WO2024005094A1 - Reactor, magnetic core, converter, and electric power conversion device - Google Patents
Reactor, magnetic core, converter, and electric power conversion device Download PDFInfo
- Publication number
- WO2024005094A1 WO2024005094A1 PCT/JP2023/024028 JP2023024028W WO2024005094A1 WO 2024005094 A1 WO2024005094 A1 WO 2024005094A1 JP 2023024028 W JP2023024028 W JP 2023024028W WO 2024005094 A1 WO2024005094 A1 WO 2024005094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- winding
- axis
- reactor
- recesses
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title description 16
- 238000004804 winding Methods 0.000 claims abstract description 172
- 230000002093 peripheral effect Effects 0.000 claims abstract description 15
- 239000000696 magnetic material Substances 0.000 claims description 3
- 230000017525 heat dissipation Effects 0.000 description 19
- 239000002131 composite material Substances 0.000 description 17
- 239000006247 magnetic powder Substances 0.000 description 16
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 238000005452 bending Methods 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000945 filler Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F37/00—Fixed inductances not covered by group H01F17/00
Definitions
- the present disclosure relates to a reactor, a magnetic core, a converter, and a power conversion device.
- This application claims priority based on Japanese Patent Application No. 2022-105128 filed on June 29, 2022, and incorporates all the contents described in the Japanese application.
- the reactor of Patent Document 1 includes a coil and a magnetic core.
- the coil has a pair of winding parts formed by spirally winding a winding wire.
- the shape of each winding portion is a rectangular tube.
- the magnetic core has a pair of inner core parts and a pair of outer core parts. Each inner core portion is disposed inside each winding portion. Each inner core portion has a prismatic shape. Each outer core portion is disposed outside both winding portions.
- the reactor of the present disclosure is a magnetic core having a core portion configured in a prismatic shape; a coil having a winding part arranged around the outer periphery of the core part,
- the core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion,
- the winding part is composed of a winding wire wound in a plurality of turns along the outer peripheral surface of the core part,
- the winding of each of the plurality of turns is one first straight portion that intersects the direction along the axis of the winding portion without being perpendicular to it; a second linear portion perpendicular to the direction along the axis of the winding portion; a first bent part connecting the first straight part and the second straight part,
- the first bent portion in each of the plurality of turns is arranged in each of the plurality of first recesses.
- the magnetic core of the present disclosure includes: It has a prismatic core,
- the core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion.
- the converter of the present disclosure includes the reactor of the present disclosure.
- the power conversion device of the present disclosure includes the converter of the present disclosure.
- FIG. 1 is a schematic perspective view showing a reactor of Embodiment 1.
- FIG. 2 is a schematic exploded perspective view showing the reactor of the first embodiment.
- FIG. 3 is a sectional view taken along line III--III in FIG.
- FIG. 4 is an enlarged view of area A in FIG.
- FIG. 5 is an enlarged view of the VV cross section in FIG. 2.
- FIG. 6 is a schematic perspective view showing the turns of the winding portion in the reactor of Embodiment 1.
- FIG. 7 is an enlarged view showing grooves and windings in the reactor of Embodiment 2.
- FIG. 8 is an enlarged view showing grooves and windings in the reactor of Embodiment 3.
- FIG. 9 is an enlarged view showing grooves and windings in the reactor of Embodiment 4.
- FIG. 1 is a schematic perspective view showing a reactor of Embodiment 1.
- FIG. 2 is a schematic exploded perspective view showing the reactor of the first embodiment.
- FIG. 3 is a section
- FIG. 10 is an enlarged view showing another example of the groove and the winding in the reactor of Embodiment 4.
- FIG. 11 is a configuration diagram schematically showing a power supply system of a hybrid vehicle.
- FIG. 12 is a circuit diagram showing an example of a power conversion device including a converter.
- Patent Document 1 The reactor of Patent Document 1 is manufactured as follows. Prepare a pair of winding parts. Insert each inner core portion inside each winding portion. Both inner cores and both outer core parts are fixed. In order to insert each inner core part inside each winding part, a gap is provided between the inner peripheral surface of each winding part and the outer peripheral surface of each inner core part. The gap makes it difficult to improve the heat dissipation of the inner core.
- One of the purposes of the present disclosure is to provide a reactor that can easily improve heat dissipation.
- One of the objects of the present disclosure is to provide a magnetic core that can construct a reactor that easily improves heat dissipation.
- One object of the present disclosure is to provide a converter including the reactor, and a power conversion device including the converter.
- the reactor of the present disclosure can easily improve heat dissipation.
- the magnetic core of the present disclosure makes it easy to construct a reactor that can easily improve heat dissipation.
- the converter of the present disclosure and the power conversion device of the present disclosure have excellent heat dissipation properties.
- a reactor includes: a magnetic core having a core portion configured in a prismatic shape; a coil having a winding part arranged around the outer periphery of the core part,
- the core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion,
- the winding part is composed of a winding wire wound in a plurality of turns along the outer peripheral surface of the core part,
- the winding of each of the plurality of turns is one first straight portion that intersects the direction along the axis of the winding portion without being perpendicular to it; a second linear portion perpendicular to the direction along the axis of the winding portion; a first bent part connecting the first straight part and the second straight part,
- the first bent portion in each of the plurality of turns is arranged in each of the plurality of first recesses.
- the configuration (1) above can easily improve heat dissipation compared to conventional reactors.
- the winding of each turn is along the outer circumferential surface of the core, which tends to increase the contact area between the winding of each turn and the core compared to conventional reactors. . Therefore, in the configuration (1) above, compared to the conventional reactor, it is easier to transfer the heat of the winding to the core part in addition to the reactor installation target.
- the configuration (1) above can easily improve heat dissipation compared to the reactor of the following reference example.
- the reactor of the reference example differs from the configuration (1) above in that a winding wire is wound around a core portion that does not have a first recess.
- the first bending portion of the winding is a location where the winding is bent and shifted in the direction along the axis of the winding portion. Therefore, the first bent portion is twisted.
- a gap is likely to be formed between the corner portion that does not have the first recess and the first bent portion. Therefore, the contact area between the core portion and the first bent portion in the reactor of the reference example tends to be small.
- the configuration (1) above since the first bent portion is disposed in the first recess, the contact area between the core portion and the first bent portion tends to be large. Therefore, the configuration (1) above can easily transmit the heat of the winding to the core compared to the reactor of the reference example.
- the core portion has a second corner portion adjacent to the first corner portion in a direction around the axis of the core portion,
- the second corner portion has a plurality of second recesses arranged in a direction along the axis of the core portion,
- the winding of each of the plurality of turns has a second bent part connected to the first straight part,
- the second bent portion in each of the plurality of turns may be arranged in each of the plurality of second recesses.
- the configuration (2) above can easily improve heat dissipation compared to the case where only the first recess is provided.
- the second bent portion is also twisted.
- the contact area between the core portion and the second bent portion tends to be large. Therefore, the configuration (2) above easily transfers the heat of the winding to the core portion.
- the winding wire is a flat wire
- the cross-sectional shape of each of the plurality of first recesses and each of the plurality of second recesses cut along the axis of the core portion may be triangular.
- the configuration (3) above since the winding can be easily arranged in the first recess and the second recess, the contact area between the core part and the winding can easily become large. Therefore, the configuration (3) above easily transfers the heat of the winding to the core portion.
- the winding portion may be formed by winding the rectangular wire flatwise.
- the configuration (4) above makes it easier to bend the rectangular wire compared to the configuration (5) described later, so it is easier to manufacture the first winding part and the second winding part.
- the winding portion may be formed by edgewise winding the flat wire.
- the configuration (5) above makes it easier to increase the number of turns in the winding part compared to the configuration (4) above.
- the configuration (5) above makes it easier to shorten the length of the winding part in the direction along the axis, compared to the configuration (4) above. Therefore, the configuration (5) above is easier to downsize than the configuration (4) above.
- the core portion has a quadrangular prism shape
- the winding portion may have a rectangular cylindrical shape.
- the configuration (6) above is easy to manufacture because the winding wire can be easily wound along the outer peripheral surface of the core portion during the manufacturing process.
- the configuration (6) above makes it easier to increase the contact area between the winding part and the object on which the reactor is installed, compared to a case where the winding part has a circular cylindrical shape with the same cross-sectional area. Therefore, the configuration (6) above easily transfers the heat of the winding portion to the installation target. Moreover, the configuration (6) above makes it easy to stably install the winding portion as the installation target.
- the core portion is A core body mainly made of magnetic material, an insulating part provided along the outer peripheral surface of the core main body part, The plurality of first recesses may be provided in the insulating section.
- the insulation between the core body and the winding part can be easily increased by the insulating part, compared to the case where the core part does not include an insulating part and is composed only of the core body part. .
- the magnetic core according to one embodiment of the present disclosure includes: It has a prismatic core, The core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion.
- the configuration (8) above makes it easy to construct a reactor that can easily improve heat dissipation for the reason explained in the configuration (1) above.
- the core portion has a second corner portion adjacent to the first corner portion in a direction around the axis of the core portion,
- the second corner portion may have a plurality of second recesses arranged in a direction along the axis of the core portion.
- the configuration (9) above makes it easier to construct a reactor that can easily improve heat dissipation compared to the case where only the first recess is provided.
- a converter according to an embodiment of the present disclosure includes: The reactor according to any one of the above (1) to (7) is provided.
- the converter includes the reactor, it has excellent heat dissipation.
- a power conversion device includes: The converter described in (10) above is provided.
- the power conversion device includes the converter, it has excellent heat dissipation.
- the reactor 1 includes a coil 2 and a magnetic core 3. As shown in FIG. 2, the magnetic core 3 has a core portion 30. As shown in FIG. The core portion 30 has a prismatic shape. The coil 2 has a winding portion 20 . The winding portion 20 is arranged around the outer periphery of the core portion 30.
- One of the features of the reactor 1 of this embodiment is that it satisfies the following requirements (A) to (C).
- the core portion 30 includes a first corner portion 311.
- the first corner portion 311 has a plurality of first recesses 312 arranged in a direction along the axis of the core portion 30, as shown in FIGS. 2 to 4.
- the winding portion 20 is composed of a wire 21 wound in a plurality of turns along the outer peripheral surface of the core portion 30.
- the first bent portion 213 of each turn of the winding 21 shown in FIG. 6 is arranged in each first recess 312 shown in FIGS. 3 and 4.
- the magnetic core 3 of this embodiment shown in FIG. 2 includes a first middle core part 31f, a second middle core part 31s, a first end core part 33f, and a second end core part 33s.
- the core section 30 of this embodiment constitutes each of a first middle core section 31f and a second middle core section 31s.
- each of the core portions 30 of this embodiment that is, the first middle core portion 31f and the second middle core portion 31s, does not include an insulating portion 30b, which will be described later with reference to FIGS. 9 and 10.
- a core main body portion 30a mainly made of magnetic material.
- the core body portion 30a is made of a molded body or a laminate, which will be described later.
- Each of the first end core part 33f and the second end core part 33s is formed of a molded body or a laminate that is independent of the first middle core part 31f and the second middle core part 31s.
- the first middle core part 31f, the second middle core part 31s, the first end core part 33f, and the second end core part 33s are combined in an annular shape.
- the first end surface of the first middle core section 31f and the inner end surface of the first end core section 33f face each other.
- the second end surface of the first middle core section 31f and the inner end surface of the second end core section 33s face each other.
- the first end surface of the second middle core section 31s and the inner end surface of the first end core section 33f face each other.
- the second end surface of the second middle core section 31s and the inner end surface of the first end core section 33f face each other.
- a gap material which will be described later, may be placed between the end core portion 33s and the second end core portion 33s.
- the configurations of the first middle core section 31f and the second middle core section 31s are the same.
- the configurations of the first end core portion 33f and the second end core portion 33s are the same. The following description will be made with reference to the first middle core section 31f and the first end core section 33f.
- the first middle core portion 31f has a prismatic shape.
- the first middle core portion 31f of this embodiment has a quadrangular prism shape.
- the four corners of the square prism are rounded. That is, the outer circumferential surface of the first middle core portion 31f, excluding the first end surface and the second end surface, is composed of four planes and four corners.
- the first corner portion 311 has a plurality of first recesses 312 arranged in a direction along the axis of the first middle core portion 31f.
- the plurality of first recesses 312 are continuous in the direction along the axis.
- a first bent portion 213 of the winding 21 in each turn of the first winding portion 2i, which will be described later with reference to FIG. 6, is arranged in each first recess 312.
- the cross-sectional shape of each first recess 312 cut along the axis can be appropriately selected depending on the cross-sectional shape of the winding 21.
- the winding 21 of this embodiment is a covered rectangular wire. As shown in FIGS.
- each first recess 312 in this embodiment is triangular. More specifically, the cross-sectional shape of each first recess 312 is a right triangle. In addition, in FIG. 4, the cross-sectional shape of each first recess 312 is not shown to be a right triangle, and the cross-section of the winding 21 is not shown to be rectangular. This is because the first recessed portion 312 extends in a twisted manner along the first bent portion 213. This point also applies to FIG. 7, which will be described later.
- the two adjacent sides forming right angles of the right triangle are the first adjacent side facing the short side of the winding 21 and the second adjacent side facing the long side of the winding 21.
- the first winding portion 2i of this embodiment is formed by winding a coated rectangular wire edgewise.
- the length of the first adjacent side in this embodiment is substantially the same as the short side of the winding 21 .
- the length of the second adjacent side in this embodiment is shorter than the long side of the winding 21 .
- FIG. 5 shows a cross-sectional view taken along a plane passing through a right-angled vertex of a right-angled triangle and perpendicular to the direction along the axis. As shown in FIG.
- one of the two corners adjacent to the first corner 311 in the direction around the axis of the first middle core portion 31f is the second corner 313.
- the second corner portion 313 has a plurality of second recesses 314 arranged in a direction along the axis.
- a second bent portion 214 of each turn of the winding 21, which will be described later with reference to FIG. 6, is arranged in each second recess 314.
- the plurality of second recesses 314 are continuous in the direction along the axis.
- the configuration of each second recess 314 is the same as that of the first recess 312.
- the third triangular portion 315 is a corner portion that is not provided with the first recessed portion 312 and the second recessed portion 314 and is formed of an arcuate surface.
- one of the four corners may be the first corner 311 and the remaining three corners may be the third triangular section 315.
- the shape of the first end core portion 33f is columnar.
- the shape of the first end core portion 33f of this embodiment is a columnar shape having a substantially dome-shaped upper surface and a lower surface.
- the first middle core portion 31f and the first end core portion 33f are composed of a molded body, a powder molded body, or a laminate of a composite material.
- a molded body of a composite material is a molded body in which soft magnetic powder is dispersed in a resin.
- a molded body of a composite material is obtained by filling a mold with a fluid material in which soft magnetic powder is dispersed in an unsolidified resin, and then solidifying the resin.
- a composite material molded body in which the first recess 312 and further the second recess 314 are formed can be produced by transferring a mold.
- the content of soft magnetic powder in the resin can be easily adjusted. Therefore, it is easy to adjust the magnetic properties of the molded body of the composite material.
- composite material compacts are easier to form even in complex shapes compared to powder compacts.
- An example of the content of the soft magnetic powder in the molded body of the composite material is 20 volume % or more and 80 volume % or less.
- An example of the content of the resin in the molded body of the composite material is 20% by volume or more and 80% by volume or less. These contents are values when the molded body of the composite material is 100% by volume.
- a powder compact is a compact formed by compression molding soft magnetic powder.
- a powder compact is obtained by filling a cavity with soft magnetic powder and pressing the soft magnetic powder in the cavity with a punch.
- the compacted powder body provided with the first recess 312 and further the second recess 314 can be produced by transfer using at least one of a cavity and a punch.
