WO2009087905A1 - Laminated retardation film, polarizing plate and liquid crystal display device - Google Patents

Laminated retardation film, polarizing plate and liquid crystal display device Download PDF

Info

Publication number
WO2009087905A1
WO2009087905A1 PCT/JP2008/073540 JP2008073540W WO2009087905A1 WO 2009087905 A1 WO2009087905 A1 WO 2009087905A1 JP 2008073540 W JP2008073540 W JP 2008073540W WO 2009087905 A1 WO2009087905 A1 WO 2009087905A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin layer
carbon atoms
acid
film
Prior art date
Application number
PCT/JP2008/073540
Other languages
French (fr)
Japanese (ja)
Inventor
Ayako Ouchi
Shigeki Oka
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2009548884A priority Critical patent/JPWO2009087905A1/en
Publication of WO2009087905A1 publication Critical patent/WO2009087905A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to a laminated retardation film, a polarizing plate, and a liquid crystal display device, and more specifically, a laminated retardation film suitable for continuous production with no unevenness in the screen and failure such as cracks or cracks when used in a liquid crystal display device.
  • a laminated retardation film suitable for continuous production with no unevenness in the screen and failure such as cracks or cracks when used in a liquid crystal display device.
  • retardation films for optical compensation have been used in liquid crystal display devices.
  • As a general method for producing the retardation film there is a method in which a polymer film is uniaxially or biaxially stretched by various stretching techniques. Can be mentioned.
  • the retardation produced by stretching depends on the optical properties of the polymer, the retardation control range is limited, and a sufficient viewing angle expansion effect cannot be obtained.
  • Patent Documents As a method for producing a laminate having birefringence different from positive and negative, a method of co-casting and stretching a positive birefringent resin and a negative birefringent resin is disclosed (for example, Patent Documents). 2).
  • an object of the present invention is to provide a laminated phase difference film suitable for continuous production with no unevenness in the screen and no failure such as cracks when used in a liquid crystal display device.
  • a laminated retardation film comprising a copolymer having units M.
  • R 1 to R 6 is a substituent represented by the general formula (2), and other than that, halogen such as hydrogen, F, Cl, Br, hydroxyl group, carboxyl group, amino Group, cyano group, nitro group, nitroso group, thiol group, saturated hydrocarbon group having 1 to 12 carbon atoms, alkoxyl group having 1 to 12 carbon atoms, acyl group having 1 to 12 carbon atoms, acyloxy having 1 to 12 carbon atoms Groups, alkyloxycarbonyl groups having 1 to 12 carbon atoms, hydrocarbon groups having 1 to 4 carbon atoms having a hydroxyl group, hydrocarbon groups having 1 to 4 carbon atoms having an amino group, and hydrocarbon groups having 1 to 4 carbon atoms. Represents a secondary or tertiary amino group.
  • halogen such as hydrogen, F, Cl, Br, hydroxyl group, carboxyl group, amino Group, cyano group, nitro group, nitroso group, thiol group, saturated
  • R in the general formula (2) is hydrogen, hydroxyl group, carboxyl group, amino group, saturated hydrocarbon group having 1 to 12 carbon atoms, alkoxyl group having 1 to 12 carbon atoms, acyl group having 1 to 12 carbon atoms, It represents an acyloxy group having 1 to 12 carbon atoms, an alkyloxycarbonyl group having 1 to 12 carbon atoms, or a hydrocarbon group having 1 to 4 carbon atoms having a hydroxyl group.
  • a polarizing plate comprising the laminated retardation film according to any one of 1 to 5 on at least one surface.
  • a liquid crystal display device comprising the polarizing plate according to 6 on at least one surface of a liquid crystal cell.
  • the laminated retardation film of the present invention is a laminate of a positive birefringent resin layer and a negative birefringent resin layer, and the negative birefringent resin layer is represented by the general formula (1). It includes a copolymer having a monomer unit L and an ethylenically unsaturated monomer unit M, and is used for a liquid crystal display device, so that there is no unevenness in the screen, and there is no failure such as cracks or cracks. It is a suitable laminated retardation film.
  • the copolymer contains 20 to 70% by mass of the monomer unit L, and that the positive birefringent resin layer is made of a cellulose ester in order to achieve the effects of the present invention.
  • the positive birefringent resin and negative birefringent resin of the present invention are determined by the following method as to whether the resin exhibits positive birefringence or negative birefringence in the stretching direction. Is.
  • ⁇ Resin birefringence test method> The resin is dissolved in a solvent alone and cast to form a film, followed by drying by heating, and birefringence is evaluated for a film having a transmittance of 80% or more.
  • the Abbe refractometer-4T (manufactured by Atago Co., Ltd.) uses a multi-wavelength light source to measure the refractive index, and when the film is stretched in the width direction, the refractive index in the stretching direction is Nx, or in an orthogonal plane The refractive index in the direction is Ny. For each refractive index at 590 nm, for a film where (Nx ⁇ Ny)> 0, the resin is judged to have positive birefringence in the stretching direction. Similarly, when (Nx ⁇ Ny) ⁇ 0, it is determined to have negative birefringence.
  • the negative birefringent resin layer includes a copolymer having a monomer unit L and an ethylenically unsaturated monomer unit M represented by the following general formula (1).
  • R 1 to R 6 is a substituent represented by the general formula (2), and other than that, halogen such as hydrogen, F, Cl, Br, hydroxyl group, carboxyl group, amino Group, cyano group, nitro group, nitroso group, thiol group, saturated hydrocarbon group having 1 to 12 carbon atoms, alkoxyl group having 1 to 12 carbon atoms, acyl group having 1 to 12 carbon atoms, acyloxy having 1 to 12 carbon atoms Groups, alkyloxycarbonyl groups having 1 to 12 carbon atoms, hydrocarbon groups having 1 to 4 carbon atoms having a hydroxyl group, hydrocarbon groups having 1 to 4 carbon atoms having an amino group, and hydrocarbon groups having 1 to 4 carbon atoms. Represents a secondary or tertiary amino group.
  • halogen such as hydrogen, F, Cl, Br, hydroxyl group, carboxyl group, amino Group, cyano group, nitro group, nitroso group, thiol group, saturated
  • R in the general formula (2) is hydrogen, hydroxyl group, carboxyl group, amino group, saturated hydrocarbon group having 1 to 12 carbon atoms, alkoxyl group having 1 to 12 carbon atoms, acyl group having 1 to 12 carbon atoms, It represents an acyloxy group having 1 to 12 carbon atoms, an alkyloxycarbonyl group having 1 to 12 carbon atoms, or a hydrocarbon group having 1 to 4 carbon atoms having a hydroxyl group.
  • the monomer unit L is not particularly limited as long as it is a structure represented by the general formula (1). Specific examples include compounds represented by the following formula.
  • L-1 to L-18 which are vinylcarbazole derivatives, more preferred are N-vinylcarbazole and 2-vinylcarbazole, and particularly preferred is N-vinylcarbazole.
  • ethylenically unsaturated monomer unit M for example, methacrylic acid and ester derivatives thereof (methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, methacrylic acid) Octyl, cyclohexyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, tetrahydrofurfuryl methacrylate, benzyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, etc.), acrylic acid and its ester derivatives ( Methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, i-butyl acrylate, t-butyl acrylate, octyl acryl
  • ethylenically unsaturated monomer units as shown below can also be used.
  • acrylic acid ester or methacrylic acid ester for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, Butyl acrylate
  • alkyl vinyl esters vinyl formate, vinyl acetate, vinyl butyrate, vinyl caproate, vinyl stearate, etc.
  • methyl methacrylate, methyl acrylate, butyl methacrylate, butyl acrylate, and N-acryloylmorpholine are preferable.
  • ethylenically unsaturated monomers can be used alone or in combination.
  • the method for polymerizing the copolymer in the present invention is not particularly limited, but conventionally known methods can be widely employed, and examples thereof include radical polymerization, anionic polymerization, and cationic polymerization.
  • examples of the initiator for the radical polymerization method include azo compounds and peroxides, and examples thereof include azobisisobutyronitrile (AIBN), azobisisobutyric acid diester derivatives, benzoyl peroxide, and lauroyl peroxide.
  • the polymerization solvent is not particularly limited.
  • aromatic hydrocarbon solvents such as toluene and chlorobenzene
  • halogenated hydrocarbon solvents such as dichloroethane and chloroform
  • ether solvents such as tetrahydrofuran and dioxane
  • amide solvents such as dimethylformamide
  • alcohol solvents such as methanol
  • ester solvents such as methyl acetate and ethyl acetate
  • ketone solvents such as acetone, cyclohexanone and methyl ethyl ketone
  • water solvents such as water solvents.
  • solution polymerization that polymerizes in a homogeneous system precipitation polymerization in which the produced polymer precipitates, emulsion polymerization that polymerizes in a micelle state, suspension polymerization that polymerizes in a suspension state, or in some cases bulk polymerization may be performed. it can.
  • the copolymer preferably contains 20 to 70% by mass of monomer units L. Moreover, if it is in the said range, it is also possible to copolymerize monomers other than the monomer units L and M in the range which does not lose negative birefringence. When the monomer unit L is less than 20% by mass, the retardation development property is lowered and it is difficult to form a retardation layer. When the monomer unit L is more than 70% by mass, the resin layer becomes too hard to be stretched.
  • the weight average molecular weight (Mw) of the copolymer is preferably in the range of 10,000 to 2,000,000. More preferably, it is in the range of 100,000 to 1,000,000.
  • the copolymer preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 10.0.
  • Mw and Mw / Mn were calculated by gel permeation chromatography in the following manner.
  • the negative birefringent resin in the present invention is only required to develop a negative phase difference as a mixture containing a plurality of materials, and the component having the largest mass fraction and volume fraction has negative birefringence. You don't have to.
  • the UV curable monomer and the polymerization initiator are dissolved in a solvent together with the negative birefringent resin in advance as long as the negative birefringence is not impaired, and UV curing is performed after coating and drying. It is also possible to form a coating film. By UV curing, the adhesion of the coating film and the enhancement of the film strength can be obtained.
  • UV curable monomer examples include methyl methacrylate, butyl methacrylate, acrylamide, N, N-dimethylacrylamide, methacrylamide, N-acryloylmorpholine, ethylene glycol diacrylate, diethylene glycol diacrylate, and 1,6-hexanediol diester.
  • neopentyl glycol diacrylate trimethylol propane triacrylate, trimethylol ethane triacrylate, tetramethylol methane triacrylate, tetramethylol methane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetra Acrylate, glycerin triacrylate, dipentae Thritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, Neopentyl glycol dime
  • the structure of the monomer unit L has a form in which a polymerizable site and a wide aromatic ring site are bonded.
  • the aromatic ring site is oriented in a direction perpendicular to the stretching direction.
  • a negative birefringent layer can be obtained.
  • the distance between adjacent aromatic rings becomes very close and a strong ⁇ - ⁇ interaction is exhibited. Due to this interaction, the resulting polymer is hard and inflexible, and exhibits a characteristic that it is weak against bending and stretching and readily cracks.
  • the laminate of the present invention is not particularly limited as long as it has a structure in which at least the positive birefringent resin layer and the negative birefringent resin layer are laminated. Therefore, each resin layer may have a plurality of layers, and a plurality of positive birefringent resin layers and a plurality of negative birefringent resin layers are laminated in this order or alternately, or A structure in which layers are randomly stacked may be used.
  • a positive birefringent resin layer as a substrate and provide a negative birefringent resin layer on the substrate to form a laminate.
  • the positive birefringent resin layer is manufactured by a solution casting method or a melt casting method, and is manufactured as a film having an appropriate birefringence in consideration of subsequent installation of a negative birefringent layer. Is preferred.
  • a known means is used. For example, in addition to film thickness, stretching temperature, stretching ratio, etc., in the solution casting method, solution composition, solution temperature, time, peeling temperature from the casting belt / drum, subsequent drying temperature, amount of solvent remaining at stretching The subsequent drying temperature, transport tension, and the like. It is the same in the melt casting method that changes depending on these factors.
  • the positive birefringent resin in the present invention is preferably a polymer having a slow axis in the direction parallel to the stretching direction at the time of stretching, and is preferably highly transparent and thermoplastic.
  • a positive phase difference may be expressed as a mixture including a plurality of materials, and the component having the largest mass fraction and volume fraction need not have positive birefringence.
  • cellulose resins such as triacetyl cellulose (TAC) and cellulose acetate propionate (CAP), polynorbornene resin, polycarbonate resin, polyester resin, polyether sulfone resin, polysulfone resin, polyamide resin, polyimide resin , Polyolefin resins, polyarylate resins, polyvinyl alcohol resins, polyvinyl chloride resins, polyvinylidene chloride resins, and mixtures thereof.
  • TAC triacetyl cellulose
  • CAP cellulose acetate propionate
  • polynorbornene resin polycarbonate resin
  • polyester resin polyether sulfone resin
  • polysulfone resin polyamide resin
  • polyimide resin polyimide resin
  • Polyolefin resins polyarylate resins
  • polyvinyl alcohol resins polyvinyl chloride resins
  • polyvinylidene chloride resins polyvinylidene chloride resins
  • mixtures thereof e.g., a
  • the cellulose ester is not particularly limited, and for example, an aromatic carboxylic acid ester or the like is also used. However, in view of characteristics of the obtained film such as optical characteristics, it is preferable to use a lower fatty acid ester of cellulose.
  • the lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 5 or less carbon atoms.
  • cellulose acetate, cellulose propionate, cellulose butyrate, cellulose pivalate and the like are preferable lower cellulose esters of cellulose. It is mentioned as a thing.
  • the cellulose ester substituted with a fatty acid having 6 or more carbon atoms has good film forming properties, but the resulting optical film has low mechanical properties and is substantially difficult to use as an optical film.
  • Mixed fatty acid esters such as pionate and cellulose acetate butyrate may be used.
  • cellulose esters cellulose acetate propionate and cellulose acetate butyrate are preferably used.
  • Cellulose has a total of three hydroxyl groups, one at each of the 2nd, 3rd and 6th positions of 1 glucose unit.
  • the total degree of substitution is the average number of acyl groups bonded to 1 glucose unit. It is a numerical value indicating whether or not
  • acyl groups may be substituted on the 2nd, 3rd and 6th positions of the glucose unit on average, or may be substituted with a distribution.
  • substitution degree of the mixed fatty acid ester more preferable cellulose acetate propionate and lower fatty acid ester of cellulose acetate butyrate have an acyl group having 2 to 4 carbon atoms as a substituent, and the substitution degree of the acetyl group is X,
  • substitution degree of the propionyl group or butyryl group is Y, it is preferably a cellulose ester satisfying the following formulas (i) and (ii).
  • cellulose acetate propionate is preferably used, and it is particularly preferable that 1.9 ⁇ X ⁇ 2.5 and 0.1 ⁇ Y ⁇ 0.9.
  • the portion that is not substituted with an acyl group is usually present as a hydroxyl group. These can be synthesized by known methods. The method for measuring the substitution degree of the acyl group can be measured according to ASTM-D817-96.
  • the cellulose ester used in the present invention preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 5.5, particularly preferably 2.0 to 4.0.
  • the cellulose ester used in the present invention preferably has a number average molecular weight (Mn) of 50,000 to 150,000, more preferably a number average molecular weight of 55,000 to 120,000, and a number average molecular weight of 60000 to 100,000. Most preferred.
  • Mn and Mw / Mn were calculated by gel permeation chromatography in the following manner.
  • the raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable.
  • a cotton linter is preferably used from the viewpoint of peelability during film formation.
  • the cellulose ester made from these can be mixed suitably or can be used independently.
  • the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
  • the cellulose ester can be obtained, for example, by substituting the hydroxyl group of the raw material cellulose with acetic anhydride, propionic anhydride and / or butyric anhydride in the usual manner using an acetyl group, propionyl group and / or butyl group within the above range.
  • the method for synthesizing such a cellulose ester is not particularly limited, and for example, it can be synthesized with reference to the method described in JP-A-10-45804 or JP-A-6-501040.
  • the alkaline earth metal content of the cellulose ester used in the present invention is preferably in the range of 1 to 50 ppm. If it exceeds 50 ppm, lip adhesion stains increase or breakage tends to occur at the slitting part during or after hot stretching. Even if it is less than 1 ppm, it tends to break, but the reason is not well understood. In order to make it less than 1 ppm, since the burden of a washing
  • the alkaline earth metal as used herein refers to the total content of Ca and Mg, and can be measured using an X-ray photoelectron spectrometer (XPS).
  • the residual sulfuric acid content in the cellulose ester used in the present invention is preferably in the range of 0.1 to 45 ppm in terms of elemental sulfur. These are considered to be contained in the form of salts. In order to make it less than 0.1 ppm, since the burden of the cellulose ester washing process becomes too large, the range of 1 to 30 ppm is preferable.
  • the residual sulfuric acid content can be measured according to the method prescribed in ASTM-D817-96.
  • the free acid content in the cellulose ester used in the present invention is preferably 1 to 500 ppm. Since it is difficult to make it less than 1 ppm by washing, it is preferably in the range of 1 to 100 ppm.
  • the free acid content can be measured according to the method prescribed in ASTM-D817-96.
  • the thickness of the positive birefringent resin layer is not particularly limited, but 10 to 200 ⁇ m is used.
  • the film thickness is particularly preferably 10 to 100 ⁇ m. More preferably, it is 20 to 60 ⁇ m.
  • a plasticizer can be contained as necessary.
  • the plasticizer may have a function of appropriately adjusting not only the plasticizing effect but also the birefringence expression (phase difference after stretching) and wavelength dispersion of the positive birefringent resin layer.
  • a material that reduces the absolute value of the photoelastic coefficient is also preferable.
  • the plasticizer is not particularly limited, but is preferably a polycarboxylic acid ester plasticizer, a glycolate plasticizer, a phthalate ester plasticizer, a fatty acid ester plasticizer, a polyhydric alcohol ester plasticizer, or a polyester plasticizer. Agent, acrylic plasticizer and the like.
  • the phase difference includes a material that exhibits positive birefringence, a material that adjusts wavelength dispersion, a material that makes the photoelastic coefficient close to zero, and the like. Also good.
  • the present invention provides an esterified compound obtained by esterifying all or part of the OH group in the compound (A) having a (meth) acrylic polymer and one furanose structure or one pyranose structure on a positive birefringent resin layer, Or it is preferable to contain the esterified compound which esterified all or one part of OH group in the compound (B) which couple
  • the (meth) acrylic polymer used in the present invention preferably exhibits negative birefringence as a function in the stretching direction when incorporated in a laminated retardation film, and the structure is particularly limited.
  • a polymer having a weight average molecular weight of 500 to 30,000 obtained by polymerizing an ethylenically unsaturated monomer is preferred.
  • the (meth) acrylic polymer having a weight average molecular weight of 500 to 30,000 used in the present invention is a (meth) acrylic polymer having an aromatic ring in the side chain or a (meth) acrylic having a cyclohexyl group in the side chain.
  • a polymer may be used.
  • the composition of the polymer with a weight average molecular weight of 500 or more and 30000 or less, for example, when a cellulose ester is contained in the positive birefringent resin layer, the cellulose ester and the polymer The compatibility of can be improved.
  • the positive birefringent resin layer after film formation has excellent transparency and extremely low moisture permeability, and exhibits excellent performance even when applied to, for example, a protective film for a polarizing plate.
  • the polymer Since the polymer has a weight average molecular weight of 500 or more and 30000 or less, it is considered to be between the oligomer and the low molecular weight polymer. In order to synthesize such a polymer, it is difficult to control the molecular weight in normal polymerization, and it is desirable to use a method that can align the molecular weight as much as possible by a method that does not increase the molecular weight too much.
  • the (meth) acrylic polymer used in the positive birefringent resin layer of the present invention has an ethylenically unsaturated monomer Xa having no aromatic ring and no hydroxyl group in the molecule, and no aromatic ring in the molecule.
  • the polymer Y is preferably a polymer Y having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an ethylenically unsaturated monomer Ya that does not contain bismuth and an ethylenically unsaturated monomer copolymerizable with Ya.
  • polymer X, Polymer Y As a method for adjusting Ro and Rt of the positive birefringent resin layer according to the present invention, an ethylenically unsaturated monomer Xa having no aromatic ring and a hydroxyl group in the molecule, an hydroxyl group having no aromatic ring in the molecule, A high molecular weight polymer X having a weight average molecular weight of 2,000 to 30,000 obtained by copolymerization of an ethylenically unsaturated monomer Xb having Xa and a copolymerizable ethylenically unsaturated monomer excluding Xa and Xb, and Preferably, a low molecular weight polymer Y having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an ethylenically unsaturated monomer Ya having no aromatic ring and an ethylenically unsaturated monomer copolymerizable with Ya. It is prefer
  • the polymer X used in the present invention includes an ethylenically unsaturated monomer Xa having no aromatic ring and a hydroxyl group in the molecule and an ethylenically unsaturated monomer Xb having no hydroxyl ring in the molecule and having a hydroxyl group, Xa and Xb.
  • Xa is an acrylic or methacrylic monomer that does not have an aromatic ring and a hydroxyl group in the molecule
  • Xb is an acrylic or methacrylic monomer that does not have an aromatic ring in the molecule and has a hydroxyl group.
  • the polymer X used in the present invention is represented by the following general formula (X).
  • Xa represents an ethylenically unsaturated monomer having no aromatic ring and hydroxyl group in the molecule
  • Xb represents an ethylenically unsaturated monomer having no aromatic ring and having a hydroxyl group in the molecule
  • Xc represents a copolymerizable ethylenically unsaturated monomer excluding Xa and Xb.
  • polymer X is preferably a polymer represented by the following general formula (X-1).
  • R1 and R3 each represent a hydrogen atom or a methyl group.
  • R2 represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group.
  • R4 represents —CH 2 —, —C 2 H 4 — or —C 3 H 6 —.
  • Xc is, [CH 2 -C (-R1) (- CO 2 R2)] representing the a polymerizable monomer unit or [CH 2 -C (-R3) ( - - CO 2 R4-OH)].
  • the monomers as monomer units constituting the polymer X used in the present invention are listed below, but are not limited thereto.
  • a hydroxyl group means not only a hydroxyl group but also a group having an ethylene oxide chain.
  • Examples of the ethylenically unsaturated monomer Xa having no aromatic ring and hydroxyl group in the molecule include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), and butyl acrylate (n-, i-, s -, T-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i -), Nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid ( ⁇ -caprolactone), etc.
  • the ethylenically unsaturated monomer Xb having no hydroxyl ring in the molecule and having a hydroxyl group is preferably an acrylic acid or a methacrylic acid ester as a monomer unit having a hydroxyl group.
  • Xc is not particularly limited as long as it is a monomer other than Xa and Xb and is a copolymerizable ethylenically unsaturated monomer, but preferably has no aromatic ring.
  • the molar composition ratio m: n of Xa and Xb is preferably in the range of 99: 1 to 65:35, more preferably in the range of 95: 5 to 75:25.
  • P of Xc is 0-10. Xc may be a plurality of monomer units.
  • haze tends to occur during film formation, and it is preferable to optimize these and determine the molar composition ratio of Xa and Xb.
  • the molecular weight of the high molecular weight polymer X is more preferably 5000 or more and 30000 or less, and still more preferably 8000 or more and 25000 or less.
  • the weight average molecular weight be 5000 or more because advantages such as little dimensional change of the positive birefringent resin layer under high temperature and high humidity and less curling as a polarizing plate protective film can be obtained.
  • the compatibility with the cellulose ester is further improved, and bleeding out under high temperature and high humidity and further haze generation immediately after film formation are suppressed.
  • the weight average molecular weight of the polymer X used in the present invention can be adjusted by a known molecular weight adjusting method.
  • a molecular weight adjusting method include a method of adding a chain transfer agent such as carbon tetrachloride, lauryl mercaptan, octyl thioglycolate, and the like.
  • the polymerization temperature is usually from room temperature to 130 ° C., preferably from 50 ° C. to 100 ° C., but this temperature or the polymerization reaction time can be adjusted.
  • the measuring method of the weight average molecular weight can be obtained by the following method.
  • the weight average molecular weight Mw and the number average molecular weight Mn were measured using gel permeation chromatography (GPC).
  • the measurement conditions are as follows.
  • the low molecular weight polymer Y used in the present invention is a polymer having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an ethylenically unsaturated monomer Ya having no aromatic ring.
  • a weight average molecular weight of 500 or more is preferred because the residual monomer in the polymer is reduced.
  • Ya is preferably an acrylic or methacrylic monomer having no aromatic ring.
  • the polymer Y used in the present invention is represented by the following general formula (Y).
  • the polymer Y according to the present invention is more preferably a polymer represented by the following general formula (Y-1).
  • R5 represents a hydrogen atom or a methyl group.
  • R6 represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group.
  • Yb represents a monomer unit copolymerizable with [CH 2 —C (—R5) (— CO 2 R6)].
  • Yb is not particularly limited as long as it is an ethylenically unsaturated monomer copolymerizable with [CH 2 —C (—R 5) (— CO 2 R 6)] which is Ya.
  • Yb may be plural.
  • k + q 100, q is preferably 1-30.
  • the ethylenically unsaturated monomer Ya constituting the polymer Y obtained by polymerizing the ethylenically unsaturated monomer having no aromatic ring is, for example, methyl acrylate, ethyl acrylate, propyl acrylate ( i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), acrylic Heptyl acid (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), cyclohexyl acrylate, acrylic acid ( 2-ethylhexyl), acrylic acid ( ⁇ -caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid (3-
  • Yb is not particularly limited as long as it is an ethylenically unsaturated monomer copolymerizable with Ya.
  • vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, vinyl pivalate, and vinyl caproate.
  • Vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl octylate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl cinnamate and the like are preferred.
  • Yb may be plural.
  • Examples of such a polymerization method include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than usual polymerization, and a mercapto compound in addition to the polymerization initiator. And a method using a chain transfer agent such as carbon tetrachloride, a method using a polymerization terminator such as benzoquinone and dinitrobenzene in addition to the polymerization initiator, and further disclosed in JP-A Nos. 2000-128911 and 2000-344823. Examples thereof include a compound having one thiol group and a secondary hydroxyl group, or a bulk polymerization method using a polymerization catalyst in which the compound and an organometallic compound are used in combination. Used.
  • a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide
  • the polymer Y is preferably a polymerization method using a compound having a thiol group and a secondary hydroxyl group in the molecule as a chain transfer agent.
  • the terminal of the polymer Y has a hydroxyl group and a thioether resulting from the polymerization catalyst and the chain transfer agent. The compatibility of Y and cellulose ester can be adjusted by this terminal residue.
  • the hydroxyl value of the polymers X and Y is preferably 30 to 150 [mgKOH / g].
  • the measurement of the hydroxyl value is based on JIS K 0070 (1992). This hydroxyl value is defined as the number of mg of potassium hydroxide required to neutralize acetic acid bonded to a hydroxyl group when 1 g of a sample is acetylated.
  • sample Xg (about 1 g) is precisely weighed in a flask, and 20 ml of an acetylating reagent (a solution obtained by adding pyridine to 20 ml of acetic anhydride to 400 ml) is accurately added thereto. Attach an air cooling tube to the mouth of the flask and heat in a glycerol bath at 95-100 ° C. After 1 hour and 30 minutes, the mixture is cooled and 1 ml of purified water is added from an air cooling tube to decompose acetic anhydride into acetic acid.
  • an acetylating reagent a solution obtained by adding pyridine to 20 ml of acetic anhydride to 400 ml
  • titration is performed with a 0.5 mol / L potassium hydroxide ethanol solution using a potentiometric titrator, and the inflection point of the obtained titration curve is set as the end point.
  • hydroxyl value is calculated by the following formula.
  • Hydroxyl value ⁇ (BC) ⁇ f ⁇ 28.05 / X ⁇ + D
  • B is the amount (ml) of 0.5 mol / L potassium hydroxide ethanol solution used for the blank test
  • C is the amount (ml) of 0.5 mol / L potassium hydroxide ethanol solution used for titration
  • f is a factor of a 0.5 mol / L potassium hydroxide ethanol solution
  • D is an acid value
  • 28.05 is 1/2 of 1 mol amount 56.11 of potassium hydroxide.
  • polymer X and polymer Y are both excellent in compatibility with cellulose ester, excellent in productivity without evaporation and volatilization, good retention as a protective film for polarizing plates, low moisture permeability, and dimension stability. Excellent in properties.
  • the content of the polymer X and the polymer Y in the positive birefringent resin layer is preferably in a range satisfying the following formulas (i) and (ii).
  • a preferred range of (Xg + Yg) in the formula (i) is 10 to 35% by mass.
  • the polymer X and the polymer Y are 5 mass% or more as a total amount with respect to the total mass of the cellulose ester, the polymer X and the polymer Y have a sufficient effect for adjusting the retardation value Rt. Moreover, if it is 35 mass% or less as a total amount, adhesiveness with polarizer PVA is favorable.
  • Polymer X and polymer Y can be directly added and dissolved as a material constituting the dope solution described later, or can be added to the dope solution after being previously dissolved in an organic solvent for dissolving the cellulose ester.
  • the positive birefringent resin layer of the present invention is esterified by esterifying all or part of the OH group in the compound (A) having one furanose structure or pyranose structure together with a (meth) acrylic polymer. It is preferable to include a compound or an esterified compound obtained by esterifying all or part of the OH group in the compound (B) in which 2 or more and 12 or less of at least one of a furanose structure or a pyranose structure are bonded.
  • esterified compound of the compound (A) and the esterified compound of the compound (B) are collectively referred to as a sugar ester compound.
  • the benzoic acid in the above general formula may further have a substituent, for example, an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group, and these alkyl group, alkenyl group, and phenyl group have a substituent. You may have.
  • Examples of the preferred compound (A) and compound (B) include the following, but the present invention is not limited to these.
  • Examples of the compound (A) include glucose, galactose, mannose, fructose, xylose, or arabinose.
  • Examples of the compound (B) include lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose or kestose.
  • gentiobiose gentiotriose
  • gentiotetraose gentiotetraose
  • xylotriose galactosyl sucrose
  • compounds having both a furanose structure and a pyranose structure are particularly preferable.
  • sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
  • the compound (B) is a compound in which at least one furanose structure or pyranose structure is bonded in an amount of 2 or more and 3 or less.
  • the monocarboxylic acid used for esterifying all or part of the OH groups in the compound (A) and the compound (B) according to the present invention is not particularly limited, and known aliphatic monocarboxylic acids and fats A cyclic monocarboxylic acid, an aromatic monocarboxylic acid, or the like can be used.
  • the carboxylic acid used may be one type or a mixture of two or more types.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and oc
  • Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene.
  • aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralin carboxylic acid, or derivatives thereof.
  • esterified compounds obtained by esterifying the compound (A) and the compound (B) an acetylated compound having an acetyl group introduced by esterification is preferable.
  • the oligosaccharide esterified compound can be applied as a compound in which 3 to 12 of the furanose structure or the pyranose structure according to the present invention are bonded. .
  • Oligosaccharides are produced by allowing an enzyme such as amylase to act on starch, sucrose, etc.
  • examples of oligosaccharides that can be applied to the present invention include maltooligosaccharides, isomaltoligosaccharides, fructooligosaccharides, galactooligosaccharides, and xylooligos. Sugar.
  • Oligosaccharide can also be acetylated in the same manner as the above compound (A) and compound (B).
  • Acetic anhydride 200 ml was added dropwise to a solution obtained by adding pyridine (100 ml) to glucose (29.8 g, 166 mmol) and allowed to react for 24 hours. Thereafter, the solution was concentrated by evaporation and poured into ice water.
  • glycolose pentaacetate (58.8 g, 150 mmol, 90.9%).
  • monocarboxylic acid can be used instead of the acetic anhydride.
  • esterified compound used in the present invention is listed below, but the present invention is not limited thereto.
  • the positive birefringent resin layer of the present invention can be used in the compound (A) having one furanose structure or one pyranose structure in order to suppress the fluctuation of the retardation value and stabilize the display quality. It is preferable to contain 1 to 30% by mass of an esterified compound obtained by esterifying all or part of the OH group in the compound (B) in which 2 to 12 of at least one of the structure or the pyranose structure are bonded. It is preferable to contain ⁇ 30% by mass. Within this range, it is preferable that the excellent effects of the present invention are exhibited and there is no bleeding out.
  • a compound (A) having one (meth) acrylic polymer and one furanose structure or pyranose structure or in a compound (B) in which 2 to 12 at least one furanose structure or pyranose structure is bonded.
  • An esterified compound obtained by esterifying all or a part of the OH group may be used in combination with another plasticizer.
  • fine particles can be added to these positive birefringent resin layers as necessary.
  • examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Mention may be made of magnesium silicate and calcium phosphate.
  • the average primary particle size of the fine particles is preferably 5 to 400 nm, and more preferably 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 ⁇ m, and may be contained as primary particles without being aggregated if the particles have an average particle size of 100 to 400 nm. preferable.
  • the content of these fine particles in the polarizing plate protective film is preferably 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass.
  • Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). it can.
  • Zirconium oxide fine particles are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
  • polymer type fine particles may be added.
  • the polymer include silicone resin, fluororesin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.
  • the fine particles in the present invention are preferably close to the average refractive index of the positive birefringent resin layer.
  • an ultraviolet absorber may be included.
  • the ultraviolet absorber a material suitable for an optical film, such as no coloring and excellent transparency, is preferable. Examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. Further, polymer ultraviolet absorbers described in JP-A Nos. 2002-169020 and 2006-113175 are also preferably used.
  • Other components may include an antioxidant, an antistatic agent, a lubricant, a release material, a colorant, a colorant, a flame retardant, and the like.
  • an antioxidant when producing by melt casting film formation, it is preferable to introduce an antioxidant, and in particular, as a method for maximizing the transparency of the film, instead of the fine particles, a lubricant and a release material are also preferable. Used.
  • an antistatic layer, a slipping layer, and an easy adhesion layer may be provided on any surface of the positive birefringent resin layer.
  • the cellulose ester film according to the present invention can be preferably used regardless of whether it is a film produced by a solution casting method or a film produced by a melt casting method.
  • the cellulose ester film of the present invention is produced by dissolving the cellulose ester and the additive in a solvent to prepare a dope, casting the dope on an endless metal support that moves infinitely, and casting the dope. Is performed by a step of drying as a web, a step of peeling from a metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding the finished film.
  • the concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose ester is too high, the load during filtration increases and the filtration accuracy is poor. Become.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the solvent used in the dope may be used alone or in combination of two or more, but it is preferable to use a mixture of a good solvent and a poor solvent of cellulose ester in terms of production efficiency, and there are many good solvents. This is preferable from the viewpoint of the solubility of the cellulose ester.
  • a preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the cellulose ester acetate ester acetyl group substitution degree 2.4
  • cellulose Acetate propionate is a good solvent
  • cellulose acetate (acetyl group substitution degree 2.8) is a poor solvent.
  • the good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
  • the poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used.
  • the dope preferably contains 0.01 to 2% by mass of water.
  • the solvent used for dissolving the cellulose ester is used by collecting the solvent removed from the film by drying in the film-forming process and reusing it.
  • the recovery solvent may contain trace amounts of additives added to the cellulose ester, such as plasticizers, UV absorbers, polymers, monomer components, etc., but even if these are included, they are preferably reused. Can be purified and reused if necessary.
  • a general method can be used. When heating and pressurization are combined, it is possible to heat above the boiling point at normal pressure.
  • Pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside.
  • a jacket type is preferable because temperature control is easy.
  • the heating temperature with the addition of the solvent is preferably higher from the viewpoint of the solubility of the cellulose ester, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates.
  • a preferred heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and still more preferably 70 ° C to 105 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby the cellulose ester can be dissolved in a solvent such as methyl acetate.
  • the cellulose ester solution is filtered using an appropriate filter medium such as filter paper.
  • an appropriate filter medium such as filter paper.
  • the filter medium it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like, but there is a problem that the filter medium is likely to be clogged if the absolute filtration accuracy is too small.
  • a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is still more preferable.
  • the material of the filter medium there are no particular restrictions on the material of the filter medium, and ordinary filter media can be used.
  • plastic filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel do not drop off fibers. preferable. It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose ester by filtration.
  • Bright spot foreign matter means that when two polarizing plates are placed in a crossed Nicol state, an optical film or the like is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It is a point (foreign matter) where light from the opposite side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less. More preferably, it is 100 pieces / cm 2 or less, still more preferably 50 pieces / m 2 or less, still more preferably 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
  • the dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration.
  • the increase in the difference (referred to as differential pressure) is small and preferable.
  • a preferred temperature is 45 to 120 ° C., more preferably 45 to 70 ° C., and still more preferably 45 to 55 ° C.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 to 4 m.
  • the surface temperature of the metal support in the casting step is ⁇ 50 ° C. to less than the boiling point of the solvent, and a higher temperature is preferable because the web drying speed can be increased. May deteriorate.
  • a preferable support temperature is 0 to 40 ° C., more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100 M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Particularly preferred is 0 to 0.01% by mass or less.
  • a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
  • the cellulose ester film according to the present invention it is particularly preferable to perform stretching in the width direction (lateral direction) by a tenter method in which both ends of the web are held with clips or the like. Peeling is preferably performed at a peeling tension of 300 N / m or less.
  • the means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air in terms of simplicity.
  • drying temperature in the web drying process is increased stepwise from 40 to 200 ° C.
  • the film thickness of the cellulose ester film is not particularly limited, but 10 to 200 ⁇ m is used.
  • the film thickness is particularly preferably 10 to 100 ⁇ m. More preferably, it is 20 to 60 ⁇ m.
  • a cellulose ester film having a width of 1 to 4 m is used. Particularly, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.
  • the stretching operation can be performed at once after laminating the negative birefringent layer on the unstretched positive birefringent resin layer, but only the positive birefringent resin layer is stretched in advance. Furthermore, a desired retardation can be adjusted by stretching again after laminating a negative birefringent layer.
  • the cellulose ester film which is a positive birefringent resin layer, has the configuration of the present invention, and further the refractive index is controlled by a stretching operation.
  • biaxial stretching or uniaxial stretching can be performed sequentially or simultaneously with respect to the longitudinal direction (film forming direction) of the film and the direction orthogonal to the longitudinal direction of the film, that is, the width direction.
  • the draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 0.8 to 2.0 times in the casting direction and 1.1 to 2.5 times in the width direction, respectively. It is preferable to carry out in the range of 0.8 to 1.5 times in the direction and 1.2 to 2.0 times in the width direction.
  • the stretching temperature is preferably 120 ° C. to 200 ° C., more preferably 160 ° C. to 200 ° C. or less.
  • the residual solvent in the film is preferably 20 to 0%, more preferably 15 to 0%.
  • the residual solvent is preferably stretched at 11% at 175 ° C., or the residual solvent is stretched at 2% at 175 ° C.
  • it is preferred that the residual solvent is stretched at 11% at 185 ° C., or it is preferred that the residual solvent is stretched at less than 1% at 185 ° C.
  • the method of stretching the web For example, a method in which a circumferential speed difference is applied to a plurality of rolls, and the roll circumferential speed difference is used to stretch the rolls in the longitudinal direction. And a method of stretching in the vertical direction, a method of stretching in the horizontal direction and stretching in the horizontal direction, or a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions.
  • a tenter it may be a pin tenter or a clip tenter.
  • the thickness of the negative birefringent resin layer containing the copolymer having the monomer unit L and the ethylenically unsaturated monomer unit M represented by the general formula (1) is not particularly limited, but 2 to 50 ⁇ m is used.
  • the film thickness is particularly preferably 3 to 40 ⁇ m. More preferably, it is 5 to 30 ⁇ m.
  • the positive birefringent layer may be surface-treated, or an easy-adhesion layer may be provided between the two layers.
  • a material of an easily bonding layer A well-known material can be used suitably.
  • the film thickness of the easy adhesion layer is preferably 1 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • Coating of negative birefringent resin layer There are no particular restrictions on the coating method, but specific examples include gravure coating, comma coating, bar coating, die coating, lip coating, roll coating, flow coating, print coating, dip coating, casting film formation, and spin coating. Can be mentioned. These methods are appropriately selected from the solution viscosity and the film thickness.
  • organic solvents are used as the solvent, for example, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, and aromatic carbonization such as benzene, toluene and xylene.
  • alcohols such as methanol, ethanol, propanol and butanol
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • aromatic carbonization such as benzene, toluene and xylene.
  • glycols such as ethylene glycol, propylene glycol, hexylene glycol, etc.
  • glycol ethers such as ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol, esters such as methyl acetate and ethyl acetate
  • Organic solvents such as N-methylpyrrolidone, dimethylformamide, dichloromethane, chloroform and tetrahydrofuran, or water. These can be used alone or in admixture of two or more. Further, when the UV curable monomer and the negative birefringent resin are mixed in advance, the UV curable monomer can be used as a solvent.
  • heat treatment or active energy ray irradiation treatment such as ultraviolet light is preferably performed. It is also effective to previously contain a crosslinkable material in the coating solution, and the Tg of the film can be controlled.
  • the retardation values Ro and Rt are obtained by performing a stretching operation after laminating a negative birefringent layer on a positive birefringent resin layer.
  • biaxial stretching or uniaxial stretching can be performed sequentially or simultaneously with respect to the longitudinal direction (coating direction) of the film and the direction orthogonal to the longitudinal direction of the film, that is, the width direction.
  • the draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 1.01 to 2.5 times in the coating direction and 0.5 to 1.5 times in the width direction, respectively. It is preferable to carry out in the range of 1.05 to 1.5 times in the direction and 0.5 to 1.0 times in the width direction.
  • the haze of the laminated retardation film of the present invention is preferably less than 1%, particularly preferably 0 to 0.5%.
  • the visible light transmittance of the laminated retardation film of the present invention is preferably 90% or more, and more preferably 93% or more.
  • the laminated retardation film of the present invention can be suitably used for a polarizing plate as a viewing angle widening film of a liquid crystal display device. In that case, it can bond directly to at least one surface of a polarizer, and can also serve as a polarizing plate protective film. In this case, it is preferable to bond the positive birefringent resin layer side to the polarizer.
  • the polarizing plate can be produced by a general method.
  • the positive birefringent resin layer side of the laminated retardation film of the present invention is subjected to alkali saponification treatment.
  • the saponified retardation film is preferably bonded to at least one surface of a polarizer produced by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified aqueous polyvinyl alcohol solution.
  • a laminated retardation film may be used on the other surface, or another polarizing plate protective film may be used.
  • a known adhesive can be used, but an aqueous adhesive is preferable.
  • any appropriate material can be adopted as the polarizing plate protective film used on the back side.
  • a plastic film excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like can be mentioned.
  • resins constituting the plastic film include acylate resins such as triacetyl cellulose (TAC), polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, acrylic resins, poly Examples include norbornene resin, cellulose resin, polyarylate resin, polystyrene resin, polyvinyl alcohol resin, polyacrylic resin, and mixtures thereof.
  • TAC triacetyl cellulose
  • polyester resins such as triacetyl cellulose (TAC)
  • polyethersulfone resins such as polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins
  • thermosetting resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone, or ultraviolet curable resins may be used. From the viewpoint of polarization characteristics and durability, a TAC film whose surface is saponified with alkali or the like is preferable.
  • KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12UR, KC4UE, KC8UE, KC8UY-HA, KC8UX-RHU, KC8UX-RUX NC, KC4UXW-RHA-NC (manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
  • the laminated retardation film of the present invention is industrially produced as a long film, and an aspect in which a polarizing plate is constituted by laminating with a polarizer produced as a long film is most useful. Moreover, it can also be used as a mere retardation film that does not have a function as a polarizing plate protective film, such as further bonding to a polarizing plate.
  • a polarizer which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass.
  • a typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol.
  • iodine is dyed on a system film
  • a dichroic dye is dyed, but it is not limited to this.
  • a polyvinyl alcohol aqueous solution is formed into a film and dyed by uniaxial stretching or dyed or uniaxially stretched and then preferably subjected to a durability treatment with a boron compound.
  • a polarizer having a thickness of 5 to 30 ⁇ m is preferably used.
  • the laminated retardation film of the present invention can be used for liquid crystal display devices of various drive systems such as STN, TN, OCB, HAN, VA (MVA, PVA), IPS, FFS, OCB.
  • An IPS, FFS, and VA (MVA, PVA) type liquid crystal display device is preferable.
  • STN, OCB, or TN type liquid crystal display device the absorption axis direction of the polarizer and the respective stretching axes do not necessarily have to be parallel or orthogonal, and an offset form is also preferably used.
  • a liquid crystal display device having a wide viewing angle and high front contrast and excellent visibility can be obtained.
  • the laminated retardation film of the present invention is disposed between a polarizer disposed so as to have an absorption axis in a direction orthogonal to the slow axis direction of the liquid crystal during black display and the glass substrate.
  • the negative birefringent resin layer is arranged on the polarizer side
  • the negative birefringent layer is arranged on the glass substrate side so that the slow axis of the negative birefringent resin layer and the absorption axis of the polarizer are parallel to each other.
  • an excellent viewing angle can be obtained by arranging the slow axis of the negative birefringent layer and the absorption axis of the polarizer to be orthogonal to each other.
  • the retardation Ro of the positive birefringent resin layer is 0 nm or the retardation of the positive birefringent resin layer is Ro> 0 nm
  • the slow axis of the positive birefringent resin layer and the negative birefringent layer The laminated retardation film of the present invention in which the slow axis is orthogonal is preferably used.
  • the in-plane retardation Ro of the retardation film disposed therebetween is substantially zero. More preferably, the retardation Rt in the thickness direction is
  • Such a retardation film can also serve as a polarizing plate protective film.
  • Example 1 Production of Laminated Retardation Film >> ⁇ Preparation and Stretching of Positive Birefringent Resin Layer P1> Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) 11 parts by weight Ethanol 89 parts by weight The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
  • a main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose ester A was added to a pressurized dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
  • the dope solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. in the film production line.
  • the inline additive solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd.
  • Add 2 parts by weight of the filtered in-line additive to 100 parts by weight of the filtered dope solution mix thoroughly with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ), and then use a belt casting apparatus. It was cast at a temperature of 35 ° C. and a width of 2 m uniformly on a stainless steel band support. With the stainless steel band support, the solvent was evaporated until the residual solvent amount became 120%, and then peeled off from the stainless steel band support.
  • the peeled cellulose ester web was evaporated at 50 ° C. and the solvent was slit to a width of 1.65 m, and then 1.2 times at 160 ° C. in the TD direction (direction perpendicular to the film transport direction) (20 %), And further applied with a transport tension to stretch 1.1 times (10%) in the MD direction (film transport direction). Drying is completed while transporting through a 120 ° C drying zone with many rolls, slitting to a width of 1500mm, knurling with a width of 15mm and an average height of 10 ⁇ m at both ends of the film, and positive birefringence with an average film thickness of 52 ⁇ m Resin layer P1 was produced.
  • the film width was 1.5 m and the winding length was 5000 m.
  • Cellulose ester A acetyl group substitution degree 1.8, propionyl group substitution degree 0.9, total acyl group substitution degree 2.7
  • (Meth) acrylic polymer A Bulk polymerization was performed by the polymerization method described in JP-A No. 2000-128911. That is, methyl acrylate was introduced as a monomer into a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, an inlet, and a reflux condenser, and nitrogen gas was introduced and the inside of the flask was replaced with nitrogen gas while stirring. Added.
  • Sugar ester compound A Sugar ester compound exemplified compound 3 ⁇ Preparation and Stretching of Positive Birefringent Resin Layer P2> After the dope fluency and peeling, the same procedure as in P1 was performed, and then the peeled cellulose ester film web was evaporated at 55 ° C., then clipped with a tenter and 1.3 times (160 times in the TD direction at 160 ° C.) %). Thereafter, drying is completed while being conveyed at 120 ° C., slitting to 1500 mm width, a knurling process of 15 mm width and average height of 12 ⁇ m is applied to both ends of the film, and a positive birefringent resin layer P2 having an average film thickness of 38 ⁇ m. Got. The film thickness variation was within ⁇ 1 ⁇ m in both the width direction and the longitudinal direction, and the winding length was 5000 m.
  • the belt was uniformly cast on a stainless band support (surface temperature 25 ° C.) with a width of 2 m.
  • the solvent was evaporated until the residual solvent amount reached 100%, and then peeled off from the stainless steel band support.
  • the web of the peeled cellulose ester film was evaporated at 55 ° C, then clipped with a tenter and stretched 1.01 times (1%) at 125 ° C in the TD direction, and further conveyed tension was applied in the MD direction.
  • the film was stretched 1.2 times (20%).
  • drying was completed while being rolled at 120 ° C., slitting to a width of 1500 mm, and knurling with a width of 15 mm and an average height of 12 ⁇ m were applied to both ends of the film to obtain a positive birefringent resin layer P4.
  • the film average film thickness was 80 ⁇ m, the film thickness variation was within ⁇ 1 ⁇ m in both the width direction and the longitudinal direction, and the winding length was 5000 m.
  • Tinuvin 109 manufactured by Ciba Specialty Chemicals
  • Tinuvin 171 manufactured by Ciba Specialty Chemicals
  • methylene chloride Dissolved and filtered 100 parts by weight of methylene chloride Dissolved and filtered.
  • the dope solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. in the film production line.
  • the inline additive solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd.
  • the peeled cellulose ester web was evaporated at 35 ° C., slit to 1650 mm width, and then dried at a drying temperature of 135 ° C. while stretching 1.1 times in the TD direction with a tenter. At this time, the residual solvent amount when starting stretching with a tenter was 30%.
  • the draw ratio in the MD direction immediately after peeling calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.07.
  • the positive birefringent resin layer P5 had an average film thickness of 84 ⁇ m and a winding length of 5000 m.
  • drying was completed while being conveyed by a roll at 120 ° C., slitting to a width of 1500 mm, and knurling with a width of 15 mm and an average height of 12 ⁇ m were applied to both ends of the film to obtain a positive birefringent resin layer P6.
  • the film average film thickness was 45 ⁇ m, the film thickness variation was within ⁇ 1 ⁇ m in both the width direction and the longitudinal direction, and the winding length was 5000 m.
  • the obtained positive birefringent resin layers P1 to P6 were subjected to refractive index measurement using a multi-wavelength light source for Abbe refractometer-4T (manufactured by Atago Co., Ltd.), and the refractive index in the stretching direction was set to Nx Further, when the refractive index in the orthogonal in-plane direction is Ny, (Nx ⁇ Ny)> 0 and positive birefringence was exhibited.
  • 50 parts by mass of a monomer mixture of 20% by mass of N-vinylcarbazole and 80% by mass of methyl methacrylate and 2 parts by mass of azobisisobutyronitrile were added and dissolved by adding 800 parts by mass of toluene.
  • the mixture was allowed to stand for 48 hours in an atmosphere of 60 ° C. for copolymerization.
  • methanol was added to precipitate the polymer.
  • a negative birefringent resin N1 was obtained as a white powder through cooling, filtration, washing, and drying steps.
  • negative birefringent resins N2 to N7 were synthesized.
  • the copolymer contained N-vinylcarbazole monomer units and methyl methacrylate monomer units in the proportions shown in Table 1, respectively.
  • the film obtained by film formation and stretching alone was subjected to refractive index measurement using Abbe refractometer-4T (manufactured by Atago Co., Ltd.) using a multi-wavelength light source to determine the refractive index in the stretching direction.
  • Abbe refractometer-4T manufactured by Atago Co., Ltd.
  • a multi-wavelength light source to determine the refractive index in the stretching direction.
  • Negative birefringent resin N1 30 mass parts Methyl ethyl ketone 70 mass parts The above was put into an airtight container and completely dissolved with heating and stirring to prepare a coating solution. It coated on the positive birefringent resin layer P1 using the comma coater, and dried at 80 degreeC, and the laminated body was formed. While the obtained laminate was heated to 130 ° C., the laminate retardation film 1 was obtained by stretching 10% in the transport direction using a longitudinal stretching machine. The film thickness of the negative birefringent resin layer was 19 ⁇ m, and the film thickness of the positive birefringent resin layer was 50 ⁇ m.
  • the coating film When an attempt was made to stretch the laminated retardation film 7, the coating film was broken at a stretching ratio of less than 1% and did not form a retardation film.
  • the laminated retardation film 6 that was stretched at 250 ° C. where the coating film can be stretched the retardation of the base material layer was relaxed by heat and a sufficient retardation was not exhibited.
  • Ro and Rt of the positive birefringent resin layer and the negative birefringent resin layer were calculated by the analysis software Multi-Layer Software.
  • Roll transportability The produced laminated phase difference film was conveyed by rolls, the state after completion of conveyance was observed, and roll conveyance suitability was evaluated according to the following criteria.
  • the laminated retardation film was formed on one side of the polarizer.
  • the laminate was aligned with the stretching direction of the polarizer and the stretching direction of the polarizer, and the positive birefringent resin layer side was bonded to the polarizer side.
  • Konica Minolta-tack film KC8UX manufactured by Konica Minolta Opto Co., Ltd. was similarly subjected to alkali saponification treatment and bonded to produce polarizing plates 1 to 6 and 8 to 11.
  • a polarizer was prepared, and an aqueous emulsion of a polyester-based ionomer type urethane resin (trade name “Hydran AP-20” manufactured by Dainippon Ink & Chemicals, Inc., solid content concentration 30%, viscosity 30 mPa ⁇ sec) Stretching direction and polarization of laminate of laminated retardation film 12 with 100 parts added with 3 parts of polyisocyanate compound (trade name “Hydran Assister C1” manufactured by Dainippon Ink & Chemicals, Inc.) The stretching directions of the polarizers were matched, and each was bonded so that the positive birefringent resin layer surface side was the polarizer side.
  • a polyester-based ionomer type urethane resin trade name “Hydran AP-20” manufactured by Dainippon Ink & Chemicals, Inc., solid content concentration 30%, viscosity 30 mPa ⁇ sec
  • the other side of the polarizer was subjected to alkali saponification treatment with Konica Minolta Tack Film KC8UX (manufactured by Konica Minolta Opto Co., Ltd.) to produce a polarizing plate 12.
  • Konica Minolta Tack Film KC8UX manufactured by Konica Minolta Opto Co., Ltd.
  • the viewing angles of the liquid crystal display devices 1 to 6 and 8 to 12 manufactured using EZcontrast 160D manufactured by ELDIM were measured, and the tilt angle from the normal direction showing a contrast ratio of 10 or more in the azimuth angle 45 ° direction was evaluated according to the following criteria.
  • the sample of the present invention had extremely high viewing angle improvement characteristics.
  • Example 2 (Preparation of laminated retardation film 13) In the same manner as in Production Example 1, except that 80% by mass of methyl methacrylate and 70% by mass of acryloylmorpholine and 30% by mass of N-vinylcarbazole were used instead of 20% by mass of N-vinylcarbazole. N8 was synthesized. This resin had negative birefringence. A laminated retardation film 13 was produced in the same manner as the laminated retardation film 1 except that this negative birefringent resin N8 was used.
  • Negative birefringent resin N1 27 parts by mass Cellulose acetate butyrate (acetyl group substitution degree 1.1, butyryl group substitution degree 1.8, weight average molecular weight 24) 3 parts by mass Methyl ethyl ketone 70 parts by mass The solution was completely dissolved with heating and stirring to prepare a coating solution. This resin mixture had negative birefringence. A laminated retardation film 15 was produced in the same manner as in the laminated retardation film 1 except that this coating solution was used.

