WO2024004601A1 - Method for producing phase difference film, and method for producing circularly polarizing plate - Google Patents

Method for producing phase difference film, and method for producing circularly polarizing plate Download PDF

Info

Publication number
WO2024004601A1
WO2024004601A1 PCT/JP2023/021666 JP2023021666W WO2024004601A1 WO 2024004601 A1 WO2024004601 A1 WO 2024004601A1 JP 2023021666 W JP2023021666 W JP 2023021666W WO 2024004601 A1 WO2024004601 A1 WO 2024004601A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin layer
retardation
stretching
layer
Prior art date
Application number
PCT/JP2023/021666
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 大里
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024004601A1 publication Critical patent/WO2024004601A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for manufacturing a retardation film and a method for manufacturing a circularly polarizing plate.
  • Image display devices such as organic electroluminescent image display devices (hereinafter sometimes referred to as "organic EL image display devices”) and liquid crystal image display devices are sometimes provided with a retardation film.
  • Some of such retardation films have a multilayer structure including two or more layers.
  • a method for producing a retardation film having such a multilayer structure a method using a co-stretching method is sometimes adopted (see Patent Documents 1 to 4).
  • Image display devices are sometimes provided with circularly polarizing plates to reduce reflection of external light on the display surface.
  • a circularly polarizing plate a film that is a combination of a linear polarizer and a ⁇ /4 plate is generally used.
  • a circularly polarizing plate that can reduce reflection of external light in a wide wavelength range.
  • Such a circularly polarizing plate can be manufactured using, for example, a broadband ⁇ /4 plate that can function as a ⁇ /4 plate in a wide wavelength range.
  • a broadband ⁇ /4 plate a retardation film comprising a combination of a plurality of layers is known, such as a retardation film comprising a combination of a ⁇ /2 plate and a ⁇ /4 plate.
  • a circularly polarizing plate equipped with a retardation film that can function as a broadband ⁇ /4 plate can reduce the reflection of external light in a wide wavelength range in the front direction perpendicular to the display surface, thereby suppressing coloration of the display surface. can.
  • the phase difference value deviates from the ideal value, and the optical axes of each layer become deviated, resulting in the interference of external light over a wide wavelength range. It may not be possible to reduce reflections. Therefore, in order to realize a circularly polarizing plate that can suppress coloring due to reflection of external light in the tilt direction, the retardation film is required to have an NZ coefficient in a specific range of greater than 0.0 and less than 1.0. It will be done.
  • the layers included in the retardation film that meet the above requirements usually differ in some or all of their optical properties, such as the direction of the slow axis, in-plane retardation, and NZ coefficient. Therefore, conventionally, the above-mentioned retardation film has generally been manufactured by separately manufacturing each layer and then bonding the layers together. However, in such conventional manufacturing methods, each layer is manufactured separately, which tends to increase the number of steps and increase labor and cost. Furthermore, when bonding each layer together, it is required to accurately match the bonding angle, which requires time and effort to adjust the angle, which also tends to increase the effort. Further, when producing the above-mentioned retardation film by stretching an unstretched multilayer film, it is complicated to adjust stretching conditions such as the temperature of the thermoplastic resin forming each layer and the stretching temperature.
  • a manufacturing method that can easily produce a retardation film that can produce a circularly polarizing plate that can suppress coloring due to reflection of external light both in the front direction and in the tilt direction of the display surface; There is a need for a manufacturing method that can easily manufacture a circularly polarizing plate that can suppress coloring due to reflection of external light in both directions.
  • a first film including a resin layer (P1) formed of a thermoplastic resin P having a positive intrinsic birefringence value is prepared, the first film is stretched at least once, and the resin layer (P1) is stretched at least once.
  • obtaining a second film comprising a resin layer (P2) which is a stretched layer of P1); ) was found to be able to be solved by a manufacturing method that includes laminating a third film to obtain a third film and stretching the third film at least once, and completed the present invention. That is, the present invention provides the following.
  • a method for producing a retardation film that satisfies the following formula (1), the following formula (2), and the following formula (3) includes: A first step of preparing a first film comprising a resin layer (P1) formed of a thermoplastic resin P having a positive intrinsic birefringence value; a second step of stretching the first film at least once to obtain a second film comprising a resin layer (P2) that is a stretched layer of the resin layer (P1); a third step of laminating a resin layer (N1) formed of a thermoplastic resin N having a negative intrinsic birefringence value on the second film to obtain a third film; The third film was stretched at least once, and the resin layer (P), which is a layer obtained by stretching the resin layer (P2) and has a slow axis (P), and the resin layer (N1) were stretched.
  • a method for producing a retardation film including: 100nm ⁇ Re T (550) ⁇ 180nm (1) Re T (450) ⁇ Re T (550) ⁇ Re T (650) (2) 0.0 ⁇ NZT ⁇ 1.0 (3) (however, Re T (450) represents the in-plane retardation of the retardation film at a wavelength of 450 nm, Re T (550) represents the in-plane retardation of the retardation film at a wavelength of 550 nm, Re T (650) represents the in-plane retardation of the retardation film at a wavelength of 650 nm, NZ T represents the NZ coefficient of the retardation film.
  • a method for manufacturing a circularly polarizing plate including a linear polarizer and a retardation film comprising: A fifth step of producing the retardation film using the method for producing a retardation film according to any one of [1] to [6]; a sixth step of laminating the retardation film and the linear polarizer; A method for manufacturing a circularly polarizing plate, including:
  • This disclosure also provides: [8] A retardation film produced by the production method according to any one of [1] to [6].
  • a manufacturing method that can easily produce a retardation film that can produce a circularly polarizing plate that can suppress coloring due to reflection of external light both in the front direction and in the inclined direction of the display surface; It is possible to provide a manufacturing method that can easily manufacture a circularly polarizing plate that can suppress coloration due to reflection of external light both in the front direction and in the inclined direction.
  • FIG. 1 is a perspective view schematically showing an evaluation model set when calculating color space coordinates in simulations in Examples and Comparative Examples.
  • nx represents the refractive index in the direction perpendicular to the thickness direction (in-plane direction) giving the maximum refractive index (slow axis direction)
  • ny represents the in-plane direction in the nx direction.
  • nz the refractive index in the thickness direction
  • d the thickness.
  • the measurement wavelength is 550 nm unless otherwise specified.
  • the in-plane retardation, the thickness direction retardation, and the NZ coefficient can be measured using a retardation meter (“AxoScan” manufactured by Axometrics).
  • the slow axis of a certain layer refers to the slow axis of the layer in the in-plane direction.
  • the angle formed by the optical axis (absorption axis, transmission axis, slow axis, etc.) of each layer in a member having multiple layers is the angle when the layer is viewed from the thickness direction. represents.
  • the front direction of a certain surface means the normal direction of the surface unless otherwise specified, and specifically refers to the direction of the polar angle of 0° and the azimuth angle of 0° of the surface.
  • the inclination direction of a certain surface means a direction that is neither parallel nor perpendicular to the surface unless otherwise specified, and specifically, the range in which the polar angle of the surface is greater than 0° and less than 90°. Point in the direction of
  • a "long" film refers to a film having a length of 5 times or more, preferably 10 times or more, of the width, and specifically a roll A film that is long enough to be rolled up into a shape for storage or transportation.
  • the upper limit of the length of the long film is not particularly limited, and may be, for example, 100,000 times or less the width.
  • the longitudinal direction of a long film is usually parallel to the flow direction of the film on the production line. Further, the width direction of a long film is usually perpendicular to the thickness direction and perpendicular to the longitudinal direction.
  • polarizing plate refers not only to rigid members, but also to e.g. It also includes flexible members such as resin films.
  • polymer having a positive intrinsic birefringence value and “resin having a positive intrinsic birefringence value” mean that the refractive index in the stretching direction is lower than the refractive index in the direction perpendicular to the stretching direction. and "a resin whose refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to the stretching direction” respectively.
  • polymer having a negative intrinsic birefringence value and “resin having a negative intrinsic birefringence value” refer to "a polymer whose refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal to the stretching direction”.
  • coalescence and "resin whose refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal to the stretching direction” respectively.
  • the intrinsic birefringence value can be calculated from the dielectric constant distribution.
  • adhesives are not only adhesives in the narrow sense (adhesives with a shear storage modulus of 1 MPa to 500 MPa at 23°C after energy ray irradiation or heat treatment); Also included are adhesives having a shear storage modulus of less than 1 MPa at 23°C.
  • a retardation film manufactured by the manufacturing method according to an embodiment of the present invention satisfies the following formula (1), the following formula (2), and the following formula (3).
  • a linear polarizer By combining this retardation film with a linear polarizer, it is possible to obtain a circularly polarizing plate that can suppress coloring due to reflection of external light both in the front direction and in the tilt direction of the display surface.
  • Re T (450) represents the in-plane retardation of the retardation film at a wavelength of 450 nm
  • Re T (550) represents the in-plane retardation of the retardation film at a wavelength of 550 nm
  • Re T (650) represents the in-plane retardation of the retardation film at a wavelength of 650 nm
  • NZ T represents the NZ coefficient of the retardation film.
  • the in-plane retardation Re T (550) of the retardation film at a wavelength of 550 nm is usually 100 nm or more, preferably 115 nm or more, particularly preferably 125 nm or more, and usually 180 nm or less, preferably 160 nm or less, particularly preferably 150 nm. It is as follows. When having an in-plane retardation Re T (550) in such a range, the retardation film can function as a ⁇ /4 plate. Therefore, by combining the retardation film with a linear polarizer, it is possible to obtain a circularly polarizing plate that can suppress reflection of external light.
  • the in-plane retardation Re T (550) that satisfies formula (1) is, for example, the in-plane retardation of each layer such as the resin layer (P) and the resin layer (N) included in the retardation film, and the in-plane retardation of each layer. This can be obtained by appropriately adjusting the direction of the slow axis.
  • the above formula (2) will be explained in detail.
  • the in-plane retardations Re T (450), Re T (550), and Re T (650) of the retardation film at wavelengths of 450 nm, 550 nm, and 650 nm are as follows: Re T (450) ⁇ Re T (550) ⁇ Re T (650) ) is satisfied.
  • the in-plane retardation of a retardation film that satisfies this formula (2) usually exhibits reverse wavelength dispersion. Specifically, the retardation film generally has a larger in-plane retardation as the measurement wavelength is longer. Therefore, this retardation film can function as a broadband ⁇ /4 plate that can uniformly convert the polarization state of light that passes through the retardation film in a wide wavelength range. Therefore, by combining the retardation film with a linear polarizer, it is possible to obtain a circularly polarizing plate that can suppress coloring due to reflection of external light.
  • the in-plane retardations Re T (450), Re T (550), and Re T (650) that satisfy formula (2) are, for example, the resin layer (P) and resin layer (N) included in the retardation film. This can be obtained by appropriately adjusting the in-plane retardation of each layer and the direction of the slow axis of each layer.
  • the NZ coefficient NZ T of the retardation film is usually larger than 0.0, preferably larger than 0.2, particularly preferably larger than 0.3, and usually smaller than 1.0, preferably smaller than 0.8, especially Preferably it is less than 0.7.
  • the retardation film has the NZ coefficient NZ T in the above range, the retardation film has appropriately adjusted birefringence in both the in-plane direction and the thickness direction. Therefore, a circularly polarizing plate obtained by combining the retardation film with a linear polarizer can suppress coloring due to reflection of external light both in the front direction and in the inclined direction of the display surface.
  • the NZ coefficient NZ T of the retardation film is calculated using the in-plane retardation Re T (550) and the thickness direction retardation Rth T (550) of the retardation film at a wavelength of 550 nm, unless otherwise specified .
  • the NZ coefficient NZ T that satisfies formula (3) can be obtained, for example, by appropriately adjusting the NZ coefficient of each layer such as the resin layer (P) and the resin layer (N) included in the retardation film.
  • a retardation film satisfying the above-mentioned formulas (1) to (3) is formed into a resin layer (P) containing a thermoplastic resin P and a resin layer (P) containing a thermoplastic resin N.
  • N) is manufactured as a retardation film comprising the following in combination.
  • thermoplastic resin P has a positive intrinsic birefringence value
  • thermoplastic resin N has a negative intrinsic birefringence value.
  • the thermoplastic resin P having a positive intrinsic birefringence value usually contains a polymer having a positive intrinsic birefringence value.
  • this polymer include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polyvinyl alcohol; polycarbonate; polyarylate; cellulose ester; polyether sulfone; polysulfone; Polyarylsulfone; polyvinyl chloride; alicyclic structure-containing polymer; rod-shaped liquid crystal polymer; and the like.
  • One type of these polymers may be used alone, or two or more types may be used in combination in any ratio.
  • alicyclic structure-containing polymers, cellulose esters, and polycarbonates are preferred, and alicyclic structure-containing polymers are particularly preferred.
  • the alicyclic structure-containing polymer is a polymer containing an alicyclic structure in its repeating units, such as a cyclic olefin polymer and its hydrogenated product, and is usually an amorphous polymer.
  • the alicyclic structure-containing polymer both a polymer containing an alicyclic structure in the main chain and a polymer containing an alicyclic structure in the side chain can be used.
  • the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and from the viewpoint of thermal stability, a cycloalkane structure is preferable.
  • the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, particularly preferably 6 or more, and preferably 30 or less, more preferably 20 or less, Particularly preferably, the number is 15 or less.
  • the proportion of repeating units containing an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably 90% by weight or more.
  • the proportion of repeating units containing an alicyclic structure is within the above range, a retardation film with excellent heat resistance can be obtained.
  • Examples of alicyclic structure-containing polymers include (1) norbornene polymers, (2) monocyclic olefin polymers, (3) cyclic conjugated diene polymers, and (4) vinyl alicyclic hydrocarbon polymers. Examples include coalescence, hydrogenated products thereof, and the like. Among these, cyclic olefin polymers and norbornene polymers are preferred, and norbornene polymers are particularly preferred.
  • norbornene-based polymers examples include ring-opening polymers of monomers containing a norbornene structure, ring-opening copolymers of monomers containing a norbornene structure and other monomers capable of ring-opening copolymerization therewith, and hydrides; addition polymers of monomers containing a norbornene structure, addition copolymers of monomers containing a norbornene structure and other monomers copolymerizable therewith, and the like.
  • hydrogenated ring-opening polymers of monomers containing a norbornene structure are particularly preferred.
  • the alicyclic structure-containing polymer may be selected from, for example, the polymers disclosed in JP-A No. 2002-321302.
  • cellulose esters examples include lower fatty acid esters of cellulose (eg, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate).
  • Lower fatty acid means a fatty acid having 6 or less carbon atoms per molecule.
  • Cellulose acetate may include triacetylcellulose (TAC) and cellulose diacetate (DAC).
  • the total degree of acyl group substitution of the cellulose ester is preferably 2.20 or more and 2.70 or less, more preferably 2.40 or more and 2.60 or less.
  • the total acyl groups can be measured according to ASTM D817-91.
  • the weight average degree of polymerization of the cellulose ester is preferably 350 or more and 800 or less, more preferably 370 or more and 600 or less.
  • dihydroxy compounds include bisphenol A.
  • the number of structural units derived from dihydroxy compounds contained in the polycarbonate may be one, or two or more.
  • the weight average molecular weight (Mw) of the polymer contained in the thermoplastic resin P is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, and preferably 100,000 or less, It is more preferably 80,000 or less, particularly preferably 50,000 or less. When the weight average molecular weight is within such a range, the mechanical strength and moldability of the resin layer (P) are highly balanced.
  • the above weight average molecular weight is a weight average molecular weight in terms of polyisoprene or polystyrene measured by gel permeation chromatography (GPC) using cyclohexane as a solvent. However, if the sample does not dissolve in cyclohexane, toluene may be used as the GPC solvent.
  • the proportion of the polymer in the thermoplastic resin P is preferably 50% to 100% by weight, more preferably 70% to 100% by weight, particularly preferably 90% to 100% by weight. When the proportion of the polymer is within the above range, the resin layer (P) can obtain sufficient heat resistance and transparency.
  • the thermoplastic resin P may further contain arbitrary components in combination with the above polymer.
  • optional components include stabilizers such as antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, ultraviolet absorbers, and near-infrared absorbers; plasticizers; and the like.
  • stabilizers such as antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, ultraviolet absorbers, and near-infrared absorbers; plasticizers; and the like.
  • One type of these components may be used alone, or two or more types may be used in combination in any ratio.
  • the thermoplastic resin N having a negative intrinsic birefringence value usually includes a polymer having a negative intrinsic birefringence value.
  • this polymer include aromatic vinyl compound-based polymers, including homopolymers of aromatic vinyl compound monomers and/or copolymers of aromatic vinyl compound monomers and arbitrary monomers; polyacrylonitrile polymers; Polymers; polymethyl methacrylate polymers; or multi-component copolymers thereof; and the like.
  • examples of arbitrary monomers that can be copolymerized with the aromatic vinyl compound monomer include acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene. Further, these polymers may be used alone or in combination of two or more in any ratio.
  • aromatic vinyl compound monomers examples include styrene, styrene derivatives, vinylnaphthalene, and vinylnaphthalene derivatives.
  • examples of the styrene derivative or vinylnaphthalene derivative include compounds in which the aromatic ring of styrene or vinylnaphthalene is substituted with a substituent, and compounds in which a substituent is substituted at the ⁇ or ⁇ position of styrene or vinylnaphthalene.
  • polymers having a negative intrinsic birefringence value from the group consisting of styrene polymers, polymers of styrene derivatives, vinylnaphthalene polymers (preferably poly(2-vinylnaphthalene)), and polymers of vinylnaphthalene derivatives.
  • styrene polymers polymers of styrene derivatives
  • vinylnaphthalene polymers preferably poly(2-vinylnaphthalene)
  • polymers of vinylnaphthalene derivatives One or more selected polymers are preferred, vinylnaphthalene polymers are more preferred, and poly(2-vinylnaphthalene) is particularly preferred.
  • the proportion of the polymer in the thermoplastic resin N is preferably 50% to 100% by weight, more preferably 70% to 100% by weight, particularly preferably 90% to 100% by weight. When the proportion of the polymer is within the above range, the resin layer (N) can exhibit appropriate optical properties.
  • the thermoplastic resin N may further contain arbitrary components in combination with the above polymer.
  • the optional component include the same examples as the optional components that the thermoplastic resin P may contain.
  • One type of arbitrary components may be used alone, or two or more types may be used in combination in any ratio.
  • thermoplastic resin N and the thermoplastic resin P resins each having an arbitrary glass transition temperature can be used.
  • the glass transition temperature TgN of thermoplastic resin N and the thermoplastic resin P The absolute value of the difference from the glass transition temperature TgP
  • the lower limit is usually 0°C or higher.
  • the resin layer (N) included in the retardation film has a slow axis (N). Further, the resin layer (P) included in the retardation film has a slow axis (P) substantially perpendicular to the slow axis (N) of the resin layer (N).
  • the slow axis (P) is "substantially perpendicular" to the slow axis (N) when the angle between the slow axis (N) and the slow axis (P) is in a specific range close to 90°. represents something.
  • the angle formed by the slow axis (N) with respect to the slow axis (P) is usually within the range of 90° ⁇ 5°, usually 85° or more, preferably 87° or more, and more preferably is 88° or more, particularly preferably 89° or more, and usually 95° or less, preferably 93° or less, more preferably 92° or less, particularly preferably 91° or less.
  • a film having a multilayer structure comprising a combination of a resin layer (P) and a resin layer (N) having slow axes in the above relationship satisfies the above formulas (1) to (3).
  • a retardation film can be obtained.
  • one of the slow axis (P) of the resin layer (P) and the slow axis (N) of the resin layer (N) is 45° with respect to the width direction of the retardation film.
  • the angle is within a certain range close to .
  • the angle is preferably 40° or more, more preferably 42° or more, even more preferably 43° or more, particularly preferably 44° or more, and preferably 50° or less, more preferably 48°.
  • the angle is more preferably 47° or less, particularly preferably 46° or less.
  • the other of the slow axis (P) and the slow axis (N) preferably forms an angle in a specific range close to 135° with respect to the width direction of the retardation film.
  • the angle is preferably 130° or more, more preferably 132° or more, even more preferably 133° or more, particularly preferably 134° or more, and preferably 140° or less, more preferably 138°.
  • the angle is more preferably 137° or less, particularly preferably 136° or less.
  • a typical long linear polarizer has an absorption axis that is parallel or perpendicular to the width direction of the linear polarizer.
  • a long retardation film comprising a resin layer (P) and a resin layer (N) having slow axes in a direction forming an angle in the above range with respect to the width direction is a simple method that is similar to the general linear polarizer described above.
  • a circularly polarizing plate can be obtained by laminating the retardation film and the linear polarizer in parallel with each other in the width direction. Therefore, since the retardation film and the linear polarizer can be bonded together in a roll-to-roll manner, the circularly polarizing plate can be manufactured particularly easily.
  • the NZ coefficient NZ P of the resin layer (P) and the NZ coefficient NZ N of the resin layer (N) should be appropriately set so that the NZ coefficient NZ T of the retardation film is within the range of formula (3). is preferred.
  • nxP represents the refractive index in the in-plane direction of the resin layer (P) and the direction that provides the maximum refractive index.
  • ny P represents the refractive index in the in-plane direction of the resin layer (P) and perpendicular to the direction giving nx P.
  • nz P represents the refractive index in the thickness direction of the resin layer (P).
  • dP represents the thickness of the resin layer (P).
  • nxN represents the refractive index in the in-plane direction of the resin layer (N) in the direction that provides the maximum refractive index.
  • ny N represents the refractive index in the in-plane direction of the resin layer (N) and perpendicular to the direction giving nx N.
  • nz N represents the refractive index in the thickness direction of the resin layer (N).
  • dN represents the thickness of the resin layer (N).
  • the NZ coefficient NZ P of the resin layer (P) is preferably 1.00 or more. Therefore, it is preferable that the refractive indices ny P and nz P of the resin layer (P) satisfy the relationship ny P ⁇ nz P. Further, the NZ coefficient NZ N of the resin layer (N) is preferably less than 0.0. Therefore, it is preferable that the refractive indices nx N and nz N of the resin layer (N) satisfy the relationship nz N >nx N. According to such a combination of resin layer (P) and resin layer (N), the NZ coefficient NZ T of the entire retardation film can be easily adjusted within the range of formula (3).
  • the NZ coefficient NZ P of the resin layer (P) is preferably 1.00 or more, more preferably 1.05 or more, and preferably 1.30 or less, more preferably 1.20 or less.
  • the refractive indices nx P , ny P and nz P of the resin layer (P) having the NZ coefficient NZ P of 1.00 or more may have the relationship of nx P >ny P ⁇ nz P. Therefore, the resin layer (P) can function as a positive A plate or a negative B plate.
  • the NZ coefficient NZ N of the resin layer (N) is preferably -2.0 or more, more preferably -1.5 or more, preferably less than 0.0, more preferably -0.2 or less, especially It is preferably -0.4 or less.
  • the refractive indices nx N , ny N and nz N of the resin layer (N) having an NZ coefficient of less than 0.0 may have a relationship of nz N > nx N > ny N. Therefore, the resin layer (N) may be a layer having different refractive indexes nx N , ny N and nz N in three directions (ie, a biaxial layer). Further, the resin layer (N) can function as a positive B plate.
  • the sum NZ P +NZ N of the NZ coefficient NZ P of the resin layer (P) and the NZ coefficient NZ N of the resin layer (N) preferably falls within a specific range.
  • the sum "NZ P + NZ N " is preferably -0.3 or more, more preferably 0.0 or more, particularly preferably 0.10 or more, and preferably 0.8 or less, more preferably It is 0.75 or less, particularly preferably 0.65 or less.
  • the retardation film satisfies the following formula (4).
  • Re N (450) represents the in-plane retardation of the resin layer (N) at a wavelength of 450 nm
  • Re N (550) represents the in-plane retardation of the resin layer (N) at a wavelength of 550 nm
  • Re P (450) represents the in-plane retardation of the resin layer (P) at a wavelength of 450 nm
  • Re P (550) represents the in-plane retardation of the resin layer (P) at a wavelength of 550 nm.
  • Re N (450)/Re N (550) represents the wavelength dispersion of the resin layer (N).
  • Re P (450)/Re P (550) represents the wavelength dispersion of the resin layer (P). Therefore, formula (4) represents that there is a difference in wavelength dispersion of in-plane retardation between the resin layer (N) and the resin layer (P) included in the retardation film. More specifically, it means that the in-plane retardation of the resin layer (N) has greater wavelength dispersion than the in-plane retardation of the resin layer (P).
  • the parameter “ ⁇ Re N (450)/Re N (550) ⁇ Re P (450)/Re P (550) ⁇ ” representing the difference in wavelength dispersion is preferably larger than 0.08. , more preferably greater than 0.09, particularly preferably greater than 0.10, and the upper limit is not particularly limited, preferably less than 2.0, more preferably less than 1.5, particularly preferably 1.2 less than As described above, a retardation film including a resin layer (P) and a resin layer (N) having different in-plane retardation wavelength dispersion properties can easily obtain reverse wavelength dispersion properties in a laminated state.
  • the retardation film satisfies the following formula (5).
  • Re P (550)>Re N (550) (5) (however, Re N (550) represents the in-plane retardation of the resin layer (N) at a wavelength of 550 nm, Re P (550) represents the in-plane retardation of the resin layer (P) at a wavelength of 550 nm. )
  • the retardation film can easily function in a wide band.
  • the value of ⁇ Re P (550) - Re N (550) ⁇ is preferably 120 nm or more, more preferably 125 nm or more, particularly preferably 130 nm or more, and preferably 160 nm or less, more preferably 155 nm or less, particularly preferably It is 150 nm or less.
  • the retardation film can be made into a ⁇ /4 plate that functions in a wide band.
  • the retardation film may include any layer other than the resin layer (P) and the resin layer (N), if necessary.
  • the arbitrary layer include any layer having optical isotropy.
  • This arbitrary layer having optical isotropy usually has an in-plane retardation of 10 nm or less at a wavelength of 550 nm, and includes, for example, a protective film layer for protecting the resin layer (P) and the resin layer (N); (P) and an adhesive layer that adheres each layer such as the resin layer (N); and the like.
  • another example of the arbitrary layer is an arbitrary layer having optical anisotropy.
  • the optical properties of this arbitrary layer having optical anisotropy are not limited as long as the entire retardation film satisfies formulas (1) to (3).
  • a combination of an arbitrary layer having optical anisotropy and one or both of the resin layer (P) and the resin layer (N) can function as a ⁇ /4 plate or a ⁇ /2 plate.
  • the optical properties of any layer thereof may be set.
  • the ultraviolet/visible light transmittance of the retardation film is preferably 80% or more, more preferably 85% or more, particularly preferably 90% or more.
  • the ultraviolet/visible light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet/visible spectrometer.
  • the haze of the retardation film is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%. Haze can be measured using a haze meter in accordance with JIS K7361-1997.
  • the retardation film may be a sheet film or a long film.
  • the thickness of the retardation film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 15 ⁇ m or more, and preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, particularly preferably 100 ⁇ m. It is as follows.
  • each layer such as the resin layer (P) and the resin layer (N) included in the retardation film.
  • the thicknesses of the resin layer (P) and the resin layer (N) are each independently preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the above-mentioned retardation film is A first step of preparing a first film comprising a resin layer (P1) formed of a thermoplastic resin P having a positive intrinsic birefringence value; a second step of stretching the first film at least once to obtain a second film comprising a resin layer (P2) that is a stretched layer of the resin layer (P1); a third step of laminating a resin layer (N1) formed of a thermoplastic resin N having a negative intrinsic birefringence value on the second film to obtain a third film; The third film was stretched at least once, and the resin layer (P), which is a layer obtained by stretching the resin layer (P2) and has a slow axis (P), and the resin layer (N1) were stretched. and a resin layer (N) having a slow axis (N) forming an angle within a range of 90° ⁇ 5° with respect to the slow axis (P).
  • a third film having a multilayer structure is manufactured and stretched. Therefore, compared to the case where each layer of the retardation film is manufactured separately and laminated by laminating them together, the method for manufacturing the retardation film of this embodiment requires less effort. Further, there is no need to adjust the angle when bonding each layer. Furthermore, in the method for manufacturing a retardation film of this embodiment, the first film is stretched in the second step. As a result, compared to the case where a retardation film is obtained by stretching a multilayer film without performing the second step, stretching conditions such as the temperature of the thermoplastic resin forming each layer of the retardation film and the stretching temperature can be adjusted. , you can set fewer limits.
  • First step Preparation of first film
  • a first film including a resin layer (P1) made of a thermoplastic resin P having a positive intrinsic birefringence value is prepared.
  • the thermoplastic resin P is as described in the section of the retardation film.
  • the resin layer (P1) included in the first film preferably does not have large optical anisotropy. Therefore, the retardation of the resin layer (P1) is preferably small.
  • the in-plane retardation of the resin layer (P1) at 550 nm is preferably 0 nm to 20 nm, more preferably 0 nm to 10 nm, particularly preferably 0 nm to 5 nm.
  • the absolute value of the retardation in the thickness direction of the resin layer (P1) at 550 nm is preferably 0 nm to 20 nm, more preferably 0 nm to 10 nm, particularly preferably 0 nm to 5 nm.
  • the first film may be a sheet film, but is preferably a long film.
  • the first film is possible to perform part or all of each process in-line when manufacturing a retardation film, so that manufacturing can be performed simply and efficiently. .
  • the first film can be manufactured by, for example, a melt molding method or a solution casting method. Among these, melt molding is preferred. Among the melt molding methods, extrusion molding, inflation molding, or press molding are preferred, and extrusion molding is particularly preferred. According to these methods, the first film including the resin layer (P1) can be manufactured as a long film.
  • Second step Production of second film
  • the first film is stretched at least once to obtain a second film including a resin layer (P2) that is a layer obtained by stretching the resin layer (P1).
  • the first film may be stretched once, or twice or more.
  • the stretching direction is the same in each of the two or more times.
  • the stretching ratio may be the same or different.
  • the stretching of the first film is a single stretching.
  • the stretching ratio of the first film in the second step is preferably 1.05 times or more, more preferably 1.1 times or more, particularly preferably 1.12 times or more, and preferably 2.0 times or more in the stretching direction. It is at most 1.5 times, more preferably at most 1.5 times, particularly preferably at most 1.3 times.
  • the stretching ratio of the first film in the second step is a ratio obtained by multiplying the stretching ratios of each stretch.
  • the stretching direction in the second step is preferably an oblique direction with respect to the width direction of the first film.
  • the stretching direction in the second step preferably forms an angle within a specific range, preferably close to 45°, with respect to the width direction of the long first film.
  • the angle is preferably 40° or more, more preferably 42° or more, even more preferably 43° or more, particularly preferably 44° or more, and preferably 50° or less, more preferably 48°.
  • the angle is more preferably 47° or less, particularly preferably 46° or less.
  • the stretching temperature in the second step can be selected within an appropriate range depending on the glass transition temperature TgP of the thermoplastic resin P forming the resin layer (P1).
  • the stretching temperature in the second step is preferably TgP-5°C or higher, more preferably TgP-3°C or higher, particularly preferably TgP-1°C or higher, and preferably TgP+20°C or lower, more preferably TgP+15°C.
  • the temperature is particularly preferably TgP+12°C or lower.
  • the resin layer (P1) included in the first film is stretched, and a slow axis in a direction substantially parallel to the stretching direction is developed in the resin layer (P2).
  • the angle between the stretching direction in the second step and the slow axis of the resin layer (P2) is usually within the range of 0° ⁇ 5°, usually -5° or more, preferably -3
  • the angle is at least 1°, more preferably at least -2°, particularly preferably at least -1°, and usually at most 5°, preferably at most 3°, more preferably at most 2°, particularly preferably at most 1°.
  • the in-plane retardation of the second film at a wavelength of 550 nm is preferably 20 nm or more, more preferably 50 nm or more, particularly preferably 70 nm or more, and preferably 300 nm or less, more preferably 270 nm or less, particularly preferably 250 nm or less.
  • the in-plane retardation at a wavelength of 550 nm of the resin layer (P2) included in the second film is preferably 20 nm or more, more preferably 50 nm or more, particularly preferably 70 nm or more, and preferably 300 nm or less, more preferably 270 nm or less, Particularly preferred is 250 nm or less.
  • the thickness direction retardation of the resin layer (P2) at a wavelength of 550 nm is preferably 10 nm or more, more preferably 30 nm or more, particularly preferably 40 nm or more, and preferably 200 nm or less, more preferably 180 nm or less, particularly preferably It is 170 nm or less.
  • the retardation between the second film and the resin layer (P2) can be adjusted by adjusting the stretching ratio in the second step.
  • a resin layer (N1) formed of a thermoplastic resin N having a negative intrinsic birefringence value is laminated on the second film to obtain a third film.
  • the resin layer (N1) may be formed by any method, including a melt molding method, a solution casting method, and a coating method in which a liquid composition containing materials for other layers is applied onto a certain layer. It will be done.
  • thermoplastic resin N is applied onto the resin layer (P2) of the second film, and the applied liquid composition is dried as necessary. This method will be explained below.
  • a liquid composition containing thermoplastic resin N is applied onto the resin layer (P2) of the second film.
  • the liquid composition may include thermoplastic resin N and a solvent.
  • a liquid composition containing a thermoplastic resin and a solvent is also referred to as a resin solution.
  • the solvent a solvent capable of dissolving or dispersing the thermoplastic resin N is preferable, and a solvent capable of dissolving the thermoplastic resin N is particularly preferable.
  • one type of solvent may be used alone, or two or more types may be used in combination in any ratio.
  • the concentration of the thermoplastic resin N in the liquid composition is preferably adjusted so that the viscosity of the liquid composition is within a range suitable for coating, and may be, for example, 1% by weight to 50% by weight.
  • coating methods include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, and die coating. , and gap coating method.
  • the liquid composition containing the thermoplastic resin N By applying the liquid composition containing the thermoplastic resin N, a layer of the liquid composition is formed on the resin layer (P2). Therefore, by drying the liquid composition layer and removing the solvent as necessary, the resin layer (N1) can be laminated on the resin layer (P2) to obtain a third film.
  • drying methods such as natural drying, heat drying, and reduced pressure drying can be used.
  • a method that can rapidly dry the layer of the liquid composition is preferable, and the drying can be carried out by heating drying, reduced pressure drying, or a combination thereof. It is preferable to do so.
  • the reason why the negative thickness direction retardation appears in the resin layer (N1) is that when drying the layer of the liquid composition containing the thermoplastic resin N, the layer of the liquid composition contracts in-plane, and the thermoplastic This is thought to be because the polymer contained in resin N is oriented in the thickness direction. Generally, it is thought that by increasing the drying rate of the liquid composition layer, relaxation of the orientation of the thermoplastic resin N in the resin layer (N1) is suppressed, and a larger negative thickness direction retardation is developed.
  • the thickness direction retardation of the resin layer (N1) at 550 nm is preferably -30 nm or less, more preferably -40 nm or less, particularly preferably -50 nm or less, and the lower limit is not particularly limited, but for example, -300 nm or more, - It is 250 nm or more, or -200 nm or more.
  • the resin layer (N1) Since the absolute value of the thickness direction retardation at 550 nm of the resin layer (N1) is thus large, the resin layer (N1) is a stretched layer after stretching the third film in the fourth step described below. Biaxiality can be easily imparted to the resin layer (N).
  • the thickness direction retardation at 550 nm of the resin layer (N1) can be determined by adjusting the thickness of the resin layer (N1), and when forming the resin layer (N1) by a coating method, it includes the coated thermoplastic resin N. It can be adjusted by appropriately adjusting the drying rate of the layer of the liquid composition.
  • the in-plane retardation of the resin layer (N1) at 550 nm is preferably 0 nm to 20 nm, more preferably 0 nm to 10 nm, particularly preferably 0 nm to 5 nm.
  • the thickness of the resin layer (N1) may be set to any thickness depending on the desired retardation of the resin layer (N1), and is, for example, 3 ⁇ m or more, 5 ⁇ m or more, 50 ⁇ m or less, or 40 ⁇ m or less.
  • the third film may be stretched once, or twice or more.
  • the stretching direction of each of the two or more times is the same.
  • the stretching ratio may be the same or different.
  • the stretching of the third film is a single stretching.
  • the stretching ratio E4 of the third film in the fourth step is preferably 1.05 times or more, more preferably 1.1 times or more, particularly preferably 1.13 times or more, and preferably 2 times in the stretching direction. Below, it is more preferably 1.7 times or less, particularly preferably 1.5 times or less.
  • the stretching ratio of the third film in the fourth step is a ratio obtained by multiplying the stretching ratio of each time.
  • the ratio (E4/E2) of the stretch ratio E4 of the third film in the fourth step to the stretch ratio E2 of the first film in the second step is preferably 0.5 or more, more preferably 0.6 or more, especially It is preferably 0.7 or more, preferably 2.0 or less, more preferably 1.7 or less, particularly preferably 1.5 or less.
  • the resin layer (N) included in the retardation film is effectively made to exhibit biaxiality, while the resin layer (P) is made to exhibit the desired in-plane retardation.
  • a retardation film that satisfies (3) can be particularly easily produced.
  • the stretching of the first film in the second step is stretching in one direction
  • the stretching of the third film in the fourth step is in a direction substantially parallel to the stretching direction of the first film in the second step.
  • the stretching direction of the third film is preferably within the range of 0° ⁇ 5°, preferably ⁇ 5° or more, more preferably ⁇ 3° or more, and further Preferably it is -2° or more, particularly preferably -1° or more, preferably 5° or less, more preferably 3° or less, still more preferably 2° or less, particularly preferably 1° or less.
  • the third film is stretched in a direction substantially parallel to the stretching direction in the second step, specifically, in a direction within the range of 0° ⁇ 5°. ) to formula (3) can be produced.
  • the resin layer (P2) included in the third film is made of thermoplastic resin P having a positive intrinsic birefringence value, so when the third film is stretched in a certain stretching direction in the fourth step, the resin layer (P2) ) is a stretched layer, and the resin layer (P) exhibits a slow axis (P) in a direction substantially parallel to the stretching direction.
  • the resin layer (N1) included in the third film is formed of thermoplastic resin N having a negative intrinsic birefringence value, the resin layer (N1) which is a layer obtained by stretching the resin layer (N1) In this case, the refractive index in the in-plane direction of the resin layer (N) increases, which is substantially perpendicular to the stretching direction.
  • the stretching of the third film in the fourth step includes stretching in a direction substantially parallel to the stretching direction of the first film in the second step
  • the slow phase of the resin layer (P2) developed in the second step Since the axial direction and the stretching direction in the fourth step are approximately parallel, the slow axis (P) of the resin layer (P) included in the retardation film is adjusted to be approximately parallel to the stretching direction in the fourth step. It is especially easy to do so.
  • the direction of the slow axis (N) of the resin layer (N) and the direction of the slow axis (P) of the resin layer (P) can be particularly easily made substantially perpendicular.
  • the polymer contained in the thermoplastic resin N is considered to be oriented in the thickness direction of the resin layer (N1), but after stretching the third film in the fourth step, Also, the orientation direction of the polymer does not coincide with the in-plane direction of the resin layer (N), and the resin layer (N) is considered to exhibit biaxiality.
  • a film provided with a layer of thermoplastic resin P (resin layer (P1) or resin layer (P2)) is stretched to give the resin layer (P) a desired in-plane position.
  • the stretching ratio of the third film in the fourth step can be set lower than that in the case where no stretching is performed in the second step.
  • the biaxiality of the resin layer (N) is maintained, and a retardation film that satisfies formulas (1) to (3) can be easily manufactured. Can be done.
  • the angle formed by the direction of stretching of the third film in the fourth step with respect to the slow axis of the resin layer (P2) included in the second film is preferably within the range of 0° ⁇ 5°, and preferably - 5° or more, more preferably -3° or more, even more preferably -2° or more, particularly preferably -1° or more, preferably 5° or less, more preferably 3° or less, even more preferably 2° or less, Particularly preferably, the angle is 1° or less.
  • the stretching temperature in the fourth step can be appropriately set depending on the glass transition temperature TgP of the thermoplastic resin P and the glass transition temperature TgN of the thermoplastic resin N. From the viewpoint of suppressing film breakage during stretching and performing stretching smoothly, preferably Tg (high) -5°C or higher, more preferably Tg (high) -3°C or higher, particularly preferably Tg (high) -1. °C or more, preferably Tg (high) + 20 °C or less, more preferably Tg (high) + 15 °C or less, still more preferably Tg (high) + 12 °C or less, still more preferably Tg (high) + 10 °C or less, particularly preferably is below Tg(high)+9°C.
  • Tg (high) represents the higher temperature of the glass transition temperature TgP and the glass transition temperature TgN. When the glass transition temperature TgP and the glass transition temperature TgN are the same temperature, they represent the same temperature.
  • the method for producing a retardation film may include any steps in addition to the first to fourth steps described above.
  • the method for manufacturing the retardation film may include a trimming step of cutting out the obtained retardation film into a desired shape. . According to the trimming process, a sheet of retardation film having a desired shape is obtained.
  • the method for producing a retardation film may include, for example, a step of providing a protective layer on the retardation film.
  • a method for manufacturing a circularly polarizing plate according to an embodiment of the present invention includes: A method for manufacturing a circularly polarizing plate including a linear polarizer and a retardation film, a fifth step of manufacturing the retardation film in the retardation film manufacturing method; a sixth step of laminating the retardation film and the linear polarizer; including.
  • the method for manufacturing a circularly polarizing plate according to this embodiment includes a fifth step.
  • the fifth step is a step of manufacturing a retardation film using the method for manufacturing a retardation film described above.
  • the fifth step is a step of manufacturing a retardation film by a manufacturing method including the first step, second step, third step, and fourth step described above.
  • the retardation film obtained by the fifth step is the same as described in [1. This is the same as the retardation film explained in the section ⁇ Produced Retardation Film''.
  • linear polarizer can be used as the linear polarizer.
  • linear polarizers include films obtained by adsorbing iodine or dichroic dyes on polyvinyl alcohol films and then uniaxially stretching them in a boric acid bath; adsorbing iodine or dichroic dyes on polyvinyl alcohol films.
  • examples include a film obtained by stretching, stretching, and further modifying a part of the polyvinyl alcohol units in the molecular chain into polyvinylene units.
  • a polarizer containing polyvinyl alcohol is preferable.
  • the degree of polarization of this linear polarizer is not particularly limited, but is preferably 98% or more, more preferably 99% or more. Further, the thickness of the linear polarizer is preferably 5 ⁇ m to 80 ⁇ m.
  • the lamination in the sixth step is preferably performed so that the circularly polarizing plate includes a resin layer (N), a resin layer (P), and a linear polarizer in this order.
  • the lamination in the sixth step is preferably performed such that the angle between the width direction of the linear polarizer and the slow axis (P) of the resin layer (P) is within a specific range close to 45°. .
  • the angle is preferably 40° or more, more preferably 42° or more, even more preferably 43° or more, particularly preferably 44° or more, and preferably 50° or less, more preferably 48°.
  • the angle is more preferably 47° or less, particularly preferably 46° or less.
  • the angle is preferably 130° or more, more preferably 132° or more, even more preferably 133° or more, particularly preferably 134° or more, and preferably 140° or less, more preferably 138°.
  • the angle is more preferably 137° or less, particularly preferably 136° or less.
  • An appropriate adhesive can be used for laminating the retardation film and the linear polarizer.
  • the method for manufacturing a circularly polarizing plate may include any steps in addition to the fifth and sixth steps described above.
  • Examples of the arbitrary steps include a step of laminating a functional layer on a retardation film, a linear polarizer, and/or a circularly polarizing plate.
  • Examples of the functional layer include a polarizer protective film layer; a hard coat layer such as an impact-resistant polymethacrylate resin layer; a matte layer that improves the slipperiness of the film; a reflection suppression layer; an antifouling layer; an antistatic layer; etc. Can be mentioned.
  • the above-described circularly polarizing plate can be provided in an image display device.
  • This organic EL image display device includes a circularly polarizing plate and an organic electroluminescent element (hereinafter, sometimes referred to as an "organic EL element").
  • This organic EL image display device usually includes a linear polarizer, a retardation film, and an organic EL element in this order.
  • An organic EL element includes a transparent electrode layer, a light-emitting layer, and an electrode layer in this order, and the light-emitting layer can generate light when a voltage is applied from the transparent electrode layer and the electrode layer.
  • materials constituting the organic light-emitting layer include polyparaphenylenevinylene-based, polyfluorene-based, and polyvinylcarbazole-based materials.
  • the light-emitting layer may have a laminate of a plurality of layers emitting light of different colors, or a mixed layer in which a certain dye layer is doped with different dyes.
  • the organic EL device may include functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
  • the image display device described above can suppress reflection of external light on the display surface. Specifically, only a portion of the linearly polarized light incident from outside the device passes through a linear polarizer, and then passes through a retardation film, thereby becoming circularly polarized light. The circularly polarized light is reflected by components that reflect light in the image display device (such as reflective electrodes in organic EL elements) and passes through the retardation film again, causing vibrations perpendicular to the vibration direction of the incident linearly polarized light. It becomes linearly polarized light with a direction and does not pass through the linear polarizer.
  • the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light. This achieves the function of reflex suppression.
  • the organic EL image display device can exhibit the function of suppressing reflection not only in the front direction of the display surface but also in the inclined direction. Thereby, it is possible to effectively suppress reflection of external light and suppress coloring in both the front direction and the inclined direction of the display surface.
  • the degree of coloring can be evaluated based on the color difference ⁇ E * ab between the chromaticity measured by observing a reflective display surface and the chromaticity of a non-reflective black display surface.
  • the above-mentioned chromaticity is determined by measuring the spectrum of light reflected on the display surface, multiplying this spectrum by the spectral sensitivity (color matching function) corresponding to the human eye to obtain the tristimulus values X, Y, and Z. It can be obtained by calculating the degree (a * , b * , L * ).
  • the color difference ⁇ E * ab mentioned above is the chromaticity (a0 * , b0 * , L0 * ) when the display surface is not illuminated by external light, and the chromaticity (a1*) when the display surface is illuminated by external light.
  • * , b1 * , L1 * it can be determined from the following formula (X).
  • the coloring of the display surface due to reflected light may vary depending on the azimuth angle of the viewing direction. Therefore, when observed from the direction of inclination of the display surface, the measured chromaticity may vary depending on the azimuth of the viewing direction, and therefore the color difference ⁇ E * ab may also vary. Therefore, in order to evaluate the degree of coloring when observed from the tilt direction of the display surface as described above, the coloring is evaluated using the average value of the color difference ⁇ E * ab obtained by observing from multiple azimuthal directions. It is preferable to do so. Specifically, the color difference ⁇ E*ab is measured in 5° increments in the azimuth direction in a range where the azimuth angle ⁇ (see FIG .
  • the glass transition temperature Tg of the resin was measured using a differential scanning calorimeter ("DSC6220SII” manufactured by Nano Technology Co., Ltd.) under conditions of a heating rate of 10° C./min based on JIS K 6911.
  • the thickness of the film or layer was measured using a reflection spectroscopic film thickness measurement system "F20" manufactured by Filmetrics.
  • In-plane retardation Re at wavelengths 450 nm, 550 nm, and 650 nm of the evaluation target; and thickness direction retardation Rth at wavelength 550 nm were measured using a retardation meter ("AxoScan" manufactured by Axometrics).
  • the physical properties of each layer of the inseparable laminate were calculated by measuring the sample from multiple directions and performing a fitting analysis using the included multilayer analysis software. Further, the NZ coefficient was calculated using the in-plane retardation Re and the thickness direction retardation Rth at a wavelength of 550 nm.
  • the direction of the slow axis (P) of the resin layer (P) included in the retardation film and the direction of the slow axis (N) of the resin layer (N) are determined using a retardation meter (“AxoScan” manufactured by Axometrics). It was measured using The angle that this slow axis makes with respect to the width direction of the retardation film was calculated as the orientation angle ⁇ (0° ⁇ 180°).
  • a configuration was set in which a circularly polarizing plate was provided on the reflective surface of a mirror having a planar reflective surface. Moreover, a circularly polarizing plate was set that had a resin layer (N) of a retardation film, a resin layer (P) of a retardation film, and a linear polarizer in this order from the reflective surface side. As the retardation film, those obtained in each Example and Comparative Example were set. Further, as the linear polarizer, a commonly used polarizing plate with a degree of polarization of 99.99% was set. Furthermore, an ideal mirror that can specularly reflect the incident light with a reflectance of 100% was set as the mirror.
  • FIG. 1 is a perspective view schematically showing an evaluation model set when calculating color space coordinates in simulations in Examples and Comparative Examples.
  • the above calculation of the color difference ⁇ E * ab was performed in the observation direction 20 where the polar angle ⁇ with respect to the reflective surface 10 was 0°, and the color difference ⁇ E * ab in the front direction was determined.
  • the polar angle ⁇ represents the angle formed with respect to the normal direction 11 of the reflective surface 10.
  • the above-mentioned calculation of the color difference ⁇ E * ab was performed in the observation direction 20 where the polar angle ⁇ with respect to the reflective surface 10 was 60°.
  • the azimuth angle ⁇ represents the angle that a direction parallel to the reflective surface 10 makes with a certain reference direction 12 parallel to the reflective surface 10.
  • An image display device (“Apple Watch” (registered trademark) by Apple Inc.) including an organic EL image display device was prepared. This image display device was disassembled, and the polarizing plate bonded to the surface of the organic EL image display device was peeled off to expose the reflective electrode. The surface of this reflective electrode and the surface of the circularly polarizing plate obtained in each Example and Comparative Example on the opposite side from the linear polarizer were bonded together via an adhesive ("CS9621" manufactured by Nitto Denko Corporation). Thereby, a sample was obtained which included a reflective electrode, an adhesive, and a circularly polarizing plate in this order.
  • the circularly polarizing plate on the reflective electrode was visually observed on a sunny day with the circularly polarizing plate of the sample illuminated by sunlight. The observation was performed in the front direction of the circularly polarizing plate at a polar angle of 0° and an azimuth angle of 0°. As a result of the observation, if a chromatic color was visually recognized, it was determined to be "bad", and if a chromatic color was not visually recognized, it was determined to be "good”.
  • the circularly polarizing plate of the sample prepared in the above was illuminated with sunlight on a clear day, and the circularly polarizing plate on the reflective electrode was visually observed. The observation was performed with a circularly polarizing plate tilted at a polar angle of 60° and an azimuth angle of 0° to 360°. As a result of the observation, the quality of reflection brightness and coloring were comprehensively judged, and the Examples and Comparative Examples were ranked. Then, the ranked Examples and Comparative Examples were given points corresponding to their rankings (7 points for 1st place, 6 points for 2nd place, 1 point for last place).
  • the above observations were made by a large number of people, and the total points given for each example and comparative example were determined.
  • the Examples and Comparative Examples were arranged in the order of the above-mentioned total score, and evaluated in the order of A, B, C, D, and E from the top group within the range of the total score.
  • thermoplastic resin P having a positive intrinsic birefringence value a resin containing a norbornene polymer (hereinafter also referred to as norbornene resin) (manufactured by Zeon Corporation; glass transition temperature 126 ° C.) was dried at 100 ° C. for 5 hours. .
  • the dried thermoplastic resin P was supplied to an extruder, passed through a polymer pipe and a polymer filter, and extruded into a sheet form from a T-die onto a casting drum.
  • the extruded thermoplastic resin P was cooled to obtain a long unstretched film made of the thermoplastic resin P and having a thickness of 60 ⁇ m as a first film.
  • the obtained unstretched film was wound up into a roll and collected.
  • the first film included only a resin layer (P1) formed from thermoplastic resin P.
  • the optical properties of the resin layer (P1) included in the first film were evaluated by the method described above.
  • the first film was pulled out from the roll, and the pulled out first film was supplied to a tenter stretching machine. Using this tenter stretching machine, the first film is stretched in a stretching direction forming an angle of 45° with respect to the width direction of the first film at a stretching temperature of 128°C and a stretching ratio of 1.15 times in the stretching direction.
  • a second film was obtained, which included a resin layer (P2) that was a stretched resin layer (P1).
  • the second film included only the resin layer (P2).
  • the obtained second film was cooled to room temperature, then wound up into a roll and collected.
  • the optical properties of the resin layer (P2) included in the second film were evaluated by the method described above.
  • thermoplastic resin N contains about 5% by weight of a plasticizer.
  • the weight average molecular weight of poly(2-vinylnaphthalene) measured by GPC was 250,000.
  • glass transition temperature of the thermoplastic resin N was 127° C. as measured by a differential scanning calorimeter. This thermoplastic resin N has a negative intrinsic birefringence value.
  • thermoplastic resin N and 1,3-dioxolane as a solvent were mixed to obtain a resin solution containing the thermoplastic resin N as a liquid composition.
  • concentration of thermoplastic resin N in this liquid composition was 15% by weight.
  • the second film was pulled out from the roll, and the resin solution was applied onto the surface of the pulled out second film, that is, the surface of the resin layer (P2) to form a resin solution layer. Thereafter, the coated resin solution layer was rapidly dried at 120° C. to form a 15 ⁇ m thick resin layer (N1) on the second film.
  • a third film including a resin layer (P2) and a resin layer (N1) laminated on this resin layer (P2) was obtained.
  • the optical properties of the resin layer (P2) and resin layer (N1) included in the third film were evaluated by the method described above.
  • the obtained third film was supplied to a tenter stretching machine. Using this tenter stretching machine, the third film is stretched in a stretching direction that makes an angle of 45 degrees with respect to the width direction of the third film, that is, a stretching direction that makes an angle of 0 degrees with respect to the stretching direction of the first film.
  • the film was stretched at a stretching temperature of 128° C. and a stretching ratio of 1.30 times in the stretching direction to obtain a long retardation film.
  • This retardation film included a resin layer (P) that was a stretched resin layer (P2) and a resin layer (N) that was a stretched resin layer (N1).
  • the optical properties of the retardation film and each layer included in the retardation film were evaluated by the method described above.
  • the linear polarizer and the retardation film were bonded together via an optically isotropic adhesive ("CS9621" manufactured by Nitto Denko Corporation) to obtain a long circularly polarizing plate.
  • the above bonding was performed with the width direction of the linear polarizer and the width direction of the retardation film being parallel to each other.
  • the obtained circularly polarizing plate was equipped with a linear polarizer, a resin layer (P), and a resin layer (N) in this order.
  • the obtained circularly polarizing plate was evaluated by the method described above.
  • step (1-2) the stretching ratio of the first film was changed as shown in Table 1.
  • step (1-3) the coating thickness of the resin solution was changed so that the resin layer (N1) had the thickness shown in Table 1.
  • step (1-4) the stretching ratio was changed as shown in Table 1. Except for the above matters, a retardation film and a circularly polarizing plate were manufactured and evaluated in the same manner as in Example 1.
  • a retardation film was produced by the same method as in Example 1 of JP-A-2022-052074. Specifically, a retardation film was obtained by the following operation.
  • thermoplastic resin P As a thermoplastic resin P having a positive intrinsic birefringence value, a resin containing a norbornene polymer (hereinafter also referred to as norbornene resin) (manufactured by Zeon Corporation; glass transition temperature 126 ° C.) was dried at 100 ° C. for 5 hours. . The dried thermoplastic resin P was supplied to an extruder, passed through a polymer pipe and a polymer filter, and extruded into a sheet form from a T-die onto a casting drum. The extruded thermoplastic resin P was cooled to obtain a long unstretched film made of the thermoplastic resin P and having a thickness of 60 ⁇ m. The obtained unstretched film was wound up into a roll and collected.
  • norbornene resin a resin containing a norbornene polymer (hereinafter also referred to as norbornene resin) (manufactured by Zeon Corporation; glass transition temperature 126 ° C.) was dried at 100
  • thermoplastic resin N The obtained poly(2-vinylnaphthalene) was dried at 200° C. for 24 hours using a vacuum dryer to obtain a thermoplastic resin N.
  • the weight average molecular weight of poly(2-vinylnaphthalene) measured by GPC was 250,000. Further, the glass transition temperature of poly(2-vinylnaphthalene) measured by a differential scanning calorimeter was 142°C.
  • This thermoplastic resin N has a negative intrinsic birefringence value.
  • Poly(2-vinylnaphthalene) as the produced thermoplastic resin N and 1,3-dioxolane as a solvent were mixed to obtain a resin solution containing the thermoplastic resin N.
  • the concentration of poly(2-vinylnaphthalene) in this resin solution was 15% by weight.
  • the unstretched film (resin layer CP1) was pulled out from the roll, and the resin solution was applied onto the surface of the unstretched film to form a resin solution layer. Thereafter, the resin solution layer was rapidly dried at 120° C. to form a 12 ⁇ m thick poly(2-vinylnaphthalene) layer on the unstretched film.
  • a laminated film comprising an unstretched film formed of thermoplastic resin P (resin layer CP1) and a layer of poly(2-vinylnaphthalene) as thermoplastic resin N (resin layer CN1) was obtained. .
  • the obtained laminated film was wound up into a roll and collected.
  • the laminated film was pulled out from the roll and continuously supplied to a tenter stretching machine. Then, using this tenter stretching machine, the laminated film is stretched in a stretching direction forming an angle of 45° with respect to the longitudinal direction of the laminated film at a stretching temperature of 140° C. and a stretching ratio of 1.5 times in the stretching direction. , a long retardation film was obtained.
  • This retardation film is obtained by stretching a resin layer (P) obtained by stretching a norbornene resin layer (resin layer CP1) and a poly(2-vinylnaphthalene) layer (resin layer CN1). It was equipped with a resin layer (N).
  • a retardation film was produced in the same manner as in Example 1 of JP-A-2007-199616. Specifically, a retardation film was obtained by the following operation.
  • thermoplastic resin P As the thermoplastic resin P having a positive intrinsic birefringence value, a film (thickness: 70 ⁇ m) of a resin containing a norbornene polymer (“Arton FLZU” manufactured by JSR Corporation; glass transition temperature: 128° C.) was prepared.
  • thermoplastic resin N As a thermoplastic resin N having a negative intrinsic birefringence value, a copolymer of styrene and maleic anhydride (glass transition temperature 148 ° C.) was prepared in the same manner as in Example 1 of JP 2007-199616 A. did. The obtained copolymer was mixed with methyl ethyl ketone as a solvent to obtain a resin solution of styrene-maleic anhydride copolymer at a concentration of 33% by weight as a liquid composition. The resin solution was applied onto the film of the thermoplastic resin P containing the norbornene polymer to form a layer of the resin solution. Thereafter, the resin solution layer was dried at 80° C.
  • thermoplastic resin N on the film formed of thermoplastic resin P.
  • a laminated film including a film formed of thermoplastic resin P (resin layer CP1) and a layer of thermoplastic resin N (resin layer CN1) was obtained.
  • thermoplastic resin P A pelletized norbornene resin (manufactured by Nippon Zeon Co., Ltd.; glass transition temperature: 126°C) was dried at 100°C for 5 hours to obtain a thermoplastic resin P.
  • This thermoplastic resin P was supplied to an extruder, passed through a polymer pipe and a polymer filter, and was extruded into a sheet form from a T-die onto a casting drum. The extruded thermoplastic resin P was cooled to obtain a long unstretched film with a thickness of 110 ⁇ m. The obtained unstretched film was wound up into a roll and collected.
  • thermoplastic resin N The obtained poly(2-vinylnaphthalene) was dried at 200° C. for 24 hours using a vacuum dryer to obtain a thermoplastic resin N.
  • the weight average molecular weight of poly(2-vinylnaphthalene) measured by GPC was 250,000. Further, the glass transition temperature of poly(2-vinylnaphthalene) measured by a differential scanning calorimeter was 142°C.
  • This thermoplastic resin N has a negative intrinsic birefringence value.
  • Poly(2-vinylnaphthalene) as the produced thermoplastic resin N and 1,3-dioxolane as a solvent were mixed to obtain a resin solution containing the thermoplastic resin N.
  • the concentration of poly(2-vinylnaphthalene) in this resin solution was 15% by weight.
  • the unstretched film was pulled out from the roll, and the resin solution was applied onto the unstretched film to form a resin solution layer. Thereafter, the resin solution layer was dried to form a 13 ⁇ m thick poly(2-vinylnaphthalene) layer on the unstretched film.
  • a laminate comprising an unstretched film (resin layer CP1) formed of norbornene resin which is thermoplastic resin P and a layer (resin layer CN1) of poly(2-vinylnaphthalene) which is thermoplastic resin N A film was obtained. The obtained laminated film was wound up into a roll and collected.
  • the visual evaluation in the front direction is judged in two stages of "good” and "poor", while the visual evaluation in the inclined direction is judged in 5 grades from "A" to "E". It is judged in stages.
  • the reason why the criteria are different in this way is as follows. That is, the brightness of reflected light is sufficiently lower in the front direction than in the inclined direction. Therefore, if strong coloration does not occur, the viewer cannot recognize the coloration. Therefore, we adopted a two-stage determination of whether or not the coloring can be visually recognized. On the other hand, in the inclined direction, the brightness of the reflected light is high. Therefore, even if the coloration is weak, the viewer can easily recognize the coloration. Therefore, we adopted a five-level detailed evaluation of merits and demerits.
  • the method of the example a retardation film that satisfies formulas (1) to (3) and has a small haze can be obtained.
  • the circularly polarizing plate provided with the retardation film satisfying formulas (1) to (3) obtained by the method of the example may be used in the front direction and the inclined direction of the display surface of the image display device equipped with the circularly polarizing plate. It can be seen that in both cases, coloration due to reflection of external light can be suppressed.

