WO2024004698A1 - Electromagnetic wave shielding material, electronic component, and electronic device - Google Patents

Electromagnetic wave shielding material, electronic component, and electronic device Download PDF

Info

Publication number
WO2024004698A1
WO2024004698A1 PCT/JP2023/022342 JP2023022342W WO2024004698A1 WO 2024004698 A1 WO2024004698 A1 WO 2024004698A1 JP 2023022342 W JP2023022342 W JP 2023022342W WO 2024004698 A1 WO2024004698 A1 WO 2024004698A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic layer
layer
mass
resin
magnetic
Prior art date
Application number
PCT/JP2023/022342
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 深川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024004698A1 publication Critical patent/WO2024004698A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to electromagnetic shielding materials, electronic components, and electronic equipment.
  • Patent Document 1 discloses an electromagnetic shielding film that includes a magnetic layer containing a magnetic material.
  • Electromagnetic wave shielding materials have the ability to shield electromagnetic waves (hereinafter also referred to as “shielding materials”) by reflecting the electromagnetic waves incident on the shielding material and/or attenuating them inside the shielding material. (Also referred to as “electromagnetic wave shielding ability” or “shielding ability.”)
  • the electromagnetic shielding film described in Patent Document 1 can function as an electromagnetic shielding material.
  • electromagnetic shielding materials exhibit high shielding ability. Electromagnetic shielding materials that exhibit high shielding ability against electromagnetic waves can contribute to greatly reducing the effects of electromagnetic waves in electronic components and electronic devices. However, as a result of studies conducted by the present inventors, it has been found that it is difficult for conventional electromagnetic shielding materials to exhibit high shielding ability after being placed under high temperatures.
  • Electromagnetic shielding materials can be processed into various shapes for incorporation into electronic components or electronic equipment.
  • Excellent moldability can mean that defects such as shape defects and breakage are unlikely to occur during molding.
  • An electromagnetic shielding material with excellent moldability is desirable in that, for example, a molded product is unlikely to break during three-dimensional molding (in other words, three-dimensional molding).
  • an object of one embodiment of the present invention is to provide an electromagnetic shielding material that can exhibit high shielding ability after being placed under high temperature and has excellent moldability.
  • One aspect of the present invention is as follows. [1] Having one or more magnetic layers containing magnetic particles and resin, The content of the magnetic particles in the magnetic layer is more than 70 parts by mass and not more than 95 parts by mass, with the total mass of the magnetic layer being 100 parts by mass, An electromagnetic shielding material, wherein the resin includes a urethane bond-containing resin and a diene resin, and the magnetic layer further includes a crosslinking agent. [2] The electromagnetic wave according to [1], wherein the content of the diene resin in the magnetic layer is 2 parts by mass or more and 15 parts by mass or less, when the total content of the resin in the magnetic layer is 100 parts by mass. shield material.
  • the content of the diene resin in the magnetic layer is 2 parts by mass or more and 15 parts by mass or less, with the total content of the resin in the magnetic layer being 100 parts by mass,
  • the glass transition temperature of the urethane bond-containing resin is -60°C or higher and lower than 0°C
  • the crosslinking agent is a polyfunctional isocyanate, and the content of the polyfunctional isocyanate in the magnetic layer is 15 parts by mass or more, based on 100 parts by mass of the total content of the resin in the magnetic layer.
  • the electromagnetic shielding material described in . [7] The electromagnetic wave shield according to any one of [1] to [6], further comprising two or more metal layers, and including one or more of the above magnetic layers sandwiched between the two metal layers.
  • Material. [8] An electronic component comprising the electromagnetic shielding material according to any one of [1] to [7].
  • An electronic device comprising the electromagnetic shielding material according to any one of [1] to [7].
  • an electromagnetic shielding material that can exhibit high shielding ability after being placed under high temperature and has excellent moldability. Further, according to one aspect of the present invention, it is possible to provide an electronic component and an electronic device including this electromagnetic shielding material.
  • One embodiment of the present invention has one or more magnetic layers containing magnetic particles and resin, and the content of the magnetic particles in the magnetic layer is more than 70 parts by mass, with the total mass of the magnetic layer being 100 parts by mass. 95 parts by mass or less, the resin includes a urethane bond-containing resin and a diene resin, and the magnetic layer further includes a crosslinking agent.
  • the present inventor believes that the inclusion of a diene resin in the resin of the magnetic layer contributes to improving the moldability of the electromagnetic shielding material. Further, the fact that the magnetic layer contains the urethane bond-containing resin and the crosslinking agent contributes to the electromagnetic wave shielding material being able to exhibit high shielding ability even after being placed under high temperature by increasing the heat resistance of the magnetic layer. The inventor has speculated. Further, the present inventor believes that having the content of magnetic particles in the magnetic layer within the above range contributes to improving the moldability and shielding ability of the electromagnetic shielding material. Details will be described later. However, the present invention is not limited to the speculations described in this specification.
  • an “electromagnetic wave shielding material” refers to a material that can exhibit shielding ability against electromagnetic waves of at least one frequency or at least a part of a frequency band.
  • Electromagnetic waves include magnetic field waves and electric field waves.
  • Electromagnetic wave shielding material is for one or both of magnetic field waves of at least one frequency or at least a part of the frequency range, and electric field waves of at least one frequency or at least a part of the frequency range.
  • the material is a material that can exhibit shielding ability.
  • magnetism means ferromagnetic property. Details of the magnetic layer will be described later.
  • the electromagnetic shielding material has one or more magnetic layers containing magnetic particles and resin.
  • the electromagnetic wave shielding material can be composed of only one magnetic layer or only two or more magnetic layers, and in another form, it can include one or more of various layers described below.
  • magnetic particles As the magnetic particles, one type selected from the group consisting of magnetic particles generally called soft magnetic particles such as metal particles and ferrite particles can be used, or two or more types can be used in combination. Since metal particles generally have a saturation magnetic flux density about 2 to 3 times that of ferrite particles, they can maintain relative magnetic permeability and exhibit shielding ability without magnetic saturation even under a strong magnetic field. Therefore, the magnetic particles contained in the magnetic layer are preferably metal particles. In the present invention and this specification, a layer containing metal particles as magnetic particles corresponds to a "magnetic layer.”
  • Metal particles examples include sendust (Fe-Si-Al alloy), permalloy (Fe-Ni alloy), molybdenum permalloy (Fe-Ni-Mo alloy), Fe-Si alloy, Fe- Examples include Cr alloys, Fe-containing alloys generally referred to as iron-based amorphous alloys, Co-containing alloys generally referred to as cobalt-based amorphous alloys, alloys generally referred to as nanocrystalline alloys, particles of iron, permendur (Fe-Co alloy), etc. .
  • Sendust is preferred because it exhibits high saturation magnetic flux density and relative magnetic permeability.
  • metal particles include elements contained in additives that may be optionally added and/or elements contained in impurities that may be unintentionally mixed in during the manufacturing process of metal particles. may be included at any content rate.
  • the content of constituent elements of the metal (including alloys) is preferably 90.0% by mass or more, more preferably 95.0% by mass or more, and even 100% by mass. It may be less than 100% by weight, less than 99.9% by weight, or less than 99.0% by weight.
  • the ability of the electromagnetic shielding material to shield against electromagnetic waves can be evaluated using the magnetic permeability (specifically, the real part of complex relative magnetic permeability) of the magnetic layer included in the electromagnetic shielding material as an index.
  • An electromagnetic shielding material having a magnetic layer exhibiting high magnetic permeability is preferable because it can exhibit high shielding ability against electromagnetic waves.
  • Magnetic permeability can be measured by a commercially available magnetic permeability measuring device or a magnetic permeability measuring device having a known configuration.
  • the measurement temperature is 25°C.
  • the magnetic permeability (real part of complex relative magnetic permeability at a frequency of 3 MHz) of the magnetic layer included in the electromagnetic shielding material is preferably 40 or more, and preferably 100 or more. More preferably, it is 120 or more. Further, the magnetic permeability can be, for example, 500 or less, 300 or less, or 200 or less, and can also exceed the values exemplified here.
  • the above electromagnetic shielding material with high magnetic permeability is preferable because it can exhibit excellent electromagnetic shielding ability.
  • the above magnetic permeability is the value determined for the magnetic layer before it is placed under a high temperature of 60°C or higher (excluding processes that involve heating during the manufacturing process of magnetic layers and electromagnetic shielding materials, the same shall apply hereinafter). can. Furthermore, the magnetic layer can exhibit magnetic permeability within the above range even after being placed under a high temperature of 60° C. or higher.
  • the magnetic particles are preferably particles having a flat shape (flat-shaped particles), and more preferably metal particles having a flat shape.
  • the long sides of the flat particles are aligned in the vibration direction of the electromagnetic waves that are incident orthogonally to the electromagnetic shielding material. Since the demagnetizing field can be reduced by making the magnetic layers more aligned, the magnetic layer can exhibit higher magnetic permeability.
  • "flat-shaped particles” refer to particles with an aspect ratio of 0.20 or less.
  • the aspect ratio of the flat particles is preferably 0.15 or less, more preferably 0.10 or less.
  • the aspect ratio of the flat particles can be, for example, 0.01 or more, 0.02 or more, or 0.03 or more.
  • the particles can be flattened by flattening using a known method.
  • flattening for example, the description in Japanese Patent Application Laid-Open No. 2018-131640 can be referred to, and for example, the description in paragraphs 0016 and 0017 and Examples of the same publication can be referred to.
  • the magnetic layer exhibiting high magnetic permeability include a magnetic layer containing flat particles of sendust.
  • the degree of orientation which is the sum of the absolute value of the average value of the orientation angle of the flat-shaped particles with respect to the surface of the magnetic layer and the variance of the orientation angle, is preferably 30° or less, and preferably 25° or less. is more preferred, still more preferably 20° or less, even more preferably 15° or less.
  • the degree of orientation can be, for example, 3° or more, 5° or more, or 10°C or more, and can also be lower than the values exemplified here. A method for controlling the degree of orientation will be described later.
  • the aspect ratio and the above-mentioned degree of orientation of the magnetic particles are determined by the following method.
  • a cross section of the magnetic layer is exposed by a known method.
  • a cross-sectional image of a randomly selected region of this cross-section is obtained as a scanning electron microscope (SEM) image.
  • Imaging conditions are acceleration voltage: 2 kV, magnification: 1000 times, and a SEM image is obtained as a backscattered electron image.
  • cv2. of the image processing library OpenCV4 manufactured by Intel.
  • the second argument is set to 0 using the imread() function, and the second argument is read in grayscale, and the boundary is the brightness between the high brightness part and the low brightness part, and cv2.
  • a binarized image is obtained using the threshold() function.
  • White parts (high brightness parts) in the binarized image are identified as magnetic particles.
  • cv2. for the obtained binarized image.
  • a rotating circumscribed rectangle corresponding to each magnetic particle portion is determined using the minAreaRect() function, and cv2.
  • the long side length, short side length, and rotation angle are determined as the return values of the minAreaRect() function.
  • the ratio of the short side length to the long side length thus determined is defined as the aspect ratio of each magnetic particle.
  • the number of magnetic particles with an aspect ratio of 0.20 or less and identified as flat particles is 10% on a number basis with respect to the total number of magnetic particles included in the binarized image. If the above is the case, the magnetic layer is determined to be a "magnetic layer containing flat particles as magnetic particles.” Further, from the rotation angle determined above, the "orientation angle" is determined as the rotation angle with respect to the horizontal plane (the surface of the magnetic layer). Particles having an aspect ratio of 0.20 or less determined in the binarized image are identified as flat particles.
  • the sum of the absolute value of the average value (arithmetic mean) and the variance is calculated for the orientation angles of all the flat particles included in the binarized image. The sum obtained in this way is referred to as the "degree of orientation.”
  • cv2. The coordinates of the circumscribed rectangle are calculated using the boxPoints() function and cv2. An image is created in which the rotated circumscribed rectangle is superimposed on the original image using the drawContours() function, and rotated circumscribed rectangles that are clearly erroneously detected are excluded from the calculation of the aspect ratio and degree of orientation.
  • the average value (arithmetic mean) of the aspect ratios of the particles identified as flat particles is taken as the aspect ratio of the flat particles included in the magnetic layer to be measured.
  • Such an aspect ratio is 0.20 or less, preferably 0.15 or less, and more preferably 0.10 or less. Further, the aspect ratio can be, for example, 0.01 or more, 0.02 or more, or 0.03 or more.
  • the content of magnetic particles in the magnetic layer is more than 70 parts by mass, and preferably 72 parts by mass or more, with the total mass of the magnetic layer being 100 parts by mass. More preferably, the amount is 80 parts by mass or more. Further, from the viewpoint of improving moldability and further from the viewpoint of self-supporting property of the magnetic layer, the content of magnetic particles in the magnetic layer is 95 parts by mass or less, with the total mass of the magnetic layer being 100 parts by mass, It is preferably 90 parts by mass or less, and more preferably 85 parts by mass or less.
  • the magnetic layer may contain only one type of magnetic particle, or may contain two or more types of magnetic particles in any proportion.
  • the content refers to the total content of those components.
  • the content of various components in the magnetic layer can be determined by known methods such as TG/DTA (Thermogravimetry/Differential Thermal Analysis) and extraction of various components using a solvent. Note that "TG/DTA” is generally called thermogravimetric differential thermal analysis. If the composition of the magnetic layer forming composition used to form the magnetic layer is known, the contents of various components in the magnetic layer can be determined from this known composition.
  • the magnetic layer can be an insulating layer.
  • insulating means that the electrical conductivity is smaller than 1S (Siemens)/m.
  • the magnetic layer is an insulating layer so that the electromagnetic shielding material exhibits even higher electromagnetic shielding ability.
  • the electrical conductivity of the magnetic layer is preferably smaller than 1 S/m, more preferably 0.5 S/m or less, even more preferably 0.1 S/m or less, and even more preferably 0.5 S/m or less. More preferably, it is .05 S/m or less.
  • the electrical conductivity of the magnetic layer can be, for example, 1.0 ⁇ 10 ⁇ 12 S/m or more or 1.0 ⁇ 10 ⁇ 10 S/m or more.
  • the magnetic layer is a layer containing magnetic particles and resin.
  • the resin can serve as a binder in the magnetic layer.
  • a layer containing both magnetic particles and resin corresponds to a "magnetic layer".
  • the total content of resin in the magnetic layer is 5 parts by mass or more, with the total mass of the magnetic layer being 100 parts by mass, from the viewpoint of further improving moldability and further from the viewpoint of self-supporting property of the magnetic layer.
  • the amount is preferably 10 parts by mass or more, more preferably 15 parts by mass or more.
  • the total content of the resin in the magnetic layer is preferably less than 30 parts by mass, and 28 parts by mass, with the total mass of the magnetic layer being 100 parts by mass. It is more preferably at most 25 parts by mass, even more preferably at most 20 parts by mass.
  • resin means a polymer, and includes rubber and elastomer.
  • Polymers include homopolymers and copolymers. Rubber includes natural rubber and synthetic rubber.
  • an elastomer is a polymer that exhibits elastic deformation.
  • the magnetic layer of the electromagnetic shielding material includes a urethane bond-containing resin and a diene resin.
  • the present inventor believes that the crosslinking reaction of the urethane bond-containing resin with the crosslinking agent contributes to improving the heat resistance of the magnetic layer.
  • the present inventor conjectures that this contributes to the ability of the electromagnetic shielding material to exhibit high shielding ability even after being placed under high temperatures.
  • the diene resin contributes to improving the moldability of the electromagnetic shielding material. The present inventor conjectures that this is because the diene resin can provide the magnetic layer with elongation properties suitable for molding.
  • the urethane bond-containing resin includes various urethane bond-containing resins such as polyurethane resin, polyester urethane resin, and polyurethane elastomer.
  • one type of urethane bond-containing resin may be used alone, or two or more types may be used in combination.
  • the type of resin contained in the magnetic layer can be determined by, for example, organic analysis such as pyrolysis GC/MS (Gas Chromatography/Mass Spectrometry) and Fourier Transform Infrared Spectroscopy. For example, if isocyanate component residues and/or polyol component residues are observed by thermal decomposition GC/MS, it can be determined that the resin is a urethane bond-containing resin.
  • the glass transition temperature Tg of the urethane bonding resin contained in the magnetic layer is preferably less than 0°C.
  • the glass transition temperature Tg of the resin is determined from the measurement results of heat flow measurement using a differential scanning calorimeter as the baseline shift start temperature of the heat flow chart during temperature rise.
  • the glass transition temperature Tg of the urethane bond-containing resin contained in the magnetic layer is preferably -3°C or lower, and preferably -5°C or lower.
  • the temperature is -10°C or lower, -20°C or lower, -30°C or lower, and -40°C or lower in this order.
  • the glass transition temperature Tg of the urethane bond-containing resin contained in the magnetic layer can be, for example, -100°C or higher, -90°C or higher, -80°C or higher, -70°C or higher, or -60°C or higher. .
  • diene-based resin refers to a resin having a diene polymer structure in the molecule. Since diene resins can generally exhibit rubber elasticity, they are thought to be able to impart extensibility to the magnetic layer. It is presumed that this contributes to improving the formability of the electromagnetic shielding material.
  • the diene resin include natural rubber (NR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), and styrene-butadiene rubber (SBR).
  • ne-Butadiene Rubber ethylene-propylene rubber (binary polymer of ethylene and propylene rubber (EPM: Ethylene Propylene Rubber)), terpolymer containing ethylene and propylene rubber (EPDM: Ethylene Propylene Diene Methylene Lin) kage), butyl rubber (IIR), butyl rubber (IIR) -Isoprene Rubber), copolymer of isobutylene and aromatic vinyl or diene monomer, brominated butyl rubber (Br-IIR), chlorinated butyl rubber (Cl-IIR), isobutylene-paramethyl rubber With tyrene Examples include polymer bromide (BIMS: Brominated isobutylene-paramethylstyrene), chloroprene rubber (CR), and the like.
  • These diene resins may be used alone or in combination of two or more types in the magnetic layer. Furthermore, hydrogenated products of these diene resins can also be used.
  • the resin contained in the magnetic layer may be only a urethane bond-containing resin and a diene resin, or it may contain an arbitrary amount of one or more other resins in addition to the urethane bond-containing resin and diene resin. It may be The total content of the urethane bond-containing resin and diene resin based on 100 parts by mass of the total amount of resin in the magnetic layer may be, for example, 80 parts by mass or more, 85 parts by mass or more, 90 parts by mass or more, or 95 parts by mass or more. It can also be 100 parts by weight, or less than 100 parts by weight, less than 100 parts by weight, less than 99 parts by weight, or less than 98 parts by weight.
  • the content of the diene resin in the magnetic layer may be 2 parts by mass or more, based on a total content of resin in the magnetic layer of 100 parts by mass, from the viewpoint of further improving the moldability of the electromagnetic shielding material. It is preferably 5 parts by mass or more, more preferably 10 parts by mass or more. Further, the content of the diene resin in the magnetic layer is, for example, 50 parts by mass or less, 40 parts by mass or less, 30 parts by mass or less, or 20 parts by mass or less, with the total content of resin in the magnetic layer being 100 parts by mass. From the viewpoint of further improving the moldability of the electromagnetic shielding material, the amount is preferably 15 parts by mass or less.
  • the magnetic layer includes at least magnetic particles, a urethane bond-containing resin, and a diene resin, and further includes a crosslinking agent.
  • crosslinking agent refers to a compound having a crosslinkable group.
  • crosslinkable group refers to a group that can undergo a crosslinking reaction.
  • the crosslinking agent may be contained in a form after at least some of the crosslinkable groups have undergone a crosslinking reaction.
  • a compound having two or more crosslinkable groups for example, two or more and four or less) in one molecule is preferable.
  • the content of the crosslinking agent in the magnetic layer can be, for example, 1 part by mass or more, when the total content of the resin in the magnetic layer is 100 parts by mass, and the electromagnetic shielding material is placed under high temperature.
  • the preferred amounts are 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, and 20 parts by mass or more.
  • the magnetic layer can contain 100 parts by mass or less or 40 parts by mass or less of a crosslinking agent.
  • the content of the crosslinking agent in the magnetic layer is preferably 30 parts by mass or less, and 25 parts by mass, assuming the total resin content in the magnetic layer is 100 parts by mass. It is more preferably at most 23 parts by mass, and even more preferably at most 23 parts by mass.
  • a specific example of the crosslinkable group is an isocyanate group
  • a specific example of the crosslinking agent is a polyfunctional isocyanate.
  • a polyfunctional isocyanate is a compound having two or more (eg, two, three, or four) isocyanate groups in one molecule.
  • the content of the polyfunctional isocyanate in the magnetic layer can be, for example, 1 part by mass or more, and the electromagnetic shielding material can be used at high temperatures. From the viewpoint of further suppressing the decline in shielding ability after being placed, the preferred amounts are 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, and 20 parts by mass or more.
  • the magnetic layer may contain 100 parts by mass or less or 40 parts by mass or less of a polyfunctional isocyanate, when the total content of resin in the magnetic layer is 100 parts by mass.
  • the content of polyfunctional isocyanate in the magnetic layer is preferably 30 parts by mass or less, with the total content of resin in the magnetic layer being 100 parts by mass, and 25 parts by mass or less. It is more preferably at most 23 parts by mass, even more preferably at most 23 parts by mass.
  • the magnetic layer can also contain one or more types of known additives such as dispersants, stabilizers, and coupling agents in arbitrary amounts.
  • the electromagnetic wave shielding material includes at least one magnetic layer, more specifically, it may include only one magnetic layer, or it may include two or more magnetic layers having the same or different compositions and/or thicknesses. can.
  • the thickness of this single magnetic layer can be, for example, 5 ⁇ m or more, and from the viewpoint of further improving the shielding ability against electromagnetic waves, the thickness is 10 ⁇ m or more.
  • the thickness is preferably 20 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the thickness of this single magnetic layer can be, for example, 100 ⁇ m or less or 90 ⁇ m or less, and from the viewpoint of further improving moldability, it is preferably less than 90 ⁇ m, and more preferably 80 ⁇ m or less.
  • the thickness of each of the two or more magnetic layers can be, for example, 5 ⁇ m or more, and the shielding ability against electromagnetic waves is reduced. From the viewpoint of further improvement, it is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more. Further, the thickness of this single magnetic layer can be, for example, 100 ⁇ m or less or 90 ⁇ m or less, and from the viewpoint of further improving moldability, it is preferably less than 90 ⁇ m, and more preferably 80 ⁇ m or less. preferable. The thicknesses of two or more magnetic layers can be the same or different.
  • each layer included in the electromagnetic shielding material is determined by imaging a cross section exposed using a known method using a scanning electron microscope (SEM), and measuring the thickness of five randomly selected locations in the obtained SEM image. shall be determined as the arithmetic mean of
  • the electromagnetic shielding material can be composed of only the single magnetic layer, and in another form, it can include one or more magnetic layers and one or more other layers. Below, various layers that may be included in the electromagnetic shielding material will be explained.
  • the electromagnetic shielding material may include one or more adhesive layers.
  • at least one adhesive layer may be located as a layer directly in contact with the magnetic layer.
  • directly contacting with respect to two layers means that no other layer is interposed between these two layers.
  • the term "adhesive layer” refers to a layer that has tackiness on its surface at room temperature.
  • normal temperature refers to 23°C.
  • Tackiness generally refers to the property of exhibiting adhesive strength in a short time after contacting an adherend with a very light force, and in the present invention and this specification, "having tackiness" is defined as In the tilted ball tack test (measurement environment: temperature 23°C, relative humidity 50%) specified in Z0237:2009, the result was No. 1 ⁇ No. It means that it is 32.
  • the surface of the adhesive layer exposed by peeling off the other layer can be subjected to the above test.
  • the other layer on either surface side may be peeled off.
  • the glass transition temperature Tg of the adhesive layer can be, for example, less than 50°C, 45°C or less, or 40°C or less, and can be, for example, -70°C or more.
  • the glass transition temperature Tg of the adhesive layer is determined from the measurement results of heat flow measurement using a differential scanning calorimeter, as the intermediate temperature between the start point and end point of the fall on a DSC (differential scanning calorimetry) chart.
  • an adhesive layer use a film formed by coating an adhesive layer-forming composition containing an adhesive such as an acrylic adhesive, a rubber adhesive, a silicone adhesive, or a urethane adhesive. Can be done.
  • the composition for forming an adhesive layer can also be applied onto a support, for example. Coating can be performed using a known coating device such as a blade coater or die coater. Application can be carried out in a so-called roll-to-roll manner or in a batch manner.
  • the support to which the composition for forming an adhesive layer is applied examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA), and cyclic polyolefins. , triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, and polyimide.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA)
  • cyclic polyolefins examples of the support to which the composition for forming an adhesive layer is applied
  • TAC triacetyl cellulose
  • PES polyether sulfide
  • polyether ketone examples of the support to which the composition for forming an adhesive layer is applied
  • polyimide examples of the support to which the composition for forming an adhesive layer is applied
  • An electromagnetic shielding material in which a magnetic layer and an adhesive layer are laminated can also be produced by applying an adhesive layer forming composition in which an adhesive is dissolved and/or dispersed in a solvent to a magnetic layer and drying the composition.
  • An adhesive tape containing an adhesive layer can also be used to produce an electromagnetic shielding material having an adhesive layer.
  • Double-sided tape can be used as the adhesive tape.
  • Double-sided tape has adhesive layers on both sides of a support, and each of the adhesive layers on both sides can have tackiness at room temperature.
  • an adhesive tape having an adhesive layer on one side of a support can also be used.
  • the support include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA), cyclic polyolefins, triacetyl cellulose (TAC), and polyethers.
  • Examples include films of various resins such as sulfide (PES), polyether ketone, and polyimide, nonwoven fabrics, and paper.
  • PES sulfide
  • polyether ketone polyether ketone
  • polyimide polyimide
  • nonwoven fabrics and paper.
  • adhesive tape having an adhesive layer disposed on one or both sides of the support commercially available products can be used, and double-sided tapes prepared by known methods can also be used.
  • the above-mentioned electromagnetic wave shielding material can have one or more adhesive layers, more specifically, it can have only one adhesive layer, and it can also have two or more adhesive layers with the same or different composition and/or thickness. can.
  • the total number of adhesive layers included in the electromagnetic shielding material can be, for example, one to four layers, one layer, or two layers.
  • the thickness of this single adhesive layer can be, for example, 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more. preferable. Further, the thickness of this single adhesive layer can be, for example, 20 ⁇ m or less or 10 ⁇ m or less.
  • the thickness of each of these two or more adhesive layers can be, for example, 0.5 ⁇ m or more, and 0.8 ⁇ m or more. It is preferable that it is, and it is more preferable that it is 1.5 ⁇ m or more. Further, the thickness of this single adhesive layer can be, for example, 10 ⁇ m or less or 5 ⁇ m or less. The thicknesses of two or more adhesive layers can be the same or different.
  • the electromagnetic shielding material can be an electromagnetic shielding material composed of two layers: one magnetic layer and one adhesive layer.
  • the electromagnetic shielding material may be configured of three layers: a magnetic layer, an adhesive layer, and a magnetic layer, and may include these three layers in this order.
  • the electromagnetic shielding material may include a resin layer between two adhesive layers.
  • the electromagnetic shielding material may include the magnetic layer and a laminated structure having a resin layer between two adhesive layers.
  • the resin layer can be a layer that is in direct contact with one or both of the two adhesive layers, and must be a layer that is in direct contact with both adhesive layers. is preferred.
  • the electromagnetic shielding material may be configured of four layers: a magnetic layer, an adhesive layer, a resin layer, and an adhesive layer, and may include these four layers in this order.