Abstract

Disclosed is a laminated retardation film suitable for continuous production, which is free from problems such as cracks and fractures and does not cause display unevenness when used in a liquid crystal display device. Specifically disclosed is a laminated retardation film which is a laminate of a positively birefringent resin layer and a negatively birefringent resin layer. The laminated retardation film is characterized in that the negatively birefringent resin layer contains a copolymer having a monomer unit L represented by general formula (1) and an ethylenically unsaturated monomer unit M. general formula (1)

Description

積層位相差フィルム、偏光板及び液晶表示装置Laminated retardation film, polarizing plate and liquid crystal display device
 本発明は積層位相差フィルム、偏光板及び液晶表示装置に関し、より詳しくは液晶表示装置に用いた際に画面にムラがなく、かつクラックや割れなどの故障のない連続生産に適した積層位相差フィルムに関する。 The present invention relates to a laminated retardation film, a polarizing plate, and a liquid crystal display device, and more specifically, a laminated retardation film suitable for continuous production with no unevenness in the screen and failure such as cracks or cracks when used in a liquid crystal display device. Related to film.
 従来、液晶表示装置には光学補償用の位相差フィルムが使用されており、その位相差フィルムの一般的な製造方法としては、ポリマーフィルムを種々の延伸技術によって一軸或いは二軸延伸を行う方法が挙げられる。しかし、延伸によって発現する位相差は、ポリマーの光学特性に依存するため位相差制御範囲には限りがあり、充分な視野角拡大効果が得られなかった。 Conventionally, retardation films for optical compensation have been used in liquid crystal display devices. As a general method for producing the retardation film, there is a method in which a polymer film is uniaxially or biaxially stretched by various stretching techniques. Can be mentioned. However, since the retardation produced by stretching depends on the optical properties of the polymer, the retardation control range is limited, and a sufficient viewing angle expansion effect cannot be obtained.
 そこで、更なる視野角拡大効果を得るため、液晶表示装置の視野角補償方法として、正と負の異なる複屈折性を有するポリマーフィルムを複数用いた光学補償が提案されている。(例えば、特許文献1参照。)この実現方法としては、個別に作製した位相差フィルムを複数枚積層し貼合して用いる方法が挙げられているが、貼合するために接着剤層を介す必要があるため、その分位相差フィルム全体の厚みが増加し、薄型化が求められる液晶表示装置に使用する部材として不適であった。また、貼合時にフィルム間での軸ずれが生じるなどの問題もあった。そこで、正と負の異なる複屈折性を有する積層体の作製方法として、正の複屈折性樹脂と負の複屈折性樹脂を共流延、延伸する方法が開示されている(例えば、特許文献2参照。)。 Therefore, in order to obtain a further viewing angle widening effect, optical compensation using a plurality of polymer films having birefringence different from positive and negative has been proposed as a viewing angle compensation method for liquid crystal display devices. (For example, refer patent document 1.) As this realization method, although the method of laminating | stacking and laminating | stacking and laminating | stacking several retardation films produced separately is mentioned, in order to bond, an adhesive layer is interposed. Therefore, the thickness of the entire retardation film is increased accordingly, which is unsuitable as a member for use in a liquid crystal display device that is required to be thin. Moreover, there also existed problems, such as a shaft gap occurring between films at the time of bonding. Therefore, as a method for producing a laminate having birefringence different from positive and negative, a method of co-casting and stretching a positive birefringent resin and a negative birefringent resin is disclosed (for example, Patent Documents). 2).
 そこで発明者らは、この方法に基づき積層位相差フィルムを作製し、液晶表示装置に用いたところ、画面全体にむらが生じるという問題があることがわかった。さらに、この位相差フィルムの連続生産を試みたところ、ロール搬送中に負の複屈折性樹脂層にクラックや割れなどの不良が生じ、長尺フィルムを作製することが困難であった。
特開2006-235576号公報 米国特許7,211,304号明細書
Therefore, the inventors have found that there is a problem that unevenness occurs on the entire screen when a laminated retardation film is produced based on this method and used in a liquid crystal display device. Further, when continuous production of the retardation film was attempted, defects such as cracks and cracks occurred in the negative birefringent resin layer during roll conveyance, and it was difficult to produce a long film.
JP 2006-235576 A US Pat. No. 7,211,304
 従って、本発明の目的は液晶表示装置に用いた際に画面にムラがなく、かつクラックや割れなどの故障のない連続生産に適した積層位相差フィルムを提供することにある。 Therefore, an object of the present invention is to provide a laminated phase difference film suitable for continuous production with no unevenness in the screen and no failure such as cracks when used in a liquid crystal display device.
 本発明の上記課題は以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.正の複屈折性樹脂層と負の複屈折性樹脂層との積層体であり、負の複屈折性樹脂層が、下記一般式(1)で表されるモノマー単位Lとエチレン性不飽和モノマー単位Mとを有する共重合体を含むことを特徴とする積層位相差フィルム。 1. A laminate of a positive birefringent resin layer and a negative birefringent resin layer, wherein the negative birefringent resin layer is a monomer unit L represented by the following general formula (1) and an ethylenically unsaturated monomer A laminated retardation film comprising a copolymer having units M.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(R1~R6のうちのどれか一つのみが一般式(2)で表される置換基であり、それ以外は、水素、F、Cl、Br等のハロゲン、水酸基、カルボキシル基、アミノ基、シアノ基、ニトロ基、ニトロソ基、チオール基、炭素数1~12の飽和炭化水素基、炭素数1~12のアルコキシル基、炭素数1~12のアシル基、炭素数1~12のアシルオキシ基、炭素数1~12のアルキルオキシカルボニル基、水酸基を有する炭素数1~4の炭化水素基、アミノ基を有する炭素数1~4の炭化水素基、炭素数1~4の炭化水素基を有する第2級または第3級アミノ基を表す。 (Only one of R 1 to R 6 is a substituent represented by the general formula (2), and other than that, halogen such as hydrogen, F, Cl, Br, hydroxyl group, carboxyl group, amino Group, cyano group, nitro group, nitroso group, thiol group, saturated hydrocarbon group having 1 to 12 carbon atoms, alkoxyl group having 1 to 12 carbon atoms, acyl group having 1 to 12 carbon atoms, acyloxy having 1 to 12 carbon atoms Groups, alkyloxycarbonyl groups having 1 to 12 carbon atoms, hydrocarbon groups having 1 to 4 carbon atoms having a hydroxyl group, hydrocarbon groups having 1 to 4 carbon atoms having an amino group, and hydrocarbon groups having 1 to 4 carbon atoms. Represents a secondary or tertiary amino group.
 また、一般式(2)におけるRは、水素、水酸基、カルボキシル基、アミノ基、炭素数1~12の飽和炭化水素基、炭素数1~12のアルコキシル基、炭素数1~12のアシル基、炭素数1~12のアシルオキシ基、炭素数1~12のアルキルオキシカルボニル基、水酸基を有する炭素数1~4の炭化水素基を表す。)
 2.前記共重合体が、モノマー単位Lを20~70質量%含有することを特徴とする前記1に記載の積層位相差フィルム。
R in the general formula (2) is hydrogen, hydroxyl group, carboxyl group, amino group, saturated hydrocarbon group having 1 to 12 carbon atoms, alkoxyl group having 1 to 12 carbon atoms, acyl group having 1 to 12 carbon atoms, It represents an acyloxy group having 1 to 12 carbon atoms, an alkyloxycarbonyl group having 1 to 12 carbon atoms, or a hydrocarbon group having 1 to 4 carbon atoms having a hydroxyl group. )
2. 2. The laminated retardation film as described in 1 above, wherein the copolymer contains 20 to 70% by mass of monomer units L.
 3.前記正の複屈折性樹脂層が、セルロースエステルからなることを特徴とする前記1または2に記載の積層位相差フィルム。 3. 3. The laminated retardation film as described in 1 or 2 above, wherein the positive birefringent resin layer is made of cellulose ester.
 4.前記正の複屈折性樹脂層に、(メタ)アクリル系重合体と、フラノース構造もしくはピラノース構造を1個有する化合物(A)中のOH基のすべてもしくは一部をエステル化したエステル化化合物、或いはフラノース構造もしくはピラノース構造の少なくとも1種を2個以上、12個以下結合した化合物(B)中のOH基のすべてもしくは一部をエステル化したエステル化化合物とを含有することを特徴とする前記1~3のいずれか1項に記載の積層位相差フィルム。 4. An esterified compound obtained by esterifying all or part of the OH group in the compound (A) having a (meth) acrylic polymer and one furanose structure or one pyranose structure on the positive birefringent resin layer, or And 1) an esterified compound obtained by esterifying all or part of the OH groups in the compound (B) in which 2 or more and 12 or less furanose structures or pyranose structures are bonded. 4. The laminated retardation film according to any one of items 1 to 3.
 5.前記正の複屈折性樹脂層の位相差が、Ro=0~50nm、Rt=80~150nm、負の複屈折性樹脂層の位相差が、Ro=80~200nm、Rt=-70~-150nmであり、各々が面内遅相軸を有する場合は互いの面内遅相軸が直交していることを特徴とする前記1~4のいずれか1項に記載の積層位相差フィルム。
なお、 Ro=(nx-ny)×d
    Rt=((nx+ny)/2-nz)×d
(式中、nxは樹脂層の面内の遅相軸方向の屈折率を、nyは面内で遅相軸に直交する方向の屈折率を、nzは厚み方向の屈折率を、dは樹脂層の厚み(nm)をそれぞれ表す。屈折率の測定波長は590nmである。)
 6.前記1~5のいずれか1項に記載の積層位相差フィルムを少なくとも一方の面に有することを特徴とする偏光板。
5). The phase difference of the positive birefringent resin layer is Ro = 0 to 50 nm, Rt = 80 to 150 nm, and the phase difference of the negative birefringent resin layer is Ro = 80 to 200 nm, Rt = −70 to −150 nm. 5. The laminated retardation film as described in any one of 1 to 4 above, wherein when each has an in-plane slow axis, the in-plane slow axes are orthogonal to each other.
Ro = (nx−ny) × d
Rt = ((nx + ny) / 2−nz) × d
(Where nx is the refractive index in the slow axis direction in the plane of the resin layer, ny is the refractive index in the direction perpendicular to the slow axis in the plane, nz is the refractive index in the thickness direction, and d is the resin) (Represents the thickness (nm) of each layer. The measurement wavelength of the refractive index is 590 nm.)
6). 6. A polarizing plate comprising the laminated retardation film according to any one of 1 to 5 on at least one surface.
 7.前記6に記載の偏光板を液晶セルの少なくとも一方の面に有することを特徴とする液晶表示装置。 7. 7. A liquid crystal display device comprising the polarizing plate according to 6 on at least one surface of a liquid crystal cell.
 本発明によれば液晶表示装置に用いた際に画面にムラがなく、かつクラックや割れなどの故障のない連続生産に適した積層位相差フィルムを提供することができる。 According to the present invention, it is possible to provide a laminated phase difference film suitable for continuous production with no unevenness in the screen when used in a liquid crystal display device and without failure such as cracks or cracks.
 以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited thereto.
 本発明の積層位相差フィルムは、正の複屈折性樹脂層と負の複屈折性樹脂層との積層体であり、負の複屈折性樹脂層が、前記一般式(1)で表されるモノマー単位Lとエチレン性不飽和モノマー単位Mとを有する共重合体を含むことを特徴とし、液晶表示装置に用いた際に画面にムラがなく、かつクラックや割れなどの故障のない連続生産に適した積層位相差フィルムである。 The laminated retardation film of the present invention is a laminate of a positive birefringent resin layer and a negative birefringent resin layer, and the negative birefringent resin layer is represented by the general formula (1). It includes a copolymer having a monomer unit L and an ethylenically unsaturated monomer unit M, and is used for a liquid crystal display device, so that there is no unevenness in the screen, and there is no failure such as cracks or cracks. It is a suitable laminated retardation film.
 更に前記共重合体が、モノマー単位Lを20~70質量%含有することが好ましく、正の複屈折性樹脂層が、セルロースエステルからなることが本発明の効果を奏する上で好ましい態様である。 Furthermore, it is preferable that the copolymer contains 20 to 70% by mass of the monomer unit L, and that the positive birefringent resin layer is made of a cellulose ester in order to achieve the effects of the present invention.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明の正の複屈折性樹脂、負の複屈折性樹脂とは、樹脂が延伸方向に対して正の複屈折性を示すか、負の複屈折性を示すか、以下の方法により判断されるものである。 The positive birefringent resin and negative birefringent resin of the present invention are determined by the following method as to whether the resin exhibits positive birefringence or negative birefringence in the stretching direction. Is.
 〈樹脂の複屈折性試験法〉
 樹脂を単独で溶媒に溶解しキャスト製膜した後、加熱乾燥し、透過率80%以上のフィルムについて複屈折性の評価を行う。
<Resin birefringence test method>
The resin is dissolved in a solvent alone and cast to form a film, followed by drying by heating, and birefringence is evaluated for a film having a transmittance of 80% or more.
 アッベ屈折率計-4T((株)アタゴ製)に多波長光源を用いて屈折率測定を行い、上記フィルムを幅手方向に延伸した時に、延伸方向の屈折率をNx、また直交する面内方向の屈折率をNyとする。590nmの各々の屈折率について、(Nx-Ny)>0であるフィルムについて、該樹脂は延伸方向に対して正の複屈折性を有すると判断する。同様にして(Nx-Ny)<0である場合、負の複屈折性を有すると判断する。 The Abbe refractometer-4T (manufactured by Atago Co., Ltd.) uses a multi-wavelength light source to measure the refractive index, and when the film is stretched in the width direction, the refractive index in the stretching direction is Nx, or in an orthogonal plane The refractive index in the direction is Ny. For each refractive index at 590 nm, for a film where (Nx−Ny)> 0, the resin is judged to have positive birefringence in the stretching direction. Similarly, when (Nx−Ny) <0, it is determined to have negative birefringence.
 (負の複屈折性樹脂)
 負の複屈折性樹脂層は、下記一般式(1)で表されるモノマー単位Lとエチレン性不飽和モノマー単位Mとを有する共重合体を含むことがを特徴である。
(Negative birefringent resin)
The negative birefringent resin layer includes a copolymer having a monomer unit L and an ethylenically unsaturated monomer unit M represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(R1~R6のうちのどれか一つのみが一般式(2)で表される置換基であり、それ以外は、水素、F、Cl、Br等のハロゲン、水酸基、カルボキシル基、アミノ基、シアノ基、ニトロ基、ニトロソ基、チオール基、炭素数1~12の飽和炭化水素基、炭素数1~12のアルコキシル基、炭素数1~12のアシル基、炭素数1~12のアシルオキシ基、炭素数1~12のアルキルオキシカルボニル基、水酸基を有する炭素数1~4の炭化水素基、アミノ基を有する炭素数1~4の炭化水素基、炭素数1~4の炭化水素基を有する第2級または第3級アミノ基を表す。 (Only one of R 1 to R 6 is a substituent represented by the general formula (2), and other than that, halogen such as hydrogen, F, Cl, Br, hydroxyl group, carboxyl group, amino Group, cyano group, nitro group, nitroso group, thiol group, saturated hydrocarbon group having 1 to 12 carbon atoms, alkoxyl group having 1 to 12 carbon atoms, acyl group having 1 to 12 carbon atoms, acyloxy having 1 to 12 carbon atoms Groups, alkyloxycarbonyl groups having 1 to 12 carbon atoms, hydrocarbon groups having 1 to 4 carbon atoms having a hydroxyl group, hydrocarbon groups having 1 to 4 carbon atoms having an amino group, and hydrocarbon groups having 1 to 4 carbon atoms. Represents a secondary or tertiary amino group.
 また、一般式(2)におけるRは、水素、水酸基、カルボキシル基、アミノ基、炭素数1~12の飽和炭化水素基、炭素数1~12のアルコキシル基、炭素数1~12のアシル基、炭素数1~12のアシルオキシ基、炭素数1~12のアルキルオキシカルボニル基、水酸基を有する炭素数1~4の炭化水素基を表す。)
 上記モノマー単位Lは、一般式(1)で表される構造であれば特に限定されない。具体的には下記式で表される化合物が挙げられる。
R in the general formula (2) is hydrogen, hydroxyl group, carboxyl group, amino group, saturated hydrocarbon group having 1 to 12 carbon atoms, alkoxyl group having 1 to 12 carbon atoms, acyl group having 1 to 12 carbon atoms, It represents an acyloxy group having 1 to 12 carbon atoms, an alkyloxycarbonyl group having 1 to 12 carbon atoms, or a hydrocarbon group having 1 to 4 carbon atoms having a hydroxyl group. )
The monomer unit L is not particularly limited as long as it is a structure represented by the general formula (1). Specific examples include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 好ましくは、ビニルカルバゾール誘導体であるL-1~L-18であり、より好ましくは、N-ビニルカルバゾール、2-ビニルカルバゾールであり、特に好ましくはN-ビニルカルバゾールである。 Preferred are L-1 to L-18 which are vinylcarbazole derivatives, more preferred are N-vinylcarbazole and 2-vinylcarbazole, and particularly preferred is N-vinylcarbazole.
 次にエチレン性不飽和モノマー単位Mとしては、例えばメタクリル酸及びそのエステル誘導体(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸オクチル、メタクリル酸シクロヘキシル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸テトラヒドロフルフリル、メタクリル酸ベンジル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等)、アクリル酸及びそのエステル誘導体(アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸オクチル、アクリル酸シクロヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸テトラヒドロフルフリル、アクリル酸2-エトキシエチル、アクリル酸ジエチレングリコールエトキシレート、アクリル酸3-メトキシブチル、アクリル酸ベンジル、アクリル酸ジメチルアミノエチル、アクリル酸ジエチルアミノエチル等)、アルキルビニルエーテル(メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等)、アルキルビニルエステル(ギ酸ビニル、酢酸ビニル、酪酸ビニル、カプロン酸ビニル、ステアリン酸ビニル等)、スチレン誘導体(例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、ビニルナフタレンなど)、クロトン酸、マレイン酸、フマル酸、イタコン酸、アクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アクリルアミド、N,N-ジメチルアクリルアミド、メタクリルアミドなどの不飽和化合物等を挙げることが出来る。これらは1種単独で、または2種以上混合して、前記一般式(1)で表されるモノマー単位Lと共重合させることができる。 Next, as the ethylenically unsaturated monomer unit M, for example, methacrylic acid and ester derivatives thereof (methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, methacrylic acid) Octyl, cyclohexyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, tetrahydrofurfuryl methacrylate, benzyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, etc.), acrylic acid and its ester derivatives ( Methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, i-butyl acrylate, t-butyl acrylate, octyl acrylate, cyclohexyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, tetrahydrofurfuryl acrylate, 2-ethoxyethyl acrylate, diethylene glycol ethoxylate acrylate, 3-methoxybutyl acrylate, benzyl acrylate, dimethylaminoethyl acrylate, Diethylaminoethyl acrylate, etc.), alkyl vinyl ethers (methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, etc.), alkyl vinyl esters (vinyl formate, vinyl acetate, vinyl butyrate, vinyl caproate, vinyl stearate, etc.), styrene derivatives (eg, styrene) , Α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, vinylnaphthalene, etc.), crotonic acid, maleic acid, fumaric acid, itako Examples thereof include unsaturated compounds such as acid, acrylonitrile, methacrylonitrile, vinyl chloride, vinylidene chloride, acrylamide, N, N-dimethylacrylamide, and methacrylamide. These can be copolymerized with the monomer unit L represented by the general formula (1) alone or in combination of two or more.
 また、下記に示すようなエチレン性不飽和モノマー単位も用いることができる。 In addition, ethylenically unsaturated monomer units as shown below can also be used.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 これらエチレン性不飽和モノマー単位Mの内、アクリル酸エステル、またはメタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル)、アルキルビニルエステル(ギ酸ビニル、酢酸ビニル、酪酸ビニル、カプロン酸ビニル、ステアリン酸ビニル等)、が好ましく、メタクリル酸メチル、アクリル酸メチル、メタクリル酸ブチル、アクリル酸ブチルが更に好ましく、特にメタクリル酸メチル、アクリル酸メチル、メタクリル酸ブチル、アクリル酸ブチル、N-アクリロイルモルホリンが好ましい。 Among these ethylenically unsaturated monomer units M, acrylic acid ester or methacrylic acid ester (for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, Butyl acrylate) and alkyl vinyl esters (vinyl formate, vinyl acetate, vinyl butyrate, vinyl caproate, vinyl stearate, etc.), preferably methyl methacrylate, methyl acrylate, butyl methacrylate, butyl acrylate, In particular, methyl methacrylate, methyl acrylate, butyl methacrylate, butyl acrylate, and N-acryloylmorpholine are preferable.
 これらのエチレン性不飽和モノマーは、単独でも複数でも用いることができる。 These ethylenically unsaturated monomers can be used alone or in combination.
 本発明における前記共重合体を重合する方法は特に問わないが、従来公知の方法を広く採用することが出来、例えばラジカル重合、アニオン重合、カチオン重合などが挙げられる。ラジカル重合法の開始剤としては、例えば、アゾ化合物、過酸化物等が挙げられ、アゾビスイソブチロニトリル(AIBN)、アゾビスイソブチル酸ジエステル誘導体、過酸化ベンゾイル、過酸化ラウロイルなどが挙げられる。重合溶媒は特に問わないが、例えば、トルエン、クロロベンゼン等の芳香族炭化水素系溶媒、ジクロロエタン、クロロホルムなどのハロゲン化炭化水素系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ジメチルホルムアミド等のアミド系溶媒、メタノール等のアルコール系溶媒、酢酸メチル、酢酸エチル等のエステル系溶媒、アセトン、シクロヘキサノン、メチルエチルケトンなどのケトン系溶媒、水溶媒等が挙げられる。溶媒の選択により、均一系で重合する溶液重合、生成したポリマーが沈澱する沈澱重合、ミセル状態で重合する乳化重合、懸濁状態で重合する懸濁重合、或いは場合によっては塊状重合を行うこともできる。 The method for polymerizing the copolymer in the present invention is not particularly limited, but conventionally known methods can be widely employed, and examples thereof include radical polymerization, anionic polymerization, and cationic polymerization. Examples of the initiator for the radical polymerization method include azo compounds and peroxides, and examples thereof include azobisisobutyronitrile (AIBN), azobisisobutyric acid diester derivatives, benzoyl peroxide, and lauroyl peroxide. . The polymerization solvent is not particularly limited. For example, aromatic hydrocarbon solvents such as toluene and chlorobenzene, halogenated hydrocarbon solvents such as dichloroethane and chloroform, ether solvents such as tetrahydrofuran and dioxane, and amide solvents such as dimethylformamide. And alcohol solvents such as methanol, ester solvents such as methyl acetate and ethyl acetate, ketone solvents such as acetone, cyclohexanone and methyl ethyl ketone, and water solvents. Depending on the choice of solvent, solution polymerization that polymerizes in a homogeneous system, precipitation polymerization in which the produced polymer precipitates, emulsion polymerization that polymerizes in a micelle state, suspension polymerization that polymerizes in a suspension state, or in some cases bulk polymerization may be performed. it can.
 前記共重合体は、モノマー単位Lを20~70質量%含有することが好ましい。また、上記範囲内ならば、モノマー単位L、M以外のモノマーを負の複屈折性を失わない範囲で共重合させることも可能である。モノマー単位Lが20質量%よりも少ないと、位相差発現性が低くなり位相差層として成立しにくく、70質量%よりも多いと樹脂層が硬くなりすぎて延伸しづらくなる。 The copolymer preferably contains 20 to 70% by mass of monomer units L. Moreover, if it is in the said range, it is also possible to copolymerize monomers other than the monomer units L and M in the range which does not lose negative birefringence. When the monomer unit L is less than 20% by mass, the retardation development property is lowered and it is difficult to form a retardation layer. When the monomer unit L is more than 70% by mass, the resin layer becomes too hard to be stretched.
 前記共重合体の重量平均分子量(Mw)は10000~2000000の範囲内であることが好ましい。より好ましくは100000~1000000の範囲内である。また前記共重合体の重量平均分子量Mw/数平均分子量Mn比は1.5~10.0のものが好ましく用いられる。 The weight average molecular weight (Mw) of the copolymer is preferably in the range of 10,000 to 2,000,000. More preferably, it is in the range of 100,000 to 1,000,000. The copolymer preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 10.0.
 なお、Mw及びMw/Mnは下記の要領で、ゲルパーミエーションクロマトグラフィーにより算出した。 Mw and Mw / Mn were calculated by gel permeation chromatography in the following manner.
 測定条件は以下の通りである。
溶媒:テトヒドロフラン
装置:HLC-8220(東ソー(株)製)
カラム:TSKgel SuperHM-M(東ソー(株)製)
カラム温度:40℃
試料濃度:0.1質量%
注入量:10μl
流量:0.6ml/min
校正曲線:標準ポリスチレン:PS-1(Polymer Laboratories社製)Mw=2,560,000~580迄の9サンプルによる校正曲線を使用した。
The measurement conditions are as follows.
Solvent: Tetohydrofuran Equipment: HLC-8220 (manufactured by Tosoh Corporation)
Column: TSKgel SuperHM-M (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Sample concentration: 0.1% by mass
Injection volume: 10 μl
Flow rate: 0.6ml / min
Calibration curve: Standard polystyrene: PS-1 (manufactured by Polymer Laboratories) Mw = 2, 560,000 to 580 A calibration curve with 9 samples was used.
 本発明における負の複屈折性樹脂は、複数の材料を含んだ混合物として負の位相差を発現させればよく、質量分率、体積分率で最も多い成分が負の複屈折性を有している必要はない。例えば、負の複屈折性を損なわない範囲で、あらかじめUV硬化性のモノマーと重合開始剤を負の複屈折性樹脂と共に溶媒に溶解しておき、塗膜塗布・乾燥後にUV硬化をすることで塗膜形成をすることも可能である。UV硬化により、塗膜の密着性、膜強度の増強が得られる。UV硬化性モノマーとしては、例えば、メタクリル酸メチル、メタクリル酸ブチル、アクリルアミド、N,N-ジメチルアクリルアミド、メタクリルアミド、N-アクリロイルモルホリン、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレートなどが挙げられる。また、あらかじめセルロースエステル樹脂などを混合しておいてもよい。 The negative birefringent resin in the present invention is only required to develop a negative phase difference as a mixture containing a plurality of materials, and the component having the largest mass fraction and volume fraction has negative birefringence. You don't have to. For example, the UV curable monomer and the polymerization initiator are dissolved in a solvent together with the negative birefringent resin in advance as long as the negative birefringence is not impaired, and UV curing is performed after coating and drying. It is also possible to form a coating film. By UV curing, the adhesion of the coating film and the enhancement of the film strength can be obtained. Examples of the UV curable monomer include methyl methacrylate, butyl methacrylate, acrylamide, N, N-dimethylacrylamide, methacrylamide, N-acryloylmorpholine, ethylene glycol diacrylate, diethylene glycol diacrylate, and 1,6-hexanediol diester. Acrylate, neopentyl glycol diacrylate, trimethylol propane triacrylate, trimethylol ethane triacrylate, tetramethylol methane triacrylate, tetramethylol methane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetra Acrylate, glycerin triacrylate, dipentae Thritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, Neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, tetramethylolmethane trimethacrylate, tetramethylolmethane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol Tetramethacrylate, glycerol trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetramethacrylate, dipentaerythritol penta methacrylate, dipentaerythritol hexa methacrylate. Moreover, you may mix cellulose ester resin etc. previously.
 モノマー単位Lの構造は、重合性部位と広い芳香環部位が結合した形をしており、このモノマーを共重合成分として含むポリマーの場合、延伸方向に対して直交方向に芳香環部位が配向することにより負の複屈折性層とすることができる。しかし、このモノマー単位Lのみでポリマー化をすると、隣接する芳香環の距離が非常に近くなり強いπ-π相互作用を示す。この相互作用よって、出来上がったポリマーは硬いくて柔軟性がなく、曲げや延伸に対して弱くすぐに割れてしまうという特性を示す。一方、モノマー単位Lとエチレン性不飽和モノマー単位Mを共重合させたポリマーでは、芳香環同士の間に強制的に空間ができるためπ-π相互作用が弱まり、出来上がったポリマーには柔軟性が生じ、位相差層として用いた場合にクラックや割れが生じなくなると推定される。 The structure of the monomer unit L has a form in which a polymerizable site and a wide aromatic ring site are bonded. In the case of a polymer containing this monomer as a copolymerization component, the aromatic ring site is oriented in a direction perpendicular to the stretching direction. Thus, a negative birefringent layer can be obtained. However, when polymerization is carried out using only this monomer unit L, the distance between adjacent aromatic rings becomes very close and a strong π-π interaction is exhibited. Due to this interaction, the resulting polymer is hard and inflexible, and exhibits a characteristic that it is weak against bending and stretching and readily cracks. On the other hand, in the polymer obtained by copolymerizing the monomer unit L and the ethylenically unsaturated monomer unit M, a space is forcibly formed between the aromatic rings, so that the π-π interaction is weakened, and the resulting polymer has flexibility. It is estimated that cracks and cracks do not occur when used as a retardation layer.
 (正の複屈折性樹脂層)
 本発明の積層体は、特に限定されるものではなく、少なくとも上記正の複屈折性樹脂層、負の複屈折性樹脂層が積層されている構造であればよい。従って各樹脂層が複数の層を有していてもよく、複数の正の複屈折性樹脂層、更に複数の負の複屈折性樹脂層が、この順に、或いは交互に積層されている、或いはランダムに積層されている構造でもよい。
(Positive birefringent resin layer)
The laminate of the present invention is not particularly limited as long as it has a structure in which at least the positive birefringent resin layer and the negative birefringent resin layer are laminated. Therefore, each resin layer may have a plurality of layers, and a plurality of positive birefringent resin layers and a plurality of negative birefringent resin layers are laminated in this order or alternately, or A structure in which layers are randomly stacked may be used.
 本発明では薄膜化という観点から、正の複屈折性樹脂層を基材として用い、該基材上に負の複屈折性樹脂層を設け積層体とすることが好ましい。正の複屈折樹脂層は、溶液流延法、または溶融流延法によって製造され、その後の負の複屈折層の設置を考慮して、適切な複屈折性を持ったフィルムとして作製されることが好ましい。 In the present invention, from the viewpoint of thinning, it is preferable to use a positive birefringent resin layer as a substrate and provide a negative birefringent resin layer on the substrate to form a laminate. The positive birefringent resin layer is manufactured by a solution casting method or a melt casting method, and is manufactured as a film having an appropriate birefringence in consideration of subsequent installation of a negative birefringent layer. Is preferred.
 この複屈折性を調整する手段としては、公知の手段が用いられる。たとえば、膜厚、延伸温度、延伸倍率などはもとより、溶液流延法においては、溶液組成、溶液温度、時間、流延ベルト・ドラムからの剥離温度、その後の乾燥温度、延伸時における残存溶媒量、その後の乾燥温度、搬送張力などである。これらの因子によって変化するのは、溶融流延法においても同様である。 As a means for adjusting the birefringence, a known means is used. For example, in addition to film thickness, stretching temperature, stretching ratio, etc., in the solution casting method, solution composition, solution temperature, time, peeling temperature from the casting belt / drum, subsequent drying temperature, amount of solvent remaining at stretching The subsequent drying temperature, transport tension, and the like. It is the same in the melt casting method that changes depending on these factors.
 本発明における正の複屈折性樹脂は、延伸時に延伸方向と平行方向に遅相軸を有するポリマーであることが好ましく、透明性が高く熱可塑性のあるものが好ましい。但し、複数の材料を含んだ混合物として正の位相差を発現させればよく、質量分率、体積分率で最も多い成分が正の複屈折性を有している必要はない。具体的には、例えば、トリアセチルセルロース(TAC)、セルロースアセテートプロピオネート(CAP)等のセルロース樹脂、ポリノルボルネン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリアリレート樹脂、ポリビニルアルコール樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂や、これらの混合物等が挙げられる。特にセルロース樹脂が好ましく、セルロースエステルが好ましい。 The positive birefringent resin in the present invention is preferably a polymer having a slow axis in the direction parallel to the stretching direction at the time of stretching, and is preferably highly transparent and thermoplastic. However, a positive phase difference may be expressed as a mixture including a plurality of materials, and the component having the largest mass fraction and volume fraction need not have positive birefringence. Specifically, for example, cellulose resins such as triacetyl cellulose (TAC) and cellulose acetate propionate (CAP), polynorbornene resin, polycarbonate resin, polyester resin, polyether sulfone resin, polysulfone resin, polyamide resin, polyimide resin , Polyolefin resins, polyarylate resins, polyvinyl alcohol resins, polyvinyl chloride resins, polyvinylidene chloride resins, and mixtures thereof. In particular, a cellulose resin is preferable, and a cellulose ester is preferable.
