WO2024004461A1 - Method for producing ceramic green sheet with conductive pattern - Google Patents
Method for producing ceramic green sheet with conductive pattern Download PDFInfo
- Publication number
- WO2024004461A1 WO2024004461A1 PCT/JP2023/019487 JP2023019487W WO2024004461A1 WO 2024004461 A1 WO2024004461 A1 WO 2024004461A1 JP 2023019487 W JP2023019487 W JP 2023019487W WO 2024004461 A1 WO2024004461 A1 WO 2024004461A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic green
- green sheet
- photosensitive layer
- conductive pattern
- conductive
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 152
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 70
- 239000002245 particle Substances 0.000 claims abstract description 59
- 239000002904 solvent Substances 0.000 claims abstract description 56
- 239000011347 resin Substances 0.000 claims abstract description 44
- 229920005989 resin Polymers 0.000 claims abstract description 44
- 239000003504 photosensitizing agent Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 103
- 239000000758 substrate Substances 0.000 claims description 43
- 230000009477 glass transition Effects 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 26
- 238000010030 laminating Methods 0.000 claims description 15
- 238000010304 firing Methods 0.000 claims description 14
- 238000003475 lamination Methods 0.000 claims description 14
- -1 polydimethylsiloxane Polymers 0.000 claims description 14
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 9
- 238000009835 boiling Methods 0.000 claims description 7
- 238000007650 screen-printing Methods 0.000 claims description 7
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 124
- 238000001035 drying Methods 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 9
- 239000003999 initiator Substances 0.000 description 9
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 7
- 229910002012 Aerosil® Inorganic materials 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- WTQZSMDDRMKJRI-UHFFFAOYSA-N 4-diazoniophenolate Chemical class [O-]C1=CC=C([N+]#N)C=C1 WTQZSMDDRMKJRI-UHFFFAOYSA-N 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 229920006255 plastic film Polymers 0.000 description 5
- 239000002985 plastic film Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- HXHCOXPZCUFAJI-UHFFFAOYSA-N prop-2-enoic acid;styrene Chemical compound OC(=O)C=C.C=CC1=CC=CC=C1 HXHCOXPZCUFAJI-UHFFFAOYSA-N 0.000 description 5
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- GZMAAYIALGURDQ-UHFFFAOYSA-N 2-(2-hexoxyethoxy)ethanol Chemical compound CCCCCCOCCOCCO GZMAAYIALGURDQ-UHFFFAOYSA-N 0.000 description 2
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 238000002356 laser light scattering Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 150000002923 oximes Chemical class 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 239000013557 residual solvent Substances 0.000 description 2
- 229940124530 sulfonamide Drugs 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 2
- 238000009210 therapy by ultrasound Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- WLOQLWBIJZDHET-UHFFFAOYSA-N triphenylsulfonium Chemical class C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 WLOQLWBIJZDHET-UHFFFAOYSA-N 0.000 description 2
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 1
- AWOATHYNVXCSGP-UHFFFAOYSA-M (4-methylphenyl)-diphenylsulfanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1=CC(C)=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 AWOATHYNVXCSGP-UHFFFAOYSA-M 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- LAVARTIQQDZFNT-UHFFFAOYSA-N 1-(1-methoxypropan-2-yloxy)propan-2-yl acetate Chemical compound COCC(C)OCC(C)OC(C)=O LAVARTIQQDZFNT-UHFFFAOYSA-N 0.000 description 1
- HYLLZXPMJRMUHH-UHFFFAOYSA-N 1-[2-(2-methoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOC HYLLZXPMJRMUHH-UHFFFAOYSA-N 0.000 description 1
- SNAQINZKMQFYFV-UHFFFAOYSA-N 1-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]butane Chemical compound CCCCOCCOCCOCCOC SNAQINZKMQFYFV-UHFFFAOYSA-N 0.000 description 1
- GYQQFWWMZYBCIB-UHFFFAOYSA-N 1-[diazo-(4-methylphenyl)sulfonylmethyl]sulfonyl-4-methylbenzene Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1=CC=C(C)C=C1 GYQQFWWMZYBCIB-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- DBUMQODMPXCGAY-UHFFFAOYSA-N 2-(2-butan-2-yloxypropoxy)propan-1-ol Chemical compound CCC(C)OC(C)COC(C)CO DBUMQODMPXCGAY-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- WMDZKDKPYCNCDZ-UHFFFAOYSA-N 2-(2-butoxypropoxy)propan-1-ol Chemical compound CCCCOC(C)COC(C)CO WMDZKDKPYCNCDZ-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- CUDYYMUUJHLCGZ-UHFFFAOYSA-N 2-(2-methoxypropoxy)propan-1-ol Chemical compound COC(C)COC(C)CO CUDYYMUUJHLCGZ-UHFFFAOYSA-N 0.000 description 1
- JJWKKSUCSNDHNJ-UHFFFAOYSA-O 2-(2-methyl-1h-imidazol-3-ium-3-yl)ethanol Chemical compound CC=1NC=C[N+]=1CCO JJWKKSUCSNDHNJ-UHFFFAOYSA-O 0.000 description 1
- LCVQGUBLIVKPAI-UHFFFAOYSA-N 2-(2-phenoxypropoxy)propan-1-ol Chemical compound OCC(C)OCC(C)OC1=CC=CC=C1 LCVQGUBLIVKPAI-UHFFFAOYSA-N 0.000 description 1
- XYVAYAJYLWYJJN-UHFFFAOYSA-N 2-(2-propoxypropoxy)propan-1-ol Chemical compound CCCOC(C)COC(C)CO XYVAYAJYLWYJJN-UHFFFAOYSA-N 0.000 description 1
- KESQFSZFUCZCEI-UHFFFAOYSA-N 2-(5-nitropyridin-2-yl)oxyethanol Chemical compound OCCOC1=CC=C([N+]([O-])=O)C=N1 KESQFSZFUCZCEI-UHFFFAOYSA-N 0.000 description 1
- JDSQBDGCMUXRBM-UHFFFAOYSA-N 2-[2-(2-butoxypropoxy)propoxy]propan-1-ol Chemical compound CCCCOC(C)COC(C)COC(C)CO JDSQBDGCMUXRBM-UHFFFAOYSA-N 0.000 description 1
- OADIZUFHUPTFAG-UHFFFAOYSA-N 2-[2-(2-ethylhexoxy)ethoxy]ethanol Chemical compound CCCCC(CC)COCCOCCO OADIZUFHUPTFAG-UHFFFAOYSA-N 0.000 description 1
- RZRILSWMGXWSJY-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanol;sulfuric acid Chemical compound OS(O)(=O)=O.OCCN(CCO)CCO RZRILSWMGXWSJY-UHFFFAOYSA-N 0.000 description 1
- SAFWZKVQMVOANB-UHFFFAOYSA-N 2-[tert-butylsulfonyl(diazo)methyl]sulfonyl-2-methylpropane Chemical compound CC(C)(C)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C(C)(C)C SAFWZKVQMVOANB-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- UPGSWASWQBLSKZ-UHFFFAOYSA-N 2-hexoxyethanol Chemical compound CCCCCCOCCO UPGSWASWQBLSKZ-UHFFFAOYSA-N 0.000 description 1
- CRWNQZTZTZWPOF-UHFFFAOYSA-N 2-methyl-4-phenylpyridine Chemical compound C1=NC(C)=CC(C=2C=CC=CC=2)=C1 CRWNQZTZTZWPOF-UHFFFAOYSA-N 0.000 description 1
- JEHFRMABGJJCPF-UHFFFAOYSA-N 2-methylprop-2-enoyl isocyanate Chemical compound CC(=C)C(=O)N=C=O JEHFRMABGJJCPF-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- VSYIJNDEXXBJFH-UHFFFAOYSA-N 5-isocyanato-2-methylpent-1-en-3-one Chemical compound CC(=C)C(=O)CCN=C=O VSYIJNDEXXBJFH-UHFFFAOYSA-N 0.000 description 1
- FOMNBFSRHKJALH-UHFFFAOYSA-N 5-isocyanatopent-1-en-3-one Chemical compound C=CC(=O)CCN=C=O FOMNBFSRHKJALH-UHFFFAOYSA-N 0.000 description 1
- OSDWBNJEKMUWAV-UHFFFAOYSA-N Allyl chloride Chemical compound ClCC=C OSDWBNJEKMUWAV-UHFFFAOYSA-N 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GXCRUTWHNMMJEK-WYUVZMMLSA-M Cefacetrile sodium Chemical compound [Na+].S1CC(COC(=O)C)=C(C([O-])=O)N2C(=O)[C@@H](NC(=O)CC#N)[C@@H]12 GXCRUTWHNMMJEK-WYUVZMMLSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920005731 JONCRYL® 67 Polymers 0.000 description 1
- 229920005732 JONCRYL® 678 Polymers 0.000 description 1
- 229920005733 JONCRYL® 682 Polymers 0.000 description 1
- 229920005734 JONCRYL® 693 Polymers 0.000 description 1
- 229920005769 JONCRYL® HPD 196 Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- RNFAKTRFMQEEQE-UHFFFAOYSA-N Tripropylene glycol butyl ether Chemical compound CCCCOC(CC)OC(C)COC(O)CC RNFAKTRFMQEEQE-UHFFFAOYSA-N 0.000 description 1
- GLGXSTXZLFQYKJ-UHFFFAOYSA-N [cyclohexylsulfonyl(diazo)methyl]sulfonylcyclohexane Chemical compound C1CCCCC1S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1CCCCC1 GLGXSTXZLFQYKJ-UHFFFAOYSA-N 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 229910052661 anorthite Inorganic materials 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 229910001597 celsian Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 description 1
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- UYAAVKFHBMJOJZ-UHFFFAOYSA-N diimidazo[1,3-b:1',3'-e]pyrazine-5,10-dione Chemical compound O=C1C2=CN=CN2C(=O)C2=CN=CN12 UYAAVKFHBMJOJZ-UHFFFAOYSA-N 0.000 description 1
- CZSCUCRXCBAAGX-UHFFFAOYSA-M diphenyl-(2,4,6-trimethylphenyl)sulfanium;4-methylbenzenesulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC(C)=CC(C)=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 CZSCUCRXCBAAGX-UHFFFAOYSA-M 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- UPHWVVKYDQHTCF-UHFFFAOYSA-N octadecylazanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCCCCCCCN UPHWVVKYDQHTCF-UHFFFAOYSA-N 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- YOSXAXYCARLZTR-UHFFFAOYSA-N prop-2-enoyl isocyanate Chemical compound C=CC(=O)N=C=O YOSXAXYCARLZTR-UHFFFAOYSA-N 0.000 description 1
- 229940116423 propylene glycol diacetate Drugs 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- SZHOJFHSIKHZHA-UHFFFAOYSA-N tridecanoic acid Chemical compound CCCCCCCCCCCCC(O)=O SZHOJFHSIKHZHA-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000011077 uniformity evaluation Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
Definitions
- An inductor which is a type of electronic component, has a coil-shaped internal electrode inside an insulator made of ceramic, and generally the internal electrode is formed in the form of a wire wound on a flat insulating layer made of ceramic. is formed by laminating multiple layers.
- a photosensitive paste (for example, see Patent Document 1) has been proposed that contains an alkali-soluble resin having an acid value of 200 to 300 mgKOH/g, a reactive compound, and a photoreaction initiator.
- Inductor manufacturing methods include, for example, forming internal electrodes on ceramic green sheets and stacking them in multiple layers, and forming internal electrodes and ceramic green sheets alternately and repeatedly on ceramic green sheets. Can be mentioned. The inventors have found that in these methods, when a photosensitive paste as described in Patent Document 1 is applied directly onto a ceramic green sheet to form a pattern, the line width at the bottom of the internal electrodes of each layer becomes narrower. It was found that there was a problem in that it was difficult to form high-definition internal wiring. This is because when a photosensitive paste coating film is formed on a ceramic green sheet, the solvent contained in the photosensitive paste dissolves the organic components contained in the ceramic green sheet, and the dissolved organic components are mixed into the photosensitive conductive paste.
- an object of the present invention is to provide a method for manufacturing a ceramic green sheet with a conductive pattern having a high-definition conductive pattern that suppresses the occurrence of wire breakage.
- the present invention mainly has the following configuration.
- (1) Containing conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) on a base material, and the content of solvent (e) is preparing a substrate with a photosensitive layer having a photosensitive layer of 5.0% by mass or less, and transferring the photosensitive layer from the substrate onto a ceramic green sheet (transfer step); A step of bringing an exposure mask into contact with the photosensitive layer and exposing it to light (exposure step A), and Step of developing the photosensitive layer after exposure to form a conductive pattern (development step)
- a ceramic green sheet with a conductive pattern that suppresses the occurrence of wire breakage and has a high-definition conductive pattern it is possible to obtain a ceramic green sheet with a conductive pattern that suppresses the occurrence of wire breakage and has a high-definition conductive pattern.
- FIG. 2 is a schematic diagram of a mask pattern of an exposure mask used in Examples.
- the ceramic green sheet with a conductive pattern in the present invention has a ceramic green sheet and a conductive pattern on a base material.
- the ceramic green sheet when used in an inductor, by laminating a plurality of layers and firing them, the ceramic green sheet forms an insulating layer and the conductive pattern forms an internal electrode.
- the method for manufacturing a ceramic green sheet with a conductive pattern of the present invention includes a transfer step or a lamination step, an exposure step, and a development step, which will be described later, in this order.
- the method is characterized in that a photosensitive layer containing a predetermined amount of solvent is laminated onto the ceramic green sheet through a transfer process or a lamination process. This suppresses the stickiness of the photosensitive layer and thinning of the bottom of the conductive pattern caused by the solvent (e), making it possible to form a high-definition pattern and suppressing wire breakage.
- high-temperature drying on the ceramic green sheet is not required, shrinkage of the ceramic green sheet due to heat can be suppressed and a high-definition pattern can be formed.
- the first aspect of the method for manufacturing a ceramic green sheet with a conductive pattern of the present invention is as follows: On the base material, conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) are contained, and the content of solvent (e) is 5.0.
- a step of bringing an exposure mask into contact with the photosensitive layer and exposing it to light exposure step A
- Step of developing the photosensitive layer after exposure to form a conductive pattern development step
- the transfer step since the photosensitive layer is transferred onto the ceramic green sheet, the photosensitive layer is exposed on the surface, and in the exposure step A, contact exposure in which the photosensitive layer and the exposure mask are brought into contact is possible. Therefore, a pattern with higher definition can be formed.
- a second aspect of the method for manufacturing a ceramic green sheet with a conductive pattern of the present invention is On the base material, conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) are contained, and the content of solvent (e) is 5.0.
- a process of preparing a base material with a photosensitive layer having a photosensitive layer of less than % by mass, and laminating the base material with a photosensitive layer on the ceramic green sheet so that the photosensitive layer is in contact with the ceramic green sheet (lamination process) , A step of bringing an exposure mask into contact with the base material of the photosensitive layer-attached base material to expose it to light (exposure step B), and Step of developing the photosensitive layer after exposure to form a conductive pattern (development step) in this order.
- exposure step B Step of developing the photosensitive layer after exposure to form a conductive pattern in this order.
- the lamination process since the base material with a photosensitive layer is laminated on the ceramic green sheet, the base material is present on the photosensitive layer, and in the exposure process B, the photosensitive layer is exposed through the base material. Since the photosensitive layer is protected by the base material, disconnection of the conductive pattern can be further suppressed.
- the base material with a photosensitive layer used in the present invention includes, for example, conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d), and solvent (e) on the base material. It can be obtained by applying a photosensitive paste containing the above by screen printing method and drying to form a photosensitive layer.
