WO2024004849A1 - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
WO2024004849A1
WO2024004849A1 PCT/JP2023/023292 JP2023023292W WO2024004849A1 WO 2024004849 A1 WO2024004849 A1 WO 2024004849A1 JP 2023023292 W JP2023023292 W JP 2023023292W WO 2024004849 A1 WO2024004849 A1 WO 2024004849A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition wall
stator
spacer
vacuum pump
gas
Prior art date
Application number
PCT/JP2023/023292
Other languages
French (fr)
Japanese (ja)
Inventor
透 三輪田
慶行 高井
康寛 芝田
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022104686A external-priority patent/JP7493556B2/en
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Publication of WO2024004849A1 publication Critical patent/WO2024004849A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps

Definitions

  • the present invention relates to a vacuum pump.
  • a vacuum pump such as a turbo-molecular pump is used for evacuation processing in a vacuum chamber provided in a semiconductor manufacturing device.
  • semiconductor manufacturing process there is a process in which various process gases are applied to the semiconductor substrate, and vacuum pumps are used not only to evacuate the chamber of semiconductor manufacturing equipment, but also to pump process gases from inside the chamber. It is also used when exhausting air.
  • Such a process gas solidifies at a point where the relationship between pressure and temperature shown in the vapor pressure curve shifts from the gas phase to the solid phase, and is precipitated as a by-product. If such by-products accumulate in the vacuum pump, the flow path of the gas to be exhausted may be narrowed, and the compression performance and exhaust performance of the vacuum pump may deteriorate.
  • the base part that makes up the exterior body of a vacuum pump and the housing part (stator column) that houses electrical components such as electromagnets and motors that drive the rotor are at low temperatures, so if exhaust gas comes into contact with these parts, byproducts will be generated. will accumulate.
  • a partition wall (insulating wall in Patent Document 1) is provided on the downstream side of a thread groove pump section in a vacuum pump, and by covering at least a part of the stator column and base section, which are low temperature parts, with this partition wall, This suppresses by-products from accumulating on the base and the like.
  • the partition wall of Patent Document 1 is fixed to the threaded stator with, for example, bolts, as shown in FIG. 4 of the same document.
  • the bulkhead basically comes into close contact with the threaded stator by tightening the bolts, but due to variations in processing the parts, there is a risk that the mounting surfaces of both may not make sufficient contact with each other. There is. In such a case, there was a concern that exhaust gas would leak from between the mounting surface of the partition wall and the threaded stator, resulting in by-products being deposited on the base portion and the like.
  • an object of the present invention is to provide a vacuum pump that can more reliably prevent the problem of exhaust gas leaking between the partition wall and the part to which it is attached.
  • the vacuum pump of the present invention includes an exterior body having an exhaust port, a housing part that houses an electrical component and is disposed inside the exterior body, and a housing part that is rotatably supported inside the exterior body and that is supported by the electrical component.
  • a rotary shaft that rotates; a rotor disposed outside the housing portion and fixed to the rotary shaft; a stator disposed on the outer circumferential side of the rotor; an outer circumferential surface of the rotor; and an inner circumferential surface of the stator.
  • a sealing member for suppressing intrusion of the gas is provided on a mounting surface between the stator and the partition wall.
  • such a vacuum pump has a metal touch surface where the stator and the partition wall come into contact with each other on the upstream side of the gas with respect to the seal member on the mounting surface.
  • stator and the partition wall be made of different materials.
  • the partition wall is made of a material having higher thermal conductivity than the stator.
  • a non-contact seal structure for suppressing the flow of the gas into the accommodating portion is provided on at least a part of the opposing surfaces where the rotor and the partition wall face each other.
  • the partition wall is fixed to the stator from the axial direction of the rotating shaft with bolts.
  • the stator has a through hole connected to the exhaust port, and the mounting surface is provided at a position offset from the through hole with respect to the axial direction of the rotating shaft.
  • a partition wall is attached to a stator disposed on the outer peripheral side of a rotor, and a sealing member for suppressing gas intrusion is provided on the attachment surface between the stator and the partition wall.
  • FIG. 1 is a longitudinal sectional view schematically showing a first embodiment of a vacuum pump according to the present invention.
  • 2 is a circuit diagram of an amplifier circuit of the vacuum pump shown in FIG. 1.
  • FIG. It is a time chart which shows control when a current command value is larger than a detected value. It is a time chart showing control when a current command value is smaller than a detected value.
  • the vacuum pump shown in FIG. 1 (a) is a partially enlarged view of part A, and (b) is a partially enlarged view of part B.
  • FIG. 1 is a perspective view showing a state in which the heater spacer and partition are combined, (b) is a perspective view of the heater spacer, and (c) is a perspective view of the partition.
  • FIG. 2 is a vertical cross-sectional view schematically showing a second embodiment of the vacuum pump according to the present invention.
  • (a) is a partial enlarged view of section C
  • (b) is a partial enlarged view of section D.
  • the heater spacer and partition shown in FIG. 7 (a) is a perspective view showing a state in which the heater spacer and partition are combined, (b) is a perspective view of the heater spacer, and (c) is a perspective view of the partition. It is a diagram.
  • turbo molecular pump which is an embodiment of the vacuum pump according to the present invention, will be described with reference to the drawings.
  • FIG. 1 A longitudinal cross-sectional view of this turbomolecular pump 100 is shown in FIG.
  • a turbomolecular pump 100 is provided with an intake port 101 at the upper end of a cylindrical outer tube 127 (a part of the outer case).
  • a rotating body 103 (rotor) that rotates around the central axis CA is provided inside the outer cylinder 127.
  • the rotating body 103 includes a plurality of rotary blades 102 (102a, 102b, 102c, . . . ), which are turbine blades for sucking and exhausting gas, arranged radially and in multiple stages around the circumference.
  • a rotor shaft 113 (rotation shaft) is attached to the center of the rotating body 103, and the rotor shaft 113 is supported and positioned in the air by, for example, a five-axis magnetic bearing.
  • the rotating body 103 is generally made of metal such as aluminum or aluminum alloy.
  • the upper radial electromagnet 104 In the upper radial electromagnet 104, four electromagnets are arranged in pairs on the X axis and the Y axis. Four upper radial sensors 107 are provided close to this upper radial electromagnet 104 and corresponding to each upper radial electromagnet 104 .
  • the upper radial direction sensor 107 uses, for example, an inductance sensor or an eddy current sensor having a conduction winding, and detects the position of the rotor shaft 113 based on a change in the inductance of the conduction winding, which changes depending on the position of the rotor shaft 113. Detect.
  • This upper radial direction sensor 107 is configured to detect a radial displacement of the rotor shaft 113, that is, the rotating body 103 fixed thereto, and send it to a control device (not shown).
  • a compensation circuit having a PID adjustment function generates an excitation control command signal for the upper radial electromagnet 104 based on a position signal detected by the upper radial sensor 107, and generates an excitation control command signal for the upper radial electromagnet 104
  • a circuit 150 controls the excitation of the upper radial electromagnet 104 based on this excitation control command signal, thereby adjusting the upper radial position of the rotor shaft 113.
  • the rotor shaft 113 is made of a high magnetic permeability material (iron, stainless steel, etc.), and is attracted by the magnetic force of the upper radial electromagnet 104. Such adjustment is performed independently in the X-axis direction and the Y-axis direction. Further, a lower radial electromagnet 105 and a lower radial sensor 108 are arranged in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107, and the lower radial position of the rotor shaft 113 is changed to the upper radial position. are adjusted in the same way.
  • axial electromagnets 106A and 106B are arranged vertically sandwiching a disc-shaped metal disk 111 provided at the lower part of the rotor shaft 113.
  • the metal disk 111 is made of a high magnetic permeability material such as iron.
  • An axial sensor 109 is provided to detect the axial displacement of the rotor shaft 113, and the axial position signal thereof is configured to be sent to the control device.
  • a compensation circuit having a PID adjustment function issues excitation control command signals for each of the axial electromagnet 106A and the axial electromagnet 106B based on the axial position signal detected by the axial direction sensor 109.
  • the amplifier circuit 150 controls the excitation of the axial electromagnet 106A and the axial electromagnet 106B based on these excitation control command signals, so that the axial electromagnet 106A attracts the metal disk 111 upward by magnetic force.
  • the axial electromagnet 106B attracts the metal disk 111 downward, and the axial position of the rotor shaft 113 is adjusted.
  • control device appropriately adjusts the magnetic force exerted on the metal disk 111 by the axial electromagnets 106A and 106B, magnetically levitates the rotor shaft 113 in the axial direction, and holds it in space without contact. ing.
  • the amplifier circuit 150 that excites and controls the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described later.
  • the motor 121 includes a plurality of magnetic poles arranged circumferentially so as to surround the rotor shaft 113.
  • Each magnetic pole is controlled by the control device described above so as to rotationally drive the rotor shaft 113 via electromagnetic force acting between the magnetic poles and the rotor shaft 113.
  • a rotational speed sensor (not shown) such as a Hall element, a resolver, an encoder, etc. is incorporated in the motor 121, and the rotational speed of the rotor shaft 113 is detected based on a detection signal from this rotational speed sensor.
  • phase sensor (not shown) is attached, for example, near the lower radial direction sensor 108 to detect the rotational phase of the rotor shaft 113.
  • the position of the magnetic pole is detected using both the detection signals from the phase sensor and the rotational speed sensor.
  • a plurality of fixed blades 123 are provided with a slight gap between them and the rotary blades 102 (102a, 102b, 102c, . . . ). ...) are provided.
  • the rotor blades 102 (102a, 102b, 102c, . . . ) are each formed to be inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to transport exhaust gas molecules downward by collision.
  • the fixed blades 123 (123a, 123b, 123c...) are made of metal such as aluminum, iron, stainless steel, copper, or an alloy containing these metals as components.
  • the fixed blades 123 are formed to be inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and are arranged inward of the outer cylinder 127 in alternating stages with the stages of the rotary blades 102. ing.
  • the outer peripheral end of the fixed wing 123 is supported by being inserted between a plurality of stacked fixed wing spacers 125 (125a, 125b, 125c, . . . ).
  • the fixed wing spacer 125 is a ring-shaped member, and is made of metal such as aluminum, iron, stainless steel, copper, or an alloy containing these metals as components.
  • An outer cylinder 127 is fixed to the outer periphery of the fixed wing spacer 125 with a slight gap therebetween.
  • a base portion 129 (a part of the exterior body) is provided at the bottom of the outer cylinder 127.
  • An exhaust port 133 is formed in the base portion 129 and communicates with the outside. Exhaust gas that enters the intake port 101 from the chamber (vacuum chamber) side and is transferred inside the turbo molecular pump 100 is sent to the exhaust port 133 on the downstream side.
  • a threaded spacer 131, a heater spacer 134, a partition wall (insulator wall) 135, a seal member 136, and a heat insulating spacer 137 are provided between the lower part of the fixed wing spacer 125 and the base portion 129.
  • the fixed blade 123, fixed blade spacer 125, threaded spacer 131, and heater spacer 134 described above are members that constitute a part of the stator. Note that detailed explanations regarding the heater spacer 134, partition wall 135, seal member 136, and heat insulating spacer 137 will be given later.
  • the threaded spacer 131 is a cylindrical member made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals, and has a plurality of spiral thread grooves 131a on its inner peripheral surface. A provision has been made.
  • the spiral direction of the thread groove 131a is the direction in which exhaust gas molecules are transferred toward the exhaust port 133 when they move in the rotational direction of the rotating body 103.
  • a cylindrical portion 102d is suspended from the lowest part of the rotating body 103 following the rotary blades 102 (102a, 102b, 102c, . . . ).
  • the outer circumferential surface of the cylindrical portion 102d is cylindrical and protrudes toward the inner circumferential surface of the threaded spacer 131, and is adjacent to the inner circumferential surface of the threaded spacer 131 with a predetermined gap therebetween.
  • the threaded spacer 131 and the cylindrical part 102d function as a threaded groove pump part, and the exhaust gas transferred to the threaded groove 131a by the rotary blade 102 and the fixed blade 123 is guided to the threaded groove 131a and flows through the exhaust port. Sent to 133.
  • the function as a threaded groove pump section may be provided as desired depending on the use of the turbo molecular pump 100.
  • the base portion 129 is a disk-shaped member that constitutes the base of the turbo-molecular pump 100, and is generally made of metal such as iron, aluminum, or stainless steel.
  • the base portion 129 physically holds the turbo-molecular pump 100 and also functions as a heat conduction path, so a metal with rigidity and high thermal conductivity such as iron, aluminum, or copper is used. is desirable.
  • the fixed blade spacers 125 are joined to each other at the outer periphery, and transmit heat received by the fixed blade 123 from the rotary blade 102 and frictional heat generated when exhaust gas comes into contact with the fixed blade 123 to the outer cylinder 127. .
  • the threaded spacer 131 is disposed on the outer periphery of the cylindrical portion 102d of the rotating body 103, and that the threaded spacer 131 is provided with a thread groove 131a on its inner peripheral surface.
  • a thread groove may be formed on the outer circumferential surface of the cylindrical portion 102d, and a spacer having a cylindrical inner circumferential surface may be arranged around the thread groove.
  • the gas sucked from the intake port 101 may be transferred to the upper radial electromagnet 104, the upper radial sensor 107, the motor 121, the lower radial electromagnet 105, the lower radial sensor 108, and the shaft.
  • the electrical equipment section is surrounded by a stator column 122 (housing section), and the inside of this stator column 122 is filled with purge gas. In some cases, it is maintained at a predetermined pressure.
  • a purge port 115 is provided in the base portion 129 of this embodiment, and purge gas is introduced through this purge port 115.
  • the introduced purge gas is sent to the exhaust port 133 through gaps between the protective bearing 120 and the rotor shaft 113, between the rotor and the stator of the motor 121, and between the stator column 122 and the inner cylindrical portion of the rotor blade 102.
  • the turbo-molecular pump 100 requires control based on specification of the model and individually adjusted unique parameters (for example, various characteristics corresponding to the model).
  • the turbo molecular pump 100 is equipped with an electronic circuit section (not shown) within its main body.
  • This electronic circuit section is composed of a semiconductor memory such as an EEP-ROM, electronic components such as a semiconductor element for accessing the memory, a board for mounting them, and the like.
  • This electronic circuit section is housed, for example, under a rotational speed sensor (not shown) near the center of the base section 129 constituting the lower part of the turbo-molecular pump 100, and is closed by an airtight bottom cover 145.
  • some process gases introduced into a chamber have the property of becoming solid when the pressure becomes higher than a predetermined value or the temperature becomes lower than a predetermined value.
  • the pressure of the exhaust gas is lowest at the intake port 101 and highest at the exhaust port 133. If the pressure of the process gas becomes higher than a predetermined value or the temperature becomes lower than a predetermined value while the process gas is being transferred from the intake port 101 to the exhaust port 133, the process gas becomes solid and turbo molecules It adheres and accumulates inside the pump 100.
  • a heater (not shown) or an annular water cooling pipe (not shown) is wrapped around the outer periphery of the base part 129, etc., and a temperature sensor (for example, a thermistor) (not shown) is embedded in the base part 129. Based on the signal from the temperature sensor, the heating of the heater and the cooling by the water cooling pipe are controlled (hereinafter referred to as TMS; Temperature Management System) to maintain the temperature of the base part 129 at a constant high temperature (set temperature).
  • TMS Temperature Management System
  • the turbo molecular pump 100 of this embodiment has a heater 138 (heating means) and a temperature sensor 139 attached to the heater spacer 134 for performing TMS.
  • the amplifier circuit 150 that controls the excitation of the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described.
  • a circuit diagram of this amplifier circuit 150 is shown in FIG.
  • an electromagnet winding 151 constituting the upper radial electromagnet 104 and the like has one end connected to a positive electrode 171a of a power supply 171 via a transistor 161, and the other end connected to a current detection circuit 181 and a transistor 162. It is connected to the negative electrode 171b of the power supply 171 via.
  • the transistors 161 and 162 are so-called power MOSFETs, and have a structure in which a diode is connected between their sources and drains.
  • the cathode terminal 161a of the diode of the transistor 161 is connected to the positive electrode 171a, and the anode terminal 161b is connected to one end of the electromagnet winding 151.
  • the transistor 162 has a diode cathode terminal 162a connected to the current detection circuit 181, and an anode terminal 162b connected to the negative electrode 171b.
  • the current regeneration diode 165 has its cathode terminal 165a connected to one end of the electromagnet winding 151, and its anode terminal 165b connected to the negative electrode 171b.
  • the current regeneration diode 166 has its cathode terminal 166a connected to the positive electrode 171a, and its anode terminal 166b connected to the other end of the electromagnet winding 151 via the current detection circuit 181. It has become so.
  • the current detection circuit 181 is configured with, for example, a Hall sensor type current sensor or an electric resistance element.
  • the amplifier circuit 150 configured as described above corresponds to one electromagnet. Therefore, if the magnetic bearing is 5-axis controlled and there are a total of 10 electromagnets 104, 105, 106A, and 106B, a similar amplifier circuit 150 is configured for each of the electromagnets, and 10 amplifier circuits are configured for the power supply 171. 150 are connected in parallel.
  • the amplifier control circuit 191 is constituted by, for example, a digital signal processor section (hereinafter referred to as a DSP section) (not shown) of the control device, and this amplifier control circuit 191 switches on/off of the transistors 161 and 162. It looks like this.
  • a DSP section digital signal processor section
  • the amplifier control circuit 191 compares the current value detected by the current detection circuit 181 (a signal reflecting this current value is referred to as a current detection signal 191c) and a predetermined current command value. Then, based on this comparison result, the magnitude of the pulse width (pulse width times Tp1, Tp2) to be generated within the control cycle Ts, which is one cycle of PWM control, is determined. As a result, gate drive signals 191a and 191b having this pulse width are outputted from the amplifier control circuit 191 to the gate terminals of the transistors 161 and 162.
  • a high voltage of about 50 V is used as the power source 171.
  • a capacitor (not shown) is usually connected between the positive electrode 171a and the negative electrode 171b of the power source 171 in order to stabilize the power source 171.
  • electromagnet current iL the current flowing through the electromagnet winding 151
  • electromagnet current iL the current flowing through the electromagnet winding 151
  • flywheel current is maintained.
  • the hysteresis loss in the amplifier circuit 150 can be reduced, and the power consumption of the entire circuit can be kept low.