- the powder compact can have a higher proportion of the soft magnetic powder in the core portion 30 than the composite material compact. Therefore, the powder compact easily improves magnetic properties.
- the magnetic properties include relative magnetic permeability and saturation magnetic flux density.
- the powder compact contains a larger amount of soft magnetic powder than the composite material compact, it has excellent heat dissipation properties.
- An example of the content of magnetic powder in the powder compact is 85% by volume or more and 99% by volume or less. This content is a value when the powder compact is 100% by volume.
- the particles constituting the soft magnetic powder are soft magnetic metal particles, coated particles, soft magnetic nonmetal particles, and the like.
- the coated particle may include a soft magnetic metal particle and an insulating coating provided around the outer periphery of the soft magnetic metal particle.
- the soft magnetic metal is pure iron or an iron-based alloy.
- An example of an iron-based alloy is a Fe (iron)-Si (silicon) alloy or a Fe-Ni (nickel) alloy.
- An example of an insulating coating is phosphate.
- An example of a soft magnetic nonmetal is ferrite.
- thermosetting resin examples include epoxy resins, phenolic resins, silicone resins, or urethane resins.
- thermoplastic resins are polyphenylene sulfide resins, polyamide resins, liquid crystal polymers, polyimide resins, or fluorine resins.
- An example of a polyamide resin is nylon 6, nylon 66, or nylon 9T.
- the molded body of the composite material may contain a filler.
- a filler is alumina or silica. Fillers contribute to improving heat dissipation and electrical insulation.
- the content of the soft magnetic powder in the molded body of the composite material and the content of the soft magnetic powder in the compacted body are considered to be equivalent to the area ratio of the soft magnetic powder in the cross section of the molded body.
- the content of soft magnetic powder in the compact is determined as follows. A cross section of the molded body is observed with a SEM (scanning electron microscope) to obtain an observed image.
- the cross section of the molded body is an arbitrary cross section.
- the magnification of SEM shall be 200 times or more and 500 times or less.
- the number of observation images to be acquired is 10 or more.
- the total area of all observed images shall be 0.1 cm 2 or more.
- One observation image may be acquired for each cross section, or a plurality of observation images may be acquired for each cross section.
- Each acquired observation image is processed to extract the outline of the particle.
- the image processing is, for example, binarization processing.
- the area ratio of soft magnetic particles is calculated in each observed image, and the average value of the area ratio is determined.
- the average value is regarded as the content of soft magnetic powder.
- the laminate is made by laminating multiple magnetic thin plates.
- the magnetic thin plate has an insulating coating.
- the magnetic thin plate is, for example, an electromagnetic steel plate.
- the laminate in which the first recess 312 and further the second recess 314 are provided can be produced by laminating a plurality of magnetic thin plates having different areas in a direction along the thickness of the magnetic thin plates.
- the first middle core part 31f, the second middle core part 31s, the first end core part 33f, and the second end core part 33s of this embodiment are made of a molded body of a composite material.
- the gap material is made of a material having a relative magnetic permeability lower than that of the first middle core part 31f, the second middle core part 31s, the first end core part 33f, and the second end core part 33s.
- An example of the constituent material of the gap material is the above-mentioned ceramic or resin.
- the coil 2 of this embodiment shown in FIG. 2 has a first winding part 2i and a second winding part 2e.
- the winding section 20 of this embodiment constitutes each of a first winding section 2i and a second winding section 2e.
- the first winding portion 2i and the second winding portion 2e may or may not be connected to each other.
- the first winding portion 2i is arranged on the outer periphery of the first middle core portion 31f.
- the second winding portion 2e is arranged on the outer periphery of the second middle core portion 31s.
- the configurations of the first winding part 2i and the second winding part 2e are the same. The following description will be made regarding the first winding portion 2i as a representative.
- the first winding portion 2i has a square cylindrical shape. The corners of the first winding portion 2i are rounded.
- the first winding portion 2i is made up of a winding 21.
- the winding 21 is wound in a plurality of turns along the outer peripheral surface of the first middle core portion 31f.
- the square cylindrical first winding portion 2i is easy to manufacture because it is easy to wind the winding 21 along the outer peripheral surface of the first middle core portion 31f during the manufacturing process.
- As the winding 21, a known winding can be used.
- the winding 21 of this embodiment is a covered rectangular wire.
- the conductor wire of the covered rectangular wire is made of copper rectangular wire.
- the insulation coating of the coated rectangular wire is made of enamel.
- the first winding portion 2i is formed by winding a coated rectangular wire edgewise.
- the first winding part 2i wound edgewise has a smaller turn than the first winding part 2i winding flatwise. Easy to increase in number.
- the first winding part 2i wound edgewise has a longer length along the axis than the first winding part 2i winding flatwise. It is easy to shorten the length. Therefore, the first winding part 2i wound edgewise is easier to downsize than the first winding part 2i winding flatwise.
- Each turn of the winding 21 of the first winding portion 2i is composed of four straight parts and four bent parts.
- the four straight parts in this embodiment are one first straight part 211 and three second straight parts 212.
- the four bent portions in this embodiment are one first bent portion 213 , one second bent portion 214 , and two third bent portions 215 .
- the first straight portion 211 intersects the direction along the axis of the first winding portion 2i without being perpendicular to it.
- the second straight portion 212 is perpendicular to the direction along the axis of the first winding portion 2i.
- the first bent portion 213 connects the first straight portion 211 and the second straight portion 212.
- the second bent portion 214 connects the first straight portion 211 and the second straight portion 212 of the adjacent turn.
- the first bent portion 213 and the second bent portion 214 are locations where the winding 21 is bent and shifted in the direction along the axis of the first winding portion 2i. That is, the first bent portion 213 and the second bent portion 214 are twisted.
- the third bent portion 215 connects the second straight portions 212.
- the third bending portion 215 is a portion where the winding 21 is bent but not displaced in the direction along the axis of the first winding portion 2i. That is, the third bent portion 215 is not twisted.
- the four bent portions may be one first bent portion 213 and three third bent portions 215.
- Each first straight portion 211 is in contact with a plane connecting the first corner 311 and the second corner 313.
- the three second linear parts 212 of each turn are a plane that connects the first corner part 311 and the second triangular part 315, a plane that connects the second corner part 313 and the second triangular part 315, and a plane that connects the second triangular parts 315. is in contact with
- the heat of the winding 21 in which each of the first linear portions 211 and the second linear portions 212 are in contact with the first middle core portion 31f is easily transmitted to the first middle core portion 31f. Therefore, the reactor 1 of this embodiment can easily improve heat dissipation compared to a conventional reactor in which a gap is formed between the first winding part 2i and the first middle core part 31f.
- Each first bent part 213 is arranged in each first recessed part 312. Each first bent portion 213 is in contact with the first corner portion 311 .
- Each second bent portion 214 is disposed in a respective second recess 314 . Each second bent portion 214 is in contact with the second corner portion 313 .
- the two third bent portions 215 of each turn are in contact with each third triangular portion 315.
- each first bent part 213 is arranged in each first recess 312 and each second bent part 214 is arranged in each second recess 314, is compared with the reactor of the following reference example. This makes it easy to improve heat dissipation.
- the winding 21 is wound around a first middle core portion 31f that does not have the first recess 312 and the second recess 314.
- gaps are likely to be formed between each twisted first bent part 213 and the second triangular part 315 and between each twisted second bent part 214 and the second triangular part 315.
- each first bending part 213 and each second bending part 213 and each second bending part 213 and each second bending part 213 and each second bending part 213 and each second bending part 213 and each second bending part 213 and each second bending part 214 are arranged in each second recess 314, respectively.
- the contact area between the portion 214 and the first middle core portion 31f tends to be large. Therefore, the reactor 1 of this embodiment can easily transfer the heat of the winding 21 to the first middle core portion 31f compared to the reactor of the reference example.
- Each third bent portion 215 is in contact with the third triangular portion 315. Unlike the first bent portions 213, each third bent portion 215 is not twisted, so even the third triangular portion 315, which is a curved surface without a recess, can easily come into contact with each other.
- the first winding portion 2i is produced by winding the winding wire 21 along the outer peripheral surface of the first middle core portion 31f.
- the first bent portion 213 is aligned with the first recessed portion 312 and the second bent portion 214 is aligned with the second recessed portion 314.
- Embodiments 2 to 5 which are different from Embodiment 1, will be described.
- the description of the second to fifth embodiments will focus on the differences from the first embodiment. Descriptions of configurations similar to those in Embodiment 1 may be omitted.
- the first winding part 2i and the second winding part 2e may be configured by flatwise winding a covered rectangular wire.
- the first winding part 2i and the second winding part 2e formed by flatwise winding bend the coated rectangular wire, compared to the first winding part 2i and the second winding part 2e formed by edgewise winding. It is simple and easy to manufacture.
- the cross-sectional shape of each first recess 312 and each second recess 314 is a right triangle, as in the first embodiment.
- the length of the second adjacent side facing the long side of the winding 21 among the two adjacent sides forming a right angle of the right triangle is substantially the same as the long side of the winding 21 .
- the first adjacent side facing the short side of the winding 21 is shorter than the short side of the winding 21 .
- each first recess 312 and each second recess 314 have a semicircular cross-section, and the winding 21 may be a round wire.
- the core section 30 may include a core body section 30a and an insulating section 30b provided along the outer peripheral surface of the core body section 30a. good.
- the insulating portion 30b tends to increase the insulation between the core body portion 30a and the winding portion 20.
- the core body portion 30a is made of the above-mentioned molded body or laminate.
- the insulating portion 30b is made of, for example, the same resin as the resin of the composite material molded body described above.
- the core body portion 30a and the insulating portion 30b of this embodiment are integrated. Unlike this embodiment, the core body portion 30a and the insulating portion 30b may be independent from each other.
- the core body portion 30a of this embodiment has a quadrangular prism shape.
- the outer circumferential surface of the core body portion 30a is composed of four planes and four corners.
- one of the four corners of the core body 30a may have a plurality of recesses 318 arranged in the direction along the axis of the core body 30a.
- one of the two corners adjacent in the direction around the axis of the core body 30a to the corner provided with the plurality of recesses 318 also has a plurality of recesses 318. It's okay.
- the remaining two corners are arcuate corners.
- the insulating portion 30b has a first corner portion 311 in which the plurality of first recesses 312 described above are provided.
- the first corner portion 311 of the insulating portion 30b is provided so as to cover the corner portion where the plurality of recesses 318 are provided among the four corners of the core body portion 30a.
- the first recess 312 of the insulating portion 30b is along the recess 318 of the core body portion 30a.
- the insulating portion 30b may further include a second corner portion provided with the plurality of second recesses described above.
- the second corner portion of the insulating portion 30b has a plurality of corners among two corners adjacent in the direction around the axis of the core body portion 30a with respect to the corner portion having a plurality of recesses 318 covered by the first corner portion 311. It is provided so as to cover the corner portion where the recessed portion 318 is provided.
- the second recess of the insulating portion 30b is along the recess 318 covered by the second corner.
- the insulating section 30b may cover the remaining two corners of the core body section 30a.
- the insulating portion 30b may cover four planes of the core body portion 30a. That is, the insulating portion 30b may be provided so as to cover the entire outer peripheral surface of the core body portion 30a.
- none of the four corners of the core main body 30a has a plurality of recesses 318, and is a corner formed by an arcuate surface. It's okay.
- the first corner part 311 in which the plurality of first recesses 312 described above are provided in the insulating part 30b is provided so as to cover the corner part formed by the circular arc surface in the core body part 30a. You can leave it there.
- the second corner portion of the insulating portion 30b in which the plurality of second recesses described above is provided is located in the core body portion relative to the corner portion covered by the first corner portion 311 in the core body portion 30a. It may be provided so as to cover one corner of two corners adjacent in the direction around the axis of 30a.
- the magnetic core may include a middle core part, a first side core part, a second side core part, a first end core part, and a second end core part.
- the middle core part, the first side core part, and the second side core part are arranged side by side so that the directions along the respective axes are parallel to each other.
- a middle core section is arranged between the first side core section and the second side core section.
- the first side core portion is arranged to face the first end surface of the middle core portion, the first end surface of the first side core portion, and the first end surface of the second side core portion.
- the second side core portion is disposed facing the second end surface of the middle core portion, the second end surface of the first side core portion, and the second end surface of the second side core portion.
- the magnetic core is configured by, for example, a combination of an E-shaped first core piece and an I-shaped second core piece, or a combination of a U-shaped first core piece and a T-shaped second core piece.
- the E-shaped first core piece is a molded body or a laminate in which a middle core part, a first side core part, a second side core part, and a first end core part are integrated.
- the I-shaped second core piece is constituted by a second end core portion.
- the U-shaped first core piece is a molded body or a laminate in which a first side core part, a second side core part, and a first end core part are integrated.
- the T-shaped second core piece is a molded body or a laminate in which a middle core portion and a second end core portion are integrated.
- the core portion 30 described in Embodiment 1 may constitute each of the first side core portion and the second side core portion.
- the first winding part 2i mentioned above may be arranged on the outer periphery of the first side core part
- the second winding part 2e mentioned above may be arranged on the outer periphery of the second side core part.
- the first winding part 2i and the second winding part 2e may be independent from each other.
- the reactor 1 of any one of Embodiments 1 to 5 can be used for applications that satisfy the following energization conditions.
- the energization conditions are as follows.
- the maximum direct current is, for example, about 100 A or more and 1000 A or less.
- the average voltage is, for example, about 100V or more and 1000V or less.
- the frequency used is, for example, about 5 kHz or more and 100 kHz or less.
- the reactor 1 of any one of Embodiments 1 to 5 is typically a component of a converter installed in a vehicle 1200 such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle, or a power converter equipped with this converter. Can be used as component parts of equipment.
- the vehicle 1200 includes a main battery 1210, a power converter 1100 connected to the main battery 1210, and a motor 1220 that is driven by power supplied from the main battery 1210 and used for traveling.
- Motor 1220 is typically a three-phase AC motor.
- the motor 1220 drives the wheels 1250 during running, and functions as a generator during regeneration.
- vehicle 1200 includes an engine 1300 in addition to a motor 1220.
- an inlet is shown as a charging location of vehicle 1200, but it may be provided with a plug.
- Power conversion device 1100 includes a converter 1110 and an inverter 1120.
- Converter 1110 is connected to main battery 1210.
- Inverter 1120 is connected to converter 1110.
- Inverter 1120 performs mutual conversion between direct current and alternating current.
- Converter 1110 shown in this example boosts the input voltage of main battery 1210, which is approximately 200 V or more and 300 V or less, to approximately 400 V or more and 700 V or less, and supplies power to inverter 1120 when vehicle 1200 is running.
- the converter 1110 steps down the input voltage output from the motor 1220 via the inverter 1120 to a DC voltage suitable for the main battery 1210, and charges the main battery 1210.
- the input voltage is a DC voltage.
- the inverter 1120 converts the DC boosted by the converter 1110 into a predetermined alternating current and supplies power to the motor 1220. During regeneration, inverter 1120 converts the AC output from motor 1220 into DC and outputs it to converter 1110.
- the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor 1115.
- Converter 1110 converts the input voltage by repeating ON/OFF. Input voltage conversion here means step-up and step-down.
- a power device such as a field effect transistor or an insulated gate bipolar transistor is used.
- the reactor 1115 utilizes the property of a coil to prevent changes in the current flowing through the circuit, and has the function of smoothing out changes when the current attempts to increase or decrease due to switching operations.
- the reactor 1 the reactor 1 of any one of Embodiments 1 to 5 is provided. Power conversion device 1100 and converter 1110 including reactor 1 can be expected to have improved heat dissipation.
- the vehicle 1200 includes a power supply device converter 1150 and an auxiliary power supply converter 1160.
- Power supply device converter 1150 is connected to main battery 1210.
- Auxiliary power supply converter 1160 is connected to sub-battery 1230 and main battery 1210, which serve as power sources for auxiliary equipment 1240.