- Base Material examples include metal substrates, glass substrates, and plastic films.
- PET polyethylene terephthalate
- cycloolefin polymer polycarbonate
- polyimide polyimide
- aramid plastic films containing resins such as fluororesins, acrylic resins, and polyurethane resins are preferred, and films containing PET, cycloolefin polymers, and polycarbonates are more preferred.
- one or both sides of the plastic film be subjected to a mold release treatment using a silicone resin, a fluororesin, or the like.
- the thickness of the base material is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more.
- the thickness is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 75 ⁇ m or less.
- the conductive particles (a) in the present invention refer to particles having a specific resistance of 1.0 ⁇ 10 ⁇ 4 ⁇ m or less at 20° C., and have the function of imparting conductivity to a conductive pattern by firing.
- Examples of the conductive particles (a) include metals such as silver, gold, copper, platinum, palladium, tin, nickel, aluminum, tungsten, molybdenum, ruthenium, chromium, titanium, and indium, alloys thereof, carbon, and titanium nitride. Examples include particles such as. Two or more types of these may be contained. Among these, silver, copper, and gold particles are preferred from the viewpoint of conductivity, and silver particles are more preferred from the viewpoint of stability.
- Non-conductive particles (b) refer to insulating particles having a specific resistance of more than 1.0 ⁇ 10 ⁇ 4 ⁇ m at 20° C., and have the effect of suppressing shrinkage of the conductive pattern during firing.
- non-conductive particles (b) examples include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), magnesia (MgO), beryllia (BeO), mullite (3Al 2 O 3 .2SiO 2 ), and cordierite ( 5SiO2.2Al2O3.2MgO ), spinel ( MgO.Al2O3 ), forsterite ( 2MgO.SiO2 ) , anorthite ( CaO.Al2O3.2SiO2 ) , celsian ( BaO.Al2 ) O 3.2SiO 2 ), silica (SiO 2 ), barium titanate (BaTiO 3 , aluminum nitride (AlN), ferrite (garnet type: Y 3 Fe5O 12 system, spinel type: MeFe 2 O 4 system), “SiO 2 , Al 2 O 3 , CaO, B 2 O 3 , MgO, TiO 2 ,
- glass particles that further suppress firing defects are mentioned. From this point of view, particles of titania, alumina, silica, cordierite, mullite, spinel, barium titanate, and zirconia are preferred, and silica particles are more preferred.
- the D50 of the non-conductive particles (b) is preferably 5 ⁇ m or less, more preferably 0.1 ⁇ m or less, and even more preferably 0.05 ⁇ m or less, from the viewpoint of suppressing shrinkage of the conductive pattern during firing.
- the non-conductive particles (b) are added to water, subjected to ultrasonic treatment for 300 seconds, and then treated using Nanotrac Wave II-UZ251 (manufactured by Microtrac BEL). It can be determined by dynamic light scattering method.
- the content of the non-conductive particles (b) in the photosensitive paste is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.1% by mass or more, more preferably 0.2% by mass or more, from the viewpoint of suppressing shrinkage of the conductive pattern during firing. More preferably, the content is 4% by mass or more. On the other hand, from the viewpoint of electrical conductivity, the content of the non-conductive particles (b) is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 2% by mass or less.
- Alkali-soluble resin (c) refers to a resin having a carboxyl group and/or a hydroxyl group in its side chain, and serves as a binder resin for a photosensitive paste, and also has the function of forming a pattern by being dissolved during development.
- the alkali-soluble resin (c) is preferably an acrylic resin, and preferably a copolymer of an acrylic monomer having a carbon-carbon double bond and another monomer.
- acrylic monomer and other monomers having a carbon-carbon double bond include those exemplified as raw materials for the acrylic resin, which is an example of the alkali-soluble resin (b-1), in JP 2019-215446A. Can be mentioned.
- the alkali-soluble resin (c) preferably has a carbon-carbon double bond in the side chain and/or at the end of the molecule, which can improve the curing reaction rate during exposure.
- Examples of the structure having a carbon-carbon double bond include a vinyl group, an allyl group, an acrylic group, and a methacryl group. You may have two or more types of these.
- a method for introducing a carbon-carbon double bond into the alkali-soluble resin (c) for example, in the case of an acrylic resin, a glycidyl group or an isocyanate group is added to a mercapto group, an amino group, a hydroxyl group, or a carboxyl group in the acrylic resin. Examples include a method of reacting a group with a compound having a carbon-carbon double bond, acrylic acid chloride, methacrylic acid chloride, allyl chloride, and the like.
- Examples of compounds having a glycidyl group and a carbon-carbon double bond include glycidyl methacrylate, glycidyl acrylate, allyl glycidyl ether, glycidyl ethyl acrylate, crotonyl glycidyl ether, glycidyl crotonate, glycidyl isocrotonate, "cyclomer ( (registered trademark)" M100, A200 (manufactured by Daicel Chemical Industries, Ltd.), and the like.
- Examples of the compound having an isocyanate group and a carbon-carbon double bond include acryloyl isocyanate, methacryloyl isocyanate, acryloyl ethyl isocyanate, and methacryloyl ethyl isocyanate. Two or more types of these may be used.
- the alkali-soluble resin (c) contains a carboxyl group-containing resin that does not have an unsaturated double bond.
- carboxyl group-containing resins that do not have unsaturated double bonds include solid JONCRYL67 (glass transition temperature 73°C), JONCRYL678 (glass transition temperature 85°C), and JONCRYL611 (glass transition temperature) manufactured by BASF Japan Co., Ltd.
- JONCRYL693 glass transition temperature 84°C
- JONCRYL682 glass transition temperature 56°C
- JONCRYL690 glass transition temperature 102°C
- JONCRYL819 glass transition temperature 57°C
- JONCRYLJDX-C3000A glass transition temperature 65°C
- JONCRYLJDX-C3080 glass transition temperature 134°C
- JONCRYL52J dissolved in alkaline water glass transition temperature 56°C
- JONCRYLPDX-6157 glass transition temperature 84°C
- JONCRYL60J glass transition temperature 85°C
- JONCRYL63J glass transition temperature 73°C
- JONCRYL70J glass transition temperature 102°C
- JONCRYLJDX-6180 glass transition temperature 134°C
- JONCRYLHPD-196 glass transition temperature 85°C
- JONCRYLHPD-96J glass transition temperature 102°C
- the glass transition temperature of the carboxyl group-containing resin having no unsaturated double bonds is preferably 110°C or lower, more preferably 30°C to 70°C.
- the content of the alkali-soluble resin (c) in the photosensitive paste is preferably 1 to 10% by mass from the viewpoint of photolithography processability, viscosity characteristics, etc.
- Photosensitizer (d) examples include photopolymerization initiators and dissolution inhibitors. From the viewpoint of forming a thicker conductive pattern, a photopolymerization initiator is preferable.
- the photopolymerization initiator absorbs short wavelength light such as ultraviolet rays and decomposes, or generates radicals through a hydrogen abstraction reaction, thereby imparting photocurability and enabling pattern formation using negative photolithography.
- Examples of the photopolymerization initiator include those exemplified as the photoreaction initiator (d) in JP-A-2019-215446. From the viewpoint of photocurability, oxime-based photopolymerization initiators are preferred.
- the dissolution inhibitor increases the solubility of the exposed area in the developer and enables pattern formation by positive photolithography.
- the dissolution inhibitor is preferably one that generates an acid when exposed to the exposure energy used in the exposure step described below.
- Examples include diazodisulfone compounds, triphenylsulfonium compounds, and quinonediazide compounds.
- Examples of the diazodisulfone compound include bis(cyclohexylsulfonyl)diazomethane, bis(tertiarybutylsulfonyl)diazomethane, and bis(4-methylphenylsulfonyl)diazomethane.
- triphenylsulfonium compounds include diphenyl-4-methylphenylsulfonium trifluoromethanesulfonate, diphenyl-2,4,6-trimethylphenylsulfonium p-toluenesulfonate, diphenyl(4-methoxy
- examples include phenyl)sulfonium trifluoromethanesulfonate.
- Examples of quinonediazide compounds include those in which the sulfonic acid of quinonediazide is bonded to a polyhydroxy compound through an ester bond, those in which the sulfonic acid of quinonediazide is bonded to a polyamino compound through a sulfonamide bond, and those in which the sulfonic acid of quinonediazide is bonded to a polyhydroxy polyamino compound through an ester bond and/or or those with sulfonamide bonds. Two or more types of these may be contained.
- the content of the photosensitizer (d) in the photosensitive paste is preferably 0.1 to 2% by mass.
- the solvent (e) has the effect of adjusting the viscosity of the photosensitive paste.
- the boiling point of the solvent (e) under atmospheric pressure is 150°C or higher from the viewpoint of improving the applicability when continuously applying the photosensitive paste, improving the peelability from the substrate, and improving the transferability. is preferred.
- the boiling point of the solvent (e) under atmospheric pressure is preferably 300° C. or lower from the viewpoint of dry removability.
- solvents having a boiling point within the above range include ethylene glycol hexyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol n-butyl ether, diethylene glycol ethyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol methyl ether, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monomethyl ether, dipropylene glycol n-butyl ether, dipropylene glycol propyl ether, dipropylene glycol methyl-n-propyl ether, dipropylene glycol methyl ether, dipropylene glycol methyl ether acetate, Propylene glycol monomethyl ether acetate, dimethyl imidazolidinone, dimethyl sulfoxide, triethylene glycol dimethyl ether, propylene glyco
- the content of the solvent (e) in the photosensitive paste is preferably 5 to 40% by mass from the viewpoint of paste viscosity.
- the photosensitive paste in the present invention contains a leveling agent. Containing a leveling agent has the effect of suppressing repellency when applying the photosensitive paste onto a substrate and improving the releasability of the photosensitive layer.
- Leveling agents include, for example, anionic surfactants such as ammonium lauryl sulfate and polyoxyethylene alkyl ether sulfate triethanolamine, cationic surfactants such as stearylamine acetate, lauryl trimethylammonium chloride, lauryl dimethylamine oxide, and lauryl carboxylic acid.
- Main skeletons include amphoteric surfactants such as methylhydroxyethylimidazolium betaine, nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and sorbitan monostearate, polydimethylsiloxane, and polymethylalkylsiloxane.
- silicone surfactants examples include silicone surfactants, fluorine surfactants, and acrylic surfactants.
- the polymethylalkylsiloxane may be an aralkyl-modified polymethylalkylsiloxane.
- silicone surfactants having a main skeleton such as polydimethylsiloxane or acrylic surfactants are preferred.
- the photosensitive layer in the present invention contains polyether-modified polydimethylsiloxane as a silicone surfactant having a main skeleton such as polydimethylsiloxane.
- the photosensitive paste in the present invention contains a photopolymerizable compound having an unsaturated bond, a plasticizer, a leveling agent, a dispersant, a surfactant, a silane coupling agent, an antifoaming agent, as long as the desired properties thereof are not impaired. It may also contain additives such as pigments and dyes.
- the photosensitive paste in the present invention can be obtained, for example, by dissolving and/or dispersing the above-mentioned components (a) to (d) and optionally other additives in a solvent (e).
- examples of devices for dissolving and/or dispersing include dispersing machines such as three rollers and ball mills, and kneading machines.
- the dissolution and/or dispersion may be carried out at room temperature or by heating.
- a photosensitive paste is applied onto the substrate and dried to form a photosensitive layer.
- Examples of the coating method include a spray coating method, a roll coating method, a screen printing method, a coating method using a blade coater, a die coater, a calendar coater, a meniscus coater, a bar coater, and the like.
- the screen printing method is preferred from the viewpoints of suitability for thick film coating and continuous productivity.
- drying method examples include heating drying using a heating device such as an oven, a hot plate, and infrared rays, and vacuum drying.
- the heating temperature is preferably 40 to 100°C, and conditions such as the heating device, drying temperature, and drying time are preferably selected so that the solvent (e) in the photosensitive layer is 5.0% by mass or less.
- the content of the solvent (e) in the photosensitive layer is preferably 5.0% by mass or less.
- the content of the solvent (e) exceeds 5.0% by mass, it may become difficult to form a high-definition pattern due to the adhesiveness of the photosensitive layer and the thinning of the bottom of the conductive pattern. Additionally, wire breakage may occur more easily.
- the content of the solvent (e) is preferably 2.0% by mass or less, and can further improve line width uniformity.
- the content of the solvent (e) in the photosensitive layer is preferably 0.10% by mass or more, and can improve peelability from the base material and improve transferability.
- the thickness of the photosensitive layer in the substrate with a photosensitive layer is preferably greater than 10 ⁇ m, and disconnection of the conductive pattern can be suppressed.
- the thickness of the photosensitive layer is preferably 25 ⁇ m or less, and since exposure light can easily reach the deep part of the photosensitive layer in the exposure step described below, a more precise pattern can be formed.
- the above-described base material with a photosensitive layer is prepared, and the photosensitive layer is transferred from the base material onto a ceramic green sheet.
- the photosensitive layer may be peeled off from the base material and laminated on the ceramic green sheet, or the base material with the photosensitive layer is laminated on the ceramic green sheet so that the photosensitive layer is in contact with the ceramic green sheet, and then the base material is laminated on the ceramic green sheet.
- the material may be peeled off.
- it is preferable to transfer by pressure bonding and examples of the transfer device include a press, a roll laminator, and the like.
- the transfer temperature is preferably 20°C to 200°C.
- the transfer pressure is preferably 0.1 MPa to 2.0 MPa.
- the pressurization time is preferably 10 to 300 seconds. Examples of the atmosphere include air, nitrogen, and vacuum.
- the ceramic green sheet examples include sheets of insulating compositions containing glass, ceramic, inorganic powder such as glass ceramic, and binder resin. It is also preferable that the ceramic green sheet contains a photosensitive organic component, so that it can be imparted with photosensitivity. In this case, the insulating composition preferably contains a photosensitive organic component. Further, a sheet of the insulating composition may be provided on a substrate such as a plastic film or an optical resin plate, which are exemplified as the base material of the base material with a photosensitive layer.
- Ceramic green sheets can be obtained, for example, by applying an insulating composition prepared by dispersing the above-mentioned inorganic powder in a binder resin into a paste onto a substrate such as a plastic film or an optical resin plate.
- the coating method include the methods exemplified above as the photosensitive paste coating method. If the ceramic green sheet is photosensitive, the pattern may be formed by photolithography.
- the photosensitive organic component examples include the alkali-soluble resin (c), the photosensitizer (d), and the photopolymerizable compound having an unsaturated bond, which were exemplified as the raw material for the conductive paste described above.
- the photosensitive layer is exposed to light by bringing it into contact with an exposure mask.
- an exposure mask By eliminating the gap between the exposure mask and the photosensitive layer, it is possible to suppress the spread of the exposure light due to diffraction and the line thickening caused by the reflection of the exposure light between the surface layer of the photosensitive layer and the exposure mask, making it possible to form higher-definition patterns. can. Further, the pattern line width uniformity is improved.
- Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, and X-rays. In the present invention, the i-line (wavelength: 365 nm), h-line (wavelength: 405 nm), and g-line (wavelength: 436 nm) of a mercury lamp are preferred.
- the exposed photosensitive layer is developed to form a conductive pattern.
- an alkaline developer is preferable, and examples thereof include those exemplified as a developer when performing alkaline development in JP-A-2019-215446.