  • high frequency noise such as harmonics generated in the turbo molecular pump 100 can be reduced.
  • the electromagnet current iL flowing through the electromagnet winding 151 can be detected.
  • the electromagnet current iL during this period increases toward a current value iLmax (not shown) that can flow from the positive electrode 171a to the negative electrode 171b via the transistors 161 and 162.
  • both transistors 161 and 162 are turned off only once during the control cycle Ts for a time corresponding to the pulse width time Tp2, as shown in FIG. . Therefore, the electromagnet current iL during this period decreases toward a current value iLmin (not shown) that can be regenerated from the negative electrode 171b to the positive electrode 171a via the diodes 165 and 166.
  • either one of the transistors 161 and 162 is turned on after the pulse width times Tp1 and Tp2 have elapsed. Therefore, during this period, the flywheel current is maintained in the amplifier circuit 150.
  • the heater spacer 134 is a ring-shaped member as shown in FIGS. 1, 5, and 6, and is made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals. configured.
  • the heater spacer 134 is preferably made of a high-strength material to ensure strength at high temperatures, and in this embodiment, it is made of stainless steel in consideration of this point.
  • a threaded spacer 131 is attached to the top of the heater spacer 134.
  • mounting holes for mounting a heater 138 and a temperature sensor 139 are provided on the side surface of the heater spacer 134, and the heater 138 and temperature sensor 139 are held by the heater spacer 134.
  • the heater spacer 134 has a flat metal touch surface 134a extending horizontally at the lower part on the inside in the radial direction, and a flat metal touch surface 134a extending vertically downward from the outside in the radial direction of the metal touch surface 134a.
  • radial positioning surface 134b, and a flank surface 134c having a larger inner diameter than radial positioning surface 134b and located below radial positioning surface 134b.
  • the lower surface of the heater spacer 134 is provided with an annular recess 134d to which a seal member 136 is attached.
  • the partition wall 135 is attached to the metal touch surface 134a, the radial positioning surface 134b, the flank surface 134c, and the annular recess 134d of the heater spacer 134.
  • This portion is referred to as the mounting surface of the heater spacer 134.
  • the metal touch surface 134a is provided with a plurality of female screw portions 134e arranged at intervals in the circumferential direction.
  • the heater spacer 134 includes a circular through hole 134f that passes through the heater spacer 134 in the radial direction, as shown in FIGS. 6(a) and 6(b).
  • the through hole 134f communicates with the exhaust port 133 when the turbo molecular pump 100 is assembled.
  • the through hole 134f is provided at a position that overlaps the metal touch surface 134a, the radial positioning surface 134b, and the flank surface 134c with respect to the axial direction (direction along the central axis CA) of the heater spacer 134. .
  • the partition wall 135 is a ring-shaped member as shown in FIGS. 1, 5, and 6, and is made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals. be done.
  • the partition wall 135 is preferably heated by heat from a heater 138 attached to the heater spacer 134 as described later, and in this embodiment, taking this point into consideration, the partition wall 135 is made of a material having higher thermal conductivity than the heater spacer 134.
  • the partition wall 135 is made of (for example, aluminum).
  • the partition wall 135 of this embodiment includes an annular wall portion 135a in the shape of an annular plate.
  • a cylindrical inner circumferential wall portion 135b extending upward is provided at the inner edge of the annular wall portion 135a, and a folded portion protruding radially outward is provided at the upper end of the inner circumferential wall portion 135b.
  • 135c (not shown in FIG. 6) is provided.
  • the partition wall 135 also includes a cylindrical outer circumferential wall portion 135e extending upward from a portion located radially inward from the outer edge portion 135d of the partition wall 135.
  • the upper surface of the outer peripheral wall portion 135e is a flat surface extending in the horizontal direction.
  • the upper surface of the outer peripheral wall portion 135e will be referred to as a metal touch surface 135f.
  • the partition wall 135 is attached to the outer edge portion 135d, the outer peripheral wall portion 135e, and the metal touch surface 135f of the heater spacer 134 as shown in the figure, and in the following description, the outer edge portion 135d, the outer peripheral wall portion 135e and the portion extending to the metal touch surface 135f is referred to as the attachment surface of the partition wall 135.
  • the outer circumferential wall portion 135e is provided with a plurality of bolt holes 135g arranged at intervals in the circumferential direction and passing through the outer circumferential wall portion 135e in the vertical direction.
  • the bolt through hole 135g is provided at a position corresponding to the female threaded portion 134e. Then, with the mounting surface of the heater spacer 134 and the mounting surface of the partition wall 135 facing each other, the bolt 140 is inserted into the bolt through hole 135g and screwed into the female threaded portion 134e, thereby attaching the partition wall 135 to the heater spacer 135. It can be attached to.
  • the partition wall 135 includes a semicircular notch 135h that radially penetrates the outer circumferential wall 135e, as shown in FIG. 6(c).
  • the cutout portion 135h is combined with the through hole 134f to form one hole when the partition wall 135 is attached to the heater spacer 134 as shown in FIG. 6(a).
  • the sealing member 136 is formed of an elastic material (nitrile rubber, fluororubber, silicone rubber, etc.) into an annular shape. Equipped with a function to suppress the intrusion of gas.
  • the seal member 136 of this embodiment is an O-ring.
  • the heat insulating spacer 137 is a ring-shaped member as a whole, and is made of a material with low thermal conductivity (hard to transmit heat).
  • the material of the heat insulating spacer 137 is, for example, stainless steel.
  • the heat insulating spacer 137 is interposed between the base portion 129 and the heater spacer 134, and the base portion 129 is insulated from the heater spacer 134.
  • the seal member 136 is in close contact with the lower surface of the annular recess 134d and the upper surface of the outer edge portion 135d. Furthermore, when the partition wall 135 is attached to the heater spacer 134, the radial positioning surface 134b and the upper outer circumferential surface of the outer peripheral wall portion 135e are in contact with each other, and the metal touch surface 134a and the metal touch surface 135f are in contact with each other. 134 in the radial direction and also in the vertical direction.
  • flank surface 134c located below the radial positioning surface 134b has a larger diameter than the inner diameter of the radial positioning surface 134b, so when the partition wall 135 is attached to the heater spacer 134, basically the outer circumferential wall portion It does not contact the outer peripheral surface of 135e. That is, when forming the radial positioning surface 134b and the flank surface 134c, only the radial positioning surface 134b requires machining precision, so that the cost of machining the heater spacer 134 can be suppressed.
  • the lower part of the threaded spacer 131 and the cylindrical part 102d is defined by the threaded spacer 131, the heater spacer 134, and the partition wall 135, and the threaded spacer 131 and the cylindrical part 102d
  • An annular flow path is formed that communicates with the pump flow path between the holes and the through hole 134f.
  • the folded portion 135c of the partition wall 135 is located directly below the cylindrical portion 102d, and a gap is provided between the upper surface of the folded portion 135c and the lower surface of the cylindrical portion 102d.
  • This gap is formed to such an extent that the cylindrical part 102d and the folded part 135c do not come into contact with each other when the rotating body 103 rotates, and the gas flowing through the annular flow path described above does not flow into the stator column 122 through this gap. It is narrowed and functions as a non-contact sealing structure.
  • the partition wall 135 attached to the heater spacer 134 with bolts 140 is thermally connected to the heater spacer 134. Therefore, the heat from the heater 138 is sufficiently transmitted from the heater spacer 134 to the partition wall 135, so that the partition wall 135 can be effectively heated.
  • the inner peripheral wall portion 135b is separated from the mounting surface of the partition wall 135, since the partition wall 135 is made of a material with high thermal conductivity, the inner peripheral wall portion 135b is also heated by the heat from the heater 138. In this way, the heater spacer 134 and the partition wall 135 are sufficiently heated over their entire area, so that it is possible to suppress the precipitation of by-products originating from the exhaust gas in the annular flow path described above.
  • the outer circumferential wall portion 135e extends upward for a long time as shown in the figure, and its upper end portion is located close to the heater 138 when the partition wall 135 is attached to the heater spacer 134.
  • the partition wall 135 has a structure that easily receives heat from the heater 138 and is easily heated.
  • the exhaust gas flowing through this annular flow path may be affected by the heater spacer 134 and the partition wall 135 depending on the machining state and attachment state of the heater spacer 134 and the partition wall 135, for example.
  • by-products may leak toward the base portion 129 and the heat insulating spacer 137 through the space between the attachment surface of the partition wall 134 and the attachment surface of the partition wall 135 and accumulate on the base portion 129 and the like.
  • the sealing member 136 when the partition wall 135 is attached to the heater spacer 134, the sealing member 136 is in close contact with the lower surface of the annular recess 134d and the upper surface of the outer edge portion 135d, so that leakage of exhaust gas is prevented. be able to.
  • turbo molecular pump 200 which is a second embodiment of the vacuum pump according to the present invention, will be described with reference to FIGS. 7 to 9.
  • the turbo molecular pump 200 basically includes a heater spacer 234 and a partition wall 235 in place of the heater spacer 134 and partition wall 135 of the turbo molecular pump 100 described above. Therefore, in the following, the heater spacer 234 and the partition wall 235 will be explained in detail, and the other parts will be denoted by the same reference numerals in the drawings and detailed explanation will be omitted.
  • the heater spacer 234 is a ring-shaped member as shown in FIGS. 7 to 9, and is made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals. .
  • the heater spacer 234 is preferably made of a high-strength material to ensure strength at high temperatures, and in this embodiment, it is made of stainless steel in consideration of this point.
  • a threaded spacer 131 is attached to the top of the heater spacer 234, as shown in FIG. Furthermore, mounting holes for mounting the heater 138 and the temperature sensor 139 are provided on the side surface of the heater spacer 234, and the heater 138 and the temperature sensor 139 are held by the heater spacer 234.
  • the heater spacer 234 includes a flat metal touch surface 234a extending in the horizontal direction at its lower part. Note that this metal touch surface 234a exists so as to avoid and surround a female threaded portion 234e, which will be described later.
  • a radial positioning surface 234b that extends vertically upward is provided on the radially inner side of the metal touch surface 234a. Further, the metal touch surface 234a is provided with an annular recess 234d to which the seal member 136 is attached.
  • the partition wall 235 is attached to the metal touch surface 234a, the radial positioning surface 234b, and the annular recess 234d of the heater spacer 234, and in the following description, these portions will be referred to as the heater spacer. 234 mounting surface.
  • the metal touch surface 234a is provided with a plurality of female screw portions 234e arranged at intervals in the circumferential direction.
  • the heater spacer 234 is provided with a circular through hole 234f that passes through the heater spacer 234 in the radial direction, as shown in FIG.
  • the through hole 234f communicates with the exhaust port 133 when the turbo molecular pump 200 is assembled.
  • the through hole 234f is located at a position (metal touch surface 234a etc.).
  • the partition wall 235 is a ring-shaped member as shown in FIGS. 7 to 9, and is made of a metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals.
  • the partition wall 235 is preferably heated by heat from the heater 138 similarly to the partition wall 135 described above, and in this embodiment, taking this point into consideration, the partition wall 235 is made of a material having a higher thermal conductivity than the heater spacer 234 (for example, aluminum). This constitutes the partition wall 235.
  • the partition wall 235 also includes an annular wall portion 235a in the shape of an annular plate.
  • a cylindrical inner circumferential wall portion 235b extending upward is provided at the inner edge of the annular wall portion 235a, and a folded portion protruding radially outward is provided at the upper end of the inner circumferential wall portion 235b.
  • 235c is provided.
  • the partition wall 235 includes an outer edge portion 235d located on the radially outer side of the annular wall portion 235a. The upper surface of the outer edge portion 235d is located below the upper surface of the annular wall portion 235a, and a step portion 235e extending in the vertical direction is provided between the outer edge portion 235d and the annular wall portion 235a.
  • the upper surface of the outer edge portion 235d is a flat surface extending in the horizontal direction.
  • the upper surface of the outer edge portion 235d will be referred to as a metal touch surface 235f.
  • the partition wall 235 is attached to a portion of the heater spacer 234 from the metal touch surface 235f to the stepped portion 235e as shown in the figure, and in the following description, the portion from the metal touch surface 235f to the stepped portion 235e will be referred to as This is referred to as the mounting surface of the partition wall 235.
  • this metal touch surface 235f exists so as to avoid and surround a bolt through hole 235g, which will be described later.
  • the outer edge portion 235d is provided with a plurality of bolt holes 235g that are arranged at intervals in the circumferential direction and penetrate the outer edge portion 235d in the vertical direction.
  • the bolt through hole 235g is provided at a position corresponding to the female threaded portion 234e. Then, with the mounting surface of the heater spacer 234 and the mounting surface of the partition wall 235 facing each other, the bolt 140 is inserted into the bolt through hole 235g and screwed into the female threaded portion 234e, thereby attaching the partition wall 235 to the heater spacer 235. It can be attached to.
  • the seal member 136 is in close contact with the lower surface of the annular recess 234d and the upper surface of the outer edge portion 235d. Furthermore, when the partition wall 235 is attached to the heater spacer 234, the radial positioning surface 234b and the side surface of the stepped portion 235e contact, and the metal touch surface 234a and the metal touch surface 235f contact, so that the partition wall 235 is attached to the heater spacer 234. It is positioned in the radial direction, and also in the vertical direction.
  • the partition wall 235 When the partition wall 235 is attached to the heater spacer 234, the lower part of the threaded spacer 131 and the cylindrical part 102d is defined by the threaded spacer 131, the heater spacer 234, and the partition wall 235, and the threaded spacer 131 and the cylindrical part 102d An annular flow path is formed that communicates with the pump flow path between the holes and the through hole 234f. Further, the folded portion 235c of the partition wall 235 is located directly below the cylindrical portion 102d, and a gap is provided between the upper surface of the folded portion 235c and the lower surface of the cylindrical portion 102d. Note that this gap functions as a non-contact seal structure, similar to the gap provided between the folded portion 135c and the cylindrical portion 102d shown in FIG.
  • the partition wall 235 attached to the heater spacer 234 with bolts 140 is thermally connected to the heater spacer 234. Further, the partition wall 235 is made of a material with high thermal conductivity. Therefore, the inner peripheral wall portion 235b that is separated from the mounting surface of the partition wall 235 is also heated by the heat from the heater 138 attached to the heater spacer 234. In this way, the heater spacer 234 and the partition wall 235 are sufficiently heated over the entire area, so that it is possible to suppress the precipitation of by-products derived from the exhaust gas in the annular flow path described above.
  • the above-mentioned annular flow path is formed by the heater spacer 234 and the partition wall 235. Therefore, depending on the processing and attachment conditions of the heater spacer 234 and the partition wall 235, the exhaust gas flowing through the annular flow path may pass between the mounting surface of the heater spacer 234 and the partition wall 235 and reach the base portion 129 or the heat insulating spacer 137. There is a concern that by-products may leak toward the base portion 129 and the like and may be deposited on the base portion 129 and the like.
  • the sealing member 136 when the partition wall 235 is attached to the heater spacer 234, the sealing member 136 is in close contact with the lower surface of the annular recess 234d and the upper surface of the outer edge 235d, thereby preventing leakage of exhaust gas. be able to. Further, in this embodiment, the metal touch surface 234a and the metal touch surface 235f are in contact with each other on the upstream side of the seal member 136, thereby suppressing passage of exhaust gas.
  • the performance of the seal member 136 can be maintained even when exhausting gas that may lead to deterioration of the seal member 136. can be maintained.
  • the position where the bolt 140 tightens the heater spacer 234 and the partition wall 235 is the position where the metal touch surface 234a and the metal touch surface 235f are provided, the metal touch surface 234a and the metal touch surface 235f are brought closer together. come into contact with.
  • the metal touch surface 234a and the metal touch surface 235f exist so as to surround the female threaded portion 234e and the bolt through hole 235g, leakage of exhaust gas through the bolt through hole 235g can also be prevented. Therefore, deterioration of the seal member 136 due to exhaust gas can be further suppressed.
  • the through hole 134f communicating with the exhaust port 133 extends from the metal touch surface 134a, the radial positioning surface 134b, and the flank surface 134c, as shown in FIGS. 6(a) and 6(b). It is located at a position that overlaps the area of That is, since the exhaust gas that passes through the through hole 134f and is discharged from the exhaust port 133 flows near the mounting surface between the heater spacer 134 and the partition wall 135, there is a risk that the exhaust gas may enter the mounting surface.
  • the through hole 234f of the turbo molecular pump 200 is located at a position offset from the area extending from the metal touch surface 234a, the radial positioning surface 234b, and the annular recess 234d, as shown in FIGS. 9(a) and 9(b). It is provided. That is, when the exhaust gas passes through the through hole 234f and is discharged from the exhaust port 133, it does not flow near the mounting surface between the heater spacer 234 and the partition wall 235, so it is possible to suppress the exhaust gas from entering from the mounting surface. can.
  • the threaded spacer 131 is a separate member from the heater spacers 134 and 234, but a member that integrates the threaded spacer and the heater spacer may also be used.
  • the position where the bolt 140 is provided is not limited to the position where the metal touch surfaces 134a, 234a and the metal touch surfaces 135f, 235f are provided, but may be in the vicinity of the metal touch surfaces 134a, 234a and the metal touch surfaces 135f, 235f.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Proposed is a vacuum pump capable of more reliably preventing the problem of an exhaust gas leakage between a partition wall and a part on which the partition wall is mounted. A vacuum pump (100) is characterized by comprising: an exterior body having an exhaust port (133); a rotating shaft (113) that is rotatably supported inside the exterior body and rotated by an electrical part; a rotor (103) that is disposed outside a housing part (122) and secured to the rotating shaft (113); a stator that is disposed on an outer circumferential side of the rotor (103); a pump flow path that is provided between an outer circumferential surface of the rotor (103) and an inner circumferential surface of the stator, and through which gas flows; a partition wall (135) that is mounted on the stator and defines a gas flow path from an outlet of the pump flow path to the exhaust port (133); a heating means (138) that heats the stator and the partition wall (135); and a seal member (136) that is attached to the mounting surfaces of the stator and the partition wall (135) to prevent intrusion of the gas.