Abstract

Provided is a method for producing a phase difference film satisfying specific optical properties, the production method comprising: a first step for preparing a first film that has a resin layer (P1) formed from a thermoplastic resin P having a positive intrinsic birefringence value; a second step for stretching the first film at least one time to produce a second film having a resin layer (P2) that is a layer obtained as the result of the stretching of the resin layer (P1); a third step for laminating a resin layer (N1) formed from a thermoplastic resin N having a negative intrinsic birefringence value on the second film to produce a third film; and a fourth step for stretching the third film at least one time to produce the phase difference film having both of a resin layer (P) that is a layer obtained as the result of the stretching of the resin layer (P2) and has a retardation axis (P) and a resin layer (N) that is a layer obtained as the result of the stretching of the resin layer (N1) and has a retardation axis (N) forming an angle of 90°±5° with the retardation axis (P).

Description

位相差フィルムの製造方法及び円偏光板の製造方法Method for manufacturing retardation film and method for manufacturing circularly polarizing plate
 本発明は、位相差フィルムの製造方法及び円偏光板の製造方法に関する。 The present invention relates to a method for manufacturing a retardation film and a method for manufacturing a circularly polarizing plate.
 有機エレクトロルミネッセンス画像表示装置(以下、適宜「有機EL画像表示装置」ということがある。)及び液晶画像表示装置等の画像表示装置には、位相差フィルムが設けられることがある。このような位相差フィルムには、2層以上の層を備える複層構造を有するものがある。そのような複層構造を有する位相差フィルムの製造方法として、共延伸法を利用する方法が採用されることがある(特許文献1~4参照)。 Image display devices such as organic electroluminescent image display devices (hereinafter sometimes referred to as "organic EL image display devices") and liquid crystal image display devices are sometimes provided with a retardation film. Some of such retardation films have a multilayer structure including two or more layers. As a method for producing a retardation film having such a multilayer structure, a method using a co-stretching method is sometimes adopted (see Patent Documents 1 to 4).
特開2007-199616号公報(対応外国公報:米国特許出願公開第2009/290103号明細書)Japanese Patent Application Publication No. 2007-199616 (corresponding foreign publication: US Patent Application Publication No. 2009/290103) 特開2009-169086号公報Japanese Patent Application Publication No. 2009-169086 国際公開第2021/085031号International Publication No. 2021/085031 特開2022-052074号公報JP2022-052074A
 画像表示装置には、表示面における外光の反射を低減するため、円偏光板が設けられることがあった。このような円偏光板としては、一般に、直線偏光子及びλ/4板を組み合わせたフィルムが用いられる。 Image display devices are sometimes provided with circularly polarizing plates to reduce reflection of external light on the display surface. As such a circularly polarizing plate, a film that is a combination of a linear polarizer and a λ/4 plate is generally used.
 表示面の色付きを抑制するために、広い波長範囲において外光の反射を低減できる円偏光板が求められる。このような円偏光板は、例えば、広い波長範囲においてλ/4板として機能できる広帯域λ/4板を用いて製造することができる。この広帯域λ/4板として、複数の層を組み合わせて備える位相差フィルムが知られており、例えば、λ/2板とλ/4板とを組み合わせて備える位相差フィルムが挙げられる。広帯域λ/4板として機能できる位相差フィルムを備えた円偏光板は、表示面に対して垂直な正面方向においては、広い波長範囲において外光の反射を低減できるので、表示面の色付きを抑制できる。 In order to suppress coloring of the display surface, a circularly polarizing plate that can reduce reflection of external light in a wide wavelength range is required. Such a circularly polarizing plate can be manufactured using, for example, a broadband λ/4 plate that can function as a λ/4 plate in a wide wavelength range. As this broadband λ/4 plate, a retardation film comprising a combination of a plurality of layers is known, such as a retardation film comprising a combination of a λ/2 plate and a λ/4 plate. A circularly polarizing plate equipped with a retardation film that can function as a broadband λ/4 plate can reduce the reflection of external light in a wide wavelength range in the front direction perpendicular to the display surface, thereby suppressing coloration of the display surface. can.
 しかし、表示面に対して平行でも垂直でもない傾斜方向においては、位相差の値が理想値からズレを生じたり、各層の光学軸のズレが生じたりすることによって、広い波長範囲における外光の反射の低減ができないことがありえる。そこで、傾斜方向において外光の反射による色付きを抑制できる円偏光板を実現するために、位相差フィルムには、0.0より大きく1.0未満の特定の範囲のNZ係数を有することが求められる。 However, in an inclined direction that is neither parallel nor perpendicular to the display surface, the phase difference value deviates from the ideal value, and the optical axes of each layer become deviated, resulting in the interference of external light over a wide wavelength range. It may not be possible to reduce reflections. Therefore, in order to realize a circularly polarizing plate that can suppress coloring due to reflection of external light in the tilt direction, the retardation film is required to have an NZ coefficient in a specific range of greater than 0.0 and less than 1.0. It will be done.
 上述した要件を満たす位相差フィルムに含まれる層は、通常、遅相軸の方向、面内位相差、及び、NZ係数等の光学特性の一部又は全部が異なる。そのため、従来、前記の位相差フィルムは、各層を別々に製造した後で、それらの層を貼合して製造されることが一般的であった。しかし、このような従来の製造方法は、各層の製造を別々に行うので、工程数が多くなり、手間及びコストが多くなる傾向があった。また、各層を貼り合わせる場合に貼り合わせ角度を正確に合わせることが求められるので、角度調整の手間を要し、これによっても手間が多くなる傾向があった。
 また、未延伸の複層フィルムを延伸して前記の位相差フィルムを製造する場合、各層を形成する熱可塑性樹脂の温度、延伸温度などの延伸条件の調整が、煩雑であった。
The layers included in the retardation film that meet the above requirements usually differ in some or all of their optical properties, such as the direction of the slow axis, in-plane retardation, and NZ coefficient. Therefore, conventionally, the above-mentioned retardation film has generally been manufactured by separately manufacturing each layer and then bonding the layers together. However, in such conventional manufacturing methods, each layer is manufactured separately, which tends to increase the number of steps and increase labor and cost. Furthermore, when bonding each layer together, it is required to accurately match the bonding angle, which requires time and effort to adjust the angle, which also tends to increase the effort.
Further, when producing the above-mentioned retardation film by stretching an unstretched multilayer film, it is complicated to adjust stretching conditions such as the temperature of the thermoplastic resin forming each layer and the stretching temperature.
 したがって、表示面の正面方向及び傾斜方向の両方において外光の反射による色付きを抑制可能な円偏光板を得ることができる位相差フィルムを、簡単に製造できる製造方法;表示面の正面方向及び傾斜方向の両方において外光の反射による色付きを抑制可能な円偏光板を、簡単に製造できる製造方法;が求められている。 Therefore, a manufacturing method that can easily produce a retardation film that can produce a circularly polarizing plate that can suppress coloring due to reflection of external light both in the front direction and in the tilt direction of the display surface; There is a need for a manufacturing method that can easily manufacture a circularly polarizing plate that can suppress coloring due to reflection of external light in both directions.
 本発明者は、前記課題を解決するべく、鋭意検討した。その結果、正の固有複屈折値を有する熱可塑性樹脂Pで形成された樹脂層(P1)を備える第一フィルムを用意すること、前記第一フィルムを少なくとも一回延伸して、前記樹脂層(P1)が延伸された層である樹脂層(P2)を備える、第二フィルムを得ること、前記第二フィルムに、負の固有複屈折値を有する熱可塑性樹脂Nで形成された樹脂層(N1)を積層して第三フィルムを得ること、及び、前記第三フィルムを少なくとも一回延伸すること、を含む製造方法により、前記課題が解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下を提供する。
The inventors of the present invention have made extensive studies to solve the above problems. As a result, a first film including a resin layer (P1) formed of a thermoplastic resin P having a positive intrinsic birefringence value is prepared, the first film is stretched at least once, and the resin layer (P1) is stretched at least once. obtaining a second film comprising a resin layer (P2) which is a stretched layer of P1); ) was found to be able to be solved by a manufacturing method that includes laminating a third film to obtain a third film and stretching the third film at least once, and completed the present invention.
That is, the present invention provides the following.
 [1] 下記式(1)、下記式(2)、及び下記式(3)を満たす位相差フィルムの製造方法であって、
 前記製造方法が、
 正の固有複屈折値を有する熱可塑性樹脂Pで形成された樹脂層(P1)を備える第一フィルムを用意する第一工程と、
 前記第一フィルムを少なくとも一回延伸して、前記樹脂層(P1)が延伸された層である樹脂層(P2)を備える、第二フィルムを得る第二工程と、
 前記第二フィルムに、負の固有複屈折値を有する熱可塑性樹脂Nで形成された樹脂層(N1)を積層して第三フィルムを得る第三工程と、
 前記第三フィルムを少なくとも一回延伸して、前記樹脂層(P2)が延伸された層であり遅相軸(P)を有する樹脂層(P)と、前記樹脂層(N1)が延伸された層であり前記遅相軸(P)に対して90°±5°の範囲内の角度をなす遅相軸(N)を有する樹脂層(N)とを備える前記位相差フィルムを得る第四工程と、
 を含む、位相差フィルムの製造方法。
  100nm≦Re(550)≦180nm  (1)
  Re(450)<Re(550)<Re(650)  (2)
  0.0<NZ<1.0  (3)
(ただし、
 Re(450)は、波長450nmにおける前記位相差フィルムの面内位相差を表し、
 Re(550)は、波長550nmにおける前記位相差フィルムの面内位相差を表し、
 Re(650)は、波長650nmにおける前記位相差フィルムの面内位相差を表し、
 NZは、前記位相差フィルムのNZ係数を表す。)
 [2] 前記第二フィルムが備える前記樹脂層(P2)の面内位相差が、20nm以上である、[1]に記載の位相差フィルムの製造方法。
 [3] 前記第三工程における前記樹脂層(N1)の厚み方向位相差が-30nm以下である、[1]又は[2]に記載の位相差フィルムの製造方法。
 [4] 前記第二工程における前記第一フィルムの延伸が、一方向への延伸であり、前記第四工程における前記第三フィルムの延伸が、前記第二工程における前記第一フィルムの延伸方向に対して0°±5°の範囲内の方向への延伸を含む、[1]~[3]のいずれか一項に記載の位相差フィルムの製造方法。
 [5] 前記位相差フィルムが、下記式(4)を満たす、[1]~[4]のいずれか一項に記載の位相差フィルムの製造方法。
  {Re(450)/Re(550)}-{Re(450)/Re(550)}>0.08   (4)
(ただし、
 Re(450)は、波長450nmにおける前記樹脂層(N)の面内位相差を表し、
 Re(550)は、波長550nmにおける前記樹脂層(N)の面内位相差を表し、
 Re(450)は、波長450nmにおける前記樹脂層(P)の面内位相差を表し、
 Re(550)は、波長550nmにおける前記樹脂層(P)の面内位相差を表す。)
 [6] 下記式(5)を満たす、[1]~[5]のいずれか一項に記載の位相差フィルムの製造方法。
  Re(550)>Re(550)  (5)
(ただし、
 Re(550)は、波長550nmにおける前記樹脂層(N)の面内位相差を表し、
 Re(550)は、波長550nmにおける前記樹脂層(P)の面内位相差を表す。)
 [7] 直線偏光子と位相差フィルムとを含む円偏光板の製造方法であって、
 [1]~[6]のいずれか一項に記載の位相差フィルムの製造方法で、前記位相差フィルムを製造する第五工程と、
 前記位相差フィルムと、前記直線偏光子とを積層する第六工程と、
を含む、円偏光板の製造方法。
[1] A method for producing a retardation film that satisfies the following formula (1), the following formula (2), and the following formula (3),
The manufacturing method includes:
A first step of preparing a first film comprising a resin layer (P1) formed of a thermoplastic resin P having a positive intrinsic birefringence value;
a second step of stretching the first film at least once to obtain a second film comprising a resin layer (P2) that is a stretched layer of the resin layer (P1);
a third step of laminating a resin layer (N1) formed of a thermoplastic resin N having a negative intrinsic birefringence value on the second film to obtain a third film;
The third film was stretched at least once, and the resin layer (P), which is a layer obtained by stretching the resin layer (P2) and has a slow axis (P), and the resin layer (N1) were stretched. and a resin layer (N) having a slow axis (N) forming an angle within a range of 90° ± 5° with respect to the slow axis (P). and,
A method for producing a retardation film, including:
100nm≦Re T (550)≦180nm (1)
Re T (450)<Re T (550)<Re T (650) (2)
0.0< NZT <1.0 (3)
(however,
Re T (450) represents the in-plane retardation of the retardation film at a wavelength of 450 nm,
Re T (550) represents the in-plane retardation of the retardation film at a wavelength of 550 nm,
Re T (650) represents the in-plane retardation of the retardation film at a wavelength of 650 nm,
NZ T represents the NZ coefficient of the retardation film. )
[2] The method for producing a retardation film according to [1], wherein the resin layer (P2) included in the second film has an in-plane retardation of 20 nm or more.
[3] The method for producing a retardation film according to [1] or [2], wherein the thickness direction retardation of the resin layer (N1) in the third step is -30 nm or less.
[4] The stretching of the first film in the second step is stretching in one direction, and the stretching of the third film in the fourth step is in the stretching direction of the first film in the second step. The method for producing a retardation film according to any one of [1] to [3], which includes stretching in a direction within a range of 0° ± 5°.
[5] The method for producing a retardation film according to any one of [1] to [4], wherein the retardation film satisfies the following formula (4).
{Re N (450)/Re N (550)}-{Re P (450)/Re P (550)}>0.08 (4)
(however,
Re N (450) represents the in-plane retardation of the resin layer (N) at a wavelength of 450 nm,
Re N (550) represents the in-plane retardation of the resin layer (N) at a wavelength of 550 nm,
Re P (450) represents the in-plane retardation of the resin layer (P) at a wavelength of 450 nm,
Re P (550) represents the in-plane retardation of the resin layer (P) at a wavelength of 550 nm. )
[6] The method for producing a retardation film according to any one of [1] to [5], which satisfies the following formula (5).
Re P (550)>Re N (550) (5)
(however,
Re N (550) represents the in-plane retardation of the resin layer (N) at a wavelength of 550 nm,
Re P (550) represents the in-plane retardation of the resin layer (P) at a wavelength of 550 nm. )
[7] A method for manufacturing a circularly polarizing plate including a linear polarizer and a retardation film, comprising:
A fifth step of producing the retardation film using the method for producing a retardation film according to any one of [1] to [6];
a sixth step of laminating the retardation film and the linear polarizer;
A method for manufacturing a circularly polarizing plate, including:
 本開示は、以下も提供する。
 [8] [1]~[6]のいずれか一項に記載の製造方法で製造された、位相差フィルム。
This disclosure also provides:
[8] A retardation film produced by the production method according to any one of [1] to [6].
 本発明によれば、表示面の正面方向及び傾斜方向の両方において外光の反射による色付きを抑制可能な円偏光板を得ることができる位相差フィルムを、簡単に製造できる製造方法;表示面の正面方向及び傾斜方向の両方において外光の反射による色付きを抑制可能な円偏光板を、簡単に製造できる製造方法;を提供できる。 According to the present invention, a manufacturing method that can easily produce a retardation film that can produce a circularly polarizing plate that can suppress coloring due to reflection of external light both in the front direction and in the inclined direction of the display surface; It is possible to provide a manufacturing method that can easily manufacture a circularly polarizing plate that can suppress coloration due to reflection of external light both in the front direction and in the inclined direction.
図1は、実施例及び比較例でのシミュレーションにおいて、色空間座標の計算を行う際に設定した評価モデルの様子を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an evaluation model set when calculating color space coordinates in simulations in Examples and Comparative Examples.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。以下に示す実施形態の構成要素は、適宜組み合わせうる。また、図において、同一の構成要素には同一の符号を付し、その説明を省略する場合がある。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and may be implemented with arbitrary changes within the scope of the claims of the present invention and equivalents thereof. The components of the embodiments shown below can be combined as appropriate. In addition, in the figures, the same components are given the same reference numerals, and their explanations may be omitted.
 以下の説明において、面内位相差Reは、別に断らない限り、Re=(nx-ny)×dで表される値を示す。厚み方向位相差Rthは、別に断らない限り、Rth={(nx+ny)/2-nz}×dで表される値である。さらに、NZ係数NZは、別に断らない限り、NZ=Rth/Re+0.5で表される値を表し、よって、NZ=(nx-nz)/(nx-ny)で表されうる。nxは、厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向(遅相軸方向)の屈折率を表し、nyは、前記面内方向であってnxの方向に直交する方向の屈折率を表し、nzは、厚み方向の屈折率を表し、dは、厚みを表す。測定波長は、別に断らない限り、550nmである。面内位相差、厚み方向位相差、及びNZ係数は、位相差計(Axometrics社製「AxoScan」)を用いて測定しうる。 In the following description, unless otherwise specified, the in-plane phase difference Re indicates a value expressed by Re=(nx-ny)×d. The thickness direction retardation Rth is a value expressed by Rth={(nx+ny)/2−nz}×d, unless otherwise specified. Further, the NZ coefficient NZ represents a value expressed as NZ=Rth/Re+0.5, unless otherwise specified, and can therefore be expressed as NZ=(nx-nz)/(nx-ny). nx represents the refractive index in the direction perpendicular to the thickness direction (in-plane direction) giving the maximum refractive index (slow axis direction), and ny represents the in-plane direction in the nx direction. It represents the refractive index in the orthogonal direction, nz represents the refractive index in the thickness direction, and d represents the thickness. The measurement wavelength is 550 nm unless otherwise specified. The in-plane retardation, the thickness direction retardation, and the NZ coefficient can be measured using a retardation meter (“AxoScan” manufactured by Axometrics).
 以下の説明において、ある層の遅相軸とは、別に断らない限り、当該層の面内方向における遅相軸を表す。 In the following description, unless otherwise specified, the slow axis of a certain layer refers to the slow axis of the layer in the in-plane direction.
 以下の説明において、複数の層を備える部材における各層の光学軸(吸収軸、透過軸、遅相軸等)がなす角度は、別に断らない限り、前記の層を厚み方向から見たときの角度を表す。 In the following description, unless otherwise specified, the angle formed by the optical axis (absorption axis, transmission axis, slow axis, etc.) of each layer in a member having multiple layers is the angle when the layer is viewed from the thickness direction. represents.
 以下の説明において、ある面の正面方向とは、別に断らない限り、当該面の法線方向を意味し、具体的には前記面の極角0°且つ方位角0°の方向を指す。 In the following description, the front direction of a certain surface means the normal direction of the surface unless otherwise specified, and specifically refers to the direction of the polar angle of 0° and the azimuth angle of 0° of the surface.
 以下の説明において、ある面の傾斜方向とは、別に断らない限り、当該面に平行でも垂直でもない方向を意味し、具体的には当該面の極角が0°より大きく90°より小さい範囲の方向を指す。 In the following explanation, the inclination direction of a certain surface means a direction that is neither parallel nor perpendicular to the surface unless otherwise specified, and specifically, the range in which the polar angle of the surface is greater than 0° and less than 90°. Point in the direction of
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。 In the following description, the terms "parallel", "perpendicular" and "orthogonal" to the elements include errors within a range that does not impair the effects of the present invention, for example within a range of ±5°, unless otherwise specified. It's okay to stay.
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。長尺のフィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。 In the following description, a "long" film refers to a film having a length of 5 times or more, preferably 10 times or more, of the width, and specifically a roll A film that is long enough to be rolled up into a shape for storage or transportation. The upper limit of the length of the long film is not particularly limited, and may be, for example, 100,000 times or less the width.
 以下の説明において、長尺のフィルムの長手方向は、通常、製造ラインにおけるフィルムの流れ方向と平行である。また、長尺のフィルムの幅方向は、通常、厚み方向に対して垂直で且つ長手方向に垂直である。 In the following description, the longitudinal direction of a long film is usually parallel to the flow direction of the film on the production line. Further, the width direction of a long film is usually perpendicular to the thickness direction and perpendicular to the longitudinal direction.
 以下の説明において、「偏光板」、「円偏光板」、「プレート」、「λ/2板」、及び「λ/4板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。 In the following explanation, "polarizing plate", "circularly polarizing plate", "plate", "λ/2 plate", and "λ/4 plate" refer not only to rigid members, but also to e.g. It also includes flexible members such as resin films.
 以下の説明において、「正の固有複屈折値を有する重合体」及び「正の固有複屈折値を有する樹脂」とは、「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも大きくなる重合体」及び「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも大きくなる樹脂」をそれぞれ意味する。また、「負の固有複屈折値を有する重合体」及び「負の固有複屈折値を有する樹脂」とは、「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも小さくなる重合体」及び「延伸方向の屈折率が延伸方向に直交する方向の屈折率よりも小さくなる樹脂」をそれぞれ意味する。固有複屈折値は、誘電率分布から計算しうる。 In the following explanation, "polymer having a positive intrinsic birefringence value" and "resin having a positive intrinsic birefringence value" mean that the refractive index in the stretching direction is lower than the refractive index in the direction perpendicular to the stretching direction. and "a resin whose refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to the stretching direction" respectively. In addition, "polymer having a negative intrinsic birefringence value" and "resin having a negative intrinsic birefringence value" refer to "a polymer whose refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal to the stretching direction". "coalescence" and "resin whose refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal to the stretching direction" respectively. The intrinsic birefringence value can be calculated from the dielectric constant distribution.
 以下の説明において、接着剤とは、別に断らない限り、狭義の接着剤(エネルギー線照射後、あるいは加熱処理後、23℃における剪断貯蔵弾性率が1MPa~500MPaである接着剤)のみならず、23℃における剪断貯蔵弾性率が1MPa未満である粘着剤をも包含する。 In the following description, unless otherwise specified, adhesives are not only adhesives in the narrow sense (adhesives with a shear storage modulus of 1 MPa to 500 MPa at 23°C after energy ray irradiation or heat treatment); Also included are adhesives having a shear storage modulus of less than 1 MPa at 23°C.
[1.製造される位相差フィルム]
 本発明の一実施形態に係る製造方法によって製造される位相差フィルムは、下記式(1)、下記式(2)及び下記式(3)を満たす。この位相差フィルムは、直線偏光子と組み合わせることにより、表示面の正面方向及び傾斜方向の両方において外光の反射による色付きを抑制可能な円偏光板を得ることができる。
[1. Manufactured retardation film]
A retardation film manufactured by the manufacturing method according to an embodiment of the present invention satisfies the following formula (1), the following formula (2), and the following formula (3). By combining this retardation film with a linear polarizer, it is possible to obtain a circularly polarizing plate that can suppress coloring due to reflection of external light both in the front direction and in the tilt direction of the display surface.
  100nm≦Re(550)≦180nm  (1)
  Re(450)<Re(550)<Re(650)  (2)
  0.0<NZ<1.0  (3)
(ただし、
 Re(450)は、波長450nmにおける前記位相差フィルムの面内位相差を表し、
 Re(550)は、波長550nmにおける前記位相差フィルムの面内位相差を表し、
 Re(650)は、波長650nmにおける前記位相差フィルムの面内位相差を表し、
 NZは、前記位相差フィルムのNZ係数を表す。)
100nm≦Re T (550)≦180nm (1)
Re T (450)<Re T (550)<Re T (650) (2)
0.0< NZT <1.0 (3)
(however,
Re T (450) represents the in-plane retardation of the retardation film at a wavelength of 450 nm,
Re T (550) represents the in-plane retardation of the retardation film at a wavelength of 550 nm,
Re T (650) represents the in-plane retardation of the retardation film at a wavelength of 650 nm,
NZ T represents the NZ coefficient of the retardation film. )
 前記式(1)について、詳細に説明する。波長550nmにおける位相差フィルムの面内位相差Re(550)は、通常100nm以上、好ましくは115nm以上、特に好ましくは125nm以上であり、また、通常180nm以下、好ましくは160nm以下、特に好ましくは150nm以下である。このような範囲の面内位相差Re(550)を有する場合、位相差フィルムは、λ/4板として機能できる。よって、その位相差フィルムを直線偏光子と組み合わせることにより、外光の反射を抑制可能な円偏光板を得ることができる。 The above formula (1) will be explained in detail. The in-plane retardation Re T (550) of the retardation film at a wavelength of 550 nm is usually 100 nm or more, preferably 115 nm or more, particularly preferably 125 nm or more, and usually 180 nm or less, preferably 160 nm or less, particularly preferably 150 nm. It is as follows. When having an in-plane retardation Re T (550) in such a range, the retardation film can function as a λ/4 plate. Therefore, by combining the retardation film with a linear polarizer, it is possible to obtain a circularly polarizing plate that can suppress reflection of external light.
 式(1)を満たす面内位相差Re(550)は、例えば、位相差フィルムに含まれる樹脂層(P)及び樹脂層(N)等の各層の面内位相差、並びに、それら各層の遅相軸の方向を適切に調整することにより、得ることができる。 The in-plane retardation Re T (550) that satisfies formula (1) is, for example, the in-plane retardation of each layer such as the resin layer (P) and the resin layer (N) included in the retardation film, and the in-plane retardation of each layer. This can be obtained by appropriately adjusting the direction of the slow axis.
 前記式(2)について、詳細に説明する。波長450nm、550nm及び650nmにおける位相差フィルムの面内位相差Re(450)、Re(550)及びRe(650)は、Re(450)<Re(550)<Re(650)を満たす。この式(2)を満たす位相差フィルムの面内位相差は、通常、逆波長分散性を示す。具体的には、当該位相差フィルムは、通常、測定波長が長いほど、大きい面内位相差を有する。よって、この位相差フィルムは、広い波長範囲において、当該位相差フィルムを透過する光の偏光状態を均一に変換できる広帯域λ/4板として機能できる。よって、その位相差フィルムを直線偏光子と組み合わせることにより、外光の反射による色付きを抑制可能な円偏光板を得ることができる。 The above formula (2) will be explained in detail. The in-plane retardations Re T (450), Re T (550), and Re T (650) of the retardation film at wavelengths of 450 nm, 550 nm, and 650 nm are as follows: Re T (450)<Re T (550)<Re T (650) ) is satisfied. The in-plane retardation of a retardation film that satisfies this formula (2) usually exhibits reverse wavelength dispersion. Specifically, the retardation film generally has a larger in-plane retardation as the measurement wavelength is longer. Therefore, this retardation film can function as a broadband λ/4 plate that can uniformly convert the polarization state of light that passes through the retardation film in a wide wavelength range. Therefore, by combining the retardation film with a linear polarizer, it is possible to obtain a circularly polarizing plate that can suppress coloring due to reflection of external light.
 式(2)を満たす面内位相差Re(450)、Re(550)及びRe(650)は、例えば、位相差フィルムに含まれる樹脂層(P)及び樹脂層(N)等の各層の面内位相差、並びに、それら各層の遅相軸の方向を適切に調整することにより、得ることができる。 The in-plane retardations Re T (450), Re T (550), and Re T (650) that satisfy formula (2) are, for example, the resin layer (P) and resin layer (N) included in the retardation film. This can be obtained by appropriately adjusting the in-plane retardation of each layer and the direction of the slow axis of each layer.
 前記式(3)について、詳細に説明する。位相差フィルムのNZ係数NZは、通常0.0より大きく、好ましくは0.2より大きく、特に好ましくは0.3より大きく、また、通常1.0未満、好ましくは0.8未満、特に好ましくは0.7未満である。位相差フィルムが前記範囲のNZ係数NZを有する場合、その位相差フィルムは、面内方向及び厚み方向の両方において適切に調整された複屈折を有する。よって、その位相差フィルムを直線偏光子と組み合わせて得られる円偏光板は、表示面の正面方向及び傾斜方向の両方において、外光の反射による色付きを抑制できる。 The above formula (3) will be explained in detail. The NZ coefficient NZ T of the retardation film is usually larger than 0.0, preferably larger than 0.2, particularly preferably larger than 0.3, and usually smaller than 1.0, preferably smaller than 0.8, especially Preferably it is less than 0.7. When the retardation film has the NZ coefficient NZ T in the above range, the retardation film has appropriately adjusted birefringence in both the in-plane direction and the thickness direction. Therefore, a circularly polarizing plate obtained by combining the retardation film with a linear polarizer can suppress coloring due to reflection of external light both in the front direction and in the inclined direction of the display surface.
 位相差フィルムのNZ係数NZは、別に断らない限り、波長550nmにおける位相差フィルムの面内位相差Re(550)及び厚み方向位相差Rth(550)を用いて、「NZ={Rth(550)/Re(550)}+0.5」で表される。式(3)を満たすNZ係数NZは、例えば、位相差フィルムに含まれる樹脂層(P)及び樹脂層(N)等の各層のNZ係数を適切に調整することにより、得ることができる。 The NZ coefficient NZ T of the retardation film is calculated using the in-plane retardation Re T (550) and the thickness direction retardation Rth T (550) of the retardation film at a wavelength of 550 nm, unless otherwise specified . Rth T (550)/Re T (550)}+0.5''. The NZ coefficient NZ T that satisfies formula (3) can be obtained, for example, by appropriately adjusting the NZ coefficient of each layer such as the resin layer (P) and the resin layer (N) included in the retardation film.