- Auxiliary power supply converter 1160 converts the high voltage of main battery 1210 to low voltage.
- Converter 1110 typically performs DC-DC conversion, while power supply device converter 1150 and auxiliary power supply converter 1160 perform AC-DC conversion. Some power supply device converters 1150 perform DC-DC conversion.
- the reactors of the power supply device converter 1150 and the auxiliary power supply converter 1160 can be provided with the same configuration as the reactor 1 of any one of Embodiments 1 to 5, and a reactor whose size, shape, etc. are changed as appropriate can be used. Further, the reactor 1 of any one of Embodiments 1 to 5 can be used in a converter that converts input power, such as a converter that only steps up or a converter that only steps down.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Of Transformers For General Uses (AREA)
- Dc-Dc Converters (AREA)
Abstract
This reactor comprises a magnetic core that has a core portion that is configured as a rectangular column, and a coil that has windings that are arranged at an outer periphery of the core portion. The core portion includes a first corner portion that has a plurality of first recesses that are lined up in a direction along the axis of the core portion, the windings are constituted by winding wires that are wound in a plurality of turns so as to follow the outer peripheral surfaces of the core portion, the winding wire of each of the plurality of turns having one first linear portion that crosses without being orthogonal to a direction along the axis of the windings, a second linear portion that is orthogonal to the direction along the axis of the windings, and a first bent portion that connects the first linear portion and the second linear portion, the first bent portions in the plurality of turns being disposed in the plurality of first recesses.
Description
本開示は、リアクトル、磁性コア、コンバータ、および電力変換装置に関する。
本出願は、2022年06月29日付の日本国出願の特願2022-105128に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。 The present disclosure relates to a reactor, a magnetic core, a converter, and a power conversion device.
This application claims priority based on Japanese Patent Application No. 2022-105128 filed on June 29, 2022, and incorporates all the contents described in the Japanese application.
本出願は、2022年06月29日付の日本国出願の特願2022-105128に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。 The present disclosure relates to a reactor, a magnetic core, a converter, and a power conversion device.
This application claims priority based on Japanese Patent Application No. 2022-105128 filed on June 29, 2022, and incorporates all the contents described in the Japanese application.
特許文献1のリアクトルは、コイルと磁性コアとを備える。コイルは、巻線を螺旋状に巻回してなる一対の巻回部を有する。各巻回部の形状は角筒状である。磁性コアは、一対の内側コア部と一対の外側コア部とを有する。各内側コア部は、各巻回部の内部に配置されている。各内側コア部の形状は角柱状である。各外側コア部は、両巻回部の外部に配置されている。
The reactor of Patent Document 1 includes a coil and a magnetic core. The coil has a pair of winding parts formed by spirally winding a winding wire. The shape of each winding portion is a rectangular tube. The magnetic core has a pair of inner core parts and a pair of outer core parts. Each inner core portion is disposed inside each winding portion. Each inner core portion has a prismatic shape. Each outer core portion is disposed outside both winding portions.
本開示のリアクトルは、
角柱状に構成されたコア部を有する磁性コアと、
前記コア部の外周に配置された巻回部を有するコイルと、を備え、
前記コア部は、前記コア部の軸に沿った方向に並んだ複数の第一凹部を有する第一角部を含み、
前記巻回部は、前記コア部の外周面に沿うように複数のターンで巻回された巻線で構成され、
前記複数のターンの各々の前記巻線は、
前記巻回部の軸に沿った方向に直交することなく交差する一つの第一直線部と、
前記巻回部の軸に沿った方向に直交する第二直線部と、
前記第一直線部と第二直線部とをつないでいる第一曲げ部と、を有し、
前記複数のターンの各々における前記第一曲げ部が前記複数の第一凹部の各々に配置されている。 The reactor of the present disclosure is
a magnetic core having a core portion configured in a prismatic shape;
a coil having a winding part arranged around the outer periphery of the core part,
The core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion,
The winding part is composed of a winding wire wound in a plurality of turns along the outer peripheral surface of the core part,
The winding of each of the plurality of turns is
one first straight portion that intersects the direction along the axis of the winding portion without being perpendicular to it;
a second linear portion perpendicular to the direction along the axis of the winding portion;
a first bent part connecting the first straight part and the second straight part,
The first bent portion in each of the plurality of turns is arranged in each of the plurality of first recesses.
角柱状に構成されたコア部を有する磁性コアと、
前記コア部の外周に配置された巻回部を有するコイルと、を備え、
前記コア部は、前記コア部の軸に沿った方向に並んだ複数の第一凹部を有する第一角部を含み、
前記巻回部は、前記コア部の外周面に沿うように複数のターンで巻回された巻線で構成され、
前記複数のターンの各々の前記巻線は、
前記巻回部の軸に沿った方向に直交することなく交差する一つの第一直線部と、
前記巻回部の軸に沿った方向に直交する第二直線部と、
前記第一直線部と第二直線部とをつないでいる第一曲げ部と、を有し、
前記複数のターンの各々における前記第一曲げ部が前記複数の第一凹部の各々に配置されている。 The reactor of the present disclosure is
a magnetic core having a core portion configured in a prismatic shape;
a coil having a winding part arranged around the outer periphery of the core part,
The core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion,
The winding part is composed of a winding wire wound in a plurality of turns along the outer peripheral surface of the core part,
The winding of each of the plurality of turns is
one first straight portion that intersects the direction along the axis of the winding portion without being perpendicular to it;
a second linear portion perpendicular to the direction along the axis of the winding portion;
a first bent part connecting the first straight part and the second straight part,
The first bent portion in each of the plurality of turns is arranged in each of the plurality of first recesses.
本開示の磁性コアは、
角柱状のコア部を有し、
前記コア部は、前記コア部の軸に沿った方向に並んだ複数の第一凹部を有する第一角部を含む。 The magnetic core of the present disclosure includes:
It has a prismatic core,
The core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion.
角柱状のコア部を有し、
前記コア部は、前記コア部の軸に沿った方向に並んだ複数の第一凹部を有する第一角部を含む。 The magnetic core of the present disclosure includes:
It has a prismatic core,
The core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion.
本開示のコンバータは、本開示のリアクトルを備える。
The converter of the present disclosure includes the reactor of the present disclosure.
本開示の電力変換装置は、本開示のコンバータを備える。
The power conversion device of the present disclosure includes the converter of the present disclosure.
[本開示が解決しようとする課題]
特許文献1のリアクトルは、次のようにして製造される。一対の巻回部を用意する。各巻回部の内部に各内側コア部を挿入する。両内側コアと両外側コア部とを固定する。各巻回部の内部に各内側コア部を挿入するため、各巻回部の内周面と各内側コア部の外周面との間には隙間が設けられている。隙間が設けられていることで、内側コア部の放熱性を向上することが難しい。 [Problems that this disclosure seeks to solve]
The reactor ofPatent Document 1 is manufactured as follows. Prepare a pair of winding parts. Insert each inner core portion inside each winding portion. Both inner cores and both outer core parts are fixed. In order to insert each inner core part inside each winding part, a gap is provided between the inner peripheral surface of each winding part and the outer peripheral surface of each inner core part. The gap makes it difficult to improve the heat dissipation of the inner core.
特許文献1のリアクトルは、次のようにして製造される。一対の巻回部を用意する。各巻回部の内部に各内側コア部を挿入する。両内側コアと両外側コア部とを固定する。各巻回部の内部に各内側コア部を挿入するため、各巻回部の内周面と各内側コア部の外周面との間には隙間が設けられている。隙間が設けられていることで、内側コア部の放熱性を向上することが難しい。 [Problems that this disclosure seeks to solve]
The reactor of
本開示は、放熱性を高め易いリアクトルを提供することを目的の一つとする。本開示は、放熱性を高め易いリアクトルを構築できる磁性コアを提供することを目的の一つとする。本開示は、上記リアクトルを備えるコンバータ、および上記コンバータを備える電力変換装置を提供することを目的の一つとする。
One of the purposes of the present disclosure is to provide a reactor that can easily improve heat dissipation. One of the objects of the present disclosure is to provide a magnetic core that can construct a reactor that easily improves heat dissipation. One object of the present disclosure is to provide a converter including the reactor, and a power conversion device including the converter.
[本開示の効果]
本開示のリアクトルは、放熱性を高め易い。本開示の磁性コアは、放熱性を高め易いリアクトルを構築し易い。本開示のコンバータおよび本開示の電力変換装置は、放熱性に優れる。 [Effects of this disclosure]
The reactor of the present disclosure can easily improve heat dissipation. The magnetic core of the present disclosure makes it easy to construct a reactor that can easily improve heat dissipation. The converter of the present disclosure and the power conversion device of the present disclosure have excellent heat dissipation properties.
本開示のリアクトルは、放熱性を高め易い。本開示の磁性コアは、放熱性を高め易いリアクトルを構築し易い。本開示のコンバータおよび本開示の電力変換装置は、放熱性に優れる。 [Effects of this disclosure]
The reactor of the present disclosure can easily improve heat dissipation. The magnetic core of the present disclosure makes it easy to construct a reactor that can easily improve heat dissipation. The converter of the present disclosure and the power conversion device of the present disclosure have excellent heat dissipation properties.
《本開示の実施形態の説明》
本発明者らは、放熱性を高めるために、コイルを構成する巻線をコア部に直接巻き付けることで、巻線をコア部に接触させて巻線の熱をコア部に伝えることを検討した。その結果、各ターンにおける巻線の特定の曲げ部では巻線とコア部との間に隙間が形成され、特定の曲げ部とコア部との接触面積が小さくなることがわかった。本発明者らは、特定の曲げ部とコア部との接触面積を大きくすることを鋭意検討した結果、本発明を完成するに至った。最初に本開示の実施態様を列記して説明する。 <<Description of embodiments of the present disclosure>>
In order to improve heat dissipation, the present inventors considered winding the windings constituting the coil directly around the core, thereby bringing the windings into contact with the core and transmitting the heat of the windings to the core. . As a result, it was found that a gap was formed between the winding wire and the core portion at a specific bent portion of the winding wire in each turn, and the contact area between the specific bent portion and the core portion was reduced. The present inventors have completed the present invention as a result of intensive studies on increasing the contact area between a specific bent portion and the core portion. First, embodiments of the present disclosure will be listed and described.
本発明者らは、放熱性を高めるために、コイルを構成する巻線をコア部に直接巻き付けることで、巻線をコア部に接触させて巻線の熱をコア部に伝えることを検討した。その結果、各ターンにおける巻線の特定の曲げ部では巻線とコア部との間に隙間が形成され、特定の曲げ部とコア部との接触面積が小さくなることがわかった。本発明者らは、特定の曲げ部とコア部との接触面積を大きくすることを鋭意検討した結果、本発明を完成するに至った。最初に本開示の実施態様を列記して説明する。 <<Description of embodiments of the present disclosure>>
In order to improve heat dissipation, the present inventors considered winding the windings constituting the coil directly around the core, thereby bringing the windings into contact with the core and transmitting the heat of the windings to the core. . As a result, it was found that a gap was formed between the winding wire and the core portion at a specific bent portion of the winding wire in each turn, and the contact area between the specific bent portion and the core portion was reduced. The present inventors have completed the present invention as a result of intensive studies on increasing the contact area between a specific bent portion and the core portion. First, embodiments of the present disclosure will be listed and described.
(1)本開示の一形態に係るリアクトルは、
角柱状に構成されたコア部を有する磁性コアと、
前記コア部の外周に配置された巻回部を有するコイルと、を備え、
前記コア部は、前記コア部の軸に沿った方向に並んだ複数の第一凹部を有する第一角部を含み、
前記巻回部は、前記コア部の外周面に沿うように複数のターンで巻回された巻線で構成され、
前記複数のターンの各々の前記巻線は、
前記巻回部の軸に沿った方向に直交することなく交差する一つの第一直線部と、
前記巻回部の軸に沿った方向に直交する第二直線部と、
前記第一直線部と第二直線部とをつないでいる第一曲げ部と、を有し、
前記複数のターンの各々における前記第一曲げ部が前記複数の第一凹部の各々に配置されている。 (1) A reactor according to one embodiment of the present disclosure includes:
a magnetic core having a core portion configured in a prismatic shape;
a coil having a winding part arranged around the outer periphery of the core part,
The core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion,
The winding part is composed of a winding wire wound in a plurality of turns along the outer peripheral surface of the core part,
The winding of each of the plurality of turns is
one first straight portion that intersects the direction along the axis of the winding portion without being perpendicular to it;
a second linear portion perpendicular to the direction along the axis of the winding portion;
a first bent part connecting the first straight part and the second straight part,
The first bent portion in each of the plurality of turns is arranged in each of the plurality of first recesses.
角柱状に構成されたコア部を有する磁性コアと、
前記コア部の外周に配置された巻回部を有するコイルと、を備え、
前記コア部は、前記コア部の軸に沿った方向に並んだ複数の第一凹部を有する第一角部を含み、
前記巻回部は、前記コア部の外周面に沿うように複数のターンで巻回された巻線で構成され、
前記複数のターンの各々の前記巻線は、
前記巻回部の軸に沿った方向に直交することなく交差する一つの第一直線部と、
前記巻回部の軸に沿った方向に直交する第二直線部と、
前記第一直線部と第二直線部とをつないでいる第一曲げ部と、を有し、
前記複数のターンの各々における前記第一曲げ部が前記複数の第一凹部の各々に配置されている。 (1) A reactor according to one embodiment of the present disclosure includes:
a magnetic core having a core portion configured in a prismatic shape;
a coil having a winding part arranged around the outer periphery of the core part,
The core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion,
The winding part is composed of a winding wire wound in a plurality of turns along the outer peripheral surface of the core part,
The winding of each of the plurality of turns is
one first straight portion that intersects the direction along the axis of the winding portion without being perpendicular to it;
a second linear portion perpendicular to the direction along the axis of the winding portion;
a first bent part connecting the first straight part and the second straight part,
The first bent portion in each of the plurality of turns is arranged in each of the plurality of first recesses.
上記(1)の構成は、従来のリアクトルに比較して、放熱性を高め易い。上記(1)の構成は、各ターンの巻線がコア部の外周面に沿っていることで、従来のリアクトルに比較して、各ターンの巻線とコア部との接触面積が大きくなり易い。そのため、上記(1)の構成は、従来のリアクトルに比較して、巻線の熱をリアクトルの設置対象に加えてコア部にも伝え易い。
The configuration (1) above can easily improve heat dissipation compared to conventional reactors. In the configuration (1) above, the winding of each turn is along the outer circumferential surface of the core, which tends to increase the contact area between the winding of each turn and the core compared to conventional reactors. . Therefore, in the configuration (1) above, compared to the conventional reactor, it is easier to transfer the heat of the winding to the core part in addition to the reactor installation target.
上記(1)の構成は、次の参考例のリアクトルに比較して、放熱性を高め易い。参考例のリアクトルは、上記(1)の構成とは異なり、第一凹部を有していないコア部に巻線が巻回されている。巻線の第一曲げ部は、巻線が曲がりながら巻回部の軸に沿った方向にずれる箇所である。そのため、第一曲げ部は捻れている。参考例のリアクトルは、第一凹部を有していない角部と第一曲げ部との間に隙間が形成され易い。そのため、参考例のリアクトルにおけるコア部と第一曲げ部との接触面積は小さくなり易い。一方、上記(1)の構成は、第一凹部に第一曲げ部が配置されているため、コア部と第一曲げ部との接触面積が大きくなり易い。よって、上記(1)の構成は、参考例のリアクトルに比較して、巻線の熱をコア部に伝え易い。
The configuration (1) above can easily improve heat dissipation compared to the reactor of the following reference example. The reactor of the reference example differs from the configuration (1) above in that a winding wire is wound around a core portion that does not have a first recess. The first bending portion of the winding is a location where the winding is bent and shifted in the direction along the axis of the winding portion. Therefore, the first bent portion is twisted. In the reactor of the reference example, a gap is likely to be formed between the corner portion that does not have the first recess and the first bent portion. Therefore, the contact area between the core portion and the first bent portion in the reactor of the reference example tends to be small. On the other hand, in the configuration (1) above, since the first bent portion is disposed in the first recess, the contact area between the core portion and the first bent portion tends to be large. Therefore, the configuration (1) above can easily transmit the heat of the winding to the core compared to the reactor of the reference example.