Description

真空ポンプVacuum pump
 本発明は、真空ポンプに関する。 The present invention relates to a vacuum pump.
 半導体製造装置に設けられた真空チャンバ内の排気処理には、ターボ分子ポンプ等の真空ポンプが使用される。半導体の製造工程では、半導体の基板に様々なプロセスガスを作用させる工程があり、真空ポンプは、半導体製造装置のチャンバ内を真空にする際に使用されるのみならず、チャンバ内からプロセスガスを排気する際にも使用される。 A vacuum pump such as a turbo-molecular pump is used for evacuation processing in a vacuum chamber provided in a semiconductor manufacturing device. In the semiconductor manufacturing process, there is a process in which various process gases are applied to the semiconductor substrate, and vacuum pumps are used not only to evacuate the chamber of semiconductor manufacturing equipment, but also to pump process gases from inside the chamber. It is also used when exhausting air.
 このようなプロセスガスは、蒸気圧曲線で示される圧力と温度の関係が気相から固相に移る箇所において固体化して、副生成物として析出される。このような副生成物が真空ポンプ内で堆積すると、排気されるガスの流路が狭められて真空ポンプの圧縮性能、排気性能が低下するおそれがある。例えば真空ポンプの外装体を構成するベース部や、ロータを回転駆動させる電磁石やモータ等の電装品を収容する収容部(ステータコラム)は温度が低いため、これらに排気ガスが接触すると副生成物が堆積してしまう。 Such a process gas solidifies at a point where the relationship between pressure and temperature shown in the vapor pressure curve shifts from the gas phase to the solid phase, and is precipitated as a by-product. If such by-products accumulate in the vacuum pump, the flow path of the gas to be exhausted may be narrowed, and the compression performance and exhaust performance of the vacuum pump may deteriorate. For example, the base part that makes up the exterior body of a vacuum pump and the housing part (stator column) that houses electrical components such as electromagnets and motors that drive the rotor are at low temperatures, so if exhaust gas comes into contact with these parts, byproducts will be generated. will accumulate.
 このような問題に対し、従来、ベース部等の少なくとも一部を隔壁で覆うことによって、排気ガスがベース部等に直接接触することを防止することが行われている。例えば特許文献1では、真空ポンプにおけるネジ溝ポンプ部の下流側に隔壁(特許文献1では断熱壁)を設け、この隔壁によって低温部であるステータコラムやベース部の少なくとも一部を覆うことで、副生成物がベース部等に堆積することを抑制している。 To address such problems, conventional methods have been to cover at least a portion of the base portion with a partition wall to prevent exhaust gas from coming into direct contact with the base portion. For example, in Patent Document 1, a partition wall (insulating wall in Patent Document 1) is provided on the downstream side of a thread groove pump section in a vacuum pump, and by covering at least a part of the stator column and base section, which are low temperature parts, with this partition wall, This suppresses by-products from accumulating on the base and the like.
国際公開第2021/090738号International Publication No. 2021/090738
 ところで特許文献1の隔壁は、同文献の図4に示されているように、例えばボルト等によってネジ溝ステータに固定される。このとき隔壁は、ボルトを締め付けることによって基本的にはネジ溝ステータに対して密に接触するものの、部品を加工する際のばらつき等が原因となって両者の取り付け面同士が十分に接触しないおそれがある。このような場合には、隔壁とネジ溝ステータとの取り付け面の間から排気ガスが漏れる結果、ベース部等に副生成物が堆積してしまうことが懸念された。 By the way, the partition wall of Patent Document 1 is fixed to the threaded stator with, for example, bolts, as shown in FIG. 4 of the same document. At this time, the bulkhead basically comes into close contact with the threaded stator by tightening the bolts, but due to variations in processing the parts, there is a risk that the mounting surfaces of both may not make sufficient contact with each other. There is. In such a case, there was a concern that exhaust gas would leak from between the mounting surface of the partition wall and the threaded stator, resulting in by-products being deposited on the base portion and the like.
 このような点に鑑み、本発明は、隔壁とこれを取り付ける部分との間から排気ガスが漏れ出す不具合をより確実に防止できる真空ポンプを提供することを目的とする。 In view of these points, an object of the present invention is to provide a vacuum pump that can more reliably prevent the problem of exhaust gas leaking between the partition wall and the part to which it is attached.
 本発明の真空ポンプは、排気口を有する外装体と、電装部を収容して前記外装体の内側に配置される収容部と、前記外装体の内側で回転自在に支持され、前記電装部によって回転する回転軸と、前記収容部の外側に配置され、前記回転軸に固定されたロータと、前記ロータの外周側に配置されたステータと、前記ロータの外周面と前記ステータの内周面との間に設けられ、ガスが流れるポンプ流路と、前記ステータに取り付けられ、前記ポンプ流路の出口から前記排気口までの前記ガスの流路を画定する隔壁と、前記ステータと前記隔壁とを加熱する加熱手段とを有し、前記ステータと前記隔壁との取り付け面に、前記ガスの侵入を抑制するシール部材が設けられたことを特徴とする。 The vacuum pump of the present invention includes an exterior body having an exhaust port, a housing part that houses an electrical component and is disposed inside the exterior body, and a housing part that is rotatably supported inside the exterior body and that is supported by the electrical component. a rotary shaft that rotates; a rotor disposed outside the housing portion and fixed to the rotary shaft; a stator disposed on the outer circumferential side of the rotor; an outer circumferential surface of the rotor; and an inner circumferential surface of the stator. a pump flow path provided between the pump flow path and through which gas flows; a partition wall that is attached to the stator and defines a flow path for the gas from an outlet of the pump flow path to the exhaust port; and a partition wall that connects the stator and the partition wall. A sealing member for suppressing intrusion of the gas is provided on a mounting surface between the stator and the partition wall.
 このような真空ポンプは、前記取り付け面において、前記シール部材に対して前記ガスの上流側に、前記ステータと前記隔壁が接触するメタルタッチ面を有することが好ましい。 Preferably, such a vacuum pump has a metal touch surface where the stator and the partition wall come into contact with each other on the upstream side of the gas with respect to the seal member on the mounting surface.
 また前記ステータと前記隔壁は、互いに異なる素材で形成されていることが好ましい。 Furthermore, it is preferable that the stator and the partition wall be made of different materials.
 そして前記隔壁は、前記ステータよりも熱伝導率が高い素材で形成されていることが好ましい。 Preferably, the partition wall is made of a material having higher thermal conductivity than the stator.
 また前記ロータと前記隔壁が対向する対向面の少なくとも一部に、前記収容部への前記ガスの流れ込みを抑制する非接触シール構造が設けられていることが好ましい。 Further, it is preferable that a non-contact seal structure for suppressing the flow of the gas into the accommodating portion is provided on at least a part of the opposing surfaces where the rotor and the partition wall face each other.
 また前記隔壁は、前記ステータに対して前記回転軸の軸方向からボルトによって固定されていることが好ましい。 Further, it is preferable that the partition wall is fixed to the stator from the axial direction of the rotating shaft with bolts.
 そして前記ステータは、前記排気口につながる貫通孔を有し、前記取り付け面は、前記回転軸の軸方向に対して前記貫通孔からずれた位置に設けられていることが好ましい。 Preferably, the stator has a through hole connected to the exhaust port, and the mounting surface is provided at a position offset from the through hole with respect to the axial direction of the rotating shaft.
 本発明の真空ポンプは、ロータの外周側に配置されたステータに隔壁を取り付けるものであって、ステータと隔壁との取り付け面には、ガスの侵入を抑制するシール部材が設けられている。すなわち、例えばステータや隔壁を加工する際のばらつき等が原因となって両者を取り付けた際にガスが漏れる程度の隙間が生じる場合でも、シール部材によってガスが漏れ出す不具合をより確実に防止することができる。 In the vacuum pump of the present invention, a partition wall is attached to a stator disposed on the outer peripheral side of a rotor, and a sealing member for suppressing gas intrusion is provided on the attachment surface between the stator and the partition wall. In other words, even if, for example, there is a gap that would allow gas to leak when the two are attached due to variations in the processing of the stator or partition wall, the problem of gas leaking can be more reliably prevented by the sealing member. Can be done.
本発明に係る真空ポンプの第一実施形態を概略的に示した縦断面図である。1 is a longitudinal sectional view schematically showing a first embodiment of a vacuum pump according to the present invention. 図1に示した真空ポンプのアンプ回路の回路図である。2 is a circuit diagram of an amplifier circuit of the vacuum pump shown in FIG. 1. FIG. 電流指令値が検出値より大きい場合の制御を示すタイムチャートである。It is a time chart which shows control when a current command value is larger than a detected value. 電流指令値が検出値より小さい場合の制御を示すタイムチャートである。It is a time chart showing control when a current command value is smaller than a detected value. 図1に示した真空ポンプに関し、(a)はA部の部分拡大図であり、(b)はB部の部分拡大図である。Regarding the vacuum pump shown in FIG. 1, (a) is a partially enlarged view of part A, and (b) is a partially enlarged view of part B. 図1に示したヒータスペーサと隔壁に関し、(a)はヒータスペーサと隔壁を組み合わせた状態を示した斜視図であり、(b)はヒータスペーサの斜視図であり、(c)は隔壁の斜視図である。Regarding the heater spacer and partition shown in FIG. 1, (a) is a perspective view showing a state in which the heater spacer and partition are combined, (b) is a perspective view of the heater spacer, and (c) is a perspective view of the partition. It is a diagram. 本発明に係る真空ポンプの第二実施形態を概略的に示した縦断面図である。FIG. 2 is a vertical cross-sectional view schematically showing a second embodiment of the vacuum pump according to the present invention. 図7に示した真空ポンプに関し、(a)はC部の部分拡大図であり、(b)はD部の部分拡大図である。Regarding the vacuum pump shown in FIG. 7, (a) is a partial enlarged view of section C, and (b) is a partial enlarged view of section D. 図7に示したヒータスペーサと隔壁に関し、(a)はヒータスペーサと隔壁を組み合わせた状態を示した斜視図であり、(b)はヒータスペーサの斜視図であり、(c)は隔壁の斜視図である。Regarding the heater spacer and partition shown in FIG. 7, (a) is a perspective view showing a state in which the heater spacer and partition are combined, (b) is a perspective view of the heater spacer, and (c) is a perspective view of the partition. It is a diagram.
 以下、図面を参照しながら本発明に係る真空ポンプの一実施形態であるターボ分子ポンプについて、図面を参照しながら説明する。 Hereinafter, a turbo molecular pump, which is an embodiment of the vacuum pump according to the present invention, will be described with reference to the drawings.
 このターボ分子ポンプ100の縦断面図を図1に示す。図1において、ターボ分子ポンプ100には、円筒状の外筒127(外装体の一部)の上端に吸気口101が備えられている。そして、外筒127の内方には、中心軸CAを中心に回転する回転体103(ロータ)が備えられている。回転体103は、ガスを吸引排気するためのタービンブレードである複数の回転翼102(102a、102b、102c・・・)を周部に放射状かつ多段に備えている。この回転体103の中心にはロータ軸113(回転軸)が取り付けられており、このロータ軸113は、例えば5軸制御の磁気軸受により空中に浮上支持かつ位置制御されている。回転体103は、一般的に、アルミニウム又はアルミニウム合金などの金属によって構成されている。 A longitudinal cross-sectional view of this turbomolecular pump 100 is shown in FIG. In FIG. 1, a turbomolecular pump 100 is provided with an intake port 101 at the upper end of a cylindrical outer tube 127 (a part of the outer case). A rotating body 103 (rotor) that rotates around the central axis CA is provided inside the outer cylinder 127. The rotating body 103 includes a plurality of rotary blades 102 (102a, 102b, 102c, . . . ), which are turbine blades for sucking and exhausting gas, arranged radially and in multiple stages around the circumference. A rotor shaft 113 (rotation shaft) is attached to the center of the rotating body 103, and the rotor shaft 113 is supported and positioned in the air by, for example, a five-axis magnetic bearing. The rotating body 103 is generally made of metal such as aluminum or aluminum alloy.
 上側径方向電磁石104は、4個の電磁石がX軸とY軸とに対をなして配置されている。この上側径方向電磁石104に近接して、かつ上側径方向電磁石104のそれぞれに対応して4個の上側径方向センサ107が備えられている。上側径方向センサ107は、例えば伝導巻線を有するインダクタンスセンサや渦電流センサなどが用いられ、ロータ軸113の位置に応じて変化するこの伝導巻線のインダクタンスの変化に基づいてロータ軸113の位置を検出する。この上側径方向センサ107はロータ軸113、すなわちそれに固定された回転体103の径方向変位を検出し、不図示の制御装置に送るように構成されている。 In the upper radial electromagnet 104, four electromagnets are arranged in pairs on the X axis and the Y axis. Four upper radial sensors 107 are provided close to this upper radial electromagnet 104 and corresponding to each upper radial electromagnet 104 . The upper radial direction sensor 107 uses, for example, an inductance sensor or an eddy current sensor having a conduction winding, and detects the position of the rotor shaft 113 based on a change in the inductance of the conduction winding, which changes depending on the position of the rotor shaft 113. Detect. This upper radial direction sensor 107 is configured to detect a radial displacement of the rotor shaft 113, that is, the rotating body 103 fixed thereto, and send it to a control device (not shown).
 この制御装置においては、例えばPID調節機能を有する補償回路が、上側径方向センサ107によって検出された位置信号に基づいて、上側径方向電磁石104の励磁制御指令信号を生成し、図2に示すアンプ回路150(後述する)が、この励磁制御指令信号に基づいて、上側径方向電磁石104を励磁制御することで、ロータ軸113の上側の径方向位置が調整される。 In this control device, for example, a compensation circuit having a PID adjustment function generates an excitation control command signal for the upper radial electromagnet 104 based on a position signal detected by the upper radial sensor 107, and generates an excitation control command signal for the upper radial electromagnet 104, A circuit 150 (described later) controls the excitation of the upper radial electromagnet 104 based on this excitation control command signal, thereby adjusting the upper radial position of the rotor shaft 113.
 そして、このロータ軸113は、高透磁率材(鉄、ステンレスなど)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、ロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整している。 The rotor shaft 113 is made of a high magnetic permeability material (iron, stainless steel, etc.), and is attracted by the magnetic force of the upper radial electromagnet 104. Such adjustment is performed independently in the X-axis direction and the Y-axis direction. Further, a lower radial electromagnet 105 and a lower radial sensor 108 are arranged in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107, and the lower radial position of the rotor shaft 113 is changed to the upper radial position. are adjusted in the same way.
 さらに、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために軸方向センサ109が備えられ、その軸方向位置信号が上記制御装置に送られるように構成されている。 Further, axial electromagnets 106A and 106B are arranged vertically sandwiching a disc-shaped metal disk 111 provided at the lower part of the rotor shaft 113. The metal disk 111 is made of a high magnetic permeability material such as iron. An axial sensor 109 is provided to detect the axial displacement of the rotor shaft 113, and the axial position signal thereof is configured to be sent to the control device.