- a developing method for example, a method in which a ceramic green sheet having a photosensitive layer after exposure is left still, a method in which a developer is sprayed while being transported or rotated, a method in which a ceramic green sheet having a photosensitive layer after exposure is placed in a developer solution, Examples include a method of immersion, and a method of applying ultrasonic waves while immersing a ceramic green sheet having a photosensitive layer after exposure in a developer.
- the pattern obtained by development may be subjected to rinsing treatment using a rinsing liquid.
- a rinsing liquid examples include those exemplified as the rinsing liquid in JP-A No. 2019-215446.
- drying step a step of drying the remaining solvent and developer in the photosensitive layer.
- drying step By drying and removing the residual solvent and developer, the shrinkage rate can be reduced when producing the fired body described below.
- drying method include the methods exemplified as the drying method for forming the photosensitive layer.
- Exposure process B An exposure mask is brought into contact with the base material of the base material with a photosensitive layer, and the base material is exposed to light.
- the gap between the exposure mask and the photosensitive layer can be kept constant, improving the uniformity of the pattern line width. Furthermore, since the exposure mask and the photosensitive layer do not come into direct contact with each other, it is possible to suppress defects in the photosensitive layer and further suppress disconnections in the conductive pattern. Except for peeling off the base material after exposure, the rest is the same as (exposure step A) in the first embodiment.
- (Developing step) and (laminating step) are the same as in the first embodiment, and may further include a drying step.
- the ceramic green sheets with conductive patterns in the present invention can be used as a laminate by laminating a plurality of them. By stacking, the thickness of the conductive pattern can be increased.
- the number of laminated layers is preferably 2 to 30 layers. By setting the number of laminated layers to 30 or less, the influence of misalignment between layers can be suppressed.
- the first aspect of the method for manufacturing a laminate of the present invention is: forming a first conductive pattern by the method described above to obtain a ceramic green sheet with a conductive pattern; forming a ceramic green sheet on the conductive pattern side of the first conductive patterned ceramic green sheet, and It is preferable to have a step of forming a second conductive pattern by the method described above on the ceramic green sheet formed with the first conductive pattern.
- the second aspect of the method for manufacturing a laminate of the present invention is Obtaining a plurality of ceramic green sheets with conductive patterns by the method described above, and It is preferable to include a step of laminating and thermocompression bonding a plurality of ceramic green sheets with conductive patterns.
- the lamination method include a method of stacking ceramic green sheets using guide holes.
- the thermocompression bonding device include a hydraulic press machine. The thermocompression temperature is preferably 90 to 130°C, and the thermocompression pressure is preferably 5 to 20 MPa.
- the ceramic green sheet or laminate with a conductive pattern in the present invention can be fired and used as a fired product.
- the thickness of the fired body is preferably 2 ⁇ m or more from the viewpoint of suppressing wire breakage during firing. On the other hand, the thickness of the fired body is preferably 20 ⁇ m from the viewpoint of suppressing swelling during firing.
- the line width of the conductive pattern in the fired body is preferably 5 ⁇ m or more from the viewpoint of suppressing disconnection during firing. On the other hand, the line width of the conductive pattern in the fired body is preferably 40 ⁇ m or less from the viewpoint of improving the aspect ratio.
- the method for producing a fired body of the present invention includes: It is preferable to have a step of obtaining a ceramic green sheet with a conductive pattern or a laminate thereof by the above-described manufacturing method, and a step of firing the obtained ceramic green sheet with a conductive pattern or a laminate thereof.
- the firing method include a method in which heat treatment is performed at 300 to 600°C for 5 minutes to several hours, and then further heat treatment is performed at 850 to 900°C for 5 minutes to several hours.
- a first conductive pattern is formed by the method for manufacturing a ceramic green sheet with a conductive pattern of the present invention, and a ceramic green sheet with a conductive pattern is obtained.
- a ceramic green sheet is formed on the conductive pattern side of the first ceramic green sheet with a conductive pattern.
- a via hole is formed in the formed ceramic green sheet, and a conductor is embedded in the via hole to form an interlayer connection wiring.
- the via hole forming method include laser irradiation.
- vias can be formed with high precision by exposing and developing the sheet through a mask having a via shape.
- Examples of the method for forming the interlayer connection wiring include a method of embedding conductive paste using a screen printing method and drying it.
- Examples of the conductive paste include pastes containing copper, silver, and silver-palladium alloys. Subsequently, a second conductive pattern is formed on the ceramic green sheet with a conductive pattern formed thereon by the manufacturing method of the present invention. By repeating these steps, a laminate can be obtained. Further, a laminate can also be obtained by preparing a plurality of ceramic green sheets with conductive patterns according to the present invention, stacking them and thermocompression bonding them.
- a multilayer chip inductor can be obtained by dicing the obtained multilayer body into a desired chip size, firing it, applying terminal electrodes, and plating it. Examples of these methods include the method exemplified as a method for manufacturing a multilayer chip inductor in JP-A-2019-215446.
- Conductive particles (a) Ag particles (hereinafter referred to as Ag particles) having a particle size (D50) of 2.1 ⁇ m and a specific resistance of 1.6 ⁇ 10 ⁇ 8 ⁇ m.
- the particle size (D50) of the conductive particles was measured by a laser light scattering method using a particle size distribution measuring device (Microtrac HRA Model No. 9320-X100; manufactured by Nikkiso Co., Ltd.).
- Non-conductive particles (b) Particle size (D50) 12 nm, insulating silica powder "AEROSIL (registered trademark)" R972 (manufactured by Nippon Aerosil Co., Ltd.) (hereinafter referred to as Aerosil R972).
- the particle size (D50) of the non-conductive particles was determined by adding the non-conductive particles to water, performing ultrasonic treatment for 300 seconds, and then using a dynamic light scattering method using Nanotrac Wave II-UZ251 (manufactured by Microtrac BEL). It was measured.
- Alkali-soluble resin (c): c-1: Carboxyl groups are added by adding 40 moles of glycidyl methacrylate to 100 moles of carboxyl groups of a copolymer of methacrylic acid/methyl methacrylate/styrene 54/23/23 (mole ratio). A containing acrylic copolymer (c-1) was obtained. (Contains unsaturated double bonds, weight average molecular weight 30,000, glass transition temperature 110°C).
- c-2 JONCRYL690 (no unsaturated double bonds, polymerization average molecular weight 16,500, glass transition temperature 102°C; manufactured by BASF Japan Co., Ltd.).
- JONCRYL819 no unsaturated double bonds, polymerization average molecular weight 14,500, glass transition temperature 57°C; manufactured by BASF Japan Co., Ltd.).
- e-2 Propylene glycol monomethyl ether acetate (boiling point at atmospheric pressure: 146°C).
- Photosensitive monomer ester structure-containing urethane acrylate NK oligo UA-122P (viscosity 7.0 Pa ⁇ s, weight average molecular weight 1,100, manufactured by Shin Nakamura Chemical Co., Ltd.) (hereinafter referred to as UA-122P).
- Leveling agent “Disparon (registered trademark)” L-1980N (manufactured by Kusumoto Kasei Co., Ltd.) (hereinafter referred to as L-1980N).
- G-700 Floren G-700 (manufactured by Kyoeisha Chemical Co., Ltd.) (hereinafter referred to as G-700).
- the obtained composition was applied onto a PET film with a thickness of 100 ⁇ m and dried to produce a substrate with a ceramic green sheet.
- ⁇ Thickness of photosensitive layer> The thickness of the photosensitive layer prepared in each Example and Comparative Example was measured using a stylus-type step meter ("Surfcom (registered trademark)"1400; manufactured by Tokyo Seimitsu Co., Ltd.).
- thermocompression temperature was 50 to 130°C
- thermocompression pressure was 0.1 to 0.3MPa
- thermocompression time was 30s (fixed), from low temperature and low pressure conditions.
- a conductive pattern corresponding to an exposure mask opening width of 15 ⁇ m was cut in the line width direction, and a cross section of the pattern was examined using a scanning electron microscope (S2400). (manufactured by Hitachi, Ltd.) at a magnification of 3,000 times, the top width and bottom width of the conductive pattern were measured, and the difference between the top width and the bottom width was calculated.
- S2400 scanning electron microscope
- Example 1 ⁇ Preparation of photosensitive paste>
- 14.8g c-1, 2.0g N-1919, 60.0g e-1, 7.5g UA-122P, 0.4g L-1980N, 0.4g G -700 and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 85.1 g of a resin solution.
- the obtained resin solution, 248.1 g of Ag particles, and 1.6 g of Aerosil R972 were mixed and kneaded using three rollers (EXAKT M-50; manufactured by EXAKT) to form 334.8 g of photosensitive material.
- Got the paste In a 200mL clean bottle, 14.8g c-1, 2.0g N-1919, 60.0g e-1, 7.5g UA-122P, 0.4g L-1980N, 0.4g G -700 and mixed using a rotation-revolution vacuum mixer "Awatori Rentar
- the photosensitive paste obtained by the above method was applied by screen printing onto a PET substrate with a thickness of 50 ⁇ m, and dried at a temperature of 55° C. for 15 minutes to form a photosensitive layer with a thickness of 11 ⁇ m.
- a layered substrate was obtained.
- the content of solvent (e) in the photosensitive layer was 1.0% by mass.
- thermocompression temperature 100° C.
- thermocompression time 30 seconds
- thermocompression pressure 0.3 MPa
- the exposure mask used had thin lines in 1 ⁇ m increments with an opening width in the range of 5 to 40 ⁇ m. Further, as a sample for evaluating line width uniformity, an exposure mask having thin lines with the above-mentioned line widths was used in a total of 25 blocks, 5 blocks in each direction and 5 blocks in each direction. Further, as a sample for evaluating the disconnection probability, an exposure mask having the shape shown in FIG. 1 and having an opening with an opening width (L) of 40 ⁇ m and a length of 4.0 cm was used.
- the substrate having the exposed photosensitive layer was immersed in a 0.2% by mass Na 2 CO 3 solution, and then rinsed with ultrapure water to obtain a ceramic green sheet substrate with a conductive pattern.
- Table 1 shows the results evaluated by the method described above.
- Examples 2-3 Comparative Example 1
- Example 1 Manufacture of photosensitive layer-equipped substrate> was carried out in the same manner as in Example 1 except that the drying conditions were changed as shown in Table 1, and the solvent (e) content of the photosensitive layer was as shown in Table 1. Met.
- a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1. Table 1 shows the results evaluated by the method described above.
- Examples 4 to 6, Comparative Example 2 instead of the ⁇ transfer step>, a ⁇ lamination step> is performed in which the base material of the substrate with a photosensitive layer is not peeled off, and instead of ⁇ exposure step A>, an exposure mask is brought into contact with the base material of the substrate with a photosensitive layer, and the base material is removed after exposure. Ceramic green sheets with conductive patterns were obtained in the same manner as in Examples 1 to 3 and Comparative Example 1, except that ⁇ exposure step B> in which the material was peeled off was used. Table 1 shows the results evaluated by the method described above.
- Example 1 ⁇ Manufacture of a substrate with a photosensitive layer> was carried out in the same manner as in Example 1 except that the drying conditions were changed as shown in Table 1, and the solvent (e) content of the photosensitive layer was as shown in Table 1. Met. Using the obtained substrate with a photosensitive layer, a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1. Table 1 shows the results evaluated by the method described above.
- Example 1 ⁇ Manufacture of a substrate with a photosensitive layer> was carried out in the same manner as in Example 1 except that the drying conditions were changed as shown in Table 1, and the solvent (e) content of the photosensitive layer was as shown in Table 1. Met. Using the obtained substrate with a photosensitive layer, a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1. Table 1 shows the results evaluated by the method described above.
- Example 11-12 Example except that in ⁇ Preparation of photosensitive paste>, solvent e-2 was used instead of solvent e-1, and in ⁇ Preparation of substrate with photosensitive layer>, the drying conditions were changed as shown in Table 1.
- the solvent (e) content of the photosensitive layer was as shown in Table 1.
- Table 1 shows the results evaluated by the method described above.
- a ⁇ lamination step> is performed in which the base material of the substrate with a photosensitive layer is not peeled off, and instead of ⁇ exposure step A>, an exposure mask is brought into contact with the base material of the substrate with a photosensitive layer, and the base material is removed after exposure.
- Ceramic green sheets with conductive patterns were obtained in the same manner as in Examples 11 and 12, except that the material was peeled off in ⁇ Exposure Step B>. Table 1 shows the results evaluated by the method described above.
- a photosensitive paste was directly applied onto the ceramic green sheet of the ceramic green sheet-equipped substrate and dried at a temperature of 120° C. for 4 minutes to form a photosensitive layer with a thickness of 11 ⁇ m.
- the content of the solvent (e) in the photosensitive layer was as shown in Table 1.
- a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1 using the obtained base material of the substrate with a photosensitive layer. Table 1 shows the results evaluated by the method described above.
- Ceramic green sheets with conductive patterns were obtained in the same manner as in Examples 1 and 2, except that in the ⁇ exposure step>, exposure was carried out without contacting the exposure mask. Table 1 shows the results evaluated by the method described above.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Producing Shaped Articles From Materials (AREA)
Abstract
Provided is a method for producing a ceramic green sheet with a conductive pattern, the ceramic green sheet having a highly fine conductive pattern and the occurrence of disconnection therein being suppressed. This method for producing a ceramic green sheet with a conductive pattern involves the following steps in the stated order: a step (transferring step) for preparing a base material with a photosensitive layer, and transferring the photosensitive layer on a ceramic green sheet from above the base material, wherein the photosensitive layer contains (a) conductive particles, (b) non-conductive particles, (c) an alkali-soluble resin, (d) a photosensitizing agent, and (e) a solvent and is provided on the base material, and the content of the solvent (e) is 5.0% by mass or less; a step (exposing step A) for bringing the photosensitive layer into contact with an exposure mask and exposing same; and a step (developing step) for developing the photosensitive layer after exposure to form a conductive pattern.
Description
本発明は、導電パターン付きセラミックグリーンシートの製造方法に関する。
The present invention relates to a method for manufacturing a ceramic green sheet with a conductive pattern.
近年、電子部品の小型化・高性能化の要求に伴い、内部配線の高精細化、高アスペクト化が求められている。電子部品の一種であるインダクタは、セラミックからなる絶縁体の内部にコイル状の内部電極を有し、一般的に、セラミックからなる平面状の絶縁層上に巻き線状に内部電極を形成したものが、複数層積層されてなる。インダクタの高精細化のためには、内部電極の微細化が可能な感光性導電ペーストを用いることが有効であり、かかる感光性導電ペーストとしては、例えば、「無機粉末、光反応性官能基を有さず酸価が200~300mgKOH/gであるアルカリ可溶性樹脂、反応性化合物および光反応開始剤を含む」感光性ペースト(例えば、特許文献1参照)が提案されている。
In recent years, with the demand for smaller size and higher performance of electronic components, higher definition and higher aspect ratio of internal wiring are required. An inductor, which is a type of electronic component, has a coil-shaped internal electrode inside an insulator made of ceramic, and generally the internal electrode is formed in the form of a wire wound on a flat insulating layer made of ceramic. is formed by laminating multiple layers. In order to improve the definition of inductors, it is effective to use photosensitive conductive pastes that can miniaturize internal electrodes. A photosensitive paste (for example, see Patent Document 1) has been proposed that contains an alkali-soluble resin having an acid value of 200 to 300 mgKOH/g, a reactive compound, and a photoreaction initiator.