  • the electromagnetic shielding material may have a laminated structure having a resin layer between two adhesive layers on both sides of the magnetic layer.
  • An example of an electromagnetic shielding material having such a structure is an electromagnetic shielding material that is composed of seven layers: an adhesive layer, a resin layer, an adhesive layer, a magnetic layer, an adhesive layer, a resin layer, and an adhesive layer, and includes these seven layers in this order. can.
  • the electromagnetic shielding material may further include a metal layer, which will be described later, in each of the layered structures.
  • the electromagnetic shielding material described above can also have a resin layer between the two adhesive layers.
  • a "resin layer” refers to a layer containing a resin, and can be a layer containing resin as a main component.
  • the main component refers to the component that occupies the largest amount on a mass basis among the components constituting the layer.
  • the content of the resin in the resin layer is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, and still more preferably 90 parts by mass or more, based on the total mass of the resin layer as 100 parts by mass. preferable.
  • the content of the resin in the resin layer can be, for example, 100 parts by mass or less, less than 100 parts by mass, or 99 parts by mass or less, with the total mass of the resin layer being 100 parts by mass.
  • the resin layer contains one or more resins, and may also contain one or more known additives such as plasticizers, crosslinking agents, dispersants, stabilizers, and coupling agents in arbitrary amounts in addition to the resins. can.
  • the resin layer for example, a commercially available resin film that can be used as a plastic base material, a resin film manufactured by a known method, etc. can be used.
  • the resin contained in the resin layer include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, cellophane, diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, polyvinyl chloride, polyvinylidene chloride, and polyvinyl Alcohol, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone, polyethersulfone, polyetherimide, polyimide, fluororesin, nylon, acrylic resin, polyamide, cycloolefin, polyether Examples include resins such as sulfan.
  • the thickness of the resin layer is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more. Further, the thickness of the resin layer is preferably, for example, 100 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably less than 10 ⁇ m.
  • the electromagnetic shielding material may include only one resin layer disposed between two adhesive layers, or may include two or more layers (for example, two or three layers).
  • the glass transition temperature Tg of the resin layer can be, for example, 50°C or higher, 60°C or higher, or 70°C or higher, and, for example, 150°C or lower, 130°C or lower, or 110°C or lower. Can be done.
  • the glass transition temperature Tg of the resin layer is determined from the measurement results of heat flow measurement using a differential scanning calorimeter as the intermediate temperature between the start point and the end point of the fall on a DSC (differential scanning calorimetry) chart.
  • a "metal layer” refers to a layer containing metal.
  • a metal layer is a layer containing one or more metals, either as a pure metal consisting of a single metal element, as an alloy of two or more metal elements, or as an alloy of one or more metal elements and one or more non-metal elements. can be.
  • the electromagnetic shielding material may further include one or more metal layers.
  • the two or more metal layers have the same composition and thickness, and in another form, they have different compositions and/or thicknesses.
  • one or more magnetic layers may be placed at a position sandwiched between two metal layers.
  • the magnetic layer sandwiched between the two metal layers may be a layer that is in direct contact with one or both of the two metal layers, or may be a layer that is in direct contact with one or both of the two metal layers, or may be a layer that is in direct contact with one or more other layers (e.g., an adhesive layer). It can be a layer that is in indirect contact with the other layer via the layer.
  • the metal layer can be, for example, the outermost layer of one or both of the electromagnetic shielding materials.
  • the electromagnetic shielding material has a metal layer, the laminated structure (i.e., a laminated structure having a resin layer between two adhesive layers), a magnetic layer, the laminated structure, and a metal layer in this order. Can be done.
  • the electromagnetic wave shielding material is composed of nine layers, for example, a metal layer, an adhesive layer, a resin layer, an adhesive layer, a magnetic layer, an adhesive layer, a resin layer, an adhesive layer, and a metal layer. It can be an electromagnetic shielding material containing in this order.
  • the electromagnetic wave shielding material includes, for example, a metal layer, an adhesive layer, a resin layer, an adhesive layer, a magnetic layer, an adhesive layer, a resin layer, an adhesive layer, a metal layer, an adhesive layer, a resin layer, an adhesive layer, a resin layer, an adhesive layer, a magnetic layer.
  • an adhesive layer a resin layer, an adhesive layer, and a metal layer, and can be an electromagnetic shielding material including these 17 layers in this order.
  • a structure in which the magnetic layer is sandwiched between two metal layers is preferable from the viewpoint of improving shielding ability against magnetic field waves having a frequency in the range of 0.01 to 100 MHz.
  • the metal layer a layer containing one or more metals selected from the group consisting of various pure metals and various alloys can be used.
  • the metal layer can exert a damping effect in the shielding material.
  • a pure metal is a metal consisting of a single metallic element and may contain trace amounts of impurities.
  • a metal consisting of a single metal element and having a purity of 99.0% or more is called a pure metal. Purity is by weight. Alloys are generally made by adding one or more metallic elements or non-metallic elements to a pure metal to adjust the composition in order to prevent corrosion, improve strength, etc.
  • the main component in an alloy is a component having the highest proportion on a mass basis, and can be, for example, a component that accounts for 80.0% by mass or more (for example, less than 100% by mass or 99.8% by mass or less) in the alloy. From the economic point of view, pure metals such as Cu or Al or alloys mainly composed of Cu or Al are preferred, and from the viewpoint of high electrical conductivity, pure metals such as Cu or alloys mainly composed of Cu are more preferred.
  • the metal purity in the metal layer that is, the metal content can be 99.0% by mass or more, preferably 99.5% by mass or more, and 99.8% by mass or more, based on the total mass of the metal layer. More preferably, it is at least % by mass.
  • the content of metal in the metal layer is based on mass unless otherwise specified.
  • a pure metal or an alloy processed into a sheet can be used as the metal layer.
  • a commercially available metal foil or a metal foil produced by a known method can be used as the metal layer.
  • sheets (so-called copper foils) of various thicknesses are commercially available. For example, such copper foil can be used as a metal layer.
  • electrolytic copper foil which is obtained by depositing copper foil on a cathode by electroplating
  • rolled copper foil which is obtained by applying heat and pressure to an ingot and stretching it thin.
  • Any copper foil can be used as the metal layer of the electromagnetic shielding material.
  • sheets of Al are commercially available.
  • such aluminum foil can be used as the metal layer.
  • one or both (preferably both) of the two metal layers included in the multilayer structure are metal layers containing a metal selected from the group consisting of Al and Mg. It is preferable that there be. This is because both Al and Mg have a small value obtained by dividing specific gravity by electrical conductivity (specific gravity/electrical conductivity). The smaller this value is used, the lighter the electromagnetic shielding material that exhibits high shielding ability can be made.
  • the value obtained by dividing the specific gravity by the electrical conductivity of Cu, Al, and Mg (specific gravity/electrical conductivity) is as follows.
  • Al and Mg are preferable metals from the viewpoint of reducing the weight of the electromagnetic shielding material.
  • a metal layer containing a metal selected from the group consisting of Al and Mg can include only one of Al and Mg in one form, and can contain both of Al and Mg in another form. From the viewpoint of reducing the weight of the electromagnetic shielding material, one or both (preferably both) of the two metal layers included in the multilayer structure have a content rate of 80% of the metal selected from the group consisting of Al and Mg.
  • the metal layer has a content of .0% by mass or more, and it is even more preferable that the metal layer has a content of a metal selected from the group consisting of Al and Mg of 90.0% by mass or more.
  • the metal layer containing at least Al among Al and Mg can be a metal layer with an Al content of 80.0% by mass or more, and can also be a metal layer with an Al content of 90.0% by mass or more. can.
  • the metal layer containing at least Mg among Al and Mg can be a metal layer with an Mg content of 80.0% by mass or more, and can also be a metal layer with an Mg content of 90.0% by mass or more. can.
  • the content of the metal selected from the group consisting of Al and Mg, the Al content, and the Mg content can be, for example, less than 100% by mass or 99.9% by mass or less, respectively.
  • the content rate of the metal selected from the group consisting of Al and Mg, the Al content rate, and the Mg content rate are each based on the total mass of the metal layer.
  • the above-mentioned magnetic layer can be produced, for example, by applying a magnetic layer-forming composition and drying a coated layer.
  • the composition for forming a magnetic layer contains the components described above, and can optionally contain one or more solvents.
  • solvents include various organic solvents, such as ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, acetate ester solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, and butyl carbide.
  • Examples include carbitols such as toll, aromatic hydrocarbon solvents such as toluene and xylene, and amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone.
  • One type of solvent selected in consideration of the solubility of the components used in preparing the composition for forming a magnetic layer, or a mixture of two or more types of solvents in any ratio can be used.
  • the solvent content of the composition for forming a magnetic layer is not particularly limited, and may be determined by taking into consideration the applicability of the composition for forming a magnetic layer.
  • the composition for forming a magnetic layer can be prepared by sequentially mixing various components in any order or by mixing them simultaneously. Further, if necessary, dispersion treatment can be performed using a known dispersion machine such as a ball mill, bead mill, sand mill, or roll mill, and/or stirring using a known agitator such as a shaking type stirrer. Processing can also be performed.
  • a known dispersion machine such as a ball mill, bead mill, sand mill, or roll mill
  • stirring using a known agitator such as a shaking type stirrer. Processing can also be performed.
  • composition for forming a magnetic layer can be applied onto a support, for example.
  • Coating can be performed using a known coating device such as a blade coater or die coater.
  • Application can be carried out in a so-called roll-to-roll manner or in a batch manner.
  • the support to which the magnetic layer forming composition is applied examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA), and cyclic polyolefins. , triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, and polyimide. Regarding these resin films, paragraphs 0081 to 0086 of JP-A-2015-187260 can be referred to.
  • the support a support whose surface to which the magnetic layer forming composition is applied (coated surface) has been subjected to a release treatment by a known method can be used.
  • peeling treatment includes forming a release layer.
  • paragraph 0084 of JP 2015-187260A can be referred to.
  • a commercially available peel-treated resin film can also be used as the support.
  • the composition for forming a magnetic layer is applied onto the adhesive layer using the adhesive layer as a support, an adhesive tape having an adhesive layer as a support, or a laminated structure having a resin layer between two layers as a support.
  • the coating layer formed by applying the composition for forming a magnetic layer can be subjected to a drying treatment by a known method such as heating or blowing hot air.
  • the drying treatment can be carried out under conditions that allow the solvent contained in the magnetic layer forming composition to be volatilized, for example.
  • the drying process can be performed in a heated atmosphere at an ambient temperature of 80 to 150° C. for 1 minute to 2 hours.
  • a magnetic layer formed using such a composition for forming a magnetic layer can be subjected to crosslinking treatment using a crosslinking agent at any stage.
  • the crosslinking treatment heat treatment or light irradiation treatment can be performed depending on the type of crosslinking agent.
  • the crosslinking treatment is a heat treatment
  • such heat treatment can be performed before the pressure treatment described below in one form, and after the pressure treatment described below in another form. According to studies conducted by the present inventors, it has been found that when the heat treatment is performed after the pressure treatment, the magnetic permeability of the formed magnetic layer tends to increase.
  • the above heat treatment can be performed, for example, by maintaining the magnetic layer before or after the pressure treatment in an environment with an ambient temperature of 35° C. or higher (for example, 35° C. or higher and 150° C. or lower).
  • the holding time can be, for example, 3 to 72 hours.
  • the degree of orientation of the flat particles described above can be controlled by the type of solvent, amount of solvent, liquid viscosity, coating thickness, etc. of the composition for forming a magnetic layer. For example, if the boiling point of the solvent is low, the value of the degree of orientation tends to increase due to convection caused by drying. When the amount of solvent is small, the value of the degree of orientation tends to increase due to physical interference between adjacent flat particles. On the other hand, when the liquid viscosity is low, rotation of the flat particles tends to occur, so the value of the degree of orientation tends to be small. As the coating thickness decreases, the value of the degree of orientation tends to decrease. Furthermore, performing the pressure treatment described below can contribute to reducing the value of the degree of orientation. By adjusting the various manufacturing conditions described above, the degree of orientation of the flat particles can be controlled within the range described above.
  • the magnetic layer can also be subjected to pressure treatment after film formation.
  • pressure treatment By pressurizing the magnetic layer containing magnetic particles, the density of the magnetic particles in the magnetic layer can be increased, and higher magnetic permeability can be obtained.
  • the magnetic layer containing flat particles can have a lower degree of orientation by pressure treatment, and can obtain higher magnetic permeability.
  • the pressure treatment can be performed by applying pressure in the thickness direction of the magnetic layer using a plate press, a roll press, or the like.
  • a plate press machine places an object to be pressed between two flat press plates arranged above and below, and applies pressure to the object by bringing the two press plates together using mechanical or hydraulic pressure. Can be done.
  • a roll press machine passes a pressurized object between rotating pressure rolls arranged above and below, and at this time, mechanical or hydraulic pressure is applied to the pressure rolls, or the distance between the pressure rolls is adjusted to Pressure can be applied by making the thickness smaller than .
  • the pressure during the pressure treatment can be set arbitrarily.
  • the pressure in the case of a plate press, the pressure is, for example, 1 to 50 N (Newton)/mm 2 .
  • the linear pressure is, for example, 20 to 400 N/mm.
  • the pressurization time can be set arbitrarily.
  • the time is, for example, 5 seconds to 4 hours.
  • the pressing time can be controlled by the conveyance speed of the object to be pressed, for example, the conveyance speed is 10 cm/min to 200 m/min.
  • the material of the press plate and pressure roll can be arbitrarily selected from metal, ceramics, plastic, rubber, etc.
  • the pressure treatment it is also possible to carry out the heat and pressure treatment by, for example, applying heat to both or one of the upper and lower press plates of a plate-shaped press, or to one of the upper and lower rolls of a roll press.
  • the magnetic layer can be softened by heating, and thereby a high compression effect can be obtained when pressure is applied.
  • the temperature during heating can be set arbitrarily, and is, for example, 50° C. or higher and 200° C. or lower.
  • the temperature during the above heating can be the internal temperature of the press plate or roll. Such temperature can be measured by a thermometer placed inside the press plate or roll.
  • heat treatment can be performed as a crosslinking agent curing treatment before or after the heating and pressure treatment.
  • the magnetic layer can be taken out by separating the press plate while the temperature of the press plate is high, for example.
  • the press plate may be cooled by water cooling, air cooling, or the like while the pressure is maintained, and then the press plate may be separated to take out the magnetic layer.
  • the magnetic layer can be cooled by water cooling, air cooling, or the like immediately after pressing. It is also possible to repeat the pressure treatment two or more times.
  • a magnetic layer is formed on a release film, it can be subjected to pressure treatment while being laminated on the release film, for example.
  • the magnetic layer can be pressure-treated as a single layer after being peeled off from a release film.
  • the adhesive layer can be attached to the magnetic layer in the form of an adhesive tape, or can be laminated with the magnetic layer by applying an adhesive layer-forming composition to the magnetic layer and drying it.
  • the metal layer can be incorporated into the electromagnetic shielding material as a layer that is in direct contact with the adhesive layer, for example by bonding it with the adhesive layer.
  • two adjacent layers can be bonded together by applying pressure and heat, for example. For crimping, a plate press machine, a roll press machine, etc. can be used.
  • the two adjacent layers can be bonded together by softening the magnetic layer in the compression bonding process and promoting contact with the surface of the metal layer.
  • the pressure during crimping can be set arbitrarily. In the case of a plate press, it is, for example, 1 to 50 N/mm 2 . In the case of a roll press machine, the linear pressure is, for example, 20 to 400 N/mm.
  • the pressurizing time during crimping can be set arbitrarily. When using a plate press, the time is, for example, 5 seconds to 30 minutes.
  • the conveyance speed of the pressurized object can be controlled, for example, the conveyance speed is 10 cm/min to 200 m/min.
  • the temperature during pressure bonding can be arbitrarily selected, and is, for example, 20° C. or more and 200° C. or less.
  • the above-mentioned temperature during pressure bonding can be, for example, the internal temperature of the press plate or roll.
  • the electromagnetic shielding material described above can be incorporated into electronic components or electronic equipment in any shape.
  • the electromagnetic shielding material may be in the form of a sheet, and its size is not particularly limited. In the present invention and this specification, "sheet” is synonymous with "film”.
  • the electromagnetic shielding material may be a three-dimensional molded product obtained by three-dimensionally molding a sheet-like electromagnetic shielding material, or a sheet-like electromagnetic shielding material for three-dimensional molding.
  • various molding methods such as die press molding, vacuum molding, and pressure molding can be used.
  • molding performed without heating the molding object and/or the mold, or by heating without raising the temperature too much is generally referred to as cold molding.
  • the above-mentioned electromagnetic shielding material can exhibit excellent formability in cold forming. Therefore, the electromagnetic shielding material described above is suitable for cold forming such as drawing and stretch forming.
  • Draw forming is a forming method in which a sheet-shaped object is pressed using a pair of female and male molds to form containers with bottoms of various shapes such as cylinders, square tubes, cones, etc. be.
  • stretch molding is a method of molding a molded product with a curved surface extending from a flat surface from a sheet-like molded object. Stretch molding can also be carried out using a press using only a male die without a female die.
  • Drawing forming is roughly divided into deep drawing forming and shallow drawing forming.
  • Shallow drawing forms a molded product with a shallow depth
  • deep drawing forms a molded product with a deep depth (for example, the depth is deeper than the diameter of a cylinder or cone or the length of one side of a pyramid).
  • the electromagnetic shielding material may be an electromagnetic shielding material that is difficult to break when molded by such three-dimensional molding method.
  • known techniques can be applied.
  • One aspect of the present invention relates to an electronic component including the electromagnetic shielding material described above.
  • the electronic components include various electronic components such as electronic components included in electronic devices such as mobile phones, personal digital assistants, and medical equipment, semiconductor elements, capacitors, coils, and cables.
  • the electromagnetic shielding material can be three-dimensionally molded into any shape according to the shape of the electronic component and placed inside the electronic component, or can be three-dimensionally molded into the shape of a cover material that covers the outside of the electronic component, It can be arranged as a covering material. Alternatively, it can be three-dimensionally molded into a cylindrical shape and placed as a cover material that covers the outside of the cable.
  • One aspect of the present invention relates to an electronic device including the electromagnetic shielding material described above.
  • the above-mentioned electronic devices include electronic devices such as mobile phones, personal digital assistants, and medical equipment, electronic devices that include various electronic components such as semiconductor elements, capacitors, coils, and cables, and electronic devices that have electronic components mounted on circuit boards. can be mentioned.
  • Such an electronic device can include the electromagnetic shielding material described above as a constituent member of an electronic component included in the device.
  • the electromagnetic shielding material can be placed inside the electronic device, or can be placed as a cover material covering the outside of the electronic device. Alternatively, it can be three-dimensionally molded into a cylindrical shape and placed as a cover material that covers the outside of the cable.
  • the electromagnetic shielding material is used in which a semiconductor package on a printed circuit board is covered with the shielding material.
  • the shielding material when covering a semiconductor package with a shielding material, the side vias at the edge of the package substrate and the shielding material
  • a method is disclosed in which a high shielding effect is obtained by performing ground wiring by electrically connecting the inner surface.
  • the outermost layer of the shield material on the electronic component side is a metal layer.
  • the electromagnetic shielding material described above can have one or both outermost layers of the shielding material being a metal layer, and thus can be suitably used when wiring as described above.
  • the resins of the magnetic layer shown in Table 1 are as follows.
  • polyurethane resin is expressed as "polyurethane”
  • polyester urethane resin is expressed as “polyester urethane”
  • acrylonitrile-butadiene rubber is expressed as "NBR.”
  • the polyurethane resin having a glass transition temperature Tg of ⁇ 50° C. is Nipporan 5120 manufactured by Tosoh Corporation.
  • the polyester urethane resin having a glass transition temperature Tg of -3°C is UR-3200 manufactured by Toyobo Co., Ltd.
  • the polyester urethane resin having a glass transition temperature Tg of 23° C. is UR-8300 manufactured by Toyobo Co., Ltd.
  • the acrylonitrile-butadiene rubber is Nipol model number DN003 manufactured by Nippon Zeon.
  • the glass transition temperatures of the resins shown in Table 1 are values determined by the following method.
  • the same resin (pellet or powder sample) used to prepare the magnetic layer forming composition (coating solution) was placed in an aluminum sample pan, sealed using a press, and then used as a differential scanning calorimeter.
  • - Heat flow measurement was performed using Instrument Q100 under the following conditions. From the measurement results, the glass transition temperature of the resin was determined as the baseline shift start temperature of the heat flow chart during temperature rise. (Measurement condition) Scanning temperature: -80.0°C ⁇ 200.0°C Heating rate: 10.0°C/min
  • Example 1 ⁇ Preparation of magnetic layer forming composition (coating liquid)> in a plastic bottle, Fe-Si-Al flat magnetic particles (MKT Sendust MFS-SUH): 10g Resin 1 shown in Table 1: 1.8 g (6.0 g of Nipporan 5120 (solid content concentration 30% by mass) manufactured by Tosoh Corporation was used) Resin 2 shown in Table 1: 0.2g Total of resin 1 and resin 2 shown in Table 1: 2.0g Polyfunctional isocyanate: 0.495g (0.66g of Takenate D101E (solid content concentration 75% by mass) manufactured by Mitsui Chemicals was used) Cyclohexanone: 25g was added and mixed for 12 hours using a shaking type stirrer to prepare a coating solution.
  • MKT Sendust MFS-SUH Fe-Si-Al flat magnetic particles
  • ⁇ Preparation of shield material> (Film formation of magnetic layer)
  • the coating solution was applied to the release surface of a release-treated PET film (PET75-JOL manufactured by Nipper Co., Ltd.) using a blade coater with a coating gap of 300 ⁇ m, and dried for 30 minutes in a drying device with an internal atmosphere temperature of 80°C to form a film-like magnetic layer. was formed on the above-mentioned peel-treated PET film.
  • the magnetic layer was kept in a drying device at an internal atmosphere temperature of 60° C. for 48 hours and heat-treated to obtain a magnetic layer. In this way, a sheet-shaped electromagnetic shielding material composed only of the single magnetic layer was obtained. Measurement samples for various evaluations described below were cut out from a part of the obtained magnetic layer.
  • Magnetic permeability after heating at 80°C Table 1 shows the evaluation results of "magnetic permeability before heat aging at 80°C” and “magnetic permeability after heat aging at 80°C” based on the following evaluation criteria.
  • a cylindrical main electrode with a diameter of 30 mm is connected to the negative pole side of a digital super insulation resistance meter (TR-811A manufactured by Takeda Riken), a ring electrode with an inner diameter of 40 mm and an outer diameter of 50 mm is connected to the positive pole side, and a 60 mm x 60 mm
  • TR-811A digital super insulation resistance meter
  • a main electrode and a ring electrode surrounding the main electrode were placed on a sample piece of the magnetic layer cut to size, a voltage of 25 V was applied to both poles, and the surface electrical resistivity of the magnetic layer alone was measured.
  • the electrical conductivity of the magnetic layer was calculated from the surface electrical resistivity and the following formula.
  • the calculated electrical conductivity was 1.1 ⁇ 10 ⁇ 2 S/m.
  • the thickness of the shielding material was measured at five locations from the obtained image using the scale bar as a reference, and the arithmetic mean thereof was taken as the thickness of the shielding material (magnetic layer).
  • the thickness of the shield material (magnetic layer) was 30 ⁇ m.
  • the aspect ratio of the magnetic particles was determined by the method described above, and flat particles were identified from the value of the aspect ratio.
  • the degree of orientation of the magnetic particles identified as flat particles was determined by the method described above and was found to be 13°.
  • the average value (arithmetic mean) of the aspect ratios of all particles identified as flat particles was determined as the aspect ratio of the flat particles contained in the magnetic layer. The aspect ratio determined was 0.071.
  • a hemispherical three-dimensional molded product was produced by drawing the electromagnetic shielding material described above using a mold consisting of a male mold and a female mold (manufactured by Amada Corporation) at room temperature (25° C.) without heating. The presence or absence of breakage in the produced three-dimensional molded product was visually confirmed, and based on the confirmation results, the moldability was evaluated according to the following evaluation criteria. (Evaluation criteria) A: Using a hemispherical mold with a depth of 2cm, it is possible to form a three-dimensional molded product with a depth of 2cm without breakage.
  • a three-dimensional molded product with a depth of 1 cm can be formed without breakage using a hemispherical mold with a depth of 1 cm. Furthermore, when using a hemispherical mold with a depth of 2 cm, Either the resulting three-dimensional molded product with a depth of 2 cm was broken, or the three-dimensional molded product with a depth of 2 cm could not be obtained.
  • C A three-dimensional molded product with a depth of 1 cm obtained using a hemispherical mold with a depth of 1 cm was broken.
  • the fact that at least one layer has fractured can be determined by the stress decrease in the stress-strain curve, visual inspection, and the like. It is preferable that the value of the elongation rate determined in this way is 2.0% or more from the viewpoint of formability (for example, formability in cold forming), more preferably 5.0% or more, and 10.0% or more. It is more preferable that it is above. Further, the elongation rate may be, for example, 90.0% or less, 80.0% or less, 70.0% or less, or 60.0% or less, or may exceed the values exemplified herein. (Measurement condition) Distance between chucks: 25mm Measurement environment: temperature 23°C, relative humidity 50% Load cell: 500N (Newton) Tensile speed: 1mm/min Tensile direction: Length direction
  • Electromagnetic shielding materials were produced and various evaluations were performed by the method described in Example 1, except that the items shown in Table 1 were changed as shown in Table 1.
  • the thickness of the shield material was determined by the method described above, and the thickness was the same as that determined for Example 1.
  • the above results are shown in Table 1.
  • the high magnetic permeability of the magnetic layer can be said to indicate that the electromagnetic wave shielding material including the magnetic layer can exhibit excellent shielding ability against electromagnetic waves.
  • an electromagnetic wave shielding material including a magnetic layer with high magnetic permeability after heating at 80° C. can exhibit excellent shielding ability against electromagnetic waves even after being placed under high temperature.
  • the evaluation results shown in the comprehensive evaluation column in Table 1 the lower evaluation result was adopted among the evaluation results of magnetic permeability after aging at 80° C. and the evaluation results of moldability.
  • the evaluation result of the comprehensive evaluation is C.
  • Comparative Example 5 in which the electromagnetic shielding material could not be produced, the evaluation result of the comprehensive evaluation was set as C.
  • the magnetic layer produced by the method described in Example 2 was used, and the metal layer was made of aluminum foil with a thickness of 50 ⁇ m (compliant with JIS H4160:2006 standard, alloy number 1N30 tempered (1) O, Al content 99.3% by mass) (above), the five layers of "aluminum foil (metal layer)/magnetic layer/aluminum foil (metal layer)/magnetic layer/aluminum foil (metal layer)" are interposed between two adjacent layers. A laminate was produced by overlapping each other without overlapping each other. 4.
  • the obtained electromagnetic shielding material was evaluated for moldability as described above, the same evaluation results as in Example 2 were obtained.
  • the electromagnetic shielding material thus produced includes the same magnetic layer as in Example 2, it has excellent shielding ability after being placed under high temperature like the electromagnetic shielding material of Example 2.
  • One embodiment of the present invention is useful in the technical fields of various electronic components and electronic devices.