 〈セルロースエステル〉
 セルロースエステルとしては、特に限定はされず、例えば芳香族カルボン酸エステル等も用いられるが、光学特性等の得られるフィルムの特性を鑑みると、セルロースの低級脂肪酸エステルを使用するのが好ましい。
<Cellulose ester>
The cellulose ester is not particularly limited, and for example, an aromatic carboxylic acid ester or the like is also used. However, in view of characteristics of the obtained film such as optical characteristics, it is preferable to use a lower fatty acid ester of cellulose.
 本発明においてセルロースの低級脂肪酸エステルにおける低級脂肪酸とは炭素原子数が5以下の脂肪酸を意味し、例えばセルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースピバレート等がセルロースの低級脂肪酸エステルの好ましいものとして挙げられる。 In the present invention, the lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 5 or less carbon atoms. For example, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose pivalate and the like are preferable lower cellulose esters of cellulose. It is mentioned as a thing.
 炭素原子数が6以上の脂肪酸で置換されたセルロースエステルでは、製膜性は良好であるものの、得られる光学フィルムの力学特性が低く、実質的に光学フィルムとして用いることが難しいためである。 This is because the cellulose ester substituted with a fatty acid having 6 or more carbon atoms has good film forming properties, but the resulting optical film has low mechanical properties and is substantially difficult to use as an optical film.
 また、力学特性と溶融製膜性の双方を両立させるために、例えば、特開平10-45804号、同8-231761号、米国特許第2,319,052号等に記載されているセルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステル等を用いてもよい。 In order to achieve both the mechanical properties and the melt film-forming property, for example, cellulose acetate pro described in JP-A Nos. 10-45804, 8-231761, U.S. Pat. No. 2,319,052, etc. Mixed fatty acid esters such as pionate and cellulose acetate butyrate may be used.
 上記セルロースエステルの中でも、セルロースアセテートプロピオネート、セルロースアセテートブチレートが好ましく用いられる。 Among the above cellulose esters, cellulose acetate propionate and cellulose acetate butyrate are preferably used.
 次に、本発明に好ましく用いられるセルロースエステルのアシル基の置換度について説明する。 Next, the substitution degree of the acyl group of the cellulose ester preferably used in the present invention will be described.
 セルロースには、1グルコース単位の2位、3位、6位に1個ずつ、計3個の水酸基があり、総置換度とは、平均して1グルコース単位にいくつのアシル基が結合しているかを示す数値である。 Cellulose has a total of three hydroxyl groups, one at each of the 2nd, 3rd and 6th positions of 1 glucose unit. The total degree of substitution is the average number of acyl groups bonded to 1 glucose unit. It is a numerical value indicating whether or not
 従って、最大の置換度は3.0である。これらアシル基は、グルコース単位の2位、3位、6位に平均的に置換していてもよいし、分布をもって置換していてもよい。 Therefore, the maximum degree of substitution is 3.0. These acyl groups may be substituted on the 2nd, 3rd and 6th positions of the glucose unit on average, or may be substituted with a distribution.
 混合脂肪酸エステルの置換度として、さらに好ましいセルロースアセテートプロピオネートやセルロースアセテートブチレートの低級脂肪酸エステルは炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基またはブチリル基の置換度をYとした時、下記式(i)、(ii)を満たすセルロースエステルであることが好ましい。 As the substitution degree of the mixed fatty acid ester, more preferable cellulose acetate propionate and lower fatty acid ester of cellulose acetate butyrate have an acyl group having 2 to 4 carbon atoms as a substituent, and the substitution degree of the acetyl group is X, When the substitution degree of the propionyl group or butyryl group is Y, it is preferably a cellulose ester satisfying the following formulas (i) and (ii).
 式(i) 2.3≦X+Y≦3.0
 式(ii) 0≦X≦2.5
 この内特にセルロースアセテートプロピオネートが好ましく用いられ、中でも1.9≦X≦2.5、0.1≦Y≦0.9であることが好ましい。アシル基で置換されていない部分は通常水酸基として存在しているのものである。これらは公知の方法で合成することができる。アシル基の置換度の測定方法はASTM-D817-96に準じて測定することができる。
Formula (i) 2.3 ≦ X + Y ≦ 3.0
Formula (ii) 0 ≦ X ≦ 2.5
Of these, cellulose acetate propionate is preferably used, and it is particularly preferable that 1.9 ≦ X ≦ 2.5 and 0.1 ≦ Y ≦ 0.9. The portion that is not substituted with an acyl group is usually present as a hydroxyl group. These can be synthesized by known methods. The method for measuring the substitution degree of the acyl group can be measured according to ASTM-D817-96.
 さらに、本発明で用いられるセルロースエステルは、重量平均分子量Mw/数平均分子量Mn比が1.5~5.5のものが好ましく用いられ、特に好ましくは2.0~4.0である。 Further, the cellulose ester used in the present invention preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 5.5, particularly preferably 2.0 to 4.0.
 本発明で用いられるセルロースエステルは、50000~150000の数平均分子量(Mn)を有することが好ましく、55000~120000の数平均分子量を有することが更に好ましく、60000~100000の数平均分子量を有することが最も好ましい。 The cellulose ester used in the present invention preferably has a number average molecular weight (Mn) of 50,000 to 150,000, more preferably a number average molecular weight of 55,000 to 120,000, and a number average molecular weight of 60000 to 100,000. Most preferred.
 なお、Mn及びMw/Mnは下記の要領で、ゲルパーミエーションクロマトグラフィーにより算出した。 Mn and Mw / Mn were calculated by gel permeation chromatography in the following manner.
 測定条件は以下の通りである。
溶媒:テトヒドロフラン
装置:HLC-8220(東ソー(株)製)
カラム:TSKgel SuperHM-M(東ソー(株)製)
カラム温度:40℃
試料濃度:0.1質量%
注入量:10μl
流量:0.6ml/min
校正曲線:標準ポリスチレン:PS-1(Polymer Laboratories社製)Mw=2,560,000~580迄の9サンプルによる校正曲線を使用した。
The measurement conditions are as follows.
Solvent: Tetohydrofuran Equipment: HLC-8220 (manufactured by Tosoh Corporation)
Column: TSKgel SuperHM-M (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Sample concentration: 0.1% by mass
Injection volume: 10 μl
Flow rate: 0.6ml / min
Calibration curve: Standard polystyrene: PS-1 (manufactured by Polymer Laboratories) Mw = 2, 560,000 to 580 A calibration curve with 9 samples was used.
 本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、或いは単独で使用することが出来る。 The raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable. A cotton linter is preferably used from the viewpoint of peelability during film formation. The cellulose ester made from these can be mixed suitably or can be used independently.
 例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることが出来る。 For example, the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
 セルロースエステルは、例えば、原料セルロースの水酸基を無水酢酸、無水プロピオン酸及び/または無水酪酸を用いて常法によりアセチル基、プロピオニル基及び/またはブチル基を上記の範囲内に置換することで得られる。このようなセルロースエステルの合成方法は、特に限定はないが、例えば、特開平10-45804号或いは特表平6-501040号に記載の方法を参考にして合成することができる。 The cellulose ester can be obtained, for example, by substituting the hydroxyl group of the raw material cellulose with acetic anhydride, propionic anhydride and / or butyric anhydride in the usual manner using an acetyl group, propionyl group and / or butyl group within the above range. . The method for synthesizing such a cellulose ester is not particularly limited, and for example, it can be synthesized with reference to the method described in JP-A-10-45804 or JP-A-6-501040.
 本発明に用いられるセルロースエステルのアルカリ土類金属含有量は、1~50ppmの範囲であることが好ましい。50ppmを超えるとリップ付着汚れが増加或いは熱延伸時や熱延伸後でのスリッティング部で破断しやすくなる。1ppm未満でも破断しやすくなるがその理由はよく分かっていない。1ppm未満にするには洗浄工程の負担が大きくなり過ぎるためその点でも好ましくない。更に1~30ppmの範囲が好ましい。ここでいうアルカリ土類金属とはCa、Mgの総含有量のことであり、X線光電子分光分析装置(XPS)を用いて測定することが出来る。 The alkaline earth metal content of the cellulose ester used in the present invention is preferably in the range of 1 to 50 ppm. If it exceeds 50 ppm, lip adhesion stains increase or breakage tends to occur at the slitting part during or after hot stretching. Even if it is less than 1 ppm, it tends to break, but the reason is not well understood. In order to make it less than 1 ppm, since the burden of a washing | cleaning process will become large too much, it is unpreferable also in that point. Further, the range of 1 to 30 ppm is preferable. The alkaline earth metal as used herein refers to the total content of Ca and Mg, and can be measured using an X-ray photoelectron spectrometer (XPS).
 本発明に用いられるセルロースエステル中の残留硫酸含有量は、硫黄元素換算で0.1~45ppmの範囲であることが好ましい。これらは塩の形で含有していると考えられる。0.1ppm未満とするにはセルロースエステルの洗浄工程の負担が大きくなり過ぎる為、1~30ppmの範囲が好ましい。残留硫酸含有量は、ASTM-D817-96に規定の方法に準じて測定することが出来る。 The residual sulfuric acid content in the cellulose ester used in the present invention is preferably in the range of 0.1 to 45 ppm in terms of elemental sulfur. These are considered to be contained in the form of salts. In order to make it less than 0.1 ppm, since the burden of the cellulose ester washing process becomes too large, the range of 1 to 30 ppm is preferable. The residual sulfuric acid content can be measured according to the method prescribed in ASTM-D817-96.
 本発明に用いられるセルロースエステル中の遊離酸含有量は、1~500ppmであることが好ましい。洗浄で1ppm未満にすることは困難である為、1~100ppmの範囲であることが好ましい。遊離酸含有量はASTM-D817-96に規定の方法に準じて測定することが出来る。 The free acid content in the cellulose ester used in the present invention is preferably 1 to 500 ppm. Since it is difficult to make it less than 1 ppm by washing, it is preferably in the range of 1 to 100 ppm. The free acid content can be measured according to the method prescribed in ASTM-D817-96.
 正の複屈折樹脂層の厚みは特に限定されないが、10~200μmが用いられる。特に膜厚は10~100μmであることが特に好ましい。更に好ましくは20~60μmである。 The thickness of the positive birefringent resin layer is not particularly limited, but 10 to 200 μm is used. In particular, the film thickness is particularly preferably 10 to 100 μm. More preferably, it is 20 to 60 μm.
 前記正の複屈折樹脂層中には、必要に応じて可塑剤を含有することができる。 In the positive birefringent resin layer, a plasticizer can be contained as necessary.
 可塑剤は単に可塑化効果のみならず、正の複屈折樹脂層の複屈折発現性(延伸後の位相差)、波長分散を適切に調整する機能を有しても良い。また、光弾性係数の絶対値を低下させる材料も好ましい。可塑剤は特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤及び多価アルコールエステル系可塑剤、ポリエステル系可塑剤、アクリル系可塑剤等から選択される。更に正の複屈折樹脂層の位相差をコントロールするために、位相差を正の複屈折性を発現する材料や、波長分散を調整する材料、光弾性係数をゼロに近づける材料などを含んでいてもよい。 The plasticizer may have a function of appropriately adjusting not only the plasticizing effect but also the birefringence expression (phase difference after stretching) and wavelength dispersion of the positive birefringent resin layer. A material that reduces the absolute value of the photoelastic coefficient is also preferable. The plasticizer is not particularly limited, but is preferably a polycarboxylic acid ester plasticizer, a glycolate plasticizer, a phthalate ester plasticizer, a fatty acid ester plasticizer, a polyhydric alcohol ester plasticizer, or a polyester plasticizer. Agent, acrylic plasticizer and the like. In addition, in order to control the phase difference of the positive birefringent resin layer, the phase difference includes a material that exhibits positive birefringence, a material that adjusts wavelength dispersion, a material that makes the photoelastic coefficient close to zero, and the like. Also good.
 本発明は正の複屈折樹脂層に、(メタ)アクリル系重合体と、フラノース構造もしくはピラノース構造を1個有する化合物(A)中のOH基のすべてもしくは一部をエステル化したエステル化化合物、或いは、フラノース構造もしくはピラノース構造の少なくとも1種を2個以上、12個以下結合した化合物(B)中のOH基のすべてもしくは一部をエステル化したエステル化化合物とを含有することが好ましい。 The present invention provides an esterified compound obtained by esterifying all or part of the OH group in the compound (A) having a (meth) acrylic polymer and one furanose structure or one pyranose structure on a positive birefringent resin layer, Or it is preferable to contain the esterified compound which esterified all or one part of OH group in the compound (B) which couple | bonded 2 or more and 12 or less of furanose structure or the pyranose structure.
 〈(メタ)アクリル系重合体〉
 本発明に用いられる(メタ)アクリル系重合体としては、積層位相差フィルムに含有させた場合、機能として延伸方向に対して負の複屈折性を示すことが好ましく、特に構造が限定されるものではないが、エチレン性不飽和モノマーを重合して得られた重量平均分子量が500以上30000以下である重合体であることが好ましい。
<(Meth) acrylic polymer>
The (meth) acrylic polymer used in the present invention preferably exhibits negative birefringence as a function in the stretching direction when incorporated in a laminated retardation film, and the structure is particularly limited. However, a polymer having a weight average molecular weight of 500 to 30,000 obtained by polymerizing an ethylenically unsaturated monomer is preferred.
 本発明に用いられる重量平均分子量が500以上30000以下である(メタ)アクリル系重合体は、芳香環を側鎖に有する(メタ)アクリル系重合体またはシクロヘキシル基を側鎖に有する(メタ)アクリル系重合体であってもよい。 The (meth) acrylic polymer having a weight average molecular weight of 500 to 30,000 used in the present invention is a (meth) acrylic polymer having an aromatic ring in the side chain or a (meth) acrylic having a cyclohexyl group in the side chain. A polymer may be used.
 該重合体の重量平均分子量が500以上30000以下のもので該重合体の組成を制御することにより、例えば正の複屈折性樹脂層にセルロースエステルを含有する場合、該セルロースエステルと該重合体との相溶性を良好にすることができる。 By controlling the composition of the polymer with a weight average molecular weight of 500 or more and 30000 or less, for example, when a cellulose ester is contained in the positive birefringent resin layer, the cellulose ester and the polymer The compatibility of can be improved.
 芳香環を側鎖に有する(メタ)アクリル系重合体またはシクロヘキシル基を側鎖に有する(メタ)アクリル系重合体について、好ましくは重量平均分子量が500以上10000以下のものであれば、上記に加え、製膜後の正の複屈折樹脂層の透明性が優れ、透湿度も極めて低く、例えば偏光板用保護フィルムに適用しても優れた性能を示す。 For a (meth) acrylic polymer having an aromatic ring in the side chain or a (meth) acrylic polymer having a cyclohexyl group in the side chain, preferably if the weight average molecular weight is from 500 to 10,000, The positive birefringent resin layer after film formation has excellent transparency and extremely low moisture permeability, and exhibits excellent performance even when applied to, for example, a protective film for a polarizing plate.
 該重合体は、重量平均分子量が500以上30000以下であるから、オリゴマーから低分子量重合体の間にあると考えられるものである。このような重合体を合成するには、通常の重合では分子量のコントロールが難しく、分子量を余り大きくしない方法でできるだけ分子量を揃えることのできる方法を用いることが望ましい。 Since the polymer has a weight average molecular weight of 500 or more and 30000 or less, it is considered to be between the oligomer and the low molecular weight polymer. In order to synthesize such a polymer, it is difficult to control the molecular weight in normal polymerization, and it is desirable to use a method that can align the molecular weight as much as possible by a method that does not increase the molecular weight too much.
 特に、本発明の正の複屈折樹脂層に用いられる(メタ)アクリル系重合体としては、分子内に芳香環と水酸基を有しないエチレン性不飽和モノマーXaと、分子内に芳香環を有せず、水酸基を有するエチレン性不飽和モノマーXbとXa、Xbを除く共重合可能なエチレン性不飽和モノマーとを共重合して得られた重量平均分子量2000以上30000以下の重合体X、または芳香環を有さないエチレン性不飽和モノマーYaと、Yaと共重合可能なエチレン性不飽和モノマーとを重合して得られた重量平均分子量500以上3000以下の重合体Yであることが好ましい。 In particular, the (meth) acrylic polymer used in the positive birefringent resin layer of the present invention has an ethylenically unsaturated monomer Xa having no aromatic ring and no hydroxyl group in the molecule, and no aromatic ring in the molecule. A polymer X having a weight average molecular weight of 2,000 to 30,000 obtained by copolymerizing an ethylenically unsaturated monomer Xb having a hydroxyl group and a copolymerizable ethylenically unsaturated monomer excluding Xa and Xb, or an aromatic ring The polymer Y is preferably a polymer Y having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an ethylenically unsaturated monomer Ya that does not contain bismuth and an ethylenically unsaturated monomer copolymerizable with Ya.
 [重合体X、重合体Y]
 本発明に係る正の複屈折樹脂層のRo及びRtを調整する方法としては、分子内に芳香環と水酸基を有しないエチレン性不飽和モノマーXaと、分子内に芳香環を有せず、水酸基を有するエチレン性不飽和モノマーXbとXa、Xbを除く共重合可能なエチレン性不飽和モノマーとを共重合して得られた重量平均分子量2000以上30000以下の高分子量の重合体X、そして、より好ましくは、芳香環を有さないエチレン性不飽和モノマーYaと、Yaと共重合可能なエチレン性不飽和モノマーとを重合して得られた重量平均分子量500以上3000以下の低分子量の重合体Yを含有することが好ましい。
[Polymer X, Polymer Y]
As a method for adjusting Ro and Rt of the positive birefringent resin layer according to the present invention, an ethylenically unsaturated monomer Xa having no aromatic ring and a hydroxyl group in the molecule, an hydroxyl group having no aromatic ring in the molecule, A high molecular weight polymer X having a weight average molecular weight of 2,000 to 30,000 obtained by copolymerization of an ethylenically unsaturated monomer Xb having Xa and a copolymerizable ethylenically unsaturated monomer excluding Xa and Xb, and Preferably, a low molecular weight polymer Y having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an ethylenically unsaturated monomer Ya having no aromatic ring and an ethylenically unsaturated monomer copolymerizable with Ya. It is preferable to contain.
 本発明に用いられる重合体Xは、分子内に芳香環と水酸基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有せず、水酸基を有するエチレン性不飽和モノマーXbとXa、Xbを除く共重合可能なエチレン性不飽和モノマーとを共重合して得られた重量平均分子量2000以上、30000以下の重合体である。 The polymer X used in the present invention includes an ethylenically unsaturated monomer Xa having no aromatic ring and a hydroxyl group in the molecule and an ethylenically unsaturated monomer Xb having no hydroxyl ring in the molecule and having a hydroxyl group, Xa and Xb. Is a polymer having a weight average molecular weight of 2000 or more and 30000 or less obtained by copolymerization with a copolymerizable ethylenically unsaturated monomer other than.
 好ましくは、Xaは分子内に芳香環と水酸基を有しないアクリルまたはメタクリルモノマー、Xbは分子内に芳香環を有せず水酸基を有するアクリルまたはメタクリルモノマーである。 Preferably, Xa is an acrylic or methacrylic monomer that does not have an aromatic ring and a hydroxyl group in the molecule, and Xb is an acrylic or methacrylic monomer that does not have an aromatic ring in the molecule and has a hydroxyl group.
 本発明に用いられる重合体Xは、下記一般式(X)で表される。 The polymer X used in the present invention is represented by the following general formula (X).
 一般式(X)
   -[Xa]m-[Xb]n-[Xc]p-
 上記一般式(X)において、Xaは分子内に芳香環と水酸基とを有しないエチレン性不飽和モノマーを表し、Xbは分子内に芳香環を有せず、水酸基を有するエチレン性不飽和モノマーを表し、XcはXa、Xbを除く共重合可能なエチレン性不飽和モノマーを表す。m、n及びpは、各々モル組成比を表す。ただし、m≠0、m+n+p=100である。
Formula (X)
[Xa] m- [Xb] n- [Xc] p-
In the general formula (X), Xa represents an ethylenically unsaturated monomer having no aromatic ring and hydroxyl group in the molecule, and Xb represents an ethylenically unsaturated monomer having no aromatic ring and having a hydroxyl group in the molecule. Xc represents a copolymerizable ethylenically unsaturated monomer excluding Xa and Xb. m, n, and p each represent a molar composition ratio. However, m ≠ 0 and m + n + p = 100.
 更に、重合体Xとして好ましくは、下記一般式(X-1)で表される重合体である。 Furthermore, the polymer X is preferably a polymer represented by the following general formula (X-1).
 一般式(X-1)
   -[CH2-C(-R1)(-CO2R2)]m-[CH2-C(-R3)(-CO2R4-OH)-]n-[Xc]p-
 上記一般式(X-1)において、R1、R3は、それぞれ水素原子またはメチル基を表す。R2は炭素数1~12のアルキル基またはシクロアルキル基を表す。R4は-CH2-、-C24-または-C36-を表す。Xcは、[CH2-C(-R1)(-CO2R2)]または[CH2-C(-R3)(-CO2R4-OH)-]に重合可能なモノマー単位を表す。m、n及びpは、モル組成比を表す。ただしm≠0、m+n+p=100である。
Formula (X-1)
-[CH 2 -C (-R1) (-CO 2 R2)] m- [CH 2 -C (-R3) (-CO 2 R4-OH)-] n- [Xc] p-
In the general formula (X-1), R1 and R3 each represent a hydrogen atom or a methyl group. R2 represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group. R4 represents —CH 2 —, —C 2 H 4 — or —C 3 H 6 —. Xc is, [CH 2 -C (-R1) (- CO 2 R2)] representing the a polymerizable monomer unit or [CH 2 -C (-R3) ( - - CO 2 R4-OH)]. m, n, and p represent a molar composition ratio. However, m ≠ 0 and m + n + p = 100.
 本発明に用いられる重合体Xを構成するモノマー単位としてのモノマーを下記に挙げるが、これに限定されない。 The monomers as monomer units constituting the polymer X used in the present invention are listed below, but are not limited thereto.
 Xにおいて、水酸基とは、水酸基のみならずエチレンオキシド連鎖を有する基をいう。 In X, a hydroxyl group means not only a hydroxyl group but also a group having an ethylene oxide chain.
 分子内に芳香環と水酸基を有しないエチレン性不飽和モノマーXaは、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸(2-エチルヘキシル)、アクリル酸(ε-カプロラクトン)、等、または上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。中でも、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル(i-、n-)であることが好ましい。 Examples of the ethylenically unsaturated monomer Xa having no aromatic ring and hydroxyl group in the molecule include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), and butyl acrylate (n-, i-, s -, T-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i -), Nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid (ε-caprolactone), etc. The thing changed into acid ester can be mentioned. Of these, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, and propyl methacrylate (i-, n-) are preferable.
 分子内に芳香環を有せず、水酸基を有するエチレン性不飽和モノマーXbは、水酸基を有するモノマー単位として、アクリル酸またはメタクリル酸エステルが好ましく、例えば、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、またはこれらアクリル酸をメタクリル酸に置き換えたものを挙げることができ、好ましくは、アクリル酸(2-ヒドロキシエチル)及びメタクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)である。 The ethylenically unsaturated monomer Xb having no hydroxyl ring in the molecule and having a hydroxyl group is preferably an acrylic acid or a methacrylic acid ester as a monomer unit having a hydroxyl group. For example, acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), or those obtained by replacing these acrylic acids with methacrylic acid. Preferred are acrylic acid (2-hydroxyethyl) and methacrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), and acrylic acid (3-hydroxypropyl).
 Xcとしては、Xa、Xb以外のモノマーで、かつ共重合可能なエチレン性不飽和モノマーであれば、特に制限はないが、芳香環を有していないものが好ましい。 Xc is not particularly limited as long as it is a monomer other than Xa and Xb and is a copolymerizable ethylenically unsaturated monomer, but preferably has no aromatic ring.
 Xa及びXbのモル組成比m:nは99:1~65:35の範囲が好ましく、更に好ましくは95:5~75:25の範囲である。Xcのpは0~10である。Xcは複数のモノマー単位であってもよい。 The molar composition ratio m: n of Xa and Xb is preferably in the range of 99: 1 to 65:35, more preferably in the range of 95: 5 to 75:25. P of Xc is 0-10. Xc may be a plurality of monomer units.
 Xaのモル組成比が多いと、セルロースエステルとの相溶性が良化するがフィルム厚み方向のレターデーション値Rtが大きくなる。Xbのモル組成比が多いと上記相溶性が悪くなるが、Rtを低減させる効果が高い。 When the molar composition ratio of Xa is large, compatibility with the cellulose ester is improved, but the retardation value Rt in the film thickness direction is increased. When the molar composition ratio of Xb is large, the compatibility is deteriorated, but the effect of reducing Rt is high.
 また、Xbのモル組成比が上記範囲を超えると製膜時にヘイズが出る傾向があり、これらの最適化を図りXa、Xbのモル組成比を決めることが好ましい。 Further, if the molar composition ratio of Xb exceeds the above range, haze tends to occur during film formation, and it is preferable to optimize these and determine the molar composition ratio of Xa and Xb.
 高分子量の重合体Xの分子量は、重量平均分子量が5000以上30000以下であることがより好ましく、更に好ましくは8000以上25000以下である。 The molecular weight of the high molecular weight polymer X is more preferably 5000 or more and 30000 or less, and still more preferably 8000 or more and 25000 or less.
 重量平均分子量を5000以上とすることにより、正の複屈折樹脂層の高温高湿下における寸法変化が少ない、偏光板保護フィルムとしてカールが少ない等の利点が得られ好ましい。 It is preferable that the weight average molecular weight be 5000 or more because advantages such as little dimensional change of the positive birefringent resin layer under high temperature and high humidity and less curling as a polarizing plate protective film can be obtained.
 重量平均分子量が30000以下とした場合は、セルロースエステルとの相溶性がより向上し、高温高湿下においてのブリードアウト、更に製膜直後でのヘイズの発生が抑制される。 When the weight average molecular weight is 30000 or less, the compatibility with the cellulose ester is further improved, and bleeding out under high temperature and high humidity and further haze generation immediately after film formation are suppressed.
 本発明に用いられる重合体Xの重量平均分子量は、公知の分子量調節方法で調整することができる。そのような分子量調節方法としては、例えば、四塩化炭素、ラウリルメルカプタン、チオグリコール酸オクチル等の連鎖移動剤を添加する方法等が挙げられる。 The weight average molecular weight of the polymer X used in the present invention can be adjusted by a known molecular weight adjusting method. Examples of such a molecular weight adjusting method include a method of adding a chain transfer agent such as carbon tetrachloride, lauryl mercaptan, octyl thioglycolate, and the like.
 また、重合温度は、通常、室温から130℃、好ましくは50℃から100℃で行われるが、この温度または重合反応時間を調整することで可能である。 The polymerization temperature is usually from room temperature to 130 ° C., preferably from 50 ° C. to 100 ° C., but this temperature or the polymerization reaction time can be adjusted.
 重量平均分子量の測定方法は、下記の方法により求めることができる。 The measuring method of the weight average molecular weight can be obtained by the following method.
 (平均分子量測定方法)
 重量平均分子量Mw、数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した。
(Average molecular weight measurement method)
The weight average molecular weight Mw and the number average molecular weight Mn were measured using gel permeation chromatography (GPC).
 測定条件は以下の通りである。 The measurement conditions are as follows.
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 1000,000 to 500 13 calibration curves were used. Thirteen samples are used at approximately equal intervals.
 本発明に用いられる低分子量の重合体Yは、芳香環を有さないエチレン性不飽和モノマーYaを重合して得られた重量平均分子量500以上3000以下の重合体である。重量平均分子量500以上であれば重合体の残存モノマーが減少し好ましい。 The low molecular weight polymer Y used in the present invention is a polymer having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an ethylenically unsaturated monomer Ya having no aromatic ring. A weight average molecular weight of 500 or more is preferred because the residual monomer in the polymer is reduced.
 また、3000以下とすることは、レターデーション値Rt低下性能を維持するために好ましい。Yaは、好ましくは芳香環を有さないアクリルまたはメタクリルモノマーである。 Moreover, it is preferable to set it to 3000 or less in order to maintain the retardation value Rt lowering performance. Ya is preferably an acrylic or methacrylic monomer having no aromatic ring.
 本発明に用いられる重合体Yは、下記一般式(Y)で表される。 The polymer Y used in the present invention is represented by the following general formula (Y).
 一般式(Y)
  -[Ya]k-[Yb]q-
 上記一般式(Y)において、Yaは芳香環を有しないエチレン性不飽和モノマーを表し、YbはYaと共重合可能なエチレン性不飽和モノマーを表す。k及びqは、各々モル組成比を表す。ただし、k≠0、k+q=100である。
General formula (Y)
-[Ya] k- [Yb] q-
In the general formula (Y), Ya represents an ethylenically unsaturated monomer having no aromatic ring, and Yb represents an ethylenically unsaturated monomer copolymerizable with Ya. k and q each represent a molar composition ratio. However, k ≠ 0 and k + q = 100.
 本発明に係る重合体Yにおいて、更に好ましくは下記一般式(Y-1)で表される重合体である。 The polymer Y according to the present invention is more preferably a polymer represented by the following general formula (Y-1).
 一般式(Y-1)
   -[CH2-C(-R5)(-CO2R6)]k-[Yb]q-
 上記一般式(Y-1)において、R5は、それぞれ水素原子またはメチル基を表す。R6は炭素数1~12のアルキル基またはシクロアルキル基を表す。Ybは、[CH2-C(-R5)(-CO2R6)]と共重合可能なモノマー単位を表す。k及びqは、それぞれモル組成比を表す。ただしk≠0、k+q=100である。
General formula (Y-1)
-[CH 2 -C (-R5) (-CO 2 R6)] k- [Yb] q-
In the general formula (Y-1), R5 represents a hydrogen atom or a methyl group. R6 represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group. Yb represents a monomer unit copolymerizable with [CH 2 —C (—R5) (— CO 2 R6)]. k and q each represent a molar composition ratio. However, k ≠ 0 and k + q = 100.
 Ybは、Yaである[CH2-C(-R5)(-CO2R6)]と共重合可能なエチレン性不飽和モノマーであれば特に制限はない。Ybは複数であってもよい。k+q=100、qは好ましくは1~30である。 Yb is not particularly limited as long as it is an ethylenically unsaturated monomer copolymerizable with [CH 2 —C (—R 5) (— CO 2 R 6)] which is Ya. Yb may be plural. k + q = 100, q is preferably 1-30.
 芳香環を有さないエチレン性不飽和モノマーを重合して得られる重合体Yを構成するエチレン性不飽和モノマーYaは、アクリル酸エステルとして、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸シクロヘキシル、アクリル酸(2-エチルヘキシル)、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、メタクリル酸エステルとして、上記アクリル酸エステルをメタクリル酸エステルに変えたもの;不飽和酸として、例えば、アクリル酸、メタクリル酸、無水マレイン酸、クロトン酸、イタコン酸等を挙げることができる。 The ethylenically unsaturated monomer Ya constituting the polymer Y obtained by polymerizing the ethylenically unsaturated monomer having no aromatic ring is, for example, methyl acrylate, ethyl acrylate, propyl acrylate ( i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), acrylic Heptyl acid (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), cyclohexyl acrylate, acrylic acid ( 2-ethylhexyl), acrylic acid (ε-caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypro) ), Acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), methacrylic acid ester, the above acrylic acid ester replaced by methacrylic acid ester; unsaturated acid such as acrylic acid, methacrylic acid Examples thereof include acid, maleic anhydride, crotonic acid, itaconic acid and the like.
 Ybは、Yaと共重合可能なエチレン性不飽和モノマーであれば特に制限はないが、ビニルエステルとして、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、オクチル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、桂皮酸ビニル等が好ましい。Ybは複数であってもよい。 Yb is not particularly limited as long as it is an ethylenically unsaturated monomer copolymerizable with Ya. Examples of vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, vinyl pivalate, and vinyl caproate. Vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl octylate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl cinnamate and the like are preferred. Yb may be plural.