 本実施形態に係る製造方法においては、上述した式(1)~式(3)を満たす位相差フィルムを、熱可塑性樹脂Pを含む樹脂層(P)と、熱可塑性樹脂Nを含む樹脂層(N)と、を組み合わせて備える位相差フィルムとして、製造する。 In the manufacturing method according to the present embodiment, a retardation film satisfying the above-mentioned formulas (1) to (3) is formed into a resin layer (P) containing a thermoplastic resin P and a resin layer (P) containing a thermoplastic resin N. N) is manufactured as a retardation film comprising the following in combination.
 ここで、熱可塑性樹脂Pは、正の固有複屈折値を有し、熱可塑性樹脂Nは、負の固有複屈折値を有する。これらの熱可塑性樹脂P及び熱可塑性樹脂Nを組み合わせて用いて、後述する製造方法を行った場合に、上述した式(1)~式(3)を満たす位相差フィルムを簡単に製造できる。 Here, the thermoplastic resin P has a positive intrinsic birefringence value, and the thermoplastic resin N has a negative intrinsic birefringence value. When the manufacturing method described below is performed using a combination of these thermoplastic resins P and thermoplastic resin N, a retardation film that satisfies the above-mentioned formulas (1) to (3) can be easily manufactured.
 正の固有複屈折値を有する熱可塑性樹脂Pは、通常、正の固有複屈折値を有する重合体を含む。この重合体としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ポリフェニレンサルファイド等のポリアリーレンサルファイド;ポリビニルアルコール;ポリカーボネート;ポリアリレート;セルロースエステル;ポリエーテルスルホン;ポリスルホン;ポリアリルサルホン;ポリ塩化ビニル;脂環式構造含有重合体;棒状液晶ポリマー;などが挙げられる。これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、脂環式構造含有重合体、セルロースエステル、及びポリカーボネートが好ましく、脂環式構造含有重合体が特に好ましい。 The thermoplastic resin P having a positive intrinsic birefringence value usually contains a polymer having a positive intrinsic birefringence value. Examples of this polymer include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polyvinyl alcohol; polycarbonate; polyarylate; cellulose ester; polyether sulfone; polysulfone; Polyarylsulfone; polyvinyl chloride; alicyclic structure-containing polymer; rod-shaped liquid crystal polymer; and the like. One type of these polymers may be used alone, or two or more types may be used in combination in any ratio. Among these, alicyclic structure-containing polymers, cellulose esters, and polycarbonates are preferred, and alicyclic structure-containing polymers are particularly preferred.
 脂環式構造含有重合体は、環状オレフィン重合体及びその水素添加物などの、繰り返し単位中に脂環式構造を含有する重合体であり、通常は非晶質の重合体である。脂環式構造含有重合体としては、主鎖中に脂環式構造を含有する重合体、及び、側鎖に脂環式構造を含有する重合体、のいずれも用いうる。脂環式構造としては、例えば、シクロアルカン構造、シクロアルケン構造が挙げられるが、熱安定性の観点から、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上、特に好ましくは6個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。 The alicyclic structure-containing polymer is a polymer containing an alicyclic structure in its repeating units, such as a cyclic olefin polymer and its hydrogenated product, and is usually an amorphous polymer. As the alicyclic structure-containing polymer, both a polymer containing an alicyclic structure in the main chain and a polymer containing an alicyclic structure in the side chain can be used. Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and from the viewpoint of thermal stability, a cycloalkane structure is preferable. The number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, particularly preferably 6 or more, and preferably 30 or less, more preferably 20 or less, Particularly preferably, the number is 15 or less.
 脂環式構造含有重合体において、脂環式構造を含有する繰り返し単位の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造を含有する繰り返し単位の割合が前記範囲にある場合、耐熱性に優れる位相差フィルムを得ることができる。 In the alicyclic structure-containing polymer, the proportion of repeating units containing an alicyclic structure is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably 90% by weight or more. When the proportion of repeating units containing an alicyclic structure is within the above range, a retardation film with excellent heat resistance can be obtained.
 脂環式構造含有重合体としては、例えば、(1)ノルボルネン系重合体、(2)単環の環状オレフィン重合体、(3)環状共役ジエン重合体、(4)ビニル脂環式炭化水素重合体、及びこれらの水素添加物などが挙げられる。これらの中でも、環状オレフィン重合体及びノルボルネン系重合体が好ましく、ノルボルネン系重合体が特に好ましい。ノルボルネン系重合体としては、例えば、ノルボルネン構造を含有するモノマーの開環重合体、ノルボルネン構造を含有するモノマーとこれと開環共重合可能なその他のモノマーとの開環共重合体、及び、それらの水素化物;ノルボルネン構造を含有するモノマーの付加重合体、ノルボルネン構造を含有するモノマーとこれと共重合可能なその他のモノマーとの付加共重合体などが挙げられる。これらの中でも、透明性の観点から、ノルボルネン構造を含有するモノマーの開環重合体水素化物が特に好ましい。前記の脂環式構造含有重合体は、例えば特開2002-321302号公報に開示されている重合体から選択されうる。 Examples of alicyclic structure-containing polymers include (1) norbornene polymers, (2) monocyclic olefin polymers, (3) cyclic conjugated diene polymers, and (4) vinyl alicyclic hydrocarbon polymers. Examples include coalescence, hydrogenated products thereof, and the like. Among these, cyclic olefin polymers and norbornene polymers are preferred, and norbornene polymers are particularly preferred. Examples of norbornene-based polymers include ring-opening polymers of monomers containing a norbornene structure, ring-opening copolymers of monomers containing a norbornene structure and other monomers capable of ring-opening copolymerization therewith, and hydrides; addition polymers of monomers containing a norbornene structure, addition copolymers of monomers containing a norbornene structure and other monomers copolymerizable therewith, and the like. Among these, from the viewpoint of transparency, hydrogenated ring-opening polymers of monomers containing a norbornene structure are particularly preferred. The alicyclic structure-containing polymer may be selected from, for example, the polymers disclosed in JP-A No. 2002-321302.
 セルロースエステルとしては、例えば、セルロースの低級脂肪酸エステル(例:セルロースアセテート、セルロースアセテートブチレート及びセルロースアセテートプロピオネート)が挙げられる。低級脂肪酸は、1分子あたりの炭素原子数6以下の脂肪酸を意味する。セルロースアセテートには、トリアセチルセルロース(TAC)及びセルロースジアセテート(DAC)が含まれうる。 Examples of cellulose esters include lower fatty acid esters of cellulose (eg, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate). Lower fatty acid means a fatty acid having 6 or less carbon atoms per molecule. Cellulose acetate may include triacetylcellulose (TAC) and cellulose diacetate (DAC).
 セルロースエステルの総アシル基置換度は、好ましくは2.20以上2.70以下であり、より好ましくは2.40以上2.60以下である。ここで、総アシル基は、ASTM D817-91に準じて測定しうる。また、セルロースエステルの重量平均重合度は、好ましくは350以上800以下であり、より好ましくは370以上600以下である。 The total degree of acyl group substitution of the cellulose ester is preferably 2.20 or more and 2.70 or less, more preferably 2.40 or more and 2.60 or less. Here, the total acyl groups can be measured according to ASTM D817-91. Further, the weight average degree of polymerization of the cellulose ester is preferably 350 or more and 800 or less, more preferably 370 or more and 600 or less.
 ポリカーボネートは、通常、カーボネート結合(-O-C(=O)-O-)を含む繰り返し単位を有する。ポリカーボネートとしては、例えば、ジヒドロキシ化合物から誘導される構成単位及びカーボネート構造(-O-(C=O)-O-で表される構造)を有する重合体が挙げられる。ジヒドロキシ化合物としては、例えば、ビスフェノールAが挙げられる。ポリカーボネート中に含まれる、ジヒドロキシ化合物から誘導される構成単位は、1種であってもよく、2種以上であってもよい。 Polycarbonate usually has repeating units containing carbonate bonds (-OC(=O)-O-). Examples of the polycarbonate include a polymer having a structural unit derived from a dihydroxy compound and a carbonate structure (a structure represented by -O-(C=O)-O-). Examples of dihydroxy compounds include bisphenol A. The number of structural units derived from dihydroxy compounds contained in the polycarbonate may be one, or two or more.
 熱可塑性樹脂Pに含まれる重合体の重量平均分子量(Mw)は、好ましくは10,000以上、より好ましくは15,000以上、特に好ましくは20,000以上であり、好ましくは100,000以下、より好ましくは80,000以下、特に好ましくは50,000以下である。重量平均分子量がこのような範囲にある場合、樹脂層(P)の機械的強度及び成型加工性が高度にバランスされる。前記の重量平均分子量は、溶媒としてシクロヘキサンを用いてゲル・パーミエーション・クロマトグラフィー(GPC)で測定したポリイソプレン又はポリスチレン換算の重量平均分子量である。但し、試料がシクロヘキサンに溶解しない場合には、GPCの溶媒としてトルエンを用いてもよい。 The weight average molecular weight (Mw) of the polymer contained in the thermoplastic resin P is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, and preferably 100,000 or less, It is more preferably 80,000 or less, particularly preferably 50,000 or less. When the weight average molecular weight is within such a range, the mechanical strength and moldability of the resin layer (P) are highly balanced. The above weight average molecular weight is a weight average molecular weight in terms of polyisoprene or polystyrene measured by gel permeation chromatography (GPC) using cyclohexane as a solvent. However, if the sample does not dissolve in cyclohexane, toluene may be used as the GPC solvent.
 熱可塑性樹脂Pにおける重合体の割合は、好ましくは50重量%~100重量%、より好ましくは70重量%~100重量%、特に好ましくは90重量%~100重量%である。重合体の割合が前記範囲にある場合、樹脂層(P)が十分な耐熱性及び透明性を得られる。 The proportion of the polymer in the thermoplastic resin P is preferably 50% to 100% by weight, more preferably 70% to 100% by weight, particularly preferably 90% to 100% by weight. When the proportion of the polymer is within the above range, the resin layer (P) can obtain sufficient heat resistance and transparency.
 熱可塑性樹脂Pは、前記の重合体に組み合わせて、更に任意の成分を含んでいてもよい。任意の成分としては、例えば、酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;可塑剤;等が挙げられる。これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The thermoplastic resin P may further contain arbitrary components in combination with the above polymer. Examples of optional components include stabilizers such as antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, ultraviolet absorbers, and near-infrared absorbers; plasticizers; and the like. One type of these components may be used alone, or two or more types may be used in combination in any ratio.
 負の固有複屈折値を有する熱可塑性樹脂Nは、通常、負の固有複屈折値を有する重合体を含む。この重合体としては、例えば、芳香族ビニル化合物モノマーの単独重合体、及び/又は、芳香族ビニル化合物モノマーと任意のモノマーとの共重合体を含む、芳香族ビニル化合物系重合体;ポリアクリロニトリル重合体;ポリメチルメタクリレート重合体;あるいはこれらの多元共重合体;などが挙げられる。また、芳香族ビニル化合物モノマーに共重合させうる任意のモノマーとしては、例えば、アクリロニトリル、無水マレイン酸、メチルメタクリレート、及びブタジエン等が挙げられる。また、これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The thermoplastic resin N having a negative intrinsic birefringence value usually includes a polymer having a negative intrinsic birefringence value. Examples of this polymer include aromatic vinyl compound-based polymers, including homopolymers of aromatic vinyl compound monomers and/or copolymers of aromatic vinyl compound monomers and arbitrary monomers; polyacrylonitrile polymers; Polymers; polymethyl methacrylate polymers; or multi-component copolymers thereof; and the like. Furthermore, examples of arbitrary monomers that can be copolymerized with the aromatic vinyl compound monomer include acrylonitrile, maleic anhydride, methyl methacrylate, and butadiene. Further, these polymers may be used alone or in combination of two or more in any ratio.
 芳香族ビニル化合物モノマーの例としては、スチレン、スチレン誘導体、ビニルナフタレン、ビニルナフタレン誘導体が挙げられる。スチレン誘導体又はビニルナフタレン誘導体としては、スチレン又はビニルナフタレンの芳香環に置換基が置換した化合物、スチレン又はビニルナフタレンのα位又はβ位に置換基が置換した化合物が挙げられる。 Examples of aromatic vinyl compound monomers include styrene, styrene derivatives, vinylnaphthalene, and vinylnaphthalene derivatives. Examples of the styrene derivative or vinylnaphthalene derivative include compounds in which the aromatic ring of styrene or vinylnaphthalene is substituted with a substituent, and compounds in which a substituent is substituted at the α or β position of styrene or vinylnaphthalene.
 負の固有複屈折値を有する重合体の中でも、スチレン重合体、スチレン誘導体の重合体、ビニルナフタレン重合体(好ましくはポリ(2-ビニルナフタレン))、及びビニルナフタレン誘導体の重合体からなる群より選択される一種以上の重合体が好ましく、ビニルナフタレン重合体がより好ましく、ポリ(2-ビニルナフタレン)が特に好ましい。 Among polymers having a negative intrinsic birefringence value, from the group consisting of styrene polymers, polymers of styrene derivatives, vinylnaphthalene polymers (preferably poly(2-vinylnaphthalene)), and polymers of vinylnaphthalene derivatives. One or more selected polymers are preferred, vinylnaphthalene polymers are more preferred, and poly(2-vinylnaphthalene) is particularly preferred.
 熱可塑性樹脂Nにおける重合体の割合は、好ましくは50重量%~100重量%、より好ましくは70重量%~100重量%、特に好ましくは90重量%~100重量%である。重合体の割合が前記範囲にある場合、樹脂層(N)が適切な光学特性を発現できる。 The proportion of the polymer in the thermoplastic resin N is preferably 50% to 100% by weight, more preferably 70% to 100% by weight, particularly preferably 90% to 100% by weight. When the proportion of the polymer is within the above range, the resin layer (N) can exhibit appropriate optical properties.
 熱可塑性樹脂Nは、前記の重合体に組み合わせて、更に任意の成分を含んでいてもよい。任意の成分としては、例えば、熱可塑性樹脂Pが含みうる任意の成分と同じ例が挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The thermoplastic resin N may further contain arbitrary components in combination with the above polymer. Examples of the optional component include the same examples as the optional components that the thermoplastic resin P may contain. One type of arbitrary components may be used alone, or two or more types may be used in combination in any ratio.
 熱可塑性樹脂N及び熱可塑性樹脂Pとしては、それぞれ、任意のガラス転移温度を有する樹脂を用いうる。
 後述する第四工程において、熱可塑性樹脂Nの層及び熱可塑性樹脂Pの層を備える第三フィルムの延伸を円滑に行う観点から、熱可塑性樹脂Nのガラス転移温度TgNと、熱可塑性樹脂Pのガラス転移温度TgPとの差の絶対値|TgN-TgP|は、好ましくは40℃以下、より好ましくは30℃以下、更に好ましくは25℃以下、更に好ましくは10℃未満、特に好ましくは5℃未満であり、下限は通常0℃以上である。
As the thermoplastic resin N and the thermoplastic resin P, resins each having an arbitrary glass transition temperature can be used.
In the fourth step described below, from the viewpoint of smoothly stretching the third film comprising a layer of thermoplastic resin N and a layer of thermoplastic resin P, the glass transition temperature TgN of thermoplastic resin N and the thermoplastic resin P The absolute value of the difference from the glass transition temperature TgP |TgN-TgP| is preferably 40°C or less, more preferably 30°C or less, even more preferably 25°C or less, even more preferably less than 10°C, particularly preferably less than 5°C. The lower limit is usually 0°C or higher.
 位相差フィルムが備える樹脂層(N)は、遅相軸(N)を有する。また、位相差フィルムが備える樹脂層(P)は、樹脂層(N)の前記遅相軸(N)に対して略垂直な遅相軸(P)を有する。遅相軸(P)が遅相軸(N)に対して「略垂直」とは、遅相軸(N)と遅相軸(P)とがなす角度が90°に近い特定の範囲にあることを表す。具体的には、遅相軸(P)に対して遅相軸(N)がなす角度は、通常90°±5°の範囲内であり、通常85°以上、好ましくは87°以上、より好ましくは88°以上、特に好ましくは89°以上であり、通常95°以下、好ましくは93°以下、より好ましくは92°以下、特に好ましくは91°以下である。後述する製造方法では、前記の関係の遅相軸を有する樹脂層(P)及び樹脂層(N)を組み合わせて備える複層構造のフィルムとして、上述した式(1)~式(3)を満たす位相差フィルムを得ることができる。 The resin layer (N) included in the retardation film has a slow axis (N). Further, the resin layer (P) included in the retardation film has a slow axis (P) substantially perpendicular to the slow axis (N) of the resin layer (N). The slow axis (P) is "substantially perpendicular" to the slow axis (N) when the angle between the slow axis (N) and the slow axis (P) is in a specific range close to 90°. represents something. Specifically, the angle formed by the slow axis (N) with respect to the slow axis (P) is usually within the range of 90° ± 5°, usually 85° or more, preferably 87° or more, and more preferably is 88° or more, particularly preferably 89° or more, and usually 95° or less, preferably 93° or less, more preferably 92° or less, particularly preferably 91° or less. In the manufacturing method described below, a film having a multilayer structure comprising a combination of a resin layer (P) and a resin layer (N) having slow axes in the above relationship satisfies the above formulas (1) to (3). A retardation film can be obtained.
 特に、長尺の位相差フィルムにおいては、樹脂層(P)の遅相軸(P)及び樹脂層(N)の遅相軸(N)の一方が、位相差フィルムの幅方向に対して45°に近い特定の範囲の角度をなすことが好ましい。具体的には、前記の角度は、好ましくは40°以上、より好ましくは42°以上、更に好ましくは43°以上、特に好ましくは44°以上であり、好ましくは50°以下、より好ましくは48°以下、更に好ましくは47°以下、特に好ましくは46°以下である。更にこの場合、遅相軸(P)及び遅相軸(N)の他方は、位相差フィルムの幅方向に対して135°に近い特定の範囲の角度をなすことが好ましい。具体的には、前記の角度は、好ましくは130°以上、より好ましくは132°以上、更に好ましくは133°以上、特に好ましくは134°以上であり、好ましくは140°以下、より好ましくは138°以下、更に好ましくは137°以下、特に好ましくは136°以下である。一般的な長尺の直線偏光子は、当該直線偏光子の幅方向に平行又は垂直な吸収軸を有する。幅方向に対して前記範囲の角度をなす方向に遅相軸を有する樹脂層(P)及び樹脂層(N)を備える長尺の位相差フィルムは、前記の一般的な直線偏光子に、単純に位相差フィルムの幅方向と直線偏光子の幅方向とを平行にして貼り合わせて、円偏光板を得ることができる。したがって、位相差フィルムと直線偏光子との貼り合わせをロール・トゥ・ロールで行うことができるので、円偏光板を特に簡単に製造することができる。 In particular, in a long retardation film, one of the slow axis (P) of the resin layer (P) and the slow axis (N) of the resin layer (N) is 45° with respect to the width direction of the retardation film. Preferably, the angle is within a certain range close to . Specifically, the angle is preferably 40° or more, more preferably 42° or more, even more preferably 43° or more, particularly preferably 44° or more, and preferably 50° or less, more preferably 48°. The angle is more preferably 47° or less, particularly preferably 46° or less. Furthermore, in this case, the other of the slow axis (P) and the slow axis (N) preferably forms an angle in a specific range close to 135° with respect to the width direction of the retardation film. Specifically, the angle is preferably 130° or more, more preferably 132° or more, even more preferably 133° or more, particularly preferably 134° or more, and preferably 140° or less, more preferably 138°. The angle is more preferably 137° or less, particularly preferably 136° or less. A typical long linear polarizer has an absorption axis that is parallel or perpendicular to the width direction of the linear polarizer. A long retardation film comprising a resin layer (P) and a resin layer (N) having slow axes in a direction forming an angle in the above range with respect to the width direction is a simple method that is similar to the general linear polarizer described above. A circularly polarizing plate can be obtained by laminating the retardation film and the linear polarizer in parallel with each other in the width direction. Therefore, since the retardation film and the linear polarizer can be bonded together in a roll-to-roll manner, the circularly polarizing plate can be manufactured particularly easily.
 樹脂層(P)のNZ係数NZ及び樹脂層(N)のNZ係数NZは、位相差フィルムのNZ係数NZを式(3)の範囲内に収められるように、適切に設定することが好ましい。樹脂層(P)のNZ係数NZは、「NZ=(nx-nz)/(nx-ny)」で表される値であり、よって「NZ=(Rth/Re)+0.5」で表される。nxは、樹脂層(P)の面内方向であって最大の屈折率を与える方向の屈折率を表す。nyは、樹脂層(P)の面内方向であって、nxを与える方向に直交する方向の屈折率を表す。nzは、樹脂層(P)の厚み方向の屈折率を表す。Reは、樹脂層(P)の面内位相差を表し、よって「Re=(nx-ny)×d」で表される。Rthは、樹脂層(P)の厚み方向位相差を表し、よって「Rth={(nx+ny)/2-nz}×d」で表される。dは、樹脂層(P)の厚みを表す。また、樹脂層(N)のNZ係数NZは、「NZ=(nx-nz)/(nx-ny)」で表される値であり、よって「NZ=(Rth/Re)+0.5」で表される。nxは、樹脂層(N)の面内方向であって最大の屈折率を与える方向の屈折率を表す。nyは、樹脂層(N)の面内方向であって、nxを与える方向に直交する方向の屈折率を表す。nzは、樹脂層(N)の厚み方向の屈折率を表す。Reは、樹脂層(N)の面内位相差を表し、よって「Re=(nx-ny)×d」で表される。Rthは、樹脂層(N)の厚み方向位相差を表し、よって「Rth={(nx+ny)/2-nz}×d」で表される。dは、樹脂層(N)の厚みを表す。 The NZ coefficient NZ P of the resin layer (P) and the NZ coefficient NZ N of the resin layer (N) should be appropriately set so that the NZ coefficient NZ T of the retardation film is within the range of formula (3). is preferred. The NZ coefficient NZ P of the resin layer (P) is a value expressed by "NZ P = (nx P - nz P )/(nx P - ny P )", and therefore "NZ P = (Rth P /Re P )+0.5". nxP represents the refractive index in the in-plane direction of the resin layer (P) and the direction that provides the maximum refractive index. ny P represents the refractive index in the in-plane direction of the resin layer (P) and perpendicular to the direction giving nx P. nz P represents the refractive index in the thickness direction of the resin layer (P). Re P represents the in-plane retardation of the resin layer (P), and is therefore expressed as “Re P =(nx P −ny P )×d P ”. Rth P represents the retardation in the thickness direction of the resin layer (P), and is therefore expressed as "Rth P = {(nx P +ny P )/2-nz P }×d P ". dP represents the thickness of the resin layer (P). Further, the NZ coefficient NZ N of the resin layer (N) is a value expressed by "NZ N = (nx N - nz N )/(nx N - ny N )", and therefore, "NZ N = (Rth N /Re N )+0.5". nxN represents the refractive index in the in-plane direction of the resin layer (N) in the direction that provides the maximum refractive index. ny N represents the refractive index in the in-plane direction of the resin layer (N) and perpendicular to the direction giving nx N. nz N represents the refractive index in the thickness direction of the resin layer (N). Re N represents the in-plane retardation of the resin layer (N), and is therefore expressed as “Re N =(nx N −ny N )×d N ”. Rth N represents the retardation in the thickness direction of the resin layer (N), and is therefore expressed as “Rth N = {(nx N +ny N )/2−nz N }×d N ”. dN represents the thickness of the resin layer (N).
 樹脂層(P)のNZ係数NZは、1.00以上が好ましい。よって、樹脂層(P)の屈折率ny及びnzは、ny≧nzの関係を満たすことが好ましい。また、樹脂層(N)のNZ係数NZは、0.0未満が好ましい。よって、樹脂層(N)の屈折率nx及びnzは、nz>nxの関係を満たすことが好ましい。このような組み合わせの樹脂層(P)及び樹脂層(N)によれば、位相差フィルム全体のNZ係数NZを式(3)の範囲内に容易に調整できる。 The NZ coefficient NZ P of the resin layer (P) is preferably 1.00 or more. Therefore, it is preferable that the refractive indices ny P and nz P of the resin layer (P) satisfy the relationship ny P ≧nz P. Further, the NZ coefficient NZ N of the resin layer (N) is preferably less than 0.0. Therefore, it is preferable that the refractive indices nx N and nz N of the resin layer (N) satisfy the relationship nz N >nx N. According to such a combination of resin layer (P) and resin layer (N), the NZ coefficient NZ T of the entire retardation film can be easily adjusted within the range of formula (3).
 より詳細には、樹脂層(P)のNZ係数NZは、好ましくは1.00以上、より好ましくは1.05以上であり、好ましくは1.30以下、より好ましくは1.20以下である。このように1.00以上のNZ係数NZを有する樹脂層(P)の屈折率nx、ny及びnzは、nx>ny≧nzの関係を有しうる。よって、樹脂層(P)は、ポジティブAプレート又はネガティブBプレートとして機能しうる。 More specifically, the NZ coefficient NZ P of the resin layer (P) is preferably 1.00 or more, more preferably 1.05 or more, and preferably 1.30 or less, more preferably 1.20 or less. . As described above, the refractive indices nx P , ny P and nz P of the resin layer (P) having the NZ coefficient NZ P of 1.00 or more may have the relationship of nx P >ny P ≧nz P. Therefore, the resin layer (P) can function as a positive A plate or a negative B plate.
 また、樹脂層(N)のNZ係数NZは、好ましくは-2.0以上、より好ましくは-1.5以上であり、好ましくは0.0未満、より好ましくは-0.2以下、特に好ましくは-0.4以下である。このように0.0未満のNZ係数を有する樹脂層(N)の屈折率nx、ny及びnzは、nz>nx>nyの関係を有しうる。よって、樹脂層(N)は、3方向の屈折率nx、ny及びnzが相違する層(即ち、二軸性を有する層)でありうる。また、樹脂層(N)は、ポジティブBプレートとして機能しうる。 Further, the NZ coefficient NZ N of the resin layer (N) is preferably -2.0 or more, more preferably -1.5 or more, preferably less than 0.0, more preferably -0.2 or less, especially It is preferably -0.4 or less. As described above, the refractive indices nx N , ny N and nz N of the resin layer (N) having an NZ coefficient of less than 0.0 may have a relationship of nz N > nx N > ny N. Therefore, the resin layer (N) may be a layer having different refractive indexes nx N , ny N and nz N in three directions (ie, a biaxial layer). Further, the resin layer (N) can function as a positive B plate.
 樹脂層(P)のNZ係数NZ及び樹脂層(N)のNZ係数NZの和NZ+NZは、特定の範囲に収まることが好ましい。具体的には、和「NZ+NZ」は、好ましくは-0.3以上、より好ましくは0.0以上、特に好ましくは0.10以上であり、好ましくは0.8以下、より好ましくは0.75以下、特に好ましくは0.65以下である。和「NZ+NZ」が前記の範囲にある場合、表示面の正面方向及び傾斜方向の両方において外光の反射による色付きを効果的に抑制可能な円偏光板を得ることができる位相差フィルムを実現できる。 The sum NZ P +NZ N of the NZ coefficient NZ P of the resin layer (P) and the NZ coefficient NZ N of the resin layer (N) preferably falls within a specific range. Specifically, the sum "NZ P + NZ N " is preferably -0.3 or more, more preferably 0.0 or more, particularly preferably 0.10 or more, and preferably 0.8 or less, more preferably It is 0.75 or less, particularly preferably 0.65 or less. When the sum "NZ P + NZ N " is within the above range, a retardation film capable of obtaining a circularly polarizing plate that can effectively suppress coloration due to reflection of external light both in the front direction and in the inclined direction of the display surface. can be realized.
 位相差フィルムは、下記式(4)を満たすことが好ましい。
  {Re(450)/Re(550)}-{Re(450)/Re(550)}>0.08   (4)
(ただし、
 Re(450)は、波長450nmにおける前記樹脂層(N)の面内位相差を表し、
 Re(550)は、波長550nmにおける前記樹脂層(N)の面内位相差を表し、
 Re(450)は、波長450nmにおける前記樹脂層(P)の面内位相差を表し、
 Re(550)は、波長550nmにおける前記樹脂層(P)の面内位相差を表す。)
It is preferable that the retardation film satisfies the following formula (4).
{Re N (450)/Re N (550)}-{Re P (450)/Re P (550)}>0.08 (4)
(however,
Re N (450) represents the in-plane retardation of the resin layer (N) at a wavelength of 450 nm,
Re N (550) represents the in-plane retardation of the resin layer (N) at a wavelength of 550 nm,
Re P (450) represents the in-plane retardation of the resin layer (P) at a wavelength of 450 nm,
Re P (550) represents the in-plane retardation of the resin layer (P) at a wavelength of 550 nm. )
 式(4)において、「Re(450)/Re(550)」は、樹脂層(N)の波長分散性を表す。また、式(4)において、「Re(450)/Re(550)」は、樹脂層(P)の波長分散性を表す。よって、式(4)は、位相差フィルムが備える樹脂層(N)及び樹脂層(P)の間に、面内位相差の波長分散性の差があることを表す。より詳細には、樹脂層(N)の面内位相差の方が樹脂層(P)の面内位相差よりも波長分散性が大きいことを表す。この波長分散の差を表すパラメータ「{Re(450)/Re(550)}-{Re(450)/Re(550)}」は、詳細には、好ましくは0.08より大きく、より好ましくは0.09より大きく、特に好ましくは0.10より大きく、また上限は、特段の制限はなく、好ましくは2.0未満、より好ましくは1.5未満、特に好ましくは1.2未満である。このように面内位相差の波長分散性に差がある樹脂層(P)及び樹脂層(N)を備える位相差フィルムは、積層状態で容易に逆波長分散特性を得ることができる。 In formula (4), "Re N (450)/Re N (550)" represents the wavelength dispersion of the resin layer (N). Moreover, in Formula (4), "Re P (450)/Re P (550)" represents the wavelength dispersion of the resin layer (P). Therefore, formula (4) represents that there is a difference in wavelength dispersion of in-plane retardation between the resin layer (N) and the resin layer (P) included in the retardation film. More specifically, it means that the in-plane retardation of the resin layer (N) has greater wavelength dispersion than the in-plane retardation of the resin layer (P). In detail, the parameter “{Re N (450)/Re N (550)}−{Re P (450)/Re P (550)}” representing the difference in wavelength dispersion is preferably larger than 0.08. , more preferably greater than 0.09, particularly preferably greater than 0.10, and the upper limit is not particularly limited, preferably less than 2.0, more preferably less than 1.5, particularly preferably 1.2 less than As described above, a retardation film including a resin layer (P) and a resin layer (N) having different in-plane retardation wavelength dispersion properties can easily obtain reverse wavelength dispersion properties in a laminated state.
 また、位相差フィルムは、下記式(5)を満たすことが好ましい。
  Re(550)>Re(550)  (5)
(ただし、
 Re(550)は、波長550nmにおける前記樹脂層(N)の面内位相差を表し、
 Re(550)は、波長550nmにおける前記樹脂層(P)の面内位相差を表す。)
 位相差フィルムが式(5)を満たすことにより、容易に、広帯域において機能する位相差フィルムとしうる。
Further, it is preferable that the retardation film satisfies the following formula (5).
Re P (550)>Re N (550) (5)
(however,
Re N (550) represents the in-plane retardation of the resin layer (N) at a wavelength of 550 nm,
Re P (550) represents the in-plane retardation of the resin layer (P) at a wavelength of 550 nm. )
When the retardation film satisfies formula (5), the retardation film can easily function in a wide band.
 {Re(550)-Re(550)}の値は、好ましくは120nm以上、より好ましくは125nm以上、特に好ましくは130nm以上であり、好ましくは160nm以下、より好ましくは155nm以下、特に好ましくは150nm以下である。これにより、位相差フィルムを広帯域で機能するλ/4板としうる。 The value of {Re P (550) - Re N (550)} is preferably 120 nm or more, more preferably 125 nm or more, particularly preferably 130 nm or more, and preferably 160 nm or less, more preferably 155 nm or less, particularly preferably It is 150 nm or less. Thereby, the retardation film can be made into a λ/4 plate that functions in a wide band.