Abstract

Provided is an electromagnetic wave shielding material having one or more magnetic layers containing magnetic particles and a resin, wherein the content of the magnetic particles in the magnetic layer is more than 70 parts by mass and not more than 95 parts by mass, with the total mass of the magnetic layer being 100 parts by mass, the resin includes a urethane bond-containing resin and a diene resin, and the magnetic layer further includes a crosslinking agent. Also provided are an electronic component and an electronic device including the electromagnetic wave shielding material.

Description

電磁波シールド材、電子部品および電子機器Electromagnetic shielding materials, electronic components and electronic equipment
 本発明は、電磁波シールド材、電子部品および電子機器に関する。 The present invention relates to electromagnetic shielding materials, electronic components, and electronic equipment.
 特許文献1には、磁性材料を含有する磁性体層を備えた電磁波シールド用フィルムが開示されている。 Patent Document 1 discloses an electromagnetic shielding film that includes a magnetic layer containing a magnetic material.
特開2019-9396号公報JP2019-9396A
 近年、各種電子部品および各種電子機器において電磁波の影響を低減するための材料として、電磁波シールド材が注目されている。電磁波シールド材(以下、「シールド材」とも記載する。)は、シールド材に入射した電磁波をシールド材で反射させることおよび/またはシールド材内部で減衰させることによって、電磁波をシールドする性能(以下、「電磁波シールド能」または「シールド能」とも記載する。)を発揮することができる。例えば特許文献1に記載されている電磁波シールド用フィルムは、電磁波シールド材として機能し得る。 In recent years, electromagnetic shielding materials have attracted attention as materials for reducing the effects of electromagnetic waves in various electronic components and devices. Electromagnetic wave shielding materials (hereinafter also referred to as "shielding materials") have the ability to shield electromagnetic waves (hereinafter also referred to as "shielding materials") by reflecting the electromagnetic waves incident on the shielding material and/or attenuating them inside the shielding material. (Also referred to as "electromagnetic wave shielding ability" or "shielding ability.") For example, the electromagnetic shielding film described in Patent Document 1 can function as an electromagnetic shielding material.
 電磁波シールド材には、高いシールド能を発揮できることが望まれる。電磁波に対して高いシールド能を発揮する電磁波シールド材は、電子部品および電子機器において、電磁波の影響を大きく低減することに寄与することができる。しかるに本発明者の検討の結果、従来の電磁波シールド材は、高温下に置かれた後に高いシールド能を発揮することが困難であることが判明した。 It is desired that electromagnetic shielding materials exhibit high shielding ability. Electromagnetic shielding materials that exhibit high shielding ability against electromagnetic waves can contribute to greatly reducing the effects of electromagnetic waves in electronic components and electronic devices. However, as a result of studies conducted by the present inventors, it has been found that it is difficult for conventional electromagnetic shielding materials to exhibit high shielding ability after being placed under high temperatures.
 また、電磁波シールド材に望まれる性能としては、成形性に優れることが挙げられる。電磁波シールド材は、電子部品または電子機器に組み込むために様々な形状に加工され得る。優れた成形性とは、成形において形状不良、破断等の不良が発生し難いことをいうことができる。成形性に優れる電磁波シールド材は、例えば、立体成形(換言すれば三次元的に成形)において成形品に破断が生じ難い点で望ましい。 Additionally, the performance desired for electromagnetic shielding materials includes excellent moldability. Electromagnetic shielding materials can be processed into various shapes for incorporation into electronic components or electronic equipment. Excellent moldability can mean that defects such as shape defects and breakage are unlikely to occur during molding. An electromagnetic shielding material with excellent moldability is desirable in that, for example, a molded product is unlikely to break during three-dimensional molding (in other words, three-dimensional molding).
 以上に鑑み、本発明の一態様は、高温下に置かれた後に高いシールド能を発揮することができ、かつ成形性に優れる電磁波シールド材を提供することを目的とする。 In view of the above, an object of one embodiment of the present invention is to provide an electromagnetic shielding material that can exhibit high shielding ability after being placed under high temperature and has excellent moldability.
 本発明の一態様は、以下の通りである。
[1]磁性粒子および樹脂を含む磁性層を1層以上有し、
上記磁性層における上記磁性粒子の含有量は、上記磁性層の全質量を100質部として、70質量部超95質量部以下であり、
上記樹脂は、ウレタン結合含有樹脂およびジエン系樹脂を含み、かつ
上記磁性層は、架橋剤を更に含む、電磁波シールド材。
[2]上記磁性層における上記ジエン系樹脂の含有量は、上記磁性層における上記樹脂の合計含有量を100質量部として、2質量部以上15質量部以下である、[1]に記載の電磁波シールド材。
[3]上記ウレタン結合含有樹脂のガラス転移温度は-60℃以上0℃未満である、[1]または[2]に記載の電磁波シールド材。
[4]上記架橋剤は、多官能イソシアネートである、[1]~[3]のいずれかに記載の電磁波シールド材。
[5]上記磁性層における上記多官能イソシアネートの含有量は、上記磁性層における上記樹脂の合計含有量を100質量部として、15質量部以上である、[4]に記載の電磁波シールド材。
[6]上記磁性層における上記ジエン系樹脂の含有量は、上記磁性層における上記樹脂の合計含有量を100質量部として、2質量部以上15質量部以下であり、
上記ウレタン結合含有樹脂のガラス転移温度は-60℃以上0℃未満であり、
上記架橋剤は、多官能イソシアネートであり、かつ
上記磁性層における上記多官能イソシアネートの含有量は、上記磁性層における上記樹脂の合計含有量を100質量部として、15質量部以上である、[1]に記載の電磁波シールド材。
[7]2層以上の金属層を更に有し、かつ
2層の金属層の間に挟まれた上記磁性層を1層以上含む、[1]~[6]のいずれかに記載の電磁波シールド材。
[8][1]~[7]のいずれかに記載の電磁波シールド材を含む電子部品。
[9][1]~[7]のいずれかに記載の電磁波シールド材を含む電子機器。
One aspect of the present invention is as follows.
[1] Having one or more magnetic layers containing magnetic particles and resin,
The content of the magnetic particles in the magnetic layer is more than 70 parts by mass and not more than 95 parts by mass, with the total mass of the magnetic layer being 100 parts by mass,
An electromagnetic shielding material, wherein the resin includes a urethane bond-containing resin and a diene resin, and the magnetic layer further includes a crosslinking agent.
[2] The electromagnetic wave according to [1], wherein the content of the diene resin in the magnetic layer is 2 parts by mass or more and 15 parts by mass or less, when the total content of the resin in the magnetic layer is 100 parts by mass. shield material.
[3] The electromagnetic shielding material according to [1] or [2], wherein the urethane bond-containing resin has a glass transition temperature of -60°C or more and less than 0°C.
[4] The electromagnetic shielding material according to any one of [1] to [3], wherein the crosslinking agent is a polyfunctional isocyanate.
[5] The electromagnetic shielding material according to [4], wherein the content of the polyfunctional isocyanate in the magnetic layer is 15 parts by mass or more, based on 100 parts by mass of the total content of the resin in the magnetic layer.
[6] The content of the diene resin in the magnetic layer is 2 parts by mass or more and 15 parts by mass or less, with the total content of the resin in the magnetic layer being 100 parts by mass,
The glass transition temperature of the urethane bond-containing resin is -60°C or higher and lower than 0°C,
The crosslinking agent is a polyfunctional isocyanate, and the content of the polyfunctional isocyanate in the magnetic layer is 15 parts by mass or more, based on 100 parts by mass of the total content of the resin in the magnetic layer. ] The electromagnetic shielding material described in .
[7] The electromagnetic wave shield according to any one of [1] to [6], further comprising two or more metal layers, and including one or more of the above magnetic layers sandwiched between the two metal layers. Material.
[8] An electronic component comprising the electromagnetic shielding material according to any one of [1] to [7].
[9] An electronic device comprising the electromagnetic shielding material according to any one of [1] to [7].
 本発明の一態様によれば、高温下に置かれた後に高いシールド能を発揮することができ、かつ成形性に優れる電磁波シールド材を提供することができる。また、本発明の一態様によれば、この電磁波シールド材を含む電子部品および電子機器を提供することができる。 According to one aspect of the present invention, it is possible to provide an electromagnetic shielding material that can exhibit high shielding ability after being placed under high temperature and has excellent moldability. Further, according to one aspect of the present invention, it is possible to provide an electronic component and an electronic device including this electromagnetic shielding material.
[電磁波シールド材]
 本発明の一態様は、磁性粒子および樹脂を含む磁性層を1層以上有し、上記磁性層における上記磁性粒子の含有量は、上記磁性層の全質量を100質部として、70質量部超95質量部以下であり、上記樹脂は、ウレタン結合含有樹脂およびジエン系樹脂を含み、かつ上記磁性層は、架橋剤を更に含む、電磁波シールド材に関する。
[Electromagnetic shielding material]
One embodiment of the present invention has one or more magnetic layers containing magnetic particles and resin, and the content of the magnetic particles in the magnetic layer is more than 70 parts by mass, with the total mass of the magnetic layer being 100 parts by mass. 95 parts by mass or less, the resin includes a urethane bond-containing resin and a diene resin, and the magnetic layer further includes a crosslinking agent.
 本発明者は、上記磁性層の樹脂にジエン系樹脂が含まれることが上記電磁波シールド材の成形性向上に寄与すると考えている。また、上記磁性層がウレタン結合含有樹脂および架橋剤を含むことは、磁性層の耐熱性を高めることによって上記電磁波シールド材が高温下に置かれた後にも高いシールド能を発揮できることに寄与すると、本発明者は推察している。更に、上記磁性層における磁性粒子の含有量が上記範囲であることは、上記電磁波シールド材の成形性向上におよびシールド能向上に寄与すると本発明者は考えている。詳細は後述する。ただし、本発明は、本明細書に記載の推察に限定されるものではない。 The present inventor believes that the inclusion of a diene resin in the resin of the magnetic layer contributes to improving the moldability of the electromagnetic shielding material. Further, the fact that the magnetic layer contains the urethane bond-containing resin and the crosslinking agent contributes to the electromagnetic wave shielding material being able to exhibit high shielding ability even after being placed under high temperature by increasing the heat resistance of the magnetic layer. The inventor has speculated. Further, the present inventor believes that having the content of magnetic particles in the magnetic layer within the above range contributes to improving the moldability and shielding ability of the electromagnetic shielding material. Details will be described later. However, the present invention is not limited to the speculations described in this specification.
 本発明および本明細書において、「電磁波シールド材」とは、少なくとも1つの周波数または少なくとも一部の範囲の周波数帯の電磁波に対してシールド能を示すことができる材料をいうものとする。「電磁波」には、磁界波と電界波とが含まれる。「電磁波シールド材」は、少なくとも1つの周波数または少なくとも一部の範囲の周波数帯の磁界波と、少なくとも1つの周波数または少なくとも一部の範囲の周波数帯の電界波と、の一方または両方に対してシールド能を示すことができる材料であることが好ましい。 In the present invention and this specification, an "electromagnetic wave shielding material" refers to a material that can exhibit shielding ability against electromagnetic waves of at least one frequency or at least a part of a frequency band. "Electromagnetic waves" include magnetic field waves and electric field waves. "Electromagnetic wave shielding material" is for one or both of magnetic field waves of at least one frequency or at least a part of the frequency range, and electric field waves of at least one frequency or at least a part of the frequency range. Preferably, the material is a material that can exhibit shielding ability.
 本発明および本明細書において、「磁性」とは、強磁性(ferromagnetic property)を意味する。磁性層について、詳細は後述する。 In the present invention and this specification, "magnetism" means ferromagnetic property. Details of the magnetic layer will be described later.
 以下、上記電磁波シールド材について、更に詳細に説明する。 Hereinafter, the above electromagnetic shielding material will be explained in more detail.
<磁性層>
 上記電磁波シールド材は、磁性粒子および樹脂を含む磁性層を1層以上有する。上記電磁波シールド材は、一形態では1層の磁性層のみまたは2層以上の磁性層のみによって構成されることができ、他の一形態では後述する各種層の1層以上を含むことができる。
<Magnetic layer>
The electromagnetic shielding material has one or more magnetic layers containing magnetic particles and resin. In one form, the electromagnetic wave shielding material can be composed of only one magnetic layer or only two or more magnetic layers, and in another form, it can include one or more of various layers described below.
(磁性粒子)
 磁性粒子としては、金属粒子、フェライト粒子等の一般に軟磁性粒子と呼ばれる磁性粒子からなる群から選択される一種を使用するか、または二種以上を組み合わせて使用することができる。金属粒子は、一般にフェライト粒子と比べて2~3倍程度の飽和磁束密度をもつことから、強い磁界下でも磁気飽和せずに比透磁率を維持しシールド能を示すことができる。したがって、磁性層に含まれる磁性粒子は金属粒子であることが好ましい。本発明および本明細書において、磁性粒子として金属粒子を含む層は、「磁性層」に該当するものとする。
(magnetic particles)
As the magnetic particles, one type selected from the group consisting of magnetic particles generally called soft magnetic particles such as metal particles and ferrite particles can be used, or two or more types can be used in combination. Since metal particles generally have a saturation magnetic flux density about 2 to 3 times that of ferrite particles, they can maintain relative magnetic permeability and exhibit shielding ability without magnetic saturation even under a strong magnetic field. Therefore, the magnetic particles contained in the magnetic layer are preferably metal particles. In the present invention and this specification, a layer containing metal particles as magnetic particles corresponds to a "magnetic layer."
金属粒子
 上記磁性粒子としての金属粒子としては、例えば、センダスト(Fe-Si-Al合金)、パーマロイ(Fe-Ni合金)、モリブデンパーマロイ(Fe-Ni-Mo合金)、Fe-Si合金、Fe-Cr合金、一般に鉄基アモルファス合金と呼ばれるFe含有合金、一般にコバルト基アモルファス合金と呼ばれるCo含有合金、一般にナノ結晶合金と呼ばれる合金、鉄、パーメンジュール(Fe-Co合金)等の粒子が挙げられる。中でもセンダストは高い飽和磁束密度と比透磁率を示すことから好ましい。金属粒子は、金属(合金を包含する)の構成元素に加えて、任意に添加され得る添加剤に含まれる元素および/または金属粒子の製造工程において意図せずに混入し得る不純物に含まれる元素を任意の含有率で含み得る。金属粒子において、金属(合金を包含する)の構成元素の含有率は、90.0質量%以上であることが好ましく、95.0質量%以上であることがより好ましく、また、100質量%でもよく、100質量%未満、99.9質量%以下または99.0質量%以下でもよい。
Metal particles Examples of the metal particles as the magnetic particles include sendust (Fe-Si-Al alloy), permalloy (Fe-Ni alloy), molybdenum permalloy (Fe-Ni-Mo alloy), Fe-Si alloy, Fe- Examples include Cr alloys, Fe-containing alloys generally referred to as iron-based amorphous alloys, Co-containing alloys generally referred to as cobalt-based amorphous alloys, alloys generally referred to as nanocrystalline alloys, particles of iron, permendur (Fe-Co alloy), etc. . Among them, Sendust is preferred because it exhibits high saturation magnetic flux density and relative magnetic permeability. In addition to the constituent elements of metals (including alloys), metal particles include elements contained in additives that may be optionally added and/or elements contained in impurities that may be unintentionally mixed in during the manufacturing process of metal particles. may be included at any content rate. In the metal particles, the content of constituent elements of the metal (including alloys) is preferably 90.0% by mass or more, more preferably 95.0% by mass or more, and even 100% by mass. It may be less than 100% by weight, less than 99.9% by weight, or less than 99.0% by weight.
 一形態では、電磁波シールド材の電磁波に対するシールド能は、電磁波シールド材に含まれる磁性層の透磁率(詳しくは複素比透磁率実部)を指標として評価することができる。高い透磁率(詳しくは複素比透磁率実部)を示す磁性層を有する電磁波シールド材は、電磁波に対して高いシールド能を発揮できるため好ましい。 In one form, the ability of the electromagnetic shielding material to shield against electromagnetic waves can be evaluated using the magnetic permeability (specifically, the real part of complex relative magnetic permeability) of the magnetic layer included in the electromagnetic shielding material as an index. An electromagnetic shielding material having a magnetic layer exhibiting high magnetic permeability (specifically, the real part of complex relative magnetic permeability) is preferable because it can exhibit high shielding ability against electromagnetic waves.
 透磁率測定装置によって複素比透磁率を測定すると、通常、実部μ’と虚部μ”とが表示される。本発明および本明細書における複素比透磁率実部とは、かかる実部μ’をいうものとする。以下において、3MHz(メガヘルツ)の周波数における複素比透磁率実部を、単に「透磁率」または「透磁率μ’」とも呼ぶ。透磁率は、市販の透磁率測定装置または公知の構成の透磁率測定装置によって測定することができる。測定温度は25℃とする。測定用サンプルの周囲の雰囲気温度を測定温度にすることにより、温度平衡が成り立つことによって測定用サンプルの温度を測定温度にすることができる。より一層優れた電磁波シールド能を発揮できるという観点から、上記電磁波シールド材に含まれる磁性層の透磁率(3MHzの周波数における複素比透磁率実部)は、40以上であることが好ましく、100以上であることがより好ましく、120以上であることが更に好ましい。また、上記透磁率は、例えば、500以下、300以下または200以下であることができ、ここに例示した値を上回ることもできる。上記透磁率が高い電磁波シールド材は、優れた電磁波シールド能を発揮できるため好ましい。上記透磁率とは、60℃以上の高温下に置かれる前(ただし磁性層および電磁波シールド材の製造工程中の加熱を伴う工程を除く、以下同様)の磁性層について求められる値であることができる。また、上記磁性層は、60℃以上の高温下に置かれた後にも上記範囲の透磁率を示すことができる。 When complex relative magnetic permeability is measured by a magnetic permeability measurement device, a real part μ' and an imaginary part μ'' are usually displayed. In the following, the real part of the complex relative magnetic permeability at a frequency of 3 MHz (megahertz) is also simply referred to as "magnetic permeability" or "magnetic permeability μ'." Magnetic permeability can be measured by a commercially available magnetic permeability measuring device or a magnetic permeability measuring device having a known configuration. The measurement temperature is 25°C. By setting the ambient temperature of the measurement sample to the measurement temperature, temperature equilibrium is established, and the temperature of the measurement sample can be brought to the measurement temperature. From the viewpoint of exhibiting even better electromagnetic shielding ability, the magnetic permeability (real part of complex relative magnetic permeability at a frequency of 3 MHz) of the magnetic layer included in the electromagnetic shielding material is preferably 40 or more, and preferably 100 or more. More preferably, it is 120 or more. Further, the magnetic permeability can be, for example, 500 or less, 300 or less, or 200 or less, and can also exceed the values exemplified here. The above electromagnetic shielding material with high magnetic permeability is preferable because it can exhibit excellent electromagnetic shielding ability. The above magnetic permeability is the value determined for the magnetic layer before it is placed under a high temperature of 60°C or higher (excluding processes that involve heating during the manufacturing process of magnetic layers and electromagnetic shielding materials, the same shall apply hereinafter). can. Furthermore, the magnetic layer can exhibit magnetic permeability within the above range even after being placed under a high temperature of 60° C. or higher.
 高い透磁率を示す磁性層を形成する観点からは、上記磁性粒子は扁平形状を有する粒子(扁平形状粒子)であることが好ましく、扁平形状を有する金属粒子であることがより好ましい。扁平形状粒子の長辺方向を磁性層の面内方向に対してより平行に近くなるように配することで、電磁波シールド材に対して直交して入射する電磁波の振動方向に粒子の長辺方向がより揃うことによって反磁界を低減することができるため、磁性層は、より高い透磁率を示すことができる。本発明および本明細書において、「扁平形状粒子」とは、アスペクト比が0.20以下の粒子をいう。扁平形状粒子のアスペクト比は、0.15以下であることが好ましく、0.10以下であることがより好ましい。扁平形状粒子のアスペクト比は、例えば、0.01以上、0.02以上または0.03以上であることができる。例えば公知の方法によって扁平加工を行うことにより粒子の形状を扁平形状にすることができる。扁平加工については、例えば特開2018-131640号公報の記載を参照でき、例えば同公報の段落0016、0017および実施例の記載を参照できる。高い透磁率を示す磁性層としては、センダストの扁平形状粒子を含む磁性層を挙げることができる。 From the viewpoint of forming a magnetic layer exhibiting high magnetic permeability, the magnetic particles are preferably particles having a flat shape (flat-shaped particles), and more preferably metal particles having a flat shape. By arranging the long sides of the flat particles to be more parallel to the in-plane direction of the magnetic layer, the long sides of the particles are aligned in the vibration direction of the electromagnetic waves that are incident orthogonally to the electromagnetic shielding material. Since the demagnetizing field can be reduced by making the magnetic layers more aligned, the magnetic layer can exhibit higher magnetic permeability. In the present invention and this specification, "flat-shaped particles" refer to particles with an aspect ratio of 0.20 or less. The aspect ratio of the flat particles is preferably 0.15 or less, more preferably 0.10 or less. The aspect ratio of the flat particles can be, for example, 0.01 or more, 0.02 or more, or 0.03 or more. For example, the particles can be flattened by flattening using a known method. Regarding flattening, for example, the description in Japanese Patent Application Laid-Open No. 2018-131640 can be referred to, and for example, the description in paragraphs 0016 and 0017 and Examples of the same publication can be referred to. Examples of the magnetic layer exhibiting high magnetic permeability include a magnetic layer containing flat particles of sendust.
 先に記載したように、磁性層として高い透磁率を示す層を形成する観点からは、扁平形状粒子の長辺方向を磁性層の面内方向に対してより平行に近くなるように配することが好ましい。この点から、磁性層の表面に対する扁平形状粒子の配向角度の平均値の絶対値と配向角度の分散との和である配向度は、30°以下であることが好ましく、25°以下であることがより好ましく、20°以下であることが更に好ましく、15°以下であることが一層好ましい。配向度は、例えば3°以上、5°以上または10℃以上であることができ、ここに例示した値を下回ることもできる。配向度の制御方法については後述する。 As described above, from the viewpoint of forming a layer exhibiting high magnetic permeability as a magnetic layer, it is desirable to arrange the long sides of the flat particles so that they are more parallel to the in-plane direction of the magnetic layer. is preferred. From this point of view, the degree of orientation, which is the sum of the absolute value of the average value of the orientation angle of the flat-shaped particles with respect to the surface of the magnetic layer and the variance of the orientation angle, is preferably 30° or less, and preferably 25° or less. is more preferred, still more preferably 20° or less, even more preferably 15° or less. The degree of orientation can be, for example, 3° or more, 5° or more, or 10°C or more, and can also be lower than the values exemplified here. A method for controlling the degree of orientation will be described later.
 本発明および本明細書において、磁性粒子のアスペクト比および上記の配向度は、以下の方法によって求めるものとする。
 公知の方法によって磁性層の断面を露出させる。この断面の無作為に選択した領域について、断面像を走査型電子顕微鏡(SEM:Scanning Electron Microscope)像として取得する。撮像条件は、加速電圧:2kV、倍率:1000倍とし、反射電子像としてSEM像を得る。
 画像処理ライブラリOpenCV4(インテル社製)のcv2.imread()関数で第二引数を0としてグレースケールで読み出し、輝度の高い部分と輝度の低い部分の中間の輝度を境界に、cv2.threshold()関数で二値化像を得る。二値化像における白色部分(高輝度部分)を磁性粒子として特定する。
 得られた二値化像に対してcv2.minAreaRect()関数により各磁性粒子の部分に対応する回転外接矩形を求め、cv2.minAreaRect()関数の戻り値として、長辺長、短辺長および回転角を求める。上記二値化像に含まれる磁性粒子の総数を求める際には、粒子の一部のみが二値化像に含まれている粒子も含めるものとする。粒子の一部のみが二値化像に含まれている粒子については、二値化像に含まれている部分について、長辺長、短辺長および回転角を求める。こうして求められた短辺長と長辺長との比(短辺長/長辺長)を各磁性粒子のアスペクト比とする。本発明および本明細書において、アスペクト比が0.20以下であり扁平形状粒子として特定された磁性粒子の数が、上記二値化像に含まれる磁性粒子の総数に対して個数基準で10%以上である場合、その磁性層は「磁性粒子として扁平形状粒子を含む磁性層」であると判定するものとする。また、上記で求められた回転角から、水平面(磁性層の表面)に対する回転角度として「配向角度」を求める。
 二値化像において求められたアスペクト比が0.20以下の粒子を扁平形状粒子として特定する。二値化像に含まれるすべての扁平形状粒子の配向角度について、平均値(算術平均)の絶対値と分散との和を求める。こうして求められる和を「配向度」とする。なお、cv2.boxPoints()関数を用いて外接長方形の座標を算出しcv2.drawContours()関数により回転外接矩形を元画像に重ね合わせた画像を作成し、明らかに誤検出されている回転外接矩形についてはアスペクト比および配向度の算出から除外する。また、扁平形状粒子として特定された粒子のアスペクト比の平均値(算術平均)を、測定対象の磁性層に含まれる扁平形状粒子のアスペクト比とする。かかるアスペクト比は、0.20以下であり、0.15以下であることが好ましく、0.10以下であることがより好ましい。また、上記アスペクト比は、例えば、0.01以上、0.02以上または0.03以上であることができる。
In the present invention and this specification, the aspect ratio and the above-mentioned degree of orientation of the magnetic particles are determined by the following method.
A cross section of the magnetic layer is exposed by a known method. A cross-sectional image of a randomly selected region of this cross-section is obtained as a scanning electron microscope (SEM) image. Imaging conditions are acceleration voltage: 2 kV, magnification: 1000 times, and a SEM image is obtained as a backscattered electron image.
cv2. of the image processing library OpenCV4 (manufactured by Intel). The second argument is set to 0 using the imread() function, and the second argument is read in grayscale, and the boundary is the brightness between the high brightness part and the low brightness part, and cv2. A binarized image is obtained using the threshold() function. White parts (high brightness parts) in the binarized image are identified as magnetic particles.