 重合体X、Yを合成するには、通常の重合では分子量のコントロールが難しく、分子量を余り大きくしない方法で、かつ出来るだけ分子量を揃えることのできる方法を用いることが望ましい。 In order to synthesize the polymers X and Y, it is difficult to control the molecular weight in normal polymerization, and it is desirable to use a method that does not increase the molecular weight and that can make the molecular weight as uniform as possible.
 かかる重合方法としては、クメンペルオキシドやt-ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、更に特開2000-128911号または同2000-344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、或いは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができ、何れも本発明において好ましく用いられる。 Examples of such a polymerization method include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than usual polymerization, and a mercapto compound in addition to the polymerization initiator. And a method using a chain transfer agent such as carbon tetrachloride, a method using a polymerization terminator such as benzoquinone and dinitrobenzene in addition to the polymerization initiator, and further disclosed in JP-A Nos. 2000-128911 and 2000-344823. Examples thereof include a compound having one thiol group and a secondary hydroxyl group, or a bulk polymerization method using a polymerization catalyst in which the compound and an organometallic compound are used in combination. Used.
 特に、重合体Yは、分子中にチオール基と2級の水酸基とを有する化合物を連鎖移動剤として使用する重合方法が好ましい。この場合、重合体Yの末端には、重合触媒及び連鎖移動剤に起因する水酸基、チオエーテルを有することとなる。この末端残基により、Yとセルロースエステルとの相溶性を調整することができる。 In particular, the polymer Y is preferably a polymerization method using a compound having a thiol group and a secondary hydroxyl group in the molecule as a chain transfer agent. In this case, the terminal of the polymer Y has a hydroxyl group and a thioether resulting from the polymerization catalyst and the chain transfer agent. The compatibility of Y and cellulose ester can be adjusted by this terminal residue.
 重合体X及びYの水酸基価は、30~150[mgKOH/g]であることが好ましい。 The hydroxyl value of the polymers X and Y is preferably 30 to 150 [mgKOH / g].
 (水酸基価の測定方法)
 水酸基価の測定は、JIS K 0070(1992)に準ずる。この水酸基価は、試料1gをアセチル化させたとき、水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数と定義される。
(Measurement method of hydroxyl value)
The measurement of the hydroxyl value is based on JIS K 0070 (1992). This hydroxyl value is defined as the number of mg of potassium hydroxide required to neutralize acetic acid bonded to a hydroxyl group when 1 g of a sample is acetylated.
 具体的には試料Xg(約1g)をフラスコに精秤し、これにアセチル化試薬(無水酢酸20mlにピリジンを加えて400mlにしたもの)20mlを正確に加える。フラスコの口に空気冷却管を装着し、95~100℃のグリセリン浴にて加熱する。1時間30分後、冷却し、空気冷却管から精製水1mlを加え、無水酢酸を酢酸に分解する。 Specifically, sample Xg (about 1 g) is precisely weighed in a flask, and 20 ml of an acetylating reagent (a solution obtained by adding pyridine to 20 ml of acetic anhydride to 400 ml) is accurately added thereto. Attach an air cooling tube to the mouth of the flask and heat in a glycerol bath at 95-100 ° C. After 1 hour and 30 minutes, the mixture is cooled and 1 ml of purified water is added from an air cooling tube to decompose acetic anhydride into acetic acid.
 次に電位差滴定装置を用いて0.5mol/L水酸化カリウムエタノール溶液で滴定を行い、得られた滴定曲線の変曲点を終点とする。 Next, titration is performed with a 0.5 mol / L potassium hydroxide ethanol solution using a potentiometric titrator, and the inflection point of the obtained titration curve is set as the end point.
 更に空試験として、試料を入れないで滴定し、滴定曲線の変曲点を求める。水酸基価は、次の式によって算出する。 Further, as a blank test, titrate without putting a sample, and obtain the inflection point of the titration curve. The hydroxyl value is calculated by the following formula.
   水酸基価={(B-C)×f×28.05/X}+D
 式中、Bは空試験に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、Cは滴定に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、fは0.5mol/L水酸化カリウムエタノール溶液のファクター、Dは酸価、また、28.05は水酸化カリウムの1mol量56.11の1/2を表す。
Hydroxyl value = {(BC) × f × 28.05 / X} + D
In the formula, B is the amount (ml) of 0.5 mol / L potassium hydroxide ethanol solution used for the blank test, C is the amount (ml) of 0.5 mol / L potassium hydroxide ethanol solution used for titration, f is a factor of a 0.5 mol / L potassium hydroxide ethanol solution, D is an acid value, and 28.05 is 1/2 of 1 mol amount 56.11 of potassium hydroxide.
 上述の重合体X、重合体Yは何れもセルロースエステルとの相溶性に優れ、蒸発や揮発もなく生産性に優れ、偏光板用保護フィルムとしての保留性がよく、透湿度が小さく、寸法安定性に優れている。 The above-mentioned polymer X and polymer Y are both excellent in compatibility with cellulose ester, excellent in productivity without evaporation and volatilization, good retention as a protective film for polarizing plates, low moisture permeability, and dimension stability. Excellent in properties.
 重合体Xと重合体Yの正の複屈折樹脂層中での含有量は、下記式(i)、式(ii)を満足する範囲であることが好ましい。重合体Xの含有量をXg(質量%=(重合体Xの質量/セルロースエステルの質量)×100)、重合体Yの含有量をYg(質量%)とすると、
 式(i) 5≦Xg+Yg≦35(質量%)
 式(ii) 0.05≦Yg/(Xg+Yg)≦0.4
 式(i)の(Xg+Yg)の好ましい範囲は、10~35質量%である。重合体Xと重合体Yは、セルロースエステル全質量に対し、総量として5質量%以上であれば、レターデーション値Rtの調整に十分な作用をする。また、総量として35質量%以下であれば、偏光子PVAとの接着性が良好である。
The content of the polymer X and the polymer Y in the positive birefringent resin layer is preferably in a range satisfying the following formulas (i) and (ii). When the content of the polymer X is Xg (mass% = (mass of polymer X / mass of cellulose ester) × 100) and the content of the polymer Y is Yg (mass%),
Formula (i) 5 ≦ Xg + Yg ≦ 35 (mass%)
Formula (ii) 0.05 ≦ Yg / (Xg + Yg) ≦ 0.4
A preferred range of (Xg + Yg) in the formula (i) is 10 to 35% by mass. If the polymer X and the polymer Y are 5 mass% or more as a total amount with respect to the total mass of the cellulose ester, the polymer X and the polymer Y have a sufficient effect for adjusting the retardation value Rt. Moreover, if it is 35 mass% or less as a total amount, adhesiveness with polarizer PVA is favorable.
 重合体Xと重合体Yは、後述するドープ液を構成する素材として直接添加、溶解するか、もしくはセルロースエステルを溶解する有機溶媒に予め溶解した後ドープ液に添加することができる。 Polymer X and polymer Y can be directly added and dissolved as a material constituting the dope solution described later, or can be added to the dope solution after being previously dissolved in an organic solvent for dissolving the cellulose ester.
 〈フラノース構造もしくはピラノース構造を有する化合物〉
 本発明の正の複屈折性樹脂層は、(メタ)アクリル系重合体と共に、フラノース構造もしくはピラノース構造を1個有す化合物(A)中のOH基のすべてもしくは一部をエステル化したエステル化化合物、或いは、フラノース構造もしくはピラノース構造の少なくとも1種を2個以上、12個以下結合した化合物(B)中のOH基のすべてもしくは一部をエステル化したエステル化化合物を含むことが好ましい。
<Compound with furanose structure or pyranose structure>
The positive birefringent resin layer of the present invention is esterified by esterifying all or part of the OH group in the compound (A) having one furanose structure or pyranose structure together with a (meth) acrylic polymer. It is preferable to include a compound or an esterified compound obtained by esterifying all or part of the OH group in the compound (B) in which 2 or more and 12 or less of at least one of a furanose structure or a pyranose structure are bonded.
 本発明においては、上記化合物(A)のエステル化化合物及び上記化合物(B)のエステル化化合物を総称して、糖エステル化合物とも称す。 In the present invention, the esterified compound of the compound (A) and the esterified compound of the compound (B) are collectively referred to as a sugar ester compound.
 また、前記エステル化化合物が単糖類(α-グルコース、βフルクトース)の安息香酸エステル、もしくは前記一般式(A)で表される、単糖類の-OR12、-OR15、-OR22、-OR25の任意の2箇所以上が脱水縮合して生成したm+n=2~12の多糖類の安息香酸エステルであることが好ましい。 In addition, the esterified compound is a monosaccharide (α-glucose, β-fructose) benzoate, or a monosaccharide —OR 12 , —OR 15 , —OR 22 , — It is preferable that any two or more positions of OR 25 are benzoic acid esters of polysaccharides of m + n = 2 to 12 produced by dehydration condensation.
 上記一般式中の安息香酸は更に置換基を有していてもよく、例えばアルキル基、アルケニル基、アルコキシル基、フェニル基が挙げられ、更にこれらのアルキル基、アルケニル基、フェニル基は置換基を有していてもよい。 The benzoic acid in the above general formula may further have a substituent, for example, an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group, and these alkyl group, alkenyl group, and phenyl group have a substituent. You may have.
 好ましい化合物(A)及び化合物(B)の例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。 Examples of the preferred compound (A) and compound (B) include the following, but the present invention is not limited to these.
 化合物(A)の例としては、グルコース、ガラクトース、マンノース、フルクトース、キシロース、或いはアラビノースが挙げられる。 Examples of the compound (A) include glucose, galactose, mannose, fructose, xylose, or arabinose.
 化合物(B)の例としては、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノース或いはケストース挙げられる。 Examples of the compound (B) include lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose or kestose.
 このほか、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。 Other examples include gentiobiose, gentiotriose, gentiotetraose, xylotriose, and galactosyl sucrose.
 これらの化合物(A)及び化合物(B)の中で、特にフラノース構造とピラノース構造を両方有する化合物が好ましい。例としてはスクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどが好ましく、更に好ましくは、スクロースである。 Among these compounds (A) and (B), compounds having both a furanose structure and a pyranose structure are particularly preferable. As examples, sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
 また、化合物(B)において、フラノース構造もしくはピラノース構造の少なくとも1種を2個以上、3個以下結合した化合物であることも、好ましい態様の1つである。 In addition, in the compound (B), it is also a preferred embodiment that the compound is a compound in which at least one furanose structure or pyranose structure is bonded in an amount of 2 or more and 3 or less.
 本発明に係る化合物(A)及び化合物(B)中のOH基のすべてもしくは一部をエステル化するのに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。 The monocarboxylic acid used for esterifying all or part of the OH groups in the compound (A) and the compound (B) according to the present invention is not particularly limited, and known aliphatic monocarboxylic acids and fats A cyclic monocarboxylic acid, an aromatic monocarboxylic acid, or the like can be used. The carboxylic acid used may be one type or a mixture of two or more types.
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等を挙げることができる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and octenoic acid.
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。 Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができ、より、具体的には、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、γ-イソジュリル酸、ジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、サリチル酸、o-アニス酸、m-アニス酸、p-アニス酸、クレオソート酸、o-ホモサリチル酸、m-ホモサリチル酸、p-ホモサリチル酸、o-ピロカテク酸、β-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム酸、o-ベラトルム酸、没食子酸、アサロン酸、マンデル酸、ホモアニス酸、ホモバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、フタロン酸、p-クマル酸を挙げることができるが、特に安息香酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene. Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralin carboxylic acid, or derivatives thereof. More specifically, xylyl acid, hemelic acid, mesitylene acid, prenylic acid, γ-isoduric acid, jurylic acid, mesitic acid, α-isoduric acid, cumic acid, α-toluic acid, hydroatropic acid, atropic acid, hydrocinnamic acid, salicylic acid, o-anisic acid, m-anisic acid, p-anisic acid Creosote acid, o-homosalicylic acid, m-homosalicylic acid, p-homosalicylic acid, o-pyro Technic acid, β-resorcylic acid, vanillic acid, isovanillic acid, veratromic acid, o-veratrumic acid, gallic acid, asaronic acid, mandelic acid, homoanisic acid, homovanillic acid, homoveratrumic acid, o-homoveratrumic acid, phthalonic acid, p- Although coumaric acid can be mentioned, benzoic acid is particularly preferable.
 上記化合物(A)及び化合物(B)をエステル化したエステル化化合物の中では、エステル化によりアセチル基が導入されたアセチル化化合物が好ましい。 Among the esterified compounds obtained by esterifying the compound (A) and the compound (B), an acetylated compound having an acetyl group introduced by esterification is preferable.
 これらアセチル化化合物の製造方法は、例えば、特開平8-245678号公報に記載されている。 A method for producing these acetylated compounds is described, for example, in JP-A-8-245678.
 上記化合物(A)及び化合物(B)のエステル化化合物に加えて、オリゴ糖のエステル化化合物を、本発明に係るフラノース構造もしくはピラノース構造の少なくとも1種を3~12個結合した化合物として適用できる。 In addition to the esterified compounds of the above compounds (A) and (B), the oligosaccharide esterified compound can be applied as a compound in which 3 to 12 of the furanose structure or the pyranose structure according to the present invention are bonded. .
 オリゴ糖は、澱粉、ショ糖等にアミラーゼ等の酵素を作用させて製造されるもので、本発明に適用できるオリゴ糖としては、例えば、マルトオリゴ糖、イソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖が挙げられる。 Oligosaccharides are produced by allowing an enzyme such as amylase to act on starch, sucrose, etc. Examples of oligosaccharides that can be applied to the present invention include maltooligosaccharides, isomaltoligosaccharides, fructooligosaccharides, galactooligosaccharides, and xylooligos. Sugar.
 オリゴ糖も上記化合物(A)及び化合物(B)と同様な方法でアセチル化できる。 Oligosaccharide can also be acetylated in the same manner as the above compound (A) and compound (B).
 次に、エステル化化合物の製造例の一例を記載する。 Next, an example of production of an esterified compound will be described.
 グルコース(29.8g、166mmol)にピリジン(100ml)を加えた溶液に無水酢酸(200ml)を滴下し、24時間反応させた。その後、エバポレートで溶液を濃縮し氷水へ投入した。 Acetic anhydride (200 ml) was added dropwise to a solution obtained by adding pyridine (100 ml) to glucose (29.8 g, 166 mmol) and allowed to react for 24 hours. Thereafter, the solution was concentrated by evaporation and poured into ice water.
 1時間放置した後、ガラスフィルターにてろ過し、固体と水を分離し、ガラスフィルター上の固体をクロロホルムに溶かし、これが中性になるまで冷水で分液した。 After standing for 1 hour, the mixture was filtered through a glass filter to separate the solid and water. The solid on the glass filter was dissolved in chloroform and separated with cold water until it became neutral.
 有機層を分離後、無水硫酸ナトリウムにより乾燥した。無水硫酸ナトリウムをろ過により除去した後、クロロホルムをエバポレートにより除き、更に減圧乾燥することによりグリコースペンタアセテート(58.8g、150mmol、90.9%)を得た。尚、上記無水酢酸の替わりに、上述のモノカルボン酸を使用することができる。 The organic layer was separated and dried over anhydrous sodium sulfate. After removing anhydrous sodium sulfate by filtration, chloroform was removed by evaporation and further dried under reduced pressure to obtain glycolose pentaacetate (58.8 g, 150 mmol, 90.9%). In addition, the above-mentioned monocarboxylic acid can be used instead of the acetic anhydride.
 以下に、本発明に用いられるエステル化化合物の具体例を挙げるが、本発明はこれに限定されるものではない。 Specific examples of the esterified compound used in the present invention are listed below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 本発明の正の複屈折樹脂層は、位相差値の変動を抑制して、表示品位を安定化する為に、フラノース構造もしくはピラノース構造を1個有す化合物(A)中の、或いは、フラノース構造もしくはピラノース構造の少なくとも1種を2~12個結合した化合物(B)中のOH基のすべてもしくは一部をエステル化したエステル化化合物を1~30質量%含むことが好ましく、特には、5~30質量%含むことが好ましい。この範囲内であれば、本発明の優れた効果を呈すると共に、ブリードアウトなどもなく好ましい。 The positive birefringent resin layer of the present invention can be used in the compound (A) having one furanose structure or one pyranose structure in order to suppress the fluctuation of the retardation value and stabilize the display quality. It is preferable to contain 1 to 30% by mass of an esterified compound obtained by esterifying all or part of the OH group in the compound (B) in which 2 to 12 of at least one of the structure or the pyranose structure are bonded. It is preferable to contain ~ 30% by mass. Within this range, it is preferable that the excellent effects of the present invention are exhibited and there is no bleeding out.
 また、(メタ)アクリル系重合体とフラノース構造もしくはピラノース構造を1個有す化合物(A)中の、或いは、フラノース構造もしくはピラノース構造の少なくとも1種を2~12個結合した化合物(B)中のOH基のすべてもしくは一部をエステル化したエステル化化合物と他の可塑剤を併用することができる。 Further, in a compound (A) having one (meth) acrylic polymer and one furanose structure or pyranose structure, or in a compound (B) in which 2 to 12 at least one furanose structure or pyranose structure is bonded. An esterified compound obtained by esterifying all or a part of the OH group may be used in combination with another plasticizer.
 また、これらの正の複屈折樹脂層には必要に応じて微粒子を添加することもできる。微粒子としては、無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。 Further, fine particles can be added to these positive birefringent resin layers as necessary. As fine particles, examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Mention may be made of magnesium silicate and calcium phosphate.
 微粒子の一次粒子の平均粒径は5~400nmが好ましく、更に好ましいのは10~300nmである。これらは主に粒径0.05~0.3μmの2次凝集体として含有されていてもよく、平均粒径100~400nmの粒子であれば凝集せずに一次粒子として含まれていることも好ましい。偏光板保護フィルム中のこれらの微粒子の含有量は0.01~1質量%であることが好ましく、特に0.05~0.5質量%が好ましい。 The average primary particle size of the fine particles is preferably 5 to 400 nm, and more preferably 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 μm, and may be contained as primary particles without being aggregated if the particles have an average particle size of 100 to 400 nm. preferable. The content of these fine particles in the polarizing plate protective film is preferably 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass.
 二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). it can.
 酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 Zirconium oxide fine particles are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
 また、ポリマー型微粒子を添加しても良い。ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。 Further, polymer type fine particles may be added. Examples of the polymer include silicone resin, fluororesin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.
 無機、有機いずれの微粒子においても、本発明における微粒子は、正の複屈折樹脂層の平均屈折率に近いことが好ましい。 In both inorganic and organic fine particles, the fine particles in the present invention are preferably close to the average refractive index of the positive birefringent resin layer.
 更に、紫外線吸収剤を含んでも良い。紫外線吸収剤としては、着色がなく、透明性に優れるなどの、光学フィルムに適性のある材料が好ましい。例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などが挙げられる。又、特開2002-169020、特開2006-113175号等に記載の高分子紫外線吸収剤も好ましく用いられる。 Furthermore, an ultraviolet absorber may be included. As the ultraviolet absorber, a material suitable for an optical film, such as no coloring and excellent transparency, is preferable. Examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. Further, polymer ultraviolet absorbers described in JP-A Nos. 2002-169020 and 2006-113175 are also preferably used.
 その他の成分として、酸化防止剤、帯電防止剤、滑材、離型材、着色剤、着色防止剤、難燃剤などを含んでも良い。特に、溶融流延製膜によって作製する場合には、酸化防止剤を導入することが好ましく、特にフィルムの透明性を最大限に引き上げる方法として、前記微粒子の代わりとして、滑材、離型材も好ましく用いられる。 Other components may include an antioxidant, an antistatic agent, a lubricant, a release material, a colorant, a colorant, a flame retardant, and the like. In particular, when producing by melt casting film formation, it is preferable to introduce an antioxidant, and in particular, as a method for maximizing the transparency of the film, instead of the fine particles, a lubricant and a release material are also preferable. Used.
 また、正の複屈折樹脂層のいずれかの面に、帯電防止層、滑性層、易接着層を設けても良い。 Further, an antistatic layer, a slipping layer, and an easy adhesion layer may be provided on any surface of the positive birefringent resin layer.
 (正の複屈折樹脂層の製造方法)
 次に、本発明の正の複屈折樹脂層の好ましい一実施形態であるセルロースエステルフィルムの製造方法について説明する。
(Method for producing positive birefringent resin layer)
Next, the manufacturing method of the cellulose-ester film which is preferable one Embodiment of the positive birefringent resin layer of this invention is demonstrated.
 本発明に係るセルロースエステルフィルムは溶液流延法で製造されたフィルムであっても溶融流延法で製造されたフィルムであっても好ましく用いることができる。 The cellulose ester film according to the present invention can be preferably used regardless of whether it is a film produced by a solution casting method or a film produced by a melt casting method.
 本発明のセルロースエステルフィルムの製造は、セルロースエステル及び前記添加剤を溶剤に溶解させてドープを調製する工程、ドープを無限に移行する無端の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻取る工程により行われる。 The cellulose ester film of the present invention is produced by dissolving the cellulose ester and the additive in a solvent to prepare a dope, casting the dope on an endless metal support that moves infinitely, and casting the dope. Is performed by a step of drying as a web, a step of peeling from a metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding the finished film.
 ドープを調製する工程について述べる。ドープ中のセルロースエステルの濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が濃過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~25質量%である。 The process for preparing the dope will be described. The concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose ester is too high, the load during filtration increases and the filtration accuracy is poor. Become. The concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
 ドープで用いられる溶剤は、単独で用いても2種以上を併用してもよいが、セルロースエステルの良溶剤と貧溶剤を混合して使用することが生産効率の点で好ましく、良溶剤が多い方がセルロースエステルの溶解性の点で好ましい。 The solvent used in the dope may be used alone or in combination of two or more, but it is preferable to use a mixture of a good solvent and a poor solvent of cellulose ester in terms of production efficiency, and there are many good solvents. This is preferable from the viewpoint of the solubility of the cellulose ester.
 良溶剤と貧溶剤の混合比率の好ましい範囲は、良溶剤が70~98質量%であり、貧溶剤が2~30質量%である。良溶剤、貧溶剤とは、使用するセルロースエステルを単独で溶解するものを良溶剤、単独で膨潤するかまたは溶解しないものを貧溶剤と定義している。 A preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass for the good solvent and 2 to 30% by mass for the poor solvent. With a good solvent and a poor solvent, what dissolve | melts the cellulose ester to be used independently is defined as a good solvent, and what poorly swells or does not melt | dissolve is defined as a poor solvent.
 そのため、セルロースエステルの平均酢化度(アセチル基置換度)によっては、良溶剤、貧溶剤が変わり、例えばアセトンを溶剤として用いる時には、セルロースエステルの酢酸エステル(アセチル基置換度2.4)、セルロースアセテートプロピオネートでは良溶剤になり、セルロースの酢酸エステル(アセチル基置換度2.8)では貧溶剤となる。 Therefore, depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester, the good solvent and the poor solvent change. For example, when acetone is used as the solvent, the cellulose ester acetate ester (acetyl group substitution degree 2.4), cellulose Acetate propionate is a good solvent, and cellulose acetate (acetyl group substitution degree 2.8) is a poor solvent.
 本発明に用いられる良溶剤は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライドまたは酢酸メチルが挙げられる。 The good solvent used in the present invention is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
 また、本発明に用いられる貧溶剤は特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%含有していることが好ましい。 The poor solvent used in the present invention is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used. The dope preferably contains 0.01 to 2% by mass of water.
 また、セルロースエステルの溶解に用いられる溶媒は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いられる。回収溶剤中に、セルロースエステルに添加されている添加剤、例えば可塑剤、紫外線吸収剤、ポリマー、モノマー成分などが微量含有されていることもあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して再利用することもできる。 Also, the solvent used for dissolving the cellulose ester is used by collecting the solvent removed from the film by drying in the film-forming process and reusing it. The recovery solvent may contain trace amounts of additives added to the cellulose ester, such as plasticizers, UV absorbers, polymers, monomer components, etc., but even if these are included, they are preferably reused. Can be purified and reused if necessary.
 上記記載のドープを調製する時の、セルロースエステルの溶解方法としては、一般的な方法を用いることができる。加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。 As a method for dissolving the cellulose ester when preparing the dope described above, a general method can be used. When heating and pressurization are combined, it is possible to heat above the boiling point at normal pressure.
 溶剤の常圧での沸点以上でかつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。また、セルロースエステルを貧溶剤と混合して湿潤或いは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。 It is preferable to stir and dissolve while heating at a temperature that is higher than the boiling point of the solvent at normal pressure and that the solvent does not boil under pressure, in order to prevent the formation of massive undissolved material called gel or mamako. Moreover, after mixing a cellulose ester with a poor solvent and making it wet or swell, the method of adding a good solvent and melt | dissolving is also used preferably.
 加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶剤の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。 Pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside. For example, a jacket type is preferable because temperature control is easy.
 溶剤を添加しての加熱温度は、高い方がセルロースエステルの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。好ましい加熱温度は45~120℃であり、60~110℃がより好ましく、70℃~105℃が更に好ましい。また、圧力は設定温度で溶剤が沸騰しないように調整される。 The heating temperature with the addition of the solvent is preferably higher from the viewpoint of the solubility of the cellulose ester, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates. A preferred heating temperature is 45 to 120 ° C, more preferably 60 to 110 ° C, and still more preferably 70 ° C to 105 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
 もしくは冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にセルロースエステルを溶解させることができる。 Alternatively, a cooling dissolution method is also preferably used, whereby the cellulose ester can be dissolved in a solvent such as methyl acetate.
 次に、このセルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生し易いという問題がある。 Next, the cellulose ester solution is filtered using an appropriate filter medium such as filter paper. As the filter medium, it is preferable that the absolute filtration accuracy is small in order to remove insoluble matters and the like, but there is a problem that the filter medium is likely to be clogged if the absolute filtration accuracy is too small.
 このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの濾材がより好ましく、0.003~0.006mmの濾材が更に好ましい。 For this reason, a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with 0.001 to 0.008 mm is more preferable, and a filter medium with 0.003 to 0.006 mm is still more preferable.
 濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステルに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。 There are no particular restrictions on the material of the filter medium, and ordinary filter media can be used. However, plastic filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel do not drop off fibers. preferable. It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose ester by filtration.
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に光学フィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm2以下であることが好ましい。より好ましくは100個/cm2以下であり、更に好ましくは50個/m2以下であり、更に好ましくは0~10個/cm2以下である。また、0.01mm以下の輝点も少ない方が好ましい。 Bright spot foreign matter means that when two polarizing plates are placed in a crossed Nicol state, an optical film or the like is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It is a point (foreign matter) where light from the opposite side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less. More preferably, it is 100 pieces / cm 2 or less, still more preferably 50 pieces / m 2 or less, still more preferably 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots of 0.01 mm or less is small.
 ドープの濾過は通常の方法で行うことができるが、溶剤の常圧での沸点以上で、かつ加圧下で溶剤が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。 The dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration. The increase in the difference (referred to as differential pressure) is small and preferable. A preferred temperature is 45 to 120 ° C., more preferably 45 to 70 ° C., and still more preferably 45 to 55 ° C.
 濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。 A smaller filtration pressure is preferable. The filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
 ここで、ドープの流延について説明する。 Here, the dope casting will be described.
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mとすることができる。 The metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support. The cast width can be 1 to 4 m.
 流延工程の金属支持体の表面温度は-50℃~溶剤の沸点未満の温度で、温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。 The surface temperature of the metal support in the casting step is −50 ° C. to less than the boiling point of the solvent, and a higher temperature is preferable because the web drying speed can be increased. May deteriorate.
 好ましい支持体温度は0~40℃であり、5~30℃が更に好ましい。或いは、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。 A preferable support temperature is 0 to 40 ° C., more preferably 5 to 30 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent.
