The retardation film according to claim 1, wherein when the retardation value at a wavelength of 750 nm is Re750, the relationship of the following formulas (3), (4) and (5) is satisfied.
Re450≤Re550≤Re750 (3)  Re450≤Re550≤Re750 (3)
0. 50≤Re450/Re550< 0. 99 (4)  0. 50≤Re450 / Re550 <0. 99 (4)
1. 00< Re750/Re550≤l . 50 (5)  1.00 <Re750 / Re550≤l. 50 (5)
[10] 前記セルロース誘導体力 なるフィルムが溶剤キャスト法により作製されたフィルムで ある請求項 1又は 4に記載の位相差フィルム。 [10] The retardation film according to [1] or [4], wherein the film having cellulose derivative strength is a film produced by a solvent casting method.
[11] 請求項 1、 4及び 7のいずれか一項に記載の位相差フィルムと偏光フィルムを貼り合 わせた機能性偏光フィルム。 [11] A functional polarizing film obtained by bonding the retardation film according to any one of claims 1, 4, and 7 and a polarizing film.
[12] 請求項 1、 4及び 7の 、ずれか一項に記載の位相差フィルム又は請求項 11に記載の 機能性偏光フィルムを備えてなる画像表示装置。 [12] An image display device comprising the retardation film according to any one of claims 1, 4, and 7, or the functional polarizing film according to claim 11.
[13] 画像表示装置が垂直配向ネマチック (VA)型液晶表示装置である、請求項 12に記 載の画像表示装置。 13. The image display device according to claim 12, wherein the image display device is a vertical alignment nematic (VA) liquid crystal display device.
PCT/JP2006/315857 2005-08-11 2006-08-10 Phase retardation film manufactured from cellulose derivative WO2007018267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007529621A JPWO2007018267A1 (en) 2005-08-11 2006-08-10 Retardation film obtained from cellulose derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005232925 2005-08-11
JP2005-232925 2005-08-11

Publications (1)

Publication Number Publication Date
WO2007018267A1 true WO2007018267A1 (en) 2007-02-15

Family

ID=37727447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315857 WO2007018267A1 (en) 2005-08-11 2006-08-10 Phase retardation film manufactured from cellulose derivative

Country Status (4)

Country Link
JP (1) JPWO2007018267A1 (en)
KR (1) KR20080036958A (en)
CN (1) CN101218523A (en)
WO (1) WO2007018267A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041347A (en) * 2012-07-26 2014-03-06 Sanyo Chem Ind Ltd Resin composition for reverse wavelength dispersion film, and reverse wavelength dispersion film and reverse wavelength dispersion sheet formed of the composition
JP2021081651A (en) * 2019-11-21 2021-05-27 住友化学株式会社 Optical anisotropic film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010454B2 (en) 2007-12-21 2012-08-29 日東電工株式会社 Manufacturing method of liquid crystal cell
WO2010067809A1 (en) 2008-12-09 2010-06-17 積水化学工業株式会社 Retardation element
JP4590487B2 (en) 2008-12-22 2010-12-01 積水化学工業株式会社 Laminated body for laminated glass
US9598570B2 (en) 2014-12-08 2017-03-21 Lg Chem, Ltd. Composition for optical film and optical film prepared by using the same
JP6538162B2 (en) * 2015-05-27 2019-07-03 株式会社クレハ Wrap film
KR102435570B1 (en) * 2018-12-18 2022-08-22 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177642A (en) * 2002-11-27 2004-06-24 Konica Minolta Holdings Inc Phase difference film and its manufacturing method, optical compensating film, polarizing plate, and liquid crystal display device
JP2005062424A (en) * 2003-08-11 2005-03-10 Nitto Denko Corp Manufacturing method for retardation plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177642A (en) * 2002-11-27 2004-06-24 Konica Minolta Holdings Inc Phase difference film and its manufacturing method, optical compensating film, polarizing plate, and liquid crystal display device
JP2005062424A (en) * 2003-08-11 2005-03-10 Nitto Denko Corp Manufacturing method for retardation plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041347A (en) * 2012-07-26 2014-03-06 Sanyo Chem Ind Ltd Resin composition for reverse wavelength dispersion film, and reverse wavelength dispersion film and reverse wavelength dispersion sheet formed of the composition
JP2021081651A (en) * 2019-11-21 2021-05-27 住友化学株式会社 Optical anisotropic film
JP7405576B2 (en) 2019-11-21 2023-12-26 住友化学株式会社 optically anisotropic film

Also Published As

Publication number Publication date
KR20080036958A (en) 2008-04-29
CN101218523A (en) 2008-07-09
JPWO2007018267A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
WO2007018267A1 (en) Phase retardation film manufactured from cellulose derivative
JP6361890B2 (en) Adhesive composition, protective film for polarizing plate, polarizing plate and liquid crystal display device
JP5704541B2 (en) Adhesive composition, polarizing plate and liquid crystal display device comprising the same
TWI531822B (en) Unstretched retardation film
KR101065200B1 (en) Optical film, protection film for polarizer, polarizing plate fabricated therefrom, and display device employing thereof
JP4681452B2 (en) Retardation film using cellulose derivative
WO2006090700A1 (en) Retardation film made by using cellulose derivative
KR102040796B1 (en) A retardation film and display device comprising the same
EP2876120B1 (en) (diisopropyl fumarate)-(cinnamic acid derivative) copolymer, and phase difference film produced using same
WO2008010497A1 (en) Retardation film, luminance-improving film, polarizing plate, method for producing retardation film, and liquid crystal display
KR102040797B1 (en) A retardation film and display device comprising the same
JP5325877B2 (en) Optical film and liquid crystal display device including the same
JP2008249901A (en) Polarizer and liquid crystal display device
EP2137242B1 (en) Optical films, retardation films, and liquid crystal display comprising the sames
WO2008050603A1 (en) Ips mode liquid crystal display apparatus and process for manufacturing the same
JP2009151048A (en) Liquid crystal display device and polarizing plate
TW201026826A (en) Retardation element
JP4656523B2 (en) Retardation film using cellulose derivative
JP4538412B2 (en) Optical film obtained from cellulose derivative
JP2005134521A (en) Optical element
JP2009139841A (en) Composite polarizing plate set and liquid crystal display device
WO2009087905A1 (en) Laminated retardation film, polarizing plate and liquid crystal display device
TW202406742A (en) Polarizing plate with retardation layer having reverse dispersion characteristics for suppressing the occurrence of appearance defects in a high-temperature and high-humidity environment
TW202426983A (en) Polarizing plate with retardation layers and image display apparatus including polarizing plate with retardation layers
CN118226558A (en) Polarizing plate with retardation layer and image display device comprising polarizing plate with retardation layer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680025107.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529621

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077030236

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782643

Country of ref document: EP

Kind code of ref document: A1