cv2. for the obtained binarized image. A rotating circumscribed rectangle corresponding to each magnetic particle portion is determined using the minAreaRect() function, and cv2. The long side length, short side length, and rotation angle are determined as the return values of the minAreaRect() function. When calculating the total number of magnetic particles included in the binarized image, particles of which only some of the particles are included in the binarized image are also included. For particles whose only part is included in the binarized image, the long side length, short side length, and rotation angle are determined for the part included in the binarized image. The ratio of the short side length to the long side length thus determined (short side length/long side length) is defined as the aspect ratio of each magnetic particle. In the present invention and this specification, the number of magnetic particles with an aspect ratio of 0.20 or less and identified as flat particles is 10% on a number basis with respect to the total number of magnetic particles included in the binarized image. If the above is the case, the magnetic layer is determined to be a "magnetic layer containing flat particles as magnetic particles." Further, from the rotation angle determined above, the "orientation angle" is determined as the rotation angle with respect to the horizontal plane (the surface of the magnetic layer).
Particles having an aspect ratio of 0.20 or less determined in the binarized image are identified as flat particles. The sum of the absolute value of the average value (arithmetic mean) and the variance is calculated for the orientation angles of all the flat particles included in the binarized image. The sum obtained in this way is referred to as the "degree of orientation." In addition, cv2. The coordinates of the circumscribed rectangle are calculated using the boxPoints() function and cv2. An image is created in which the rotated circumscribed rectangle is superimposed on the original image using the drawContours() function, and rotated circumscribed rectangles that are clearly erroneously detected are excluded from the calculation of the aspect ratio and degree of orientation. Further, the average value (arithmetic mean) of the aspect ratios of the particles identified as flat particles is taken as the aspect ratio of the flat particles included in the magnetic layer to be measured. Such an aspect ratio is 0.20 or less, preferably 0.15 or less, and more preferably 0.10 or less. Further, the aspect ratio can be, for example, 0.01 or more, 0.02 or more, or 0.03 or more.
 上記磁性層における磁性粒子の含有量は、電磁波シールド材のシールド能向上の観点から、磁性層の全質量を100質量部として、70質量部超であり、72質量部以上であることが好ましく、80質量部以上であることが更に好ましい。また、成形性向上の観点から、更には磁性層の自己支持性の観点から、上記磁性層における磁性粒子の含有量は、磁性層の全質量を100質量部として、95質量部以下であり、90質量部以下であることが好ましく、85質量部以下であることが更に好ましい。上記磁性層は、磁性粒子を一種のみ含むことができ、二種以上の磁性粒子を任意の割合で含むこともできる。本発明および本明細書において、ある成分が二種以上含まれる場合、含有量とは、それら成分の合計含有量をいうものとする。磁性層における各種成分の含有量は、TG/DTA(Thermogravimetry/Differential Thermal Analysis)、溶剤を用いた各種成分の抽出等の公知の方法によって求めることができる。なお、「TG/DTA」は、一般に熱重量示差熱分析と呼ばれる。磁性層の形成のために使用された磁性層形成用組成物の組成が既知の場合には、この既知の組成から磁性層における各種成分の含有量を求めることもできる。 From the viewpoint of improving the shielding ability of the electromagnetic shielding material, the content of magnetic particles in the magnetic layer is more than 70 parts by mass, and preferably 72 parts by mass or more, with the total mass of the magnetic layer being 100 parts by mass. More preferably, the amount is 80 parts by mass or more. Further, from the viewpoint of improving moldability and further from the viewpoint of self-supporting property of the magnetic layer, the content of magnetic particles in the magnetic layer is 95 parts by mass or less, with the total mass of the magnetic layer being 100 parts by mass, It is preferably 90 parts by mass or less, and more preferably 85 parts by mass or less. The magnetic layer may contain only one type of magnetic particle, or may contain two or more types of magnetic particles in any proportion. In the present invention and this specification, when two or more types of certain components are contained, the content refers to the total content of those components. The content of various components in the magnetic layer can be determined by known methods such as TG/DTA (Thermogravimetry/Differential Thermal Analysis) and extraction of various components using a solvent. Note that "TG/DTA" is generally called thermogravimetric differential thermal analysis. If the composition of the magnetic layer forming composition used to form the magnetic layer is known, the contents of various components in the magnetic layer can be determined from this known composition.
 一形態では、上記磁性層は、絶縁性の層であることができる。本発明および本明細書において、「絶縁性」とは、電気伝導率が1S(ジーメンス:siemens)/mよりも小さいことをいうものとする。ある層の電気伝導率は、その層の表面電気抵抗率とその層の厚みから、下記式によって算出される。電気伝導率は、公知の方法によって測定することができる。
 電気伝導率[S/m]=1/(表面電気抵抗率[Ω]×厚み[m])
In one form, the magnetic layer can be an insulating layer. In the present invention and this specification, "insulating" means that the electrical conductivity is smaller than 1S (Siemens)/m. The electrical conductivity of a certain layer is calculated from the surface electrical resistivity of that layer and the thickness of that layer using the following formula. Electric conductivity can be measured by a known method.
Electrical conductivity [S/m] = 1/(Surface electrical resistivity [Ω] x thickness [m])
 上記磁性層が絶縁性の層であることは、上記電磁波シールド材がより一層高い電磁波シールド能を発揮するうえで好ましいと本発明者は推察している。この点から、上記磁性層の電気伝導率は、1S/mよりも小さいことが好ましく、0.5S/m以下であることがより好ましく、0.1S/m以下であることが更に好ましく、0.05S/m以下であることが一層好ましい。上記磁性層の電気伝導率は、例えば、1.0×10-12S/m以上または1.0×10-10S/m以上であることができる。 The present inventor conjectures that it is preferable that the magnetic layer is an insulating layer so that the electromagnetic shielding material exhibits even higher electromagnetic shielding ability. From this point of view, the electrical conductivity of the magnetic layer is preferably smaller than 1 S/m, more preferably 0.5 S/m or less, even more preferably 0.1 S/m or less, and even more preferably 0.5 S/m or less. More preferably, it is .05 S/m or less. The electrical conductivity of the magnetic layer can be, for example, 1.0×10 −12 S/m or more or 1.0×10 −10 S/m or more.
(樹脂)
 上記磁性層は、磁性粒子および樹脂を含む層である。樹脂は、磁性層においてバインダーの役割を果たすことができる。本発明および本明細書において、磁性粒子も樹脂も含有する層は、「磁性層」に該当するものとする。磁性層の樹脂の合計含有量は、成形性のより一層の向上の観点から、更には磁性層の自己支持性の観点から、磁性層の全質量を100質量部として、5質量部以上であることが好ましく、10質量部以上であることがより好ましく、15質量部以上であることが更に好ましい。また、磁性層の樹脂の合計含有量は、電磁波シールド材のシールド能の更なる向上の観点から、磁性層の全質量を100質量部として、30質量部未満であることが好ましく、28質量部以下であることがより好ましく、25質量部以下であることが更に好ましく、20質量部以下であることが一層好ましい。
(resin)
The magnetic layer is a layer containing magnetic particles and resin. The resin can serve as a binder in the magnetic layer. In the present invention and this specification, a layer containing both magnetic particles and resin corresponds to a "magnetic layer". The total content of resin in the magnetic layer is 5 parts by mass or more, with the total mass of the magnetic layer being 100 parts by mass, from the viewpoint of further improving moldability and further from the viewpoint of self-supporting property of the magnetic layer. The amount is preferably 10 parts by mass or more, more preferably 15 parts by mass or more. Further, from the viewpoint of further improving the shielding ability of the electromagnetic shielding material, the total content of the resin in the magnetic layer is preferably less than 30 parts by mass, and 28 parts by mass, with the total mass of the magnetic layer being 100 parts by mass. It is more preferably at most 25 parts by mass, even more preferably at most 20 parts by mass.
 本発明および本明細書において、「樹脂」は、ポリマーを意味し、ゴムおよびエラストマーも包含されるものとする。ポリマーには、単独重合体(ホモポリマー)と共重合体(コポリマー)とが包含される。ゴムには、天然ゴムと合成ゴムとが包含される。また、エラストマーとは、弾性変形を示すポリマーである。 In the present invention and this specification, "resin" means a polymer, and includes rubber and elastomer. Polymers include homopolymers and copolymers. Rubber includes natural rubber and synthetic rubber. Moreover, an elastomer is a polymer that exhibits elastic deformation.
 上記電磁波シールド材の磁性層は、ウレタン結合含有樹脂およびジエン系樹脂を含む。ウレタン結合含有樹脂が架橋剤と架橋反応することが、磁性層の耐熱性向上に寄与すると本発明者は考えている。このことが、上記電磁波シールド材が高温下に置かれた後にも高いシールド能を発揮できることに寄与すると本発明者は推察している。また、ジエン系樹脂は、上記電磁波シールド材の成形性向上に寄与すると本発明者は考えている。これは、ジエン系樹脂が磁性層に成形に適した伸び性をもたらすことができるためと本発明者は推察している。 The magnetic layer of the electromagnetic shielding material includes a urethane bond-containing resin and a diene resin. The present inventor believes that the crosslinking reaction of the urethane bond-containing resin with the crosslinking agent contributes to improving the heat resistance of the magnetic layer. The present inventor conjectures that this contributes to the ability of the electromagnetic shielding material to exhibit high shielding ability even after being placed under high temperatures. Further, the present inventor believes that the diene resin contributes to improving the moldability of the electromagnetic shielding material. The present inventor conjectures that this is because the diene resin can provide the magnetic layer with elongation properties suitable for molding.
 本発明および本明細書において、「ウレタン結合含有樹脂」とは、ウレタン結合(-NH-C(=O)O-)を1分子中に1つ以上含む樹脂をいうものとする。ウレタン結合含有樹脂には、ポリウレタン樹脂、ポリエステルウレタン樹脂、ポリウレタン系エラストマー等の各種ウレタン結合含有樹脂が包含されるものとする。磁性層では、ウレタン結合含有樹脂を一種単独で用いてもよく、二種以上を併用してもよい。なお、磁性層に含まれる樹脂の種類は、例えば、熱分解GC/MS(Gas Chromatography/Mass spectrometry)、フーリエ変換赤外分光法等の有機分析によって判別することができる。例えば、熱分解GC/MSにてイソシアネート成分残渣および/またはポリオール成分残渣が観察された場合には、ウレタン結合含有樹脂である、と判別することができる。 In the present invention and this specification, "urethane bond-containing resin" refers to a resin containing one or more urethane bonds (-NH-C(=O)O-) in one molecule. The urethane bond-containing resin includes various urethane bond-containing resins such as polyurethane resin, polyester urethane resin, and polyurethane elastomer. In the magnetic layer, one type of urethane bond-containing resin may be used alone, or two or more types may be used in combination. The type of resin contained in the magnetic layer can be determined by, for example, organic analysis such as pyrolysis GC/MS (Gas Chromatography/Mass Spectrometry) and Fourier Transform Infrared Spectroscopy. For example, if isocyanate component residues and/or polyol component residues are observed by thermal decomposition GC/MS, it can be determined that the resin is a urethane bond-containing resin.
 上記電磁波シールド材の成形性の更なる向上の観点からは、磁性層に含まれるウレタン結合樹脂のガラス転移温度Tgは、0℃未満であることが好ましい。本発明および本明細書において、樹脂のガラス転移温度Tgは、示差走査熱量計を用いたヒートフロー測定の測定結果から、昇温時のヒートフローチャートのベースラインシフト開始温度として求められる。上記電磁波シールド材の成形性のより一層の向上の観点からは、上記磁性層に含まれるウレタン結合含有樹脂のガラス転移温度Tgは、-3℃以下であることがより好ましく、-5℃以下であることが更に好ましく、-10℃以下、-20℃以下、-30℃以下、-40℃以下の順に一層好ましい。また、上記磁性層に含まれるウレタン結合含有樹脂のガラス転移温度Tgは、例えば、-100℃以上、-90℃以上、-80℃以上、-70℃以上または-60℃以上であることができる。 From the viewpoint of further improving the moldability of the electromagnetic shielding material, the glass transition temperature Tg of the urethane bonding resin contained in the magnetic layer is preferably less than 0°C. In the present invention and this specification, the glass transition temperature Tg of the resin is determined from the measurement results of heat flow measurement using a differential scanning calorimeter as the baseline shift start temperature of the heat flow chart during temperature rise. From the viewpoint of further improving the moldability of the electromagnetic shielding material, the glass transition temperature Tg of the urethane bond-containing resin contained in the magnetic layer is preferably -3°C or lower, and preferably -5°C or lower. More preferably, the temperature is -10°C or lower, -20°C or lower, -30°C or lower, and -40°C or lower in this order. Further, the glass transition temperature Tg of the urethane bond-containing resin contained in the magnetic layer can be, for example, -100°C or higher, -90°C or higher, -80°C or higher, -70°C or higher, or -60°C or higher. .
 本発明および本明細書において、「ジエン系樹脂」とは、分子中にジエンの重合体構造を有する樹脂をいうものとする。ジエン系樹脂は、一般にゴム弾性を示すことができるため、磁性層に伸び性を付与することができると考えられる。このことが、電磁波シールド材の成形性向上に寄与すると推察される。ジエン系樹脂としては、例えば、天然ゴム(NR:Natural Rubber)、イソプレンゴム(IR:Isoprene Rubber)、アクリロニトリル-ブタジエンゴム(NBR:Nitril-Butadiene Rubber)、スチレン-ブタジエンゴム(SBR:Styrene-Butadiene Rubber)、エチレン-プロピレンゴム(エチレンおよびプロピレンゴムの2元重合体(EPM:Ethylene Propylene Rubber))、エチレンおよびプロピレンゴムを含む3元重合体(EPDM:Ethylene Propylene Diene Methylene Linkage)、ブチルゴム(IIR:Isobutylene-Isoprene Rubber)、イソブチレンと芳香族ビニルまたはジエン系モノマーとの共重合体、臭素化ブチルゴム(Br-IIR:Brominated Isobutylene-Isoprene Rubber)、塩素化ブチルゴム(Cl-IIR)、イソブチレン-パラメチルスチレン共重合体の臭化物(BIMS:Brominated Isobutylene-paramethylstyrene)、クロロプレンゴム(CR:Chloroprene Rubber)等が挙げられる。これらジエン系樹脂は、磁性層に一種単独で用いてもよく、二種以上を併用してもよい。また、これらジエン系樹脂の水添化物も使用することができる。 In the present invention and this specification, "diene-based resin" refers to a resin having a diene polymer structure in the molecule. Since diene resins can generally exhibit rubber elasticity, they are thought to be able to impart extensibility to the magnetic layer. It is presumed that this contributes to improving the formability of the electromagnetic shielding material. Examples of the diene resin include natural rubber (NR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), and styrene-butadiene rubber (SBR). ne-Butadiene Rubber ), ethylene-propylene rubber (binary polymer of ethylene and propylene rubber (EPM: Ethylene Propylene Rubber)), terpolymer containing ethylene and propylene rubber (EPDM: Ethylene Propylene Diene Methylene Lin) kage), butyl rubber (IIR), butyl rubber (IIR) -Isoprene Rubber), copolymer of isobutylene and aromatic vinyl or diene monomer, brominated butyl rubber (Br-IIR), chlorinated butyl rubber (Cl-IIR), isobutylene-paramethyl rubber With tyrene Examples include polymer bromide (BIMS: Brominated isobutylene-paramethylstyrene), chloroprene rubber (CR), and the like. These diene resins may be used alone or in combination of two or more types in the magnetic layer. Furthermore, hydrogenated products of these diene resins can also be used.
 上記磁性層に含まれる樹脂は、ウレタン結合含有樹脂とジエン系樹脂のみであることができ、または、ウレタン結合含有樹脂とジエン系樹脂とに加えて一種以上の他の樹脂が任意の量で含まれていてもよい。磁性層の樹脂の全量100質量部に対するウレタン結合含有樹脂とジエン系樹脂との合計含有量は、例えば、80質量部以上、85質量部以上、90質量部以上もしくは95質量部以上であることができ、また、100質量部であることができ、100質量部以下、100質量部未満、99質量部以下もしくは98質量部以下であることもできる。 The resin contained in the magnetic layer may be only a urethane bond-containing resin and a diene resin, or it may contain an arbitrary amount of one or more other resins in addition to the urethane bond-containing resin and diene resin. It may be The total content of the urethane bond-containing resin and diene resin based on 100 parts by mass of the total amount of resin in the magnetic layer may be, for example, 80 parts by mass or more, 85 parts by mass or more, 90 parts by mass or more, or 95 parts by mass or more. It can also be 100 parts by weight, or less than 100 parts by weight, less than 100 parts by weight, less than 99 parts by weight, or less than 98 parts by weight.
 上記磁性層におけるジエン系樹脂の含有量は、上記磁性層における樹脂の合計含有量を100質量部として、上記電磁波シールド材の成形性の更なる向上の観点から、2質量部以上であることが好ましく、5質量部以上であることがより好ましく、10質量部以上であることがより好ましい。また、上記磁性層にけるジエン系樹脂の含有量は、上記磁性層における樹脂の合計含有量を100質量部として、例えば50質量部以下、40質量部以下、30質量部以下または20質量部以下であることができ、上記電磁波シールド材の成形性の更なる向上の観点からは、15質量部以下であることが好ましい。 The content of the diene resin in the magnetic layer may be 2 parts by mass or more, based on a total content of resin in the magnetic layer of 100 parts by mass, from the viewpoint of further improving the moldability of the electromagnetic shielding material. It is preferably 5 parts by mass or more, more preferably 10 parts by mass or more. Further, the content of the diene resin in the magnetic layer is, for example, 50 parts by mass or less, 40 parts by mass or less, 30 parts by mass or less, or 20 parts by mass or less, with the total content of resin in the magnetic layer being 100 parts by mass. From the viewpoint of further improving the moldability of the electromagnetic shielding material, the amount is preferably 15 parts by mass or less.
(架橋剤)
 上記磁性層は、少なくとも、磁性粒子、ウレタン結合含有樹脂およびジエン系樹脂を含み、更に架橋剤を含む。本発明および本明細書において、「架橋剤」とは、架橋性基を有する化合物をいうものとする。本発明および本明細書において、「架橋性基」とは、架橋反応し得る基をいうものとする。架橋剤を含む磁性層において、架橋剤は、架橋性基の少なくとも一部が架橋反応した後の形態で含まれ得る。架橋剤としては、1分子中に架橋性基を2つ以上(例えば2つ以上4つ以下)有する化合物が好ましい。一形態では、上記磁性層における樹脂の合計含有量を100質量部として、上記磁性層における架橋剤の含有量は、例えば1質量部以上であることができ、上記電磁波シールド材の高温下に置かれた後のシールド能の低下をより一層抑制する観点からは、5質量部以上、10質量部以上、15質量部以上、20質量部以上の順に好ましい。また、一形態では、上記磁性層における樹脂の合計含有量を100質量部として、上記磁性層は、100質量部以下または40質量部以下の架橋剤を含むことができる。成形性のより一層の向上の観点からは、上記磁性層における樹脂の合計含有量を100質量部として、上記磁性層における架橋剤の含有量は、30質量部以下であることが好ましく、25質量部以下であることがより好ましく、23質量部以下であることが更に好ましい。
(Crosslinking agent)
The magnetic layer includes at least magnetic particles, a urethane bond-containing resin, and a diene resin, and further includes a crosslinking agent. In the present invention and this specification, the term "crosslinking agent" refers to a compound having a crosslinkable group. In the present invention and this specification, the term "crosslinkable group" refers to a group that can undergo a crosslinking reaction. In the magnetic layer containing a crosslinking agent, the crosslinking agent may be contained in a form after at least some of the crosslinkable groups have undergone a crosslinking reaction. As the crosslinking agent, a compound having two or more crosslinkable groups (for example, two or more and four or less) in one molecule is preferable. In one form, the content of the crosslinking agent in the magnetic layer can be, for example, 1 part by mass or more, when the total content of the resin in the magnetic layer is 100 parts by mass, and the electromagnetic shielding material is placed under high temperature. From the viewpoint of further suppressing the deterioration of the shielding ability after drying, the preferred amounts are 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, and 20 parts by mass or more. Further, in one embodiment, when the total content of resin in the magnetic layer is 100 parts by mass, the magnetic layer can contain 100 parts by mass or less or 40 parts by mass or less of a crosslinking agent. From the viewpoint of further improving moldability, the content of the crosslinking agent in the magnetic layer is preferably 30 parts by mass or less, and 25 parts by mass, assuming the total resin content in the magnetic layer is 100 parts by mass. It is more preferably at most 23 parts by mass, and even more preferably at most 23 parts by mass.
 架橋性基の具体例としてはイソシアネート基を挙げることができ、架橋剤の具体例としては多官能イソシアネートを挙げることができる。多官能イソシアネートは、イソシアネート基を1分子中に2つ以上(例えば2つ、3つまたは4つ)有する化合物である。一形態では、上記磁性層における樹脂の合計含有量を100質量部として、上記磁性層における多官能イソシアネートの含有量は、例えば1質量部以上であることができ、上記電磁波シールド材の高温下に置かれた後のシールド能の低下をより一層抑制する観点からは、5質量部以上、10質量部以上、15質量部以上、20質量部以上の順に好ましい。また、一形態では、上記磁性層における樹脂の合計含有量を100質量部として、上記磁性層は、100質量部以下または40質量部以下の多官能イソシアネートを含むことができる。成形性のより一層の向上の観点からは、上記磁性層における樹脂の合計含有量を100質量部として、上記磁性層における多官能イソシアネートの含有量は、30質量部以下であることが好ましく、25質量部以下であることがより好ましく、23質量部以下であることが更に好ましい。 A specific example of the crosslinkable group is an isocyanate group, and a specific example of the crosslinking agent is a polyfunctional isocyanate. A polyfunctional isocyanate is a compound having two or more (eg, two, three, or four) isocyanate groups in one molecule. In one form, when the total content of the resin in the magnetic layer is 100 parts by mass, the content of the polyfunctional isocyanate in the magnetic layer can be, for example, 1 part by mass or more, and the electromagnetic shielding material can be used at high temperatures. From the viewpoint of further suppressing the decline in shielding ability after being placed, the preferred amounts are 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, and 20 parts by mass or more. Further, in one embodiment, the magnetic layer may contain 100 parts by mass or less or 40 parts by mass or less of a polyfunctional isocyanate, when the total content of resin in the magnetic layer is 100 parts by mass. From the viewpoint of further improving moldability, the content of polyfunctional isocyanate in the magnetic layer is preferably 30 parts by mass or less, with the total content of resin in the magnetic layer being 100 parts by mass, and 25 parts by mass or less. It is more preferably at most 23 parts by mass, even more preferably at most 23 parts by mass.
 上記磁性層は、上記成分の他、分散剤、安定剤、カップリング剤等の公知の添加剤の一種以上を任意の量で含むこともできる。 In addition to the above-mentioned components, the magnetic layer can also contain one or more types of known additives such as dispersants, stabilizers, and coupling agents in arbitrary amounts.
 上記電磁波シールド材は、上記磁性層を少なくとも1層含み、詳しくは、上記磁性層を1層のみ含むことができ、組成および/または厚みが同じか異なる2層以上の上記磁性層を含むこともできる。
 上記電磁波シールド材が上記磁性層を1層のみ含む場合、この1層の磁性層の厚みは、例えば5μm以上であることができ、電磁波に対するシールド能の更なる向上の観点からは、10μm以上であることが好ましく、20μm以上であることがより好ましい。また、この1層の磁性層の厚みは、例えば100μm以下または90μm以下であることができ、成形性の更なる向上の観点からは、90μm未満であることが好ましく、80μm以下であることがより好ましく、70μm以下であることが更に好ましい。
 上記電磁波シールド材が上記磁性層を2層以上含む場合、これら2層以上の磁性層のそれぞれの厚み(即ち1層あたりの厚み)は、例えば5μm以上であることができ、電磁波に対するシールド能の更なる向上の観点からは、10μm以上であることが好ましく、20μm以上であることがより好ましい。また、この1層の磁性層の厚みは、例えば100μm以下または90μm以下であることができ、成形性の更なる向上の観点からは、90μm未満であることが好ましく、80μm以下であることがより好ましい。2層以上の磁性層のそれぞれの厚みは、同じ厚みまたは異なる厚みであることができる。
The electromagnetic wave shielding material includes at least one magnetic layer, more specifically, it may include only one magnetic layer, or it may include two or more magnetic layers having the same or different compositions and/or thicknesses. can.
When the electromagnetic wave shielding material includes only one magnetic layer, the thickness of this single magnetic layer can be, for example, 5 μm or more, and from the viewpoint of further improving the shielding ability against electromagnetic waves, the thickness is 10 μm or more. The thickness is preferably 20 μm or more, and more preferably 20 μm or more. Further, the thickness of this single magnetic layer can be, for example, 100 μm or less or 90 μm or less, and from the viewpoint of further improving moldability, it is preferably less than 90 μm, and more preferably 80 μm or less. It is preferably 70 μm or less, and more preferably 70 μm or less.
When the electromagnetic wave shielding material includes two or more of the magnetic layers, the thickness of each of the two or more magnetic layers (i.e., the thickness per layer) can be, for example, 5 μm or more, and the shielding ability against electromagnetic waves is reduced. From the viewpoint of further improvement, it is preferably 10 μm or more, more preferably 20 μm or more. Further, the thickness of this single magnetic layer can be, for example, 100 μm or less or 90 μm or less, and from the viewpoint of further improving moldability, it is preferably less than 90 μm, and more preferably 80 μm or less. preferable. The thicknesses of two or more magnetic layers can be the same or different.