 金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。 The method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When warm air is used, wind at a temperature higher than the target temperature may be used.
 光学補償フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、更に好ましくは20~40質量%または60~130質量%であり、特に好ましくは、20~30質量%または70~120質量%である。 In order for the optical compensation film to exhibit good flatness, the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Particularly preferred is 20 to 30% by mass or 70 to 120% by mass.
 本発明においては、残留溶媒量は下記式で定義される。 In the present invention, the amount of residual solvent is defined by the following formula.
 残留溶媒量(質量%)={(M-N)/N}×100
 尚、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.
 また、光学補償フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。 In the step of drying the optical compensation film, the web is peeled off from the metal support and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Particularly preferred is 0 to 0.01% by mass or less.
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。 In the film drying process, generally, a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
 本発明に係るセルロースエステルフィルムを作製するためには、ウェブの両端をクリップ等で把持するテンター方式で幅方向(横方向)に延伸を行うことが特に好ましい。剥離張力は300N/m以下で剥離することが好ましい。 In order to produce the cellulose ester film according to the present invention, it is particularly preferable to perform stretching in the width direction (lateral direction) by a tenter method in which both ends of the web are held with clips or the like. Peeling is preferably performed at a peeling tension of 300 N / m or less.
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で熱風で行うことが好ましい。 The means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roll, microwave, or the like, but is preferably performed with hot air in terms of simplicity.
 ウェブの乾燥工程における乾燥温度は40~200℃で段階的に高くしていくことが好ましい。 It is preferable that the drying temperature in the web drying process is increased stepwise from 40 to 200 ° C.
 セルロースエステルフィルムの膜厚は、特に限定はされないが10~200μmが用いられる。特に膜厚は10~100μmであることが特に好ましい。更に好ましくは20~60μmである。 The film thickness of the cellulose ester film is not particularly limited, but 10 to 200 μm is used. In particular, the film thickness is particularly preferably 10 to 100 μm. More preferably, it is 20 to 60 μm.
 セルロースエステルフィルムは、幅1~4mのものが用いられる。特に幅1.4~4mのものが好ましく用いられ、特に好ましくは1.6~3mである。4mを超えると搬送が困難となる。 A cellulose ester film having a width of 1 to 4 m is used. Particularly, those having a width of 1.4 to 4 m are preferably used, and particularly preferably 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.
 (延伸操作、屈折率制御)
 本発明の正の複屈折樹脂層は、レターデーション値Ro、RtがRo=0~50nm、Rt=80~150nmであることが好ましい。
(Stretching operation, refractive index control)
The positive birefringent resin layer of the present invention preferably has retardation values Ro and Rt of Ro = 0 to 50 nm and Rt = 80 to 150 nm.
 なお、Ro=(nx-ny)×d
    Rt=((nx+ny)/2-nz)×d
(式中、nxは樹脂層の面内の遅相軸方向の屈折率を、nyは面内で遅相軸に直交する方向の屈折率を、nzは厚み方向の屈折率を、dは樹脂層の厚み(nm)をそれぞれ表す。)
 上記屈折率は、例えばKOBRA-21ADH(王子計測機器(株))を用いて、23℃、55%RHの環境下で、波長が590nmで求めることができる。
Note that Ro = (nx−ny) × d
Rt = ((nx + ny) / 2−nz) × d
(Where nx is the refractive index in the slow axis direction in the plane of the resin layer, ny is the refractive index in the direction perpendicular to the slow axis in the plane, nz is the refractive index in the thickness direction, and d is the resin) Represents the thickness (nm) of each layer.)
The refractive index can be obtained at a wavelength of 590 nm in an environment of 23 ° C. and 55% RH using, for example, KOBRA-21ADH (Oji Scientific Instruments).
 前記(メタ)アクリル系重合体とフラノース構造もしくはピラノース構造を有する化合物を組み合わせ、適宜含有させることにより、所望のレターデーションだけでなく、波長分散性も調整することが可能となる。 By combining the (meth) acrylic polymer and a compound having a furanose structure or a pyranose structure and appropriately containing them, not only the desired retardation but also wavelength dispersion can be adjusted.
 延伸操作は、無延伸の正の複屈折性樹脂層上に負の複屈折性層を積層した後に一度にまとめて行うこともできるが、あらかじめ正の複屈折性樹脂層のみを延伸しておき、さらに負の複屈折層を積層した後に再び延伸することで所望のレターデーションを調整することができる。 The stretching operation can be performed at once after laminating the negative birefringent layer on the unstretched positive birefringent resin layer, but only the positive birefringent resin layer is stretched in advance. Furthermore, a desired retardation can be adjusted by stretching again after laminating a negative birefringent layer.
 上記レターデーション値Ro、Rtを得るには、正の複屈折樹脂層であるセルロースエステルフィルムが本発明の構成をとり、更に延伸操作により屈折率制御を行うことが好ましい。 In order to obtain the retardation values Ro and Rt, it is preferable that the cellulose ester film, which is a positive birefringent resin layer, has the configuration of the present invention, and further the refractive index is controlled by a stretching operation.
 例えばフィルムの長手方向(製膜方向)及びそれとフィルム面内で直交する方向、即ち幅手方向に対して、逐次または同時に2軸延伸もしくは1軸延伸することができる。 For example, biaxial stretching or uniaxial stretching can be performed sequentially or simultaneously with respect to the longitudinal direction (film forming direction) of the film and the direction orthogonal to the longitudinal direction of the film, that is, the width direction.
 互いに直交する2軸方向の延伸倍率は、それぞれ最終的には流延方向に0.8~2.0倍、幅方向に1.1~2.5倍の範囲とすることが好ましく、流延方向に0.8~1.5倍、幅方向に1.2~2.0倍の範囲で行うことが好ましい。 The draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 0.8 to 2.0 times in the casting direction and 1.1 to 2.5 times in the width direction, respectively. It is preferable to carry out in the range of 0.8 to 1.5 times in the direction and 1.2 to 2.0 times in the width direction.
 延伸温度は120℃~200℃が好ましく、さらに好ましくは160℃~200℃以下で延伸するのが好ましい。 The stretching temperature is preferably 120 ° C. to 200 ° C., more preferably 160 ° C. to 200 ° C. or less.
 フィルム中の残留溶媒は20~0%が好ましく、さらに好ましくは15~0%で延伸することが好ましい。具体的には175℃で残留溶媒が11%で延伸する、あるいは175℃で残留溶媒が2%で延伸するのが好ましい。もしくは185℃で残留溶媒が11%で延伸するのが好ましく、あるいは185℃で残留溶媒が1%未満で延伸するのが好ましい。 The residual solvent in the film is preferably 20 to 0%, more preferably 15 to 0%. Specifically, the residual solvent is preferably stretched at 11% at 175 ° C., or the residual solvent is stretched at 2% at 175 ° C. Alternatively, it is preferred that the residual solvent is stretched at 11% at 185 ° C., or it is preferred that the residual solvent is stretched at less than 1% at 185 ° C.
 ウェブを延伸する方法には特に限定はない。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、或いは縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。 There is no particular limitation on the method of stretching the web. For example, a method in which a circumferential speed difference is applied to a plurality of rolls, and the roll circumferential speed difference is used to stretch the rolls in the longitudinal direction. And a method of stretching in the vertical direction, a method of stretching in the horizontal direction and stretching in the horizontal direction, or a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions.
 もちろんこれ等の方法は、組み合わせて用いてもよい。また、所謂テンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸を行うことができ、破断等の危険性が減少できるので好ましい。 Of course, these methods may be used in combination. In the case of the so-called tenter method, driving the clip portion by the linear drive method is preferable because smooth stretching can be performed and the risk of breakage and the like can be reduced.
 製膜工程のこれらの幅保持或いは横方向の延伸はテンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。 It is preferable to carry out the width maintenance or lateral stretching in the film forming step by a tenter, and it may be a pin tenter or a clip tenter.
 (負の複屈折樹脂層)
 前記一般式(1)で表されるモノマー単位Lとエチレン性不飽和モノマー単位Mとを有する共重合体を含む負の複屈折樹脂層の厚みは特に限定されないが、2~50μmが用いられる。特に膜厚は3~40μmであることが特に好ましい。更に好ましくは5~30μmである。
(Negative birefringent resin layer)
The thickness of the negative birefringent resin layer containing the copolymer having the monomer unit L and the ethylenically unsaturated monomer unit M represented by the general formula (1) is not particularly limited, but 2 to 50 μm is used. In particular, the film thickness is particularly preferably 3 to 40 μm. More preferably, it is 5 to 30 μm.
 正の複屈折樹脂層と負の複屈折樹脂層との密着性を更に高めたい場合は、正の複屈折層を表面処理するか、二つの層の間に易接着層を設けても良い。易接着層の材料としては特に限定はなく、公知の材料を適宜用いることができる。易接着層の膜厚は、1μm以下が好ましく、更に好ましくは0.5μm以下である。 When it is desired to further improve the adhesion between the positive birefringent resin layer and the negative birefringent resin layer, the positive birefringent layer may be surface-treated, or an easy-adhesion layer may be provided between the two layers. There is no limitation in particular as a material of an easily bonding layer, A well-known material can be used suitably. The film thickness of the easy adhesion layer is preferably 1 μm or less, and more preferably 0.5 μm or less.
 (負の複屈折樹脂層の塗工)
 塗工方法については特に限定はされないが、例えば具体的にはグラビアコート、コンマコート、バーコート、ダイコート、リップコート、ロールコート、フローコート、プリントコート、ディップコート、流延製膜、スピンコートが挙げられる。これらの方法は、溶液粘度と膜厚から適宜選択される。
(Coating of negative birefringent resin layer)
There are no particular restrictions on the coating method, but specific examples include gravure coating, comma coating, bar coating, die coating, lip coating, roll coating, flow coating, print coating, dip coating, casting film formation, and spin coating. Can be mentioned. These methods are appropriately selected from the solution viscosity and the film thickness.
 溶媒としては一般の公知の有機溶媒が用いられる、例えばメタノール、エタノール、プロパノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセロソルブ、ジエチルカルビトール等のグリコールエーテル類、酢酸メチル、酢酸エチル等のエステル類、N-メチルピロリドン、ジメチルホルムアミド、ジクロロメタン、クロロホルム、テトラヒドロフラン等の有機溶媒、或いは水が用いられる。これらは、単独、若しくは2種以上を混合して用いることができる。また、UV硬化性モノマーと負の複屈折性樹脂をあらかじめ混合する場合は、UV硬化性モノマーを溶媒代わりとすることもできる。 Commonly known organic solvents are used as the solvent, for example, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, and aromatic carbonization such as benzene, toluene and xylene. Hydrogens, glycols such as ethylene glycol, propylene glycol, hexylene glycol, etc., glycol ethers such as ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol, esters such as methyl acetate and ethyl acetate , Organic solvents such as N-methylpyrrolidone, dimethylformamide, dichloromethane, chloroform and tetrahydrofuran, or water. These can be used alone or in admixture of two or more. Further, when the UV curable monomer and the negative birefringent resin are mixed in advance, the UV curable monomer can be used as a solvent.
 塗工後、塗膜の物性を確保するため、例えば熱処理や紫外光などの活性エネルギー線照射処理などを行うことが好ましい。塗布溶液に、あらかじめ架橋可能な材料を含んでおくことも効果的であり、膜のTgの制御が可能である。 After coating, in order to ensure the physical properties of the coating film, for example, heat treatment or active energy ray irradiation treatment such as ultraviolet light is preferably performed. It is also effective to previously contain a crosslinkable material in the coating solution, and the Tg of the film can be controlled.
 負の複屈折樹脂層の位相差は、Ro=80~200nm、Rt=-70~-150nmであることが好ましく、正、負の複屈折層が面内遅相軸を有する場合は互いの面内遅相軸が直交していることが視野角拡大効果を向上させる点で好ましい。 The phase difference of the negative birefringent resin layer is preferably Ro = 80 to 200 nm, Rt = −70 to −150 nm, and when the positive and negative birefringent layers have in-plane slow axes, the mutual planes It is preferable that the inner slow axes are orthogonal in terms of improving the viewing angle expansion effect.
 上記レターデーション値Ro、Rtは、正の複屈折性樹脂層上に負の複屈折性層を積層した後に延伸操作を行うことで得られる。例えばフィルムの長手方向(塗工方向)及びそれとフィルム面内で直交する方向、即ち幅手方向に対して、逐次または同時に2軸延伸もしくは1軸延伸することができる。互いに直交する2軸方向の延伸倍率は、それぞれ最終的には塗工方向に1.01~2.5倍、幅方向に0.5~1.5倍の範囲とすることが好ましく、塗工方向に1.05~1.5倍、幅方向に0.5~1.0倍の範囲で行うことが好ましい。 The retardation values Ro and Rt are obtained by performing a stretching operation after laminating a negative birefringent layer on a positive birefringent resin layer. For example, biaxial stretching or uniaxial stretching can be performed sequentially or simultaneously with respect to the longitudinal direction (coating direction) of the film and the direction orthogonal to the longitudinal direction of the film, that is, the width direction. The draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 1.01 to 2.5 times in the coating direction and 0.5 to 1.5 times in the width direction, respectively. It is preferable to carry out in the range of 1.05 to 1.5 times in the direction and 0.5 to 1.0 times in the width direction.
 本発明の積層位相差フィルムのヘイズは1%未満であることが好ましく0~0.5%であることが特に好ましい。 The haze of the laminated retardation film of the present invention is preferably less than 1%, particularly preferably 0 to 0.5%.
 本発明の積層位相差フィルムの可視光透過率は90%以上であることが好ましく、93%以上であることが更に好ましい。 The visible light transmittance of the laminated retardation film of the present invention is preferably 90% or more, and more preferably 93% or more.
 本発明の積層位相差フィルムは、液晶表示装置の視野角拡大フィルムとして偏光板に好適に用いることができる。その際、偏光子の少なくとも一方の面に直接貼合し、偏光板保護フィルムとしての機能も兼ねることができる。この場合、正の複屈折樹脂層側を偏光子に貼合することが好ましい。 The laminated retardation film of the present invention can be suitably used for a polarizing plate as a viewing angle widening film of a liquid crystal display device. In that case, it can bond directly to at least one surface of a polarizer, and can also serve as a polarizing plate protective film. In this case, it is preferable to bond the positive birefringent resin layer side to the polarizer.
 偏光板は一般的な方法で作製することが出来る。本発明の積層位相差フィルムの正の複屈折樹脂層側をアルカリ鹸化処理する。ポリビニルアルコールフィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、該鹸化処理した位相差フィルムを、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面にも積層位相差フィルムを用いても、別の偏光板保護フィルムを用いてもよい。負の複屈折樹脂層側を偏光子に貼り合わせる場合は、公知の接着剤を用いることができるが、水系接着剤が好ましい。 The polarizing plate can be produced by a general method. The positive birefringent resin layer side of the laminated retardation film of the present invention is subjected to alkali saponification treatment. The saponified retardation film is preferably bonded to at least one surface of a polarizer produced by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified aqueous polyvinyl alcohol solution. A laminated retardation film may be used on the other surface, or another polarizing plate protective film may be used. When the negative birefringent resin layer side is bonded to the polarizer, a known adhesive can be used, but an aqueous adhesive is preferable.
 裏面側に用いられる偏光板保護フィルムとしては、任意の適切な材料が採用され得る。このような材料としては、例えば、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるプラスチックフィルムが挙げられる。プラスチックフィルムを構成する樹脂の具体例としては、トリアセチルセルロース(TAC)等のアシレート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、アクリル樹脂、ポリノルボルネン樹脂、セルロース樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、ポリアクリル樹脂、およびこれらの混合物が挙げられる。また、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化性樹脂または紫外線硬化型樹脂も用いられ得る。偏光特性および耐久性の観点から、表面をアルカリ等でケン化処理したTACフィルムが好ましい。また、市販のセルロースアシレートフィルムとして、KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC4UE、KC8UE、KC8UY-HA、KC8UX-RHA、KC8UXW-RHA-C、KC8UXW-RHA-NC、KC4UXW-RHA-NC(以上、コニカミノルタオプト(株)製)等が好ましく用いられる。 Any appropriate material can be adopted as the polarizing plate protective film used on the back side. As such a material, for example, a plastic film excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like can be mentioned. Specific examples of resins constituting the plastic film include acylate resins such as triacetyl cellulose (TAC), polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, acrylic resins, poly Examples include norbornene resin, cellulose resin, polyarylate resin, polystyrene resin, polyvinyl alcohol resin, polyacrylic resin, and mixtures thereof. Also, thermosetting resins such as acrylic, urethane, acrylic urethane, epoxy, and silicone, or ultraviolet curable resins may be used. From the viewpoint of polarization characteristics and durability, a TAC film whose surface is saponified with alkali or the like is preferable. In addition, as commercially available cellulose acylate films, KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12UR, KC4UE, KC8UE, KC8UY-HA, KC8UX-RHU, KC8UX-RUX NC, KC4UXW-RHA-NC (manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
 本発明の積層位相差フィルムは工業的には長尺のフィルムとして作製され、同じく長尺のフィルムとして作製される偏光子と張り合わせて偏光板を構成する態様が最も有用である。また、偏光板に更に張り合わせるなど、偏光板保護フィルムとしての機能を持たない単なる位相差フィルムとして使用することも出来る。 The laminated retardation film of the present invention is industrially produced as a long film, and an aspect in which a polarizing plate is constituted by laminating with a polarizer produced as a long film is most useful. Moreover, it can also be used as a mere retardation film that does not have a function as a polarizing plate protective film, such as further bonding to a polarizing plate.
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光子の膜厚は5~30μmの偏光子が好ましく用いられる。 A polarizer, which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass. A typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol. There are ones in which iodine is dyed on a system film and ones in which a dichroic dye is dyed, but it is not limited to this. For the polarizer, a polyvinyl alcohol aqueous solution is formed into a film and dyed by uniaxial stretching or dyed or uniaxially stretched and then preferably subjected to a durability treatment with a boron compound. A polarizer having a thickness of 5 to 30 μm is preferably used.
 本発明の積層位相差フィルムは、STN、TN、OCB、HAN、VA(MVA、PVA)、IPS、FFS、OCBなどの各種駆動方式の液晶表示装置に用いることができる。好ましくはIPS、FFS、VA(MVA,PVA)型液晶表示装置である。STN、OCB、TN型液晶表示装置に用いる場合には、偏光子の吸収軸方向と、各々の延伸軸が必ずしも平行または直交している必要はなく、ずれている形態も、好ましく用いられる。これらの液晶表示装置に用いることにより、視野角が広く、正面コントラストの高い視認性に優れた液晶表示装置を得ることができる。 The laminated retardation film of the present invention can be used for liquid crystal display devices of various drive systems such as STN, TN, OCB, HAN, VA (MVA, PVA), IPS, FFS, OCB. An IPS, FFS, and VA (MVA, PVA) type liquid crystal display device is preferable. When used in an STN, OCB, or TN type liquid crystal display device, the absorption axis direction of the polarizer and the respective stretching axes do not necessarily have to be parallel or orthogonal, and an offset form is also preferably used. By using these liquid crystal display devices, a liquid crystal display device having a wide viewing angle and high front contrast and excellent visibility can be obtained.
 本発明の積層位相差フィルムをIPS、FFS型液晶表示装置に用いる場合の構成例について説明する。黒表示時の液晶の遅相軸方向に対して直交する方向に吸収軸を持つように配置される偏光子と、ガラス基板との間に本発明の積層位相差フィルムを配置する。負の複屈折樹脂層を偏光子側に配置する場合は、負の複屈折樹脂層の遅相軸と偏光子の吸収軸は平行になるように、負の複屈折層をガラス基板側に配置する場合は、負の複屈折層の遅相軸と偏光子の吸収軸は直交になるように配置することで優れた視野角を得ることができる。 An example of the configuration when the laminated retardation film of the present invention is used in an IPS or FFS type liquid crystal display device will be described. The laminated retardation film of the present invention is disposed between a polarizer disposed so as to have an absorption axis in a direction orthogonal to the slow axis direction of the liquid crystal during black display and the glass substrate. When the negative birefringent resin layer is arranged on the polarizer side, the negative birefringent layer is arranged on the glass substrate side so that the slow axis of the negative birefringent resin layer and the absorption axis of the polarizer are parallel to each other. In that case, an excellent viewing angle can be obtained by arranging the slow axis of the negative birefringent layer and the absorption axis of the polarizer to be orthogonal to each other.
 この場合、正の複屈折樹脂層のレターデーションRo=0nm、あるいは正の複屈折樹脂層のレターデーションがRo>0nmの場合は、正の複屈折樹脂層の遅相軸と負の複屈折層の遅相軸を直交した本発明の積層位相差フィルムが好ましく用いられる。この時、黒表示時の液晶の遅相軸方向に対して平行方向に吸収軸を持つように配置される偏光子、つまり液晶セルを挟んで反対側に位置する偏光子と、ガラス基板との間に配置する位相差フィルムは、面内レターデーションRoがほぼゼロであることが好ましい。さらに好ましくは、厚み方向のレターデーションRtが|Rt|≦45nmであり、より好ましくは|Rt|≦5nmである。このような位相差フィルムは偏光板保護フィルムを兼ねることもできる。 In this case, if the retardation Ro of the positive birefringent resin layer is 0 nm or the retardation of the positive birefringent resin layer is Ro> 0 nm, the slow axis of the positive birefringent resin layer and the negative birefringent layer The laminated retardation film of the present invention in which the slow axis is orthogonal is preferably used. At this time, a polarizer disposed so as to have an absorption axis parallel to the slow axis direction of the liquid crystal during black display, that is, a polarizer located on the opposite side across the liquid crystal cell, and the glass substrate It is preferable that the in-plane retardation Ro of the retardation film disposed therebetween is substantially zero. More preferably, the retardation Rt in the thickness direction is | Rt | ≦ 45 nm, more preferably | Rt | ≦ 5 nm. Such a retardation film can also serve as a polarizing plate protective film.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 《積層位相差フィルムの作製》
 〈正の複屈折性樹脂層P1の作製と延伸〉
 微粒子(アエロジル R972V 日本アエロジル(株)製)     11質量部
 エタノール                            89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
Example 1
<< Production of Laminated Retardation Film >>
<Preparation and Stretching of Positive Birefringent Resin Layer P1>
Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) 11 parts by weight Ethanol 89 parts by weight The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
 〈インライン添加液〉
 メチレンクロライドを入れた溶解タンクにセルロースエステルAを添加し、加熱して完全に溶解させた後、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過した。
<In-line additive solution>
Cellulose ester A was added to a dissolution tank containing methylene chloride and heated to completely dissolve, and this was then added to Azumi filter paper No. 3 manufactured by Azumi Filter Paper Co., Ltd. Filtered using 244.
 濾過後のセルロースエステル溶液を充分に攪拌しながら、ここに微粒子分散液をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、インライン添加液を調製した。 While finely stirring the filtered cellulose ester solution, the fine particle dispersion was slowly added thereto. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare an in-line additive solution.
 メチレンクロライド                        99質量部
 セルロースエステルA                        4質量部
 微粒子分散液                           11質量部
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースエステルAを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。
Methylene chloride 99 parts by weight Cellulose ester A 4 parts by weight Fine particle dispersion 11 parts by weight A main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose ester A was added to a pressurized dissolution tank containing a solvent while stirring. This is completely dissolved with heating and stirring. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
  〈主ドープ液の組成〉
 メチレンクロライド                       380質量部
 エタノール                            70質量部
 セルロースエステルA                      100質量部
 (メタ)アクリル系重合体A                   5.5質量部
 糖エステル化合物A                       5.5質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液Aを調製した。
<Composition of main dope solution>
Methylene chloride 380 parts by weight Ethanol 70 parts by weight Cellulose ester A 100 parts by weight (Meth) acrylic polymer A 5.5 parts by weight Sugar ester compound A 5.5 parts by weight The above is put into a sealed container, heated and stirred. However, Azumi Filter Paper No. manufactured by Azumi Filter Paper Co., Ltd. 24, and the dope liquid A was prepared.
 製膜ライン中で日本精線(株)製のファインメットNFでドープ液を濾過した。インライン添加液ライン中で、日本精線(株)製のファインメットNFでインライン添加液を濾過した。濾過したドープ液を100質量部に対し、濾過したインライン添加液を2質量部加えて、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分混合し、次いで、ベルト流延装置を用い、温度35℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が120%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。剥離したセルロースエステルのウェブを50℃で溶媒を蒸発させ、1.65m幅にスリットし、その後、テンターでTD方向(フィルムの搬送方向と直交する方向)に、160℃で1.2倍(20%)に延伸し、さらに搬送張力を加えてMD方向(フィルム搬送方向)に1.1倍(10%)に延伸した。120℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1500mm幅にスリットし、フィルム両端に幅15mm、平均高さ10μmのナーリング加工を施し、平均膜厚が52μmの正の複屈折性樹脂層P1を作製した。フィルム幅は1.5m、巻き長は5000mであった。 The dope solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. in the film production line. In the inline additive solution line, the inline additive solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. Add 2 parts by weight of the filtered in-line additive to 100 parts by weight of the filtered dope solution, mix thoroughly with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ), and then use a belt casting apparatus. It was cast at a temperature of 35 ° C. and a width of 2 m uniformly on a stainless steel band support. With the stainless steel band support, the solvent was evaporated until the residual solvent amount became 120%, and then peeled off from the stainless steel band support. The peeled cellulose ester web was evaporated at 50 ° C. and the solvent was slit to a width of 1.65 m, and then 1.2 times at 160 ° C. in the TD direction (direction perpendicular to the film transport direction) (20 %), And further applied with a transport tension to stretch 1.1 times (10%) in the MD direction (film transport direction). Drying is completed while transporting through a 120 ° C drying zone with many rolls, slitting to a width of 1500mm, knurling with a width of 15mm and an average height of 10μm at both ends of the film, and positive birefringence with an average film thickness of 52μm Resin layer P1 was produced. The film width was 1.5 m and the winding length was 5000 m.
 以下、実施例に使用した材料である。 The following are the materials used in the examples.
 セルロースエステルA:アセチル基置換度1.8、プロピオニル基置換度0.9、総アシル基置換度2.7
 (メタ)アクリル系重合体A:特開2000-128911号公報に記載の重合方法により塊状重合を行った。すなわち、攪拌機、窒素ガス導入管、温度計、投入口及び環流冷却管を備えたフラスコにモノマーとしてメチルアクリレートを投入し、窒素ガスを導入してフラスコ内を窒素ガスで置換したチオグリセロールを攪拌下添加した。
Cellulose ester A: acetyl group substitution degree 1.8, propionyl group substitution degree 0.9, total acyl group substitution degree 2.7
(Meth) acrylic polymer A: Bulk polymerization was performed by the polymerization method described in JP-A No. 2000-128911. That is, methyl acrylate was introduced as a monomer into a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, an inlet, and a reflux condenser, and nitrogen gas was introduced and the inside of the flask was replaced with nitrogen gas while stirring. Added.
 チオグリセロール添加後、4時間重合を行い、内容物を室温に戻し、それにベンゾキノン5質量%テトラヒドロフラン溶液を20質量部添加し、重合を停止させた。内容物をエバポレーターに移し、80℃で減圧下、テトラヒドロフラン、残存モノマー及び残存チオグリセロールを除去し、分子量1000の(メタ)アクリル系重合体Aを得た。 After the addition of thioglycerol, polymerization was carried out for 4 hours, the contents were returned to room temperature, and 20 parts by mass of a 5% by mass benzoquinone tetrahydrofuran solution was added thereto to terminate the polymerization. The contents were transferred to an evaporator, and tetrahydrofuran, residual monomer and residual thioglycerol were removed under reduced pressure at 80 ° C. to obtain a (meth) acrylic polymer A having a molecular weight of 1000.
 糖エステル化合物A:糖エステル化合物例示化合物3
 〈正の複屈折性樹脂層P2の作製と延伸〉
 ドープの流涎、剥離まではP1と同様に行ったのち、剥離したセルロースエステルフィルムのウェブを55℃で溶媒を蒸発させ、その後、テンターでクリッピングしてTD方向に160℃で1.3倍(30%)に延伸した。その後、120℃でロール搬送させながら乾燥を終了させ、1500mm幅にスリットし、フィルム両端に幅15mm、平均高さ12μmのナーリング加工を施し、平均膜厚は38μmの正の複屈折性樹脂層P2を得た。フィルムの、膜厚変動は幅手方向、長手方向とも±1μm以内であり、巻長は5000mであった。
Sugar ester compound A: Sugar ester compound exemplified compound 3
<Preparation and Stretching of Positive Birefringent Resin Layer P2>
After the dope fluency and peeling, the same procedure as in P1 was performed, and then the peeled cellulose ester film web was evaporated at 55 ° C., then clipped with a tenter and 1.3 times (160 times in the TD direction at 160 ° C.) %). Thereafter, drying is completed while being conveyed at 120 ° C., slitting to 1500 mm width, a knurling process of 15 mm width and average height of 12 μm is applied to both ends of the film, and a positive birefringent resin layer P2 having an average film thickness of 38 μm. Got. The film thickness variation was within ± 1 μm in both the width direction and the longitudinal direction, and the winding length was 5000 m.
 〈正の複屈折性樹脂層P3の作製と延伸〉
 ドープの流涎、剥離まではP1と同様に行ったのち、剥離したセルロースエステルフィルムのウェブを55℃で溶媒を蒸発させ、その後、テンターでクリッピングしてTD方向に160℃で1.1倍(10%)に延伸し、さらに搬送張力を加えてMD方向に1.25倍(25%)に延伸した。その後、120℃でロール搬送させながら乾燥を終了させ、1500mm幅にスリットし、フィルム両端に幅15mm、平均高さ12μmのナーリング加工を施し、平均膜厚は50μmの正の複屈折性樹脂層P3を得た。フィルムの、膜厚変動は幅手方向、長手方向とも±1μm以内であり、巻長は5000mであった。
<Preparation and Stretching of Positive Birefringent Resin Layer P3>