(2)上記(1)のリアクトルにおいて、
前記コア部は、前記コア部の軸周りの方向に前記第一角部と隣り合う第二角部を有し、
前記第二角部は、前記コア部の軸に沿った方向に並んだ複数の第二凹部を有し、
前記複数のターンの各々の前記巻線は、前記第一直線部につながった第二曲げ部を有し、
前記複数のターンの各々における前記第二曲げ部が前記複数の第二凹部の各々に配置されていてもよい。 (2) In the reactor of (1) above,
The core portion has a second corner portion adjacent to the first corner portion in a direction around the axis of the core portion,
The second corner portion has a plurality of second recesses arranged in a direction along the axis of the core portion,
The winding of each of the plurality of turns has a second bent part connected to the first straight part,
The second bent portion in each of the plurality of turns may be arranged in each of the plurality of second recesses.
前記コア部は、前記コア部の軸周りの方向に前記第一角部と隣り合う第二角部を有し、
前記第二角部は、前記コア部の軸に沿った方向に並んだ複数の第二凹部を有し、
前記複数のターンの各々の前記巻線は、前記第一直線部につながった第二曲げ部を有し、
前記複数のターンの各々における前記第二曲げ部が前記複数の第二凹部の各々に配置されていてもよい。 (2) In the reactor of (1) above,
The core portion has a second corner portion adjacent to the first corner portion in a direction around the axis of the core portion,
The second corner portion has a plurality of second recesses arranged in a direction along the axis of the core portion,
The winding of each of the plurality of turns has a second bent part connected to the first straight part,
The second bent portion in each of the plurality of turns may be arranged in each of the plurality of second recesses.
上記(2)の構成は、第一凹部のみを備える場合に比較して、放熱性を高め易い。第二曲げ部も捻れている。上記(2)の構成は、コア部と第二曲げ部との接触面積が大きくなり易い。よって、上記(2)の構成は、巻線の熱をコア部に伝え易い。
The configuration (2) above can easily improve heat dissipation compared to the case where only the first recess is provided. The second bent portion is also twisted. In the configuration (2) above, the contact area between the core portion and the second bent portion tends to be large. Therefore, the configuration (2) above easily transfers the heat of the winding to the core portion.
(3)上記(2)のリアクトルにおいて、
前記巻線は、平角線であり、
前記コア部の軸に沿って切断した前記複数の第一凹部の各々および前記複数の第二凹部の各々の断面形状は三角形状でもよい。 (3) In the reactor of (2) above,
The winding wire is a flat wire,
The cross-sectional shape of each of the plurality of first recesses and each of the plurality of second recesses cut along the axis of the core portion may be triangular.
前記巻線は、平角線であり、
前記コア部の軸に沿って切断した前記複数の第一凹部の各々および前記複数の第二凹部の各々の断面形状は三角形状でもよい。 (3) In the reactor of (2) above,
The winding wire is a flat wire,
The cross-sectional shape of each of the plurality of first recesses and each of the plurality of second recesses cut along the axis of the core portion may be triangular.
上記(3)の構成は、巻線を第一凹部および第二凹部に配置し易いため、コア部と巻線との接触面積が大きくなり易い。そのため、上記(3)の構成は、巻線の熱をコア部に伝え易い。
In the configuration (3) above, since the winding can be easily arranged in the first recess and the second recess, the contact area between the core part and the winding can easily become large. Therefore, the configuration (3) above easily transfers the heat of the winding to the core portion.
(4)上記(3)のリアクトルにおいて、
前記巻回部は、前記平角線がフラットワイズ巻きされてなっていてもよい。 (4) In the reactor of (3) above,
The winding portion may be formed by winding the rectangular wire flatwise.
前記巻回部は、前記平角線がフラットワイズ巻きされてなっていてもよい。 (4) In the reactor of (3) above,
The winding portion may be formed by winding the rectangular wire flatwise.
上記(4)の構成は、後述の(5)の構成に比較して、平角線を曲げ易いため、第一巻回部および第二巻回部を作製し易い。
The configuration (4) above makes it easier to bend the rectangular wire compared to the configuration (5) described later, so it is easier to manufacture the first winding part and the second winding part.
(5)上記(3)のリアクトルにおいて、
前記巻回部は、前記平角線がエッジワイズ巻きされてなっていてもよい。 (5) In the reactor of (3) above,
The winding portion may be formed by edgewise winding the flat wire.
前記巻回部は、前記平角線がエッジワイズ巻きされてなっていてもよい。 (5) In the reactor of (3) above,
The winding portion may be formed by edgewise winding the flat wire.
巻回部の軸に沿った方向の長さが一定の場合、上記(5)の構成は、上記(4)の構成に比較して、巻回部のターン数を多くし易い。巻回部のターン数が一定の場合、上記(5)の構成は、上記(4)の構成に比較して、巻回部の軸に沿った方向の長さを短くし易い。そのため、上記(5)の構成は、上記(4)の構成に比較して、小型化し易い。
When the length of the winding part in the direction along the axis is constant, the configuration (5) above makes it easier to increase the number of turns in the winding part compared to the configuration (4) above. When the number of turns of the winding part is constant, the configuration (5) above makes it easier to shorten the length of the winding part in the direction along the axis, compared to the configuration (4) above. Therefore, the configuration (5) above is easier to downsize than the configuration (4) above.
(6)上記(1)から上記(5)のいずれかのリアクトルにおいて、
前記コア部は四角柱状であり、
前記巻回部は四角筒状であってもよい。 (6) In any of the reactors from (1) to (5) above,
The core portion has a quadrangular prism shape,
The winding portion may have a rectangular cylindrical shape.
前記コア部は四角柱状であり、
前記巻回部は四角筒状であってもよい。 (6) In any of the reactors from (1) to (5) above,
The core portion has a quadrangular prism shape,
The winding portion may have a rectangular cylindrical shape.
上記(6)の構成は、製造過程で巻線をコア部の外周面に沿って巻回し易いため、製造し易い。上記(6)の構成は、巻回部が同じ断面積の円形筒状である場合に比較して、巻回部とリアクトルの設置対象との接触面積を大きくし易い。そのため、上記(6)の構成は、巻回部の熱を設置対象に伝え易い。その上、上記(6)の構成は、巻回部を設置対象に安定して設置し易い。
The configuration (6) above is easy to manufacture because the winding wire can be easily wound along the outer peripheral surface of the core portion during the manufacturing process. The configuration (6) above makes it easier to increase the contact area between the winding part and the object on which the reactor is installed, compared to a case where the winding part has a circular cylindrical shape with the same cross-sectional area. Therefore, the configuration (6) above easily transfers the heat of the winding portion to the installation target. Moreover, the configuration (6) above makes it easy to stably install the winding portion as the installation target.
(7)上記(1)から上記(6)のいずれかのリアクトルにおいて、
前記コア部は、
磁性材料を主体とするコア本体部と、
前記コア本体部の外周面に沿って設けられた絶縁部と、を備え、
前記複数の第一凹部は前記絶縁部に設けられていてもよい。 (7) In any of the reactors from (1) to (6) above,
The core portion is
A core body mainly made of magnetic material,
an insulating part provided along the outer peripheral surface of the core main body part,
The plurality of first recesses may be provided in the insulating section.
前記コア部は、
磁性材料を主体とするコア本体部と、
前記コア本体部の外周面に沿って設けられた絶縁部と、を備え、
前記複数の第一凹部は前記絶縁部に設けられていてもよい。 (7) In any of the reactors from (1) to (6) above,
The core portion is
A core body mainly made of magnetic material,
an insulating part provided along the outer peripheral surface of the core main body part,
The plurality of first recesses may be provided in the insulating section.
上記(7)の構成は、コア部が絶縁部を備えずコア本体部のみで構成されている場合に比較して、絶縁部によってコア本体部と巻回部との間の絶縁性を高め易い。
In the configuration (7) above, the insulation between the core body and the winding part can be easily increased by the insulating part, compared to the case where the core part does not include an insulating part and is composed only of the core body part. .
(8)本開示の一形態に係る磁性コアは、
角柱状のコア部を有し、
前記コア部は、前記コア部の軸に沿った方向に並んだ複数の第一凹部を有する第一角部を含む。 (8) The magnetic core according to one embodiment of the present disclosure includes:
It has a prismatic core,
The core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion.
角柱状のコア部を有し、
前記コア部は、前記コア部の軸に沿った方向に並んだ複数の第一凹部を有する第一角部を含む。 (8) The magnetic core according to one embodiment of the present disclosure includes:
It has a prismatic core,
The core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion.
上記(8)の構成は、上記(1)の構成で説明した理由から、放熱性を高め易いリアクトルを構築し易い。
The configuration (8) above makes it easy to construct a reactor that can easily improve heat dissipation for the reason explained in the configuration (1) above.
(9)上記(8)の磁性コアにおいて、
前記コア部は、前記コア部の軸周りの方向に前記第一角部と隣り合う第二角部を有し、
前記第二角部は、前記コア部の軸に沿った方向に並んだ複数の第二凹部を有していてもよい。 (9) In the magnetic core of (8) above,
The core portion has a second corner portion adjacent to the first corner portion in a direction around the axis of the core portion,
The second corner portion may have a plurality of second recesses arranged in a direction along the axis of the core portion.
前記コア部は、前記コア部の軸周りの方向に前記第一角部と隣り合う第二角部を有し、
前記第二角部は、前記コア部の軸に沿った方向に並んだ複数の第二凹部を有していてもよい。 (9) In the magnetic core of (8) above,
The core portion has a second corner portion adjacent to the first corner portion in a direction around the axis of the core portion,
The second corner portion may have a plurality of second recesses arranged in a direction along the axis of the core portion.
上記(9)の構成は、上記(2)の構成で説明した理由から、第一凹部のみを備える場合に比較して、放熱性を高め易いリアクトルを構築し易い。
For the reason explained in the configuration (2) above, the configuration (9) above makes it easier to construct a reactor that can easily improve heat dissipation compared to the case where only the first recess is provided.
(10)本開示の一形態に係るコンバータは、
上記(1)から上記(7)のいずれかのリアクトルを備える。 (10) A converter according to an embodiment of the present disclosure includes:
The reactor according to any one of the above (1) to (7) is provided.
上記(1)から上記(7)のいずれかのリアクトルを備える。 (10) A converter according to an embodiment of the present disclosure includes:
The reactor according to any one of the above (1) to (7) is provided.
上記コンバータは、上記リアクトルを備えるため、放熱性に優れる。
Since the converter includes the reactor, it has excellent heat dissipation.
(11)本開示の一形態に係る電力変換装置は、
上記(10)のコンバータを備える。 (11) A power conversion device according to an embodiment of the present disclosure includes:
The converter described in (10) above is provided.
上記(10)のコンバータを備える。 (11) A power conversion device according to an embodiment of the present disclosure includes:
The converter described in (10) above is provided.
上記電力変換装置は、上記コンバータを備えるため、放熱性に優れる。
Since the power conversion device includes the converter, it has excellent heat dissipation.
《本開示の実施形態の詳細》
本開示の実施形態の詳細を、以下に図面を参照しつつ説明する。図中の同一符号は同一名称物を示す。各図面が示す部材の大きさ等は、説明を明確にする目的で表現されており、必ずしも実際の寸法関係等を表すものではない。 <<Details of embodiments of the present disclosure>>
Details of embodiments of the present disclosure will be described below with reference to the drawings. The same reference numerals in the figures indicate the same names. The sizes of members shown in each drawing are expressed for the purpose of clarifying the explanation, and do not necessarily represent actual dimensional relationships.
本開示の実施形態の詳細を、以下に図面を参照しつつ説明する。図中の同一符号は同一名称物を示す。各図面が示す部材の大きさ等は、説明を明確にする目的で表現されており、必ずしも実際の寸法関係等を表すものではない。 <<Details of embodiments of the present disclosure>>
Details of embodiments of the present disclosure will be described below with reference to the drawings. The same reference numerals in the figures indicate the same names. The sizes of members shown in each drawing are expressed for the purpose of clarifying the explanation, and do not necessarily represent actual dimensional relationships.
《実施形態1》
〔リアクトル〕
図1から図6を参照して、実施形態1のリアクトル1を説明する。リアクトル1は、コイル2と磁性コア3とを備える。図2に示すように磁性コア3はコア部30を有する。コア部30の形状は角柱状である。コイル2は、巻回部20を有する。巻回部20は、コア部30の外周に配置されている。本実施形態のリアクトル1の特徴の一つは、以下の要件(A)から(C)を満たす点にある。
(A)コア部30は第一角部311を含む。第一角部311は、図2から図4に示すように、コア部30の軸に沿った方向に並んだ複数の第一凹部312を有する。
(B)巻回部20はコア部30の外周面に沿うように複数のターンで巻回された巻線21で構成されている。
(C)図6に示す各ターンの巻線21の第一曲げ部213は図3および図4に示す各第一凹部312に配置されている。 《Embodiment 1》
[Reactor]
Areactor 1 according to a first embodiment will be described with reference to FIGS. 1 to 6. The reactor 1 includes a coil 2 and a magnetic core 3. As shown in FIG. 2, the magnetic core 3 has a core portion 30. As shown in FIG. The core portion 30 has a prismatic shape. The coil 2 has a winding portion 20 . The winding portion 20 is arranged around the outer periphery of the core portion 30. One of the features of the reactor 1 of this embodiment is that it satisfies the following requirements (A) to (C).
(A) Thecore portion 30 includes a first corner portion 311. The first corner portion 311 has a plurality of first recesses 312 arranged in a direction along the axis of the core portion 30, as shown in FIGS. 2 to 4.
(B) The windingportion 20 is composed of a wire 21 wound in a plurality of turns along the outer peripheral surface of the core portion 30.
(C) The firstbent portion 213 of each turn of the winding 21 shown in FIG. 6 is arranged in each first recess 312 shown in FIGS. 3 and 4.
〔リアクトル〕
図1から図6を参照して、実施形態1のリアクトル1を説明する。リアクトル1は、コイル2と磁性コア3とを備える。図2に示すように磁性コア3はコア部30を有する。コア部30の形状は角柱状である。コイル2は、巻回部20を有する。巻回部20は、コア部30の外周に配置されている。本実施形態のリアクトル1の特徴の一つは、以下の要件(A)から(C)を満たす点にある。
(A)コア部30は第一角部311を含む。第一角部311は、図2から図4に示すように、コア部30の軸に沿った方向に並んだ複数の第一凹部312を有する。
(B)巻回部20はコア部30の外周面に沿うように複数のターンで巻回された巻線21で構成されている。
(C)図6に示す各ターンの巻線21の第一曲げ部213は図3および図4に示す各第一凹部312に配置されている。 《
[Reactor]
A
(A) The
(B) The winding
(C) The first
[磁性コア]
図2に示す本実施形態の磁性コア3は、第一ミドルコア部31fと第二ミドルコア部31sと第一エンドコア部33fと第二エンドコア部33sとを備える。本実施形態のコア部30は、第一ミドルコア部31fおよび第二ミドルコア部31sの各々を構成する。本実施形態のコア部30、即ち第一ミドルコア部31fおよび第二ミドルコア部31sの各々は、実施形態4とは異なり、図9、図10を参照して後述する絶縁部30bを備えておらず、磁性材料を主体とするコア本体部30aで構成されている。コア本体部30aは、後述する成形体または積層体で構成されている。第一エンドコア部33fと第二エンドコア部33sの各々は、第一ミドルコア部31fおよび第二ミドルコア部31sとは独立する成形体または積層体で構成されている。 [Magnetic core]
Themagnetic core 3 of this embodiment shown in FIG. 2 includes a first middle core part 31f, a second middle core part 31s, a first end core part 33f, and a second end core part 33s. The core section 30 of this embodiment constitutes each of a first middle core section 31f and a second middle core section 31s. Unlike the fourth embodiment, each of the core portions 30 of this embodiment, that is, the first middle core portion 31f and the second middle core portion 31s, does not include an insulating portion 30b, which will be described later with reference to FIGS. 9 and 10. , a core main body portion 30a mainly made of magnetic material. The core body portion 30a is made of a molded body or a laminate, which will be described later. Each of the first end core part 33f and the second end core part 33s is formed of a molded body or a laminate that is independent of the first middle core part 31f and the second middle core part 31s.