インダクタの製造方法としては、例えば、セラミックグリーンシート上に内部電極を形成し、これらを複数層積層する方法や、セラミックグリーンシート上に、内部電極、セラミックグリーンシートを交互に繰り返し形成する方法などが挙げられる。本発明者らの検討により、これらの方法において、特許文献1に記載されるような感光性ペーストをセラミックグリーンシート上へ直接塗布してパターン形成すると、各層の内部電極において底部の線幅が細くなり、高精細な内部配線の形成が困難である課題があることが分かった。これは、セラミックグリーンシート上に感光性ペースト塗膜を形成する際に、感光性ペーストに含まれる溶剤がセラミックグリーンシートに含まれる有機成分を溶解し、溶解した有機成分が感光性導電ペーストに混入することなどが原因であると考えられる。また、感光性ペースト塗膜表面は、残存溶剤により粘着性を有することから、露光時に露光マスクを接触させることができず、高精細な内部配線の形成が困難である課題があった。さらに、溶剤量が多い場合には、セラミックグリーンシート表層を浸食し、内部電極の形成が困難となり、微小欠陥などにより断線が生じやすくなる課題があった。一方、溶剤の影響を抑制するためには、セラミックグリーンシート上に感光性ペースト塗膜を形成し、速やかに高温で溶剤を乾燥除去することが考えられるが、セラミックグリーンシート上で感光性ペースト塗膜を高温乾燥すると、熱によりセラミックグリーンシートが収縮し、高精細な内部配線の形成が困難である課題があった。
Inductor manufacturing methods include, for example, forming internal electrodes on ceramic green sheets and stacking them in multiple layers, and forming internal electrodes and ceramic green sheets alternately and repeatedly on ceramic green sheets. Can be mentioned. The inventors have found that in these methods, when a photosensitive paste as described in Patent Document 1 is applied directly onto a ceramic green sheet to form a pattern, the line width at the bottom of the internal electrodes of each layer becomes narrower. It was found that there was a problem in that it was difficult to form high-definition internal wiring. This is because when a photosensitive paste coating film is formed on a ceramic green sheet, the solvent contained in the photosensitive paste dissolves the organic components contained in the ceramic green sheet, and the dissolved organic components are mixed into the photosensitive conductive paste. This is thought to be caused by the following. In addition, since the surface of the photosensitive paste coating film is sticky due to residual solvent, it is impossible to contact it with an exposure mask during exposure, making it difficult to form high-definition internal wiring. Furthermore, when the amount of solvent is large, the surface layer of the ceramic green sheet is eroded, making it difficult to form internal electrodes, and causing wire breakage to occur easily due to minute defects. On the other hand, in order to suppress the influence of solvents, it is possible to form a photosensitive paste coating on a ceramic green sheet and quickly dry and remove the solvent at a high temperature. When the film is dried at high temperatures, the heat causes the ceramic green sheet to shrink, making it difficult to form high-definition internal wiring.
そこで、本発明は、断線の発生を抑制した、高精細な導電パターンを有する導電パターン付きセラミックグリーンシートの製造方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for manufacturing a ceramic green sheet with a conductive pattern having a high-definition conductive pattern that suppresses the occurrence of wire breakage.
上記課題を解決するため、本発明は、主として以下の構成を有する。
(1)基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有し、溶剤(e)の含有量が5.0質量%以下である感光性層を有する感光性層付き基材を準備し、感光性層を基材上からセラミックグリーンシート上に転写する工程(転写工程)、
感光性層に露光マスクを接触させて露光する工程(露光工程A)、および、
露光後の感光性層を現像して導電パターンを形成する工程(現像工程)
をこの順に有する、導電パターン付きセラミックグリーンシートの製造方法。
(2)基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有し、溶剤(e)の含有量が5.0質量%以下である感光性層を有する感光性層付き基材を準備し、感光性層がセラミックグリーンシートに接するように感光性層付き基材をセラミックグリーンシート上に積層する工程(積層工程)、
感光性層付き基材の基材に露光マスクを接触させて露光する工程(露光工程B)、および、
露光後の感光性層を現像して導電パターンを形成する工程(現像工程)
をこの順に有する、導電パターン付きセラミックグリーンシートの製造方法。
(3)感光性層における溶剤(e)の含有量が0.1質量%以上である、(1)または(2)記載の導電パターン付きセラミックグリーンシートの製造方法。
(4)前記アルカリ可溶性樹脂(c)が不飽和二重結合を有さないカルボキシル基含有樹脂を含み、ガラス転移温度が110℃以下である、(1)~(3)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(5)前記アルカリ可溶性樹脂(c)が、ガラス転移温度が30℃以上70℃以下である、(4)記載の導電パターン付きセラミックグリーンシートの製造方法。
(6)感光性層にポリエーテル変性ポリジメチルシロキサンを含む、(1)~(5)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(7)基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有する感光性ペーストをスクリーン印刷法により塗布し、乾燥して感光性層を形成することにより前記感光性層付き基材を得る工程をさらに有する、(1)~(6)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(8)溶剤(e)として、大気圧下における沸点が150~300℃の溶剤を含む、(1)~(7)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(9)前記感光性層の厚みが10μmを超え25μm以下である、(1)~(8)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(10)前記セラミックグリーンシートに感光性有機成分を含む、(1)~(9)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(11)導電パターン付きセラミックグリーンシートを複数積層してなる積層体の製造方法であって、
(1)~(10)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法により、第1の導電パターンを形成し、導電パターン付きセラミックグリーンシートを得る工程、
第1の導電パターン付きセラミックグリーンシートの導電パターン側にセラミックグリーンシートを形成する工程、および、
第1の導電パターン付きセラミックグリーンシートを形成したセラミックグリーンシート上に、(1)~(10)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法により、第2の導電パターンを形成する工程
を有する、積層体の製造方法。
(12)導電パターン付きセラミックグリーンシートを複数積層してなる積層体の製造方法であって、
(1)~(10)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法により、複数の導電パターン付きセラミックグリーンシートを得る工程、および、
複数の導電パターン付きセラミックグリーンシートを積層して熱圧着する工程
を有する、積層体の製造方法。
(13)(1)~(10)のいずれか記載の製造方法により導電パターン付きセラミックグリーンシートを得る工程、および、得られた導電パターン付きセラミックグリーンシートを焼成する工程を有する、焼成体の製造方法。 In order to solve the above problems, the present invention mainly has the following configuration.
(1) Containing conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) on a base material, and the content of solvent (e) is preparing a substrate with a photosensitive layer having a photosensitive layer of 5.0% by mass or less, and transferring the photosensitive layer from the substrate onto a ceramic green sheet (transfer step);
A step of bringing an exposure mask into contact with the photosensitive layer and exposing it to light (exposure step A), and
Step of developing the photosensitive layer after exposure to form a conductive pattern (development step)
A method for manufacturing a ceramic green sheet with a conductive pattern, having the following in this order.
(2) Containing conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) on the base material, and the content of solvent (e) is A step of preparing a substrate with a photosensitive layer having a photosensitive layer of 5.0% by mass or less, and laminating the substrate with a photosensitive layer on the ceramic green sheet so that the photosensitive layer is in contact with the ceramic green sheet ( lamination process),
A step of bringing an exposure mask into contact with the base material of the photosensitive layer-attached base material to expose it to light (exposure step B), and
Step of developing the photosensitive layer after exposure to form a conductive pattern (development step)
A method for manufacturing a ceramic green sheet with a conductive pattern, having the following in this order.
(3) The method for producing a ceramic green sheet with a conductive pattern according to (1) or (2), wherein the content of the solvent (e) in the photosensitive layer is 0.1% by mass or more.
(4) The conductive material according to any one of (1) to (3), wherein the alkali-soluble resin (c) contains a carboxyl group-containing resin having no unsaturated double bonds, and has a glass transition temperature of 110° C. or lower. Method for manufacturing patterned ceramic green sheets.
(5) The method for producing a ceramic green sheet with a conductive pattern according to (4), wherein the alkali-soluble resin (c) has a glass transition temperature of 30°C or more and 70°C or less.
(6) The method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (5), wherein the photosensitive layer contains polyether-modified polydimethylsiloxane.
(7) Apply a photosensitive paste containing conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) onto the base material by screen printing method. The method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (6), further comprising the step of drying to form a photosensitive layer to obtain the photosensitive layer-coated substrate.
(8) The method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (7), wherein the solvent (e) contains a solvent having a boiling point of 150 to 300° C. under atmospheric pressure.
(9) The method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (8), wherein the photosensitive layer has a thickness of more than 10 μm and less than 25 μm.
(10) The method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (9), wherein the ceramic green sheet contains a photosensitive organic component.
(11) A method for manufacturing a laminate formed by laminating a plurality of ceramic green sheets with conductive patterns, the method comprising:
A step of forming a first conductive pattern by the method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (10) to obtain a ceramic green sheet with a conductive pattern;
forming a ceramic green sheet on the conductive pattern side of the first conductive patterned ceramic green sheet, and
A step of forming a second conductive pattern on the ceramic green sheet on which the first conductive patterned ceramic green sheet has been formed, by the method for manufacturing a ceramic green sheet with a conductive pattern according to any one of (1) to (10). A method for manufacturing a laminate, comprising:
(12) A method for manufacturing a laminate formed by laminating a plurality of ceramic green sheets with conductive patterns, the method comprising:
A step of obtaining a plurality of ceramic green sheets with conductive patterns by the method for producing ceramic green sheets with conductive patterns according to any one of (1) to (10), and
A method for manufacturing a laminate, which includes a step of laminating and thermocompression bonding a plurality of ceramic green sheets with conductive patterns.
(13) Production of a fired body, comprising a step of obtaining a ceramic green sheet with a conductive pattern by the manufacturing method according to any one of (1) to (10), and a step of firing the obtained ceramic green sheet with a conductive pattern. Method.
(1)基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有し、溶剤(e)の含有量が5.0質量%以下である感光性層を有する感光性層付き基材を準備し、感光性層を基材上からセラミックグリーンシート上に転写する工程(転写工程)、
感光性層に露光マスクを接触させて露光する工程(露光工程A)、および、
露光後の感光性層を現像して導電パターンを形成する工程(現像工程)
をこの順に有する、導電パターン付きセラミックグリーンシートの製造方法。
(2)基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有し、溶剤(e)の含有量が5.0質量%以下である感光性層を有する感光性層付き基材を準備し、感光性層がセラミックグリーンシートに接するように感光性層付き基材をセラミックグリーンシート上に積層する工程(積層工程)、
感光性層付き基材の基材に露光マスクを接触させて露光する工程(露光工程B)、および、
露光後の感光性層を現像して導電パターンを形成する工程(現像工程)
をこの順に有する、導電パターン付きセラミックグリーンシートの製造方法。
(3)感光性層における溶剤(e)の含有量が0.1質量%以上である、(1)または(2)記載の導電パターン付きセラミックグリーンシートの製造方法。
(4)前記アルカリ可溶性樹脂(c)が不飽和二重結合を有さないカルボキシル基含有樹脂を含み、ガラス転移温度が110℃以下である、(1)~(3)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(5)前記アルカリ可溶性樹脂(c)が、ガラス転移温度が30℃以上70℃以下である、(4)記載の導電パターン付きセラミックグリーンシートの製造方法。
(6)感光性層にポリエーテル変性ポリジメチルシロキサンを含む、(1)~(5)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(7)基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有する感光性ペーストをスクリーン印刷法により塗布し、乾燥して感光性層を形成することにより前記感光性層付き基材を得る工程をさらに有する、(1)~(6)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(8)溶剤(e)として、大気圧下における沸点が150~300℃の溶剤を含む、(1)~(7)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(9)前記感光性層の厚みが10μmを超え25μm以下である、(1)~(8)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(10)前記セラミックグリーンシートに感光性有機成分を含む、(1)~(9)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法。
(11)導電パターン付きセラミックグリーンシートを複数積層してなる積層体の製造方法であって、
(1)~(10)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法により、第1の導電パターンを形成し、導電パターン付きセラミックグリーンシートを得る工程、
第1の導電パターン付きセラミックグリーンシートの導電パターン側にセラミックグリーンシートを形成する工程、および、
第1の導電パターン付きセラミックグリーンシートを形成したセラミックグリーンシート上に、(1)~(10)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法により、第2の導電パターンを形成する工程
を有する、積層体の製造方法。
(12)導電パターン付きセラミックグリーンシートを複数積層してなる積層体の製造方法であって、
(1)~(10)のいずれか記載の導電パターン付きセラミックグリーンシートの製造方法により、複数の導電パターン付きセラミックグリーンシートを得る工程、および、
複数の導電パターン付きセラミックグリーンシートを積層して熱圧着する工程
を有する、積層体の製造方法。
(13)(1)~(10)のいずれか記載の製造方法により導電パターン付きセラミックグリーンシートを得る工程、および、得られた導電パターン付きセラミックグリーンシートを焼成する工程を有する、焼成体の製造方法。 In order to solve the above problems, the present invention mainly has the following configuration.
(1) Containing conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) on a base material, and the content of solvent (e) is preparing a substrate with a photosensitive layer having a photosensitive layer of 5.0% by mass or less, and transferring the photosensitive layer from the substrate onto a ceramic green sheet (transfer step);
A step of bringing an exposure mask into contact with the photosensitive layer and exposing it to light (exposure step A), and
Step of developing the photosensitive layer after exposure to form a conductive pattern (development step)
A method for manufacturing a ceramic green sheet with a conductive pattern, having the following in this order.
(2) Containing conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) on the base material, and the content of solvent (e) is A step of preparing a substrate with a photosensitive layer having a photosensitive layer of 5.0% by mass or less, and laminating the substrate with a photosensitive layer on the ceramic green sheet so that the photosensitive layer is in contact with the ceramic green sheet ( lamination process),
A step of bringing an exposure mask into contact with the base material of the photosensitive layer-attached base material to expose it to light (exposure step B), and
Step of developing the photosensitive layer after exposure to form a conductive pattern (development step)
A method for manufacturing a ceramic green sheet with a conductive pattern, having the following in this order.
(3) The method for producing a ceramic green sheet with a conductive pattern according to (1) or (2), wherein the content of the solvent (e) in the photosensitive layer is 0.1% by mass or more.
(4) The conductive material according to any one of (1) to (3), wherein the alkali-soluble resin (c) contains a carboxyl group-containing resin having no unsaturated double bonds, and has a glass transition temperature of 110° C. or lower. Method for manufacturing patterned ceramic green sheets.
(5) The method for producing a ceramic green sheet with a conductive pattern according to (4), wherein the alkali-soluble resin (c) has a glass transition temperature of 30°C or more and 70°C or less.
(6) The method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (5), wherein the photosensitive layer contains polyether-modified polydimethylsiloxane.
(7) Apply a photosensitive paste containing conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) onto the base material by screen printing method. The method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (6), further comprising the step of drying to form a photosensitive layer to obtain the photosensitive layer-coated substrate.
(8) The method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (7), wherein the solvent (e) contains a solvent having a boiling point of 150 to 300° C. under atmospheric pressure.
(9) The method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (8), wherein the photosensitive layer has a thickness of more than 10 μm and less than 25 μm.
(10) The method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (9), wherein the ceramic green sheet contains a photosensitive organic component.
(11) A method for manufacturing a laminate formed by laminating a plurality of ceramic green sheets with conductive patterns, the method comprising:
A step of forming a first conductive pattern by the method for producing a ceramic green sheet with a conductive pattern according to any one of (1) to (10) to obtain a ceramic green sheet with a conductive pattern;
forming a ceramic green sheet on the conductive pattern side of the first conductive patterned ceramic green sheet, and
A step of forming a second conductive pattern on the ceramic green sheet on which the first conductive patterned ceramic green sheet has been formed, by the method for manufacturing a ceramic green sheet with a conductive pattern according to any one of (1) to (10). A method for manufacturing a laminate, comprising:
(12) A method for manufacturing a laminate formed by laminating a plurality of ceramic green sheets with conductive patterns, the method comprising:
A step of obtaining a plurality of ceramic green sheets with conductive patterns by the method for producing ceramic green sheets with conductive patterns according to any one of (1) to (10), and
A method for manufacturing a laminate, which includes a step of laminating and thermocompression bonding a plurality of ceramic green sheets with conductive patterns.