After the dope fluency and peeling, the same procedure as in P1 was performed, and then the peeled cellulose ester film web was evaporated at 55 ° C., then clipped with a tenter and 1.1 times (160 times in the TD direction at 160 ° C.) %), And further by applying a transport tension, the film was stretched 1.25 times (25%) in the MD direction. Thereafter, drying is completed while being conveyed at 120 ° C., slitting is performed to a width of 1500 mm, and both ends of the film are subjected to a knurling process having a width of 15 mm and an average height of 12 μm. Got. The film thickness variation was within ± 1 μm in both the width direction and the longitudinal direction, and the winding length was 5000 m.
 〈正の複屈折性樹脂層P4の作製と延伸〉
 セルロースアセテートプロピオネート(アセチル基置換度1.9、プロピオニル基置換度0.7、総アシル基置換度2.6、数平均分子量80000、重量平均分子量220000)                            100質量部
 トリフェニルホスフェート                      8質量部
 エチルフタリルエチルグリコレート                  4質量部
 二酸化珪素微粒子(アエロジルR972V 日本アエロジル(株)製)
                                 0.2質量部
 メチレンクロライド                       330質量部
 エタノール                            60質量部
 以上を密閉容器に投入し、過熱し、攪拌しながら完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液を調製した。更に日本精線(株)製のファインメットNFでドープ液を濾過した。二酸化珪素微粒子は、あらかじめ添加するエタノールの一部を用いて分散して添加した。
<Preparation and Stretching of Positive Birefringent Resin Layer P4>
Cellulose acetate propionate (acetyl group substitution degree 1.9, propionyl group substitution degree 0.7, total acyl group substitution degree 2.6, number average molecular weight 80000, weight average molecular weight 220,000) 100 parts by mass Triphenyl phosphate 8 parts by mass Ethylphthalyl ethyl glycolate 4 parts by mass Silicon dioxide fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.)
0.2 parts by mass Methylene chloride 330 parts by mass Ethanol 60 parts by mass The above was put into a sealed container, heated, dissolved completely with stirring, and manufactured by Azumi Filter Paper No. No. 24 was used for filtration to prepare a dope solution. Further, the dope solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. The silicon dioxide fine particles were dispersed and added using a part of ethanol added in advance.
 次いでベルト流延装置を用い、2m幅でステンレスバンド支持体(表面温度25℃)に均一に流延した。残留溶媒量が100%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。剥離したセルロースエステルフィルムのウェブを55℃で溶媒を蒸発させ、その後、テンターでクリッピングしてTD方向に125℃で1.01倍(1%)に延伸し、さらに搬送張力を加えてMD方向に1.2倍(20%)に延伸した。その後、120℃でロール搬送させながら乾燥を終了させ、1500mm幅にスリットし、フィルム両端に幅15mm、平均高さ12μmのナーリング加工を施し、正の複屈折性樹脂層P4を得た。フィルム平均膜厚は80μm、膜厚変動は幅手方向、長手方向とも±1μm以内であり、巻長は5000mであった。 Next, using a belt casting apparatus, the belt was uniformly cast on a stainless band support (surface temperature 25 ° C.) with a width of 2 m. The solvent was evaporated until the residual solvent amount reached 100%, and then peeled off from the stainless steel band support. The web of the peeled cellulose ester film was evaporated at 55 ° C, then clipped with a tenter and stretched 1.01 times (1%) at 125 ° C in the TD direction, and further conveyed tension was applied in the MD direction. The film was stretched 1.2 times (20%). Then, drying was completed while being rolled at 120 ° C., slitting to a width of 1500 mm, and knurling with a width of 15 mm and an average height of 12 μm were applied to both ends of the film to obtain a positive birefringent resin layer P4. The film average film thickness was 80 μm, the film thickness variation was within ± 1 μm in both the width direction and the longitudinal direction, and the winding length was 5000 m.
 〈正の複屈折性樹脂層P5の作製と延伸〉
 (二酸化珪素分散液)
 アエロジル972V(日本アエロジル(株)製)           12質量部
  (一次粒子の平均径16nm、見掛け比重90g/リットル)
 エタノール                            88質量部
 以上をディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。分散後の液濁度は200ppmであった。二酸化珪素分散液に88質量部のメチレンクロライドを撹拌しながら投入し、ディゾルバーで30分間撹拌混合し、二酸化珪素分散希釈液を作製した。
<Preparation and Stretching of Positive Birefringent Resin Layer P5>
(Silicon dioxide dispersion)
Aerosil 972V (manufactured by Nippon Aerosil Co., Ltd.) 12 parts by mass (average primary particle diameter 16 nm, apparent specific gravity 90 g / liter)
88 parts by mass of ethanol or more was stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton Gorin. The liquid turbidity after dispersion was 200 ppm. 88 parts by mass of methylene chloride was added to the silicon dioxide dispersion while stirring, and the mixture was stirred and mixed for 30 minutes with a dissolver to prepare a silicon dioxide dispersion dilution.
 (インライン添加液の作製)
 チヌビン109(チバスペシャルティケミカルズ(株)製)      11質量部
 チヌビン171(チバスペシャルティケミカルズ(株)製)       5質量部
 メチレンクロライド                       100質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、濾過した。
(Production of in-line additive solution)
Tinuvin 109 (manufactured by Ciba Specialty Chemicals) 11 parts by weight Tinuvin 171 (manufactured by Ciba Specialty Chemicals) 5 parts by weight 100 parts by weight of methylene chloride Dissolved and filtered.
 これに二酸化珪素分散希釈液を36質量部、撹拌しながら加えて、さらに30分間撹拌した後、セルロースアセテートプロピオネート(アセチル基置換度1.9、プロピオニル基置換度0.8、総アシル基置換度2.7)6質量部を撹拌しながら加えて、さらに60分間撹拌した後、アドバンテック東洋(株)のポリプロピレンワインドカートリッジフィルターTCW-PPS-1Nで濾過し、インライン添加液を調製した。 To this was added 36 parts by mass of silicon dioxide dispersion diluted solution while stirring, and further stirred for 30 minutes, and then cellulose acetate propionate (acetyl group substitution degree 1.9, propionyl group substitution degree 0.8, total acyl group). The degree of substitution was 2.7) 6 parts by mass was added with stirring, and the mixture was further stirred for 60 minutes, and then filtered through a polypropylene wind cartridge filter TCW-PPS-1N manufactured by Advantech Toyo Co., Ltd. to prepare an in-line additive solution.
 (ドープ液の調製)
 セルロースエステル(リンター綿から合成されたセルローストリアセテート)
                                 100質量部
 (Mn=148000、Mw=310000、Mw/Mn=2.1、アセチル基置換度2.92)
 トリメチロールプロパントリベンゾエート             5.0質量部
 エチルフタリルエチルグリコレート                5.5質量部
 メチレンクロライド                       440質量部
 エタノール                            40質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープ液を調製した。
(Preparation of dope solution)
Cellulose ester (cellulose triacetate synthesized from linter cotton)
100 parts by mass (Mn = 148000, Mw = 310000, Mw / Mn = 2.1, acetyl group substitution degree 2.92)
Trimethylolpropane tribenzoate 5.0 parts by weight Ethylphthalylethyl glycolate 5.5 parts by weight Methylene chloride 440 parts by weight Ethanol 40 parts by weight The above is put into a closed container, heated and stirred, and completely dissolved. Azumi Filter Paper No. manufactured by Azumi Filter Paper Co., Ltd. No. 24 was used for filtration to prepare a dope solution.
 製膜ライン中で日本精線(株)製のファインメットNFでドープ液を濾過した。インライン添加液ライン中で、日本精線(株)製のファインメットNFでインライン添加液を濾過した。濾過したドープ液を100質量部に対し、濾過したインライン添加液を2質量部加えて、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分混合し、次いで、ベルト流延装置を用い、温度35℃、1800mm幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が120%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。剥離したセルロースエステルのウェブを35℃で溶媒を蒸発させ、1650mm幅にスリットし、その後、テンターでTD方向に1.1倍に延伸しながら、135℃の乾燥温度で、乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は30%であった。 The dope solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. in the film production line. In the inline additive solution line, the inline additive solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. Add 2 parts by weight of the filtered in-line additive to 100 parts by weight of the filtered dope solution, mix thoroughly with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ), and then use a belt casting apparatus. Used at a temperature of 35 ° C. and a width of 1800 mm and uniformly cast on a stainless steel band support. With the stainless steel band support, the solvent was evaporated until the residual solvent amount became 120%, and then peeled off from the stainless steel band support. The peeled cellulose ester web was evaporated at 35 ° C., slit to 1650 mm width, and then dried at a drying temperature of 135 ° C. while stretching 1.1 times in the TD direction with a tenter. At this time, the residual solvent amount when starting stretching with a tenter was 30%.
 その後、110℃、120℃の乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させ、1400mm幅にスリットし、フィルム両端に幅15mm、平均高さ10μmのナーリング加工を施し、巻き取り初期張力220N/m、終張力110N/mで内径6インチコアに巻き取り、正の複屈折性樹脂層P5を得た。ステンレスバンド支持体の回転速度とテンターの運転速度から算出される剥離直後のMD方向の延伸倍率は1.07倍であった。正の複屈折性樹脂層P5の、平均膜厚は84μm、巻長は5000mであった。 Thereafter, drying is completed while transporting the drying zone of 110 ° C. and 120 ° C. with a number of rolls, slitting to a width of 1400 mm, a knurling process having a width of 15 mm and an average height of 10 μm is applied to both ends of the film, and an initial winding tension of 220 N / M and a final tension of 110 N / m were wound around a 6-inch inner diameter core to obtain a positive birefringent resin layer P5. The draw ratio in the MD direction immediately after peeling calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.07. The positive birefringent resin layer P5 had an average film thickness of 84 μm and a winding length of 5000 m.
 〈正の複屈折性樹脂層P6の作製と延伸〉
 ノルボルネン系樹脂(アートンG JSR社製)           80質量部
 AEROSIL 200V(日本アエロジル社製)         0.1質量部
 メチレンクロライド                       250質量部
 エタノール                            10質量部
 上記の材料を、順次密閉容器中に投入し、容器内温度を70℃まで加熱し、撹拌しながら、ノルボルネン系樹脂を完全に溶解し、ノルボルネン系樹脂溶液(ドープ)を得た。その後、攪拌を停止し、液温を43℃まで下げた。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ドープを得た。次いでベルト流延装置を用い、2m幅でステンレスバンド支持体(表面温度35℃)に均一に流延した。残留溶媒量が100%になるまで溶媒を蒸発させ、ステンレスバンド支持体上から剥離した。剥離したウェブを55℃で溶媒を蒸発させ、その後、テンターでクリッピングしてTD方向に125℃で1.2倍(20%)に延伸した。その後、120℃でロール搬送させながら乾燥を終了させ、1500mm幅にスリットし、フィルム両端に幅15mm、平均高さ12μmのナーリング加工を施し、正の複屈折性樹脂層P6を得た。フィルム平均膜厚は45μm、膜厚変動は幅手方向、長手方向とも±1μm以内であり、巻長は5000mであった。
<Preparation and Stretching of Positive Birefringent Resin Layer P6>
Norbornene resin (Arton G JSR) 80 parts by mass AEROSIL 200V (Nippon Aerosil Co., Ltd.) 0.1 parts by mass Methylene chloride 250 parts by mass Ethanol 10 parts by mass While heating the temperature to 70 ° C. and stirring, the norbornene resin was completely dissolved to obtain a norbornene resin solution (dope). Then, stirring was stopped and the liquid temperature was lowered to 43 ° C. The dope was filtered using a filter paper (Azumi filter paper No. 244, manufactured by Azumi Filter Paper Co., Ltd.) to obtain a dope. Subsequently, using a belt casting apparatus, it was uniformly cast on a stainless steel band support (surface temperature 35 ° C.) with a width of 2 m. The solvent was evaporated until the residual solvent amount reached 100%, and then peeled off from the stainless steel band support. The peeled web was evaporated at 55 ° C., then clipped with a tenter and stretched 1.2 times (20%) at 125 ° C. in the TD direction. Thereafter, drying was completed while being conveyed by a roll at 120 ° C., slitting to a width of 1500 mm, and knurling with a width of 15 mm and an average height of 12 μm were applied to both ends of the film to obtain a positive birefringent resin layer P6. The film average film thickness was 45 μm, the film thickness variation was within ± 1 μm in both the width direction and the longitudinal direction, and the winding length was 5000 m.
 以上、得られた正の複屈折性樹脂層P1~P6は、アッベ屈折率計-4T((株)アタゴ製)に多波長光源を用いて屈折率測定を行い、延伸方向の屈折率をNx、また直交する面内方向の屈折率をNyとした時に(Nx-Ny)>0であり、正の複屈折性を有していた。 The obtained positive birefringent resin layers P1 to P6 were subjected to refractive index measurement using a multi-wavelength light source for Abbe refractometer-4T (manufactured by Atago Co., Ltd.), and the refractive index in the stretching direction was set to Nx Further, when the refractive index in the orthogonal in-plane direction is Ny, (Nx−Ny)> 0 and positive birefringence was exhibited.
 〈負の複屈折性樹脂〉
 製造例1
 オートクレーブ中にN-ビニルカルバゾール20質量%、メタクリル酸メチル80質量%の単量体混合物50質量部と、アゾビスイソブチロニトリル2質量部を加え、トルエン800質量部を加えて溶解した。密栓した後、60℃の雰囲気下に48時間静置し共重合させた。重合終了後メタノールを添加し、重合体を沈殿させた。冷却、濾過、洗浄、乾燥工程を経て白色粉末として負の複屈折性樹脂N1を得た。この共重合体は、標準ポリスチレンを基準とするGPC分析により、重量平均分子量は520000であった。NMRスペクトルから、上記共重合体が、N-ビニルカルバゾールとメタクリル酸メチルの共重合体であることを確認した。上記重合体の組成は略、N-ビニルカルバゾール:メタクリル酸メチル=20:80であった。
<Negative birefringent resin>
Production Example 1
In an autoclave, 50 parts by mass of a monomer mixture of 20% by mass of N-vinylcarbazole and 80% by mass of methyl methacrylate and 2 parts by mass of azobisisobutyronitrile were added and dissolved by adding 800 parts by mass of toluene. After sealing, the mixture was allowed to stand for 48 hours in an atmosphere of 60 ° C. for copolymerization. After completion of the polymerization, methanol was added to precipitate the polymer. A negative birefringent resin N1 was obtained as a white powder through cooling, filtration, washing, and drying steps. This copolymer had a weight average molecular weight of 520000 by GPC analysis based on standard polystyrene. From the NMR spectrum, it was confirmed that the copolymer was a copolymer of N-vinylcarbazole and methyl methacrylate. The composition of the polymer was approximately N-vinylcarbazole: methyl methacrylate = 20: 80.
 同様にして負の複屈折性樹脂N2~N7を合成した。N-ビニルカルバゾールモノマー単位とメタクリル酸メチルモノマー単位がそれぞれ表1に示される割合で含まれる共重合体であった。 Similarly, negative birefringent resins N2 to N7 were synthesized. The copolymer contained N-vinylcarbazole monomer units and methyl methacrylate monomer units in the proportions shown in Table 1, respectively.
 それらを単独で製膜、延伸を行い得られたフィルムに対して、アッベ屈折率計-4T((株)アタゴ製)に多波長光源を用いて屈折率測定を行い、延伸方向の屈折率をNx、また直交する面内方向の屈折率をNyとした時に(Nx-Ny)<0であり、負の複屈折性を有していた。 The film obtained by film formation and stretching alone was subjected to refractive index measurement using Abbe refractometer-4T (manufactured by Atago Co., Ltd.) using a multi-wavelength light source to determine the refractive index in the stretching direction. When the refractive index in the in-plane direction perpendicular to Nx is Ny, (Nx−Ny) <0 and negative birefringence was exhibited.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 〈積層位相差フィルム1~12の作製〉
 〈積層体の形成と延伸〉
 負の複屈折性樹脂N1                       30質量部
 メチルエチルケトン                        70質量部
 以上を密閉容器に投入し、過熱、攪拌しながら完全に溶解し塗布溶液を作製した。コンマコーターを用いて正の複屈折性樹脂層P1上に塗工し、80℃乾燥を行って積層体を形成した。得られた積層体を130℃に加熱しながら、縦延伸機を用いて搬送方向に10%延伸を行い積層位相差フィルム1とした。負の複屈折性樹脂層の膜厚は19μm、正の複屈折性樹脂層の膜厚は50μmであった。
<Preparation of Laminated Retardation Films 1-12>
<Formation and stretching of laminate>
Negative birefringent resin N1 30 mass parts Methyl ethyl ketone 70 mass parts The above was put into an airtight container and completely dissolved with heating and stirring to prepare a coating solution. It coated on the positive birefringent resin layer P1 using the comma coater, and dried at 80 degreeC, and the laminated body was formed. While the obtained laminate was heated to 130 ° C., the laminate retardation film 1 was obtained by stretching 10% in the transport direction using a longitudinal stretching machine. The film thickness of the negative birefringent resin layer was 19 μm, and the film thickness of the positive birefringent resin layer was 50 μm.
 また、積層体の位相差をAxoScanTMにより測定したところ、負の複屈折性樹脂層の位相差はRo=150nm、Rt=-90nm、正の複屈折性樹脂層の位相差はRo=0nm、Rt=100nmであった。 Further, when the phase difference of the laminate was measured by AxoScan , the phase difference of the negative birefringent resin layer was Ro = 150 nm, Rt = −90 nm, the phase difference of the positive birefringent resin layer was Ro = 0 nm, Rt = 100 nm.
 積層位相差フィルム1と同様にして、表2の組み合わせに従い積層体を形成し、表2の条件で搬送方向に延伸を行って積層位相差フィルム2~5、8~12を作製した。得られたフィルムの膜厚、位相差を表2、表3に示す。 In the same manner as in the laminated retardation film 1, a laminate was formed according to the combinations in Table 2, and stretched in the transport direction under the conditions in Table 2 to produce laminated retardation films 2 to 5 and 8 to 12. Tables 2 and 3 show the film thickness and retardation of the obtained film.
 積層位相差フィルム7の延伸を試みたところ、延伸倍率1%未満で塗膜が破断してしまい、位相差フィルムとしての形を成さなかった。また、塗膜の延伸が可能な250℃での延伸を行った積層位相差フィルム6に関しては、基材層の位相差が熱によって緩和し十分な位相差が発現しなかった。 When an attempt was made to stretch the laminated retardation film 7, the coating film was broken at a stretching ratio of less than 1% and did not form a retardation film. In addition, regarding the laminated retardation film 6 that was stretched at 250 ° C. where the coating film can be stretched, the retardation of the base material layer was relaxed by heat and a sufficient retardation was not exhibited.
 《積層位相差フィルムの評価》
 (レターデーションRo、Rtの測定)
 AXOMETRICS社製 AxoScanTMを用い、23℃相対湿度55%下にて590nmの波長における積層体のミューラーマトリクスを測定した。
<< Evaluation of Laminated Retardation Film >>
(Measurement of retardation Ro and Rt)
Using AxoScan manufactured by AXOMETRICS, the Mueller matrix of the laminate at a wavelength of 590 nm was measured at 23 ° C. and 55% relative humidity.
 その値と、あらかじめ測定しておいた各層の厚みを用いて、解析ソフトMulti-Layer Softwareにより正の複屈折性樹脂層と負の複屈折性樹脂層それぞれのRo、Rtを算出した。 Using the value and the thickness of each layer measured in advance, Ro and Rt of the positive birefringent resin layer and the negative birefringent resin layer were calculated by the analysis software Multi-Layer Software.
 ここでいうRo、Rtとは、
 Ro=(nx+ny)×d
 Rt=((nx+ny)/2-nz)×d
で定義される値であり、nxは各層面内における遅相軸方向の屈折率、nyは各層面内における遅相軸に直交する方向の屈折率、dは各層の厚み(nm)をそれぞれ表す。
Ro and Rt here are
Ro = (nx + ny) × d
Rt = ((nx + ny) / 2−nz) × d
Nx is the refractive index in the slow axis direction in each layer surface, ny is the refractive index in the direction perpendicular to the slow axis in each layer surface, and d is the thickness (nm) of each layer. .
 (膜厚の測定)
 フィルムをエポキシ樹脂に包埋したのち、ミクロトーム(大和工業社製、RUB-2100)を用いてスライスし、走査電子顕微鏡を用いて断面を観察し測定した。
(Measurement of film thickness)
After embedding the film in an epoxy resin, it was sliced using a microtome (RUB-2100, manufactured by Daiwa Kogyo Co., Ltd.), and the cross section was observed and measured using a scanning electron microscope.
 (ロール搬送適性)
 作製した積層位相差フィルムのロール搬送を行い、搬送終了後の様子を観察し、下記の基準でロール搬送適性を評価した。
(Roll transportability)
The produced laminated phase difference film was conveyed by rolls, the state after completion of conveyance was observed, and roll conveyance suitability was evaluated according to the following criteria.
  ○ 塗布層にクラックが全くない
  △ 塗布層端部にややクラックが生じる
  × 塗布層全体にクラックが生じる
 《偏光板、液晶表示装置への適用》
 〈偏光板の作製〉
 積層位相差フィルム1~6、8~11のセルロースエステル側(正の複屈折性樹脂層側)をアルカリ鹸化処理し下記偏光板保護フィルムとした。次いで厚さ120μmのポリビニルアルコールフィルムを、沃素1kg、ホウ酸4kgを含む水溶液100kgに浸漬し50℃で6倍に延伸して偏光子を作製し該偏光子の片面に、上記積層位相差フィルムを完全ケン化型ポリビニルアルコール5%水溶液を粘着剤として、積層体の延伸方向と偏光子の延伸方向を合わせ、かつ正の複屈折性樹脂層面側が偏光子側になるように各々貼合した。もう一方の面にコニカミノルタタックフィルムKC8UX(コニカミノルタオプト(株)製)を同様にアルカリケン化処理して貼り合わせて偏光板1~6、8~11を作製した。
○ There are no cracks in the coating layer. △ Some cracking occurs at the end of the coating layer. × Cracks occur in the entire coating layer. << Application to polarizing plates and liquid crystal display devices >>
<Preparation of polarizing plate>
The cellulose ester side (positive birefringent resin layer side) of the laminated retardation films 1 to 6 and 8 to 11 was subjected to alkali saponification treatment to obtain the following polarizing plate protective film. Next, a 120 μm-thick polyvinyl alcohol film was immersed in 100 kg of an aqueous solution containing 1 kg of iodine and 4 kg of boric acid, and stretched 6 times at 50 ° C. to produce a polarizer, and the laminated retardation film was formed on one side of the polarizer. Using a fully saponified polyvinyl alcohol 5% aqueous solution as an adhesive, the laminate was aligned with the stretching direction of the polarizer and the stretching direction of the polarizer, and the positive birefringent resin layer side was bonded to the polarizer side. On the other side, Konica Minolta-tack film KC8UX (manufactured by Konica Minolta Opto Co., Ltd.) was similarly subjected to alkali saponification treatment and bonded to produce polarizing plates 1 to 6 and 8 to 11.
 また、同様に偏光子を作製し、ポリエステル系アイオノマー型ウレタン樹脂の水性エマルジョン(大日本インキ化学工業(株)製の商品名“ハイドラン AP-20”、固形分濃度30%、粘度30mPa・sec)100部に、ポリイソシアネート化合物(大日本インキ化学工業(株)製の商品名“ハイドラン アシスター C1”)3部を加えたものを接着剤として、積層位相差フィルム12の積層体の延伸方向と偏光子の延伸方向を合わせ、かつ正の複屈折性樹脂層面側が偏光子側になるように各々貼合した。偏光子のもう一方をコニカミノルタタックフィルムKC8UX(コニカミノルタオプト(株)製)をアルカリケン化処理して貼り合わせて偏光板12を作製した。 Similarly, a polarizer was prepared, and an aqueous emulsion of a polyester-based ionomer type urethane resin (trade name “Hydran AP-20” manufactured by Dainippon Ink & Chemicals, Inc., solid content concentration 30%, viscosity 30 mPa · sec) Stretching direction and polarization of laminate of laminated retardation film 12 with 100 parts added with 3 parts of polyisocyanate compound (trade name “Hydran Assister C1” manufactured by Dainippon Ink & Chemicals, Inc.) The stretching directions of the polarizers were matched, and each was bonded so that the positive birefringent resin layer surface side was the polarizer side. The other side of the polarizer was subjected to alkali saponification treatment with Konica Minolta Tack Film KC8UX (manufactured by Konica Minolta Opto Co., Ltd.) to produce a polarizing plate 12.
 〈液晶表示装置の作製と評価〉
 松下電器産業株式会社製液晶テレビVIERALX60(26インチ)の視認側の偏光板を剥がし、代わりに作製した偏光板1~6、8~12を、元の偏光子の軸と同様になるようにして日東電工株式会社製粘着剤CS9621を介して貼り合わせ、バックライト側の偏光板としては、コニカミノルタタックフィルムKC4UE(コニカミノルタオプト(株)製)を偏光板保護フィルムとして用いた偏光板を貼って液晶表示装置1~6、8~12とした。
<Production and evaluation of liquid crystal display devices>
Remove the polarizing plate on the viewing side of the LCD TV VIERALX60 (26 inches) manufactured by Matsushita Electric Industrial Co., Ltd., and replace the polarizing plates 1 to 6 and 8 to 12 that were produced in the same manner as the axis of the original polarizer. A polarizing plate using a Konica Minolta-tack film KC4UE (manufactured by Konica Minolta Opto Co., Ltd.) as a polarizing plate protective film is pasted together through an adhesive CS9621 manufactured by Nitto Denko Corporation. Liquid crystal display devices 1 to 6 and 8 to 12 were used.
 (画面のムラ評価)
 作製した液晶表示装置1~6、8~12の黒表示画面を暗所下で目視観察し(10人)、下記の基準でムラ評価を行った。
(Screen unevenness evaluation)
The black display screens of the produced liquid crystal display devices 1 to 6 and 8 to 12 were visually observed in a dark place (10 persons), and unevenness was evaluated according to the following criteria.
  ◎ ムラを観察した人数が0人
  ○ ムラを観察した人数が1~3人
  △ ムラを観察した人数が4~9人
  × ムラを観察した人数が10人
 (視野角の評価)
 ELDIM製EZcontrast160Dを用いて作製した液晶表示装置1~6、8~12の視野角を測定し、方位角45°方向におけるコントラスト比10以上を示す法線方向から傾斜角度を下記基準で評価した。本発明の試料は、極めて高い視野角改善特性を有していた。
◎ Number of people who observed unevenness 0 Number of people who observed unevenness 1-3 people △ Number of people who observed unevenness 4-9 people × Number of people who observed unevenness 10 people (Evaluation of viewing angle)
The viewing angles of the liquid crystal display devices 1 to 6 and 8 to 12 manufactured using EZcontrast 160D manufactured by ELDIM were measured, and the tilt angle from the normal direction showing a contrast ratio of 10 or more in the azimuth angle 45 ° direction was evaluated according to the following criteria. The sample of the present invention had extremely high viewing angle improvement characteristics.
  ○ 50度以上
  △ 30度以上50度未満
  × 30度未満
○ 50 degrees or more △ 30 degrees or more and less than 50 degrees × less than 30 degrees
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 実施例2
 (積層位相差フィルム13の作製)
 製造例1において、メタクリル酸メチル80質量%、N-ビニルカルバゾール20質量%の代わりにアクリロイルモルホリン70質量%、N-ビニルカルバゾール30質量%を用いた以外は同様にして、負の複屈折性樹脂N8を合成した。この樹脂は負の複屈折性を有していた。この負の複屈折性樹脂N8を用いた以外は積層位相差フィルム1と同様にして積層位相差フィルム13を作製した。負の複屈折性樹脂層の位相差はRo=160nm、Rt=-100nm、正の複屈折性樹脂層の位相差はRo=0nm、Rt=100nmであり、ロール搬送時のクラックもなく、液晶表示装置に用いた場合もムラは観察されず広い視野角を示した。
Example 2
(Preparation of laminated retardation film 13)
In the same manner as in Production Example 1, except that 80% by mass of methyl methacrylate and 70% by mass of acryloylmorpholine and 30% by mass of N-vinylcarbazole were used instead of 20% by mass of N-vinylcarbazole. N8 was synthesized. This resin had negative birefringence. A laminated retardation film 13 was produced in the same manner as the laminated retardation film 1 except that this negative birefringent resin N8 was used. The phase difference of the negative birefringent resin layer is Ro = 160 nm, Rt = −100 nm, and the phase difference of the positive birefringent resin layer is Ro = 0 nm, Rt = 100 nm. When used in a display device, no unevenness was observed and a wide viewing angle was shown.
 (積層位相差フィルム14の作製)
 製造例1において、メタクリル酸メチル80質量%、N-ビニルカルバゾール20質量%の代わりにメタクリル酸メチル60質量%、メタクリル酸ブチル10質量%、N-ビニルカルバゾール30質量%とした以外は同様にして、負の複屈折性樹脂N9を合成した。この樹脂は負の複屈折性を有していた。この負の複屈折性樹脂N9を用いた以外は積層位相差フィルム1と同様にして積層位相差フィルム14を作製した。負の複屈折性樹脂層の位相差はRo=150nm、Rt-90nm、基材層の位相差はRo=0nm、Rt=100nmであり、ロール搬送時のクラックもなく、液晶表示装置に用いた場合もムラは観察されず広い視野角を示した。
(Preparation of laminated retardation film 14)
In the same manner as in Production Example 1, except that 80% by mass of methyl methacrylate and 20% by mass of N-vinylcarbazole were replaced by 60% by mass of methyl methacrylate, 10% by mass of butyl methacrylate, and 30% by mass of N-vinylcarbazole. A negative birefringent resin N9 was synthesized. This resin had negative birefringence. A laminated retardation film 14 was produced in the same manner as the laminated retardation film 1 except that this negative birefringent resin N9 was used. The phase difference of the negative birefringent resin layer is Ro = 150 nm, Rt-90 nm, the phase difference of the base material layer is Ro = 0 nm, Rt = 100 nm, there is no crack at the time of roll conveyance, and the liquid crystal display device is used. In this case, no unevenness was observed and a wide viewing angle was shown.
 (積層位相差フィルム15の作製)
 負の複屈折性樹脂N1                       27質量部
 セルロースアセテートブチレート(アセチル基置換度1.1、ブチリル基置換度1.8、重量平均分子量24)                       3質量部
 メチルエチルケトン                        70質量部
 以上を密閉容器に投入し、過熱、攪拌しながら完全に溶解し塗布溶液を作製した。この樹脂混合物は負の複屈折性を有していた。この塗布液を用いたこと以外は積層位相差フィルム1と同様に行い、積層位相差フィルム15を作製した。負の複屈折性樹脂層の位相差はRo=135nm、Rt=-80nm、正の複屈折性樹脂層の位相差はRo=0nm、Rt=100nmであり、ロール搬送時のクラックもなく、液晶表示装置に用いた場合もムラは観察されず広い視野角を示した。
(Preparation of laminated retardation film 15)
Negative birefringent resin N1 27 parts by mass Cellulose acetate butyrate (acetyl group substitution degree 1.1, butyryl group substitution degree 1.8, weight average molecular weight 24) 3 parts by mass Methyl ethyl ketone 70 parts by mass The solution was completely dissolved with heating and stirring to prepare a coating solution. This resin mixture had negative birefringence. A laminated retardation film 15 was produced in the same manner as in the laminated retardation film 1 except that this coating solution was used. The phase difference of the negative birefringent resin layer is Ro = 135 nm, Rt = -80 nm, the phase difference of the positive birefringent resin layer is Ro = 0 nm, Rt = 100 nm, there is no crack at the time of roll conveyance, and the liquid crystal When used in a display device, no unevenness was observed and a wide viewing angle was shown.
 (積層位相差フィルム16の作製)
 製造例1において、メタクリル酸メチル80質量%、N-ビニルカルバゾール20質量%の代わりにメタクリル酸メチル70質量%、2-ビニルカルバゾール30質量%とした以外は同様にして、負の複屈折性樹脂N10を合成した。この樹脂は負の複屈折性を有していた。この負の複屈折性樹脂N10を用いた以外は積層位相差フィルム1と同様にして積層位相差フィルム16を作製した。負の複屈折性樹脂層の位相差はRo=160nm、Rt-100nm、基材層の位相差はRo=0nm、Rt=100nmであり、ロール搬送時のクラックもなく、液晶表示装置に用いた場合もムラは観察されず広い視野角を示した。
(Preparation of laminated retardation film 16)
In the same manner as in Production Example 1, except that 80% by mass of methyl methacrylate and 20% by mass of N-vinylcarbazole were replaced by 70% by mass of methyl methacrylate and 30% by mass of 2-vinylcarbazole. N10 was synthesized. This resin had negative birefringence. A laminated retardation film 16 was produced in the same manner as the laminated retardation film 1 except that this negative birefringent resin N10 was used. The phase difference of the negative birefringent resin layer is Ro = 160 nm, Rt−100 nm, the phase difference of the base material layer is Ro = 0 nm, Rt = 100 nm, there is no crack at the time of roll conveyance, and the liquid crystal display device is used. In this case, no unevenness was observed and a wide viewing angle was shown.