図2に示す本実施形態の磁性コア3は、第一ミドルコア部31fと第二ミドルコア部31sと第一エンドコア部33fと第二エンドコア部33sとを備える。本実施形態のコア部30は、第一ミドルコア部31fおよび第二ミドルコア部31sの各々を構成する。本実施形態のコア部30、即ち第一ミドルコア部31fおよび第二ミドルコア部31sの各々は、実施形態4とは異なり、図9、図10を参照して後述する絶縁部30bを備えておらず、磁性材料を主体とするコア本体部30aで構成されている。コア本体部30aは、後述する成形体または積層体で構成されている。第一エンドコア部33fと第二エンドコア部33sの各々は、第一ミドルコア部31fおよび第二ミドルコア部31sとは独立する成形体または積層体で構成されている。 [Magnetic core]
The
第一ミドルコア部31fと第二ミドルコア部31sと第一エンドコア部33fと第二エンドコア部33sとは環状に組み合わされている。第一ミドルコア部31fの第一端面と第一エンドコア部33fの内端面とが互いに向かい合っている。第一ミドルコア部31fの第二端面と第二エンドコア部33sの内端面とが互いに向かい合っている。第二ミドルコア部31sの第一端面と第一エンドコア部33fの内端面とが互いに向かい合っている。第二ミドルコア部31sの第二端面と第一エンドコア部33fの内端面とが互いに向かい合っている。第一ミドルコア部31fと第一エンドコア部33fとの間、第一ミドルコア部31fと第二エンドコア部33sとの間、第二ミドルコア部31sと第一エンドコア部33fとの間、第二ミドルコア部31sと第二エンドコア部33sとの間には、後述するギャップ材が配置されていてもよい。
The first middle core part 31f, the second middle core part 31s, the first end core part 33f, and the second end core part 33s are combined in an annular shape. The first end surface of the first middle core section 31f and the inner end surface of the first end core section 33f face each other. The second end surface of the first middle core section 31f and the inner end surface of the second end core section 33s face each other. The first end surface of the second middle core section 31s and the inner end surface of the first end core section 33f face each other. The second end surface of the second middle core section 31s and the inner end surface of the first end core section 33f face each other. Between the first middle core part 31f and the first end core part 33f, between the first middle core part 31f and the second end core part 33s, between the second middle core part 31s and the first end core part 33f, the second middle core part 31s A gap material, which will be described later, may be placed between the end core portion 33s and the second end core portion 33s.
第一ミドルコア部31fと第二ミドルコア部31sの構成は同じである。第一エンドコア部33fと第二エンドコア部33sの構成は同じである。以下の説明は、代表して第一ミドルコア部31fと第一エンドコア部33fについて行う。
The configurations of the first middle core section 31f and the second middle core section 31s are the same. The configurations of the first end core portion 33f and the second end core portion 33s are the same. The following description will be made with reference to the first middle core section 31f and the first end core section 33f.
第一ミドルコア部31fの形状は角柱状である。本実施形態の第一ミドルコア部31fの形状は四角柱状である。四角柱状の四つの角部は丸められている。即ち、第一ミドルコア部31fの第一端面および第二端面を除く外周面は、四つの平面と四つの角部とで構成されている。
The first middle core portion 31f has a prismatic shape. The first middle core portion 31f of this embodiment has a quadrangular prism shape. The four corners of the square prism are rounded. That is, the outer circumferential surface of the first middle core portion 31f, excluding the first end surface and the second end surface, is composed of four planes and four corners.
四つの角部のうち一つの角部は第一角部311である。第一角部311は、図2から図4に示すように、第一ミドルコア部31fの軸に沿った方向に並んだ複数の第一凹部312を有する。複数の第一凹部312は上記軸に沿った方向に連続している。各第一凹部312には、図6を参照して後述する第一巻回部2iの各ターンにおける巻線21の第一曲げ部213が配置されている。上記軸に沿って切断した各第一凹部312の断面形状は、巻線21の断面形状に応じて適宜選択できる。後述するように本実施形態の巻線21は被覆平角線である。図3および図4に示すように、本実施形態の各第一凹部312の断面形状は三角形状である。より具体的には各第一凹部312の断面形状は直角三角形である。なお、図4では各第一凹部312の断面形状が直角三角形には示されておらず、巻線21の断面も矩形状には示されていない。これは、第一凹部312が第一曲げ部213に沿って捻じれて延びているためである。この点は、後述する図7でも同様である。
One of the four corners is the first corner 311. As shown in FIGS. 2 to 4, the first corner portion 311 has a plurality of first recesses 312 arranged in a direction along the axis of the first middle core portion 31f. The plurality of first recesses 312 are continuous in the direction along the axis. A first bent portion 213 of the winding 21 in each turn of the first winding portion 2i, which will be described later with reference to FIG. 6, is arranged in each first recess 312. The cross-sectional shape of each first recess 312 cut along the axis can be appropriately selected depending on the cross-sectional shape of the winding 21. As will be described later, the winding 21 of this embodiment is a covered rectangular wire. As shown in FIGS. 3 and 4, the cross-sectional shape of each first recess 312 in this embodiment is triangular. More specifically, the cross-sectional shape of each first recess 312 is a right triangle. In addition, in FIG. 4, the cross-sectional shape of each first recess 312 is not shown to be a right triangle, and the cross-section of the winding 21 is not shown to be rectangular. This is because the first recessed portion 312 extends in a twisted manner along the first bent portion 213. This point also applies to FIG. 7, which will be described later.
直角三角形の直角をなす二つの隣辺は、巻線21の短辺に向かい合う第一隣辺と巻線21の長辺に向かい合う第二隣辺である。後述するように本実施形態の第一巻回部2iは被覆平角線がエッジワイズ巻きされてなる。本実施形態の第一隣辺の長さは巻線21の短辺と実質的に同じである。本実施形態の第二隣辺の長さは巻線21の長辺よりも短い。図5には、直角三角形の直角の頂点を通り上記軸に沿った方向に直交する平面で切断した断面図が示されている。図5に示すように、第一凹部312において第一ミドルコア部31fの軸周りの方向における中央の深さが最も深く、第一凹部312において上記軸周りの方向における両端の深さが最も浅い。第一凹部312の軸周りの方向の両端と第一角部311に隣り合う両平面とは面一である。
The two adjacent sides forming right angles of the right triangle are the first adjacent side facing the short side of the winding 21 and the second adjacent side facing the long side of the winding 21. As will be described later, the first winding portion 2i of this embodiment is formed by winding a coated rectangular wire edgewise. The length of the first adjacent side in this embodiment is substantially the same as the short side of the winding 21 . The length of the second adjacent side in this embodiment is shorter than the long side of the winding 21 . FIG. 5 shows a cross-sectional view taken along a plane passing through a right-angled vertex of a right-angled triangle and perpendicular to the direction along the axis. As shown in FIG. 5, in the first recess 312, the depth at the center of the first middle core portion 31f in the direction around the axis is the deepest, and in the first recess 312, the depth at both ends in the direction around the axis is the shallowest. Both ends of the first recess 312 in the direction around the axis and both planes adjacent to the first corner 311 are flush with each other.
本実施形態では、図2に示すように、第一ミドルコア部31fの軸周りの方向に第一角部311と隣り合う二つの角部のうち一つの角部は第二角部313である。第二角部313は、上記軸に沿った方向に並んだ複数の第二凹部314を有する。各第二凹部314には、図6を参照して後述する各ターンの巻線21の第二曲げ部214が配置されている。複数の第二凹部314は、上記軸に沿った方向に連続している。各第二凹部314の構成は、第一凹部312と同じである。
In this embodiment, as shown in FIG. 2, one of the two corners adjacent to the first corner 311 in the direction around the axis of the first middle core portion 31f is the second corner 313. The second corner portion 313 has a plurality of second recesses 314 arranged in a direction along the axis. A second bent portion 214 of each turn of the winding 21, which will be described later with reference to FIG. 6, is arranged in each second recess 314. The plurality of second recesses 314 are continuous in the direction along the axis. The configuration of each second recess 314 is the same as that of the first recess 312.
本実施形態では、残り二つの角部は第三角部315である。第三角部315は、第一凹部312および第二凹部314が設けられておらず、円弧面で構成された角部である。
In this embodiment, the remaining two corners are the third triangular parts 315. The third triangular portion 315 is a corner portion that is not provided with the first recessed portion 312 and the second recessed portion 314 and is formed of an arcuate surface.
本実施形態とは異なり、四つの角部のうち一つの角部が第一角部311であり、残り三つの角部が第三角部315であってもよい。
Unlike this embodiment, one of the four corners may be the first corner 311 and the remaining three corners may be the third triangular section 315.
第一エンドコア部33fの形状は柱状である。本実施形態の第一エンドコア部33fの形状は略ドーム形状の上面と下面を有する柱状である。
The shape of the first end core portion 33f is columnar. The shape of the first end core portion 33f of this embodiment is a columnar shape having a substantially dome-shaped upper surface and a lower surface.
第一ミドルコア部31fおよび第一エンドコア部33fは、複合材料の成形体、圧粉成形体、または積層体で構成されている。
The first middle core portion 31f and the first end core portion 33f are composed of a molded body, a powder molded body, or a laminate of a composite material.
複合材料の成形体は、樹脂中に軟磁性粉末が分散されてなる成形体である。複合材料の成形体は、未固化の樹脂中に軟磁性粉末を分散した流動性の素材を金型に充填し、樹脂を固化させることで得られる。第一凹部312、更には第二凹部314が形成された複合材料の成形体は金型の転写によって作製できる。複合材料の成形体は、樹脂中の軟磁性粉末の含有量を容易に調整できる。そのため、複合材料の成形体は、磁気特性を調整し易い。その上、複合材料の成形体は、圧粉成形体に比較して、複雑な形状でも形成し易い。複合材料の成形体中の軟磁性粉末の含有量の一例は、20体積%以上80体積%以下である。複合材料の成形体中の樹脂の含有量の一例は、20体積%以上80体積%以下である。これらの含有量は、複合材料の成形体が100体積%である場合の値である。
A molded body of a composite material is a molded body in which soft magnetic powder is dispersed in a resin. A molded body of a composite material is obtained by filling a mold with a fluid material in which soft magnetic powder is dispersed in an unsolidified resin, and then solidifying the resin. A composite material molded body in which the first recess 312 and further the second recess 314 are formed can be produced by transferring a mold. In the molded body of a composite material, the content of soft magnetic powder in the resin can be easily adjusted. Therefore, it is easy to adjust the magnetic properties of the molded body of the composite material. Furthermore, composite material compacts are easier to form even in complex shapes compared to powder compacts. An example of the content of the soft magnetic powder in the molded body of the composite material is 20 volume % or more and 80 volume % or less. An example of the content of the resin in the molded body of the composite material is 20% by volume or more and 80% by volume or less. These contents are values when the molded body of the composite material is 100% by volume.
圧粉成形体は、軟磁性粉末を圧縮成形してなる成形体である。圧粉成形体は、軟磁性粉末をキャビティ内に充填し、パンチによってキャビティ内の軟磁性粉末を加圧することで得られる。第一凹部312、更には第二凹部314が設けられた圧粉成形体は、キャビティおよびパンチの少なくとも一方による転写によって作製できる。圧粉成形体は、複合材料の成形体に比較して、コア部30に占める軟磁性粉末の割合を高くできる。そのため、圧粉成形体は、磁気特性を高め易い。磁気特性としては、比透磁率や飽和磁束密度である。また、圧粉成形体は、複合材料の成形体に比較して、軟磁性粉末の量が多いため、放熱性に優れる。圧粉成形体中の磁性粉末の含有量の一例は、85体積%以上99体積%以下である。この含有量は、圧粉成形体が100体積%である場合の値である。
A powder compact is a compact formed by compression molding soft magnetic powder. A powder compact is obtained by filling a cavity with soft magnetic powder and pressing the soft magnetic powder in the cavity with a punch. The compacted powder body provided with the first recess 312 and further the second recess 314 can be produced by transfer using at least one of a cavity and a punch. The powder compact can have a higher proportion of the soft magnetic powder in the core portion 30 than the composite material compact. Therefore, the powder compact easily improves magnetic properties. The magnetic properties include relative magnetic permeability and saturation magnetic flux density. In addition, since the powder compact contains a larger amount of soft magnetic powder than the composite material compact, it has excellent heat dissipation properties. An example of the content of magnetic powder in the powder compact is 85% by volume or more and 99% by volume or less. This content is a value when the powder compact is 100% by volume.
軟磁性粉末を構成する粒子は、軟磁性金属の粒子、被覆粒子、または軟磁性非金属の粒子などである。被覆粒子は、軟磁性金属の粒子と、軟磁性金属の粒子の外周に設けられている絶縁被覆とを備えていてもよい。軟磁性金属は、純鉄または鉄基合金などである。鉄基合金の一例は、Fe(鉄)-Si(ケイ素)合金またはFe-Ni(ニッケル)合金である。絶縁被覆の一例は、リン酸塩である。軟磁性非金属の一例は、フェライトである。
The particles constituting the soft magnetic powder are soft magnetic metal particles, coated particles, soft magnetic nonmetal particles, and the like. The coated particle may include a soft magnetic metal particle and an insulating coating provided around the outer periphery of the soft magnetic metal particle. The soft magnetic metal is pure iron or an iron-based alloy. An example of an iron-based alloy is a Fe (iron)-Si (silicon) alloy or a Fe-Ni (nickel) alloy. An example of an insulating coating is phosphate. An example of a soft magnetic nonmetal is ferrite.
複合材料の成形体の樹脂の一例は、熱硬化性樹脂または熱可塑性樹脂である。熱硬化性樹脂の一例は、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、またはウレタン樹脂である。熱可塑性樹脂の一例は、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、液晶ポリマー、ポリイミド樹脂、またはフッ素樹脂である。ポリアミド樹脂の一例は、ナイロン6、ナイロン66、またはナイロン9Tである。
An example of the resin of the molded body of the composite material is a thermosetting resin or a thermoplastic resin. Examples of thermosetting resins are epoxy resins, phenolic resins, silicone resins, or urethane resins. Examples of thermoplastic resins are polyphenylene sulfide resins, polyamide resins, liquid crystal polymers, polyimide resins, or fluorine resins. An example of a polyamide resin is nylon 6, nylon 66, or nylon 9T.
複合材料の成形体は、フィラーを含有していてもよい。フィラーの一例は、アルミナ、またはシリカである。フィラーは、放熱性および電気絶縁性の向上に寄与する。
The molded body of the composite material may contain a filler. An example of a filler is alumina or silica. Fillers contribute to improving heat dissipation and electrical insulation.