 電磁波シールド材に含まれる各層の厚みは、公知の方法で露出させた断面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)によって撮像し、得られたSEM像において無作為に選択した5カ所の厚みの算術平均として求めるものとする。 The thickness of each layer included in the electromagnetic shielding material is determined by imaging a cross section exposed using a known method using a scanning electron microscope (SEM), and measuring the thickness of five randomly selected locations in the obtained SEM image. shall be determined as the arithmetic mean of
 上記電磁波シールド材は、一形態では上記磁性層単層のみから構成されることができ、他の一形態では1層以上の磁性層と1層以上の他の層とを含むこともできる。以下に、上記電磁波シールド材に含まれ得る各種層について説明する。 In one form, the electromagnetic shielding material can be composed of only the single magnetic layer, and in another form, it can include one or more magnetic layers and one or more other layers. Below, various layers that may be included in the electromagnetic shielding material will be explained.
<粘着層>
 上記電磁波シールド材は、粘着層を1層以上含むことができる。上記電磁波シールド材において、少なくとも1層の粘着層は、磁性層に直接接する層として位置することができる。本発明および本明細書において、2層の層に関して「直接接する」とは、これら2層の層の間に他の層が介在していないことをいうものとする。また、本発明および本明細書において、「粘着層」とは、常温において表面にタック性がある層をいう。ここで「常温」とは、23℃をいうものとする。かかる層は、被着体と接触した際にその付着力により被着体と接着する。タック性は、一般に、非常に軽い力で被着体に接触後、短時間に接着力を発揮する性質のことであり、本発明および本明細書において、「タック性がある」とは、JIS Z 0237:2009に規定される傾斜式ボールタック試験(測定環境:温度23℃、相対湿度50%)において結果がNo.1~No.32であることをいう。粘着層表面に他の層が積層されている場合、例えば、他の層を剥がして露出させた粘着層表面を上記の試験に付すことができる。粘着層の一方の表面および他方の表面にそれぞれ他の層が積層されている場合には、どちらの表面側の他の層を剥がしてもよい。
<Adhesive layer>
The electromagnetic shielding material may include one or more adhesive layers. In the above electromagnetic shielding material, at least one adhesive layer may be located as a layer directly in contact with the magnetic layer. In the present invention and this specification, "directly contacting" with respect to two layers means that no other layer is interposed between these two layers. Furthermore, in the present invention and this specification, the term "adhesive layer" refers to a layer that has tackiness on its surface at room temperature. Here, "normal temperature" refers to 23°C. When such a layer comes into contact with an adherend, it adheres to the adherend due to its adhesive force. Tackiness generally refers to the property of exhibiting adhesive strength in a short time after contacting an adherend with a very light force, and in the present invention and this specification, "having tackiness" is defined as In the tilted ball tack test (measurement environment: temperature 23°C, relative humidity 50%) specified in Z0237:2009, the result was No. 1~No. It means that it is 32. When another layer is laminated on the surface of the adhesive layer, for example, the surface of the adhesive layer exposed by peeling off the other layer can be subjected to the above test. When other layers are laminated on one surface and the other surface of the adhesive layer, the other layer on either surface side may be peeled off.
 一形態では、粘着層のガラス転移温度Tgは、例えば50℃未満、45℃以下もしくは40℃以下であることができ、また、例えば-70℃以上であることができる。粘着層のガラス転移温度Tgは、示差走査熱量計を用いたヒートフロー測定の測定結果から、DSC(Differential scanning calorimetry)チャートの下降開始点と下降終了点の中間温度として求められる。 In one form, the glass transition temperature Tg of the adhesive layer can be, for example, less than 50°C, 45°C or less, or 40°C or less, and can be, for example, -70°C or more. The glass transition temperature Tg of the adhesive layer is determined from the measurement results of heat flow measurement using a differential scanning calorimeter, as the intermediate temperature between the start point and end point of the fall on a DSC (differential scanning calorimetry) chart.
 粘着層としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤等の粘着剤を含む粘着層形成用組成物を塗工してフィルム状に加工したものを用いることができる。
 粘着層形成用組成物は、例えば、支持体上に塗布することもできる。塗布は、ブレードコーター、ダイコーター等の公知の塗布装置を使用して行うことができる。塗布は、いわゆるロール・ツー・ロール方式で行うこともでき、バッチ方式で行うこともできる。
 粘着層形成用組成物が塗布される支持体としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等の各種樹脂のフィルムが挙げられる。支持体としては、粘着層形成用組成物が塗布される表面(被塗布面)に公知の方法により剥離処理が施されている支持体を使用することができる。剥離処理の一形態としては、離型層を形成することが挙げられる。また、支持体として、市販の剥離処理済樹脂フィルムを使用することもできる。被塗布面に剥離処理が施された支持体を使用することにより、成膜後に粘着層と支持体とを容易に分離することができる。
 粘着剤が溶剤に溶解および/または分散した粘着層形成用組成物を磁性層に塗工し乾燥させることで、磁性層と粘着層とが積層された電磁波シールド材を作製することもできる。
As the adhesive layer, use a film formed by coating an adhesive layer-forming composition containing an adhesive such as an acrylic adhesive, a rubber adhesive, a silicone adhesive, or a urethane adhesive. Can be done.
The composition for forming an adhesive layer can also be applied onto a support, for example. Coating can be performed using a known coating device such as a blade coater or die coater. Application can be carried out in a so-called roll-to-roll manner or in a batch manner.
Examples of the support to which the composition for forming an adhesive layer is applied include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA), and cyclic polyolefins. , triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, and polyimide. As the support, a support whose surface to which the composition for forming an adhesive layer is applied (coating surface) has been subjected to a release treatment by a known method can be used. One form of peeling treatment includes forming a release layer. Moreover, a commercially available peel-treated resin film can also be used as the support. By using a support whose coated surface has been subjected to a release treatment, the adhesive layer and the support can be easily separated after film formation.
An electromagnetic shielding material in which a magnetic layer and an adhesive layer are laminated can also be produced by applying an adhesive layer forming composition in which an adhesive is dissolved and/or dispersed in a solvent to a magnetic layer and drying the composition.
 粘着層を有する電磁波シールド材の作製のために、粘着層を含む粘着テープを用いることもできる。粘着テープとしては、両面テープを用いることができる。両面テープは支持体の両面に粘着層を配したもので、両面の粘着層がそれぞれ常温においてタック性を有し得る。また、粘着テープとしては、支持体の片面に粘着層を配した粘着テープを用いることもできる。支持体としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等の各種樹脂のフィルム、不織布、紙等が挙げられる。粘着層を支持体の片面または両面に配した粘着テープとしては、市販品を使用することができ、公知の方法で作製した両面テープを使用することもできる。 An adhesive tape containing an adhesive layer can also be used to produce an electromagnetic shielding material having an adhesive layer. Double-sided tape can be used as the adhesive tape. Double-sided tape has adhesive layers on both sides of a support, and each of the adhesive layers on both sides can have tackiness at room temperature. Further, as the adhesive tape, an adhesive tape having an adhesive layer on one side of a support can also be used. Examples of the support include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA), cyclic polyolefins, triacetyl cellulose (TAC), and polyethers. Examples include films of various resins such as sulfide (PES), polyether ketone, and polyimide, nonwoven fabrics, and paper. As the adhesive tape having an adhesive layer disposed on one or both sides of the support, commercially available products can be used, and double-sided tapes prepared by known methods can also be used.
 上記電磁波シールド材は、粘着層を1層以上有することができ、詳しくは、粘着層を1層のみ有することができ、組成および/または厚みが同じか異なる2層以上の粘着層を有することもできる。上記電磁波シールド材に含まれる粘着層の総層数は、例えば1層以上4層以下であることができ、または1層もしくは2層であることができる。
 上記電磁波シールド材が粘着層を1層のみ含む場合、この1層の粘着層の厚みは、例えば0.5μm以上であることができ、1μm以上であることが好ましく、2μm以上であることがより好ましい。また、この1層の粘着層の厚みは、例えば20μm以下または10μm以下であることができる。
 上記電磁波シールド材が粘着層を2層以上含む場合、これら2層以上の粘着層のそれぞれの厚み(即ち1層あたりの厚み)は、例えば0.5μm以上であることができ、0.8μm以上であることが好ましく、1.5μm以上であることがより好ましい。また、この1層の粘着層の厚みは、例えば10μm以下または5μm以下であることができる。2層以上の粘着層のそれぞれの厚みは、同じ厚みまたは異なる厚みであることができる。
The above-mentioned electromagnetic wave shielding material can have one or more adhesive layers, more specifically, it can have only one adhesive layer, and it can also have two or more adhesive layers with the same or different composition and/or thickness. can. The total number of adhesive layers included in the electromagnetic shielding material can be, for example, one to four layers, one layer, or two layers.
When the electromagnetic shielding material includes only one adhesive layer, the thickness of this single adhesive layer can be, for example, 0.5 μm or more, preferably 1 μm or more, and more preferably 2 μm or more. preferable. Further, the thickness of this single adhesive layer can be, for example, 20 μm or less or 10 μm or less.
When the electromagnetic shielding material includes two or more adhesive layers, the thickness of each of these two or more adhesive layers (i.e., the thickness per layer) can be, for example, 0.5 μm or more, and 0.8 μm or more. It is preferable that it is, and it is more preferable that it is 1.5 μm or more. Further, the thickness of this single adhesive layer can be, for example, 10 μm or less or 5 μm or less. The thicknesses of two or more adhesive layers can be the same or different.
 一形態では、上記電磁波シールド材は、1層の磁性層と1層の粘着層との2層によって構成される電磁波シールド材であることができる。他の一形態では、上記電磁波シールド材は、磁性層、粘着層、磁性層、の3層によって構成され、これら3層をこの順に含む電磁波シールド材であることができる。また、他の一形態では、上記電磁波シールド材は、2層の粘着層の間に樹脂層を有することができる。例えば、上記電磁波シールド材は、上記磁性層と、2層の粘着層の間に樹脂層を有する積層構造と、を含むことができる。2層の粘着層の間に樹脂層を有する積層構造において、樹脂層は、2層の粘着層の一方または両方と直接接する層であることができ、両方の粘着層と直接接する層であることが好ましい。一形態では、上記電磁波シールド材は、磁性層、粘着層、樹脂層、粘着層の4層によって構成され、これら4層をこの順に含む電磁波シールド材であることができる。また、他の一形態では、上記電磁波シールド材は、2層の粘着層の間に樹脂層を有する積層構造を、磁性層の両面にそれぞれ有することができる。かかる構成の電磁波シールド材としては、粘着層、樹脂層、粘着層、磁性層、粘着層、樹脂層、粘着層の7層によって構成され、これら7層をこの順に含む電磁波シールド材を挙げることができる。また、他の一形態では、上記電磁波シールド材は、上記各層構成に、後述する金属層が更に含まれる電磁波シールド材であることができる。 In one form, the electromagnetic shielding material can be an electromagnetic shielding material composed of two layers: one magnetic layer and one adhesive layer. In another form, the electromagnetic shielding material may be configured of three layers: a magnetic layer, an adhesive layer, and a magnetic layer, and may include these three layers in this order. In another form, the electromagnetic shielding material may include a resin layer between two adhesive layers. For example, the electromagnetic shielding material may include the magnetic layer and a laminated structure having a resin layer between two adhesive layers. In a laminated structure having a resin layer between two adhesive layers, the resin layer can be a layer that is in direct contact with one or both of the two adhesive layers, and must be a layer that is in direct contact with both adhesive layers. is preferred. In one form, the electromagnetic shielding material may be configured of four layers: a magnetic layer, an adhesive layer, a resin layer, and an adhesive layer, and may include these four layers in this order. In another form, the electromagnetic shielding material may have a laminated structure having a resin layer between two adhesive layers on both sides of the magnetic layer. An example of an electromagnetic shielding material having such a structure is an electromagnetic shielding material that is composed of seven layers: an adhesive layer, a resin layer, an adhesive layer, a magnetic layer, an adhesive layer, a resin layer, and an adhesive layer, and includes these seven layers in this order. can. In another embodiment, the electromagnetic shielding material may further include a metal layer, which will be described later, in each of the layered structures.
<樹脂層>
 上記電磁波シールド材は、2層の粘着層の間に樹脂層を有することもできる。本発明および本明細書において、「樹脂層」とは、樹脂を含む層をいい、樹脂を主成分とする層であることができる。主成分とは、層を構成する成分の中で、質量基準で最も多くを占める成分をいうものとする。樹脂層の樹脂の含有量は、樹脂層の全質量を100質量部として、50質量部以上であることが好ましく、70質量部以上であることがより好ましく、90質量部以上であることが更に好ましい。また、樹脂層における樹脂の含有量は、樹脂層の全質量を100質量部として、例えば、100質量部以下、100質量部未満または99質量部以下であることができる。樹脂層は、一種または二種以上の樹脂を含み、樹脂の他、可塑剤、架橋剤、分散剤、安定剤、カップリング剤等の公知の添加剤の一種以上を任意の量で含むこともできる。
<Resin layer>
The electromagnetic shielding material described above can also have a resin layer between the two adhesive layers. In the present invention and this specification, a "resin layer" refers to a layer containing a resin, and can be a layer containing resin as a main component. The main component refers to the component that occupies the largest amount on a mass basis among the components constituting the layer. The content of the resin in the resin layer is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, and still more preferably 90 parts by mass or more, based on the total mass of the resin layer as 100 parts by mass. preferable. Further, the content of the resin in the resin layer can be, for example, 100 parts by mass or less, less than 100 parts by mass, or 99 parts by mass or less, with the total mass of the resin layer being 100 parts by mass. The resin layer contains one or more resins, and may also contain one or more known additives such as plasticizers, crosslinking agents, dispersants, stabilizers, and coupling agents in arbitrary amounts in addition to the resins. can.
 上記樹脂層としては、例えば、プラスチック基材として使用可能なものとして市販されている樹脂フィルム、公知の方法で製造された樹脂フィルム等を使用することができる。上記樹脂層に含まれる樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、セロファン、ジアセチルセルロース、トリアセチルセルロース、アセチルセルロースブチレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリエーテルイミド、ポリイミド、フッ素樹脂、ナイロン、アクリル樹脂、ポリアミド、シクロオレフィン、ポリエーテルサルファン等の樹脂を挙げることができる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレート、ナイロン等の樹脂フィルムは、機械的強度が高い点で好ましい。上記樹脂層の一形態は、上記両面テープの支持体である。
 樹脂層の厚みは、0.1μm以上であることが好ましく、1μm以上であることがより好ましい。また、樹脂層の厚みは、例えば100μm以下であることが好ましく、10μm以下であることがより好ましく、10μm未満であることが更に好ましい。上記電磁波シールド材は、2層の粘着層の間に配置された樹脂層を1層のみ含むことができ、2層以上(例えば2層または3層)含むこともできる。
As the resin layer, for example, a commercially available resin film that can be used as a plastic base material, a resin film manufactured by a known method, etc. can be used. Examples of the resin contained in the resin layer include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, cellophane, diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, polyvinyl chloride, polyvinylidene chloride, and polyvinyl Alcohol, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone, polyethersulfone, polyetherimide, polyimide, fluororesin, nylon, acrylic resin, polyamide, cycloolefin, polyether Examples include resins such as sulfan. Among these, resin films such as polyethylene terephthalate, polyethylene naphthalate, and nylon are preferred because of their high mechanical strength. One form of the resin layer is a support for the double-sided tape.
The thickness of the resin layer is preferably 0.1 μm or more, more preferably 1 μm or more. Further, the thickness of the resin layer is preferably, for example, 100 μm or less, more preferably 10 μm or less, and even more preferably less than 10 μm. The electromagnetic shielding material may include only one resin layer disposed between two adhesive layers, or may include two or more layers (for example, two or three layers).
 上記樹脂層のガラス転移温度Tgは、例えば50℃以上であることができ、60℃以上もしくは70℃以上であることができ、また、例えば150℃以下、130℃以下もしくは110℃以下であることができる。樹脂層のガラス転移温度Tgは、示差走査熱量計を用いたヒートフロー測定の測定結果から、DSC(Differential scanning calorimetry)チャートの下降開始点と下降終了点の中間温度として求められる。 The glass transition temperature Tg of the resin layer can be, for example, 50°C or higher, 60°C or higher, or 70°C or higher, and, for example, 150°C or lower, 130°C or lower, or 110°C or lower. Can be done. The glass transition temperature Tg of the resin layer is determined from the measurement results of heat flow measurement using a differential scanning calorimeter as the intermediate temperature between the start point and the end point of the fall on a DSC (differential scanning calorimetry) chart.
<金属層>
 本発明および本明細書において、「金属層」とは、金属を含む層をいうものとする。金属層は、単一の金属元素からなる純金属として、二種以上の金属元素の合金として、または一種以上の金属元素と一種以上の非金属元素との合金として、一種以上の金属を含む層であることができる。
<Metal layer>
In the present invention and this specification, a "metal layer" refers to a layer containing metal. A metal layer is a layer containing one or more metals, either as a pure metal consisting of a single metal element, as an alloy of two or more metal elements, or as an alloy of one or more metal elements and one or more non-metal elements. can be.
 上記電磁波シールド材は、1層または2層以上の金属層を更に含むことができる。2層以上の金属層は、一形態では組成および厚みが同じであり、他の一形態では組成および/または厚みが異なる。2層以上の金属層を含む電磁波シールド材において、1層以上の磁性層は、2層の金属層に挟まれる位置に配置され得る。ここで、2層の金属層に挟まれた磁性層は、2層の金属層の一方または両方と、直接接する層であることができ、または1層以上の他の層(例えば粘着層)を介して間接的に接する層であることができる。金属層は、例えば電磁波シールド材の一方または両方の最表層であることができる。また、一形態では、上記電磁波シールド材は、金属層、上記積層構造(即ち2層の粘着層の間に樹脂層を有する積層構造)、磁性層、上記積層構造、金属層をこの順に有することができる。かかる形態において、上記電磁波シールド材は、例えば、金属層、粘着層、樹脂層、粘着層、磁性層、粘着層、樹脂層、粘着層、金属層、の9層によって構成され、これら9層をこの順に含む電磁波シールド材であることができる。更には、金属層、上記積層構造(即ち2層の粘着層の間に樹脂層を有する積層構造)、磁性層、上記積層構造、金属層、上記積層構造、磁性層、上記積層構造、金属層、をこの順に有することもできる。かかる形態において、上記電磁波シールド材は、例えば、金属層、粘着層、樹脂層、粘着層、磁性層、粘着層、樹脂層、粘着層、金属層、粘着層、樹脂層、粘着層、磁性層、粘着層、樹脂層、粘着層、金属層の17層によって構成され、これら17層をこの順に含む電磁波シールド材であることができる。磁性層を2層の金属層で挟み込む構成とすることは、0.01~100MHzの範囲の周波数の磁界波に対するシールド能を向上させる観点から好ましい。 The electromagnetic shielding material may further include one or more metal layers. In one form, the two or more metal layers have the same composition and thickness, and in another form, they have different compositions and/or thicknesses. In an electromagnetic shielding material including two or more metal layers, one or more magnetic layers may be placed at a position sandwiched between two metal layers. Here, the magnetic layer sandwiched between the two metal layers may be a layer that is in direct contact with one or both of the two metal layers, or may be a layer that is in direct contact with one or both of the two metal layers, or may be a layer that is in direct contact with one or more other layers (e.g., an adhesive layer). It can be a layer that is in indirect contact with the other layer via the layer. The metal layer can be, for example, the outermost layer of one or both of the electromagnetic shielding materials. Further, in one form, the electromagnetic shielding material has a metal layer, the laminated structure (i.e., a laminated structure having a resin layer between two adhesive layers), a magnetic layer, the laminated structure, and a metal layer in this order. Can be done. In this embodiment, the electromagnetic wave shielding material is composed of nine layers, for example, a metal layer, an adhesive layer, a resin layer, an adhesive layer, a magnetic layer, an adhesive layer, a resin layer, an adhesive layer, and a metal layer. It can be an electromagnetic shielding material containing in this order. Further, a metal layer, the above-mentioned laminate structure (that is, a laminate structure having a resin layer between two adhesive layers), a magnetic layer, the above-mentioned laminate structure, a metal layer, the above-mentioned laminate structure, a magnetic layer, the above-mentioned laminate structure, and a metal layer. , in this order. In this embodiment, the electromagnetic wave shielding material includes, for example, a metal layer, an adhesive layer, a resin layer, an adhesive layer, a magnetic layer, an adhesive layer, a resin layer, an adhesive layer, a metal layer, an adhesive layer, a resin layer, an adhesive layer, a magnetic layer. , an adhesive layer, a resin layer, an adhesive layer, and a metal layer, and can be an electromagnetic shielding material including these 17 layers in this order. A structure in which the magnetic layer is sandwiched between two metal layers is preferable from the viewpoint of improving shielding ability against magnetic field waves having a frequency in the range of 0.01 to 100 MHz.
 金属層としては、各種純金属および各種合金からなる群から選択される一種以上の金属を含む層を用いることができる。金属層は、シールド材において減衰効果を発揮することができる。減衰効果は伝搬定数が大きいほど大きく、電気伝導率が大きいほど伝搬定数が大きいことから、金属層は電気伝導率が高い金属元素を含むことが好ましい。この点から、金属層は、Ag、Cu、AuもしくはAlの純金属またはこれらのいずれかを主成分とした合金を含むことが好ましい。純金属は、単一の金属元素からなる金属であって、微量の不純物を含み得る。一般に、単一の金属元素からなる純度99.0%以上の金属が純金属と呼ばれる。純度は、質量基準である。合金は、一般に、腐食防止、強度向上等のために純金属に一種以上の金属元素または非金属元素を添加し組成を調整したものである。合金における主成分とは、質量基準で最も比率が高い成分であり、例えば合金において80.0質量%以上(例えば100質量%未満または99.8質量%以下)を占める成分であることができる。経済性の観点からはCuもしくはAlの純金属またはCuもしくはAlを主成分とする合金が好ましく、電気伝導率が高いという観点からはCuの純金属もしくはCuを主成分とする合金がより好ましい。 As the metal layer, a layer containing one or more metals selected from the group consisting of various pure metals and various alloys can be used. The metal layer can exert a damping effect in the shielding material. The larger the propagation constant is, the larger the attenuation effect is, and the larger the electrical conductivity is, the larger the propagation constant is. Therefore, the metal layer preferably contains a metal element with high electrical conductivity. From this point of view, it is preferable that the metal layer contains a pure metal such as Ag, Cu, Au, or Al, or an alloy containing any of these as a main component. A pure metal is a metal consisting of a single metallic element and may contain trace amounts of impurities. Generally, a metal consisting of a single metal element and having a purity of 99.0% or more is called a pure metal. Purity is by weight. Alloys are generally made by adding one or more metallic elements or non-metallic elements to a pure metal to adjust the composition in order to prevent corrosion, improve strength, etc. The main component in an alloy is a component having the highest proportion on a mass basis, and can be, for example, a component that accounts for 80.0% by mass or more (for example, less than 100% by mass or 99.8% by mass or less) in the alloy. From the economic point of view, pure metals such as Cu or Al or alloys mainly composed of Cu or Al are preferred, and from the viewpoint of high electrical conductivity, pure metals such as Cu or alloys mainly composed of Cu are more preferred.
 金属層における金属の純度、即ち金属の含有率は、金属層の全質量に対して、99.0質量%以上であることができ、99.5質量%以上であることが好ましく、99.8質量%以上であることがより好ましい。金属層における金属の含有率は、特記しない限り質量基準の含有率をいうものとする。例えば、金属層としては、シート状に加工された純金属または合金を用いることができる。例えば、金属層としては、市販の金属箔または公知の方法で作製した金属箔を用いることができる。Cuの純金属については、様々な厚みのシート(いわゆる銅箔)が市販されている。例えば、かかる銅箔を金属層として用いることができる。銅箔には、その製造方法から電気めっきにより陰極に銅箔を析出させて得られた電解銅箔と、インゴットに熱と圧力をかけて薄く延ばして得られた圧延銅箔と、がある。いずれの銅箔も、上記電磁波シールド材の金属層として使用可能である。また、例えばAlについても、様々な厚みのシート(いわゆるアルミ箔(アルミニウム箔))が市販されている。例えば、かかるアルミ箔を金属層として用いることができる。 The metal purity in the metal layer, that is, the metal content can be 99.0% by mass or more, preferably 99.5% by mass or more, and 99.8% by mass or more, based on the total mass of the metal layer. More preferably, it is at least % by mass. The content of metal in the metal layer is based on mass unless otherwise specified. For example, a pure metal or an alloy processed into a sheet can be used as the metal layer. For example, as the metal layer, a commercially available metal foil or a metal foil produced by a known method can be used. Regarding pure metal Cu, sheets (so-called copper foils) of various thicknesses are commercially available. For example, such copper foil can be used as a metal layer. There are two types of copper foil: electrolytic copper foil, which is obtained by depositing copper foil on a cathode by electroplating, and rolled copper foil, which is obtained by applying heat and pressure to an ingot and stretching it thin. Any copper foil can be used as the metal layer of the electromagnetic shielding material. Furthermore, for example, sheets of Al (so-called aluminum foil) of various thicknesses are commercially available. For example, such aluminum foil can be used as the metal layer.