Claims (7)

  1. 正の複屈折性樹脂層と負の複屈折性樹脂層との積層体であり、負の複屈折性樹脂層が、下記一般式(1)で表されるモノマー単位Lとエチレン性不飽和モノマー単位Mとを有する共重合体を含むことを特徴とする積層位相差フィルム。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    (R1~R6のうちのどれか一つのみが一般式(2)で表される置換基であり、それ以外は、水素、F、Cl、Br等のハロゲン、水酸基、カルボキシル基、アミノ基、シアノ基、ニトロ基、ニトロソ基、チオール基、炭素数1~12の飽和炭化水素基、炭素数1~12のアルコキシル基、炭素数1~12のアシル基、炭素数1~12のアシルオキシ基、炭素数1~12のアルキルオキシカルボニル基、水酸基を有する炭素数1~4の炭化水素基、アミノ基を有する炭素数1~4の炭化水素基、炭素数1~4の炭化水素基を有する第2級または第3級アミノ基を表す。
     また、一般式(2)におけるRは、水素、水酸基、カルボキシル基、アミノ基、炭素数1~12の飽和炭化水素基、炭素数1~12のアルコキシル基、炭素数1~12のアシル基、炭素数1~12のアシルオキシ基、炭素数1~12のアルキルオキシカルボニル基、水酸基を有する炭素数1~4の炭化水素基を表す。)
    A laminate of a positive birefringent resin layer and a negative birefringent resin layer, wherein the negative birefringent resin layer is a monomer unit L represented by the following general formula (1) and an ethylenically unsaturated monomer A laminated retardation film comprising a copolymer having units M.
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    (Only one of R 1 to R 6 is a substituent represented by the general formula (2), and other than that, halogen such as hydrogen, F, Cl, Br, hydroxyl group, carboxyl group, amino Group, cyano group, nitro group, nitroso group, thiol group, saturated hydrocarbon group having 1 to 12 carbon atoms, alkoxyl group having 1 to 12 carbon atoms, acyl group having 1 to 12 carbon atoms, acyloxy having 1 to 12 carbon atoms Groups, alkyloxycarbonyl groups having 1 to 12 carbon atoms, hydrocarbon groups having 1 to 4 carbon atoms having a hydroxyl group, hydrocarbon groups having 1 to 4 carbon atoms having an amino group, and hydrocarbon groups having 1 to 4 carbon atoms. Represents a secondary or tertiary amino group.
    R in the general formula (2) is hydrogen, hydroxyl group, carboxyl group, amino group, saturated hydrocarbon group having 1 to 12 carbon atoms, alkoxyl group having 1 to 12 carbon atoms, acyl group having 1 to 12 carbon atoms, It represents an acyloxy group having 1 to 12 carbon atoms, an alkyloxycarbonyl group having 1 to 12 carbon atoms, or a hydrocarbon group having 1 to 4 carbon atoms having a hydroxyl group. )
  2. 前記共重合体が、モノマー単位Lを20~70質量%含有することを特徴とする請求の範囲第1項に記載の積層位相差フィルム。 The laminated retardation film according to claim 1, wherein the copolymer contains 20 to 70% by mass of monomer units L.
  3. 前記正の複屈折性樹脂層が、セルロースエステルからなることを特徴とする請求の範囲第1項または第2項に記載の積層位相差フィルム。 The laminated retardation film according to claim 1 or 2, wherein the positive birefringent resin layer is made of cellulose ester.
  4. 前記正の複屈折性樹脂層に、(メタ)アクリル系重合体と、フラノース構造もしくはピラノース構造を1個有する化合物(A)中のOH基のすべてもしくは一部をエステル化したエステル化化合物、或いはフラノース構造もしくはピラノース構造の少なくとも1種を2個以上、12個以下結合した化合物(B)中のOH基のすべてもしくは一部をエステル化したエステル化化合物とを含有することを特徴とする請求の範囲第1項~第3項のいずれか1項に記載の積層位相差フィルム。 An esterified compound obtained by esterifying all or part of the OH group in the compound (A) having a (meth) acrylic polymer and one furanose structure or one pyranose structure on the positive birefringent resin layer, or And an esterified compound obtained by esterifying all or part of the OH groups in the compound (B) in which 2 or more and 12 or less of at least one of a furanose structure or a pyranose structure are bonded. 4. The laminated retardation film according to any one of items 1 to 3 in the range.
  5. 前記正の複屈折性樹脂層の位相差が、Ro=0~50nm、Rt=80~150nm、負の複屈折性樹脂層の位相差が、Ro=80~200nm、Rt=-70~-150nmであり、各々が面内遅相軸を有する場合は互いの面内遅相軸が直交していることを特徴とする請求の範囲第1項~第4項のいずれか1項に記載の積層位相差フィルム。
    なお、 Ro=(nx-ny)×d
        Rt=((nx+ny)/2-nz)×d
    (式中、nxは樹脂層の面内の遅相軸方向の屈折率を、nyは面内で遅相軸に直交する方向の屈折率を、nzは厚み方向の屈折率を、dは樹脂層の厚み(nm)をそれぞれ表す。屈折率の測定波長は590nmである。)
    The phase difference of the positive birefringent resin layer is Ro = 0 to 50 nm, Rt = 80 to 150 nm, and the phase difference of the negative birefringent resin layer is Ro = 80 to 200 nm, Rt = −70 to −150 nm. 5. The laminate according to any one of claims 1 to 4, wherein when each has an in-plane slow axis, the in-plane slow axes are orthogonal to each other. Retardation film.
    Ro = (nx−ny) × d
    Rt = ((nx + ny) / 2−nz) × d
    (Where nx is the refractive index in the slow axis direction in the plane of the resin layer, ny is the refractive index in the direction perpendicular to the slow axis in the plane, nz is the refractive index in the thickness direction, and d is the resin) (Represents the thickness (nm) of each layer. The measurement wavelength of the refractive index is 590 nm.)
  6. 請求の範囲第1項~第5項のいずれか1項に記載の積層位相差フィルムを少なくとも一方の面に有することを特徴とする偏光板。 A polarizing plate comprising the laminated retardation film according to any one of claims 1 to 5 on at least one surface.
  7. 請求の範囲第6項に記載の偏光板を液晶セルの少なくとも一方の面に有することを特徴とする液晶表示装置。 A liquid crystal display device comprising the polarizing plate according to claim 6 on at least one surface of a liquid crystal cell.
PCT/JP2008/073540 2008-01-10 2008-12-25 Laminated retardation film, polarizing plate and liquid crystal display device WO2009087905A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009548884A JPWO2009087905A1 (en) 2008-01-10 2008-12-25 Laminated retardation film, polarizing plate and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008003035 2008-01-10
JP2008-003035 2008-01-10