 位相差フィルムは、必要に応じて、樹脂層(P)及び樹脂層(N)以外の任意の層を備えていてもよい。任意の層の例としては、光学等方性を有する任意の層が挙げられる。この光学等方性を有する任意の層は、波長550nmにおける面内位相差が通常10nm以下であり、例えば、樹脂層(P)及び樹脂層(N)を保護するための保護フィルム層;樹脂層(P)及び樹脂層(N)等の各層を接着する接着層;などが挙げられる。また、任意の層の別の例としては、光学異方性を有する任意の層が挙げられる。この光学異方性を有する任意の層の光学特性は、位相差フィルム全体が式(1)~式(3)を満たす範囲で制限は無い。具体例を挙げると、光学異方性を有する任意の層と、樹脂層(P)及び樹脂層(N)の一方又は両方との組み合わせが、λ/4板又はλ/2板として機能できるように、その任意の層の光学特性が設定されていてもよい。 The retardation film may include any layer other than the resin layer (P) and the resin layer (N), if necessary. Examples of the arbitrary layer include any layer having optical isotropy. This arbitrary layer having optical isotropy usually has an in-plane retardation of 10 nm or less at a wavelength of 550 nm, and includes, for example, a protective film layer for protecting the resin layer (P) and the resin layer (N); (P) and an adhesive layer that adheres each layer such as the resin layer (N); and the like. Further, another example of the arbitrary layer is an arbitrary layer having optical anisotropy. The optical properties of this arbitrary layer having optical anisotropy are not limited as long as the entire retardation film satisfies formulas (1) to (3). To give a specific example, a combination of an arbitrary layer having optical anisotropy and one or both of the resin layer (P) and the resin layer (N) can function as a λ/4 plate or a λ/2 plate. The optical properties of any layer thereof may be set.
 位相差フィルムの紫外・可視光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上である。紫外・可視光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定できる。 The ultraviolet/visible light transmittance of the retardation film is preferably 80% or more, more preferably 85% or more, particularly preferably 90% or more. The ultraviolet/visible light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet/visible spectrometer.
 位相差フィルムのヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。ヘイズは、JIS K7361-1997に準拠して、ヘイズメーターを用いて測定できる。 The haze of the retardation film is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%. Haze can be measured using a haze meter in accordance with JIS K7361-1997.
 位相差フィルムは、枚葉のフィルムであってもよく、長尺のフィルムであってもよい。 The retardation film may be a sheet film or a long film.
 位相差フィルムの厚みに、特に制限は無い。位相差フィルムの具体的な厚みは、薄型化の観点から、好ましくは5μm以上、より好ましくは10μm以上、特に好ましくは15μm以上であり、好ましくは200μm以下、より好ましくは150μm以下、特に好ましくは100μm以下である。 There is no particular limit to the thickness of the retardation film. From the viewpoint of thinning, the specific thickness of the retardation film is preferably 5 μm or more, more preferably 10 μm or more, particularly preferably 15 μm or more, and preferably 200 μm or less, more preferably 150 μm or less, particularly preferably 100 μm. It is as follows.
 位相差フィルムが備える樹脂層(P)及び樹脂層(N)等の各層の厚みに、特に制限は無い。樹脂層(P)及び樹脂層(N)の厚みは、それぞれ独立に、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは150μm以下、より好ましくは100μm以下である。 There is no particular restriction on the thickness of each layer such as the resin layer (P) and the resin layer (N) included in the retardation film. The thicknesses of the resin layer (P) and the resin layer (N) are each independently preferably 0.5 μm or more, more preferably 1 μm or more, and preferably 150 μm or less, more preferably 100 μm or less.
[2.位相差フィルムの製造方法の概要]
 本発明の一実施形態に係る製造方法では、上述した位相差フィルムを、
 正の固有複屈折値を有する熱可塑性樹脂Pで形成された樹脂層(P1)を備える第一フィルムを用意する第一工程と、
 前記第一フィルムを少なくとも一回延伸して、前記樹脂層(P1)が延伸された層である樹脂層(P2)を備える、第二フィルムを得る第二工程と、
 前記第二フィルムに、負の固有複屈折値を有する熱可塑性樹脂Nで形成された樹脂層(N1)を積層して第三フィルムを得る第三工程と、
 前記第三フィルムを少なくとも一回延伸して、前記樹脂層(P2)が延伸された層であり遅相軸(P)を有する樹脂層(P)と、前記樹脂層(N1)が延伸された層であり前記遅相軸(P)に対して90°±5°の範囲内の角度をなす遅相軸(N)を有する樹脂層(N)とを備える前記位相差フィルムを得る第四工程と、
 を含む製造方法によって製造する。
[2. Overview of manufacturing method of retardation film]
In the manufacturing method according to one embodiment of the present invention, the above-mentioned retardation film is
A first step of preparing a first film comprising a resin layer (P1) formed of a thermoplastic resin P having a positive intrinsic birefringence value;
a second step of stretching the first film at least once to obtain a second film comprising a resin layer (P2) that is a stretched layer of the resin layer (P1);
a third step of laminating a resin layer (N1) formed of a thermoplastic resin N having a negative intrinsic birefringence value on the second film to obtain a third film;
The third film was stretched at least once, and the resin layer (P), which is a layer obtained by stretching the resin layer (P2) and has a slow axis (P), and the resin layer (N1) were stretched. and a resin layer (N) having a slow axis (N) forming an angle within a range of 90° ± 5° with respect to the slow axis (P). and,
Manufactured by a manufacturing method including.
 本実施形態の位相差フィルムの製造方法では、複層構造を有する第三フィルムを製造して、これを延伸する。したがって、位相差フィルムの各層を別々に製造して、これらを貼合するなどして積層する場合と比較して、本実施形態の位相差フィルムの製造方法は、手間が少ない。また、各層を貼合する際の角度の調整が不要である。
 また、本実施形態の位相差フィルムの製造方法では、第二工程において、第一フィルムを延伸する。これにより、第二工程を行わずに、複層フィルムを延伸して位相差フィルムを得る場合と比較して、位相差フィルムの各層を形成する熱可塑性樹脂の温度、延伸温度などの延伸条件を、制限少なく設定することができる。
In the method for manufacturing a retardation film of this embodiment, a third film having a multilayer structure is manufactured and stretched. Therefore, compared to the case where each layer of the retardation film is manufactured separately and laminated by laminating them together, the method for manufacturing the retardation film of this embodiment requires less effort. Further, there is no need to adjust the angle when bonding each layer.
Furthermore, in the method for manufacturing a retardation film of this embodiment, the first film is stretched in the second step. As a result, compared to the case where a retardation film is obtained by stretching a multilayer film without performing the second step, stretching conditions such as the temperature of the thermoplastic resin forming each layer of the retardation film and the stretching temperature can be adjusted. , you can set fewer limits.
[3.第一工程:第一フィルムの用意]
 第一工程では、正の固有複屈折値を有する熱可塑性樹脂Pで形成された樹脂層(P1)を備える第一フィルムを用意する。熱可塑性樹脂Pについては、位相差フィルムの項で説明したとおりである。
[3. First step: Preparation of first film]
In the first step, a first film including a resin layer (P1) made of a thermoplastic resin P having a positive intrinsic birefringence value is prepared. The thermoplastic resin P is as described in the section of the retardation film.
 第一フィルムが備える樹脂層(P1)は、好ましくは大きな光学異方性を有さない。よって、樹脂層(P1)の位相差は、好ましくは、小さい。具体的な範囲を挙げると、550nmにおける樹脂層(P1)の面内位相差は、好ましくは0nm~20nm、より好ましくは0nm~10nm、特に好ましくは0nm~5nmである。また、550nmにおける樹脂層(P1)の厚み方向位相差の絶対値は、好ましくは0nm~20nm、より好ましくは0nm~10nm、特に好ましくは0nm~5nmである。 The resin layer (P1) included in the first film preferably does not have large optical anisotropy. Therefore, the retardation of the resin layer (P1) is preferably small. To give a specific range, the in-plane retardation of the resin layer (P1) at 550 nm is preferably 0 nm to 20 nm, more preferably 0 nm to 10 nm, particularly preferably 0 nm to 5 nm. Further, the absolute value of the retardation in the thickness direction of the resin layer (P1) at 550 nm is preferably 0 nm to 20 nm, more preferably 0 nm to 10 nm, particularly preferably 0 nm to 5 nm.
 第一フィルムは、枚葉のフィルムであってもよいが、長尺のフィルムであることが好ましい。第一フィルムを長尺のフィルムとして用意することにより、位相差フィルムを製造する場合に各工程の一部または全部をインラインで行うことが可能であるので、製造を簡便且つ効率的に行なうことできる。 The first film may be a sheet film, but is preferably a long film. By preparing the first film as a long film, it is possible to perform part or all of each process in-line when manufacturing a retardation film, so that manufacturing can be performed simply and efficiently. .
 第一フィルムの製造方法に制限は無い。第一フィルムは、例えば、溶融成形法、溶液流延法によって製造できる。中でも、溶融成形法が好ましい。溶融成形法の中でも、押出成形法、インフレーション成形法又はプレス成形法が好ましく、押出成形法が特に好ましい。これらの方法によれば、樹脂層(P1)を備える第一フィルムを、長尺のフィルムとして製造できる。 There are no restrictions on the method of manufacturing the first film. The first film can be manufactured by, for example, a melt molding method or a solution casting method. Among these, melt molding is preferred. Among the melt molding methods, extrusion molding, inflation molding, or press molding are preferred, and extrusion molding is particularly preferred. According to these methods, the first film including the resin layer (P1) can be manufactured as a long film.
[4.第二工程:第二フィルムの製造]
 第二工程では、前記第一フィルムを少なくとも一回延伸して、前記樹脂層(P1)が延伸された層である樹脂層(P2)を備える、第二フィルムを得る。
[4. Second step: Production of second film]
In the second step, the first film is stretched at least once to obtain a second film including a resin layer (P2) that is a layer obtained by stretching the resin layer (P1).
 第一フィルムの延伸は、一回の延伸、又は二回以上の延伸であり得る。第一フィルムの延伸が、二回以上の延伸である場合、これら二回以上の延伸のそれぞれは、延伸方向が同一であることが好ましい。これら二回以上の延伸のそれぞれは、延伸倍率が互いに同一でもよく、互いに異なっていてもよい。一実施形態において、好ましくは、第一フィルムの延伸は、一回の延伸である。
 第二工程での第一フィルムの延伸倍率は、延伸方向において、好ましくは1.05倍以上、より好ましくは1.1倍以上、特に好ましくは1.12倍以上であり、好ましくは2.0倍以下、より好ましくは1.5倍以下、特に好ましくは1.3倍以下である。ここで、第二工程において第一フィルムの延伸を二回以上行った場合、第二工程での第一フィルムの延伸倍率は、各回の延伸倍率を乗算して得られた倍率である。
The first film may be stretched once, or twice or more. When the first film is stretched twice or more, it is preferable that the stretching direction is the same in each of the two or more times. In each of these two or more times of stretching, the stretching ratio may be the same or different. In one embodiment, preferably the stretching of the first film is a single stretching.
The stretching ratio of the first film in the second step is preferably 1.05 times or more, more preferably 1.1 times or more, particularly preferably 1.12 times or more, and preferably 2.0 times or more in the stretching direction. It is at most 1.5 times, more preferably at most 1.5 times, particularly preferably at most 1.3 times. Here, when the first film is stretched twice or more in the second step, the stretching ratio of the first film in the second step is a ratio obtained by multiplying the stretching ratios of each stretch.
 第一フィルムが長尺である場合、第二工程における延伸方向は、第一フィルムの幅方向に対して、斜め方向であることが好ましい。これにより、遅相軸が斜め方向である、長尺の位相差フィルムを得ることができる。 When the first film is long, the stretching direction in the second step is preferably an oblique direction with respect to the width direction of the first film. Thereby, a long retardation film whose slow axis is in an oblique direction can be obtained.
 第二工程における延伸方向は、長尺の第一フィルムの幅方向に対して、好ましくは45°に近い特定の範囲の角度をなすことが好ましい。具体的には、前記の角度は、好ましくは40°以上、より好ましくは42°以上、更に好ましくは43°以上、特に好ましくは44°以上であり、好ましくは50°以下、より好ましくは48°以下、更に好ましくは47°以下、特に好ましくは46°以下である。これにより、長尺の位相差フィルムの幅方向に対して、45°に近い特定の範囲の角度をなす遅相軸を有する位相差フィルムを製造しうる。 The stretching direction in the second step preferably forms an angle within a specific range, preferably close to 45°, with respect to the width direction of the long first film. Specifically, the angle is preferably 40° or more, more preferably 42° or more, even more preferably 43° or more, particularly preferably 44° or more, and preferably 50° or less, more preferably 48°. The angle is more preferably 47° or less, particularly preferably 46° or less. Thereby, a retardation film having a slow axis forming an angle in a specific range of approximately 45° with respect to the width direction of the long retardation film can be manufactured.
 第二工程における延伸の温度は、樹脂層(P1)を形成する熱可塑性樹脂Pのガラス転移温度TgPに応じて、適切な範囲を選択しうる。例えば、第二工程における延伸の温度は、好ましくはTgP-5℃以上、より好ましくはTgP-3℃以上、特に好ましくはTgP-1℃以上であり、好ましくはTgP+20℃以下、より好ましくはTgP+15℃以下、特に好ましくはTgP+12℃以下である。これにより、樹脂層(P1)を延伸して得られる樹脂層(P2)の破断及びヘイズの上昇を、効果的に抑制しうる。 The stretching temperature in the second step can be selected within an appropriate range depending on the glass transition temperature TgP of the thermoplastic resin P forming the resin layer (P1). For example, the stretching temperature in the second step is preferably TgP-5°C or higher, more preferably TgP-3°C or higher, particularly preferably TgP-1°C or higher, and preferably TgP+20°C or lower, more preferably TgP+15°C. Hereinafter, the temperature is particularly preferably TgP+12°C or lower. Thereby, breakage of the resin layer (P2) obtained by stretching the resin layer (P1) and increase in haze can be effectively suppressed.
 第一フィルムを延伸することにより、第一フィルムが備える樹脂層(P1)が延伸されて、樹脂層(P2)に、延伸方向と略平行な方向の遅相軸が発現する。具体的には、第二工程における延伸方向と、樹脂層(P2)の遅相軸とのなす角度は、通常0°±5°の範囲内であり、通常-5°以上、好ましくは-3°以上、より好ましくは-2°以上、特に好ましくは-1°以上であり、通常5°以下、好ましくは3°以下、より好ましくは2°以下、特に好ましくは1°以下である。 By stretching the first film, the resin layer (P1) included in the first film is stretched, and a slow axis in a direction substantially parallel to the stretching direction is developed in the resin layer (P2). Specifically, the angle between the stretching direction in the second step and the slow axis of the resin layer (P2) is usually within the range of 0° ± 5°, usually -5° or more, preferably -3 The angle is at least 1°, more preferably at least -2°, particularly preferably at least -1°, and usually at most 5°, preferably at most 3°, more preferably at most 2°, particularly preferably at most 1°.
 第二フィルムの波長550nmにおける面内位相差は、好ましくは20nm以上、より好ましくは50nm以上、特に好ましくは70nm以上であり、好ましくは300nm以下、より好ましくは270nm以下、特に好ましくは250nm以下である。
 第二フィルムが備える樹脂層(P2)の波長550nmにおける面内位相差は、好ましくは20nm以上、より好ましくは50nm以上、特に好ましくは70nm以上であり、好ましくは300nm以下、より好ましくは270nm以下、特に好ましくは250nm以下である。
 また、樹脂層(P2)の波長550nmにおける厚み方向位相差は、好ましくは10nm以上、より好ましくは30nm以上、特に好ましくは40nm以上であり、好ましくは200nm以下、より好ましくは180nm以下、特に好ましくは170nm以下である。
 第二フィルム及び樹脂層(P2)の位相差は、第二工程における延伸倍率を調整することにより、調整することができる。
The in-plane retardation of the second film at a wavelength of 550 nm is preferably 20 nm or more, more preferably 50 nm or more, particularly preferably 70 nm or more, and preferably 300 nm or less, more preferably 270 nm or less, particularly preferably 250 nm or less. .
The in-plane retardation at a wavelength of 550 nm of the resin layer (P2) included in the second film is preferably 20 nm or more, more preferably 50 nm or more, particularly preferably 70 nm or more, and preferably 300 nm or less, more preferably 270 nm or less, Particularly preferred is 250 nm or less.
Further, the thickness direction retardation of the resin layer (P2) at a wavelength of 550 nm is preferably 10 nm or more, more preferably 30 nm or more, particularly preferably 40 nm or more, and preferably 200 nm or less, more preferably 180 nm or less, particularly preferably It is 170 nm or less.
The retardation between the second film and the resin layer (P2) can be adjusted by adjusting the stretching ratio in the second step.
[5.第三工程:第三フィルムの製造]
 第三工程では、前記第二フィルムに、負の固有複屈折値を有する熱可塑性樹脂Nで形成された樹脂層(N1)を積層して第三フィルムを得る。樹脂層(N1)は、任意の方法で形成してよく、例えば、溶融成形法、溶液流延法、ある層上にそれ以外の層の材料を含む液状組成物を塗工する塗工法が挙げられる。
[5. Third step: Production of third film]
In the third step, a resin layer (N1) formed of a thermoplastic resin N having a negative intrinsic birefringence value is laminated on the second film to obtain a third film. The resin layer (N1) may be formed by any method, including a melt molding method, a solution casting method, and a coating method in which a liquid composition containing materials for other layers is applied onto a certain layer. It will be done.
 中でも、第二フィルムの樹脂層(P2)の上に、熱可塑性樹脂Nを含む液状組成物を塗工し、塗工された液状組成物を必要に応じて乾燥させる方法が好ましい。以下、この方法を説明する。 Among these, preferred is a method in which a liquid composition containing the thermoplastic resin N is applied onto the resin layer (P2) of the second film, and the applied liquid composition is dried as necessary. This method will be explained below.
 前記の第二フィルムが備える樹脂層(P2)上に、熱可塑性樹脂Nを含む液状組成物を塗工する。液状組成物は、熱可塑性樹脂Nと溶媒とを含みうる。熱可塑性樹脂と溶媒とを含む液状組成物を、樹脂溶液ともいう。溶媒としては、熱可塑性樹脂Nを溶解又は分散させうるものが好ましく、熱可塑性樹脂Nを溶解させうるものが特に好ましい。また、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。液状組成物における熱可塑性樹脂Nの濃度は、液状組成物の粘度を塗工に適した範囲に収められるように調整することが好ましく、例えば1重量%~50重量%でありうる。 A liquid composition containing thermoplastic resin N is applied onto the resin layer (P2) of the second film. The liquid composition may include thermoplastic resin N and a solvent. A liquid composition containing a thermoplastic resin and a solvent is also referred to as a resin solution. As the solvent, a solvent capable of dissolving or dispersing the thermoplastic resin N is preferable, and a solvent capable of dissolving the thermoplastic resin N is particularly preferable. Moreover, one type of solvent may be used alone, or two or more types may be used in combination in any ratio. The concentration of the thermoplastic resin N in the liquid composition is preferably adjusted so that the viscosity of the liquid composition is within a range suitable for coating, and may be, for example, 1% by weight to 50% by weight.
 液状組成物の塗工法に制限は無い。塗工法としては、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、及びギャップコーティング法などが挙げられる。 There are no restrictions on the method of applying the liquid composition. Examples of coating methods include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, and die coating. , and gap coating method.
 熱可塑性樹脂Nを含む液状組成物の塗工により、その液状組成物の層が樹脂層(P2)上に形成される。よって、必要に応じて液状組成物の層を乾燥させて溶媒を除去することにより、樹脂層(P2)上に樹脂層(N1)が積層されて、第三フィルムを得ることができる。乾燥方法に制限はなく、例えば、自然乾燥、加熱乾燥、減圧乾燥などの乾燥方法を用いうる。 By applying the liquid composition containing the thermoplastic resin N, a layer of the liquid composition is formed on the resin layer (P2). Therefore, by drying the liquid composition layer and removing the solvent as necessary, the resin layer (N1) can be laminated on the resin layer (P2) to obtain a third film. There are no restrictions on the drying method, and for example, drying methods such as natural drying, heat drying, and reduced pressure drying can be used.
 樹脂層(N1)に、より大きい負の厚み方向位相差を発現させる観点からは、液状組成物の層を急速に乾燥させうる方法が好ましく、加熱乾燥、減圧乾燥、又はこれらの組み合わせにより乾燥を行うことが好ましい。 From the viewpoint of developing a larger negative thickness direction retardation in the resin layer (N1), a method that can rapidly dry the layer of the liquid composition is preferable, and the drying can be carried out by heating drying, reduced pressure drying, or a combination thereof. It is preferable to do so.
 樹脂層(N1)に、負の厚み方向位相差が発現する理由は、熱可塑性樹脂Nを含む液状組成物の層を乾燥させる際に、液状組成物の層が面内で収縮し、熱可塑性樹脂Nに含まれる重合体が、厚み方向に配向するためであると考えられる。通常、液状組成物の層の乾燥速度を大きくすることにより、樹脂層(N1)中の熱可塑性樹脂Nの配向緩和が抑制されて、より大きい負の厚み方向位相差が発現すると考えられる。 The reason why the negative thickness direction retardation appears in the resin layer (N1) is that when drying the layer of the liquid composition containing the thermoplastic resin N, the layer of the liquid composition contracts in-plane, and the thermoplastic This is thought to be because the polymer contained in resin N is oriented in the thickness direction. Generally, it is thought that by increasing the drying rate of the liquid composition layer, relaxation of the orientation of the thermoplastic resin N in the resin layer (N1) is suppressed, and a larger negative thickness direction retardation is developed.
 樹脂層(N1)の550nmにおける厚み方向位相差は、好ましくは-30nm以下、更に好ましくは-40nm以下、特に好ましくは-50nm以下であり、下限は特に限定されないが、例えば、-300nm以上、-250nm以上、又は-200nm以上である。 The thickness direction retardation of the resin layer (N1) at 550 nm is preferably -30 nm or less, more preferably -40 nm or less, particularly preferably -50 nm or less, and the lower limit is not particularly limited, but for example, -300 nm or more, - It is 250 nm or more, or -200 nm or more.
 樹脂層(N1)の550nmにおける厚み方向位相差の絶対値が、このように大きいことにより、後述する第四工程において第三フィルムを延伸した後に、樹脂層(N1)が延伸された層である樹脂層(N)に、容易に二軸性を付与しうる。 Since the absolute value of the thickness direction retardation at 550 nm of the resin layer (N1) is thus large, the resin layer (N1) is a stretched layer after stretching the third film in the fourth step described below. Biaxiality can be easily imparted to the resin layer (N).
 樹脂層(N1)の550nmにおける厚み方向位相差は、樹脂層(N1)の厚みを調整すること、樹脂層(N1)を塗工法で形成する場合には塗工された熱可塑性樹脂Nを含む液状組成物の層の乾燥速度を適宜調整することなどにより、調整することができる。 The thickness direction retardation at 550 nm of the resin layer (N1) can be determined by adjusting the thickness of the resin layer (N1), and when forming the resin layer (N1) by a coating method, it includes the coated thermoplastic resin N. It can be adjusted by appropriately adjusting the drying rate of the layer of the liquid composition.
 樹脂層(N1)の550nmにおける面内位相差は、好ましくは0nm~20nm、より好ましくは0nm~10nm、特に好ましくは0nm~5nmである。 The in-plane retardation of the resin layer (N1) at 550 nm is preferably 0 nm to 20 nm, more preferably 0 nm to 10 nm, particularly preferably 0 nm to 5 nm.
 樹脂層(N1)の厚みは、所望とする樹脂層(N1)の位相差に応じて任意の厚さに設定してよく、例えば、3μm以上、5μm以上、50μm以下、40μm以下である。 The thickness of the resin layer (N1) may be set to any thickness depending on the desired retardation of the resin layer (N1), and is, for example, 3 μm or more, 5 μm or more, 50 μm or less, or 40 μm or less.
[6.第四工程:第三フィルムの延伸]
 第四工程では、前記第三フィルムを少なくとも一回延伸して、前記樹脂層(P2)が延伸された層であり遅相軸(P)を有する樹脂層(P)と、前記樹脂層(N1)が延伸された層であり前記遅相軸(P)に対して90°±5°の範囲内の角度をなす遅相軸(N)を有する樹脂層(N)とを備える前記位相差フィルムを得る。
[6. Fourth step: Stretching of third film]
In the fourth step, the third film is stretched at least once to form a resin layer (P), which is a layer obtained by stretching the resin layer (P2) and has a slow axis (P), and a resin layer (N1). ) is a stretched layer and has a slow axis (N) forming an angle within a range of 90°±5° with respect to the slow axis (P); get.
 第三フィルムの延伸は、一回の延伸、又は二回以上の延伸であり得る。第三フィルムの延伸が、二回以上の延伸である場合、これら二回以上の延伸のそれぞれは、延伸方向が同一であることが好ましい。これら二回以上の延伸のそれぞれは、延伸倍率が互いに同一でもよく、互いに異なっていてもよい。一実施形態において、好ましくは、第三フィルムの延伸は、一回の延伸である。 The third film may be stretched once, or twice or more. When the third film is stretched twice or more, it is preferable that the stretching direction of each of the two or more times is the same. In each of these two or more times of stretching, the stretching ratio may be the same or different. In one embodiment, preferably the stretching of the third film is a single stretching.
 第四工程での第三フィルムの延伸倍率E4は、延伸方向において、好ましくは1.05倍以上、より好ましくは1.1倍以上、特に好ましくは1.13倍以上であり、好ましくは2倍以下、より好ましくは1.7倍以下、特に好ましくは1.5倍以下である。ここで、第四工程において第三フィルムの延伸を二回以上行った場合、第四工程での第三フィルムの延伸倍率は、各回の延伸倍率を乗算して得られた倍率である。 The stretching ratio E4 of the third film in the fourth step is preferably 1.05 times or more, more preferably 1.1 times or more, particularly preferably 1.13 times or more, and preferably 2 times in the stretching direction. Below, it is more preferably 1.7 times or less, particularly preferably 1.5 times or less. Here, when the third film is stretched twice or more in the fourth step, the stretching ratio of the third film in the fourth step is a ratio obtained by multiplying the stretching ratio of each time.
 第四工程での第三フィルムの延伸倍率E4の、第二工程における第一フィルムの延伸倍率E2に対する比率(E4/E2)は、好ましくは0.5以上、より好ましくは0.6以上、特に好ましくは0.7以上であり、好ましくは2.0以下、より好ましくは1.7以下、特に好ましくは1.5以下である。これにより、位相差フィルムが備える樹脂層(N)に、効果的に二軸性を発現させながら、樹脂層(P)に所望とする面内位相差を発現させて、式(1)~式(3)を満たす位相差フィルムを特に容易に製造しうる。 The ratio (E4/E2) of the stretch ratio E4 of the third film in the fourth step to the stretch ratio E2 of the first film in the second step is preferably 0.5 or more, more preferably 0.6 or more, especially It is preferably 0.7 or more, preferably 2.0 or less, more preferably 1.7 or less, particularly preferably 1.5 or less. As a result, the resin layer (N) included in the retardation film is effectively made to exhibit biaxiality, while the resin layer (P) is made to exhibit the desired in-plane retardation. A retardation film that satisfies (3) can be particularly easily produced.
 第二工程における第一フィルムの延伸が、一方向への延伸であり、第四工程における第三フィルムの延伸が、第二工程における前記第一フィルムの延伸方向に対して略平行な方向、具体的には、0°±5°の範囲内の方向への延伸を含むことが好ましい。第三フィルムの延伸方向は、第二工程における第一フィルムの延伸方向に対して、好ましくは、0°±5°の範囲内、好ましくは-5°以上、より好ましくは-3°以上、更に好ましくは-2°以上、特に好ましくは-1°以上であり、好ましくは5°以下、より好ましくは3°以下、更に好ましくは2°以下、特に好ましくは1°以下である。 The stretching of the first film in the second step is stretching in one direction, and the stretching of the third film in the fourth step is in a direction substantially parallel to the stretching direction of the first film in the second step. Specifically, it is preferable to include stretching in a direction within a range of 0°±5°. The stretching direction of the third film is preferably within the range of 0°±5°, preferably −5° or more, more preferably −3° or more, and further Preferably it is -2° or more, particularly preferably -1° or more, preferably 5° or less, more preferably 3° or less, still more preferably 2° or less, particularly preferably 1° or less.
 第四工程において第三フィルムに、第二工程における延伸方向に対して略平行、具体的には、0°±5°の範囲内の方向への延伸を行うことにより、特に容易に式(1)~式(3)を満たす位相差フィルムを製造しうる。 In the fourth step, the third film is stretched in a direction substantially parallel to the stretching direction in the second step, specifically, in a direction within the range of 0°±5°. ) to formula (3) can be produced.
 第三フィルムが備える樹脂層(P2)は、正の固有複屈折値を有する熱可塑性樹脂Pで形成されているので、第四工程において第三フィルムをある延伸方向に延伸すると、樹脂層(P2)が延伸された層である樹脂層(P)は、その延伸方向と略平行な方向の遅相軸(P)が発現する。一方、第三フィルムが備える樹脂層(N1)は、負の固有複屈折値を有する熱可塑性樹脂Nで形成されているので、樹脂層(N1)が延伸された層である樹脂層(N)では、その延伸方向とは略垂直であって、樹脂層(N)の面内方向の屈折率が大きくなる。
 したがって、第四工程における第三フィルムの延伸が、第二工程における第一フィルムの延伸方向に対して略平行な方向の延伸を含む場合、第二工程で発現した樹脂層(P2)の遅相軸方向と、第四工程における延伸方向とが略平行となるので、位相差フィルムが備える樹脂層(P)の遅相軸(P)を、第四工程における延伸方向と略平行な方向に調整することが特に容易となる。その結果、樹脂層(N)の遅相軸(N)の方向と樹脂層(P)の遅相軸(P)の方向とを特に容易に略垂直にしうる。
The resin layer (P2) included in the third film is made of thermoplastic resin P having a positive intrinsic birefringence value, so when the third film is stretched in a certain stretching direction in the fourth step, the resin layer (P2) ) is a stretched layer, and the resin layer (P) exhibits a slow axis (P) in a direction substantially parallel to the stretching direction. On the other hand, since the resin layer (N1) included in the third film is formed of thermoplastic resin N having a negative intrinsic birefringence value, the resin layer (N1) which is a layer obtained by stretching the resin layer (N1) In this case, the refractive index in the in-plane direction of the resin layer (N) increases, which is substantially perpendicular to the stretching direction.
Therefore, when the stretching of the third film in the fourth step includes stretching in a direction substantially parallel to the stretching direction of the first film in the second step, the slow phase of the resin layer (P2) developed in the second step Since the axial direction and the stretching direction in the fourth step are approximately parallel, the slow axis (P) of the resin layer (P) included in the retardation film is adjusted to be approximately parallel to the stretching direction in the fourth step. It is especially easy to do so. As a result, the direction of the slow axis (N) of the resin layer (N) and the direction of the slow axis (P) of the resin layer (P) can be particularly easily made substantially perpendicular.