 そして、上記制御装置において、例えばPID調節機能を有する補償回路が、軸方向センサ109によって検出された軸方向位置信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bのそれぞれの励磁制御指令信号を生成し、アンプ回路150が、これらの励磁制御指令信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bをそれぞれ励磁制御することで、軸方向電磁石106Aが磁力により金属ディスク111を上方に吸引し、軸方向電磁石106Bが金属ディスク111を下方に吸引し、ロータ軸113の軸方向位置が調整される。 In the above control device, for example, a compensation circuit having a PID adjustment function issues excitation control command signals for each of the axial electromagnet 106A and the axial electromagnet 106B based on the axial position signal detected by the axial direction sensor 109. The amplifier circuit 150 controls the excitation of the axial electromagnet 106A and the axial electromagnet 106B based on these excitation control command signals, so that the axial electromagnet 106A attracts the metal disk 111 upward by magnetic force. , the axial electromagnet 106B attracts the metal disk 111 downward, and the axial position of the rotor shaft 113 is adjusted.
 このように、上記制御装置は、この軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。なお、これら上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150については、後述する。 In this way, the control device appropriately adjusts the magnetic force exerted on the metal disk 111 by the axial electromagnets 106A and 106B, magnetically levitates the rotor shaft 113 in the axial direction, and holds it in space without contact. ing. The amplifier circuit 150 that excites and controls the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described later.
 一方、モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、上記制御装置によって制御されている。また、モータ121には図示しない例えばホール素子、レゾルバ、エンコーダなどの回転速度センサが組み込まれており、この回転速度センサの検出信号によりロータ軸113の回転速度が検出されるようになっている。 On the other hand, the motor 121 includes a plurality of magnetic poles arranged circumferentially so as to surround the rotor shaft 113. Each magnetic pole is controlled by the control device described above so as to rotationally drive the rotor shaft 113 via electromagnetic force acting between the magnetic poles and the rotor shaft 113. Further, a rotational speed sensor (not shown) such as a Hall element, a resolver, an encoder, etc. is incorporated in the motor 121, and the rotational speed of the rotor shaft 113 is detected based on a detection signal from this rotational speed sensor.
 さらに、例えば下側径方向センサ108近傍に、図示しない位相センサが取り付けてあり、ロータ軸113の回転の位相を検出するようになっている。上記制御装置では、この位相センサと回転速度センサの検出信号を共に用いて磁極の位置を検出するようになっている。 Further, a phase sensor (not shown) is attached, for example, near the lower radial direction sensor 108 to detect the rotational phase of the rotor shaft 113. In the above control device, the position of the magnetic pole is detected using both the detection signals from the phase sensor and the rotational speed sensor.
 外筒127の内周側で且つ回転体103の外周側には、回転翼102(102a、102b、102c・・・)とわずかの空隙を隔てて複数枚の固定翼123(123a、123b、123c・・・)が配設されている。回転翼102(102a、102b、102c・・・)は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。固定翼123(123a、123b、123c・・・)は、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。 On the inner circumferential side of the outer cylinder 127 and on the outer circumferential side of the rotating body 103, a plurality of fixed blades 123 (123a, 123b, 123c, etc.) are provided with a slight gap between them and the rotary blades 102 (102a, 102b, 102c, . . . ). ...) are provided. The rotor blades 102 (102a, 102b, 102c, . . . ) are each formed to be inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to transport exhaust gas molecules downward by collision. There is. The fixed blades 123 (123a, 123b, 123c...) are made of metal such as aluminum, iron, stainless steel, copper, or an alloy containing these metals as components.
 また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。そして、固定翼123の外周端は、複数の段積みされた固定翼スペーサ125(125a、125b、125c・・・)の間に嵌挿された状態で支持されている。 Similarly, the fixed blades 123 are formed to be inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and are arranged inward of the outer cylinder 127 in alternating stages with the stages of the rotary blades 102. ing. The outer peripheral end of the fixed wing 123 is supported by being inserted between a plurality of stacked fixed wing spacers 125 (125a, 125b, 125c, . . . ).
 固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129(外装体の一部)が配設されている。ベース部129には排気口133が形成され、外部に連通されている。チャンバ(真空チャンバ)側から吸気口101に入ってターボ分子ポンプ100の内部を移送されてきた排気ガスは、下流側の排気口133へと送られる。 The fixed wing spacer 125 is a ring-shaped member, and is made of metal such as aluminum, iron, stainless steel, copper, or an alloy containing these metals as components. An outer cylinder 127 is fixed to the outer periphery of the fixed wing spacer 125 with a slight gap therebetween. A base portion 129 (a part of the exterior body) is provided at the bottom of the outer cylinder 127. An exhaust port 133 is formed in the base portion 129 and communicates with the outside. Exhaust gas that enters the intake port 101 from the chamber (vacuum chamber) side and is transferred inside the turbo molecular pump 100 is sent to the exhaust port 133 on the downstream side.
 固定翼スペーサ125の下部とベース部129の間には、ネジ付スペーサ131、ヒータスペーサ134、隔壁(インシュレータウォール)135、シール部材136、断熱スペーサ137が設けられている。上述した固定翼123、固定翼スペーサ125、ネジ付スペーサ131、及びヒータスペーサ134は、ステータの一部を構成する部材である。なお、ヒータスペーサ134、隔壁135、シール部材136、断熱スペーサ137に関する詳細な説明は後述する。 A threaded spacer 131, a heater spacer 134, a partition wall (insulator wall) 135, a seal member 136, and a heat insulating spacer 137 are provided between the lower part of the fixed wing spacer 125 and the base portion 129. The fixed blade 123, fixed blade spacer 125, threaded spacer 131, and heater spacer 134 described above are members that constitute a part of the stator. Note that detailed explanations regarding the heater spacer 134, partition wall 135, seal member 136, and heat insulating spacer 137 will be given later.
 ネジ付スペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。回転体103の回転翼102(102a、102b、102c・・・)に続く最下部には円筒部102dが垂下されている。この円筒部102dの外周面は、円筒状で、かつネジ付スペーサ131の内周面に向かって張り出されており、このネジ付スペーサ131の内周面と所定の隙間を隔てて近接されている。ネジ付スペーサ131や円筒部102dは、ネジ溝ポンプ部として機能するものであり、回転翼102および固定翼123によってネジ溝131aに移送されてきた排気ガスは、ネジ溝131aに案内されつつ排気口133へと送られる。なおネジ溝ポンプ部としての機能は、ターボ分子ポンプ100の用途に応じて任意に設けられる。 The threaded spacer 131 is a cylindrical member made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals, and has a plurality of spiral thread grooves 131a on its inner peripheral surface. A provision has been made. The spiral direction of the thread groove 131a is the direction in which exhaust gas molecules are transferred toward the exhaust port 133 when they move in the rotational direction of the rotating body 103. A cylindrical portion 102d is suspended from the lowest part of the rotating body 103 following the rotary blades 102 (102a, 102b, 102c, . . . ). The outer circumferential surface of the cylindrical portion 102d is cylindrical and protrudes toward the inner circumferential surface of the threaded spacer 131, and is adjacent to the inner circumferential surface of the threaded spacer 131 with a predetermined gap therebetween. There is. The threaded spacer 131 and the cylindrical part 102d function as a threaded groove pump part, and the exhaust gas transferred to the threaded groove 131a by the rotary blade 102 and the fixed blade 123 is guided to the threaded groove 131a and flows through the exhaust port. Sent to 133. Note that the function as a threaded groove pump section may be provided as desired depending on the use of the turbo molecular pump 100.
 ベース部129は、ターボ分子ポンプ100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。ベース部129はターボ分子ポンプ100を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。 The base portion 129 is a disk-shaped member that constitutes the base of the turbo-molecular pump 100, and is generally made of metal such as iron, aluminum, or stainless steel. The base portion 129 physically holds the turbo-molecular pump 100 and also functions as a heat conduction path, so a metal with rigidity and high thermal conductivity such as iron, aluminum, or copper is used. is desirable.
 かかる構成において、回転翼102がロータ軸113と共にモータ121により回転駆動されると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバから排気ガスが吸気される。回転翼102の回転速度は通常20000rpm~90000rpmであり、回転翼102の先端での周速度は200m/s~400m/sに達する。吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間及びネジ付スペーサ131と円筒部102dの間のポンプ流路を通り、ネジ付スペーサ131、ヒータスペーサ134、及び隔壁135で画定される流路を通過して排気口133へ移送される。このとき、排気ガスが回転翼102に接触する際に生ずる摩擦熱や、モータ121で発生した熱の伝導などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子などによる伝導により固定翼123側に伝達される。 In this configuration, when the rotor blade 102 is rotationally driven by the motor 121 together with the rotor shaft 113, exhaust gas is taken in from the chamber through the intake port 101 by the action of the rotor blade 102 and the fixed blade 123. The rotation speed of the rotor blade 102 is normally 20,000 rpm to 90,000 rpm, and the circumferential speed at the tip of the rotor blade 102 reaches 200 m/s to 400 m/s. The exhaust gas taken in from the intake port 101 passes through the pump flow path between the rotary blade 102 and the fixed blade 123 and between the threaded spacer 131 and the cylindrical portion 102d, and passes through the threaded spacer 131, the heater spacer 134, and the partition wall 135. It passes through a flow path defined by , and is transferred to the exhaust port 133 . At this time, the temperature of the rotor blade 102 increases due to frictional heat generated when the exhaust gas comes into contact with the rotor blade 102, conduction of heat generated by the motor 121, etc. It is transmitted to the fixed wing 123 side by conduction by molecules and the like.
 固定翼スペーサ125は、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触する際に生ずる摩擦熱などを外筒127へと伝達する。 The fixed blade spacers 125 are joined to each other at the outer periphery, and transmit heat received by the fixed blade 123 from the rotary blade 102 and frictional heat generated when exhaust gas comes into contact with the fixed blade 123 to the outer cylinder 127. .
 なお、上記では、ネジ付スペーサ131は回転体103の円筒部102dの外周に配設し、ネジ付スペーサ131の内周面にネジ溝131aが刻設されているとして説明した。しかしながら、これとは逆に円筒部102dの外周面にネジ溝が刻設され、その周囲に円筒状の内周面を有するスペーサが配置される場合もある。 Note that the above description has been made assuming that the threaded spacer 131 is disposed on the outer periphery of the cylindrical portion 102d of the rotating body 103, and that the threaded spacer 131 is provided with a thread groove 131a on its inner peripheral surface. However, on the contrary, a thread groove may be formed on the outer circumferential surface of the cylindrical portion 102d, and a spacer having a cylindrical inner circumferential surface may be arranged around the thread groove.
 また、ターボ分子ポンプ100の用途によっては、吸気口101から吸引されたガスが上側径方向電磁石104、上側径方向センサ107、モータ121、下側径方向電磁石105、下側径方向センサ108、軸方向電磁石106A、106B、軸方向センサ109などで構成される電装部に侵入することのないよう、電装部は周囲をステータコラム122(収容部)で覆われ、このステータコラム122内はパージガスにて所定圧に保たれる場合もある。 Also, depending on the use of the turbo molecular pump 100, the gas sucked from the intake port 101 may be transferred to the upper radial electromagnet 104, the upper radial sensor 107, the motor 121, the lower radial electromagnet 105, the lower radial sensor 108, and the shaft. In order to prevent intrusion into the electrical equipment section consisting of the directional electromagnets 106A, 106B, the axial direction sensor 109, etc., the electrical equipment section is surrounded by a stator column 122 (housing section), and the inside of this stator column 122 is filled with purge gas. In some cases, it is maintained at a predetermined pressure.
 本実施形態のベース部129には、パージポート115が配設され、このパージポート115を通じてパージガスが導入される。導入されたパージガスは、保護ベアリング120とロータ軸113間、モータ121のロータとステータ間、ステータコラム122と回転翼102の内周側円筒部の間の隙間を通じて排気口133へ送出される。 A purge port 115 is provided in the base portion 129 of this embodiment, and purge gas is introduced through this purge port 115. The introduced purge gas is sent to the exhaust port 133 through gaps between the protective bearing 120 and the rotor shaft 113, between the rotor and the stator of the motor 121, and between the stator column 122 and the inner cylindrical portion of the rotor blade 102.
 ここに、ターボ分子ポンプ100は、機種の特定と、個々に調整された固有のパラメータ(例えば、機種に対応する諸特性)に基づいた制御を要する。この制御パラメータを格納するために、上記ターボ分子ポンプ100は、その本体内に電子回路部(不図示)を備えている。この電子回路部は、EEP-ROM等の半導体メモリ及びそのアクセスのための半導体素子等の電子部品、それらの実装用の基板等から構成される。この電子回路部は、ターボ分子ポンプ100の下部を構成するベース部129の例えば中央付近の図示しない回転速度センサの下部に収容され、気密性の底蓋145によって閉じられている。 Here, the turbo-molecular pump 100 requires control based on specification of the model and individually adjusted unique parameters (for example, various characteristics corresponding to the model). In order to store this control parameter, the turbo molecular pump 100 is equipped with an electronic circuit section (not shown) within its main body. This electronic circuit section is composed of a semiconductor memory such as an EEP-ROM, electronic components such as a semiconductor element for accessing the memory, a board for mounting them, and the like. This electronic circuit section is housed, for example, under a rotational speed sensor (not shown) near the center of the base section 129 constituting the lower part of the turbo-molecular pump 100, and is closed by an airtight bottom cover 145.
 ところで、半導体の製造工程では、チャンバに導入されるプロセスガスの中には、その圧力が所定値よりも高くなり、或いは、その温度が所定値よりも低くなると、固体となる性質を有するものがある。ターボ分子ポンプ100内部では、排気ガスの圧力は、吸気口101で最も低く排気口133で最も高い。プロセスガスが吸気口101から排気口133へ移送される途中で、その圧力が所定値よりも高くなったり、その温度が所定値よりも低くなったりすると、プロセスガスは、固体状となり、ターボ分子ポンプ100内部に付着して堆積する。 By the way, in the semiconductor manufacturing process, some process gases introduced into a chamber have the property of becoming solid when the pressure becomes higher than a predetermined value or the temperature becomes lower than a predetermined value. be. Inside the turbomolecular pump 100, the pressure of the exhaust gas is lowest at the intake port 101 and highest at the exhaust port 133. If the pressure of the process gas becomes higher than a predetermined value or the temperature becomes lower than a predetermined value while the process gas is being transferred from the intake port 101 to the exhaust port 133, the process gas becomes solid and turbo molecules It adheres and accumulates inside the pump 100.