(13) Production of a fired body, comprising a step of obtaining a ceramic green sheet with a conductive pattern by the manufacturing method according to any one of (1) to (10), and a step of firing the obtained ceramic green sheet with a conductive pattern. Method.
本発明によれば、断線の発生を抑制した、高精細な導電パターンを有する導電パターン付きセラミックグリーンシートを得ることができる。
According to the present invention, it is possible to obtain a ceramic green sheet with a conductive pattern that suppresses the occurrence of wire breakage and has a high-definition conductive pattern.
本発明における導電パターン付きセラミックグリーンシートは、基材上に、セラミックグリーンシートおよび導電パターンを有する。例えば、インダクタに用いる場合には、これを複数層積層し、焼成することにより、セラミックグリーンシートは絶縁層を、導電パターンは内部電極を構成する。
The ceramic green sheet with a conductive pattern in the present invention has a ceramic green sheet and a conductive pattern on a base material. For example, when used in an inductor, by laminating a plurality of layers and firing them, the ceramic green sheet forms an insulating layer and the conductive pattern forms an internal electrode.
本発明の導電パターン付きセラミックグリーンシートの製造方法は、後述する転写工程または積層工程、露光工程、現像工程をこの順に有する。感光性ペーストをセラミックグリーンシート上へ直接塗布するのではなく、予め溶剤量を所定の範囲にした感光性層を、転写工程または積層工程によりセラミックグリーンシート上に積層することを特徴とする。これにより、溶剤(e)に起因する感光性層の粘着性や導電パターン底部の細線化を抑制し、高精細なパターンを形成することができ、断線を抑制することができる。また、セラミックグリーンシート上における高温乾燥を要しないことから、熱によるセラミックグリーンシートの収縮を抑制し、高精細なパターンを形成することができる。
The method for manufacturing a ceramic green sheet with a conductive pattern of the present invention includes a transfer step or a lamination step, an exposure step, and a development step, which will be described later, in this order. Rather than applying a photosensitive paste directly onto the ceramic green sheet, the method is characterized in that a photosensitive layer containing a predetermined amount of solvent is laminated onto the ceramic green sheet through a transfer process or a lamination process. This suppresses the stickiness of the photosensitive layer and thinning of the bottom of the conductive pattern caused by the solvent (e), making it possible to form a high-definition pattern and suppressing wire breakage. Furthermore, since high-temperature drying on the ceramic green sheet is not required, shrinkage of the ceramic green sheet due to heat can be suppressed and a high-definition pattern can be formed.
本発明の導電パターン付きセラミックグリーンシートの製造方法の第一の態様は、
基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有し、溶剤(e)の含有量が5.0質量%以下である感光性層を有する感光性層付き基材を準備し、感光性層を基材上からセラミックグリーンシート上に転写する工程(転写工程)、
感光性層に露光マスクを接触させて露光する工程(露光工程A)、および、
露光後の感光性層を現像して導電パターンを形成する工程(現像工程)
をこの順に有する。転写工程において、感光性層をセラミックグリーンシート上に転写するため、表面には感光性層が露出しており、露光工程Aにおいて感光性層と露光マスクを接触させるコンタクト露光が可能である。このため、より高精細なパターンを形成することができる。 The first aspect of the method for manufacturing a ceramic green sheet with a conductive pattern of the present invention is as follows:
On the base material, conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) are contained, and the content of solvent (e) is 5.0. A step of preparing a base material with a photosensitive layer having a photosensitive layer of not more than % by mass, and transferring the photosensitive layer from the base material onto a ceramic green sheet (transfer step),
A step of bringing an exposure mask into contact with the photosensitive layer and exposing it to light (exposure step A), and
Step of developing the photosensitive layer after exposure to form a conductive pattern (development step)
in this order. In the transfer step, since the photosensitive layer is transferred onto the ceramic green sheet, the photosensitive layer is exposed on the surface, and in the exposure step A, contact exposure in which the photosensitive layer and the exposure mask are brought into contact is possible. Therefore, a pattern with higher definition can be formed.
基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有し、溶剤(e)の含有量が5.0質量%以下である感光性層を有する感光性層付き基材を準備し、感光性層を基材上からセラミックグリーンシート上に転写する工程(転写工程)、
感光性層に露光マスクを接触させて露光する工程(露光工程A)、および、
露光後の感光性層を現像して導電パターンを形成する工程(現像工程)
をこの順に有する。転写工程において、感光性層をセラミックグリーンシート上に転写するため、表面には感光性層が露出しており、露光工程Aにおいて感光性層と露光マスクを接触させるコンタクト露光が可能である。このため、より高精細なパターンを形成することができる。 The first aspect of the method for manufacturing a ceramic green sheet with a conductive pattern of the present invention is as follows:
On the base material, conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) are contained, and the content of solvent (e) is 5.0. A step of preparing a base material with a photosensitive layer having a photosensitive layer of not more than % by mass, and transferring the photosensitive layer from the base material onto a ceramic green sheet (transfer step),
A step of bringing an exposure mask into contact with the photosensitive layer and exposing it to light (exposure step A), and
Step of developing the photosensitive layer after exposure to form a conductive pattern (development step)
in this order. In the transfer step, since the photosensitive layer is transferred onto the ceramic green sheet, the photosensitive layer is exposed on the surface, and in the exposure step A, contact exposure in which the photosensitive layer and the exposure mask are brought into contact is possible. Therefore, a pattern with higher definition can be formed.
本発明の導電パターン付きセラミックグリーンシートの製造方法の第二の態様は、
基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有し、溶剤(e)の含有量が5.0質量%以下である感光性層を有する感光性層付き基材を準備し、感光性層がセラミックグリーンシートに接するように感光性層付き基材をセラミックグリーンシート上に積層する工程(積層工程)、
感光性層付き基材の基材に露光マスクを接触させて露光する工程(露光工程B)、および、
露光後の感光性層を現像して導電パターンを形成する工程(現像工程)
をこの順に有する。積層工程において、感光性層付き基材をセラミックグリーンシート上に積層するため、感光性層上には基材が存在し、露光工程Bにおいて基材を介して感光性層を露光する。基材により感光性層が保護されることから、導電パターンの断線をより抑制することができる。 A second aspect of the method for manufacturing a ceramic green sheet with a conductive pattern of the present invention is
On the base material, conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) are contained, and the content of solvent (e) is 5.0. A process of preparing a base material with a photosensitive layer having a photosensitive layer of less than % by mass, and laminating the base material with a photosensitive layer on the ceramic green sheet so that the photosensitive layer is in contact with the ceramic green sheet (lamination process) ,
A step of bringing an exposure mask into contact with the base material of the photosensitive layer-attached base material to expose it to light (exposure step B), and
Step of developing the photosensitive layer after exposure to form a conductive pattern (development step)
in this order. In the lamination process, since the base material with a photosensitive layer is laminated on the ceramic green sheet, the base material is present on the photosensitive layer, and in the exposure process B, the photosensitive layer is exposed through the base material. Since the photosensitive layer is protected by the base material, disconnection of the conductive pattern can be further suppressed.
基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有し、溶剤(e)の含有量が5.0質量%以下である感光性層を有する感光性層付き基材を準備し、感光性層がセラミックグリーンシートに接するように感光性層付き基材をセラミックグリーンシート上に積層する工程(積層工程)、
感光性層付き基材の基材に露光マスクを接触させて露光する工程(露光工程B)、および、
露光後の感光性層を現像して導電パターンを形成する工程(現像工程)
をこの順に有する。積層工程において、感光性層付き基材をセラミックグリーンシート上に積層するため、感光性層上には基材が存在し、露光工程Bにおいて基材を介して感光性層を露光する。基材により感光性層が保護されることから、導電パターンの断線をより抑制することができる。 A second aspect of the method for manufacturing a ceramic green sheet with a conductive pattern of the present invention is
On the base material, conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) are contained, and the content of solvent (e) is 5.0. A process of preparing a base material with a photosensitive layer having a photosensitive layer of less than % by mass, and laminating the base material with a photosensitive layer on the ceramic green sheet so that the photosensitive layer is in contact with the ceramic green sheet (lamination process) ,
A step of bringing an exposure mask into contact with the base material of the photosensitive layer-attached base material to expose it to light (exposure step B), and
Step of developing the photosensitive layer after exposure to form a conductive pattern (development step)
in this order. In the lamination process, since the base material with a photosensitive layer is laminated on the ceramic green sheet, the base material is present on the photosensitive layer, and in the exposure process B, the photosensitive layer is exposed through the base material. Since the photosensitive layer is protected by the base material, disconnection of the conductive pattern can be further suppressed.
本発明に用いられる感光性層付き基材は、例えば、基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有する感光性ペーストをスクリーン印刷法により塗布し、乾燥して感光性層を形成することにより得ることができる。
The base material with a photosensitive layer used in the present invention includes, for example, conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d), and solvent (e) on the base material. It can be obtained by applying a photosensitive paste containing the above by screen printing method and drying to form a photosensitive layer.
基材
基材としては、例えば、金属基板、ガラス基板、プラスチックフィルムなどが挙げられる。これらの中でも、感光性層の剥離性や、第二の態様に用いる場合の露光工程Bにおける露光光の光透過性の観点から、ポリエチレンテレフタレート(PET)、シクロオレフィンポリマー、ポリカーボネート、ポリイミド、アラミド、フッ素樹脂、アクリル系樹脂、ポリウレタン系樹脂などの樹脂を含むプラスチックフィルムが好ましく、PET、シクロオレフィンポリマー、ポリカーボネートを含むフィルムがより好ましい。感光性層の剥離性を向上させる観点から、プラスチックフィルムの片面または両面に、シリコーン樹脂、フッ素系樹脂等による離型処理が施されていることが好ましい。 Base Material Examples of the base material include metal substrates, glass substrates, and plastic films. Among these, polyethylene terephthalate (PET), cycloolefin polymer, polycarbonate, polyimide, aramid, Plastic films containing resins such as fluororesins, acrylic resins, and polyurethane resins are preferred, and films containing PET, cycloolefin polymers, and polycarbonates are more preferred. From the viewpoint of improving the releasability of the photosensitive layer, it is preferable that one or both sides of the plastic film be subjected to a mold release treatment using a silicone resin, a fluororesin, or the like.
基材としては、例えば、金属基板、ガラス基板、プラスチックフィルムなどが挙げられる。これらの中でも、感光性層の剥離性や、第二の態様に用いる場合の露光工程Bにおける露光光の光透過性の観点から、ポリエチレンテレフタレート(PET)、シクロオレフィンポリマー、ポリカーボネート、ポリイミド、アラミド、フッ素樹脂、アクリル系樹脂、ポリウレタン系樹脂などの樹脂を含むプラスチックフィルムが好ましく、PET、シクロオレフィンポリマー、ポリカーボネートを含むフィルムがより好ましい。感光性層の剥離性を向上させる観点から、プラスチックフィルムの片面または両面に、シリコーン樹脂、フッ素系樹脂等による離型処理が施されていることが好ましい。 Base Material Examples of the base material include metal substrates, glass substrates, and plastic films. Among these, polyethylene terephthalate (PET), cycloolefin polymer, polycarbonate, polyimide, aramid, Plastic films containing resins such as fluororesins, acrylic resins, and polyurethane resins are preferred, and films containing PET, cycloolefin polymers, and polycarbonates are more preferred. From the viewpoint of improving the releasability of the photosensitive layer, it is preferable that one or both sides of the plastic film be subjected to a mold release treatment using a silicone resin, a fluororesin, or the like.
基材の厚みは、取扱い性の観点から、10μm以上が好ましく、20μm以上がより好ましい。一方、基材の厚みや、転写工程または積層工程におけるセラミックグリーンシートへの追従性や,第二の態様に用いる場合の露光工程Bにおける露光マスクと感光性層とのギャップを小さくする観点から、200μm以下が好ましく、100μm以下がより好ましく、75μm以下がさらに好ましい。
From the viewpoint of handleability, the thickness of the base material is preferably 10 μm or more, more preferably 20 μm or more. On the other hand, from the viewpoint of the thickness of the base material, followability to the ceramic green sheet in the transfer process or lamination process, and reducing the gap between the exposure mask and the photosensitive layer in the exposure process B when used in the second embodiment, The thickness is preferably 200 μm or less, more preferably 100 μm or less, and even more preferably 75 μm or less.
導電粒子(a)
本発明における導電粒子(a)とは、20℃における比抵抗が1.0×10-4Ω・m以下の粒子を言い、焼成により導電パターンに導電性を付与する作用を有する。導電粒子(a)としては、例えば、銀、金、銅、白金、パラジウム、スズ、ニッケル、アルミニウム、タングステン、モリブデン、ルテニウム、クロム、チタン、インジウムなどの金属や、これらの合金、カーボン、窒化チタンなどの粒子が挙げられる。これらを2種以上含有してもよい。これらの中でも、導電性の観点から、銀、銅、金の粒子が好ましく、安定性の観点から、銀粒子がより好ましい。 Conductive particles (a)
The conductive particles (a) in the present invention refer to particles having a specific resistance of 1.0×10 −4 Ω·m or less at 20° C., and have the function of imparting conductivity to a conductive pattern by firing. Examples of the conductive particles (a) include metals such as silver, gold, copper, platinum, palladium, tin, nickel, aluminum, tungsten, molybdenum, ruthenium, chromium, titanium, and indium, alloys thereof, carbon, and titanium nitride. Examples include particles such as. Two or more types of these may be contained. Among these, silver, copper, and gold particles are preferred from the viewpoint of conductivity, and silver particles are more preferred from the viewpoint of stability.
本発明における導電粒子(a)とは、20℃における比抵抗が1.0×10-4Ω・m以下の粒子を言い、焼成により導電パターンに導電性を付与する作用を有する。導電粒子(a)としては、例えば、銀、金、銅、白金、パラジウム、スズ、ニッケル、アルミニウム、タングステン、モリブデン、ルテニウム、クロム、チタン、インジウムなどの金属や、これらの合金、カーボン、窒化チタンなどの粒子が挙げられる。これらを2種以上含有してもよい。これらの中でも、導電性の観点から、銀、銅、金の粒子が好ましく、安定性の観点から、銀粒子がより好ましい。 Conductive particles (a)
The conductive particles (a) in the present invention refer to particles having a specific resistance of 1.0×10 −4 Ω·m or less at 20° C., and have the function of imparting conductivity to a conductive pattern by firing. Examples of the conductive particles (a) include metals such as silver, gold, copper, platinum, palladium, tin, nickel, aluminum, tungsten, molybdenum, ruthenium, chromium, titanium, and indium, alloys thereof, carbon, and titanium nitride. Examples include particles such as. Two or more types of these may be contained. Among these, silver, copper, and gold particles are preferred from the viewpoint of conductivity, and silver particles are more preferred from the viewpoint of stability.