 ここで、樹脂層(N1)では、熱可塑性樹脂Nに含まれる重合体が、樹脂層(N1)の厚み方向に配向していると考えられるが、第四工程における第三フィルムの延伸後においても、重合体の配向方向は、樹脂層(N)の面内方向に一致せず、樹脂層(N)は、二軸性を示すと考えられる。
 第二工程及び第四工程の両方において、熱可塑性樹脂Pの層(樹脂層(P1)又は樹脂層(P2))を備えるフィルムを延伸して、樹脂層(P)に所望とする面内位相差を発現させることにより、第四工程における第三フィルムの延伸倍率を、第二工程において延伸を行わない場合よりも、低く設定することができる。その結果、第四工程における第三フィルムの延伸によっても、樹脂層(N)の二軸性が保たれて、式(1)~式(3)を満たす位相差フィルムを、容易に製造することができる。
Here, in the resin layer (N1), the polymer contained in the thermoplastic resin N is considered to be oriented in the thickness direction of the resin layer (N1), but after stretching the third film in the fourth step, Also, the orientation direction of the polymer does not coincide with the in-plane direction of the resin layer (N), and the resin layer (N) is considered to exhibit biaxiality.
In both the second step and the fourth step, a film provided with a layer of thermoplastic resin P (resin layer (P1) or resin layer (P2)) is stretched to give the resin layer (P) a desired in-plane position. By developing the phase difference, the stretching ratio of the third film in the fourth step can be set lower than that in the case where no stretching is performed in the second step. As a result, even by stretching the third film in the fourth step, the biaxiality of the resin layer (N) is maintained, and a retardation film that satisfies formulas (1) to (3) can be easily manufactured. Can be done.
 第二フィルムが備える樹脂層(P2)の遅相軸に対して、第四工程における第三フィルムの延伸の方向がなす角度は、好ましくは0°±5°の範囲内であり、好ましくは-5°以上、より好ましくは-3°以上、更に好ましくは-2°以上、特に好ましくは-1°以上であり、好ましくは5°以下、より好ましくは3°以下、更に好ましくは2°以下、特に好ましくは1°以下である。 The angle formed by the direction of stretching of the third film in the fourth step with respect to the slow axis of the resin layer (P2) included in the second film is preferably within the range of 0°±5°, and preferably - 5° or more, more preferably -3° or more, even more preferably -2° or more, particularly preferably -1° or more, preferably 5° or less, more preferably 3° or less, even more preferably 2° or less, Particularly preferably, the angle is 1° or less.
 第四工程における延伸の温度は、熱可塑性樹脂Pのガラス転移温度TgP及び熱可塑性樹脂Nのガラス転移温度TgNに応じて、適切に設定しうる。延伸の際のフィルム破断を抑制し、円滑に延伸を行う観点から、好ましくはTg(high)-5℃以上、より好ましくはTg(high)-3℃以上、特に好ましくはTg(high)-1℃以上であり、好ましくはTg(high)+20℃以下、より好ましくはTg(high)+15℃以下、更に好ましくはTg(high)+12℃以下、更に好ましくはTg(high)+10℃以下、特に好ましくはTg(high)+9℃以下である。Tg(high)は、ガラス転移温度TgP及びガラス転移温度TgNのうち、高い方の温度を表す。ガラス転移温度TgPとガラス転移温度TgNとが同じ温度である場合は、その同じ温度を表す。 The stretching temperature in the fourth step can be appropriately set depending on the glass transition temperature TgP of the thermoplastic resin P and the glass transition temperature TgN of the thermoplastic resin N. From the viewpoint of suppressing film breakage during stretching and performing stretching smoothly, preferably Tg (high) -5°C or higher, more preferably Tg (high) -3°C or higher, particularly preferably Tg (high) -1. ℃ or more, preferably Tg (high) + 20 ℃ or less, more preferably Tg (high) + 15 ℃ or less, still more preferably Tg (high) + 12 ℃ or less, still more preferably Tg (high) + 10 ℃ or less, particularly preferably is below Tg(high)+9°C. Tg (high) represents the higher temperature of the glass transition temperature TgP and the glass transition temperature TgN. When the glass transition temperature TgP and the glass transition temperature TgN are the same temperature, they represent the same temperature.
[7.位相差フィルムが含みうる任意の工程]
 位相差フィルムの製造方法は、前記の第一工程~第四工程に加えて、任意の工程を含んでいてもよい。例えば、長尺の第一フィルムを用いて長尺の位相差フィルムを得た場合、位相差フィルムの製造方法は、得られた位相差フィルムを所望の形状に切り出すトリミング工程を含んでいてもよい。トリミング工程によれば、所望の形状を有する枚葉の位相差フィルムが得られる。また、位相差フィルムの製造方法は、例えば、位相差フィルムに保護層を設ける工程を含んでいてもよい。
[7. [Optional steps that the retardation film may include]
The method for producing a retardation film may include any steps in addition to the first to fourth steps described above. For example, when a long first film is used to obtain a long retardation film, the method for manufacturing the retardation film may include a trimming step of cutting out the obtained retardation film into a desired shape. . According to the trimming process, a sheet of retardation film having a desired shape is obtained. Further, the method for producing a retardation film may include, for example, a step of providing a protective layer on the retardation film.
[8.円偏光板の製造方法の概要]
 本発明の一実施形態に係る円偏光板の製造方法は、
 直線偏光子と位相差フィルムとを含む円偏光板の製造方法であって、
 前記の位相差フィルムの製造方法で、前記位相差フィルムを製造する第五工程と、
 前記位相差フィルムと、前記直線偏光子とを積層する第六工程と、
を含む。
[8. Overview of manufacturing method of circularly polarizing plate]
A method for manufacturing a circularly polarizing plate according to an embodiment of the present invention includes:
A method for manufacturing a circularly polarizing plate including a linear polarizer and a retardation film,
a fifth step of manufacturing the retardation film in the retardation film manufacturing method;
a sixth step of laminating the retardation film and the linear polarizer;
including.
[9.第五工程]
 本実施形態に係る円偏光板の製造方法は、第五工程を含む。第五工程は、前記の位相差フィルムの製造方法で、位相差フィルムを製造する工程である。
 第五工程は、具体的には、位相差フィルムを、前記の第一工程、第二工程、第三工程、及び第四工程を含む製造方法により製造する工程である。第五工程により得られる位相差フィルムは、前記の[1.製造される位相差フィルム]の項目において説明した位相差フィルムと同様である。
[9. Fifth step]
The method for manufacturing a circularly polarizing plate according to this embodiment includes a fifth step. The fifth step is a step of manufacturing a retardation film using the method for manufacturing a retardation film described above.
Specifically, the fifth step is a step of manufacturing a retardation film by a manufacturing method including the first step, second step, third step, and fourth step described above. The retardation film obtained by the fifth step is the same as described in [1. This is the same as the retardation film explained in the section ``Produced Retardation Film''.
[10.第六工程]
 第六工程では、第五工程で製造された位相差フィルムと、直線偏光子とを積層する。
[10. Sixth step]
In the sixth step, the retardation film produced in the fifth step and a linear polarizer are laminated.
 直線偏光子としては、任意の直線偏光子を用いうる。直線偏光子の例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるフィルム;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるフィルム;が挙げられる。これらのうち、直線偏光子としては、ポリビニルアルコールを含有する偏光子が好ましい。 Any linear polarizer can be used as the linear polarizer. Examples of linear polarizers include films obtained by adsorbing iodine or dichroic dyes on polyvinyl alcohol films and then uniaxially stretching them in a boric acid bath; adsorbing iodine or dichroic dyes on polyvinyl alcohol films. Examples include a film obtained by stretching, stretching, and further modifying a part of the polyvinyl alcohol units in the molecular chain into polyvinylene units. Among these, as the linear polarizer, a polarizer containing polyvinyl alcohol is preferable.
 直線偏光子に自然光を入射させると、一方の偏光だけが透過する。この直線偏光子の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。
 また、直線偏光子の厚みは、好ましくは5μm~80μmである。
When natural light is incident on a linear polarizer, only one polarized light is transmitted. The degree of polarization of this linear polarizer is not particularly limited, but is preferably 98% or more, more preferably 99% or more.
Further, the thickness of the linear polarizer is preferably 5 μm to 80 μm.
 第六工程の積層は、円偏光板が、樹脂層(N)、樹脂層(P)、及び直線偏光子を、この順で備えるように行うことが好ましい。 The lamination in the sixth step is preferably performed so that the circularly polarizing plate includes a resin layer (N), a resin layer (P), and a linear polarizer in this order.
 また、第六工程の積層は、直線偏光子の幅方向と、樹脂層(P)の遅相軸(P)とがなす角度が、45°に近い特定の範囲となるように行うことが好ましい。具体的には、前記の角度は、好ましくは40°以上、より好ましくは42°以上、更に好ましくは43°以上、特に好ましくは44°以上であり、好ましくは50°以下、より好ましくは48°以下、更に好ましくは47°以下、特に好ましくは46°以下である。
 更にこの場合、直線偏光子の幅方向と、樹脂層(N)の遅相軸(N)とがなす角度が、135°に近い特定の範囲となるように行うことが好ましい。具体的には、前記の角度は、好ましくは130°以上、より好ましくは132°以上、更に好ましくは133°以上、特に好ましくは134°以上であり、好ましくは140°以下、より好ましくは138°以下、更に好ましくは137°以下、特に好ましくは136°以下である。
Further, the lamination in the sixth step is preferably performed such that the angle between the width direction of the linear polarizer and the slow axis (P) of the resin layer (P) is within a specific range close to 45°. . Specifically, the angle is preferably 40° or more, more preferably 42° or more, even more preferably 43° or more, particularly preferably 44° or more, and preferably 50° or less, more preferably 48°. The angle is more preferably 47° or less, particularly preferably 46° or less.
Furthermore, in this case, it is preferable that the angle between the width direction of the linear polarizer and the slow axis (N) of the resin layer (N) falls within a specific range close to 135°. Specifically, the angle is preferably 130° or more, more preferably 132° or more, even more preferably 133° or more, particularly preferably 134° or more, and preferably 140° or less, more preferably 138°. The angle is more preferably 137° or less, particularly preferably 136° or less.
 位相差フィルムと直線偏光子との積層には、適切な接着剤を用いうる。 An appropriate adhesive can be used for laminating the retardation film and the linear polarizer.
 円偏光板の製造方法は、前記の第五工程及び第六工程に加えて、任意の工程を含んでいてもよい。任意の工程の例としては、位相差フィルム、直線偏光子、及び/又は円偏光板に、機能層を積層する工程が挙げられる。機能層の例としては、偏光子保護フィルム層;耐衝撃性ポリメタクリレート樹脂層などのハードコート層;フィルムの滑り性を良くするマット層;反射抑制層;防汚層;帯電抑制層;等が挙げられる。 The method for manufacturing a circularly polarizing plate may include any steps in addition to the fifth and sixth steps described above. Examples of the arbitrary steps include a step of laminating a functional layer on a retardation film, a linear polarizer, and/or a circularly polarizing plate. Examples of the functional layer include a polarizer protective film layer; a hard coat layer such as an impact-resistant polymethacrylate resin layer; a matte layer that improves the slipperiness of the film; a reflection suppression layer; an antifouling layer; an antistatic layer; etc. Can be mentioned.
[11.円偏光板の適用例]
 上述した円偏光板は、画像表示装置に設けうる。特に、円偏光板は、有機EL画像表示装置に設けることが好ましい。この有機EL画像表示装置は、円偏光板と、有機エレクトロルミネッセンス素子(以下、適宜「有機EL素子」ということがある。)と、を備える。この有機EL画像表示装置は、通常、直線偏光子、位相差フィルム及び有機EL素子を、この順に備える。
[11. Application example of circularly polarizing plate]
The above-described circularly polarizing plate can be provided in an image display device. In particular, it is preferable to provide the circularly polarizing plate in an organic EL image display device. This organic EL image display device includes a circularly polarizing plate and an organic electroluminescent element (hereinafter, sometimes referred to as an "organic EL element"). This organic EL image display device usually includes a linear polarizer, a retardation film, and an organic EL element in this order.
 有機EL素子は、透明電極層、発光層及び電極層をこの順に備え、透明電極層及び電極層から電圧を印加されることにより発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、及びポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL素子は、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。 An organic EL element includes a transparent electrode layer, a light-emitting layer, and an electrode layer in this order, and the light-emitting layer can generate light when a voltage is applied from the transparent electrode layer and the electrode layer. Examples of materials constituting the organic light-emitting layer include polyparaphenylenevinylene-based, polyfluorene-based, and polyvinylcarbazole-based materials. Further, the light-emitting layer may have a laminate of a plurality of layers emitting light of different colors, or a mixed layer in which a certain dye layer is doped with different dyes. Further, the organic EL device may include functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
 前記の画像表示装置は、表示面における外光の反射を抑制できる。具体的には、装置外部から入射した光は、その一部の直線偏光のみが直線偏光子を通過し、次にそれが位相差フィルムを通過することにより、円偏光となる。円偏光は、画像表示装置内の光を反射する構成要素(有機EL素子中の反射電極等)により反射され、再び位相差フィルムを通過することにより、入射した直線偏光の振動方向と直交する振動方向を有する直線偏光となり、直線偏光子を通過しなくなる。ここで、直線偏光の振動方向とは、直線偏光の電場の振動方向を意味する。これにより、反射抑制の機能が達成される。 The image display device described above can suppress reflection of external light on the display surface. Specifically, only a portion of the linearly polarized light incident from outside the device passes through a linear polarizer, and then passes through a retardation film, thereby becoming circularly polarized light. The circularly polarized light is reflected by components that reflect light in the image display device (such as reflective electrodes in organic EL elements) and passes through the retardation film again, causing vibrations perpendicular to the vibration direction of the incident linearly polarized light. It becomes linearly polarized light with a direction and does not pass through the linear polarizer. Here, the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light. This achieves the function of reflex suppression.
 位相差フィルムが上述した光学特性を有するので、前記の有機EL画像表示装置は、反射抑制の機能を、表示面の正面方向だけでなく、傾斜方向においても発揮できる。これにより、表示面の正面方向及び傾斜方向の両方において、外光の反射を効果的に抑制して、色付きを抑制することが可能である。 Since the retardation film has the above-mentioned optical properties, the organic EL image display device can exhibit the function of suppressing reflection not only in the front direction of the display surface but also in the inclined direction. Thereby, it is possible to effectively suppress reflection of external light and suppress coloring in both the front direction and the inclined direction of the display surface.
 前記の色付きの程度は、反射のある表示面を観察して測定される色度と、反射の無い黒色の表示面の色度との色差ΔEabによって、評価しうる。前記の色度は、表示面で反射した光のスペクトルを測定し、このスペクトルから、人間の目に対応する分光感度(等色関数)を乗じて三刺激値X、Y及びZを求め、色度(a,b,L)を算出することにより求めうる。また、前記の色差ΔEabは、外光によって表示面が照らされていない場合の色度(a0,b0,L0)、及び、外光によって照らされている場合の色度(a1,b1,L1)から、下記の式(X)から求めうる。 The degree of coloring can be evaluated based on the color difference ΔE * ab between the chromaticity measured by observing a reflective display surface and the chromaticity of a non-reflective black display surface. The above-mentioned chromaticity is determined by measuring the spectrum of light reflected on the display surface, multiplying this spectrum by the spectral sensitivity (color matching function) corresponding to the human eye to obtain the tristimulus values X, Y, and Z. It can be obtained by calculating the degree (a * , b * , L * ). Furthermore, the color difference ΔE * ab mentioned above is the chromaticity (a0 * , b0 * , L0 * ) when the display surface is not illuminated by external light, and the chromaticity (a1*) when the display surface is illuminated by external light. * , b1 * , L1 * ), it can be determined from the following formula (X).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、一般に、反射光による表示面の色付きは、観察方向の方位角によって異なりうる。そのため、表示面の傾斜方向から観察した場合、観察方向の方位角によって、測定される色度は異なりうるので、色差ΔEabも異なりうる。そこで、前記のように表示面の傾斜方向から観察した場合の色付きの程度を評価するためには、複数の方位角方向から観察して得られる色差ΔEabの平均値によって、色付きの評価を行うことが好ましい。具体的には、方位角方向に5°刻みで、方位角φ(図1参照。)が0°以上360°未満の範囲で、色差ΔEabの測定を行い、測定された色差ΔEabの平均値(平均色差)によって、色付きの程度を評価する。前記の平均色差が小さいほど、表示面の傾斜方向から観察した場合の表示面の色付きが小さいことを表す。 Furthermore, in general, the coloring of the display surface due to reflected light may vary depending on the azimuth angle of the viewing direction. Therefore, when observed from the direction of inclination of the display surface, the measured chromaticity may vary depending on the azimuth of the viewing direction, and therefore the color difference ΔE * ab may also vary. Therefore, in order to evaluate the degree of coloring when observed from the tilt direction of the display surface as described above, the coloring is evaluated using the average value of the color difference ΔE * ab obtained by observing from multiple azimuthal directions. It is preferable to do so. Specifically, the color difference ΔE*ab is measured in 5° increments in the azimuth direction in a range where the azimuth angle φ (see FIG . 1) is 0° or more and less than 360°, and the measured color difference ΔE* ab The degree of coloring is evaluated based on the average value (average color difference). The smaller the average color difference, the smaller the coloring of the display surface when observed from the direction of inclination of the display surface.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the embodiments shown below, and may be implemented with arbitrary changes within the scope of the claims of the present invention and equivalents thereof.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温(20℃±15℃)及び常圧(1atm)の条件において行った。 In the following description, "%" and "part" expressing amounts are based on weight, unless otherwise specified. Further, the operations described below were performed at room temperature (20° C.±15° C.) and normal pressure (1 atm) unless otherwise specified.
[評価方法]
 (ガラス転移温度)
 樹脂のガラス転移温度Tgを、示差走査熱量分析計(ナノテクノロジー社製「DSC6220SII」)を用いて、JIS K 6911に基づき、昇温速度10℃/分の条件で測定した。
[Evaluation method]
(Glass-transition temperature)
The glass transition temperature Tg of the resin was measured using a differential scanning calorimeter ("DSC6220SII" manufactured by Nano Technology Co., Ltd.) under conditions of a heating rate of 10° C./min based on JIS K 6911.
(フィルム又は層の厚み)
 フィルム又は層の厚みを、フィルメトリクス社の反射分光式膜厚測定システム「F20」を用いて測定した。
(thickness of film or layer)
The thickness of the film or layer was measured using a reflection spectroscopic film thickness measurement system "F20" manufactured by Filmetrics.
 (位相差及びNZ係数の測定方法)
 位相差計(Axometrics社製「AxoScan」)を用いて、評価対象の波長450nm、550nm及び650nmにおける面内位相差Re;並びに、波長550nmにおける厚み方向位相差Rthを測定した。分離できない積層体の各層の物性を求める際は、試料を多方向から測定し、付属のマルチレイヤー解析ソフトでフィッティング解析することにより算出した。また、波長550nmにおける面内位相差Re及び厚み方向位相差Rthを用いて、NZ係数を算出した。
(Method of measuring phase difference and NZ coefficient)
In-plane retardation Re at wavelengths 450 nm, 550 nm, and 650 nm of the evaluation target; and thickness direction retardation Rth at wavelength 550 nm were measured using a retardation meter ("AxoScan" manufactured by Axometrics). The physical properties of each layer of the inseparable laminate were calculated by measuring the sample from multiple directions and performing a fitting analysis using the included multilayer analysis software. Further, the NZ coefficient was calculated using the in-plane retardation Re and the thickness direction retardation Rth at a wavelength of 550 nm.
 (配向角の測定方法)
 位相差フィルムに含まれる樹脂層(P)の遅相軸(P)の方向及び樹脂層(N)の遅相軸(N)の方向を、位相差計(Axometrics社製「AxoScan」)を用いて測定した。この遅相軸が、位相差フィルムの幅方向に対してなす角度を、配向角θ(0°≦θ<180°)として計算した。
(Method of measuring orientation angle)
The direction of the slow axis (P) of the resin layer (P) included in the retardation film and the direction of the slow axis (N) of the resin layer (N) are determined using a retardation meter (“AxoScan” manufactured by Axometrics). It was measured using The angle that this slow axis makes with respect to the width direction of the retardation film was calculated as the orientation angle θ (0°≦θ<180°).
 (ヘイズ)
 位相差フィルムのヘイズを、JIS K7361-1997に準拠して、ヘイズメーターを用いて測定した。
(Haze)
The haze of the retardation film was measured using a haze meter in accordance with JIS K7361-1997.
 (シミュレーションによる色差の計算方法)
 シミュレーション用のソフトウェアとしてシンテック社製「LCD Master」を用いて、各実施例及び比較例で製造された円偏光板をモデル化し、下記の計算を行った。
(How to calculate color difference by simulation)
Using "LCD Master" manufactured by Shintech as simulation software, the circularly polarizing plates manufactured in each example and comparative example were modeled, and the following calculations were performed.
 シミュレーション用のモデルでは、平面状の反射面を有するミラーの前記反射面に、円偏光板を設けた構成を設定した。また、円偏光板として、位相差フィルムの樹脂層(N)、位相差フィルムの樹脂層(P)及び直線偏光子を、前記反射面側からこの順に有するものを設定した。位相差フィルムとしては、各実施例及び比較例で得たものを設定した。また、直線偏光子としては、一般的に使用されている偏光度99.99%の偏光板を設定した。また、ミラーとして、入射した光を反射率100%で鏡面反射しうる理想ミラーを設定した。 In the simulation model, a configuration was set in which a circularly polarizing plate was provided on the reflective surface of a mirror having a planar reflective surface. Moreover, a circularly polarizing plate was set that had a resin layer (N) of a retardation film, a resin layer (P) of a retardation film, and a linear polarizer in this order from the reflective surface side. As the retardation film, those obtained in each Example and Comparative Example were set. Further, as the linear polarizer, a commonly used polarizing plate with a degree of polarization of 99.99% was set. Furthermore, an ideal mirror that can specularly reflect the incident light with a reflectance of 100% was set as the mirror.
 図1は、実施例及び比較例でのシミュレーションにおいて、色空間座標の計算を行う際に設定した評価モデルの様子を模式的に示す斜視図である。
 図1に示すように、D65光源(図示せず。)によって照らされたときに、円偏光板を設けられたミラーの反射面10で観察される色空間座標を計算した。また、光源によって照らされていないときの色空間座標をa0=0,b0=0,L0=0とした。そして、(i)光源で照らされたときの色空間座標と、(ii)光源で照らされていないときの色空間座標とから、色差ΔEabを求めた。
FIG. 1 is a perspective view schematically showing an evaluation model set when calculating color space coordinates in simulations in Examples and Comparative Examples.
As shown in FIG. 1, the color space coordinates observed on the reflective surface 10 of the mirror provided with a circular polarizer when illuminated by a D65 light source (not shown) were calculated. Further, the color space coordinates when not illuminated by a light source were set as a0 * =0, b0 * =0, and L0 * =0. Then, the color difference ΔE * ab was determined from (i) the color space coordinates when illuminated by a light source and (ii) the color space coordinates when not illuminated by a light source.
 前記の色差ΔEabの計算を、反射面10に対する極角ρが0°の観察方向20で行って、正面方向での色差ΔEabを求めた。極角ρとは、反射面10の法線方向11に対してなす角を表す。 The above calculation of the color difference ΔE * ab was performed in the observation direction 20 where the polar angle ρ with respect to the reflective surface 10 was 0°, and the color difference ΔE * ab in the front direction was determined. The polar angle ρ represents the angle formed with respect to the normal direction 11 of the reflective surface 10.
 また、前記の色差ΔEabの計算を、反射面10に対する極角ρが60°の観察方向20で行った。この極角ρ=60°での計算は、観察方向20を方位角方向に、方位角φを0°以上360°未満の範囲で5°刻みに移動させて、複数行った。方位角φとは、反射面10に平行な方向が、反射面10に平行なある基準方向12に対してなす角を表す。そして、計算された複数の観察方向20での色差ΔEabの平均を計算して、極角ρ=60°の傾斜方向での色差ΔEabを得た。 Further, the above-mentioned calculation of the color difference ΔE * ab was performed in the observation direction 20 where the polar angle ρ with respect to the reflective surface 10 was 60°. This calculation at the polar angle ρ=60° was performed multiple times by moving the observation direction 20 in the azimuth direction and the azimuth angle φ in the range of 0° or more and less than 360° in 5° increments. The azimuth angle φ represents the angle that a direction parallel to the reflective surface 10 makes with a certain reference direction 12 parallel to the reflective surface 10. Then, the average of the calculated color differences ΔE * ab in the plurality of viewing directions 20 was calculated to obtain the color difference ΔE * ab in the tilt direction with the polar angle ρ=60°.
 (正面方向における目視による円偏光板の評価方法)
 有機EL画像表示装置を備える画像表示装置(Apple社「AppleWatch」(登録商標))を用意した。この画像表示装置を分解し、有機EL画像表示装置の表面に貼合されていた偏光板を剥離して、反射電極を露出させた。この反射電極の表面と、各実施例及び比較例で得た円偏光板の直線偏光子とは反対側の面とを、粘着剤(日東電工社製「CS9621」)を介して貼り合せた。これにより、反射電極、粘着剤及び円偏光板をこの順に備えるサンプルを得た。
(Evaluation method of circularly polarizing plate by visual inspection in front direction)
An image display device (“Apple Watch” (registered trademark) by Apple Inc.) including an organic EL image display device was prepared. This image display device was disassembled, and the polarizing plate bonded to the surface of the organic EL image display device was peeled off to expose the reflective electrode. The surface of this reflective electrode and the surface of the circularly polarizing plate obtained in each Example and Comparative Example on the opposite side from the linear polarizer were bonded together via an adhesive ("CS9621" manufactured by Nitto Denko Corporation). Thereby, a sample was obtained which included a reflective electrode, an adhesive, and a circularly polarizing plate in this order.
 前記サンプルの円偏光板を晴れた日に日光で照らした状態で、反射電極上の円偏光板を目視で観察した。観察は、円偏光板の、極角0°、方位角0°の正面方向で行った。観察の結果、有彩色が視認された場合に「不良」と判定し、有彩色が視認されなかった場合に「良」と判定した。 The circularly polarizing plate on the reflective electrode was visually observed on a sunny day with the circularly polarizing plate of the sample illuminated by sunlight. The observation was performed in the front direction of the circularly polarizing plate at a polar angle of 0° and an azimuth angle of 0°. As a result of the observation, if a chromatic color was visually recognized, it was determined to be "bad", and if a chromatic color was not visually recognized, it was determined to be "good".
 (傾斜方向における目視による円偏光板の評価方法)
 前記の(正面方向における目視による円偏光板の評価方法)で用意したサンプルの円偏光板を晴れた日に日光で照らした状態で、反射電極上の円偏光板を目視で観察した。観察は、円偏光板の極角60°、方位角0°~360°の傾斜方向で行った。観察の結果、反射輝度及び色付きの優劣を総合的に判定して、実施例及び比較例を順位づけした。そして、順位づけられた実施例及び比較例に、その順位に相当する点数(1位7点、2位6点・・・最下位1点)を与えた。
(Method for evaluating circularly polarizing plate by visual inspection in tilt direction)
The circularly polarizing plate of the sample prepared in the above (method for evaluating circularly polarizing plate by visual inspection in the front direction) was illuminated with sunlight on a clear day, and the circularly polarizing plate on the reflective electrode was visually observed. The observation was performed with a circularly polarizing plate tilted at a polar angle of 60° and an azimuth angle of 0° to 360°. As a result of the observation, the quality of reflection brightness and coloring were comprehensively judged, and the Examples and Comparative Examples were ranked. Then, the ranked Examples and Comparative Examples were given points corresponding to their rankings (7 points for 1st place, 6 points for 2nd place, 1 point for last place).
 前記の観察を多人数が行い、各実施例及び比較例について、与えられた点数の合計点を求めた。実施例及び比較例を前記の合計点の順に並べ、その合計点のレンジの中で上位グループからA、B、C、D及びEの順に評価した。 The above observations were made by a large number of people, and the total points given for each example and comparative example were determined. The Examples and Comparative Examples were arranged in the order of the above-mentioned total score, and evaluated in the order of A, B, C, D, and E from the top group within the range of the total score.
[実施例1]
 (1-1.第一工程:第一フィルムの用意)
 正の固有複屈折値を有する熱可塑性樹脂Pとして、ノルボルネン系重合体を含む樹脂(以下ノルボルネン系樹脂ともいう。)(日本ゼオン社製;ガラス転移温度126℃)を100℃で5時間乾燥した。乾燥した熱可塑性樹脂Pを、押出機に供給し、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押し出した。押し出された熱可塑性樹脂Pを冷却し、熱可塑性樹脂Pから形成された、厚み60μmの長尺の、第一フィルムとしての未延伸フィルムを得た。得られた未延伸フィルムをロール状に巻き取って回収した。第一フィルムは、熱可塑性樹脂Pから形成された樹脂層(P1)のみを備えていた。第一フィルムが備える樹脂層(P1)の光学特性を、前記の方法により評価した。
[Example 1]
(1-1. First step: Preparation of first film)