 例えば、Alエッチング装置にプロセスガスとしてSiCl4が使用された場合、低真空(760[torr]~10-2[torr])かつ、低温(約20[℃])のとき、固体生成物(例えばAlCl3)が析出し、ターボ分子ポンプ100内部に付着堆積することが蒸気圧曲線からわかる。これにより、ターボ分子ポンプ100内部にプロセスガスの析出物が堆積すると、この堆積物がポンプ流路を狭め、ターボ分子ポンプ100の性能を低下させる原因となる。そして、前述した生成物は、排気口133付近やネジ付スペーサ131付近の圧力が高い部分で凝固、付着し易い状況にあった。 For example, when SiCl4 is used as a process gas in an Al etching system, solid products (for example, AlCl3 ) is precipitated and deposited inside the turbomolecular pump 100, as can be seen from the vapor pressure curve. As a result, if deposits of the process gas are deposited inside the turbo-molecular pump 100, the deposits narrow the pump flow path and cause the performance of the turbo-molecular pump 100 to deteriorate. The above-mentioned products were likely to coagulate and adhere to areas where the pressure was high near the exhaust port 133 and the threaded spacer 131.
 そのため、この問題を解決するために、従来はベース部129等の外周に図示しないヒータや環状の水冷管を巻着させ、かつ例えばベース部129に図示しない温度センサ(例えばサーミスタ)を埋め込み、この温度センサの信号に基づいてベース部129の温度を一定の高い温度(設定温度)に保つようにヒータの加熱や水冷管による冷却の制御(以下TMSという。TMS;Temperature Management System)が行われている。本実施形態のターボ分子ポンプ100は、TMSを行うためのヒータ138(加熱手段)と温度センサ139をヒータスペーサ134に取り付けている。 Therefore, in order to solve this problem, conventionally, a heater (not shown) or an annular water cooling pipe (not shown) is wrapped around the outer periphery of the base part 129, etc., and a temperature sensor (for example, a thermistor) (not shown) is embedded in the base part 129. Based on the signal from the temperature sensor, the heating of the heater and the cooling by the water cooling pipe are controlled (hereinafter referred to as TMS; Temperature Management System) to maintain the temperature of the base part 129 at a constant high temperature (set temperature). There is. The turbo molecular pump 100 of this embodiment has a heater 138 (heating means) and a temperature sensor 139 attached to the heater spacer 134 for performing TMS.
 次に、このように構成されるターボ分子ポンプ100に関して、その上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150について説明する。このアンプ回路150の回路図を図2に示す。 Next, regarding the turbo-molecular pump 100 configured as described above, the amplifier circuit 150 that controls the excitation of the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described. A circuit diagram of this amplifier circuit 150 is shown in FIG.
 図2において、上側径方向電磁石104等を構成する電磁石巻線151は、その一端がトランジスタ161を介して電源171の正極171aに接続されており、また、その他端が電流検出回路181及びトランジスタ162を介して電源171の負極171bに接続されている。そして、トランジスタ161、162は、いわゆるパワーMOSFETとなっており、そのソース-ドレイン間にダイオードが接続された構造を有している。 In FIG. 2, an electromagnet winding 151 constituting the upper radial electromagnet 104 and the like has one end connected to a positive electrode 171a of a power supply 171 via a transistor 161, and the other end connected to a current detection circuit 181 and a transistor 162. It is connected to the negative electrode 171b of the power supply 171 via. The transistors 161 and 162 are so-called power MOSFETs, and have a structure in which a diode is connected between their sources and drains.
 このとき、トランジスタ161は、そのダイオードのカソード端子161aが正極171aに接続されるとともに、アノード端子161bが電磁石巻線151の一端と接続されるようになっている。また、トランジスタ162は、そのダイオードのカソード端子162aが電流検出回路181に接続されるとともに、アノード端子162bが負極171bと接続されるようになっている。 At this time, the cathode terminal 161a of the diode of the transistor 161 is connected to the positive electrode 171a, and the anode terminal 161b is connected to one end of the electromagnet winding 151. Further, the transistor 162 has a diode cathode terminal 162a connected to the current detection circuit 181, and an anode terminal 162b connected to the negative electrode 171b.
 一方、電流回生用のダイオード165は、そのカソード端子165aが電磁石巻線151の一端に接続されるとともに、そのアノード端子165bが負極171bに接続されるようになっている。また、これと同様に、電流回生用のダイオード166は、そのカソード端子166aが正極171aに接続されるとともに、そのアノード端子166bが電流検出回路181を介して電磁石巻線151の他端に接続されるようになっている。そして、電流検出回路181は、例えばホールセンサ式電流センサや電気抵抗素子で構成されている。 On the other hand, the current regeneration diode 165 has its cathode terminal 165a connected to one end of the electromagnet winding 151, and its anode terminal 165b connected to the negative electrode 171b. Similarly, the current regeneration diode 166 has its cathode terminal 166a connected to the positive electrode 171a, and its anode terminal 166b connected to the other end of the electromagnet winding 151 via the current detection circuit 181. It has become so. The current detection circuit 181 is configured with, for example, a Hall sensor type current sensor or an electric resistance element.
 以上のように構成されるアンプ回路150は、一つの電磁石に対応されるものである。そのため、磁気軸受が5軸制御で、電磁石104、105、106A、106Bが合計10個ある場合には、電磁石のそれぞれについて同様のアンプ回路150が構成され、電源171に対して10個のアンプ回路150が並列に接続されるようになっている。 The amplifier circuit 150 configured as described above corresponds to one electromagnet. Therefore, if the magnetic bearing is 5-axis controlled and there are a total of 10 electromagnets 104, 105, 106A, and 106B, a similar amplifier circuit 150 is configured for each of the electromagnets, and 10 amplifier circuits are configured for the power supply 171. 150 are connected in parallel.
 さらに、アンプ制御回路191は、例えば、上記制御装置の図示しないディジタル・シグナル・プロセッサ部(以下、DSP部という)によって構成され、このアンプ制御回路191は、トランジスタ161、162のon/offを切り替えるようになっている。 Furthermore, the amplifier control circuit 191 is constituted by, for example, a digital signal processor section (hereinafter referred to as a DSP section) (not shown) of the control device, and this amplifier control circuit 191 switches on/off of the transistors 161 and 162. It looks like this.
 アンプ制御回路191は、電流検出回路181が検出した電流値(この電流値を反映した信号を電流検出信号191cという)と所定の電流指令値とを比較するようになっている。そして、この比較結果に基づき、PWM制御による1周期である制御サイクルTs内に発生させるパルス幅の大きさ(パルス幅時間Tp1、Tp2)を決めるようになっている。その結果、このパルス幅を有するゲート駆動信号191a、191bを、アンプ制御回路191からトランジスタ161、162のゲート端子に出力するようになっている。 The amplifier control circuit 191 compares the current value detected by the current detection circuit 181 (a signal reflecting this current value is referred to as a current detection signal 191c) and a predetermined current command value. Then, based on this comparison result, the magnitude of the pulse width (pulse width times Tp1, Tp2) to be generated within the control cycle Ts, which is one cycle of PWM control, is determined. As a result, gate drive signals 191a and 191b having this pulse width are outputted from the amplifier control circuit 191 to the gate terminals of the transistors 161 and 162.
 なお、回転体103の回転速度の加速運転中に共振点を通過する際や定速運転中に外乱が発生した際等に、高速かつ強い力での回転体103の位置制御をする必要がある。そのため、電磁石巻線151に流れる電流の急激な増加(あるいは減少)ができるように、電源171としては、例えば50V程度の高電圧が使用されるようになっている。また、電源171の正極171aと負極171bとの間には、電源171の安定化のために、通常コンデンサが接続されている(図示略)。 Note that when the rotational speed of the rotating body 103 passes through a resonance point during accelerated operation, or when a disturbance occurs during constant speed operation, it is necessary to control the position of the rotating body 103 at high speed and with strong force. . Therefore, in order to rapidly increase (or decrease) the current flowing through the electromagnet winding 151, a high voltage of about 50 V, for example, is used as the power source 171. Further, a capacitor (not shown) is usually connected between the positive electrode 171a and the negative electrode 171b of the power source 171 in order to stabilize the power source 171.
 かかる構成において、トランジスタ161、162の両方をonにすると、電磁石巻線151に流れる電流(以下、電磁石電流iLという)が増加し、両方をoffにすると、電磁石電流iLが減少する。 In such a configuration, when both transistors 161 and 162 are turned on, the current flowing through the electromagnet winding 151 (hereinafter referred to as electromagnet current iL) increases, and when both are turned off, the electromagnet current iL decreases.
 また、トランジスタ161、162の一方をonにし他方をoffにすると、いわゆるフライホイール電流が保持される。そして、このようにアンプ回路150にフライホイール電流を流すことで、アンプ回路150におけるヒステリシス損を減少させ、回路全体としての消費電力を低く抑えることができる。また、このようにトランジスタ161、162を制御することにより、ターボ分子ポンプ100に生じる高調波等の高周波ノイズを低減することができる。さらに、このフライホイール電流を電流検出回路181で測定することで電磁石巻線151を流れる電磁石電流iLが検出可能となる。 Furthermore, when one of the transistors 161 and 162 is turned on and the other is turned off, a so-called flywheel current is maintained. By causing the flywheel current to flow through the amplifier circuit 150 in this manner, the hysteresis loss in the amplifier circuit 150 can be reduced, and the power consumption of the entire circuit can be kept low. Further, by controlling the transistors 161 and 162 in this manner, high frequency noise such as harmonics generated in the turbo molecular pump 100 can be reduced. Furthermore, by measuring this flywheel current with the current detection circuit 181, the electromagnet current iL flowing through the electromagnet winding 151 can be detected.
 すなわち、検出した電流値が電流指令値より小さい場合には、図3に示すように制御サイクルTs(例えば100μs)中で1回だけ、パルス幅時間Tp1に相当する時間分だけトランジスタ161、162の両方をonにする。そのため、この期間中の電磁石電流iLは、正極171aから負極171bへ、トランジスタ161、162を介して流し得る電流値iLmax(図示せず)に向かって増加する。 That is, when the detected current value is smaller than the current command value, as shown in FIG. Turn both on. Therefore, the electromagnet current iL during this period increases toward a current value iLmax (not shown) that can flow from the positive electrode 171a to the negative electrode 171b via the transistors 161 and 162.
 一方、検出した電流値が電流指令値より大きい場合には、図4に示すように制御サイクルTs中で1回だけパルス幅時間Tp2に相当する時間分だけトランジスタ161、162の両方をoffにする。そのため、この期間中の電磁石電流iLは、負極171bから正極171aへ、ダイオード165、166を介して回生し得る電流値iLmin(図示せず)に向かって減少する。 On the other hand, when the detected current value is larger than the current command value, both transistors 161 and 162 are turned off only once during the control cycle Ts for a time corresponding to the pulse width time Tp2, as shown in FIG. . Therefore, the electromagnet current iL during this period decreases toward a current value iLmin (not shown) that can be regenerated from the negative electrode 171b to the positive electrode 171a via the diodes 165 and 166.
 そして、いずれの場合にも、パルス幅時間Tp1、Tp2の経過後は、トランジスタ161、162のどちらか1個をonにする。そのため、この期間中は、アンプ回路150にフライホイール電流が保持される。 In either case, either one of the transistors 161 and 162 is turned on after the pulse width times Tp1 and Tp2 have elapsed. Therefore, during this period, the flywheel current is maintained in the amplifier circuit 150.
 次に、上述したヒータスペーサ134、隔壁135、シール部材136、断熱スペーサ137について詳細に説明する。 Next, the above-mentioned heater spacer 134, partition wall 135, seal member 136, and heat insulating spacer 137 will be explained in detail.
 ヒータスペーサ134は、図1、図5、図6に示すように全体的にリング状になる部材であって、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成される。ヒータスペーサ134は、一例として、高温時の強度確保のために強度の高い材料で構成することが好ましく、本実施形態においてはこの点を考慮してステンレスで構成している。図示したようにヒータスペーサ134の上部には、ネジ付スペーサ131が取り付けられる。またヒータスペーサ134の側面には、ヒータ138と温度センサ139を取り付けるための取付け穴が設けられていて、ヒータ138と温度センサ139はヒータスペーサ134に保持される。 The heater spacer 134 is a ring-shaped member as shown in FIGS. 1, 5, and 6, and is made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals. configured. As an example, the heater spacer 134 is preferably made of a high-strength material to ensure strength at high temperatures, and in this embodiment, it is made of stainless steel in consideration of this point. As shown in the figure, a threaded spacer 131 is attached to the top of the heater spacer 134. Furthermore, mounting holes for mounting a heater 138 and a temperature sensor 139 are provided on the side surface of the heater spacer 134, and the heater 138 and temperature sensor 139 are held by the heater spacer 134.
 また図5に示すようにヒータスペーサ134は、径方向内側における下部において、水平方向に延在する平坦なメタルタッチ面134aと、メタルタッチ面134aの径方向外側から垂直方向下方に向かって延在する径方向位置決め面134bと、径方向位置決め面134bよりも内径が大であって径方向位置決め面134bの下方に位置する逃げ面134cとを備えている。更にヒータスペーサ134の下面には、シール部材136が取り付けられる環状凹部134dが設けられている。なお、図示したように隔壁135は、ヒータスペーサ134におけるメタルタッチ面134a、径方向位置決め面134b、逃げ面134c、及び環状凹部134dにかけての部位に取り付けられるものであって、以下の説明においてはこれらの部位を、ヒータスペーサ134の取り付け面と称する。メタルタッチ面134aには、周方向に間隔をあけて配置された複数の雌ねじ部134eが設けられている。 Further, as shown in FIG. 5, the heater spacer 134 has a flat metal touch surface 134a extending horizontally at the lower part on the inside in the radial direction, and a flat metal touch surface 134a extending vertically downward from the outside in the radial direction of the metal touch surface 134a. radial positioning surface 134b, and a flank surface 134c having a larger inner diameter than radial positioning surface 134b and located below radial positioning surface 134b. Further, the lower surface of the heater spacer 134 is provided with an annular recess 134d to which a seal member 136 is attached. As shown, the partition wall 135 is attached to the metal touch surface 134a, the radial positioning surface 134b, the flank surface 134c, and the annular recess 134d of the heater spacer 134. This portion is referred to as the mounting surface of the heater spacer 134. The metal touch surface 134a is provided with a plurality of female screw portions 134e arranged at intervals in the circumferential direction.
 更にヒータスペーサ134は、図6(a)、(b)に示すように、径方向にヒータスペーサ134を貫通する円形の貫通孔134fを備えている。貫通孔134fは、ターボ分子ポンプ100として組み立てた際に、排気口133に連通するものである。また貫通孔134fは、ヒータスペーサ134の軸方向(中心軸CAに沿う方向)に対して、メタルタッチ面134a、径方向位置決め面134b、及び逃げ面134cにかけての部位に重なる位置に設けられている。 Further, the heater spacer 134 includes a circular through hole 134f that passes through the heater spacer 134 in the radial direction, as shown in FIGS. 6(a) and 6(b). The through hole 134f communicates with the exhaust port 133 when the turbo molecular pump 100 is assembled. The through hole 134f is provided at a position that overlaps the metal touch surface 134a, the radial positioning surface 134b, and the flank surface 134c with respect to the axial direction (direction along the central axis CA) of the heater spacer 134. .