複合材料の成形体中における軟磁性粉末の含有量および圧粉成形体中における軟磁性粉末の含有量は、成形体の断面における軟磁性粉末の面積割合と等価とみなす。成形体中における軟磁性粉末の含有量は、次のようにして求める。成形体の断面をSEM(走査型電子顕微鏡)で観察して観察画像を取得する。成形体の断面は、任意の断面である。SEMの倍率は、200倍以上500倍以下とする。観察画像の取得数は、10個以上とする。全観察画像の合計面積は、0.1cm2以上とする。一断面につき一つの観察画像を取得してもよいし、一断面につき複数の観察画像を取得してもよい。取得した各観察画像を画像処理して粒子の輪郭を抽出する。画像処理としては、例えば、二値化処理である。各観察画像において軟磁性粒子の面積割合を算出し、その面積割合の平均値を求める。その平均値を軟磁性粉末の含有量とみなす。
The content of the soft magnetic powder in the molded body of the composite material and the content of the soft magnetic powder in the compacted body are considered to be equivalent to the area ratio of the soft magnetic powder in the cross section of the molded body. The content of soft magnetic powder in the compact is determined as follows. A cross section of the molded body is observed with a SEM (scanning electron microscope) to obtain an observed image. The cross section of the molded body is an arbitrary cross section. The magnification of SEM shall be 200 times or more and 500 times or less. The number of observation images to be acquired is 10 or more. The total area of all observed images shall be 0.1 cm 2 or more. One observation image may be acquired for each cross section, or a plurality of observation images may be acquired for each cross section. Each acquired observation image is processed to extract the outline of the particle. The image processing is, for example, binarization processing. The area ratio of soft magnetic particles is calculated in each observed image, and the average value of the area ratio is determined. The average value is regarded as the content of soft magnetic powder.
積層体は、複数の磁性薄板を積層してなる。磁性薄板は、絶縁被膜を有する。磁性薄板としては、例えば、電磁鋼板である。第一凹部312、更には第二凹部314が設けられた積層体は、面積の異なる複数の磁性薄板を磁性薄板の厚さに沿った方向に積層することによってを作製できる。
The laminate is made by laminating multiple magnetic thin plates. The magnetic thin plate has an insulating coating. The magnetic thin plate is, for example, an electromagnetic steel plate. The laminate in which the first recess 312 and further the second recess 314 are provided can be produced by laminating a plurality of magnetic thin plates having different areas in a direction along the thickness of the magnetic thin plates.
本実施形態の第一ミドルコア部31f、第二ミドルコア部31s、第一エンドコア部33f、および第二エンドコア部33sは複合材料の成形体で構成されている。
The first middle core part 31f, the second middle core part 31s, the first end core part 33f, and the second end core part 33s of this embodiment are made of a molded body of a composite material.
(ギャップ材)
ギャップ材は、第一ミドルコア部31f、第二ミドルコア部31s、第一エンドコア部33f、および第二エンドコア部33sよりも比透磁率が小さい材料からなる部材で構成されている。ギャップ材の構成材料の一例は、上述したセラミックスまたは樹脂である。 (gap material)
The gap material is made of a material having a relative magnetic permeability lower than that of the firstmiddle core part 31f, the second middle core part 31s, the first end core part 33f, and the second end core part 33s. An example of the constituent material of the gap material is the above-mentioned ceramic or resin.
ギャップ材は、第一ミドルコア部31f、第二ミドルコア部31s、第一エンドコア部33f、および第二エンドコア部33sよりも比透磁率が小さい材料からなる部材で構成されている。ギャップ材の構成材料の一例は、上述したセラミックスまたは樹脂である。 (gap material)
The gap material is made of a material having a relative magnetic permeability lower than that of the first
[コイル]
図2に示す本実施形態のコイル2は、第一巻回部2iおよび第二巻回部2eを有する。本実施形態の巻回部20は、第一巻回部2iおよび第二巻回部2eの各々を構成する。第一巻回部2iと第二巻回部2eとは互いにつながっていてもよいし、つながっていなくてもよい。第一巻回部2iは、第一ミドルコア部31fの外周に配置されている。第二巻回部2eは、第二ミドルコア部31sの外周に配置されている。第一巻回部2iおよび第二巻回部2eの構成は同じである。以下の説明は、代表して第一巻回部2iについて行う。 [coil]
Thecoil 2 of this embodiment shown in FIG. 2 has a first winding part 2i and a second winding part 2e. The winding section 20 of this embodiment constitutes each of a first winding section 2i and a second winding section 2e. The first winding portion 2i and the second winding portion 2e may or may not be connected to each other. The first winding portion 2i is arranged on the outer periphery of the first middle core portion 31f. The second winding portion 2e is arranged on the outer periphery of the second middle core portion 31s. The configurations of the first winding part 2i and the second winding part 2e are the same. The following description will be made regarding the first winding portion 2i as a representative.
図2に示す本実施形態のコイル2は、第一巻回部2iおよび第二巻回部2eを有する。本実施形態の巻回部20は、第一巻回部2iおよび第二巻回部2eの各々を構成する。第一巻回部2iと第二巻回部2eとは互いにつながっていてもよいし、つながっていなくてもよい。第一巻回部2iは、第一ミドルコア部31fの外周に配置されている。第二巻回部2eは、第二ミドルコア部31sの外周に配置されている。第一巻回部2iおよび第二巻回部2eの構成は同じである。以下の説明は、代表して第一巻回部2iについて行う。 [coil]
The
第一巻回部2iの形状は四角筒状である。第一巻回部2iの角部は丸められている。第一巻回部2iは巻線21で構成されている。巻線21は、第一ミドルコア部31fの外周面に沿うように複数のターンで巻回されている。四角筒状の第一巻回部2iは、製造過程で巻線21を第一ミドルコア部31fの外周面に沿って巻回し易いため、製造し易い。巻線21は、公知の巻線を利用できる。本実施形態の巻線21は被覆平角線である。被覆平角線の導体線は、銅製の平角線で構成されている。被覆平角線の絶縁被覆は、エナメルからなる。第一巻回部2iは、被覆平角線をエッジワイズ巻きされてなる。第一巻回部2iの軸に沿った方向の長さが一定の場合、エッジワイズ巻きされた第一巻回部2iは、フラットワイズ巻きされた第一巻回部2iに比較して、ターン数を多くし易い。第一巻回部2iのターン数が一定の場合、エッジワイズ巻きされた第一巻回部2iは、フラットワイズ巻きされた第一巻回部2iに比較して、軸に沿った方向の長さを短くし易い。そのため、エッジワイズ巻きされた第一巻回部2iは、フラットワイズ巻きされた第一巻回部2iに比較して、小型化し易い。第一巻回部2iの各ターンの巻線21は、四つの直線部と四つの曲げ部とで構成されている。
The first winding portion 2i has a square cylindrical shape. The corners of the first winding portion 2i are rounded. The first winding portion 2i is made up of a winding 21. The winding 21 is wound in a plurality of turns along the outer peripheral surface of the first middle core portion 31f. The square cylindrical first winding portion 2i is easy to manufacture because it is easy to wind the winding 21 along the outer peripheral surface of the first middle core portion 31f during the manufacturing process. As the winding 21, a known winding can be used. The winding 21 of this embodiment is a covered rectangular wire. The conductor wire of the covered rectangular wire is made of copper rectangular wire. The insulation coating of the coated rectangular wire is made of enamel. The first winding portion 2i is formed by winding a coated rectangular wire edgewise. When the length of the first winding part 2i in the direction along the axis is constant, the first winding part 2i wound edgewise has a smaller turn than the first winding part 2i winding flatwise. Easy to increase in number. When the number of turns of the first winding part 2i is constant, the first winding part 2i wound edgewise has a longer length along the axis than the first winding part 2i winding flatwise. It is easy to shorten the length. Therefore, the first winding part 2i wound edgewise is easier to downsize than the first winding part 2i winding flatwise. Each turn of the winding 21 of the first winding portion 2i is composed of four straight parts and four bent parts.
図6に示すように、本実施形態における四つの直線部は、一つの第一直線部211と三つの第二直線部212である。本実施形態における四つの曲げ部は、一つの第一曲げ部213と一つの第二曲げ部214と二つの第三曲げ部215である。第一直線部211は、第一巻回部2iの軸に沿った方向に直交することなく交差している。第二直線部212は、第一巻回部2iの軸に沿った方向に直交している。第一曲げ部213は、第一直線部211と第二直線部212とをつないでいる。第二曲げ部214は、第一直線部211と隣りのターンの第二直線部212とをつないでいる。第一曲げ部213および第二曲げ部214は、巻線21が曲がりながら第一巻回部2iの軸に沿った方向にずれる箇所である。即ち、第一曲げ部213および第二曲げ部214は捻れている。第三曲げ部215は、第二直線部212同士をつないでいる。第三曲げ部215は、巻線21が曲がりながら第一巻回部2iの軸に沿った方向にずれない箇所である。即ち、第三曲げ部215は捻れていない。本実施形態とは異なり、四つの曲げ部は、一つの第一曲げ部213と三つの第三曲げ部215であってもよい。
As shown in FIG. 6, the four straight parts in this embodiment are one first straight part 211 and three second straight parts 212. The four bent portions in this embodiment are one first bent portion 213 , one second bent portion 214 , and two third bent portions 215 . The first straight portion 211 intersects the direction along the axis of the first winding portion 2i without being perpendicular to it. The second straight portion 212 is perpendicular to the direction along the axis of the first winding portion 2i. The first bent portion 213 connects the first straight portion 211 and the second straight portion 212. The second bent portion 214 connects the first straight portion 211 and the second straight portion 212 of the adjacent turn. The first bent portion 213 and the second bent portion 214 are locations where the winding 21 is bent and shifted in the direction along the axis of the first winding portion 2i. That is, the first bent portion 213 and the second bent portion 214 are twisted. The third bent portion 215 connects the second straight portions 212. The third bending portion 215 is a portion where the winding 21 is bent but not displaced in the direction along the axis of the first winding portion 2i. That is, the third bent portion 215 is not twisted. Unlike this embodiment, the four bent portions may be one first bent portion 213 and three third bent portions 215.
各第一直線部211は、第一角部311と第二角部313とをつなぐ平面に接している。各ターンの三つの第二直線部212は、第一角部311と第三角部315とをつなぐ平面、第二角部313と第三角部315とをつなぐ平面、第三角部315同士をつなぐ平面に接している。各第一直線部211および各第二直線部212が第一ミドルコア部31fに接している巻線21の熱は第一ミドルコア部31fに伝わり易い。そのため、本実施形態のリアクトル1は、第一巻回部2iと第一ミドルコア部31fとの間に隙間が形成されている従来のリアクトルに比較して、放熱性を高め易い。
Each first straight portion 211 is in contact with a plane connecting the first corner 311 and the second corner 313. The three second linear parts 212 of each turn are a plane that connects the first corner part 311 and the second triangular part 315, a plane that connects the second corner part 313 and the second triangular part 315, and a plane that connects the second triangular parts 315. is in contact with The heat of the winding 21 in which each of the first linear portions 211 and the second linear portions 212 are in contact with the first middle core portion 31f is easily transmitted to the first middle core portion 31f. Therefore, the reactor 1 of this embodiment can easily improve heat dissipation compared to a conventional reactor in which a gap is formed between the first winding part 2i and the first middle core part 31f.
各第一曲げ部213は各第一凹部312に配置されている。各第一曲げ部213は、第一角部311に接している。各第二曲げ部214は各第二凹部314に配置されている。各第二曲げ部214は、第二角部313に接している。各ターンの二つの第三曲げ部215は、各第三角部315に接している。
Each first bent part 213 is arranged in each first recessed part 312. Each first bent portion 213 is in contact with the first corner portion 311 . Each second bent portion 214 is disposed in a respective second recess 314 . Each second bent portion 214 is in contact with the second corner portion 313 . The two third bent portions 215 of each turn are in contact with each third triangular portion 315.
各第一曲げ部213は各第一凹部312に配置され、各第二曲げ部214は各第二凹部314に配置されている本実施形態のリアクトル1は、次の参考例のリアクトルに比較して、放熱性を高め易い。参考例のリアクトルは、本実施形態とは異なり、第一凹部312および第二凹部314を有していない第一ミドルコア部31fに巻線21が巻回されている。参考例のリアクトルでは、捻れている各第一曲げ部213と第三角部315との間、および捻れている各第二曲げ部214と第三角部315との間には隙間が形成され易い。そのため、参考例のリアクトルにおける第一曲げ部213および第二曲げ部214と第一ミドルコア部31fとの接触面積は小さくなり易い。一方、各第一曲げ部213は各第一凹部312に配置され、各第二曲げ部214は各第二凹部314に配置されている本実施形態における各第一曲げ部213および各第二曲げ部214と第一ミドルコア部31fとの接触面積は大きくなり易い。よって、本実施形態のリアクトル1は、参考例のリアクトルに比較して、巻線21の熱を第一ミドルコア部31fに伝え易い。
The reactor 1 of this embodiment, in which each first bent part 213 is arranged in each first recess 312 and each second bent part 214 is arranged in each second recess 314, is compared with the reactor of the following reference example. This makes it easy to improve heat dissipation. In the reactor of the reference example, unlike the present embodiment, the winding 21 is wound around a first middle core portion 31f that does not have the first recess 312 and the second recess 314. In the reactor of the reference example, gaps are likely to be formed between each twisted first bent part 213 and the second triangular part 315 and between each twisted second bent part 214 and the second triangular part 315. Therefore, the contact area between the first bent portion 213 and the second bent portion 214 and the first middle core portion 31f in the reactor of the reference example tends to be small. On the other hand, each first bending part 213 and each second bending part 213 and each second bending part 213 and each second bending part 213 and each second bending part 213 and each second bending part 213 and each second bending part 214 are arranged in each second recess 314, respectively. The contact area between the portion 214 and the first middle core portion 31f tends to be large. Therefore, the reactor 1 of this embodiment can easily transfer the heat of the winding 21 to the first middle core portion 31f compared to the reactor of the reference example.
各第三曲げ部215は第三角部315に接している。各第三曲げ部215は、第一曲げ部213とは異なり、捻れていないため、凹部のない湾曲面である第三角部315であっても接触し易い。
Each third bent portion 215 is in contact with the third triangular portion 315. Unlike the first bent portions 213, each third bent portion 215 is not twisted, so even the third triangular portion 315, which is a curved surface without a recess, can easily come into contact with each other.
第一巻回部2iは、巻線21を第一ミドルコア部31fの外周面に沿わせながら巻回することで作製される。作製の過程で、第一曲げ部213を第一凹部312に沿わせ、第二曲げ部214を第二凹部314に沿わせる。
The first winding portion 2i is produced by winding the winding wire 21 along the outer peripheral surface of the first middle core portion 31f. In the manufacturing process, the first bent portion 213 is aligned with the first recessed portion 312 and the second bent portion 214 is aligned with the second recessed portion 314.
《その他の実施形態》
実施形態1とは異なる実施形態2から実施形態5のリアクトルを説明する。実施形態2から実施形態5の説明は、実施形態1との相違点を中心に行う。実施形態1と同様の構成の説明は省略することもある。 《Other embodiments》
The reactors ofEmbodiments 2 to 5, which are different from Embodiment 1, will be described. The description of the second to fifth embodiments will focus on the differences from the first embodiment. Descriptions of configurations similar to those in Embodiment 1 may be omitted.