 電磁波シールド材の軽量化の観点からは、上記多層構造に含まれる2層の金属層の一方または両方(好ましくは両方)が、AlとMgとからなる群から選択される金属を含む金属層であることが好ましい。これは、AlおよびMgは、いずれも電気伝導率で比重を除した値(比重/電気伝導率)が小さいためである。この値がより小さい金属を使用するほど、高いシールド能を発揮する電磁波シールド材をより軽量化することができる。文献値から算出される値として、例えば、Cu、AlおよびMgの電気伝導率で比重を除した値(比重/電気伝導率)は、以下の通りである。Cu:1.5×10-7m/S、Al:7.6×10-8m/S、Mg:7.6×10-8m/S。上記値から、AlおよびMgは、電磁波シールド材の軽量化の観点から好ましい金属ということができる。AlとMgとからなる群から選択される金属を含む金属層は、一形態ではAlおよびMgの一方のみを含むことができ、他の一形態では両方を含むことができる。電磁波シールド材の軽量化の観点からは、上記多層構造に含まれる2層の金属層の一方または両方(好ましくは両方)が、AlとMgとからなる群から選択される金属の含有率が80.0質量%以上の金属層であることがより好ましく、AlとMgとからなる群から選択される金属の含有率が90.0質量%以上の金属層であることが更に好ましい。AlおよびMgの中で少なくともAlを含む金属層は、Al含有率が80.0質量%以上の金属層であることができ、Al含有率が90.0質量%以上の金属層であることもできる。AlおよびMgの中で少なくともMgを含む金属層は、Mg含有率が80.0質量%以上の金属層であることができ、Mg含有率が90.0質量%以上の金属層であることもできる。上記のAlとMgとからなる群から選択される金属の含有率、Al含有率およびMg含有率は、それぞれ例えば100質量%未満または99.9質量%以下であることができる。上記のAlとMgとからなる群から選択される金属の含有率、Al含有率およびMg含有率は、それぞれ金属層の全質量に対する含有率である。 From the viewpoint of reducing the weight of the electromagnetic shielding material, one or both (preferably both) of the two metal layers included in the multilayer structure are metal layers containing a metal selected from the group consisting of Al and Mg. It is preferable that there be. This is because both Al and Mg have a small value obtained by dividing specific gravity by electrical conductivity (specific gravity/electrical conductivity). The smaller this value is used, the lighter the electromagnetic shielding material that exhibits high shielding ability can be made. As a value calculated from literature values, for example, the value obtained by dividing the specific gravity by the electrical conductivity of Cu, Al, and Mg (specific gravity/electrical conductivity) is as follows. Cu: 1.5×10 −7 m/S, Al: 7.6×10 −8 m/S, Mg: 7.6×10 −8 m/S. From the above values, it can be said that Al and Mg are preferable metals from the viewpoint of reducing the weight of the electromagnetic shielding material. A metal layer containing a metal selected from the group consisting of Al and Mg can include only one of Al and Mg in one form, and can contain both of Al and Mg in another form. From the viewpoint of reducing the weight of the electromagnetic shielding material, one or both (preferably both) of the two metal layers included in the multilayer structure have a content rate of 80% of the metal selected from the group consisting of Al and Mg. It is more preferable that the metal layer has a content of .0% by mass or more, and it is even more preferable that the metal layer has a content of a metal selected from the group consisting of Al and Mg of 90.0% by mass or more. The metal layer containing at least Al among Al and Mg can be a metal layer with an Al content of 80.0% by mass or more, and can also be a metal layer with an Al content of 90.0% by mass or more. can. The metal layer containing at least Mg among Al and Mg can be a metal layer with an Mg content of 80.0% by mass or more, and can also be a metal layer with an Mg content of 90.0% by mass or more. can. The content of the metal selected from the group consisting of Al and Mg, the Al content, and the Mg content can be, for example, less than 100% by mass or 99.9% by mass or less, respectively. The content rate of the metal selected from the group consisting of Al and Mg, the Al content rate, and the Mg content rate are each based on the total mass of the metal layer.
<電磁波シールド材の製造方法>
(磁性層の成膜方法)
 上記磁性層は、例えば、磁性層形成用組成物を塗布して設けた塗布層を乾燥させることによって作製することができる。磁性層形成用組成物は、上記で説明した成分を含み、一種以上の溶剤を任意に含むことができる。溶剤としては、各種有機溶剤、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル系溶剤、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶剤等を挙げることができる。磁性層形成用組成物の調製に使用される成分の溶解性等を考慮して選択される一種の溶剤、または二種以上の溶剤を任意の割合で混合して、使用することができる。磁性層形成用組成物の溶剤含有量は特に限定されず、磁性層形成用組成物の塗布性等を考慮して決定すればよい。
<Method for manufacturing electromagnetic shielding material>
(Method of forming magnetic layer)
The above-mentioned magnetic layer can be produced, for example, by applying a magnetic layer-forming composition and drying a coated layer. The composition for forming a magnetic layer contains the components described above, and can optionally contain one or more solvents. Examples of solvents include various organic solvents, such as ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, acetate ester solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, and butyl carbide. Examples include carbitols such as toll, aromatic hydrocarbon solvents such as toluene and xylene, and amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. One type of solvent selected in consideration of the solubility of the components used in preparing the composition for forming a magnetic layer, or a mixture of two or more types of solvents in any ratio can be used. The solvent content of the composition for forming a magnetic layer is not particularly limited, and may be determined by taking into consideration the applicability of the composition for forming a magnetic layer.
 磁性層形成用組成物は、各種成分を任意の順序で順次混合するかまたは同時に混合することによって調製することができる。また、必要に応じて、ボールミル、ビーズミル、サンドミル、ロールミル等の公知の分散機を用いて分散処理を行うことができ、および/または、振とう式撹拌機等の公知の撹拌機を用いて撹拌処理を行うこともできる。 The composition for forming a magnetic layer can be prepared by sequentially mixing various components in any order or by mixing them simultaneously. Further, if necessary, dispersion treatment can be performed using a known dispersion machine such as a ball mill, bead mill, sand mill, or roll mill, and/or stirring using a known agitator such as a shaking type stirrer. Processing can also be performed.
 磁性層形成用組成物は、例えば、支持体上に塗布することができる。塗布は、ブレードコーター、ダイコーター等の公知の塗布装置を使用して行うことができる。塗布は、いわゆるロール・ツー・ロール方式で行うこともでき、バッチ方式で行うこともできる。 The composition for forming a magnetic layer can be applied onto a support, for example. Coating can be performed using a known coating device such as a blade coater or die coater. Application can be carried out in a so-called roll-to-roll manner or in a batch manner.
 磁性層形成用組成物が塗布される支持体としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等の各種樹脂のフィルムが挙げられる。これら樹脂フィルムについては、特開2015-187260号公報の段落0081~0086を参照できる。支持体としては、磁性層形成用組成物が塗布される表面(被塗布面)に公知の方法により剥離処理が施されている支持体を使用することができる。剥離処理の一形態としては、離型層を形成することが挙げられる。離型層については、特開2015-187260号公報の段落0084を参照できる。また、支持体として、市販の剥離処理済樹脂フィルムを使用することもできる。被塗布面に剥離処理が施された支持体を使用することにより、成膜後に磁性層と支持体とを容易に分離することができる。 Examples of the support to which the magnetic layer forming composition is applied include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA), and cyclic polyolefins. , triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, and polyimide. Regarding these resin films, paragraphs 0081 to 0086 of JP-A-2015-187260 can be referred to. As the support, a support whose surface to which the magnetic layer forming composition is applied (coated surface) has been subjected to a release treatment by a known method can be used. One form of peeling treatment includes forming a release layer. Regarding the release layer, paragraph 0084 of JP 2015-187260A can be referred to. Moreover, a commercially available peel-treated resin film can also be used as the support. By using a support whose coated surface has been subjected to a release treatment, the magnetic layer and the support can be easily separated after film formation.
 一形態では、粘着層を支持体として、もしくは粘着層を有する粘着テープを支持体として、または2層の間に樹脂層を有する積層構造を支持体として、磁性層形成用組成物を粘着層上または上記積層構造の粘着層上に直接塗布することも可能である。 In one form, the composition for forming a magnetic layer is applied onto the adhesive layer using the adhesive layer as a support, an adhesive tape having an adhesive layer as a support, or a laminated structure having a resin layer between two layers as a support. Alternatively, it is also possible to apply directly onto the adhesive layer of the above-mentioned laminated structure.
 磁性層形成用組成物を塗布して形成された塗布層には、加熱、温風吹きつけ等の公知の方法によって乾燥処理を施すことができる。乾燥処理は、例えば磁性層形成用組成物に含まれる溶剤を揮発させ得る条件で行うことができる。一例として、例えば、雰囲気温度80~150℃の加熱雰囲気中で、1分間~2時間、乾燥処理を行うことができる。 The coating layer formed by applying the composition for forming a magnetic layer can be subjected to a drying treatment by a known method such as heating or blowing hot air. The drying treatment can be carried out under conditions that allow the solvent contained in the magnetic layer forming composition to be volatilized, for example. As an example, the drying process can be performed in a heated atmosphere at an ambient temperature of 80 to 150° C. for 1 minute to 2 hours.
 磁性粒子および樹脂に加えて架橋剤を含む磁性層形成用組成物に関して、架橋剤については先の記載を参照できる。かかる磁性層形成用組成物を用いて形成された磁性層には、任意の段階で架橋剤の架橋処理を施すことができる。架橋処理としては、架橋剤の種類に応じて、熱処理または光照射処理を行うことができる。例えば、架橋処理が熱処理の場合、かかる熱処理は、一形態では後述する加圧処理の前に行うことができ、他の一形態では後述する加圧処理の後に行うことができる。本発明者の検討によれば、上記熱処理を加圧処理後に行うと、形成される磁性層の透磁率が高まる傾向が見られた。上記熱処理は、例えば、加圧処理前または加圧処理後の磁性層を、雰囲気温度35℃以上(例えば35℃以上150℃以下)の環境に保持することによって行うことができる。上記保持時間は、例えば3~72時間とすることができる。 Regarding the magnetic layer forming composition containing a crosslinking agent in addition to magnetic particles and resin, the above description can be referred to regarding the crosslinking agent. A magnetic layer formed using such a composition for forming a magnetic layer can be subjected to crosslinking treatment using a crosslinking agent at any stage. As the crosslinking treatment, heat treatment or light irradiation treatment can be performed depending on the type of crosslinking agent. For example, when the crosslinking treatment is a heat treatment, such heat treatment can be performed before the pressure treatment described below in one form, and after the pressure treatment described below in another form. According to studies conducted by the present inventors, it has been found that when the heat treatment is performed after the pressure treatment, the magnetic permeability of the formed magnetic layer tends to increase. The above heat treatment can be performed, for example, by maintaining the magnetic layer before or after the pressure treatment in an environment with an ambient temperature of 35° C. or higher (for example, 35° C. or higher and 150° C. or lower). The holding time can be, for example, 3 to 72 hours.
 先に記載した扁平形状粒子の配向度は、磁性層形成用組成物の溶剤種、溶剤量、液粘度、塗布厚み等により制御できる。例えば溶剤の沸点が低いと乾燥によって対流が生じることにより配向度の値が大きくなる傾向がある。溶剤量が少ないと、近接する扁平形状粒子間の物理的干渉により配向度の値が大きくなる傾向がある。一方、液粘度が低いと扁平形状粒子の回転が起き易くなるため配向度の値は小さくなる傾向がある。塗布厚みを薄くすると配向度の値は小さくなる傾向がある。また、後述する加圧処理を行うことは配向度の値を小さくすることに寄与し得る。上記の各種製造条件を調整することによって、扁平形状粒子の配向度を先に記載した範囲に制御することができる。 The degree of orientation of the flat particles described above can be controlled by the type of solvent, amount of solvent, liquid viscosity, coating thickness, etc. of the composition for forming a magnetic layer. For example, if the boiling point of the solvent is low, the value of the degree of orientation tends to increase due to convection caused by drying. When the amount of solvent is small, the value of the degree of orientation tends to increase due to physical interference between adjacent flat particles. On the other hand, when the liquid viscosity is low, rotation of the flat particles tends to occur, so the value of the degree of orientation tends to be small. As the coating thickness decreases, the value of the degree of orientation tends to decrease. Furthermore, performing the pressure treatment described below can contribute to reducing the value of the degree of orientation. By adjusting the various manufacturing conditions described above, the degree of orientation of the flat particles can be controlled within the range described above.
(磁性層の加圧処理)
 磁性層は成膜後加圧処理することもできる。磁性粒子を含む磁性層を加圧処理することにより、磁性層内の磁性粒子の密度を高めることができ、より高い透磁率を得ることができる。また、扁平形状粒子を含む磁性層は、加圧処理によって配向度の値を小さくすることができ、より高い透磁率を得ることができる。
(Pressure treatment of magnetic layer)
The magnetic layer can also be subjected to pressure treatment after film formation. By pressurizing the magnetic layer containing magnetic particles, the density of the magnetic particles in the magnetic layer can be increased, and higher magnetic permeability can be obtained. In addition, the magnetic layer containing flat particles can have a lower degree of orientation by pressure treatment, and can obtain higher magnetic permeability.
 加圧処理は、板状プレス機、ロールプレス機等により磁性層の厚み方向に圧力を加えることにより行うことができる。板状プレス機は上下に配置した平らな2枚のプレス板の間に被加圧物を配置して、機械的または油圧の圧力によって2枚のプレス板を合わせて被加圧物に圧力を加えることができる。ロールプレス機は上下に配置した回転する加圧ロール間に被加圧物を通過させ、その際に加圧ロールに機械的または油圧の圧力を加えるか、加圧ロール間距離を被加圧物の厚みよりも小さくすることによって、圧力を加えることができる。 The pressure treatment can be performed by applying pressure in the thickness direction of the magnetic layer using a plate press, a roll press, or the like. A plate press machine places an object to be pressed between two flat press plates arranged above and below, and applies pressure to the object by bringing the two press plates together using mechanical or hydraulic pressure. Can be done. A roll press machine passes a pressurized object between rotating pressure rolls arranged above and below, and at this time, mechanical or hydraulic pressure is applied to the pressure rolls, or the distance between the pressure rolls is adjusted to Pressure can be applied by making the thickness smaller than .
 加圧処理時の圧力は任意に設定することができる。例えば板状プレス機の場合、例えば1~50N(ニュートン)/mmである。ロールプレス機の場合、例えば線圧20~400N/mmである。
 加圧時間は任意に設定することができる。板状プレス機を用いる場合には例えば5秒~4時間である。ロールプレス機を用いる場合には、加圧時間は被加圧物の搬送速度で制御でき、例えば搬送速度は10cm/分~200m/分である。
 プレス板および加圧ロールの材質は、金属、セラミックス、プラスチック、ゴム等から任意に選ぶことができる。
 加圧処理の際、例えば板状プレス機の上下両方もしくは片側のプレス板またはロールプレス機の上下のロールの片側のロールに温度をかける等して、加熱加圧処理することも可能である。加熱加圧処理では、加熱によって磁性層を軟化させることができ、これにより圧力をかけた際に高い圧縮効果を得ることができる。加熱時の温度は任意に設定でき、例えば50℃以上200℃以下である。上記の加熱時の温度は、プレス板またはロールの内部温度であることができる。かかる温度は、プレス板またはロールの内部に設置された温度計によって測定することができる。一形態では、加熱加圧処理の前または後に、架橋剤の硬化処理として熱処理を実施することができる。かかる熱処理については、先に記載した通りである。
 板状プレス機での加熱加圧処理後、例えば、プレス板の温度が高い状態でプレス板を離間し磁性層を取り出すことができる。または、圧力を保持したままプレス板を水冷、空冷等の方法により冷却し、その後プレス板を離間し磁性層を取り出すこともできる。
 ロールプレス機においては、プレス直後に磁性層を水冷、空冷等の方法により冷却することができる。
 加圧処理を2回以上繰り返し行うことも可能である。
 剥離フィルム上に磁性層を成膜した場合には、例えば、剥離フィルムに積層した状態で加圧処理することができる。または、剥離フィルムから剥離して磁性層単層で加圧処理することもできる。
The pressure during the pressure treatment can be set arbitrarily. For example, in the case of a plate press, the pressure is, for example, 1 to 50 N (Newton)/mm 2 . In the case of a roll press machine, the linear pressure is, for example, 20 to 400 N/mm.
The pressurization time can be set arbitrarily. When using a plate press, the time is, for example, 5 seconds to 4 hours. When using a roll press machine, the pressing time can be controlled by the conveyance speed of the object to be pressed, for example, the conveyance speed is 10 cm/min to 200 m/min.
The material of the press plate and pressure roll can be arbitrarily selected from metal, ceramics, plastic, rubber, etc.
During the pressure treatment, it is also possible to carry out the heat and pressure treatment by, for example, applying heat to both or one of the upper and lower press plates of a plate-shaped press, or to one of the upper and lower rolls of a roll press. In the heat and pressure treatment, the magnetic layer can be softened by heating, and thereby a high compression effect can be obtained when pressure is applied. The temperature during heating can be set arbitrarily, and is, for example, 50° C. or higher and 200° C. or lower. The temperature during the above heating can be the internal temperature of the press plate or roll. Such temperature can be measured by a thermometer placed inside the press plate or roll. In one form, heat treatment can be performed as a crosslinking agent curing treatment before or after the heating and pressure treatment. Such heat treatment is as described above.
After the heat and pressure treatment in the plate press, the magnetic layer can be taken out by separating the press plate while the temperature of the press plate is high, for example. Alternatively, the press plate may be cooled by water cooling, air cooling, or the like while the pressure is maintained, and then the press plate may be separated to take out the magnetic layer.
In a roll press machine, the magnetic layer can be cooled by water cooling, air cooling, or the like immediately after pressing.
It is also possible to repeat the pressure treatment two or more times.
When a magnetic layer is formed on a release film, it can be subjected to pressure treatment while being laminated on the release film, for example. Alternatively, the magnetic layer can be pressure-treated as a single layer after being peeled off from a release film.
(各種層の積層)
 粘着層は、先に記載したように、粘着テープとして磁性層と貼り合わせることができ、または粘着層形成用組成物を磁性層に塗工し乾燥させることによって磁性層と積層することができる。
 金属層については、例えば粘着層と貼り合せることによって、粘着層と直接接する層として電磁波シールド材に組み込むことができる。
 また、上記電磁波シールド材において、隣り合う2層は、例えば圧力および熱をかけて圧着することによって接着させることもできる。圧着には、板状プレス機、ロールプレス機等を用いることができる。例えば、磁性層を金属層と直接接する層として配置する場合、圧着工程において磁性層が軟化し金属層表面への接触が促進されることによって隣り合う2層を接着させることができる。圧着時の圧力は任意に設定することができる。板状プレス機の場合、例えば1~50N/mmである。ロールプレス機の場合、例えば線圧20~400N/mmである。圧着時の加圧時間は任意に設定することができる。板状プレス機を用いる場合には例えば5秒~30分である。ロールプレス機を用いる場合には被加圧物の搬送速度で制御でき、例えば搬送速度は10cm/分~200m/分である。圧着時の温度は任意に選ぶことができ、例えば、20℃以上、200℃以下である。上記の圧着時の温度とは、例えばプレス板またはロールの内部温度であることができる。
(Lamination of various layers)
As described above, the adhesive layer can be attached to the magnetic layer in the form of an adhesive tape, or can be laminated with the magnetic layer by applying an adhesive layer-forming composition to the magnetic layer and drying it.
The metal layer can be incorporated into the electromagnetic shielding material as a layer that is in direct contact with the adhesive layer, for example by bonding it with the adhesive layer.
Further, in the electromagnetic shielding material described above, two adjacent layers can be bonded together by applying pressure and heat, for example. For crimping, a plate press machine, a roll press machine, etc. can be used. For example, when a magnetic layer is arranged as a layer in direct contact with a metal layer, the two adjacent layers can be bonded together by softening the magnetic layer in the compression bonding process and promoting contact with the surface of the metal layer. The pressure during crimping can be set arbitrarily. In the case of a plate press, it is, for example, 1 to 50 N/mm 2 . In the case of a roll press machine, the linear pressure is, for example, 20 to 400 N/mm. The pressurizing time during crimping can be set arbitrarily. When using a plate press, the time is, for example, 5 seconds to 30 minutes. When using a roll press machine, the conveyance speed of the pressurized object can be controlled, for example, the conveyance speed is 10 cm/min to 200 m/min. The temperature during pressure bonding can be arbitrarily selected, and is, for example, 20° C. or more and 200° C. or less. The above-mentioned temperature during pressure bonding can be, for example, the internal temperature of the press plate or roll.
 上記電磁波シールド材は、任意の形状で電子部品または電子機器に組み込むことができる。上記電磁波シールド材は、シート状であることができ、そのサイズは特に限定されるものではない。本発明および本明細書において、「シート」は「フィルム」と同義である。また、上記電磁波シールド材は、シート状の電磁波シールド材を立体成形した立体成形品であることもでき、または立体成形するためのシート状の電磁波シールド材であることもできる。立体成形法としては、金型プレス成形、真空成形、圧空成形等の様々な成形方法を利用することができる。成形方法に関して、成形対象および/または金型を加熱せずに行われるか、または温度をあまり上げずに加熱して行われる成形は、一般に冷間成形と呼ばれる。上記電磁波シールド材は、冷間成形に対して優れた成形性を示すことができる。したがって、上記電磁波シールド材は、絞り成形、張出し成形等の冷間成形に好適である。絞り成形は、シート状の成形対象物を、雌型と雄型の一対の金型を用いてプレスして、円筒、角筒、円錐等の様々な形状の底付容器に成形する成形法である。これに対し、シート状の成形対象物から、平面から曲面が張り出した形の成形品を成形する方法が張出し成形である。張出し成形は、雌型なしで雄型のみのプレスでも実施可能である。絞り成形は、深絞り成形と浅絞り成形とに大別される。浅絞り成形によって深さが浅い成形品が成形され、深絞り成形によって深さが深い(例えば、円筒もしくは円錐の直径または角錐の一辺の長さより深さが深い)成形品が成形される。上記電磁波シールド材は、かかる立体成形法によって成形する際に破断し難い電磁波シールド材であることができる。立体成形法については公知技術を適用できる。 The electromagnetic shielding material described above can be incorporated into electronic components or electronic equipment in any shape. The electromagnetic shielding material may be in the form of a sheet, and its size is not particularly limited. In the present invention and this specification, "sheet" is synonymous with "film". Further, the electromagnetic shielding material may be a three-dimensional molded product obtained by three-dimensionally molding a sheet-like electromagnetic shielding material, or a sheet-like electromagnetic shielding material for three-dimensional molding. As the three-dimensional molding method, various molding methods such as die press molding, vacuum molding, and pressure molding can be used. Regarding the molding method, molding performed without heating the molding object and/or the mold, or by heating without raising the temperature too much, is generally referred to as cold molding. The above-mentioned electromagnetic shielding material can exhibit excellent formability in cold forming. Therefore, the electromagnetic shielding material described above is suitable for cold forming such as drawing and stretch forming. Draw forming is a forming method in which a sheet-shaped object is pressed using a pair of female and male molds to form containers with bottoms of various shapes such as cylinders, square tubes, cones, etc. be. On the other hand, stretch molding is a method of molding a molded product with a curved surface extending from a flat surface from a sheet-like molded object. Stretch molding can also be carried out using a press using only a male die without a female die. Drawing forming is roughly divided into deep drawing forming and shallow drawing forming. Shallow drawing forms a molded product with a shallow depth, and deep drawing forms a molded product with a deep depth (for example, the depth is deeper than the diameter of a cylinder or cone or the length of one side of a pyramid). The electromagnetic shielding material may be an electromagnetic shielding material that is difficult to break when molded by such three-dimensional molding method. As for the three-dimensional molding method, known techniques can be applied.
[電子部品]
 本発明の一態様は、上記電磁波シールド材を含む電子部品に関する。上記電子部品としては、携帯電話、携帯情報端末、医療機器等の電子機器に含まれる電子部品、半導体素子、コンデンサ、コイル、ケーブル等の各種電子部品を挙げることができる。上記電磁波シールド材は、例えば、電子部品の形状に応じて任意の形状に立体成形し、電子部品の内部に配置することができ、または電子部品の外側を覆うカバー材の形状に立体成形し、カバー材として配置することができる。または、筒状に立体成形してケーブルの外側を覆うカバー材として配置することができる。
[Electronic components]
One aspect of the present invention relates to an electronic component including the electromagnetic shielding material described above. Examples of the electronic components include various electronic components such as electronic components included in electronic devices such as mobile phones, personal digital assistants, and medical equipment, semiconductor elements, capacitors, coils, and cables. The electromagnetic shielding material can be three-dimensionally molded into any shape according to the shape of the electronic component and placed inside the electronic component, or can be three-dimensionally molded into the shape of a cover material that covers the outside of the electronic component, It can be arranged as a covering material. Alternatively, it can be three-dimensionally molded into a cylindrical shape and placed as a cover material that covers the outside of the cable.