 隔壁135は、図1、図5、図6に示すように全体的にリング状になる部材であって、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成される。隔壁135は、後述するようにヒータスペーサ134に取り付けられたヒータ138からの熱で加熱されることが好ましく、本実施形態においてはこの点を考慮してヒータスペーサ134よりも熱伝導率が高い素材(例えばアルミニウム)で隔壁135を構成している。 The partition wall 135 is a ring-shaped member as shown in FIGS. 1, 5, and 6, and is made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals. be done. The partition wall 135 is preferably heated by heat from a heater 138 attached to the heater spacer 134 as described later, and in this embodiment, taking this point into consideration, the partition wall 135 is made of a material having higher thermal conductivity than the heater spacer 134. The partition wall 135 is made of (for example, aluminum).
 また本実施形態の隔壁135は、円環板状の環状壁部135aを備えている。環状壁部135aの内縁部には、上方に向けて延在する円筒状の内側周壁部135bが設けられていて、内側周壁部135bの上端部には、径方向外側に向けて突出する折返し部135c(図6では図示省略)が設けられている。また隔壁135は、隔壁135の外縁部135dよりも径方向内側に位置する部位から上方に向けて延在する円筒状の外側周壁部135eを備えている。外側周壁部135eの上面は、水平方向に延在する平坦な面である。以下、外側周壁部135eの上面をメタルタッチ面135fと称する。なお隔壁135は、図示したようにヒータスペーサ134における外縁部135d、外側周壁部135e、及びメタルタッチ面135fにかけての部位に取り付けられるものであって、以下の説明においては外縁部135d、外側周壁部135e、及びメタルタッチ面135fにかけての部位を、隔壁135の取り付け面と称する。 Furthermore, the partition wall 135 of this embodiment includes an annular wall portion 135a in the shape of an annular plate. A cylindrical inner circumferential wall portion 135b extending upward is provided at the inner edge of the annular wall portion 135a, and a folded portion protruding radially outward is provided at the upper end of the inner circumferential wall portion 135b. 135c (not shown in FIG. 6) is provided. The partition wall 135 also includes a cylindrical outer circumferential wall portion 135e extending upward from a portion located radially inward from the outer edge portion 135d of the partition wall 135. The upper surface of the outer peripheral wall portion 135e is a flat surface extending in the horizontal direction. Hereinafter, the upper surface of the outer peripheral wall portion 135e will be referred to as a metal touch surface 135f. Note that the partition wall 135 is attached to the outer edge portion 135d, the outer peripheral wall portion 135e, and the metal touch surface 135f of the heater spacer 134 as shown in the figure, and in the following description, the outer edge portion 135d, the outer peripheral wall portion 135e and the portion extending to the metal touch surface 135f is referred to as the attachment surface of the partition wall 135.
 外側周壁部135eには、周方向に間隔をあけて配置されて上下方向に外側周壁部135eを貫通する複数のボルト通し孔135gが設けられている。ボルト通し孔135gは、雌ねじ部134eに対応する位置に設けられている。そしてヒータスペーサ134の取り付け面と隔壁135の取り付け面を向かい合わせにした状態で、ボルト140をボルト通し孔135gに挿入してこれを雌ねじ部134eに螺合させることにより、隔壁135をヒータスペーサ134に取り付けることができる。 The outer circumferential wall portion 135e is provided with a plurality of bolt holes 135g arranged at intervals in the circumferential direction and passing through the outer circumferential wall portion 135e in the vertical direction. The bolt through hole 135g is provided at a position corresponding to the female threaded portion 134e. Then, with the mounting surface of the heater spacer 134 and the mounting surface of the partition wall 135 facing each other, the bolt 140 is inserted into the bolt through hole 135g and screwed into the female threaded portion 134e, thereby attaching the partition wall 135 to the heater spacer 135. It can be attached to.
 更に隔壁135は、図6(c)に示すように外側周壁部135eを径方向に貫く半円状の切欠き部135hを備えている。切欠き部135hは、図6(a)に示したように隔壁135をヒータスペーサ134に取り付けた状態において、貫通孔134fと組み合わさって一つの孔を形成する。 Further, the partition wall 135 includes a semicircular notch 135h that radially penetrates the outer circumferential wall 135e, as shown in FIG. 6(c). The cutout portion 135h is combined with the through hole 134f to form one hole when the partition wall 135 is attached to the heater spacer 134 as shown in FIG. 6(a).
 シール部材136は、弾性を有する材料(ニトリルゴム、フッ素ゴム、シリコーンゴム等)によって環状をなすように形成されていて、部材に密着させた際、密着させた部材とシール部材136との間からのガスの侵入を抑制する機能を備える。本実施形態のシール部材136は、Oリングである。 The sealing member 136 is formed of an elastic material (nitrile rubber, fluororubber, silicone rubber, etc.) into an annular shape. Equipped with a function to suppress the intrusion of gas. The seal member 136 of this embodiment is an O-ring.
 断熱スペーサ137は、全体的にリング状になる部材であって、熱伝導率が低い(熱が伝わり難い)材料により構成される。断熱スペーサ137の構成材料は、例えばステンレスである。図示したように断熱スペーサ137は、ベース部129とヒータスペーサ134との間に介在され、ベース部129は、ヒータスペーサ134と断熱されている。 The heat insulating spacer 137 is a ring-shaped member as a whole, and is made of a material with low thermal conductivity (hard to transmit heat). The material of the heat insulating spacer 137 is, for example, stainless steel. As illustrated, the heat insulating spacer 137 is interposed between the base portion 129 and the heater spacer 134, and the base portion 129 is insulated from the heater spacer 134.
 このような部材によって構成されるターボ分子ポンプ100において、ボルト140で隔壁135をヒータスペーサ134に取り付けた際、シール部材136は環状凹部134dの下面と外縁部135dの上面に密着する。また隔壁135をヒータスペーサ134に取り付けた際、径方向位置決め面134bと外側周壁部135eの上部外周面が接触し、且つメタルタッチ面134aとメタルタッチ面135fが接触するため、隔壁135はヒータスペーサ134に対して径方向に位置決めされ、且つ上下方向にも位置決めされる。なお、径方向位置決め面134bの下方に位置する逃げ面134cは、径方向位置決め面134bの内径よりも大径であるため、隔壁135をヒータスペーサ134に取り付けた際、基本的には外側周壁部135eの外周面には接触しない。すなわち、径方向位置決め面134bと逃げ面134cを形成する際、加工精度を要するのは径方向位置決め面134bのみでよいため、ヒータスペーサ134の加工コストを抑えることができる。 In the turbo molecular pump 100 configured with such members, when the partition wall 135 is attached to the heater spacer 134 with the bolts 140, the seal member 136 is in close contact with the lower surface of the annular recess 134d and the upper surface of the outer edge portion 135d. Furthermore, when the partition wall 135 is attached to the heater spacer 134, the radial positioning surface 134b and the upper outer circumferential surface of the outer peripheral wall portion 135e are in contact with each other, and the metal touch surface 134a and the metal touch surface 135f are in contact with each other. 134 in the radial direction and also in the vertical direction. Note that the flank surface 134c located below the radial positioning surface 134b has a larger diameter than the inner diameter of the radial positioning surface 134b, so when the partition wall 135 is attached to the heater spacer 134, basically the outer circumferential wall portion It does not contact the outer peripheral surface of 135e. That is, when forming the radial positioning surface 134b and the flank surface 134c, only the radial positioning surface 134b requires machining precision, so that the cost of machining the heater spacer 134 can be suppressed.
 そして隔壁135をヒータスペーサ134に取り付けた際、ネジ付スペーサ131と円筒部102dの下方には、ネジ付スペーサ131、ヒータスペーサ134、及び隔壁135で画定され、且つネジ付スペーサ131と円筒部102dの間のポンプ流路に通じるとともに貫通孔134fに連通する環状の流路が形成される。また隔壁135の折返し部135cは、円筒部102dの直下に位置していて、折返し部135cの上面と円筒部102dの下面との間には、隙間が設けられている。この隙間は、回転体103が回転する際に円筒部102dと折返し部135cとが接触せず、且つ上述した環状の流路を流れるガスがこの隙間を通過してステータコラム122へ流れ込まない程度に狭められていて、非接触シール構造として機能する。 When the partition wall 135 is attached to the heater spacer 134, the lower part of the threaded spacer 131 and the cylindrical part 102d is defined by the threaded spacer 131, the heater spacer 134, and the partition wall 135, and the threaded spacer 131 and the cylindrical part 102d An annular flow path is formed that communicates with the pump flow path between the holes and the through hole 134f. Further, the folded portion 135c of the partition wall 135 is located directly below the cylindrical portion 102d, and a gap is provided between the upper surface of the folded portion 135c and the lower surface of the cylindrical portion 102d. This gap is formed to such an extent that the cylindrical part 102d and the folded part 135c do not come into contact with each other when the rotating body 103 rotates, and the gas flowing through the annular flow path described above does not flow into the stator column 122 through this gap. It is narrowed and functions as a non-contact sealing structure.
 またボルト140でヒータスペーサ134に取り付けられた隔壁135は、ヒータスペーサ134と熱的に接続される。従ってヒータ138からの熱は、ヒータスペーサ134から隔壁135へ十分に伝達されるため、隔壁135を効果的に加熱することができる。なお内側周壁部135bは、隔壁135の取り付け面から離隔しているが、隔壁135は熱伝導率の高い材料で構成されているため、ヒータ138からの熱によって内側周壁部135bも加熱される。このようにヒータスペーサ134と隔壁135は、その全域に亘って十分に加熱されるため、上述した環状の流路において排気ガス由来による副生成物の析出を抑制することができる。また外側周壁部135eは、図示したように上方に向けて長く延在していて、隔壁135をヒータスペーサ134に取り付けた際、その上端部はヒータ138に近いところへ位置している。すなわちこのような外側周壁部135eを備える隔壁135を用いる場合は、ヒータ138からの熱を受けやすく、加熱されやすい構造となっているといえる。 Furthermore, the partition wall 135 attached to the heater spacer 134 with bolts 140 is thermally connected to the heater spacer 134. Therefore, the heat from the heater 138 is sufficiently transmitted from the heater spacer 134 to the partition wall 135, so that the partition wall 135 can be effectively heated. Although the inner peripheral wall portion 135b is separated from the mounting surface of the partition wall 135, since the partition wall 135 is made of a material with high thermal conductivity, the inner peripheral wall portion 135b is also heated by the heat from the heater 138. In this way, the heater spacer 134 and the partition wall 135 are sufficiently heated over their entire area, so that it is possible to suppress the precipitation of by-products originating from the exhaust gas in the annular flow path described above. Further, the outer circumferential wall portion 135e extends upward for a long time as shown in the figure, and its upper end portion is located close to the heater 138 when the partition wall 135 is attached to the heater spacer 134. In other words, when using the partition wall 135 having such an outer peripheral wall portion 135e, it can be said that the partition wall 135 has a structure that easily receives heat from the heater 138 and is easily heated.
 なお、上述した環状の流路はヒータスペーサ134と隔壁135によって形成されるため、この環状の流路を流れる排気ガスは、例えばヒータスペーサ134と隔壁135の加工状態や取り付け状態によっては、ヒータスペーサ134の取り付け面と隔壁135の取り付け面の間を通ってベース部129や断熱スペーサ137に向けて漏れ出して、副生成物がベース部129等に堆積してしまうことが懸念される。しかし本実施形態のターボ分子ポンプ100は、隔壁135をヒータスペーサ134に取り付けた際、シール部材136は環状凹部134dの下面と外縁部135dの上面に密着するため、排気ガスの漏れ出しを防止することができる。 Note that, since the above-mentioned annular flow path is formed by the heater spacer 134 and the partition wall 135, the exhaust gas flowing through this annular flow path may be affected by the heater spacer 134 and the partition wall 135 depending on the machining state and attachment state of the heater spacer 134 and the partition wall 135, for example. There is a concern that by-products may leak toward the base portion 129 and the heat insulating spacer 137 through the space between the attachment surface of the partition wall 134 and the attachment surface of the partition wall 135 and accumulate on the base portion 129 and the like. However, in the turbo molecular pump 100 of this embodiment, when the partition wall 135 is attached to the heater spacer 134, the sealing member 136 is in close contact with the lower surface of the annular recess 134d and the upper surface of the outer edge portion 135d, so that leakage of exhaust gas is prevented. be able to.
 次に、図7~図9を参照しながら本発明に係る真空ポンプの第二実施形態であるターボ分子ポンプ200について説明する。なおターボ分子ポンプ200は、基本的には上述したターボ分子ポンプ100のヒータスペーサ134と隔壁135に替えて、ヒータスペーサ234と隔壁235を備えるものである。よって以下では、ヒータスペーサ234と隔壁235に関して詳細に説明するものとし、その他については図面に同一の符号を付して詳細な説明は省略する。 Next, a turbo molecular pump 200, which is a second embodiment of the vacuum pump according to the present invention, will be described with reference to FIGS. 7 to 9. Note that the turbo molecular pump 200 basically includes a heater spacer 234 and a partition wall 235 in place of the heater spacer 134 and partition wall 135 of the turbo molecular pump 100 described above. Therefore, in the following, the heater spacer 234 and the partition wall 235 will be explained in detail, and the other parts will be denoted by the same reference numerals in the drawings and detailed explanation will be omitted.
 ヒータスペーサ234は、図7~図9に示すように全体的にリング状になる部材であって、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成される。ヒータスペーサ234は、一例として、高温時の強度確保のために強度の高い材料で構成することが好ましく、本実施形態においてはこの点を考慮してステンレスで構成している。ヒータスペーサ234の上部には、図7に示すようにネジ付スペーサ131が取り付けられる。またヒータスペーサ234の側面には、ヒータ138と温度センサ139を取り付けるための取付け穴が設けられていて、ヒータ138と温度センサ139はヒータスペーサ234に保持される。 The heater spacer 234 is a ring-shaped member as shown in FIGS. 7 to 9, and is made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals. . As an example, the heater spacer 234 is preferably made of a high-strength material to ensure strength at high temperatures, and in this embodiment, it is made of stainless steel in consideration of this point. A threaded spacer 131 is attached to the top of the heater spacer 234, as shown in FIG. Furthermore, mounting holes for mounting the heater 138 and the temperature sensor 139 are provided on the side surface of the heater spacer 234, and the heater 138 and the temperature sensor 139 are held by the heater spacer 234.
 また図8に示すようにヒータスペーサ234は、その下部において、水平方向に延在する平坦なメタルタッチ面234aを備えている。なお、このメタルタッチ面234aは、後述する雌ねじ部234eを避け、かつ、囲むように存在している。メタルタッチ面234aの径方向内側には、垂直方向上方に向かって延在する径方向位置決め面234bが設けられている。またメタルタッチ面234aには、シール部材136が取り付けられる環状凹部234dが設けられている。図示したように隔壁235は、ヒータスペーサ234におけるメタルタッチ面234a、径方向位置決め面234b、及び環状凹部234dにかけての部位に取り付けられるものであって、以下の説明においてはこれらの部位を、ヒータスペーサ234の取り付け面と称する。またメタルタッチ面234aには、周方向に間隔をあけて配置された複数の雌ねじ部234eが設けられている。 Further, as shown in FIG. 8, the heater spacer 234 includes a flat metal touch surface 234a extending in the horizontal direction at its lower part. Note that this metal touch surface 234a exists so as to avoid and surround a female threaded portion 234e, which will be described later. A radial positioning surface 234b that extends vertically upward is provided on the radially inner side of the metal touch surface 234a. Further, the metal touch surface 234a is provided with an annular recess 234d to which the seal member 136 is attached. As illustrated, the partition wall 235 is attached to the metal touch surface 234a, the radial positioning surface 234b, and the annular recess 234d of the heater spacer 234, and in the following description, these portions will be referred to as the heater spacer. 234 mounting surface. Further, the metal touch surface 234a is provided with a plurality of female screw portions 234e arranged at intervals in the circumferential direction.