As a thermoplastic resin P having a positive intrinsic birefringence value, a resin containing a norbornene polymer (hereinafter also referred to as norbornene resin) (manufactured by Zeon Corporation; glass transition temperature 126 ° C.) was dried at 100 ° C. for 5 hours. . The dried thermoplastic resin P was supplied to an extruder, passed through a polymer pipe and a polymer filter, and extruded into a sheet form from a T-die onto a casting drum. The extruded thermoplastic resin P was cooled to obtain a long unstretched film made of the thermoplastic resin P and having a thickness of 60 μm as a first film. The obtained unstretched film was wound up into a roll and collected. The first film included only a resin layer (P1) formed from thermoplastic resin P. The optical properties of the resin layer (P1) included in the first film were evaluated by the method described above.
 (1-2.第二工程:第一フィルムの延伸)
 第一フィルムをロールから引き出し、引き出された第一フィルムをテンター延伸機に供給した。このテンター延伸機を用いて、第一フィルムを、当該第一フィルムの幅方向に対して45°の角度をなす延伸方向に、延伸温度128℃、延伸方向における延伸倍率を1.15倍として延伸して、樹脂層(P1)が延伸された層である樹脂層(P2)を備える、第二フィルムを得た。第二フィルムは、樹脂層(P2)のみを備えていた。得られた第二フィルムは、常温に冷却後、ロール状に巻き取って回収した。第二フィルムが備える樹脂層(P2)の光学特性を、前記の方法により評価した。
(1-2. Second step: stretching of first film)
The first film was pulled out from the roll, and the pulled out first film was supplied to a tenter stretching machine. Using this tenter stretching machine, the first film is stretched in a stretching direction forming an angle of 45° with respect to the width direction of the first film at a stretching temperature of 128°C and a stretching ratio of 1.15 times in the stretching direction. In this way, a second film was obtained, which included a resin layer (P2) that was a stretched resin layer (P1). The second film included only the resin layer (P2). The obtained second film was cooled to room temperature, then wound up into a roll and collected. The optical properties of the resin layer (P2) included in the second film were evaluated by the method described above.
 (1-3.第三工程:樹脂層(N1)の積層)
 (樹脂層(N1)形成用樹脂溶液の調製)
 乾燥し、窒素で置換された耐圧反応器に、溶媒としてトルエン500mL、重合触媒としてn-ブチルリチウム0.29mmolを入れた後、2-ビニルナフタレン35gを加えて25℃で1時間反応させた。その結果、2-ビニルナフタレンのホモポリマーとしてのポリ(2-ビニルナフタレン)を含む反応物を得た。この反応物に可塑剤としてのリン酸トリフェニルを加えた後、反応物を大量の2-プロパノールに注いで、ポリ(2-ビニルナフタレン)を含む樹脂を沈殿させ、分取した。得られたポリ(2-ビニルナフタレン)を含む樹脂を、真空乾燥機を用いて200℃で24時間乾燥させ、熱可塑性樹脂Nを得た。この熱可塑性樹脂Nは、可塑剤を約5重量%含む。GPCにより測定したポリ(2-ビニルナフタレン)の重量平均分子量は250000であった。また、示差走査熱量分析計により測定した熱可塑性樹脂Nのガラス転移温度は127℃であった。この熱可塑性樹脂Nは、負の固有複屈折値を有する。
(1-3. Third step: Lamination of resin layer (N1))
(Preparation of resin solution for forming resin layer (N1))
500 mL of toluene as a solvent and 0.29 mmol of n-butyllithium as a polymerization catalyst were placed in a pressure-resistant reactor that had been dried and purged with nitrogen, and then 35 g of 2-vinylnaphthalene was added and reacted at 25° C. for 1 hour. As a result, a reactant containing poly(2-vinylnaphthalene) as a homopolymer of 2-vinylnaphthalene was obtained. After adding triphenyl phosphate as a plasticizer to the reaction mixture, the reaction mixture was poured into a large amount of 2-propanol to precipitate a resin containing poly(2-vinylnaphthalene), which was then fractionated. The obtained resin containing poly(2-vinylnaphthalene) was dried at 200° C. for 24 hours using a vacuum dryer to obtain a thermoplastic resin N. This thermoplastic resin N contains about 5% by weight of a plasticizer. The weight average molecular weight of poly(2-vinylnaphthalene) measured by GPC was 250,000. Further, the glass transition temperature of the thermoplastic resin N was 127° C. as measured by a differential scanning calorimeter. This thermoplastic resin N has a negative intrinsic birefringence value.
 製造された熱可塑性樹脂N、及び、溶媒として1,3-ジオキソランを混合して、液状組成物として、熱可塑性樹脂Nを含む樹脂溶液を得た。この液状組成物における熱可塑性樹脂Nの濃度は、15重量%であった。 The produced thermoplastic resin N and 1,3-dioxolane as a solvent were mixed to obtain a resin solution containing the thermoplastic resin N as a liquid composition. The concentration of thermoplastic resin N in this liquid composition was 15% by weight.
 第二フィルムをロールから引き出し、引き出された第二フィルムの面上、すなわち樹脂層(P2)の面上に、前記の樹脂溶液を塗工して、樹脂溶液の層を形成した。その後、塗工された樹脂溶液の層を120℃で急速乾燥して、第二フィルム上に厚み15μmの樹脂層(N1)を形成した。以上の操作により、樹脂層(P2)と、この樹脂層(P2)上に積層された樹脂層(N1)とを備える第三フィルムを得た。第三フィルムが備える樹脂層(P2)及び樹脂層(N1)の光学特性を、前記の方法により評価した。 The second film was pulled out from the roll, and the resin solution was applied onto the surface of the pulled out second film, that is, the surface of the resin layer (P2) to form a resin solution layer. Thereafter, the coated resin solution layer was rapidly dried at 120° C. to form a 15 μm thick resin layer (N1) on the second film. Through the above operations, a third film including a resin layer (P2) and a resin layer (N1) laminated on this resin layer (P2) was obtained. The optical properties of the resin layer (P2) and resin layer (N1) included in the third film were evaluated by the method described above.
 (1-4.第四工程:第三フィルムの延伸)
 得られた第三フィルムを、テンター延伸機に供給した。このテンター延伸機を用いて、第三フィルムを、当該第三フィルムの幅方向に対して45°の角度をなす延伸方向、すなわち、第一フィルムの延伸方向に対して0°の角度をなす延伸方向に、延伸温度128℃、延伸方向における延伸倍率を1.30倍として延伸して、長尺の位相差フィルムを得た。この位相差フィルムは、樹脂層(P2)が延伸された層である樹脂層(P)と、樹脂層(N1)が延伸された層である樹脂層(N)とを備えていた。位相差フィルム及び位相差フィルムが備える各層の光学特性を、前記方法により評価した。
(1-4. Fourth step: stretching of third film)
The obtained third film was supplied to a tenter stretching machine. Using this tenter stretching machine, the third film is stretched in a stretching direction that makes an angle of 45 degrees with respect to the width direction of the third film, that is, a stretching direction that makes an angle of 0 degrees with respect to the stretching direction of the first film. The film was stretched at a stretching temperature of 128° C. and a stretching ratio of 1.30 times in the stretching direction to obtain a long retardation film. This retardation film included a resin layer (P) that was a stretched resin layer (P2) and a resin layer (N) that was a stretched resin layer (N1). The optical properties of the retardation film and each layer included in the retardation film were evaluated by the method described above.
 (1-5.円偏光板の製造)
 ヨウ素で染色された長尺のポリビニルアルコール樹脂フィルムを用意した。このフィルムを、当該フィルムの幅方向に対して90°の角度をなす長手方向に延伸して、長尺の偏光フィルムとしての直線偏光子を得た。この直線偏光子は、当該直線偏光子の長手方向に吸収軸を有し、当該直線偏光子の幅方向に透過軸を有していた。
(1-5. Manufacturing of circularly polarizing plate)
A long polyvinyl alcohol resin film dyed with iodine was prepared. This film was stretched in the longitudinal direction making an angle of 90° with respect to the width direction of the film to obtain a linear polarizer as a long polarizing film. This linear polarizer had an absorption axis in the longitudinal direction of the linear polarizer, and a transmission axis in the width direction of the linear polarizer.
 前記の直線偏光子と位相差フィルムとを、光学等方性の粘着剤(日東電工社製「CS9621」)を介して貼り合わせて、長尺の円偏光板を得た。前記の貼り合わせは、直線偏光子の幅方向と位相差フィルムの幅方向とを平行にして行った。得られた円偏光板は、直線偏光子、樹脂層(P)、及び、樹脂層(N)を、この順に備えていた。
 得られた円偏光板を、前記の方法で評価した。
The linear polarizer and the retardation film were bonded together via an optically isotropic adhesive ("CS9621" manufactured by Nitto Denko Corporation) to obtain a long circularly polarizing plate. The above bonding was performed with the width direction of the linear polarizer and the width direction of the retardation film being parallel to each other. The obtained circularly polarizing plate was equipped with a linear polarizer, a resin layer (P), and a resin layer (N) in this order.
The obtained circularly polarizing plate was evaluated by the method described above.
[実施例2~4]
 工程(1-2)において、第一フィルムの延伸倍率を表1に示すとおりに変更した。
 工程(1-3)において、樹脂層(N1)が、表1に示す厚みとなるように、樹脂溶液の塗工厚みを変更した。
 工程(1-4)において、延伸倍率を表1に示すとおりに変更した。
 以上の事項以外は、実施例1と同様に操作して、位相差フィルム及び円偏光板の製造及び評価を行った。
[Examples 2 to 4]
In step (1-2), the stretching ratio of the first film was changed as shown in Table 1.
In step (1-3), the coating thickness of the resin solution was changed so that the resin layer (N1) had the thickness shown in Table 1.
In step (1-4), the stretching ratio was changed as shown in Table 1.
Except for the above matters, a retardation film and a circularly polarizing plate were manufactured and evaluated in the same manner as in Example 1.
[比較例1]
 特開2022-052074号公報の実施例1と同様の方法により、位相差フィルムを製造した。具体的には、下記の操作により位相差フィルムを得た。
[Comparative example 1]
A retardation film was produced by the same method as in Example 1 of JP-A-2022-052074. Specifically, a retardation film was obtained by the following operation.
 (C1-1.熱可塑性樹脂Pのフィルムの用意)
 正の固有複屈折値を有する熱可塑性樹脂Pとして、ノルボルネン系重合体を含む樹脂(以下ノルボルネン系樹脂ともいう。)(日本ゼオン社製;ガラス転移温度126℃)を100℃で5時間乾燥した。乾燥した熱可塑性樹脂Pを、押出機に供給し、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押し出した。押し出された熱可塑性樹脂Pを冷却し、熱可塑性樹脂Pから形成された、厚み60μmの長尺の未延伸フィルムを得た。得られた未延伸フィルムをロール状に巻き取って回収した。
(C1-1. Preparation of film of thermoplastic resin P)
As a thermoplastic resin P having a positive intrinsic birefringence value, a resin containing a norbornene polymer (hereinafter also referred to as norbornene resin) (manufactured by Zeon Corporation; glass transition temperature 126 ° C.) was dried at 100 ° C. for 5 hours. . The dried thermoplastic resin P was supplied to an extruder, passed through a polymer pipe and a polymer filter, and extruded into a sheet form from a T-die onto a casting drum. The extruded thermoplastic resin P was cooled to obtain a long unstretched film made of the thermoplastic resin P and having a thickness of 60 μm. The obtained unstretched film was wound up into a roll and collected.
 (C1-2.熱可塑性樹脂Nの層の積層)
 乾燥し、窒素で置換された耐圧反応器に、溶媒としてトルエン500mL、重合触媒としてn-ブチルリチウム0.29mmolを入れた後、2-ビニルナフタレン35gを加えて25℃で1時間反応させた。その結果、2-ビニルナフタレンのホモポリマーとしてのポリ(2-ビニルナフタレン)を含む反応物を得た。この反応物を大量の2-プロパノールに注いで、ポリ(2-ビニルナフタレン)を沈殿させ、分取した。得られたポリ(2-ビニルナフタレン)を、真空乾燥機を用いて200℃で24時間乾燥させ、熱可塑性樹脂Nを得た。GPCにより測定したポリ(2-ビニルナフタレン)の重量平均分子量は250000であった。また、示差走査熱量分析計により測定したポリ(2-ビニルナフタレン)は、ガラス転移温度が142℃であった。この熱可塑性樹脂Nは、負の固有複屈折値を有する。
(C1-2. Lamination of layers of thermoplastic resin N)
500 mL of toluene as a solvent and 0.29 mmol of n-butyllithium as a polymerization catalyst were placed in a pressure-resistant reactor that had been dried and purged with nitrogen, and then 35 g of 2-vinylnaphthalene was added and reacted at 25° C. for 1 hour. As a result, a reactant containing poly(2-vinylnaphthalene) as a homopolymer of 2-vinylnaphthalene was obtained. The reaction mixture was poured into a large amount of 2-propanol to precipitate poly(2-vinylnaphthalene), which was separated. The obtained poly(2-vinylnaphthalene) was dried at 200° C. for 24 hours using a vacuum dryer to obtain a thermoplastic resin N. The weight average molecular weight of poly(2-vinylnaphthalene) measured by GPC was 250,000. Further, the glass transition temperature of poly(2-vinylnaphthalene) measured by a differential scanning calorimeter was 142°C. This thermoplastic resin N has a negative intrinsic birefringence value.
 製造された熱可塑性樹脂Nとしてのポリ(2-ビニルナフタレン)、及び、溶媒としての1,3-ジオキソランを混合して、熱可塑性樹脂Nを含む樹脂溶液を得た。この樹脂溶液におけるポリ(2-ビニルナフタレン)の濃度は、15重量%であった。 Poly(2-vinylnaphthalene) as the produced thermoplastic resin N and 1,3-dioxolane as a solvent were mixed to obtain a resin solution containing the thermoplastic resin N. The concentration of poly(2-vinylnaphthalene) in this resin solution was 15% by weight.
 前記の未延伸フィルム(樹脂層CP1)をロールから引き出し、引き出された未延伸フィルムの面上に、前記の樹脂溶液を塗工して、樹脂溶液の層を形成した。その後、樹脂溶液の層を、120℃で急速乾燥して、未延伸フィルム上に厚み12μmのポリ(2-ビニルナフタレン)の層を形成した。以上の操作により、熱可塑性樹脂Pにより形成された未延伸フィルム(樹脂層CP1)と熱可塑性樹脂Nであるポリ(2-ビニルナフタレン)の層(樹脂層CN1)とを備える積層フィルムを得た。得られた積層フィルムを、ロール状に巻き取って回収した。 The unstretched film (resin layer CP1) was pulled out from the roll, and the resin solution was applied onto the surface of the unstretched film to form a resin solution layer. Thereafter, the resin solution layer was rapidly dried at 120° C. to form a 12 μm thick poly(2-vinylnaphthalene) layer on the unstretched film. Through the above operations, a laminated film comprising an unstretched film formed of thermoplastic resin P (resin layer CP1) and a layer of poly(2-vinylnaphthalene) as thermoplastic resin N (resin layer CN1) was obtained. . The obtained laminated film was wound up into a roll and collected.
 (C1-3.積層フィルムの延伸)
 積層フィルムをロールから引き出して、テンター延伸機に連続的に供給した。そして、このテンター延伸機によって、積層フィルムを、当該積層フィルムの長手方向に対して45°の角度をなす延伸方向に、延伸温度140℃、延伸方向における延伸倍率を1.5倍として延伸して、長尺の位相差フィルムを得た。この位相差フィルムは、ノルボルネン系樹脂の層(樹脂層CP1)を延伸して得られた樹脂層(P)と、ポリ(2-ビニルナフタレン)の層(樹脂層CN1)を延伸して得られた樹脂層(N)とを備えていた。
(C1-3. Stretching of laminated film)
The laminated film was pulled out from the roll and continuously supplied to a tenter stretching machine. Then, using this tenter stretching machine, the laminated film is stretched in a stretching direction forming an angle of 45° with respect to the longitudinal direction of the laminated film at a stretching temperature of 140° C. and a stretching ratio of 1.5 times in the stretching direction. , a long retardation film was obtained. This retardation film is obtained by stretching a resin layer (P) obtained by stretching a norbornene resin layer (resin layer CP1) and a poly(2-vinylnaphthalene) layer (resin layer CN1). It was equipped with a resin layer (N).
 (C1-4.円偏光板の製造)
 得られた位相差フィルムを用いて、実施例1の工程(1-5)と同様に操作して、円偏光板を製造した。得られた円偏光板は、直線偏光子、樹脂層(P)、及び、樹脂層(N)を、この順に備えていた。得られた位相差フィルム及び円偏光板を、前記の方法で評価した。
(C1-4. Manufacturing of circularly polarizing plate)
Using the obtained retardation film, a circularly polarizing plate was manufactured in the same manner as in step (1-5) of Example 1. The obtained circularly polarizing plate was equipped with a linear polarizer, a resin layer (P), and a resin layer (N) in this order. The obtained retardation film and circularly polarizing plate were evaluated by the method described above.
[比較例2]
 特開2007-199616号公報の実施例1と同様の方法により、位相差フィルムを製造した。具体的には下記の操作により位相差フィルムを得た。
[Comparative example 2]
A retardation film was produced in the same manner as in Example 1 of JP-A-2007-199616. Specifically, a retardation film was obtained by the following operation.
 (C2-1.熱可塑性樹脂Pのフィルムの用意)
 正の固有複屈折値を有する熱可塑性樹脂Pとして、ノルボルネン系重合体を含む樹脂(JSR社製「アートンFLZU」;ガラス転移温度128℃)のフィルム(厚み70μm)を用意した。
(C2-1. Preparation of film of thermoplastic resin P)
As the thermoplastic resin P having a positive intrinsic birefringence value, a film (thickness: 70 μm) of a resin containing a norbornene polymer (“Arton FLZU” manufactured by JSR Corporation; glass transition temperature: 128° C.) was prepared.
 (C2-2.熱可塑性樹脂Nの層の積層)
 負の固有複屈折値を有する熱可塑性樹脂Nとして、特開2007-199616号公報の実施例1と同様に操作して、スチレン及び無水マレイン酸の共重合体(ガラス転移温度148℃)を用意した。
 得られた共重合体と、溶媒としてメチルエチルケトンとを混合して、液状組成物として、スチレン-無水マレイン酸共重合体の濃度33重量%の樹脂溶液を得た。
 前記のノルボルネン系重合体を含む熱可塑性樹脂Pのフィルムの上に、前記の樹脂溶液を塗工して、樹脂溶液の層を形成した。その後、樹脂溶液の層を、80℃で10分間の乾燥条件で乾燥して、熱可塑性樹脂Pにより形成されたフィルム上に、厚み40μmの、熱可塑性樹脂Nの層を形成した。以上の操作により、熱可塑性樹脂Pにより形成されたフィルム(樹脂層CP1)と熱可塑性樹脂Nの層(樹脂層CN1)とを備える積層フィルムを得た。
(C2-2. Lamination of layers of thermoplastic resin N)
As a thermoplastic resin N having a negative intrinsic birefringence value, a copolymer of styrene and maleic anhydride (glass transition temperature 148 ° C.) was prepared in the same manner as in Example 1 of JP 2007-199616 A. did.
The obtained copolymer was mixed with methyl ethyl ketone as a solvent to obtain a resin solution of styrene-maleic anhydride copolymer at a concentration of 33% by weight as a liquid composition.
The resin solution was applied onto the film of the thermoplastic resin P containing the norbornene polymer to form a layer of the resin solution. Thereafter, the resin solution layer was dried at 80° C. for 10 minutes to form a 40 μm thick layer of thermoplastic resin N on the film formed of thermoplastic resin P. Through the above operations, a laminated film including a film formed of thermoplastic resin P (resin layer CP1) and a layer of thermoplastic resin N (resin layer CN1) was obtained.
 (C2-3.積層フィルムの延伸)
 次いで、前記の積層フィルムを、延伸温度110℃、延伸倍率2.0倍で一軸延伸して、位相差フィルムを得た。この位相差フィルムは、ノルボルネン系樹脂の層(樹脂層CP1)を延伸して得られた樹脂層(P)と、スチレン-無水マレイン酸共重合体の層(樹脂層CN1)を延伸して得られた樹脂層(N)とを備えていた。
(C2-3. Stretching of laminated film)
Next, the laminated film was uniaxially stretched at a stretching temperature of 110°C and a stretching ratio of 2.0 times to obtain a retardation film. This retardation film is obtained by stretching a resin layer (P) obtained by stretching a layer of norbornene resin (resin layer CP1) and a layer of styrene-maleic anhydride copolymer (resin layer CN1). It was equipped with a resin layer (N).
 (C2-4.円偏光板の製造)
 得られた位相差フィルムを用いて、実施例1の工程(1-5)と同様に操作して、円偏光板を製造した。得られた円偏光板は、直線偏光子、樹脂層(P)、及び、樹脂層(N)を、この順に備えていた。得られた位相差板及び円偏光板を、前記の方法で評価した。
(C2-4. Manufacturing of circularly polarizing plate)
Using the obtained retardation film, a circularly polarizing plate was manufactured in the same manner as in step (1-5) of Example 1. The obtained circularly polarizing plate was equipped with a linear polarizer, a resin layer (P), and a resin layer (N) in this order. The obtained retardation plate and circularly polarizing plate were evaluated by the method described above.
[比較例3]
 (C3-1.熱可塑性樹脂Pのフィルムの用意)
 ペレット状のノルボルネン系樹脂(日本ゼオン社製;ガラス転移温度126℃)を100℃で5時間乾燥して、熱可塑性樹脂Pを得た。この熱可塑性樹脂Pを、押出機に供給し、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押し出した。押し出された熱可塑性樹脂Pを冷却し、厚み110μmの長尺の未延伸フィルムを得た。得られた未延伸フィルムをロール状に巻き取って回収した。
[Comparative example 3]
(C3-1. Preparation of film of thermoplastic resin P)
A pelletized norbornene resin (manufactured by Nippon Zeon Co., Ltd.; glass transition temperature: 126°C) was dried at 100°C for 5 hours to obtain a thermoplastic resin P. This thermoplastic resin P was supplied to an extruder, passed through a polymer pipe and a polymer filter, and was extruded into a sheet form from a T-die onto a casting drum. The extruded thermoplastic resin P was cooled to obtain a long unstretched film with a thickness of 110 μm. The obtained unstretched film was wound up into a roll and collected.
 (C3-2.熱可塑性樹脂Nの層の積層)
 乾燥し、窒素で置換された耐圧反応器に、溶媒としてトルエン500mL、重合触媒としてn-ブチルリチウム0.29mmolを入れた後、2-ビニルナフタレン35gを加えて25℃で1時間反応させた。その結果、2-ビニルナフタレンのホモポリマーとしてのポリ(2-ビニルナフタレン)を含む反応物を得た。この反応物を大量の2-プロパノールに注いで、ポリ(2-ビニルナフタレン)を沈殿させ、分取した。得られたポリ(2-ビニルナフタレン)を、真空乾燥機を用いて200℃で24時間乾燥させ、熱可塑性樹脂Nを得た。GPCにより測定したポリ(2-ビニルナフタレン)の重量平均分子量は250000であった。また、示差走査熱量分析計により測定したポリ(2-ビニルナフタレン)のガラス転移温度は142℃であった。この熱可塑性樹脂Nは、負の固有複屈折値を有する。
(C3-2. Lamination of layers of thermoplastic resin N)
500 mL of toluene as a solvent and 0.29 mmol of n-butyllithium as a polymerization catalyst were placed in a pressure-resistant reactor that had been dried and purged with nitrogen, and then 35 g of 2-vinylnaphthalene was added and reacted at 25° C. for 1 hour. As a result, a reactant containing poly(2-vinylnaphthalene) as a homopolymer of 2-vinylnaphthalene was obtained. The reaction mixture was poured into a large amount of 2-propanol to precipitate poly(2-vinylnaphthalene), which was separated. The obtained poly(2-vinylnaphthalene) was dried at 200° C. for 24 hours using a vacuum dryer to obtain a thermoplastic resin N. The weight average molecular weight of poly(2-vinylnaphthalene) measured by GPC was 250,000. Further, the glass transition temperature of poly(2-vinylnaphthalene) measured by a differential scanning calorimeter was 142°C. This thermoplastic resin N has a negative intrinsic birefringence value.
 製造された熱可塑性樹脂Nとしてのポリ(2-ビニルナフタレン)、及び、溶媒としての1,3-ジオキソランを混合して、熱可塑性樹脂Nを含む樹脂溶液を得た。この樹脂溶液におけるポリ(2-ビニルナフタレン)の濃度は、15重量%であった。 Poly(2-vinylnaphthalene) as the produced thermoplastic resin N and 1,3-dioxolane as a solvent were mixed to obtain a resin solution containing the thermoplastic resin N. The concentration of poly(2-vinylnaphthalene) in this resin solution was 15% by weight.
 前記の未延伸フィルムをロールから引き出し、引き出された未延伸フィルム上に前記の樹脂溶液を塗工して、樹脂溶液の層を形成した。その後、樹脂溶液の層を乾燥して、未延伸フィルム上に厚み13μmのポリ(2-ビニルナフタレン)の層を形成した。以上の操作により、熱可塑性樹脂Pであるノルボルネン系樹脂で形成された未延伸フィルム(樹脂層CP1と熱可塑性樹脂Nであるポリ(2-ビニルナフタレン)の層(樹脂層CN1)とを備える積層フィルムを得た。得られた積層フィルムを、ロール状に巻き取って回収した。 The unstretched film was pulled out from the roll, and the resin solution was applied onto the unstretched film to form a resin solution layer. Thereafter, the resin solution layer was dried to form a 13 μm thick poly(2-vinylnaphthalene) layer on the unstretched film. Through the above operations, a laminate comprising an unstretched film (resin layer CP1) formed of norbornene resin which is thermoplastic resin P and a layer (resin layer CN1) of poly(2-vinylnaphthalene) which is thermoplastic resin N A film was obtained.The obtained laminated film was wound up into a roll and collected.
 (C3-3.積層フィルムの延伸;第一延伸工程)
 積層フィルムをロールから引き出し、引き出された積層フィルムをテンター延伸機に供給した。このテンター延伸機を用いて、積層フィルムを、当該積層フィルムの幅方向に対して135°の角度をなす延伸方向に、延伸温度140℃、延伸方向における延伸倍率を1.15倍として延伸した。延伸された積層フィルムは、常温に冷却後、ロール状に巻き取って回収した。
(C3-3. Stretching of laminated film; first stretching step)
The laminated film was pulled out from the roll, and the pulled out laminated film was supplied to a tenter stretching machine. Using this tenter stretching machine, the laminated film was stretched in a stretching direction forming an angle of 135° with respect to the width direction of the laminated film at a stretching temperature of 140° C. and a stretching ratio of 1.15 times in the stretching direction. The stretched laminated film was cooled to room temperature, then wound up into a roll and collected.
 (C3-4.積層フィルムの延伸;第二延伸工程)
 第一延伸工程で延伸された積層フィルムをロールから引き出し、引き出された積層フィルムをテンター延伸機に供給した。このテンター延伸機を用いて、積層フィルムを、当該積層フィルムの幅方向に対して45°の角度をなす延伸方向に、延伸温度128℃、延伸方向における延伸倍率を1.50倍として延伸して、長尺の位相差フィルムを得た。この位相差フィルムは、ノルボルネン系樹脂の層(樹脂層CP1)を延伸して得られた樹脂層(P)と、ポリ(2-ビニルナフタレン)の層(樹脂層CN1)を延伸して得られた樹脂層(N)とを備えていた。
(C3-4. Stretching of laminated film; second stretching step)
The laminated film stretched in the first stretching step was drawn out from the roll, and the drawn laminated film was supplied to a tenter stretching machine. Using this tenter stretching machine, the laminated film was stretched in a stretching direction forming an angle of 45° with respect to the width direction of the laminated film at a stretching temperature of 128°C and a stretching ratio of 1.50 times in the stretching direction. , a long retardation film was obtained. This retardation film is obtained by stretching a resin layer (P) obtained by stretching a norbornene resin layer (resin layer CP1) and a poly(2-vinylnaphthalene) layer (resin layer CN1). It was equipped with a resin layer (N).
 (C3-5.円偏光板の製造)
 得られた位相差フィルムを用いて、実施例1の工程(1-5)と同様に操作して、円偏光板を製造した。得られた円偏光板は、直線偏光子、樹脂層(P)、及び、樹脂層(N)を、この順に備えていた。得られた位相差フィルム及び円偏光板を、前記の方法で評価した。
(C3-5. Manufacturing of circularly polarizing plate)
Using the obtained retardation film, a circularly polarizing plate was manufactured in the same manner as in step (1-5) of Example 1. The obtained circularly polarizing plate was equipped with a linear polarizer, a resin layer (P), and a resin layer (N) in this order. The obtained retardation film and circularly polarizing plate were evaluated by the method described above.
 上述した実施例及び比較例では、正面方向の目視評価は「良」及び「不良」の2段階で判定しているのに対し、傾斜方向の目視評価は「A」~「E」までの5段階で判定している。このように判定基準が異なる理由は、下記の通りである。
 すなわち、正面方向では、傾斜方向に比べて、反射光の輝度が充分に低い。よって、強い色付きが生じていない場合には、観察者はその色付きを認識できない。そこで、色付きを視認できるか否かという2段階での判定を採用した。
 他方、傾斜方向では、反射光の輝度が高い。よって、弱い色付きであっても、観察者はその色付きを認識しやすい。そこで、5段階という詳細な優劣評価を採用した。
In the above-mentioned examples and comparative examples, the visual evaluation in the front direction is judged in two stages of "good" and "poor", while the visual evaluation in the inclined direction is judged in 5 grades from "A" to "E". It is judged in stages. The reason why the criteria are different in this way is as follows.
That is, the brightness of reflected light is sufficiently lower in the front direction than in the inclined direction. Therefore, if strong coloration does not occur, the viewer cannot recognize the coloration. Therefore, we adopted a two-stage determination of whether or not the coloring can be visually recognized.
On the other hand, in the inclined direction, the brightness of the reflected light is high. Therefore, even if the coloration is weak, the viewer can easily recognize the coloration. Therefore, we adopted a five-level detailed evaluation of merits and demerits.
[結果]
 実施例及び比較例における製造条件を表1、2に示し、結果を表3に示す。
 下表において、略号は、下記の意味を表す。
「VN」:ポリ(2-ビニルナフタレン)を含む樹脂
「COP1」:日本ゼオン社製ノルボルネン系樹脂(ガラス転移温度126℃)
「COP2」:JSR社製ノルボルネン系樹脂「アートンFLZU」(ガラス転移温度128℃)
「ST-MA」:スチレン-無水マレイン酸共重合体
「N1/P2」:樹脂層(N1)と樹脂層(P2)とを備える積層体
「CN1/CP1」:樹脂層(CN1)と樹脂層(CP1)とを備える積層体
「P/N」:樹脂層(P)と樹脂層(N)とを備える位相差フィルム
「波長分散差」:{Re(450)/ReN(550)}-{Re(450)/Re(550)}の値
「θ」:フィルム又は層の幅方向に対して、当該フィルム又は層の遅相軸がなす角度
表2の項目 第四工程における「第1」:第一延伸工程
表2の項目 第四工程における「第2」:第二延伸工程
[result]
Manufacturing conditions in Examples and Comparative Examples are shown in Tables 1 and 2, and Table 3 shows the results.
In the table below, the abbreviations have the following meanings.
"VN": Resin containing poly(2-vinylnaphthalene) "COP1": Norbornene resin manufactured by Zeon Corporation (glass transition temperature 126°C)
"COP2": Norbornene resin "Arton FLZU" manufactured by JSR (glass transition temperature 128°C)
"ST-MA": Styrene-maleic anhydride copolymer "N1/P2": Laminate comprising a resin layer (N1) and a resin layer (P2) "CN1/CP1": A resin layer (CN1) and a resin layer (CP1) Laminated body "P/N": Retardation film "wavelength dispersion difference" comprising a resin layer (P) and a resin layer (N): {Re N (450)/Re N ( 550)} - Value of {Re P (450)/Re P (550)} "θ": Angle formed by the slow axis of the film or layer with respect to the width direction of the film or layer Item in Table 2 ""1st": Item in the first stretching process table 2 "2nd" in the fourth step: Second stretching process
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果より、実施例の方法により、式(1)~式(3)を満たし、ヘイズの小さい位相差フィルムが得られることが分かる。また、実施例の方法で得られた、式(1)~式(3)を満たす位相差フィルムを備える円偏光板が、当該円偏光板を備える画像表示装置の表示面の正面方向及び傾斜方向の両方において、外光の反射による色付きを抑制することができることが分かる。 From the above results, it can be seen that by the method of the example, a retardation film that satisfies formulas (1) to (3) and has a small haze can be obtained. Further, the circularly polarizing plate provided with the retardation film satisfying formulas (1) to (3) obtained by the method of the example may be used in the front direction and the inclined direction of the display surface of the image display device equipped with the circularly polarizing plate. It can be seen that in both cases, coloration due to reflection of external light can be suppressed.
 10 反射面
 11 法線方向
 12 基準方向
 20 観察方向
 φ 方位角
 ρ 極角
10 Reflection surface 11 Normal direction 12 Reference direction 20 Observation direction φ Azimuth angle ρ Polar angle