実施形態1とは異なる実施形態2から実施形態5のリアクトルを説明する。実施形態2から実施形態5の説明は、実施形態1との相違点を中心に行う。実施形態1と同様の構成の説明は省略することもある。 《Other embodiments》
The reactors of
《実施形態2》
図7に示すように、実施形態2のリアクトルとして、第一巻回部2iおよび第二巻回部2eは被覆平角線がフラットワイズ巻きされて構成されていてもよい。フラットワイズ巻きされてなる第一巻回部2iおよび第二巻回部2eは、エッジワイズ巻きされてなる第一巻回部2iおよび第二巻回部2eに比較して、被覆平角線を曲げ易いため作製し易い。本実施形態では、各第一凹部312および各第二凹部314の断面形状は実施形態1と同様、直角三角形である。本実施形態では、直角三角形の直角をなす二つの隣辺のうち巻線21の長辺に向かい合う第二隣辺の長さは、巻線21の長辺と実質的に同じである。直角三角形の二つの隣辺のうち巻線21の短辺に向かい合う第一隣辺の長さは巻線21の短辺よりも短い。 《Embodiment 2》
As shown in FIG. 7, in the reactor of the second embodiment, the first winding part 2i and the second windingpart 2e may be configured by flatwise winding a covered rectangular wire. The first winding part 2i and the second winding part 2e formed by flatwise winding bend the coated rectangular wire, compared to the first winding part 2i and the second winding part 2e formed by edgewise winding. It is simple and easy to manufacture. In this embodiment, the cross-sectional shape of each first recess 312 and each second recess 314 is a right triangle, as in the first embodiment. In this embodiment, the length of the second adjacent side facing the long side of the winding 21 among the two adjacent sides forming a right angle of the right triangle is substantially the same as the long side of the winding 21 . Of the two adjacent sides of the right triangle, the first adjacent side facing the short side of the winding 21 is shorter than the short side of the winding 21 .
図7に示すように、実施形態2のリアクトルとして、第一巻回部2iおよび第二巻回部2eは被覆平角線がフラットワイズ巻きされて構成されていてもよい。フラットワイズ巻きされてなる第一巻回部2iおよび第二巻回部2eは、エッジワイズ巻きされてなる第一巻回部2iおよび第二巻回部2eに比較して、被覆平角線を曲げ易いため作製し易い。本実施形態では、各第一凹部312および各第二凹部314の断面形状は実施形態1と同様、直角三角形である。本実施形態では、直角三角形の直角をなす二つの隣辺のうち巻線21の長辺に向かい合う第二隣辺の長さは、巻線21の長辺と実質的に同じである。直角三角形の二つの隣辺のうち巻線21の短辺に向かい合う第一隣辺の長さは巻線21の短辺よりも短い。 《
As shown in FIG. 7, in the reactor of the second embodiment, the first winding part 2i and the second winding
《実施形態3》
図8に示すように、実施形態3のリアクトルとして、各第一凹部312および各第二凹部314の断面形状は半円形状であり、巻線21は丸線であってもよい。 《Embodiment 3》
As shown in FIG. 8, in the reactor of the third embodiment, eachfirst recess 312 and each second recess 314 have a semicircular cross-section, and the winding 21 may be a round wire.
図8に示すように、実施形態3のリアクトルとして、各第一凹部312および各第二凹部314の断面形状は半円形状であり、巻線21は丸線であってもよい。 《
As shown in FIG. 8, in the reactor of the third embodiment, each
《実施形態4》
図9、図10に示すように、実施形態4のリアクトルとして、コア部30は、コア本体部30aと、コア本体部30aの外周面に沿って設けられた絶縁部30bとを備えていてもよい。絶縁部30bによって、コア本体部30aと巻回部20との間の絶縁性が高くなり易い。コア本体部30aは、上述した成形体または積層体で構成されている。絶縁部30bは、例えば上述した複合材料の成形体の樹脂と同様の樹脂で構成されている。本実施形態のコア本体部30aと絶縁部30bとは一体化されている。本実施形態とは異なり、コア本体部30aと絶縁部30bとは互いに独立していてもよい。 《Embodiment 4》
As shown in FIGS. 9 and 10, as the reactor of the fourth embodiment, thecore section 30 may include a core body section 30a and an insulating section 30b provided along the outer peripheral surface of the core body section 30a. good. The insulating portion 30b tends to increase the insulation between the core body portion 30a and the winding portion 20. The core body portion 30a is made of the above-mentioned molded body or laminate. The insulating portion 30b is made of, for example, the same resin as the resin of the composite material molded body described above. The core body portion 30a and the insulating portion 30b of this embodiment are integrated. Unlike this embodiment, the core body portion 30a and the insulating portion 30b may be independent from each other.
図9、図10に示すように、実施形態4のリアクトルとして、コア部30は、コア本体部30aと、コア本体部30aの外周面に沿って設けられた絶縁部30bとを備えていてもよい。絶縁部30bによって、コア本体部30aと巻回部20との間の絶縁性が高くなり易い。コア本体部30aは、上述した成形体または積層体で構成されている。絶縁部30bは、例えば上述した複合材料の成形体の樹脂と同様の樹脂で構成されている。本実施形態のコア本体部30aと絶縁部30bとは一体化されている。本実施形態とは異なり、コア本体部30aと絶縁部30bとは互いに独立していてもよい。 《Embodiment 4》
As shown in FIGS. 9 and 10, as the reactor of the fourth embodiment, the
本実施形態のコア本体部30aは四角柱状である。コア本体部30aの外周面は、四つの平面と四つの角部とで構成されている。
The core body portion 30a of this embodiment has a quadrangular prism shape. The outer circumferential surface of the core body portion 30a is composed of four planes and four corners.
図9に示すように、コア本体部30aの四つの角部のうち一つの角部は、コア本体部30aの軸に沿った方向に並んだ複数の凹部318を有していてもよい。図示を省略するものの、複数の凹部318が設けられた角部に対してコア本体部30aの軸周りの方向に隣り合う二つの角部のうち一つの角部も複数の凹部318を有していてもよい。残り二つの角部は円弧面で構成された角部である。
As shown in FIG. 9, one of the four corners of the core body 30a may have a plurality of recesses 318 arranged in the direction along the axis of the core body 30a. Although not shown, one of the two corners adjacent in the direction around the axis of the core body 30a to the corner provided with the plurality of recesses 318 also has a plurality of recesses 318. It's okay. The remaining two corners are arcuate corners.
図9に示すように、絶縁部30bは、上述した複数の第一凹部312が設けられた第一角部311を有する。絶縁部30bの第一角部311は、コア本体部30aの四つの角部のうち複数の凹部318が設けれた角部を覆うように設けられている。絶縁部30bの第一凹部312はコア本体部30aの凹部318に沿っている。図示を省略するものの、絶縁部30bは、上述した複数の第二凹部が設けられた第二角部を更に有していてもよい。絶縁部30bの第二角部は、第一角部311に覆われた複数の凹部318を有する角部に対してコア本体部30aの軸周りの方向に隣り合う二つの角部のうち複数の凹部318が設けられた方の角部を覆うように設けられている。絶縁部30bの第二凹部は、第二角部が覆う凹部318に沿っている。絶縁部30bは、コア本体部30aの上記二つの角部に加えて、残りの二つの角部を覆っていてもよい。更に、絶縁部30bは、コア本体部30aの四つの平面を覆っていてもよい。即ち、絶縁部30bは、コア本体部30aの外周面の全周を覆うように設けられていてもよい。
As shown in FIG. 9, the insulating portion 30b has a first corner portion 311 in which the plurality of first recesses 312 described above are provided. The first corner portion 311 of the insulating portion 30b is provided so as to cover the corner portion where the plurality of recesses 318 are provided among the four corners of the core body portion 30a. The first recess 312 of the insulating portion 30b is along the recess 318 of the core body portion 30a. Although not shown, the insulating portion 30b may further include a second corner portion provided with the plurality of second recesses described above. The second corner portion of the insulating portion 30b has a plurality of corners among two corners adjacent in the direction around the axis of the core body portion 30a with respect to the corner portion having a plurality of recesses 318 covered by the first corner portion 311. It is provided so as to cover the corner portion where the recessed portion 318 is provided. The second recess of the insulating portion 30b is along the recess 318 covered by the second corner. In addition to the two corners described above, the insulating section 30b may cover the remaining two corners of the core body section 30a. Furthermore, the insulating portion 30b may cover four planes of the core body portion 30a. That is, the insulating portion 30b may be provided so as to cover the entire outer peripheral surface of the core body portion 30a.
図9に示す例とは異なり、図10に示すように、コア本体部30aの四つの角部はいずれも、複数の凹部318を有しておらず、円弧面で構成された角部であってもよい。図10に示すように、絶縁部30bのうち上述した複数の第一凹部312が設けられた第一角部311は、コア本体部30aにおいて円弧面で構成された角部を覆うように設けられていてもよい。図示を省略するものの、絶縁部30bのうち上述した複数の第二凹部が設けられた第二角部は、コア本体部30aにおいて第一角部311に覆われた角部に対してコア本体部30aの軸周りの方向に隣り合う二つの角部のうち一つの角部を覆うように設けられていてもよい。
Unlike the example shown in FIG. 9, as shown in FIG. 10, none of the four corners of the core main body 30a has a plurality of recesses 318, and is a corner formed by an arcuate surface. It's okay. As shown in FIG. 10, the first corner part 311 in which the plurality of first recesses 312 described above are provided in the insulating part 30b is provided so as to cover the corner part formed by the circular arc surface in the core body part 30a. You can leave it there. Although not shown, the second corner portion of the insulating portion 30b in which the plurality of second recesses described above is provided is located in the core body portion relative to the corner portion covered by the first corner portion 311 in the core body portion 30a. It may be provided so as to cover one corner of two corners adjacent in the direction around the axis of 30a.
《実施形態5》
図示は省略するものの、実施形態5のリアクトルとして、磁性コアは、ミドルコア部、第一サイドコア部、第二サイドコア部、第一エンドコア部、および第二エンドコア部を有していてもよい。ミドルコア部と第一サイドコア部と第二サイドコア部とは、互いの軸に沿った方向が平行となるように並べて配置されている。第一サイドコア部と第二サイドコア部との間にミドルコア部が配置されている。第一サイドコア部は、ミドルコア部の第一端面、第一サイドコア部の第一端面、および第二サイドコア部の第一端面に向かい合って配置されている。第二サイドコア部は、ミドルコア部の第二端面、第一サイドコア部の第二端面、および第二サイドコア部の第二端面に向かい合って配置されている。 《Embodiment 5》
Although not shown, in the reactor of Embodiment 5, the magnetic core may include a middle core part, a first side core part, a second side core part, a first end core part, and a second end core part. The middle core part, the first side core part, and the second side core part are arranged side by side so that the directions along the respective axes are parallel to each other. A middle core section is arranged between the first side core section and the second side core section. The first side core portion is arranged to face the first end surface of the middle core portion, the first end surface of the first side core portion, and the first end surface of the second side core portion. The second side core portion is disposed facing the second end surface of the middle core portion, the second end surface of the first side core portion, and the second end surface of the second side core portion.
図示は省略するものの、実施形態5のリアクトルとして、磁性コアは、ミドルコア部、第一サイドコア部、第二サイドコア部、第一エンドコア部、および第二エンドコア部を有していてもよい。ミドルコア部と第一サイドコア部と第二サイドコア部とは、互いの軸に沿った方向が平行となるように並べて配置されている。第一サイドコア部と第二サイドコア部との間にミドルコア部が配置されている。第一サイドコア部は、ミドルコア部の第一端面、第一サイドコア部の第一端面、および第二サイドコア部の第一端面に向かい合って配置されている。第二サイドコア部は、ミドルコア部の第二端面、第一サイドコア部の第二端面、および第二サイドコア部の第二端面に向かい合って配置されている。 《Embodiment 5》
Although not shown, in the reactor of Embodiment 5, the magnetic core may include a middle core part, a first side core part, a second side core part, a first end core part, and a second end core part. The middle core part, the first side core part, and the second side core part are arranged side by side so that the directions along the respective axes are parallel to each other. A middle core section is arranged between the first side core section and the second side core section. The first side core portion is arranged to face the first end surface of the middle core portion, the first end surface of the first side core portion, and the first end surface of the second side core portion. The second side core portion is disposed facing the second end surface of the middle core portion, the second end surface of the first side core portion, and the second end surface of the second side core portion.
磁性コアは、例えば、E字状の第一コア片とI字状の第二コア片との組み合わせ、またはU字状の第一コア片とT字状の第二コア片との組み合わせによって構成できる。E字状の第一コア片は、ミドルコア部、第一サイドコア部、第二サイドコア部、および第一エンドコア部が一体の成形体または積層体である。I字状の第二コア片は、第二エンドコア部によって構成されている。U字状の第一コア片は、第一サイドコア部、第二サイドコア部、および第一エンドコア部が一体の成形体または積層体である。T字状の第二コア片は、ミドルコア部および第二エンドコア部が一体の成形体または積層体である。
The magnetic core is configured by, for example, a combination of an E-shaped first core piece and an I-shaped second core piece, or a combination of a U-shaped first core piece and a T-shaped second core piece. can. The E-shaped first core piece is a molded body or a laminate in which a middle core part, a first side core part, a second side core part, and a first end core part are integrated. The I-shaped second core piece is constituted by a second end core portion. The U-shaped first core piece is a molded body or a laminate in which a first side core part, a second side core part, and a first end core part are integrated. The T-shaped second core piece is a molded body or a laminate in which a middle core portion and a second end core portion are integrated.
本実施形態では、実施形態1で説明したコア部30が第一サイドコア部および第二サイドコア部の各々を構成していてもよい。上述した第一巻回部2iは、第一サイドコア部の外周に配置され、上述した第二巻回部2eは、第二サイドコア部の外周に配置されていてもよい。第一巻回部2iおよび第二巻回部2eは、互いに独立していてもよい。
In this embodiment, the core portion 30 described in Embodiment 1 may constitute each of the first side core portion and the second side core portion. The first winding part 2i mentioned above may be arranged on the outer periphery of the first side core part, and the second winding part 2e mentioned above may be arranged on the outer periphery of the second side core part. The first winding part 2i and the second winding part 2e may be independent from each other.
《実施形態6》
〔コンバータ・電力変換装置〕
実施形態1から実施形態5のいずれかのリアクトル1は、以下の通電条件を満たす用途に利用できる。通電条件は次の通りである。最大直流電流は例えば100A以上1000A以下程度である。平均電圧は例えば100V以上1000V以下程度である。使用周波数は例えば5kHz以上100kHz以下程度である。実施形態1から実施形態5のいずれかのリアクトル1は、代表的には電気自動車、ハイブリッド自動車、または燃料電池自動車などの車両1200に載置されるコンバータの構成部品や、このコンバータを備える電力変換装置の構成部品に利用できる。 《Embodiment 6》
[Converter/power conversion device]
Thereactor 1 of any one of Embodiments 1 to 5 can be used for applications that satisfy the following energization conditions. The energization conditions are as follows. The maximum direct current is, for example, about 100 A or more and 1000 A or less. The average voltage is, for example, about 100V or more and 1000V or less. The frequency used is, for example, about 5 kHz or more and 100 kHz or less. The reactor 1 of any one of Embodiments 1 to 5 is typically a component of a converter installed in a vehicle 1200 such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle, or a power converter equipped with this converter. Can be used as component parts of equipment.
〔コンバータ・電力変換装置〕
実施形態1から実施形態5のいずれかのリアクトル1は、以下の通電条件を満たす用途に利用できる。通電条件は次の通りである。最大直流電流は例えば100A以上1000A以下程度である。平均電圧は例えば100V以上1000V以下程度である。使用周波数は例えば5kHz以上100kHz以下程度である。実施形態1から実施形態5のいずれかのリアクトル1は、代表的には電気自動車、ハイブリッド自動車、または燃料電池自動車などの車両1200に載置されるコンバータの構成部品や、このコンバータを備える電力変換装置の構成部品に利用できる。 《Embodiment 6》
[Converter/power conversion device]
The
車両1200は、図11に示すようにメインバッテリ1210と、メインバッテリ1210に接続される電力変換装置1100と、メインバッテリ1210からの供給電力により駆動して走行に利用されるモータ1220とを備える。モータ1220は、代表的には、3相交流モータである。モータ1220は、走行時、車輪1250を駆動し、回生時、発電機として機能する。ハイブリッド自動車の場合、車両1200は、モータ1220に加えてエンジン1300を備える。図11では、車両1200の充電箇所としてインレットを示すが、プラグを備える形態とすることができる。
As shown in FIG. 11, the vehicle 1200 includes a main battery 1210, a power converter 1100 connected to the main battery 1210, and a motor 1220 that is driven by power supplied from the main battery 1210 and used for traveling. Motor 1220 is typically a three-phase AC motor. The motor 1220 drives the wheels 1250 during running, and functions as a generator during regeneration. In the case of a hybrid vehicle, vehicle 1200 includes an engine 1300 in addition to a motor 1220. In FIG. 11, an inlet is shown as a charging location of vehicle 1200, but it may be provided with a plug.