導電粒子(a)のメジアン径(D50)は、導電性を向上させる観点から、1μm以上が好ましい。一方、導電粒子(a)のD50は、露光光の光透過性を向上させ、より高精細なパターンを形成する観点から、5μm以下が好ましい。なお、導電粒子(a)のD50は、粒度分布測定装置(Microtrac HRA Model No.9320-X100;日機装(株)製)を用いて、レーザー光散乱法により測定することができる。
The median diameter (D50) of the conductive particles (a) is preferably 1 μm or more from the viewpoint of improving conductivity. On the other hand, the D50 of the conductive particles (a) is preferably 5 μm or less from the viewpoint of improving the light transmittance of exposure light and forming a more precise pattern. Note that the D50 of the conductive particles (a) can be measured by a laser light scattering method using a particle size distribution measuring device (Microtrac HRA Model No. 9320-X100; manufactured by Nikkiso Co., Ltd.).
感光性ペースト中における導電粒子(a)の含有量は、導電性の観点から、60質量%以上が好ましく、65質量%以上がより好ましく、70質量%以上がさらに好ましい。一方、導電粒子(a)の含有量は、露光光の光透過性の観点から、90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下がさらに好ましい。
From the viewpoint of electrical conductivity, the content of the conductive particles (a) in the photosensitive paste is preferably 60% by mass or more, more preferably 65% by mass or more, and even more preferably 70% by mass or more. On the other hand, the content of the conductive particles (a) is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less, from the viewpoint of light transmittance of exposure light.
非導電粒子(b)
非導電粒子(b)は、20℃における比抵抗が1.0×10-4Ω・mを超えるまたは絶縁の粒子を言い、焼成時の導電パターンの収縮を抑制する作用を有する。 Non-conductive particles (b)
The non-conductive particles (b) refer to insulating particles having a specific resistance of more than 1.0×10 −4 Ω·m at 20° C., and have the effect of suppressing shrinkage of the conductive pattern during firing.
非導電粒子(b)は、20℃における比抵抗が1.0×10-4Ω・mを超えるまたは絶縁の粒子を言い、焼成時の導電パターンの収縮を抑制する作用を有する。 Non-conductive particles (b)
The non-conductive particles (b) refer to insulating particles having a specific resistance of more than 1.0×10 −4 Ω·m at 20° C., and have the effect of suppressing shrinkage of the conductive pattern during firing.
非導電粒子(b)としては、例えば、アルミナ(Al2O3)、ジルコニア(ZrO2)、マグネシア(MgO)、ベリリア(BeO)、ムライト(3Al2O3・2SiO2)、コーディエライト(5SiO2・2Al2O3・2MgO)、スピネル(MgO・Al2O3)、フォルステライト(2MgO・SiO2)、アノーサイト(CaO・Al2O3・2SiO2)、セルジアン(BaO・Al2O3・2SiO2)、シリカ(SiO2)、チタン酸バリウム(BaTiO3、窒化アルミ(AlN)、フェライト(ガーネット型:Y3Fe5O12系、スピネル型:MeFe2O4系)、「SiO2、Al2O3、CaO、B2O3、MgO、TiO2」等を含むガラス粒子、などが挙げられる。これらを2種以上含有してもよい。これらの中でも、焼成欠陥をより抑制する観点から、チタニア、アルミナ、シリカ、コーディエライト、ムライト、スピネル、チタン酸バリウム、ジルコニアの粒子が好ましく、シリカ粒子がより好ましい。
Examples of the non-conductive particles (b) include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), magnesia (MgO), beryllia (BeO), mullite (3Al 2 O 3 .2SiO 2 ), and cordierite ( 5SiO2.2Al2O3.2MgO ), spinel ( MgO.Al2O3 ), forsterite ( 2MgO.SiO2 ) , anorthite ( CaO.Al2O3.2SiO2 ) , celsian ( BaO.Al2 ) O 3.2SiO 2 ), silica (SiO 2 ), barium titanate (BaTiO 3 , aluminum nitride (AlN), ferrite (garnet type: Y 3 Fe5O 12 system, spinel type: MeFe 2 O 4 system), “SiO 2 , Al 2 O 3 , CaO, B 2 O 3 , MgO, TiO 2 ”, etc. Two or more types of these may be contained. Among these, glass particles that further suppress firing defects are mentioned. From this point of view, particles of titania, alumina, silica, cordierite, mullite, spinel, barium titanate, and zirconia are preferred, and silica particles are more preferred.
非導電粒子(b)のD50は、焼成時の導電パターンの収縮を抑制する観点から、5μm以下が好ましく、0.1μm以下がより好ましく、0.05μm以下がさらに好ましい。なお、非導電粒子(b)のD50は、0.1μm以下場合、非導電粒子(b)を水に加え、300秒間超音波処理を行った後、Nanotrac WaveII-UZ251(MicrotracBEL社製)を用いて、動的光散乱法により求めることができる。
The D50 of the non-conductive particles (b) is preferably 5 μm or less, more preferably 0.1 μm or less, and even more preferably 0.05 μm or less, from the viewpoint of suppressing shrinkage of the conductive pattern during firing. In addition, when the D50 of the non-conductive particles (b) is 0.1 μm or less, the non-conductive particles (b) are added to water, subjected to ultrasonic treatment for 300 seconds, and then treated using Nanotrac Wave II-UZ251 (manufactured by Microtrac BEL). It can be determined by dynamic light scattering method.
感光性ペースト中における非導電粒子(b)の含有量は、焼成時の導電パターンの収縮を抑制する観点から、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.4質量%以上がさらに好ましい。一方、非導電粒子(b)の含有量は、導電性の観点から、10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下がさらに好ましい。
The content of the non-conductive particles (b) in the photosensitive paste is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.1% by mass or more, more preferably 0.2% by mass or more, from the viewpoint of suppressing shrinkage of the conductive pattern during firing. More preferably, the content is 4% by mass or more. On the other hand, from the viewpoint of electrical conductivity, the content of the non-conductive particles (b) is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 2% by mass or less.
アルカリ可溶性樹脂(c)
アルカリ可溶性樹脂(c)とは、カルボキシル基および/または水酸基を側鎖に有する樹脂を言い、感光性ペーストのバインダー樹脂であるとともに、現像により溶解してパターン形成する作用を有する。 Alkali-soluble resin (c)
The alkali-soluble resin (c) refers to a resin having a carboxyl group and/or a hydroxyl group in its side chain, and serves as a binder resin for a photosensitive paste, and also has the function of forming a pattern by being dissolved during development.
アルカリ可溶性樹脂(c)とは、カルボキシル基および/または水酸基を側鎖に有する樹脂を言い、感光性ペーストのバインダー樹脂であるとともに、現像により溶解してパターン形成する作用を有する。 Alkali-soluble resin (c)
The alkali-soluble resin (c) refers to a resin having a carboxyl group and/or a hydroxyl group in its side chain, and serves as a binder resin for a photosensitive paste, and also has the function of forming a pattern by being dissolved during development.
アルカリ可溶性樹脂(c)としては、アクリル樹脂が好ましく、炭素-炭素二重結合を有するアクリル系モノマーとその他のモノマーとの共重合体が好ましい。炭素-炭素二重結合を有するアクリル系モノマーおよびその他モノマーとしては、例えば、特開2019-215446号公報において、アルカリ可溶性樹脂(b-1)の例であるアクリル樹脂の原料として例示されたものが挙げられる。
The alkali-soluble resin (c) is preferably an acrylic resin, and preferably a copolymer of an acrylic monomer having a carbon-carbon double bond and another monomer. Examples of the acrylic monomer and other monomers having a carbon-carbon double bond include those exemplified as raw materials for the acrylic resin, which is an example of the alkali-soluble resin (b-1), in JP 2019-215446A. Can be mentioned.
アルカリ可溶性樹脂(c)は、側鎖および/または分子末端に炭素-炭素二重結合を有することが好ましく、露光時の硬化反応速度を向上させることができる。炭素-炭素二重結合を有する構造としては、例えば、ビニル基、アリル基、アクリル基、メタクリル基などが挙げられる。これらを2種以上有してもよい。アルカリ可溶性樹脂(c)に炭素-炭素二重結合を導入する方法としては、例えば、アクリル樹脂の場合、アクリル樹脂中のメルカプト基、アミノ基、ヒドロキシル基、カルボキシル基に対して、グリシジル基またはイソシアネート基と炭素-炭素二重結合とを有する化合物、アクリル酸クロライド、メタクリル酸クロライド、アリルクロライドなどを反応させる方法などが挙げられる。
The alkali-soluble resin (c) preferably has a carbon-carbon double bond in the side chain and/or at the end of the molecule, which can improve the curing reaction rate during exposure. Examples of the structure having a carbon-carbon double bond include a vinyl group, an allyl group, an acrylic group, and a methacryl group. You may have two or more types of these. As a method for introducing a carbon-carbon double bond into the alkali-soluble resin (c), for example, in the case of an acrylic resin, a glycidyl group or an isocyanate group is added to a mercapto group, an amino group, a hydroxyl group, or a carboxyl group in the acrylic resin. Examples include a method of reacting a group with a compound having a carbon-carbon double bond, acrylic acid chloride, methacrylic acid chloride, allyl chloride, and the like.
グリシジル基と炭素-炭素二重結合とを有する化合物としては、例えば、グリシジルメタクリレート、グリシジルアクリレート、アリルグリシジルエーテル、グリシジルエチルアクリレート、クロトニルグリシジルエーテル、グリシジルクロトネート、グリシジルイソクロトネート、“サイクロマー(登録商標)”M100、A200(以上、ダイセル化学工業(株)製)などが挙げられる。イソシアネート基と炭素-炭素二重結合とを有する化合物としては、例えば、アクリロイルイソシアネート、メタクリロイルイソシアネート、アクリロイルエチルイソシアネート、メタクリロイルエチルイソシアネートなどが挙げられる。これらを2種以上用いてもよい。
Examples of compounds having a glycidyl group and a carbon-carbon double bond include glycidyl methacrylate, glycidyl acrylate, allyl glycidyl ether, glycidyl ethyl acrylate, crotonyl glycidyl ether, glycidyl crotonate, glycidyl isocrotonate, "cyclomer ( (registered trademark)" M100, A200 (manufactured by Daicel Chemical Industries, Ltd.), and the like. Examples of the compound having an isocyanate group and a carbon-carbon double bond include acryloyl isocyanate, methacryloyl isocyanate, acryloyl ethyl isocyanate, and methacryloyl ethyl isocyanate. Two or more types of these may be used.
アルカリ可溶性樹脂(c)が、不飽和二重結合を有さないカルボキシル基含有樹脂を含有することも好ましく例示される。不飽和二重結合を有さないカルボキシル基含有樹脂としては、例えば、固形のBASFジャパン(株)製の固形のJONCRYL67(ガラス転移温度73℃)、JONCRYL678(ガラス転移温度85℃)、JONCRYL611(ガラス転移温度50℃)、JONCRYL693(ガラス転移温度84℃)、JONCRYL682(ガラス転移温度56℃)、JONCRYL690(ガラス転移温度102℃)、JONCRYL819(ガラス転移温度57℃)、JONCRYLJDX-C3000A(ガラス転移温度65℃)、JONCRYLJDX-C3080(ガラス転移温度134℃)、アルカリ水で溶解させたJONCRYL52J(ガ ラス転移温度56℃)、JONCRYLPDX-6157(ガラス転移温度84℃)、JONCRYL60J(ガラス転移温度85℃)、JONCRYL63J(ガラス転移温度73℃)、JONCRYL70J(ガラス転移温度102℃)、JONCRYLJDX-6180(ガラス転移温度134℃)、JONCRYLHPD-196(ガラス転移温度85℃)、JONCRYLHPD-96J(ガラス転移温度102℃)、JONCRYLPDX-6137A(ガラス転移温度102℃)、JONCRYL6610(ガラス転移温度85℃)、JONCRYLJDX-6500(ガラス転移温度65℃)、JONCRYLPDX-6102B(ガラス転移温度19℃)などが挙げられる。これらを2種以上用いてもよい。
It is also preferably exemplified that the alkali-soluble resin (c) contains a carboxyl group-containing resin that does not have an unsaturated double bond. Examples of carboxyl group-containing resins that do not have unsaturated double bonds include solid JONCRYL67 (glass transition temperature 73°C), JONCRYL678 (glass transition temperature 85°C), and JONCRYL611 (glass transition temperature) manufactured by BASF Japan Co., Ltd. JONCRYL693 (glass transition temperature 84°C), JONCRYL682 (glass transition temperature 56°C), JONCRYL690 (glass transition temperature 102°C), JONCRYL819 (glass transition temperature 57°C), JONCRYLJDX-C3000A (glass transition temperature 65°C) ), JONCRYLJDX-C3080 (glass transition temperature 134℃), JONCRYL52J dissolved in alkaline water (glass transition temperature 56℃), JONCRYLPDX-6157 (glass transition temperature 84℃), JONCRYL60J (glass transition temperature 85℃), JONCRYL63J (glass transition temperature 73°C), JONCRYL70J (glass transition temperature 102°C), JONCRYLJDX-6180 (glass transition temperature 134°C), JONCRYLHPD-196 (glass transition temperature 85°C), JONCRYLHPD-96J (glass transition temperature 102°C) , JONCRYLPDX-6137A (glass transition temperature 102°C), JONCRYL6610 (glass transition temperature 85°C), JONCRYLJDX-6500 (glass transition temperature 65°C), JONCRYLPDX-6102B (glass transition temperature 19°C), etc. Two or more types of these may be used.
転写性を良化させる観点から、不飽和二重結合を有さないカルボキシル基含有樹脂のガラス転移温度は110℃以下のものが好ましく、30℃~70℃がより好ましい。
From the viewpoint of improving transferability, the glass transition temperature of the carboxyl group-containing resin having no unsaturated double bonds is preferably 110°C or lower, more preferably 30°C to 70°C.
感光性ペースト中におけるアルカリ可溶性樹脂(c)の含有量は、フォトリソ加工性、粘度特性などの観点から、1~10質量%が好ましい。
The content of the alkali-soluble resin (c) in the photosensitive paste is preferably 1 to 10% by mass from the viewpoint of photolithography processability, viscosity characteristics, etc.
感光剤(d)
感光剤(d)としては、光重合開始剤、溶解抑制剤などが挙げられる。より厚膜の導電パターンを形成する観点からは、光重合開始剤が好ましい。 Photosensitizer (d)
Examples of the photosensitizer (d) include photopolymerization initiators and dissolution inhibitors. From the viewpoint of forming a thicker conductive pattern, a photopolymerization initiator is preferable.
感光剤(d)としては、光重合開始剤、溶解抑制剤などが挙げられる。より厚膜の導電パターンを形成する観点からは、光重合開始剤が好ましい。 Photosensitizer (d)
Examples of the photosensitizer (d) include photopolymerization initiators and dissolution inhibitors. From the viewpoint of forming a thicker conductive pattern, a photopolymerization initiator is preferable.
光重合開始剤は、紫外線等の短波長の光を吸収して分解する、または、水素引き抜き反応によりラジカルを生じることにより、光硬化性を付与し、ネガ型のフォトリソグラフィ法によるパターン形成を可能とする。光重合開始剤としては、例えば、特開2019-215446号公報において、光反応開始剤(d)として例示されたものが挙げられる。光硬化性の観点から、オキシム系光重合開始剤が好ましい。
The photopolymerization initiator absorbs short wavelength light such as ultraviolet rays and decomposes, or generates radicals through a hydrogen abstraction reaction, thereby imparting photocurability and enabling pattern formation using negative photolithography. shall be. Examples of the photopolymerization initiator include those exemplified as the photoreaction initiator (d) in JP-A-2019-215446. From the viewpoint of photocurability, oxime-based photopolymerization initiators are preferred.