Claims (7)

  1.  下記式(1)、下記式(2)、及び下記式(3)を満たす位相差フィルムの製造方法であって、
     前記製造方法が、
     正の固有複屈折値を有する熱可塑性樹脂Pで形成された樹脂層(P1)を備える第一フィルムを用意する第一工程と、
     前記第一フィルムを少なくとも一回延伸して、前記樹脂層(P1)が延伸された層である樹脂層(P2)を備える、第二フィルムを得る第二工程と、
     前記第二フィルムに、負の固有複屈折値を有する熱可塑性樹脂Nで形成された樹脂層(N1)を積層して第三フィルムを得る第三工程と、
     前記第三フィルムを少なくとも一回延伸して、前記樹脂層(P2)が延伸された層であり遅相軸(P)を有する樹脂層(P)と、前記樹脂層(N1)が延伸された層であり前記遅相軸(P)に対して90°±5°の範囲内の角度をなす遅相軸(N)を有する樹脂層(N)とを備える前記位相差フィルムを得る第四工程と、
     を含む、位相差フィルムの製造方法。
      100nm≦Re(550)≦180nm  (1)
      Re(450)<Re(550)<Re(650)  (2)
      0.0<NZ<1.0  (3)
    (ただし、
     Re(450)は、波長450nmにおける前記位相差フィルムの面内位相差を表し、
     Re(550)は、波長550nmにおける前記位相差フィルムの面内位相差を表し、
     Re(650)は、波長650nmにおける前記位相差フィルムの面内位相差を表し、
     NZは、前記位相差フィルムのNZ係数を表す。)
    A method for producing a retardation film satisfying the following formula (1), the following formula (2), and the following formula (3),
    The manufacturing method includes:
    A first step of preparing a first film comprising a resin layer (P1) formed of a thermoplastic resin P having a positive intrinsic birefringence value;
    a second step of stretching the first film at least once to obtain a second film comprising a resin layer (P2) that is a stretched layer of the resin layer (P1);
    a third step of laminating a resin layer (N1) formed of a thermoplastic resin N having a negative intrinsic birefringence value on the second film to obtain a third film;
    The third film was stretched at least once, and the resin layer (P), which is a layer obtained by stretching the resin layer (P2) and has a slow axis (P), and the resin layer (N1) were stretched. and a resin layer (N) having a slow axis (N) forming an angle within a range of 90° ± 5° with respect to the slow axis (P). and,
    A method for producing a retardation film, including:
    100nm≦Re T (550)≦180nm (1)
    Re T (450)<Re T (550)<Re T (650) (2)
    0.0< NZT <1.0 (3)
    (however,
    Re T (450) represents the in-plane retardation of the retardation film at a wavelength of 450 nm,
    Re T (550) represents the in-plane retardation of the retardation film at a wavelength of 550 nm,
    Re T (650) represents the in-plane retardation of the retardation film at a wavelength of 650 nm,
    NZ T represents the NZ coefficient of the retardation film. )
  2.  前記第二フィルムが備える前記樹脂層(P2)の面内位相差が、20nm以上である、請求項1に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to claim 1, wherein the resin layer (P2) included in the second film has an in-plane retardation of 20 nm or more.
  3.  前記第三工程における前記樹脂層(N1)の厚み方向位相差が-30nm以下である、請求項1に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to claim 1, wherein the thickness direction retardation of the resin layer (N1) in the third step is -30 nm or less.
  4.  前記第二工程における前記第一フィルムの延伸が、一方向への延伸であり、前記第四工程における前記第三フィルムの延伸が、前記第二工程における前記第一フィルムの延伸方向に対して0°±5°の範囲内の方向への延伸を含む、請求項1に記載の位相差フィルムの製造方法。 The stretching of the first film in the second step is stretching in one direction, and the stretching of the third film in the fourth step is 0 with respect to the stretching direction of the first film in the second step. The method for producing a retardation film according to claim 1, comprising stretching in a direction within a range of ±5°.
  5.  前記位相差フィルムが、下記式(4)を満たす、請求項1に記載の位相差フィルムの製造方法。
      {Re(450)/Re(550)}-{Re(450)/Re(550)}>0.08   (4)
    (ただし、
     Re(450)は、波長450nmにおける前記樹脂層(N)の面内位相差を表し、
     Re(550)は、波長550nmにおける前記樹脂層(N)の面内位相差を表し、
     Re(450)は、波長450nmにおける前記樹脂層(P)の面内位相差を表し、
     Re(550)は、波長550nmにおける前記樹脂層(P)の面内位相差を表す。)
    The method for producing a retardation film according to claim 1, wherein the retardation film satisfies the following formula (4).
    {Re N (450)/Re N (550)}-{Re P (450)/Re P (550)}>0.08 (4)
    (however,
    Re N (450) represents the in-plane retardation of the resin layer (N) at a wavelength of 450 nm,
    Re N (550) represents the in-plane retardation of the resin layer (N) at a wavelength of 550 nm,
    Re P (450) represents the in-plane retardation of the resin layer (P) at a wavelength of 450 nm,
    Re P (550) represents the in-plane retardation of the resin layer (P) at a wavelength of 550 nm. )
  6.  下記式(5)を満たす、請求項1に記載の位相差フィルムの製造方法。
      Re(550)>Re(550)  (5)
    (ただし、
     Re(550)は、波長550nmにおける前記樹脂層(N)の面内位相差を表し、
     Re(550)は、波長550nmにおける前記樹脂層(P)の面内位相差を表す。)
    The method for producing a retardation film according to claim 1, which satisfies the following formula (5).
    Re P (550)>Re N (550) (5)
    (however,
    Re N (550) represents the in-plane retardation of the resin layer (N) at a wavelength of 550 nm,
    Re P (550) represents the in-plane retardation of the resin layer (P) at a wavelength of 550 nm. )
  7.  直線偏光子と位相差フィルムとを含む円偏光板の製造方法であって、
     請求項1~6のいずれか一項に記載の位相差フィルムの製造方法で、前記位相差フィルムを製造する第五工程と、
     前記位相差フィルムと、前記直線偏光子とを積層する第六工程と、
    を含む、円偏光板の製造方法。
    A method for manufacturing a circularly polarizing plate including a linear polarizer and a retardation film,
    A fifth step of manufacturing the retardation film in the method for manufacturing a retardation film according to any one of claims 1 to 6;
    a sixth step of laminating the retardation film and the linear polarizer;
    A method for manufacturing a circularly polarizing plate, including:
PCT/JP2023/021666 2022-06-30 2023-06-12 Method for producing phase difference film, and method for producing circularly polarizing plate WO2024004601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022105607 2022-06-30
JP2022-105607 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024004601A1 true WO2024004601A1 (en) 2024-01-04