 更にヒータスペーサ234は、図9に示すように、径方向にヒータスペーサ234を貫通する円形の貫通孔234fを備えている。貫通孔234fは、ターボ分子ポンプ200として組み立てた際に、排気口133に連通するものである。また貫通孔234fは、ヒータスペーサ234の軸方向(中心軸CAに沿う方向)に対して、メタルタッチ面234a、径方向位置決め面234b、及び環状凹部234dにかけての部位からずれた位置(メタルタッチ面234a等よりも上方の位置)に設けられている。 Furthermore, the heater spacer 234 is provided with a circular through hole 234f that passes through the heater spacer 234 in the radial direction, as shown in FIG. The through hole 234f communicates with the exhaust port 133 when the turbo molecular pump 200 is assembled. In addition, the through hole 234f is located at a position (metal touch surface 234a etc.).
 隔壁235は、図7~図9に示すように全体的にリング状になる部材であって、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成される。隔壁235は、上述した隔壁135と同様にヒータ138からの熱で加熱されることが好ましく、本実施形態においてはこの点を考慮してヒータスペーサ234よりも熱伝導率が高い素材(例えばアルミニウム)で隔壁235を構成している。 The partition wall 235 is a ring-shaped member as shown in FIGS. 7 to 9, and is made of a metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals. The partition wall 235 is preferably heated by heat from the heater 138 similarly to the partition wall 135 described above, and in this embodiment, taking this point into consideration, the partition wall 235 is made of a material having a higher thermal conductivity than the heater spacer 234 (for example, aluminum). This constitutes the partition wall 235.
 また隔壁235は、円環板状の環状壁部235aを備えている。環状壁部235aの内縁部には、上方に向けて延在する円筒状の内側周壁部235bが設けられていて、内側周壁部235bの上端部には、径方向外側に向けて突出する折返し部235cが設けられている。また隔壁235は、環状壁部235aの径方向外側に位置する外縁部235dを備えている。外縁部235dの上面は、環状壁部235aの上面よりも下方に位置していて、外縁部235dと環状壁部235aの間には、垂直方向に延在する段差部235eが設けられている。また外縁部235dの上面は、水平方向に延在する平坦な面である。以下、外縁部235dの上面をメタルタッチ面235fと称する。なお隔壁235は、図示したようにヒータスペーサ234におけるメタルタッチ面235fから段差部235eにかけての部位に取り付けられるものであって、以下の説明においてはメタルタッチ面235fから段差部235eにかけての部位を、隔壁235の取り付け面と称する。なお、このメタルタッチ面235fは、後述するボルト通し孔235gを避け、かつ、囲むように存在している。 The partition wall 235 also includes an annular wall portion 235a in the shape of an annular plate. A cylindrical inner circumferential wall portion 235b extending upward is provided at the inner edge of the annular wall portion 235a, and a folded portion protruding radially outward is provided at the upper end of the inner circumferential wall portion 235b. 235c is provided. Further, the partition wall 235 includes an outer edge portion 235d located on the radially outer side of the annular wall portion 235a. The upper surface of the outer edge portion 235d is located below the upper surface of the annular wall portion 235a, and a step portion 235e extending in the vertical direction is provided between the outer edge portion 235d and the annular wall portion 235a. Further, the upper surface of the outer edge portion 235d is a flat surface extending in the horizontal direction. Hereinafter, the upper surface of the outer edge portion 235d will be referred to as a metal touch surface 235f. Note that the partition wall 235 is attached to a portion of the heater spacer 234 from the metal touch surface 235f to the stepped portion 235e as shown in the figure, and in the following description, the portion from the metal touch surface 235f to the stepped portion 235e will be referred to as This is referred to as the mounting surface of the partition wall 235. Note that this metal touch surface 235f exists so as to avoid and surround a bolt through hole 235g, which will be described later.
 外縁部235dには、周方向に間隔をあけて配置されて上下方向に外縁部235dを貫通する複数のボルト通し孔235gが設けられている。ボルト通し孔235gは、雌ねじ部234eに対応する位置に設けられている。そしてヒータスペーサ234の取り付け面と隔壁235の取り付け面を向かい合わせにした状態で、ボルト140をボルト通し孔235gに挿入してこれを雌ねじ部234eに螺合させることにより、隔壁235をヒータスペーサ234に取り付けることができる。 The outer edge portion 235d is provided with a plurality of bolt holes 235g that are arranged at intervals in the circumferential direction and penetrate the outer edge portion 235d in the vertical direction. The bolt through hole 235g is provided at a position corresponding to the female threaded portion 234e. Then, with the mounting surface of the heater spacer 234 and the mounting surface of the partition wall 235 facing each other, the bolt 140 is inserted into the bolt through hole 235g and screwed into the female threaded portion 234e, thereby attaching the partition wall 235 to the heater spacer 235. It can be attached to.
 このような部材によって構成されるターボ分子ポンプ200において、ボルト140で隔壁235をヒータスペーサ234に取り付けた際、シール部材136は環状凹部234dの下面と外縁部235dの上面に密着する。また隔壁235をヒータスペーサ234に取り付けた際、径方向位置決め面234bと段差部235eの側面が接触し、且つメタルタッチ面234aとメタルタッチ面235fが接触するため、隔壁235はヒータスペーサ234に対して径方向に位置決めされ、且つ上下方向にも位置決めされる。 In the turbo molecular pump 200 configured with such members, when the partition wall 235 is attached to the heater spacer 234 with the bolts 140, the seal member 136 is in close contact with the lower surface of the annular recess 234d and the upper surface of the outer edge portion 235d. Furthermore, when the partition wall 235 is attached to the heater spacer 234, the radial positioning surface 234b and the side surface of the stepped portion 235e contact, and the metal touch surface 234a and the metal touch surface 235f contact, so that the partition wall 235 is attached to the heater spacer 234. It is positioned in the radial direction, and also in the vertical direction.
 そして隔壁235をヒータスペーサ234に取り付けた際、ネジ付スペーサ131と円筒部102dの下方には、ネジ付スペーサ131、ヒータスペーサ234、及び隔壁235で画定され、且つネジ付スペーサ131と円筒部102dの間のポンプ流路に通じるとともに貫通孔234fに連通する環状の流路が形成される。また隔壁235の折返し部235cは、円筒部102dの直下に位置していて、折返し部235cの上面と円筒部102dの下面との間には、隙間が設けられている。なおこの隙間は、図5に示した折返し部135cと円筒部102dの間に設けられる隙間と同様に、非接触シール構造として機能する。 When the partition wall 235 is attached to the heater spacer 234, the lower part of the threaded spacer 131 and the cylindrical part 102d is defined by the threaded spacer 131, the heater spacer 234, and the partition wall 235, and the threaded spacer 131 and the cylindrical part 102d An annular flow path is formed that communicates with the pump flow path between the holes and the through hole 234f. Further, the folded portion 235c of the partition wall 235 is located directly below the cylindrical portion 102d, and a gap is provided between the upper surface of the folded portion 235c and the lower surface of the cylindrical portion 102d. Note that this gap functions as a non-contact seal structure, similar to the gap provided between the folded portion 135c and the cylindrical portion 102d shown in FIG.
 ボルト140でヒータスペーサ234に取り付けられた隔壁235は、ヒータスペーサ234と熱的に接続される。また隔壁235は熱伝導率の高い材料で構成されている。従って隔壁235の取り付け面から離隔している内側周壁部235bも、ヒータスペーサ234に取り付けたヒータ138からの熱によって加熱される。このようにヒータスペーサ234と隔壁235は、その全域に亘って十分に加熱されるため、上述した環状の流路において排気ガス由来による副生成物の析出を抑制することができる。 The partition wall 235 attached to the heater spacer 234 with bolts 140 is thermally connected to the heater spacer 234. Further, the partition wall 235 is made of a material with high thermal conductivity. Therefore, the inner peripheral wall portion 235b that is separated from the mounting surface of the partition wall 235 is also heated by the heat from the heater 138 attached to the heater spacer 234. In this way, the heater spacer 234 and the partition wall 235 are sufficiently heated over the entire area, so that it is possible to suppress the precipitation of by-products derived from the exhaust gas in the annular flow path described above.
 上述した環状の流路は、ヒータスペーサ234と隔壁235によって形成される。よってヒータスペーサ234と隔壁235の加工状態や取り付け状態によっては、環状の流路を流れる排気ガスがヒータスペーサ234の取り付け面と隔壁235の取り付け面の間を通ってベース部129や断熱スペーサ137に向けて漏れ出して、副生成物がベース部129等に堆積してしまうことが懸念される。しかし本実施形態のターボ分子ポンプ200は、隔壁235をヒータスペーサ234に取り付けた際、シール部材136は環状凹部234dの下面と外縁部235dの上面に密着するため、排気ガスの漏れ出しを防止することができる。また本実施形態においては、シール部材136の上流側でメタルタッチ面234aとメタルタッチ面235fが接触していて、排気ガスの通過を抑制している。すなわち、メタルタッチ面234aとメタルタッチ面235fによってシール部材136に対する排気ガスの曝露量を十分に抑制することができるため、シール部材136の劣化につながるガスを排気する場合でも、シール部材136の性能を維持することができる。特に本実施形態においては、ボルト140によってヒータスペーサ234と隔壁235を締め付ける位置が、メタルタッチ面234aとメタルタッチ面235fを設けた位置であるため、メタルタッチ面234aとメタルタッチ面235fがより密に接触する。また、メタルタッチ面234aとメタルタッチ面235fは、雌ねじ部234eとボルト通し孔235gを囲むように存在している為、ボルト通し孔235gを通じての排気ガスの漏れ出しも防止できる。従って、排気ガスによるシール部材136の劣化をより抑えることができる。 The above-mentioned annular flow path is formed by the heater spacer 234 and the partition wall 235. Therefore, depending on the processing and attachment conditions of the heater spacer 234 and the partition wall 235, the exhaust gas flowing through the annular flow path may pass between the mounting surface of the heater spacer 234 and the partition wall 235 and reach the base portion 129 or the heat insulating spacer 137. There is a concern that by-products may leak toward the base portion 129 and the like and may be deposited on the base portion 129 and the like. However, in the turbo molecular pump 200 of this embodiment, when the partition wall 235 is attached to the heater spacer 234, the sealing member 136 is in close contact with the lower surface of the annular recess 234d and the upper surface of the outer edge 235d, thereby preventing leakage of exhaust gas. be able to. Further, in this embodiment, the metal touch surface 234a and the metal touch surface 235f are in contact with each other on the upstream side of the seal member 136, thereby suppressing passage of exhaust gas. That is, since the amount of exhaust gas exposed to the seal member 136 can be sufficiently suppressed by the metal touch surface 234a and the metal touch surface 235f, the performance of the seal member 136 can be maintained even when exhausting gas that may lead to deterioration of the seal member 136. can be maintained. In particular, in this embodiment, since the position where the bolt 140 tightens the heater spacer 234 and the partition wall 235 is the position where the metal touch surface 234a and the metal touch surface 235f are provided, the metal touch surface 234a and the metal touch surface 235f are brought closer together. come into contact with. Moreover, since the metal touch surface 234a and the metal touch surface 235f exist so as to surround the female threaded portion 234e and the bolt through hole 235g, leakage of exhaust gas through the bolt through hole 235g can also be prevented. Therefore, deterioration of the seal member 136 due to exhaust gas can be further suppressed.
 ところで上述したターボ分子ポンプ100において、排気口133に連通する貫通孔134fは、図6(a)、(b)に示すように、メタルタッチ面134a、径方向位置決め面134b、及び逃げ面134cにかけての部位に重なる位置に設けられている。すなわち、貫通孔134fを通過して排気口133から排出される排気ガスは、ヒータスペーサ134と隔壁135との取り付け面付近を流れるため、取り付け面に排気ガスが侵入するおそれがある。これに対してターボ分子ポンプ200の貫通孔234fは、図9(a)、(b)に示すようにメタルタッチ面234a、径方向位置決め面234b、及び環状凹部234dにかけての部位からずれた位置に設けられている。すなわち排気ガスは、貫通孔234fを通過して排気口133から排出される際、ヒータスペーサ234と隔壁235との取り付け面付近は流れないため、取り付け面からの排気ガスの侵入を抑制することができる。 By the way, in the turbo molecular pump 100 described above, the through hole 134f communicating with the exhaust port 133 extends from the metal touch surface 134a, the radial positioning surface 134b, and the flank surface 134c, as shown in FIGS. 6(a) and 6(b). It is located at a position that overlaps the area of That is, since the exhaust gas that passes through the through hole 134f and is discharged from the exhaust port 133 flows near the mounting surface between the heater spacer 134 and the partition wall 135, there is a risk that the exhaust gas may enter the mounting surface. On the other hand, the through hole 234f of the turbo molecular pump 200 is located at a position offset from the area extending from the metal touch surface 234a, the radial positioning surface 234b, and the annular recess 234d, as shown in FIGS. 9(a) and 9(b). It is provided. That is, when the exhaust gas passes through the through hole 234f and is discharged from the exhaust port 133, it does not flow near the mounting surface between the heater spacer 234 and the partition wall 235, so it is possible to suppress the exhaust gas from entering from the mounting surface. can.
 以上、本発明の一実施形態について説明したが、本発明は係る特定の実施形態に限定されるものではなく、上記の説明で特に限定しない限り、特許請求の範囲に記載された本発明の趣旨の範囲内において、種々の変形・変更、組み合わせが可能である。また、上記の実施形態における効果は、本発明から生じる効果を例示したに過ぎず、本発明による効果が上記の効果に限定されることを意味するものではない。 Although one embodiment of the present invention has been described above, the present invention is not limited to such specific embodiment, and unless specifically limited by the above explanation, the gist of the present invention described in the claims Various modifications, changes, and combinations are possible within the range. Furthermore, the effects of the embodiments described above are merely examples of effects resulting from the present invention, and do not mean that the effects of the present invention are limited to the above effects.
 例えば上述した実施形態におけるステータにおいて、ネジ付スペーサ131は、ヒータスペーサ134、234とは別異の部材であったが、ネジ付スペーサとヒータスペーサを一体化した部材を用いてもよい。またボルト140を設ける位置は、メタルタッチ面134a、234aとメタルタッチ面135f、235fを設けた位置に限られず、メタルタッチ面134a、234aとメタルタッチ面135f、235fの近傍であってもよい。 For example, in the stator in the embodiment described above, the threaded spacer 131 is a separate member from the heater spacers 134 and 234, but a member that integrates the threaded spacer and the heater spacer may also be used. Further, the position where the bolt 140 is provided is not limited to the position where the metal touch surfaces 134a, 234a and the metal touch surfaces 135f, 235f are provided, but may be in the vicinity of the metal touch surfaces 134a, 234a and the metal touch surfaces 135f, 235f.
100、200:ターボ分子ポンプ(真空ポンプ)
103:回転体(ロータ)
113:ロータ軸(回転軸)
122:ステータコラム(収容部)
123:固定翼
125:固定翼スペーサ
127:外筒
129:ベース部
131:ネジ付スペーサ
133:排気口
134、234:ヒータスペーサ
134a、234a:メタルタッチ面
134f、234f:貫通孔
135、235:隔壁
135b、235b:内側周壁部
135c、235c:折返し部
135f、235f:メタルタッチ面
136:シール部材
137:断熱スペーサ
138:ヒータ(加熱手段)
140:ボルト
 