電力変換装置1100は、コンバータ1110と、インバータ1120とを有する。コンバータ1110は、メインバッテリ1210に接続される。インバータ1120は、コンバータ1110に接続される。インバータ1120は、直流と交流との相互変換を行う。この例に示すコンバータ1110は、車両1200の走行時、200V以上300V以下程度のメインバッテリ1210の入力電圧を400V以上700V以下程度にまで昇圧して、インバータ1120に給電する。コンバータ1110は、回生時、モータ1220からインバータ1120を介して出力される入力電圧をメインバッテリ1210に適合した直流電圧に降圧して、メインバッテリ1210に充電させている。入力電圧は、直流電圧である。インバータ1120は、車両1200の走行時、コンバータ1110で昇圧された直流を所定の交流に変換してモータ1220に給電する。インバータ1120は、回生時、モータ1220からの交流出力を直流に変換してコンバータ1110に出力している。
Power conversion device 1100 includes a converter 1110 and an inverter 1120. Converter 1110 is connected to main battery 1210. Inverter 1120 is connected to converter 1110. Inverter 1120 performs mutual conversion between direct current and alternating current. Converter 1110 shown in this example boosts the input voltage of main battery 1210, which is approximately 200 V or more and 300 V or less, to approximately 400 V or more and 700 V or less, and supplies power to inverter 1120 when vehicle 1200 is running. During regeneration, the converter 1110 steps down the input voltage output from the motor 1220 via the inverter 1120 to a DC voltage suitable for the main battery 1210, and charges the main battery 1210. The input voltage is a DC voltage. When the vehicle 1200 is running, the inverter 1120 converts the DC boosted by the converter 1110 into a predetermined alternating current and supplies power to the motor 1220. During regeneration, inverter 1120 converts the AC output from motor 1220 into DC and outputs it to converter 1110.
コンバータ1110は、図12に示すように複数のスイッチング素子1111と、スイッチング素子1111の動作を制御する駆動回路1112と、リアクトル1115とを備える。コンバータ1110は、ON/OFFの繰り返しにより入力電圧の変換を行う。入力電圧の変換とは、ここでは昇降圧を行う。スイッチング素子1111には、電界効果トランジスタ、絶縁ゲートバイポーラトランジスタなどのパワーデバイスが利用される。リアクトル1115は、回路に流れようとする電流の変化を妨げようとするコイルの性質を利用し、スイッチング動作によって電流が増減しようとしたとき、その変化を滑らかにする機能を有する。リアクトル1115として、実施形態1から実施形態5のいずれかのリアクトル1を備える。リアクトル1を備える電力変換装置1100およびコンバータ1110は、放熱性の向上が期待できる。
As shown in FIG. 12, the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor 1115. Converter 1110 converts the input voltage by repeating ON/OFF. Input voltage conversion here means step-up and step-down. As the switching element 1111, a power device such as a field effect transistor or an insulated gate bipolar transistor is used. The reactor 1115 utilizes the property of a coil to prevent changes in the current flowing through the circuit, and has the function of smoothing out changes when the current attempts to increase or decrease due to switching operations. As the reactor 1115, the reactor 1 of any one of Embodiments 1 to 5 is provided. Power conversion device 1100 and converter 1110 including reactor 1 can be expected to have improved heat dissipation.
車両1200は、コンバータ1110の他、給電装置用コンバータ1150と補機電源用コンバータ1160とを備える。給電装置用コンバータ1150は、メインバッテリ1210に接続されている。補機電源用コンバータ1160は、補機類1240の電力源となるサブバッテリ1230とメインバッテリ1210とに接続されている。補機電源用コンバータ1160は、メインバッテリ1210の高圧を低圧に変換する。コンバータ1110は、代表的には、DC-DC変換を行うが、給電装置用コンバータ1150や補機電源用コンバータ1160は、AC-DC変換を行う。給電装置用コンバータ1150のなかには、DC-DC変換を行うものもある。給電装置用コンバータ1150や補機電源用コンバータ1160のリアクトルに、実施形態1から実施形態5のいずれかのリアクトル1と同様の構成を備え、適宜、大きさや形状などを変更したリアクトルを利用できる。また、入力電力の変換を行うコンバータであって、昇圧のみを行うコンバータや降圧のみを行うコンバータに、実施形態1から実施形態5のいずれかのリアクトル1などを利用することもできる。
In addition to the converter 1110, the vehicle 1200 includes a power supply device converter 1150 and an auxiliary power supply converter 1160. Power supply device converter 1150 is connected to main battery 1210. Auxiliary power supply converter 1160 is connected to sub-battery 1230 and main battery 1210, which serve as power sources for auxiliary equipment 1240. Auxiliary power supply converter 1160 converts the high voltage of main battery 1210 to low voltage. Converter 1110 typically performs DC-DC conversion, while power supply device converter 1150 and auxiliary power supply converter 1160 perform AC-DC conversion. Some power supply device converters 1150 perform DC-DC conversion. The reactors of the power supply device converter 1150 and the auxiliary power supply converter 1160 can be provided with the same configuration as the reactor 1 of any one of Embodiments 1 to 5, and a reactor whose size, shape, etc. are changed as appropriate can be used. Further, the reactor 1 of any one of Embodiments 1 to 5 can be used in a converter that converts input power, such as a converter that only steps up or a converter that only steps down.
本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The present invention is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims.
1 リアクトル
2 コイル
20 巻回部、2i 第一巻回部、2e 第二巻回部
21 巻線
211 第一直線部、212 第二直線部
213 第一曲げ部、214 第二曲げ部、215 第三曲げ部
3 磁性コア、30 コア部
30a コア本体部、30b 絶縁部
31f 第一ミドルコア部、31s 第二ミドルコア部
311 第一角部、312 第一凹部
313 第二角部、314 第二凹部
315 第三角部
318 凹部
33f 第一エンドコア部、33s 第二エンドコア部
1100 電力変換装置、1110 コンバータ
1111 スイッチング素子、1112 駆動回路、1115 リアクトル
1120 インバータ
1150 給電装置用コンバータ、1160 補機電源用コンバータ
1200 車両
1210 メインバッテリ、1220 モータ、1230 サブバッテリ
1240 補機類、1250 車輪
1300 エンジン 1Reactor 2 Coil 20 Winding part, 2i First winding part, 2e Second winding part 21 Winding 211 First straight part, 212 Second straight part 213 First bent part, 214 Second bent part, 215 Third Bending part 3 Magnetic core, 30 Core part 30a Core body part, 30b Insulating part 31f First middle core part, 31s Second middle core part 311 First corner part, 312 First recessed part 313 Second corner part, 314 Second recessed part 315 Second Triangular part 318 Recessed part 33f First end core part, 33s Second end core part 1100 Power converter, 1110 Converter 1111 Switching element, 1112 Drive circuit, 1115 Reactor 1120 Inverter 1150 Power supply device converter, 1160 Auxiliary power supply converter 1200 Vehicle 1210 Main Battery, 1220 Motor, 1230 Sub-battery 1240 Auxiliary equipment, 1250 Wheels 1300 Engine
2 コイル
20 巻回部、2i 第一巻回部、2e 第二巻回部
21 巻線
211 第一直線部、212 第二直線部
213 第一曲げ部、214 第二曲げ部、215 第三曲げ部
3 磁性コア、30 コア部
30a コア本体部、30b 絶縁部
31f 第一ミドルコア部、31s 第二ミドルコア部
311 第一角部、312 第一凹部
313 第二角部、314 第二凹部
315 第三角部
318 凹部
33f 第一エンドコア部、33s 第二エンドコア部
1100 電力変換装置、1110 コンバータ
1111 スイッチング素子、1112 駆動回路、1115 リアクトル
1120 インバータ
1150 給電装置用コンバータ、1160 補機電源用コンバータ
1200 車両
1210 メインバッテリ、1220 モータ、1230 サブバッテリ
1240 補機類、1250 車輪
1300 エンジン 1
Claims (11)
- 角柱状に構成されたコア部を有する磁性コアと、
前記コア部の外周に配置された巻回部を有するコイルと、を備え、
前記コア部は、前記コア部の軸に沿った方向に並んだ複数の第一凹部を有する第一角部を含み、
前記巻回部は、前記コア部の外周面に沿うように複数のターンで巻回された巻線で構成され、
前記複数のターンの各々の前記巻線は、
前記巻回部の軸に沿った方向に直交することなく交差する一つの第一直線部と、
前記巻回部の軸に沿った方向に直交する第二直線部と、
前記第一直線部と第二直線部とをつないでいる第一曲げ部と、を有し、
前記複数のターンの各々における前記第一曲げ部が前記複数の第一凹部の各々に配置されている、
リアクトル。 a magnetic core having a core portion configured in a prismatic shape;
a coil having a winding part arranged around the outer periphery of the core part,
The core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion,
The winding part is composed of a winding wire wound in a plurality of turns along the outer peripheral surface of the core part,
The winding of each of the plurality of turns is
one first straight portion that intersects the direction along the axis of the winding portion without being perpendicular to it;
a second linear portion perpendicular to the direction along the axis of the winding portion;
a first bent part connecting the first straight part and the second straight part,
the first bent portion in each of the plurality of turns is disposed in each of the plurality of first recesses;
reactor. - 前記コア部は、前記コア部の軸周りの方向に前記第一角部と隣り合う第二角部を有し、
前記第二角部は、前記コア部の軸に沿った方向に並んだ複数の第二凹部を有し、
前記複数のターンの各々の前記巻線は、前記第一直線部につながった第二曲げ部を有し、
前記複数のターンの各々における前記第二曲げ部が前記複数の第二凹部の各々に配置されている、請求項1に記載のリアクトル。 The core portion has a second corner portion adjacent to the first corner portion in a direction around the axis of the core portion,
The second corner portion has a plurality of second recesses arranged in a direction along the axis of the core portion,
The winding of each of the plurality of turns has a second bent part connected to the first straight part,
The reactor according to claim 1, wherein the second bent portion in each of the plurality of turns is arranged in each of the plurality of second recesses. - 前記巻線は、平角線であり、
前記コア部の軸に沿って切断した前記複数の第一凹部の各々および前記複数の第二凹部の各々の断面形状は三角形状である、請求項2に記載のリアクトル。 The winding wire is a flat wire,
The reactor according to claim 2, wherein each of the plurality of first recesses and each of the plurality of second recesses has a triangular cross-sectional shape when cut along the axis of the core portion. - 前記巻回部は、前記平角線がフラットワイズ巻きされてなる、請求項3に記載のリアクトル。 The reactor according to claim 3, wherein the winding portion is formed by winding the rectangular wire flatwise.
- 前記巻回部は、前記平角線がエッジワイズ巻きされてなる、請求項3に記載のリアクトル。 The reactor according to claim 3, wherein the winding portion is formed by winding the flat wire edgewise.
- 前記コア部は四角柱状であり、
前記巻回部は四角筒状である、請求項1から請求項5のいずれか1項に記載のリアクトル。 The core portion has a quadrangular prism shape,
The reactor according to any one of claims 1 to 5, wherein the winding portion has a rectangular cylindrical shape. - 前記コア部は、
磁性材料を主体とするコア本体部と、
前記コア本体部の外周面に沿って設けられた絶縁部と、を備え、
前記複数の第一凹部は前記絶縁部に設けられている、請求項1から請求項6のいずれか1項に記載のリアクトル。 The core portion is
A core body mainly made of magnetic material,
an insulating part provided along the outer peripheral surface of the core main body part,
The reactor according to any one of claims 1 to 6, wherein the plurality of first recesses are provided in the insulating part. - 角柱状のコア部を有し、
前記コア部は、前記コア部の軸に沿った方向に並んだ複数の第一凹部を有する第一角部を含む、
磁性コア。 It has a prismatic core,
The core portion includes a first corner portion having a plurality of first recesses arranged in a direction along the axis of the core portion.
magnetic core. - 前記コア部は、前記コア部の軸周りの方向に前記第一角部と隣り合う第二角部を有し、
前記第二角部は、前記コア部の軸に沿った方向に並んだ複数の第二凹部を有する、請求項8に記載の磁性コア。 The core portion has a second corner portion adjacent to the first corner portion in a direction around the axis of the core portion,
The magnetic core according to claim 8, wherein the second corner portion has a plurality of second recesses arranged in a direction along the axis of the core portion. - 請求項1から請求項7のいずれか1項に記載のリアクトルを備える、
コンバータ。 comprising the reactor according to any one of claims 1 to 7,
converter. - 請求項10に記載のコンバータを備える、
電力変換装置。 comprising the converter according to claim 10;
Power converter.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022105128A JP2024005101A (en) | 2022-06-29 | 2022-06-29 | Reactor, magnetic core, converter, and power conversion device |
JP2022-105128 | 2022-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024005094A1 true WO2024005094A1 (en) | 2024-01-04 |
Family
ID=89382393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/024028 WO2024005094A1 (en) | 2022-06-29 | 2023-06-28 | Reactor, magnetic core, converter, and electric power conversion device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024005101A (en) |
WO (1) | WO2024005094A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016066686A (en) * | 2014-09-24 | 2016-04-28 | 株式会社オートネットワーク技術研究所 | Reactor |
-
2022
- 2022-06-29 JP JP2022105128A patent/JP2024005101A/en active Pending
-
2023
- 2023-06-28 WO PCT/JP2023/024028 patent/WO2024005094A1/en active Search and Examination
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016066686A (en) * | 2014-09-24 | 2016-04-28 | 株式会社オートネットワーク技術研究所 | Reactor |
Also Published As
Publication number | Publication date |
---|---|
JP2024005101A (en) | 2024-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6065609B2 (en) | Reactor, converter, and power converter | |
JP7367564B2 (en) | Reactors, converters, and power conversion equipment | |
JP5958792B2 (en) | Reactor, converter, and power converter | |
WO2024005094A1 (en) | Reactor, magnetic core, converter, and electric power conversion device | |
WO2024005095A1 (en) | Reactor, magnetic core, converter, and power conversion device | |
CN117813665A (en) | Reactor, converter, and power conversion device | |
JP6048821B2 (en) | Reactor, converter, and power converter | |
WO2023054072A1 (en) | Reactor, converter, and power conversion device | |
WO2023054071A1 (en) | Reactor, converter, and power conversion device | |
JP7584740B2 (en) | Reactor, converter, and power conversion device | |
WO2022209759A1 (en) | Core piece, reactor, converter, and power conversion apparatus | |
WO2024122509A1 (en) | Reactor, converter, and power conversion device | |
US20240379288A1 (en) | Reactor, converter and power conversion device | |
WO2024122508A1 (en) | Reactor, converter, and electric power conversion device | |
WO2022038982A1 (en) | Reactor, converter, and power conversion device | |
WO2023063178A1 (en) | Reactor, converter, and power conversion device | |
JP7546846B2 (en) | Reactor, converter, and power conversion device | |
US11557423B2 (en) | Coil and reactor | |
WO2022209760A1 (en) | Core piece, reactor, converter, and power conversion device | |
JP2024161152A (en) | Reactor, converter, and power conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23831534 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) |