Family

ID=89382073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021666 WO2024004601A1 (en) 2022-06-30 2023-06-12 Method for producing phase difference film, and method for producing circularly polarizing plate

Country Status (1)

Country Link
WO (1) WO2024004601A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161832A (en) * 2001-11-22 2003-06-06 Fuji Photo Film Co Ltd Retardation plate
JP2007199616A (en) * 2006-01-30 2007-08-09 Nitto Denko Corp Manufacturing method of retardation plate, retardation plate, polarizing plate with retardation plate, liquid crystal panel and liquid crystal display apparatus
WO2009031433A1 (en) * 2007-09-05 2009-03-12 Konica Minolta Opto, Inc. Phase difference film manufacturing method, phase difference film, polarization plate and liquid crystal display device
JP2009169086A (en) * 2008-01-16 2009-07-30 Jsr Corp Method for manufacturing laminated optical film, laminated optical film, and its application
JP2010204347A (en) * 2009-03-03 2010-09-16 Konica Minolta Opto Inc Method for manufacturing retardation film, retardation film, polarizing plate and liquid crystal display device
WO2018079746A1 (en) * 2016-10-31 2018-05-03 日本ゼオン株式会社 Wide-band wavelength film, method for producing same, and method for producing circular polarization film
WO2018079745A1 (en) * 2016-10-31 2018-05-03 日本ゼオン株式会社 Wide-band wavelength film, method for producing same, and method for producing circular polarization film
WO2019208512A1 (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Broadband wavelength film, production method for same, and production method for circularly polarizing film
WO2019208508A1 (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Broadband wavelength film, production method for same, and production method for circularly polarizing film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161832A (en) * 2001-11-22 2003-06-06 Fuji Photo Film Co Ltd Retardation plate
JP2007199616A (en) * 2006-01-30 2007-08-09 Nitto Denko Corp Manufacturing method of retardation plate, retardation plate, polarizing plate with retardation plate, liquid crystal panel and liquid crystal display apparatus
WO2009031433A1 (en) * 2007-09-05 2009-03-12 Konica Minolta Opto, Inc. Phase difference film manufacturing method, phase difference film, polarization plate and liquid crystal display device
JP2009169086A (en) * 2008-01-16 2009-07-30 Jsr Corp Method for manufacturing laminated optical film, laminated optical film, and its application
JP2010204347A (en) * 2009-03-03 2010-09-16 Konica Minolta Opto Inc Method for manufacturing retardation film, retardation film, polarizing plate and liquid crystal display device
WO2018079746A1 (en) * 2016-10-31 2018-05-03 日本ゼオン株式会社 Wide-band wavelength film, method for producing same, and method for producing circular polarization film
WO2018079745A1 (en) * 2016-10-31 2018-05-03 日本ゼオン株式会社 Wide-band wavelength film, method for producing same, and method for producing circular polarization film
WO2019208512A1 (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Broadband wavelength film, production method for same, and production method for circularly polarizing film
WO2019208508A1 (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Broadband wavelength film, production method for same, and production method for circularly polarizing film

Similar Documents

Publication Publication Date Title
KR102571446B1 (en) CIRCULAR POLARIZING PLATE, WIDEBAND λ/4 PLATE, AND ORGANIC ELECTROLUMINESCENCE DISPLAY DEVICE
US6812983B2 (en) Retardation plate and fabrication method thereof, and plate for circularly polarizing light, ½ wave plate and reflection-type liquid crystal display device utilizing the retardation plate
US9645444B2 (en) Inverse wavelength dispersion retardation film and display device including the same
US8111459B2 (en) Laminated polarizing film, phase retardation film, and liquid crystal display device
JP6520953B2 (en) Circularly polarizing plate and method of manufacturing the same, organic electroluminescent display device, and liquid crystal display device
JP7452436B2 (en) Optically anisotropic laminate and its manufacturing method, circularly polarizing plate, and image display device
TWI777051B (en) Optically anisotropic stack, polarizing plate and image display device
TW201739622A (en) Optical laminate and image display device in which said optical laminate is used
JP4313542B2 (en) Retardation film and method for producing the same
JP7259762B2 (en) Circularly polarizing plate, long broadband λ/4 plate, organic electroluminescence display device and liquid crystal display device
WO2024004601A1 (en) Method for producing phase difference film, and method for producing circularly polarizing plate
WO2024004605A1 (en) Method for manufacturing phase difference film, and method for manufacturing circularly polarizing plate
WO2023162545A1 (en) Optically anisotropic laminate, method for manufacturing same, circularly polarizing plate, and image display device
TW202404788A (en) Method for manufacturing phase difference film and method for manufacturing circular polarizing plate
TW202404787A (en) Method for manufacturing phase difference film and method for manufacturing circular polarizing plate
KR20100031676A (en) Liquid crystal display device
WO2021085031A1 (en) Retardation film, production method therefor, and circular polarizer
JP7405013B2 (en) Long circularly polarizing plate, long broadband λ/4 plate, organic electroluminescent display device, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831050

Country of ref document: EP

Kind code of ref document: A1