[電子機器]
 本発明の一態様は、上記電磁波シールド材を含む電子機器に関する。上記電子機器としては、携帯電話、携帯情報端末、医療機器等の電子機器、半導体素子、コンデンサ、コイル、ケーブル等の各種電子部品を含む電子機器、電子部品を回路基板に実装した電子機器等を挙げることができる。かかる電子機器は、この機器に含まれる電子部品の構成部材として上記電磁波シールド材を含むことができる。また、電子機器の構成部材として、上記電磁波シールド材を、電子機器の内部に配置することができ、または電子機器の外側を覆うカバー材として配置することができる。または、筒状に立体成形してケーブルの外側を覆うカバー材として配置することができる。
[Electronics]
One aspect of the present invention relates to an electronic device including the electromagnetic shielding material described above. The above-mentioned electronic devices include electronic devices such as mobile phones, personal digital assistants, and medical equipment, electronic devices that include various electronic components such as semiconductor elements, capacitors, coils, and cables, and electronic devices that have electronic components mounted on circuit boards. can be mentioned. Such an electronic device can include the electromagnetic shielding material described above as a constituent member of an electronic component included in the device. Further, as a component of an electronic device, the electromagnetic shielding material can be placed inside the electronic device, or can be placed as a cover material covering the outside of the electronic device. Alternatively, it can be three-dimensionally molded into a cylindrical shape and placed as a cover material that covers the outside of the cable.
 上記電磁波シールド材の使用形態の一例として、プリント基板上の半導体パッケージをシールド材で被覆する使用形態を挙げることができる。例えば、「半導体パッケージでの電磁波シールド技術」(東芝レビュー Vol.67 No.2 (2012) P.8)には、半導体パッケージをシールド材で被覆する際にパッケージ基板端部の側面ビアとシールド材内側表面とを電気的に接続することによってグランド配線を行い、高いシールド効果を得る手法が開示されている。このような配線を行うためにはシールド材の電子部品側最表層が金属層であることが望ましい。上記電磁波シールド材は、一形態ではシールド材の一方または両方の最表層が金属層であり得るため、上記のような配線を行う際に好適に使用できる。 An example of how the electromagnetic shielding material is used is in which a semiconductor package on a printed circuit board is covered with the shielding material. For example, in "Electromagnetic Shielding Technology for Semiconductor Packages" (Toshiba Review Vol. 67 No. 2 (2012) P. 8), when covering a semiconductor package with a shielding material, the side vias at the edge of the package substrate and the shielding material A method is disclosed in which a high shielding effect is obtained by performing ground wiring by electrically connecting the inner surface. In order to perform such wiring, it is desirable that the outermost layer of the shield material on the electronic component side is a metal layer. In one form, the electromagnetic shielding material described above can have one or both outermost layers of the shielding material being a metal layer, and thus can be suitably used when wiring as described above.
 以下に、本発明を実施例により更に具体的に説明する。ただし、本発明は実施例に示す実施形態に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to the embodiments shown in Examples.
[磁性層の樹脂]
 表1に示す磁性層の樹脂は、以下の樹脂である。表1中、ポリウレタン樹脂を「ポリウレタン」、ポリエステルウレタン樹脂を「ポリエステルウレタン」、アクリロニトリル-ブタジエンゴムを「NBR」と表記する。
 ガラス転移温度Tgが-50℃のポリウレタン樹脂は、東ソー社製ニッポラン5120である。
 ガラス転移温度Tgが-3℃のポリエステルウレタン樹脂は、東洋紡社製UR-3200である。
 ガラス転移温度Tgが23℃のポリエステルウレタン樹脂は、東洋紡社製UR-8300である。
 アクリロニトリル-ブタジエンゴムは、日本ゼオン社製Nipol型番DN003である。
[Resin of magnetic layer]
The resins of the magnetic layer shown in Table 1 are as follows. In Table 1, polyurethane resin is expressed as "polyurethane," polyester urethane resin is expressed as "polyester urethane," and acrylonitrile-butadiene rubber is expressed as "NBR."
The polyurethane resin having a glass transition temperature Tg of −50° C. is Nipporan 5120 manufactured by Tosoh Corporation.
The polyester urethane resin having a glass transition temperature Tg of -3°C is UR-3200 manufactured by Toyobo Co., Ltd.
The polyester urethane resin having a glass transition temperature Tg of 23° C. is UR-8300 manufactured by Toyobo Co., Ltd.
The acrylonitrile-butadiene rubber is Nipol model number DN003 manufactured by Nippon Zeon.
 表1に示す樹脂のガラス転移温度は、以下の方法によって求められた値である。
 磁性層形成用組成物(塗布液)の調製に使用した樹脂と同じ樹脂(ペレット状または粉末状の試料)をアルミニウム製サンプルパンに入れ、プレス機により封入し、示差走査熱量計としてティー・エイ・インスツルメント社製Q100を用いて、以下の条件によりヒートフロー測定を行った。測定結果から、樹脂のガラス転移温度を、昇温時のヒートフローチャートのベースラインシフト開始温度として求めた。
(測定条件)
走査温度:-80.0℃~200.0℃
昇温速度:10.0℃/分
The glass transition temperatures of the resins shown in Table 1 are values determined by the following method.
The same resin (pellet or powder sample) used to prepare the magnetic layer forming composition (coating solution) was placed in an aluminum sample pan, sealed using a press, and then used as a differential scanning calorimeter. - Heat flow measurement was performed using Instrument Q100 under the following conditions. From the measurement results, the glass transition temperature of the resin was determined as the baseline shift start temperature of the heat flow chart during temperature rise.
(Measurement condition)
Scanning temperature: -80.0℃~200.0℃
Heating rate: 10.0℃/min
[実施例1]
<磁性層形成用組成物(塗布液)の調製>
 プラスチックボトルに、
 Fe-Si-Al扁平形状磁性粒子(MKT社製センダストMFS-SUH):10g
 表1に示す樹脂1:1.8g(東ソー社製ニッポラン5120(固形分濃度30質量%)を6.0g使用)
 表1に示す樹脂2:0.2g
 表1に示す樹脂1と樹脂2との合計:2.0g
 多官能イソシアネート:0.495g(三井化学社製タケネートD101E(固形分濃度75質量%)を0.66g使用)
 シクロヘキサノン:25g
を加え、振とう式撹拌機で12時間混合し塗布液を調製した。
[Example 1]
<Preparation of magnetic layer forming composition (coating liquid)>
in a plastic bottle,
Fe-Si-Al flat magnetic particles (MKT Sendust MFS-SUH): 10g
Resin 1 shown in Table 1: 1.8 g (6.0 g of Nipporan 5120 (solid content concentration 30% by mass) manufactured by Tosoh Corporation was used)
Resin 2 shown in Table 1: 0.2g
Total of resin 1 and resin 2 shown in Table 1: 2.0g
Polyfunctional isocyanate: 0.495g (0.66g of Takenate D101E (solid content concentration 75% by mass) manufactured by Mitsui Chemicals was used)
Cyclohexanone: 25g
was added and mixed for 12 hours using a shaking type stirrer to prepare a coating solution.
<シールド材の作製>
(磁性層の成膜)
 剥離処理済みPETフィルム(ニッパ社製PET75-JOL)の剥離面に塗布ギャップ300μmのブレードコーターで塗布液を塗布し、内部雰囲気温度80℃の乾燥装置内で30分間乾燥させ、フィルム状の磁性層を上記剥離処理済みPETフィルム上に成膜した。
<Preparation of shield material>
(Film formation of magnetic layer)
The coating solution was applied to the release surface of a release-treated PET film (PET75-JOL manufactured by Nipper Co., Ltd.) using a blade coater with a coating gap of 300 μm, and dried for 30 minutes in a drying device with an internal atmosphere temperature of 80°C to form a film-like magnetic layer. was formed on the above-mentioned peel-treated PET film.
(磁性層の加圧処理および熱処理)
 板状プレス機(東洋精機製ミニテストプレス)の上下プレス板を140℃(プレス板の内部温度)に加熱し、上記剥離処理済みPETフィルムを剥がした磁性層を、厚み1mmの2枚のテフロン(登録商標)シートで挟み、30N/mmの圧力を加えた状態で10分間保持した。圧力を保持したまま上下プレス板を50℃(プレス板の内部温度)まで冷却した後、2枚のテフロン(登録商標)シートの間から磁性層を取り出した。
 その後、磁性層に含まれる樹脂と多官能イソシアネートとを架橋反応させるために、内部雰囲気温度60℃の乾燥装置内に磁性層を48時間保持して熱処理を施し、磁性層を得た。
 こうして、上記磁性層単層のみから構成されるシート状の電磁波シールド材を得た。
 得られた磁性層の一部から、後述の各種評価のための測定用サンプルを切り出した。
(Pressure treatment and heat treatment of magnetic layer)
The upper and lower press plates of a plate press machine (Mini Test Press manufactured by Toyo Seiki Co., Ltd.) were heated to 140°C (internal temperature of the press plate), and the magnetic layer from which the peel-treated PET film was peeled was placed between two Teflon sheets with a thickness of 1 mm. (registered trademark) sheets and held for 10 minutes under a pressure of 30 N/mm 2 . After cooling the upper and lower press plates to 50° C. (internal temperature of the press plate) while maintaining the pressure, the magnetic layer was taken out from between the two Teflon (registered trademark) sheets.
Thereafter, in order to cause a crosslinking reaction between the resin contained in the magnetic layer and the polyfunctional isocyanate, the magnetic layer was kept in a drying device at an internal atmosphere temperature of 60° C. for 48 hours and heat-treated to obtain a magnetic layer.
In this way, a sheet-shaped electromagnetic shielding material composed only of the single magnetic layer was obtained.
Measurement samples for various evaluations described below were cut out from a part of the obtained magnetic layer.
<シールド能の評価(80℃熱経時前後の透磁率の測定)>
 上記磁性層から28mm×10mmのサイズの測定用サンプルを切り出し、透磁率測定装置(キーコム株式会社製per01)を用いて透磁率測定を行い、3MHzの周波数における複素比透磁率実部(μ’)として透磁率を求めた(測定温度:25℃)。こうして求められた透磁率を、「80℃熱経時前透磁率」とする。
 熱経時前透磁率を測定した後の測定用サンプルを80℃の高温雰囲気中に1日配置した後、上記方法によって透磁率を求めた(測定温度:25℃)。こうして求められた透磁率を、「80℃熱経時後透磁率」とする。
 表1に、「80℃熱経時前透磁率」および「80℃熱経時後透磁率」について、以下の評価基準によって評価した評価結果を示す。
A:透磁率μ’が100以上
B:透磁率μ’が40以上100未満
C:透磁率μ’が40未満
<Evaluation of shielding ability (measurement of magnetic permeability before and after heating at 80°C)>
A measurement sample with a size of 28 mm x 10 mm was cut out from the above magnetic layer, and the magnetic permeability was measured using a magnetic permeability measuring device (per01 manufactured by Keycom Co., Ltd.), and the real part of the complex relative magnetic permeability (μ') at a frequency of 3 MHz was measured. The magnetic permeability was determined as follows (measurement temperature: 25°C). The magnetic permeability obtained in this manner is referred to as "magnetic permeability before heating at 80°C."
After measuring the magnetic permeability before thermal aging, the measurement sample was placed in a high temperature atmosphere of 80° C. for one day, and then the magnetic permeability was determined by the above method (measurement temperature: 25° C.). The magnetic permeability obtained in this way is referred to as "magnetic permeability after heating at 80°C."
Table 1 shows the evaluation results of "magnetic permeability before heat aging at 80°C" and "magnetic permeability after heat aging at 80°C" based on the following evaluation criteria.
A: Magnetic permeability μ' is 100 or more B: Magnetic permeability μ’ is 40 or more and less than 100 C: Magnetic permeability μ’ is less than 40
<電気伝導率の測定>
 デジタル超絶縁抵抗計(タケダ理研製TR-811A)のマイナス極側に直径30mmの円筒状の主電極を接続し、プラス極側に内径40mm外径50mmのリング電極を接続し、60mm×60mmのサイズにカットした上記磁性層のサンプル片上に主電極とそれを取り囲む位置にリング電極を設置し、両極に25Vの電圧を印加し、上記磁性層単独の表面電気抵抗率を測定した。表面電気抵抗率と以下の式から上記磁性層の電気伝導率を算出した。算出された電気伝導率は1.1×10-2S/mであった。
厚みとしては、下記の方法で求められた磁性層の厚みを用いた。
 電気伝導率[S/m]=1/(表面電気抵抗率[Ω]×厚み[m])
<Measurement of electrical conductivity>
A cylindrical main electrode with a diameter of 30 mm is connected to the negative pole side of a digital super insulation resistance meter (TR-811A manufactured by Takeda Riken), a ring electrode with an inner diameter of 40 mm and an outer diameter of 50 mm is connected to the positive pole side, and a 60 mm x 60 mm A main electrode and a ring electrode surrounding the main electrode were placed on a sample piece of the magnetic layer cut to size, a voltage of 25 V was applied to both poles, and the surface electrical resistivity of the magnetic layer alone was measured. The electrical conductivity of the magnetic layer was calculated from the surface electrical resistivity and the following formula. The calculated electrical conductivity was 1.1×10 −2 S/m.
As the thickness, the thickness of the magnetic layer determined by the following method was used.
Electrical conductivity [S/m] = 1/(Surface electrical resistivity [Ω] x thickness [m])
<シールド材断面像の取得>
 以下の方法で実施例1のシールド材の断面を露出させるための断面加工を行った。
 3mm×3mmのサイズに切り出したシールド材を樹脂包埋し、イオンミリング装置(日立ハイテク社製IM4000PLUS)にてシールド材断面を切断した。
 こうして露出させたシールド材の断面を走査型電子顕微鏡(日立ハイテク社製SU8220)にて加速電圧2kVかつ倍率100倍の条件で観察し、反射電子像を得た。得られた像からスケールバーを基準として、シールド材(磁性層)の5カ所の厚みを測定し、その算術平均を、シールド材(磁性層)の厚みとした。シールド材(磁性層)の厚みは30μmであった。
<Acquisition of cross-sectional image of shield material>
Cross-section processing was performed to expose the cross-section of the shield material of Example 1 using the following method.
The shield material cut into a size of 3 mm x 3 mm was embedded in resin, and the cross section of the shield material was cut using an ion milling device (IM4000PLUS, manufactured by Hitachi High-Tech Corporation).
The cross section of the shielding material thus exposed was observed using a scanning electron microscope (SU8220, manufactured by Hitachi High-Technology) under conditions of an accelerating voltage of 2 kV and a magnification of 100 times, to obtain a backscattered electron image. The thickness of the shielding material (magnetic layer) was measured at five locations from the obtained image using the scale bar as a reference, and the arithmetic mean thereof was taken as the thickness of the shielding material (magnetic layer). The thickness of the shield material (magnetic layer) was 30 μm.
<磁性層断面像の取得>
 上記と同様に断面加工して露出させた実施例1のシールド材の断面において、磁性層の部分を走査型電子顕微鏡(日立ハイテク社製SU8220)にて加速電圧2kVかつ倍率1000倍の条件で観察し、反射電子像を得た。
<Acquisition of cross-sectional image of magnetic layer>
In the cross section of the shielding material of Example 1 exposed by cross-sectional processing in the same manner as above, the magnetic layer portion was observed using a scanning electron microscope (SU8220 manufactured by Hitachi High-Tech Corporation) at an accelerating voltage of 2 kV and a magnification of 1000 times. A backscattered electron image was obtained.
<磁性粒子のアスペクト比、扁平形状粒子の配向度の測定>
 上記で取得した反射電子像を用いて、先に記載した方法によって磁性粒子のアスペクト比を求め、アスペクト比の値から扁平形状粒子を特定した。上記磁性層が磁性粒子として扁平形状粒子を含むか含まないかを先に記載したように判定したところ、上記磁性層は扁平形状粒子を含むと判定された。更に、扁平形状粒子と特定された磁性粒子について、先に記載した方法によって配向度を求めたところ、13°であった。また、扁平形状粒子と特定されたすべての粒子のアスペクト比の平均値(算術平均)を、磁性層に含まれる扁平形状粒子のアスペクト比として求めた。求められたアスペクト比は0.071であった。
<Measurement of aspect ratio of magnetic particles and degree of orientation of flat particles>
Using the reflected electron image obtained above, the aspect ratio of the magnetic particles was determined by the method described above, and flat particles were identified from the value of the aspect ratio. When it was determined as described above whether the magnetic layer contained flat particles as magnetic particles, it was determined that the magnetic layer contained flat particles. Furthermore, the degree of orientation of the magnetic particles identified as flat particles was determined by the method described above and was found to be 13°. In addition, the average value (arithmetic mean) of the aspect ratios of all particles identified as flat particles was determined as the aspect ratio of the flat particles contained in the magnetic layer. The aspect ratio determined was 0.071.
<成形性>
 上記電磁波シールド材を雄型および雌型からなる金型(アマダ社製)を用いて、加熱なしで室温(25℃)環境において絞り成形することにより、半球形状の立体成形品を作製した。作製された立体成形品における破断の有無を目視で確認し、確認結果から、下記評価基準によって成形性を評価した。
(評価基準)
A:深さ2cmの半球形状の金型を使用して深さ2cmの立体成形品を破断なく成形可。
B:深さ1cmの半球形状の金型を使用して深さ1cmの立体成形品を破断なく成形可。
  更に、深さ2cmの半球形状の金型を使用した際、
  得られた深さ2cmの立体成形品に破断がみられたか、または深さ2cmの立体成形品が得られなかった。
C:深さ1cmの半球形状の金型を使用して得られた深さ1cmの立体成形品に破断あり。
<Moldability>
A hemispherical three-dimensional molded product was produced by drawing the electromagnetic shielding material described above using a mold consisting of a male mold and a female mold (manufactured by Amada Corporation) at room temperature (25° C.) without heating. The presence or absence of breakage in the produced three-dimensional molded product was visually confirmed, and based on the confirmation results, the moldability was evaluated according to the following evaluation criteria.
(Evaluation criteria)
A: Using a hemispherical mold with a depth of 2cm, it is possible to form a three-dimensional molded product with a depth of 2cm without breakage.
B: A three-dimensional molded product with a depth of 1 cm can be formed without breakage using a hemispherical mold with a depth of 1 cm.
Furthermore, when using a hemispherical mold with a depth of 2 cm,
Either the resulting three-dimensional molded product with a depth of 2 cm was broken, or the three-dimensional molded product with a depth of 2 cm could not be obtained.
C: A three-dimensional molded product with a depth of 1 cm obtained using a hemispherical mold with a depth of 1 cm was broken.
<引張試験(伸び率)>
 上記電磁波シールド材から、長さ50mm×幅10mmの測定用シートを切り出した。この測定用シートの引張試験を、引張試験機としてエー・アンド・デイ社製のテンシロン万能材料試験機(RTF-1310)を用いて以下の測定条件にて実施して伸び率を求めた。伸び率は、引張試験において引張られた試験用シートの最長伸び(即ち測定用シートにおいて少なくとも一層が破断した時点での長さ方向の伸び変位分)をLとして、伸び率[単位:%]=100×L/チャック間距離として求められる。少なくとも一層が破断したことは、応力-ひずみ曲線の応力減少、目視等によって判断することができる。
 こうして求められる伸び率の値が2.0%以上であることが、成形性(例えば冷間成形における成形性)の観点から好ましく、5.0%以上であることがより好ましく、10.0%以上であることが更に好ましい。また、上記伸び率は、例えば90.0%以下、80.0%以下、70.0%以下もしくは60.0%以下であることができ、またはここに例示した値を上回ってもよい。
(測定条件)
 チャック間距離:25mm
 測定環境:温度23℃、相対湿度50%
 ロードセル:500N(ニュートン)
 引張速度:1mm/分
 引張方向:長さ方向
<Tensile test (elongation rate)>
A measuring sheet with a length of 50 mm and a width of 10 mm was cut out from the electromagnetic shielding material. A tensile test of this measurement sheet was carried out under the following measurement conditions using a Tensilon Universal Material Testing Machine (RTF-1310) manufactured by A&D as a tensile tester to determine the elongation rate. The elongation rate is calculated by setting the longest elongation of the test sheet pulled in the tensile test (i.e. the elongation displacement in the length direction at the time when at least one layer breaks in the measurement sheet) as L, and elongation rate [unit: %] = It is determined as 100×L/distance between chucks. The fact that at least one layer has fractured can be determined by the stress decrease in the stress-strain curve, visual inspection, and the like.
It is preferable that the value of the elongation rate determined in this way is 2.0% or more from the viewpoint of formability (for example, formability in cold forming), more preferably 5.0% or more, and 10.0% or more. It is more preferable that it is above. Further, the elongation rate may be, for example, 90.0% or less, 80.0% or less, 70.0% or less, or 60.0% or less, or may exceed the values exemplified herein.
(Measurement condition)
Distance between chucks: 25mm
Measurement environment: temperature 23℃, relative humidity 50%
Load cell: 500N (Newton)
Tensile speed: 1mm/min Tensile direction: Length direction
[実施例2~9、比較例1~4]
 表1に示す項目を表1に示すように変更した点以外、実施例1について記載した方法によって、電磁波シールド材の作製および各種評価を行った。
 実施例2~9および比較例1~4について、先に記載した方法によってシールド材(磁性層)の厚みを求めたところ、実施例1について求められた値と同じであった。
[Examples 2 to 9, Comparative Examples 1 to 4]
Electromagnetic shielding materials were produced and various evaluations were performed by the method described in Example 1, except that the items shown in Table 1 were changed as shown in Table 1.
For Examples 2 to 9 and Comparative Examples 1 to 4, the thickness of the shield material (magnetic layer) was determined by the method described above, and the thickness was the same as that determined for Example 1.
[比較例5]
 表1に示す項目を表1に示すように変更した点以外、実施例1について記載した方法によって、電磁波シールド材の作製を試みた。しかし、磁性層の自己支持性が足りず磁性層を形成することができなかったため、電磁波シールド材を作製できなかった。
[Comparative example 5]
An attempt was made to produce an electromagnetic shielding material by the method described in Example 1, except that the items shown in Table 1 were changed as shown in Table 1. However, it was not possible to form an electromagnetic shielding material because the magnetic layer did not have sufficient self-supporting properties.
 以上の結果を、表1に示す。磁性層の透磁率が高いことは、その磁性層を含む電磁波シールド材が電磁波に対して優れたシールド能を発揮できることを示すということができる。例えば、80℃熱経時後の透磁率が高い磁性層を含む電磁波シールド材は、高温下に置かれた後にも電磁波に対して優れたシールド能を発揮できるということができる。表1中の総合評価の欄に示した評価結果としては、80℃熱経時後の透磁率の評価結果および成形性の評価結果の中で、より低い評価結果を採用した。例えば、2つの評価結果がAおよびCの場合、総合評価の評価結果はCとした。電磁波シールド材を作製できなかった比較例5については、総合評価の評価結果はCとした。 The above results are shown in Table 1. The high magnetic permeability of the magnetic layer can be said to indicate that the electromagnetic wave shielding material including the magnetic layer can exhibit excellent shielding ability against electromagnetic waves. For example, it can be said that an electromagnetic wave shielding material including a magnetic layer with high magnetic permeability after heating at 80° C. can exhibit excellent shielding ability against electromagnetic waves even after being placed under high temperature. As the evaluation results shown in the comprehensive evaluation column in Table 1, the lower evaluation result was adopted among the evaluation results of magnetic permeability after aging at 80° C. and the evaluation results of moldability. For example, when the two evaluation results are A and C, the evaluation result of the comprehensive evaluation is C. Regarding Comparative Example 5 in which the electromagnetic shielding material could not be produced, the evaluation result of the comprehensive evaluation was set as C.
 表1に示す結果から、実施例の電磁波シールド材が、高温下に置かれた後のシールド能に優れ、かつ成形性に優れることが確認できる。 From the results shown in Table 1, it can be confirmed that the electromagnetic shielding materials of Examples have excellent shielding ability after being placed under high temperature and excellent moldability.
 実施例2について記載した方法によって作製した磁性層を使用し、金属層として厚み50μmのアルミ箔(JIS H4160:2006規格準拠、合金番号1N30質別(1)O、Al含有率99.3質量%以上)を使用し、「アルミ箔(金属層)/磁性層/アルミ箔(金属層)/磁性層/アルミ箔(金属層)」の5層を、隣り合う2層間に他の層を介在させずに重ね合わせて積層体を作製した。
 板状プレス機(山本鉄工所社製大型ホットプレスTA-200-1W)の上下プレス板を140℃(プレス板の内部温度)に加熱し、上記積層体をプレス板中央に設置し、4.66N/mmの圧力を加えた状態で10分間保持してアルミ箔と磁性層とを熱圧着した。圧力を保持したまま上下プレス板を50℃(プレス板の内部温度)まで冷却した後、板状プレス機から積層体を取り出した。
 こうして、「アルミ箔(金属層)/磁性層/アルミ箔(金属層)/磁性層/アルミ箔(金属層)」の5層からなる電磁波シールド材を得た。
 得られた電磁波シールド材について、先に記載した成形性の評価を行ったところ、実施例2と同様の評価結果が得られた。また、こうして作製された電磁波シールド材は、実施例2と同様の磁性層を含むため、実施例2の電磁波シールド材と同様に高温下に置かれた後のシールド能に優れる。
The magnetic layer produced by the method described in Example 2 was used, and the metal layer was made of aluminum foil with a thickness of 50 μm (compliant with JIS H4160:2006 standard, alloy number 1N30 tempered (1) O, Al content 99.3% by mass) (above), the five layers of "aluminum foil (metal layer)/magnetic layer/aluminum foil (metal layer)/magnetic layer/aluminum foil (metal layer)" are interposed between two adjacent layers. A laminate was produced by overlapping each other without overlapping each other.
4. Heat the upper and lower press plates of a plate press machine (large hot press TA-200-1W manufactured by Yamamoto Iron Works Co., Ltd.) to 140°C (internal temperature of the press plate), and place the above laminate in the center of the press plate. The aluminum foil and the magnetic layer were bonded by thermocompression by applying a pressure of 66 N/mm 2 for 10 minutes. After cooling the upper and lower press plates to 50° C. (internal temperature of the press plate) while maintaining the pressure, the laminate was taken out from the plate press.
In this way, an electromagnetic shielding material consisting of five layers of "aluminum foil (metal layer)/magnetic layer/aluminum foil (metal layer)/magnetic layer/aluminum foil (metal layer)" was obtained.
When the obtained electromagnetic shielding material was evaluated for moldability as described above, the same evaluation results as in Example 2 were obtained. In addition, since the electromagnetic shielding material thus produced includes the same magnetic layer as in Example 2, it has excellent shielding ability after being placed under high temperature like the electromagnetic shielding material of Example 2.
 本発明の一態様は、各種電子部品および各種電子機器の技術分野において有用である。 One embodiment of the present invention is useful in the technical fields of various electronic components and electronic devices.