溶解抑制剤は、露光された箇所の現像液に対する溶解性を増大させ、ポジ型のフォトリソグラフィ法によるパターン形成を可能とする。溶解抑制剤としては、後述する露光工程において用いられる露光エネルギーにより酸が発生するものが好ましい。例えば、ジアゾジスルホン化合物、トリフェニルスルフォニウム化合物、キノンジアジド化合物などが挙げられる。ジアゾジスルホン化合物としては、例えば、ビス(シクロヘキシルスルフォニル)ジアゾメタン、ビス(ターシャルブチルスルフォニル)ジアゾメタン、ビス(4-メチルフェニルスルフォニル)ジアゾメタンなどが挙げられる。トリフェニルスルフォニウム化合物としては、例えば、ジフェニル-4-メチルフェニルスルフォニウムトリフルオロメタンスルフォネート、ジフェニル-2,4,6-トリメチルフェニルスルフォニウムp-トルエンスルフォネート、ジフェニル(4-メトキシフェニル)スルフォニウムトリフルオロメタンスルフォネートなどが挙げられる。キノンジアジド化合物としては、例えば、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらを2種以上含有してもよい。
The dissolution inhibitor increases the solubility of the exposed area in the developer and enables pattern formation by positive photolithography. The dissolution inhibitor is preferably one that generates an acid when exposed to the exposure energy used in the exposure step described below. Examples include diazodisulfone compounds, triphenylsulfonium compounds, and quinonediazide compounds. Examples of the diazodisulfone compound include bis(cyclohexylsulfonyl)diazomethane, bis(tertiarybutylsulfonyl)diazomethane, and bis(4-methylphenylsulfonyl)diazomethane. Examples of triphenylsulfonium compounds include diphenyl-4-methylphenylsulfonium trifluoromethanesulfonate, diphenyl-2,4,6-trimethylphenylsulfonium p-toluenesulfonate, diphenyl(4-methoxy Examples include phenyl)sulfonium trifluoromethanesulfonate. Examples of quinonediazide compounds include those in which the sulfonic acid of quinonediazide is bonded to a polyhydroxy compound through an ester bond, those in which the sulfonic acid of quinonediazide is bonded to a polyamino compound through a sulfonamide bond, and those in which the sulfonic acid of quinonediazide is bonded to a polyhydroxy polyamino compound through an ester bond and/or or those with sulfonamide bonds. Two or more types of these may be contained.
感光性ペースト中における感光剤(d)の含有量は、0.1~2質量%が好ましい。
The content of the photosensitizer (d) in the photosensitive paste is preferably 0.1 to 2% by mass.
溶剤(e)
溶剤(e)は、感光性ペーストの粘度を調整する作用を有する。溶剤(e)の大気圧下における沸点は、感光性ペーストを連続塗布する場合の塗布性を向上させる観点や、基材からの剥離性を向上させ、転写性を向上させる観点から、150℃以上が好ましい。一方、溶剤(e)の大気圧下における沸点は、乾燥除去性の観点から、300℃以下が好ましい。沸点が前記範囲にある溶剤としては、例えば、エチレングリコールヘキシルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールn-ブチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジプリピレングリコールn-ブチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールメチル-nプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジメチルイミダゾリジノン、ジメチルスルホキシド、トリエチレングリコールジメチルエーテル、プロピレングリコールジアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、2,2,4-トリメチル-1,3-ペンタンジオールジイソブチレート、ジエチレングリコールヘキシルエーテル、ジエチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノヘキシルエーテル、ジプロピレングリコールフェニルエーテル、テトラエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、トリエチレングリコールモノブチルエーテル、トリプロピレングリコールブチルエーテル、トリプロピレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテルなどが挙げられる。これらを2種以上含有してもよい。 Solvent (e)
The solvent (e) has the effect of adjusting the viscosity of the photosensitive paste. The boiling point of the solvent (e) under atmospheric pressure is 150°C or higher from the viewpoint of improving the applicability when continuously applying the photosensitive paste, improving the peelability from the substrate, and improving the transferability. is preferred. On the other hand, the boiling point of the solvent (e) under atmospheric pressure is preferably 300° C. or lower from the viewpoint of dry removability. Examples of solvents having a boiling point within the above range include ethylene glycol hexyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol n-butyl ether, diethylene glycol ethyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol methyl ether, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monomethyl ether, dipropylene glycol n-butyl ether, dipropylene glycol propyl ether, dipropylene glycol methyl-n-propyl ether, dipropylene glycol methyl ether, dipropylene glycol methyl ether acetate, Propylene glycol monomethyl ether acetate, dimethyl imidazolidinone, dimethyl sulfoxide, triethylene glycol dimethyl ether, propylene glycol diacetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, 2,2,4-trimethyl -1,3-pentanediol diisobutyrate, diethylene glycol hexyl ether, diethylene glycol mono-2-ethylhexyl ether, diethylene glycol monohexyl ether, dipropylene glycol phenyl ether, tetraethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, triethylene glycol mono Examples include butyl ether, tripropylene glycol butyl ether, tripropylene glycol monobutyl ether, diethylene glycol dibutyl ether, and the like. Two or more types of these may be contained.
溶剤(e)は、感光性ペーストの粘度を調整する作用を有する。溶剤(e)の大気圧下における沸点は、感光性ペーストを連続塗布する場合の塗布性を向上させる観点や、基材からの剥離性を向上させ、転写性を向上させる観点から、150℃以上が好ましい。一方、溶剤(e)の大気圧下における沸点は、乾燥除去性の観点から、300℃以下が好ましい。沸点が前記範囲にある溶剤としては、例えば、エチレングリコールヘキシルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールn-ブチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジプリピレングリコールn-ブチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールメチル-nプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジメチルイミダゾリジノン、ジメチルスルホキシド、トリエチレングリコールジメチルエーテル、プロピレングリコールジアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、2,2,4-トリメチル-1,3-ペンタンジオールジイソブチレート、ジエチレングリコールヘキシルエーテル、ジエチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノヘキシルエーテル、ジプロピレングリコールフェニルエーテル、テトラエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、トリエチレングリコールモノブチルエーテル、トリプロピレングリコールブチルエーテル、トリプロピレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテルなどが挙げられる。これらを2種以上含有してもよい。 Solvent (e)
The solvent (e) has the effect of adjusting the viscosity of the photosensitive paste. The boiling point of the solvent (e) under atmospheric pressure is 150°C or higher from the viewpoint of improving the applicability when continuously applying the photosensitive paste, improving the peelability from the substrate, and improving the transferability. is preferred. On the other hand, the boiling point of the solvent (e) under atmospheric pressure is preferably 300° C. or lower from the viewpoint of dry removability. Examples of solvents having a boiling point within the above range include ethylene glycol hexyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol n-butyl ether, diethylene glycol ethyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol methyl ether, diethylene glycol monoethyl ether, Diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monomethyl ether, dipropylene glycol n-butyl ether, dipropylene glycol propyl ether, dipropylene glycol methyl-n-propyl ether, dipropylene glycol methyl ether, dipropylene glycol methyl ether acetate, Propylene glycol monomethyl ether acetate, dimethyl imidazolidinone, dimethyl sulfoxide, triethylene glycol dimethyl ether, propylene glycol diacetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, 2,2,4-trimethyl -1,3-pentanediol diisobutyrate, diethylene glycol hexyl ether, diethylene glycol mono-2-ethylhexyl ether, diethylene glycol monohexyl ether, dipropylene glycol phenyl ether, tetraethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, triethylene glycol mono Examples include butyl ether, tripropylene glycol butyl ether, tripropylene glycol monobutyl ether, diethylene glycol dibutyl ether, and the like. Two or more types of these may be contained.
感光性ペースト中における溶剤(e)の含有量は、ペースト粘度の観点から、5~40質量%が好ましい。
The content of the solvent (e) in the photosensitive paste is preferably 5 to 40% by mass from the viewpoint of paste viscosity.
本発明における感光性ペーストにレベリング剤を含有することは好ましい。レベリング剤を含有することで、感光性ペーストを基材上に塗布する際のはじき抑制、及び、感光性層の剥離性を向上させる効果がある。
It is preferable that the photosensitive paste in the present invention contains a leveling agent. Containing a leveling agent has the effect of suppressing repellency when applying the photosensitive paste onto a substrate and improving the releasability of the photosensitive layer.
レベリング剤としては、例えば、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミンなどの陰イオン界面活性剤、ステアリルアミンアセテート、ラウリルトリメチルアンモニウムクロライドなどの陽イオン界面活性剤、 ラウリルジメチルアミンオキサイド、ラウリルカルボキシメチルヒドロキシエチルイミダゾリウムベタインなどの両性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ソルビタンモノステアレートなどの非イオン界面活性剤、ポリジメチルシロキサン、ポリメチルアルキルシロキサンなどを主骨格とするシリコーン系界面活性剤、フッ素系界面活性剤、アクリル系界面活性剤が挙げることができる。ポリメチルアルキルシロキサンはアラキル変性ポリメチルアルキルシロキサンであってもよい。この中でも、ポリジメチルシロキサンなどを主骨格とするシリコーン系界面活性剤、又はアクリル系界面活性剤であることが好ましい。さらに、本発明における感光性層に、ポリジメチルシロキサンなどを主骨格とするシリコーン系界面活性剤として、ポリエーテル変性ポリジメチルシロキサンを含むことがより好ましい。
Leveling agents include, for example, anionic surfactants such as ammonium lauryl sulfate and polyoxyethylene alkyl ether sulfate triethanolamine, cationic surfactants such as stearylamine acetate, lauryl trimethylammonium chloride, lauryl dimethylamine oxide, and lauryl carboxylic acid. Main skeletons include amphoteric surfactants such as methylhydroxyethylimidazolium betaine, nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and sorbitan monostearate, polydimethylsiloxane, and polymethylalkylsiloxane. Examples include silicone surfactants, fluorine surfactants, and acrylic surfactants. The polymethylalkylsiloxane may be an aralkyl-modified polymethylalkylsiloxane. Among these, silicone surfactants having a main skeleton such as polydimethylsiloxane or acrylic surfactants are preferred. Furthermore, it is more preferable that the photosensitive layer in the present invention contains polyether-modified polydimethylsiloxane as a silicone surfactant having a main skeleton such as polydimethylsiloxane.
本発明における感光性ペーストは、その所望の特性を損なわない範囲で、不飽和結合を有する光重合性化合物、可塑剤、レベリング剤、分散剤、界面活性剤、シランカップリング剤、消泡剤、顔料、染料等の添加剤を含有することもできる。
The photosensitive paste in the present invention contains a photopolymerizable compound having an unsaturated bond, a plasticizer, a leveling agent, a dispersant, a surfactant, a silane coupling agent, an antifoaming agent, as long as the desired properties thereof are not impaired. It may also contain additives such as pigments and dyes.
本発明における感光性ペーストは、例えば、前述の(a)~(d)成分および必要に応じてその他添加剤を、溶剤(e)に溶解および/または分散させることにより得ることができる。溶解および/または分散させる装置としては、例えば、三本ローラー、ボールミル等の分散機や混練機などが挙げられる。溶解および/または分散は、室温で行ってもよいし、加熱してもよい。
The photosensitive paste in the present invention can be obtained, for example, by dissolving and/or dispersing the above-mentioned components (a) to (d) and optionally other additives in a solvent (e). Examples of devices for dissolving and/or dispersing include dispersing machines such as three rollers and ball mills, and kneading machines. The dissolution and/or dispersion may be carried out at room temperature or by heating.
次に、感光性ペーストを基材上に塗布し、乾燥して感光性層を形成する。
Next, a photosensitive paste is applied onto the substrate and dried to form a photosensitive layer.
塗布方法としては、例えば、スプレー塗布法、ロール塗布法、スクリーン印刷法、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーターを用いた塗布方法などが挙げられる。これらの中でも、厚膜塗布に適すること、連続生産性などの観点から、スクリーン印刷法が好ましい。
Examples of the coating method include a spray coating method, a roll coating method, a screen printing method, a coating method using a blade coater, a die coater, a calendar coater, a meniscus coater, a bar coater, and the like. Among these, the screen printing method is preferred from the viewpoints of suitability for thick film coating and continuous productivity.
乾燥方法としては、例えば、オーブン、ホットプレート、赤外線等の加熱装置を用いた加熱乾燥や、真空乾燥などが挙げられる。加熱温度は、40~100℃が好ましく、感光性層中の溶剤(e)が5.0質量%以下となるように、加熱装置、乾燥温度、乾燥時間などの条件を選択することが好ましい。
Examples of the drying method include heating drying using a heating device such as an oven, a hot plate, and infrared rays, and vacuum drying. The heating temperature is preferably 40 to 100°C, and conditions such as the heating device, drying temperature, and drying time are preferably selected so that the solvent (e) in the photosensitive layer is 5.0% by mass or less.
本発明においては、感光性層中における溶剤(e)の含有量を5.0質量%以下とすることが好ましい。前述のとおり、かかる感光性層をセラミックグリーンシート上に転写または積層することにより、溶剤(e)に起因する感光性層の粘着性や導電パターン底部の細線化を抑制し、高精細なパターンを形成することができ、断線を抑制することができる。また、セラミックグリーンシート上における高温乾燥を要しないことから、熱によるセラミックグリーンシートの収縮を抑制し、高精細なパターンを形成することができる。溶剤(e)の含有量が5.0質量%を超えると、感光性層の粘着性や導電パターン底部の細線化により、高精細なパターンを形成することが困難となることがある。また、断線が発生しやすくなることがある。溶剤(e)の含有量は、2.0質量%以下が好ましく、さらに線幅均一性を高めることができる。一方、感光性層中における溶剤(e)の含有量は、0.10質量%以上が好ましく、基材からの剥離性を向上させ、転写性を向上させることができる。
In the present invention, the content of the solvent (e) in the photosensitive layer is preferably 5.0% by mass or less. As mentioned above, by transferring or laminating such a photosensitive layer onto a ceramic green sheet, the stickiness of the photosensitive layer caused by the solvent (e) and thinning of the bottom of the conductive pattern can be suppressed, and a high-definition pattern can be created. This can prevent wire breakage. Furthermore, since high-temperature drying on the ceramic green sheet is not required, shrinkage of the ceramic green sheet due to heat can be suppressed and a high-definition pattern can be formed. If the content of the solvent (e) exceeds 5.0% by mass, it may become difficult to form a high-definition pattern due to the adhesiveness of the photosensitive layer and the thinning of the bottom of the conductive pattern. Additionally, wire breakage may occur more easily. The content of the solvent (e) is preferably 2.0% by mass or less, and can further improve line width uniformity. On the other hand, the content of the solvent (e) in the photosensitive layer is preferably 0.10% by mass or more, and can improve peelability from the base material and improve transferability.
感光性層付き基材における感光性層の厚みは、10μmを超えることが好ましく、導電パターンの断線を抑制することができる。一方、感光性層の厚みは、25μm以下が好ましく、後述する露光工程において、露光光が感光性層の深部まで到達しやすいことから、より高精細なパターンを形成することができる。
The thickness of the photosensitive layer in the substrate with a photosensitive layer is preferably greater than 10 μm, and disconnection of the conductive pattern can be suppressed. On the other hand, the thickness of the photosensitive layer is preferably 25 μm or less, and since exposure light can easily reach the deep part of the photosensitive layer in the exposure step described below, a more precise pattern can be formed.