100, 200: Turbo molecular pump (vacuum pump)
103: Rotating body (rotor)
113: Rotor shaft (rotating shaft)
122: Stator column (accommodating part)
123: Fixed wing 125: Fixed wing spacer 127: Outer cylinder 129: Base portion 131: Spacer with screw 133: Exhaust port 134, 234: Heater spacer 134a, 234a: Metal touch surface 134f, 234f: Through hole 135, 235: Partition wall 135b, 235b: Inner peripheral wall portions 135c, 235c: Folded portions 135f, 235f: Metal touch surface 136: Seal member 137: Heat insulating spacer 138: Heater (heating means)
140: Bolt

Claims (7)

  1.  排気口を有する外装体と、
     電装部を収容して前記外装体の内側に配置される収容部と、
     前記外装体の内側で回転自在に支持され、前記電装部によって回転する回転軸と、
     前記収容部の外側に配置され、前記回転軸に固定されたロータと、
     前記ロータの外周側に配置されたステータと、
     前記ロータの外周面と前記ステータの内周面との間に設けられ、ガスが流れるポンプ流路と、
     前記ステータに取り付けられ、前記ポンプ流路の出口から前記排気口までの前記ガスの流路を画定する隔壁と、
     前記ステータと前記隔壁とを加熱する加熱手段とを有し、
     前記ステータと前記隔壁との取り付け面に、前記ガスの侵入を抑制するシール部材が設けられたことを特徴とする真空ポンプ。
    an exterior body having an exhaust port;
    an accommodating section that accommodates an electrical component and is disposed inside the exterior body;
    a rotating shaft rotatably supported inside the exterior body and rotated by the electrical component;
    a rotor disposed outside the housing section and fixed to the rotating shaft;
    a stator disposed on the outer peripheral side of the rotor;
    a pump flow path provided between the outer peripheral surface of the rotor and the inner peripheral surface of the stator, through which gas flows;
    a partition wall attached to the stator and defining a flow path for the gas from the outlet of the pump flow path to the exhaust port;
    a heating means for heating the stator and the partition wall;
    A vacuum pump characterized in that a sealing member for suppressing the intrusion of the gas is provided on a mounting surface between the stator and the partition wall.
  2.  前記取り付け面において、前記シール部材に対して前記ガスの上流側に、前記ステータと前記隔壁が接触するメタルタッチ面を有することを特徴とする請求項1に記載の真空ポンプ。 2. The vacuum pump according to claim 1, wherein the mounting surface has a metal touch surface on the upstream side of the gas with respect to the sealing member, where the stator and the partition wall come into contact.
  3.  前記ステータと前記隔壁は、互いに異なる素材で形成されていることを特徴とする請求項1に記載の真空ポンプ。 The vacuum pump according to claim 1, wherein the stator and the partition wall are made of different materials.
  4.  前記隔壁は、前記ステータよりも熱伝導率が高い素材で形成されていることを特徴とする請求項3に記載の真空ポンプ。 The vacuum pump according to claim 3, wherein the partition wall is formed of a material having higher thermal conductivity than the stator.
  5.  前記ロータと前記隔壁が対向する対向面の少なくとも一部に、前記収容部への前記ガスの流れ込みを抑制する非接触シール構造が設けられていることを特徴とする請求項1に記載の真空ポンプ。 The vacuum pump according to claim 1, wherein a non-contact seal structure for suppressing the flow of the gas into the storage portion is provided on at least a part of the opposing surfaces where the rotor and the partition wall face each other. .
  6.  前記隔壁は、前記ステータに対して前記回転軸の軸方向からボルトによって固定されていることを特徴とする請求項1に記載の真空ポンプ。 The vacuum pump according to claim 1, wherein the partition wall is fixed to the stator from the axial direction of the rotating shaft with bolts.
  7.  前記ステータは、前記排気口につながる貫通孔を有し、
     前記取り付け面は、前記回転軸の軸方向に対して前記貫通孔からずれた位置に設けられていることを特徴とする請求項1に記載の真空ポンプ。 
    The stator has a through hole connected to the exhaust port,
    The vacuum pump according to claim 1, wherein the mounting surface is provided at a position offset from the through hole with respect to the axial direction of the rotating shaft.
PCT/JP2023/023292 2022-06-29 2023-06-23 Vacuum pump WO2024004849A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-104686 2022-06-29
JP2022104686A JP7493556B2 (en) 2022-06-29 Vacuum pump

Publications (1)

Publication Number Publication Date
WO2024004849A1 true WO2024004849A1 (en) 2024-01-04

Family

ID=84817881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023292 WO2024004849A1 (en) 2022-06-29 2023-06-23 Vacuum pump

Country Status (3)

Country Link
GB (1) GB202213704D0 (en)
TW (1) TW202407219A (en)
WO (1) WO2024004849A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505265A (en) * 2006-09-28 2010-02-18 ラム リサーチ コーポレーション High chamber temperature process and chamber design for photoresist strip and post-metal etch passivation
WO2015118897A1 (en) * 2014-02-04 2015-08-13 エドワーズ株式会社 Vacuum pump
WO2021090738A1 (en) * 2019-11-05 2021-05-14 エドワーズ株式会社 Vacuum pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505265A (en) * 2006-09-28 2010-02-18 ラム リサーチ コーポレーション High chamber temperature process and chamber design for photoresist strip and post-metal etch passivation
WO2015118897A1 (en) * 2014-02-04 2015-08-13 エドワーズ株式会社 Vacuum pump
WO2021090738A1 (en) * 2019-11-05 2021-05-14 エドワーズ株式会社 Vacuum pump

Also Published As

Publication number Publication date
JP2024004829A (en) 2024-01-17
GB202213704D0 (en) 2022-11-02
TW202407219A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
WO2024004849A1 (en) Vacuum pump
JP7493556B2 (en) Vacuum pump
WO2022255202A1 (en) Vacuum pump, spacer, and casing
WO2022124239A1 (en) Vacuum pump, vacuum pump fixed components, and vacuum pump support component
WO2024043276A1 (en) Vacuum pump and fixed component
WO2023199880A1 (en) Vacuum pump
JP7378447B2 (en) Vacuum pumps and fixed parts
WO2023008302A1 (en) Vacuum pump
JP7463324B2 (en) Vacuum pump and heat transfer suppressing member for vacuum pump
WO2022038996A1 (en) Vacuum pump, fixed blade, and spacer
WO2022153981A1 (en) Vacuum pump, and rotating body of same
WO2022131035A1 (en) Vacuum pump
CN117043469A (en) Turbomolecular pump
WO2022210118A1 (en) Vacuum pump
WO2023171566A1 (en) Vacuum pump
WO2022030374A1 (en) Vacuum pump and rotor blade for vacuum pump
JP2023157851A (en) Vacuum pump
JP2022094272A (en) Vacuum pump
KR20230154001A (en) vacuum pump
JP2022062805A (en) Vacuum pump and vacuum exhaust system using the same
CN117337362A (en) Vacuum pump
CN116783391A (en) Vacuum pump
CN116670398A (en) Vacuum pump, rotary body, cover, and method for manufacturing rotary body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831291

Country of ref document: EP

Kind code of ref document: A1