Claims (9)

  1. 磁性粒子および樹脂を含む磁性層を1層以上有し、
    前記磁性層における前記磁性粒子の含有量は、前記磁性層の全質量を100質部として、70質量部超95質量部以下であり、
    前記樹脂は、ウレタン結合含有樹脂およびジエン系樹脂を含み、かつ
    前記磁性層は、架橋剤を更に含む、電磁波シールド材。
    having one or more magnetic layers containing magnetic particles and resin,
    The content of the magnetic particles in the magnetic layer is more than 70 parts by mass and not more than 95 parts by mass, with the total mass of the magnetic layer being 100 parts by mass,
    An electromagnetic shielding material, wherein the resin includes a urethane bond-containing resin and a diene resin, and the magnetic layer further includes a crosslinking agent.
  2. 前記磁性層における前記ジエン系樹脂の含有量は、前記磁性層における前記樹脂の合計含有量を100質量部として、2質量部以上15質量部以下である、請求項1に記載の電磁波シールド材。 The electromagnetic shielding material according to claim 1, wherein the content of the diene resin in the magnetic layer is 2 parts by mass or more and 15 parts by mass or less, based on a total content of the resin in the magnetic layer of 100 parts by mass.
  3. 前記ウレタン結合含有樹脂のガラス転移温度は-60℃以上0℃未満である、請求項1に記載の電磁波シールド材。 The electromagnetic shielding material according to claim 1, wherein the urethane bond-containing resin has a glass transition temperature of -60°C or more and less than 0°C.
  4. 前記架橋剤は、多官能イソシアネートである、請求項1に記載の電磁波シールド材。 The electromagnetic shielding material according to claim 1, wherein the crosslinking agent is a polyfunctional isocyanate.
  5. 前記磁性層における前記多官能イソシアネートの含有量は、前記磁性層における前記樹脂の合計含有量を100質量部として、15質量部以上である、請求項4に記載の電磁波シールド材。 The electromagnetic shielding material according to claim 4, wherein the content of the polyfunctional isocyanate in the magnetic layer is 15 parts by mass or more, based on 100 parts by mass of the total content of the resin in the magnetic layer.
  6. 前記磁性層における前記ジエン系樹脂の含有量は、前記磁性層における前記樹脂の合計含有量を100質量部として、2質量部以上15質量部以下であり、
    前記ウレタン結合含有樹脂のガラス転移温度は-60℃以上0℃未満であり、
    前記架橋剤は、多官能イソシアネートであり、かつ
    前記磁性層における前記多官能イソシアネートの含有量は、前記磁性層における前記樹脂の合計含有量を100質量部として、15質量部以上である、請求項1に記載の電磁波シールド材。
    The content of the diene resin in the magnetic layer is 2 parts by mass or more and 15 parts by mass or less, with the total content of the resin in the magnetic layer being 100 parts by mass,
    The glass transition temperature of the urethane bond-containing resin is -60°C or more and less than 0°C,
    The crosslinking agent is a polyfunctional isocyanate, and the content of the polyfunctional isocyanate in the magnetic layer is 15 parts by mass or more, with the total content of the resin in the magnetic layer being 100 parts by mass. 1. The electromagnetic shielding material according to 1.
  7. 2層以上の金属層を更に有し、かつ
    2層の金属層の間に挟まれた前記磁性層を1層以上含む、請求項1に記載の電磁波シールド材。
    The electromagnetic shielding material according to claim 1, further comprising two or more metal layers, and one or more of the magnetic layers sandwiched between the two metal layers.
  8. 請求項1~7のいずれか1項に記載の電磁波シールド材を含む電子部品。 An electronic component comprising the electromagnetic shielding material according to any one of claims 1 to 7.
  9. 請求項1~7のいずれか1項に記載の電磁波シールド材を含む電子機器。 An electronic device comprising the electromagnetic shielding material according to any one of claims 1 to 7.
PCT/JP2023/022342 2022-06-29 2023-06-16 Electromagnetic wave shielding material, electronic component, and electronic device WO2024004698A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-104531 2022-06-29
JP2022104531 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024004698A1 true WO2024004698A1 (en) 2024-01-04

Family

ID=89382140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022342 WO2024004698A1 (en) 2022-06-29 2023-06-16 Electromagnetic wave shielding material, electronic component, and electronic device

Country Status (1)

Country Link
WO (1) WO2024004698A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779085A (en) * 1993-09-06 1995-03-20 Riken Corp Electromagnetic wave-shield molding and its molding method
JPH1112376A (en) * 1997-06-20 1999-01-19 Jsr Corp Modification of polymeric base material
JP2003243877A (en) * 2002-02-15 2003-08-29 Hitachi Maxell Ltd Magnetic shield composition, magnetic shield sheet, and power cable
JP2017228598A (en) * 2016-06-20 2017-12-28 住友ベークライト株式会社 Electromagnetic wave shield film, and electronic component-mounted substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779085A (en) * 1993-09-06 1995-03-20 Riken Corp Electromagnetic wave-shield molding and its molding method
JPH1112376A (en) * 1997-06-20 1999-01-19 Jsr Corp Modification of polymeric base material
JP2003243877A (en) * 2002-02-15 2003-08-29 Hitachi Maxell Ltd Magnetic shield composition, magnetic shield sheet, and power cable
JP2017228598A (en) * 2016-06-20 2017-12-28 住友ベークライト株式会社 Electromagnetic wave shield film, and electronic component-mounted substrate

Similar Documents

Publication Publication Date Title
US8123972B2 (en) Sheet-like soft-magnetic material and production method thereof
CN101277601B (en) Laminated body
WO2019239710A1 (en) Electromagnetic wave shielding sheet
US20220355585A1 (en) Method for producing packaging material for batteries and battery
TWI526553B (en) Flexible laminates for flexible wiring
JP6255816B2 (en) Electromagnetic shielding sheet and printed wiring board
JP2019009452A (en) Electronic component-mounted substrate, laminate, electromagnetic wave-shielding sheet and electronic equipment
JP2018006536A (en) Component mount substrate, manufacturing method thereof, laminate, electromagnetic wave shield sheet and electronic apparatus
KR101525368B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board and electronic device
JP6358340B2 (en) Oriented copper plate, copper-clad laminate, flexible circuit board, and electronic device
WO2024004698A1 (en) Electromagnetic wave shielding material, electronic component, and electronic device
JP6183568B1 (en) Manufacturing method of component mounting board
JP2009295671A (en) Magnetic sheet and method for manufacturing the same
WO2023074617A1 (en) Electromagnetic shielding material, electronic component and electronic device
TW202106503A (en) Magnetic film
WO2023074618A1 (en) Electromagnetic wave shielding material, electronic component, and electronic device
US20220220350A1 (en) Adhesive sheet and electronic component
JP2007323918A (en) Shielded flat cable and its manufacturing method
JP6566008B2 (en) Electromagnetic shielding sheet and printed wiring board
WO2024004697A1 (en) Electromagnetic wave shielding material, electronic part, and electronic apparatus
US20240107728A1 (en) Electromagnetic wave shielding material, electronic component, and electronic apparatus
WO2023074619A1 (en) Electromagnetic wave shield material, electronic component, electronic device, and method of using electromagnetic wave shield material
WO2022255022A1 (en) Electomagnetic wave shielding material, electronic component, and electronic apparatus
WO2022138701A1 (en) Electromagnetic-wave shielding material, electronic component, and electronic apparatus
CN116761714A (en) Electromagnetic wave shielding material, electronic component, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831145

Country of ref document: EP

Kind code of ref document: A1