Publications (1)

Publication Number Publication Date
WO2009087905A1 true WO2009087905A1 (en) 2009-07-16

Family

ID=40853029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073540 WO2009087905A1 (en) 2008-01-10 2008-12-25 Laminated retardation film, polarizing plate and liquid crystal display device

Country Status (2)

Country Link
JP (1) JPWO2009087905A1 (en)
WO (1) WO2009087905A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265636A (en) * 2008-04-01 2009-11-12 Nippon Shokubai Co Ltd Optical member and image display apparatus having the same
JP2010224500A (en) * 2009-03-25 2010-10-07 Nippon Shokubai Co Ltd Optical film and image display device provided with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007002050A1 (en) * 2005-06-23 2007-01-04 Nitto Denko Corporation Multi-layered compensation film using specified tg material
WO2007125764A1 (en) * 2006-04-25 2007-11-08 Konica Minolta Opto, Inc. Retardation film, polarizing plate and liquid crystal display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007002050A1 (en) * 2005-06-23 2007-01-04 Nitto Denko Corporation Multi-layered compensation film using specified tg material
WO2007125764A1 (en) * 2006-04-25 2007-11-08 Konica Minolta Opto, Inc. Retardation film, polarizing plate and liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265636A (en) * 2008-04-01 2009-11-12 Nippon Shokubai Co Ltd Optical member and image display apparatus having the same
JP2010224500A (en) * 2009-03-25 2010-10-07 Nippon Shokubai Co Ltd Optical film and image display device provided with the same

Also Published As

Publication number Publication date
JPWO2009087905A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5067373B2 (en) Horizontal electric field switching mode type liquid crystal display device
JP5299270B2 (en) Retardation film, polarizing plate, liquid crystal display device and method for producing retardation film
JP5181862B2 (en) Optical film and polarizing plate
JP5228918B2 (en) Polarizing plate and liquid crystal display device
JPWO2009004998A1 (en) Polarizing plate and liquid crystal display device
JP2009210777A (en) Optical film and polarizing plate using same
KR101431292B1 (en) Ips mode liquid crystal display apparatus and process for manufacturing the same
JP5071257B2 (en) Retardation film, method for producing retardation film, polarizing plate and liquid crystal display device
JP5170093B2 (en) Liquid crystal display
WO2011136014A1 (en) Phase difference film, polarization plate using the same, and liquid crystal display unit
WO2011114764A1 (en) Retardation film and polarizing plate equipped with same
WO2008044452A1 (en) Lateral electric field switching mode type liquid crystal display
WO2009087905A1 (en) Laminated retardation film, polarizing plate and liquid crystal display device
JP5446862B2 (en) Horizontal electric field switching mode type liquid crystal display device
WO2009107407A1 (en) Phase difference film, polarizing plate, and liquid crystal display device
JP2011232428A (en) Inclined retardation film and liquid crystal display device
JP6330870B2 (en) Polarizing plate and liquid crystal display device using the same
JP2009122422A (en) Retardation film, polarizing plate, and liquid crystal display device
WO2010041514A1 (en) Optical film and polarizing plate using the optical film
JP5062261B2 (en) Vertical alignment type liquid crystal panel, vertical alignment type liquid crystal display device
JP5012597B2 (en) Retardation film, polarizing plate and liquid crystal display device
JP2008112127A (en) Polarizing plate protection film, polarizing plate, and liquid crystal display device
JP6146446B2 (en) Polarizing plate and liquid crystal display device using the same
JP5450775B2 (en) Optical film and polarizing plate
JP5218416B2 (en) Retardation film, polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869824

Country of ref document: EP

Kind code of ref document: A1