次に、本発明の導電パターン付きセラミックグリーンシートの製造方法の第一の態様を例に、各工程について説明する。
Next, each step will be explained using the first embodiment of the method for manufacturing a ceramic green sheet with a conductive pattern of the present invention as an example.
(転写工程)
前述の感光性層付き基材を準備し、感光性層を基材上からセラミックグリーンシート上に転写する。感光性層を基材から剥離してセラミックグリーンシート上に積層してもよいし、感光性層がセラミックグリーンシートに接するように感光性層付き基材をセラミックグリーンシート上に積層した後、基材を剥離してもよい。いずれの方法においても、圧着により転写することが好ましく、転写装置としては、例えば、プレスやロールラミネータ等が挙げられる。転写温度は、20℃~200℃が好ましい。転写圧力は、0.1MPa~2.0MPaが好ましい。加圧時間は、10~300秒間が好ましい。雰囲気としては、例えば、空気中、窒素中、真空中などが挙げられる。 (Transfer process)
The above-described base material with a photosensitive layer is prepared, and the photosensitive layer is transferred from the base material onto a ceramic green sheet. The photosensitive layer may be peeled off from the base material and laminated on the ceramic green sheet, or the base material with the photosensitive layer is laminated on the ceramic green sheet so that the photosensitive layer is in contact with the ceramic green sheet, and then the base material is laminated on the ceramic green sheet. The material may be peeled off. In either method, it is preferable to transfer by pressure bonding, and examples of the transfer device include a press, a roll laminator, and the like. The transfer temperature is preferably 20°C to 200°C. The transfer pressure is preferably 0.1 MPa to 2.0 MPa. The pressurization time is preferably 10 to 300 seconds. Examples of the atmosphere include air, nitrogen, and vacuum.
前述の感光性層付き基材を準備し、感光性層を基材上からセラミックグリーンシート上に転写する。感光性層を基材から剥離してセラミックグリーンシート上に積層してもよいし、感光性層がセラミックグリーンシートに接するように感光性層付き基材をセラミックグリーンシート上に積層した後、基材を剥離してもよい。いずれの方法においても、圧着により転写することが好ましく、転写装置としては、例えば、プレスやロールラミネータ等が挙げられる。転写温度は、20℃~200℃が好ましい。転写圧力は、0.1MPa~2.0MPaが好ましい。加圧時間は、10~300秒間が好ましい。雰囲気としては、例えば、空気中、窒素中、真空中などが挙げられる。 (Transfer process)
The above-described base material with a photosensitive layer is prepared, and the photosensitive layer is transferred from the base material onto a ceramic green sheet. The photosensitive layer may be peeled off from the base material and laminated on the ceramic green sheet, or the base material with the photosensitive layer is laminated on the ceramic green sheet so that the photosensitive layer is in contact with the ceramic green sheet, and then the base material is laminated on the ceramic green sheet. The material may be peeled off. In either method, it is preferable to transfer by pressure bonding, and examples of the transfer device include a press, a roll laminator, and the like. The transfer temperature is preferably 20°C to 200°C. The transfer pressure is preferably 0.1 MPa to 2.0 MPa. The pressurization time is preferably 10 to 300 seconds. Examples of the atmosphere include air, nitrogen, and vacuum.
セラミックグリーンシートとしては、例えば、ガラス、セラミック、ガラスセラミック等の無機粉末およびバインダー樹脂を含有する絶縁組成物のシートなどが挙げられる。セラミックグリーンシートは、感光性有機成分を含有することも好ましく、感光性を付与することができる。この場合、絶縁組成物は、感光性有機成分を含有することが好ましい。また、感光性層付き基材の基材として例示したプラスチックフィルムや光学用樹脂板等の基板上に、絶縁組成物のシートを有してもよい。セラミックグリーンシートは、例えば、プラスチックフィルムや光学用樹脂板などの基板上に、前述の無機粉末をバインダー樹脂に分散してペースト状にした絶縁組成物を塗布することにより得ることができる。塗布方法としては、例えば、前述の感光性ペーストの塗布方法として例示した方法などが挙げられる。セラミックグリーンシートが感光性を有する場合は、フォトリソグラフィ法によりパターン形成してもよい。
Examples of the ceramic green sheet include sheets of insulating compositions containing glass, ceramic, inorganic powder such as glass ceramic, and binder resin. It is also preferable that the ceramic green sheet contains a photosensitive organic component, so that it can be imparted with photosensitivity. In this case, the insulating composition preferably contains a photosensitive organic component. Further, a sheet of the insulating composition may be provided on a substrate such as a plastic film or an optical resin plate, which are exemplified as the base material of the base material with a photosensitive layer. Ceramic green sheets can be obtained, for example, by applying an insulating composition prepared by dispersing the above-mentioned inorganic powder in a binder resin into a paste onto a substrate such as a plastic film or an optical resin plate. Examples of the coating method include the methods exemplified above as the photosensitive paste coating method. If the ceramic green sheet is photosensitive, the pattern may be formed by photolithography.
感光性有機成分としては、例えば、前述の導電性ペーストの原料として例示したアルカリ可溶性樹脂(c)、感光剤(d)や、不飽和結合を有する光重合性化合物などが挙げられる。
Examples of the photosensitive organic component include the alkali-soluble resin (c), the photosensitizer (d), and the photopolymerizable compound having an unsaturated bond, which were exemplified as the raw material for the conductive paste described above.
(露光工程A)
感光性層に露光マスクを接触させて露光する。露光マスクと感光性層のギャップをなくすことにより、回折による露光光の広がりや感光性層表層と露光マスクの露光光の反射影響による線太りを抑制し、より高精細なパターンを形成することができる。また、パターン線幅均一性が向上する。露光に用いられる化学線としては、紫外線、可視光線、電子線、X線などが挙げられる。本発明においては、水銀灯のi線(波長365nm)、h線(波長405nm)、g線(波長436nm)が好ましい。 (Exposure process A)
The photosensitive layer is exposed to light by bringing it into contact with an exposure mask. By eliminating the gap between the exposure mask and the photosensitive layer, it is possible to suppress the spread of the exposure light due to diffraction and the line thickening caused by the reflection of the exposure light between the surface layer of the photosensitive layer and the exposure mask, making it possible to form higher-definition patterns. can. Further, the pattern line width uniformity is improved. Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, and X-rays. In the present invention, the i-line (wavelength: 365 nm), h-line (wavelength: 405 nm), and g-line (wavelength: 436 nm) of a mercury lamp are preferred.
感光性層に露光マスクを接触させて露光する。露光マスクと感光性層のギャップをなくすことにより、回折による露光光の広がりや感光性層表層と露光マスクの露光光の反射影響による線太りを抑制し、より高精細なパターンを形成することができる。また、パターン線幅均一性が向上する。露光に用いられる化学線としては、紫外線、可視光線、電子線、X線などが挙げられる。本発明においては、水銀灯のi線(波長365nm)、h線(波長405nm)、g線(波長436nm)が好ましい。 (Exposure process A)
The photosensitive layer is exposed to light by bringing it into contact with an exposure mask. By eliminating the gap between the exposure mask and the photosensitive layer, it is possible to suppress the spread of the exposure light due to diffraction and the line thickening caused by the reflection of the exposure light between the surface layer of the photosensitive layer and the exposure mask, making it possible to form higher-definition patterns. can. Further, the pattern line width uniformity is improved. Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, and X-rays. In the present invention, the i-line (wavelength: 365 nm), h-line (wavelength: 405 nm), and g-line (wavelength: 436 nm) of a mercury lamp are preferred.
(現像工程)
露光後の感光性層を現像して、導電パターンを形成する。 (Development process)
The exposed photosensitive layer is developed to form a conductive pattern.
露光後の感光性層を現像して、導電パターンを形成する。 (Development process)
The exposed photosensitive layer is developed to form a conductive pattern.
現像液としては、アルカリ現像液が好ましく、例えば、特開2019-215446号公報において、アルカリ現像を行う場合の現像液として例示されたものが挙げられる。
As the developer, an alkaline developer is preferable, and examples thereof include those exemplified as a developer when performing alkaline development in JP-A-2019-215446.
現像方法としては、例えば、露光後の感光性層を有するセラミックグリーンシートを静置、搬送または回転させながら現像液をスプレーする方法、露光後の感光性層を有するセラミックグリーンシートを現像液中に浸漬する方法、露光後の感光性層を有するセラミックグリーンシートを現像液中に浸漬しながら超音波をかける方法などが挙げられる。
As a developing method, for example, a method in which a ceramic green sheet having a photosensitive layer after exposure is left still, a method in which a developer is sprayed while being transported or rotated, a method in which a ceramic green sheet having a photosensitive layer after exposure is placed in a developer solution, Examples include a method of immersion, and a method of applying ultrasonic waves while immersing a ceramic green sheet having a photosensitive layer after exposure in a developer.
現像により得られたパターンに、リンス液によるリンス処理を施してもよい。リンス液としては、例えば、特開2019-215446号公報において、リンス液として例示されたものが挙げられる。
The pattern obtained by development may be subjected to rinsing treatment using a rinsing liquid. Examples of the rinsing liquid include those exemplified as the rinsing liquid in JP-A No. 2019-215446.
さらに、必要に応じて、感光性層の残存溶剤や現像液を乾燥させる工程(乾燥工程)を有してもよい。残存溶剤や現像液を乾燥除去することにより、後述する焼成体を製造する際に、収縮率を低減することができる。乾燥方法としては、感光性層の形成における乾燥方法として例示した方法が挙げられる。
Furthermore, if necessary, a step of drying the remaining solvent and developer in the photosensitive layer (drying step) may be included. By drying and removing the residual solvent and developer, the shrinkage rate can be reduced when producing the fired body described below. Examples of the drying method include the methods exemplified as the drying method for forming the photosensitive layer.
次に、本発明の導電パターン付きセラミックグリーンシートの製造方法の第二の態様について説明する。
Next, a second embodiment of the method for manufacturing a ceramic green sheet with a conductive pattern of the present invention will be described.
(積層工程)
前述の感光性層付き基材を準備し、感光性層がセラミックグリーンシートに接するように感光性層付き基材をセラミックグリーンシート上に積層する。積層工程においては、感光性層付き基材の基材を剥離する必要がない。その他は第一の態様における(転写工程)と同様である。 (Lamination process)
The above-described base material with a photosensitive layer is prepared, and the base material with a photosensitive layer is laminated on the ceramic green sheet so that the photosensitive layer is in contact with the ceramic green sheet. In the lamination process, there is no need to peel off the base material of the photosensitive layer-coated base material. The rest is the same as (transfer step) in the first embodiment.
前述の感光性層付き基材を準備し、感光性層がセラミックグリーンシートに接するように感光性層付き基材をセラミックグリーンシート上に積層する。積層工程においては、感光性層付き基材の基材を剥離する必要がない。その他は第一の態様における(転写工程)と同様である。 (Lamination process)
The above-described base material with a photosensitive layer is prepared, and the base material with a photosensitive layer is laminated on the ceramic green sheet so that the photosensitive layer is in contact with the ceramic green sheet. In the lamination process, there is no need to peel off the base material of the photosensitive layer-coated base material. The rest is the same as (transfer step) in the first embodiment.
(露光工程B)
感光性層付き基材の基材に露光マスクを接触させて露光する。基材に露光マスクを接触されることにより、露光マスクと感光性層とのギャップを一定に保つことができ、パターン線幅均一性が向上する。また、露光マスクと感光性層が直接接しないため、感光性層の欠損を抑制し、導電パターンの断線をより抑制することができる。露光後に基材を剥離することを除き、その他は第一の態様における(露光工程A)と同様である。 (Exposure process B)
An exposure mask is brought into contact with the base material of the base material with a photosensitive layer, and the base material is exposed to light. By bringing the exposure mask into contact with the base material, the gap between the exposure mask and the photosensitive layer can be kept constant, improving the uniformity of the pattern line width. Furthermore, since the exposure mask and the photosensitive layer do not come into direct contact with each other, it is possible to suppress defects in the photosensitive layer and further suppress disconnections in the conductive pattern. Except for peeling off the base material after exposure, the rest is the same as (exposure step A) in the first embodiment.
感光性層付き基材の基材に露光マスクを接触させて露光する。基材に露光マスクを接触されることにより、露光マスクと感光性層とのギャップを一定に保つことができ、パターン線幅均一性が向上する。また、露光マスクと感光性層が直接接しないため、感光性層の欠損を抑制し、導電パターンの断線をより抑制することができる。露光後に基材を剥離することを除き、その他は第一の態様における(露光工程A)と同様である。 (Exposure process B)
An exposure mask is brought into contact with the base material of the base material with a photosensitive layer, and the base material is exposed to light. By bringing the exposure mask into contact with the base material, the gap between the exposure mask and the photosensitive layer can be kept constant, improving the uniformity of the pattern line width. Furthermore, since the exposure mask and the photosensitive layer do not come into direct contact with each other, it is possible to suppress defects in the photosensitive layer and further suppress disconnections in the conductive pattern. Except for peeling off the base material after exposure, the rest is the same as (exposure step A) in the first embodiment.
(現像工程)および(積層工程)は、第一の態様と同様であり、さらに乾燥工程を有してもよい。
(Developing step) and (laminating step) are the same as in the first embodiment, and may further include a drying step.
本発明における導電パターン付きセラミックグリーンシートは、複数積層して積層体として用いることができる。積層することにより、導電パターンの厚みを大きくすることができる。積層数は、2~30層が好ましい。積層数を30層以下とすることにより、層間のアライメントずれの影響を抑制することができる。
The ceramic green sheets with conductive patterns in the present invention can be used as a laminate by laminating a plurality of them. By stacking, the thickness of the conductive pattern can be increased. The number of laminated layers is preferably 2 to 30 layers. By setting the number of laminated layers to 30 or less, the influence of misalignment between layers can be suppressed.
本発明の積層体の製造方法の第一の態様は、
前述の方法により第1の導電パターンを形成し、導電パターン付きセラミックグリーンシートを得る工程、
第1の導電パターン付きセラミックグリーンシートの導電パターン側にセラミックグリーンシートを形成する工程、および、
第1の導電パターン付きセラミックグリーンシート形成したセラミックグリーンシート上に、前述の方法により第2の導電パターンを形成する工程
を有することが好ましい。 The first aspect of the method for manufacturing a laminate of the present invention is:
forming a first conductive pattern by the method described above to obtain a ceramic green sheet with a conductive pattern;
forming a ceramic green sheet on the conductive pattern side of the first conductive patterned ceramic green sheet, and
It is preferable to have a step of forming a second conductive pattern by the method described above on the ceramic green sheet formed with the first conductive pattern.
前述の方法により第1の導電パターンを形成し、導電パターン付きセラミックグリーンシートを得る工程、
第1の導電パターン付きセラミックグリーンシートの導電パターン側にセラミックグリーンシートを形成する工程、および、
第1の導電パターン付きセラミックグリーンシート形成したセラミックグリーンシート上に、前述の方法により第2の導電パターンを形成する工程
を有することが好ましい。 The first aspect of the method for manufacturing a laminate of the present invention is:
forming a first conductive pattern by the method described above to obtain a ceramic green sheet with a conductive pattern;
forming a ceramic green sheet on the conductive pattern side of the first conductive patterned ceramic green sheet, and
It is preferable to have a step of forming a second conductive pattern by the method described above on the ceramic green sheet formed with the first conductive pattern.
本発明の積層体の製造方法の第二の態様は、
前述の方法により複数の導電パターン付きセラミックグリーンシートを得る工程、および、
複数の導電パターン付きセラミックグリーンシートを積層して熱圧着する工程
を有することが好ましい。積層方法としては、例えば、ガイド孔を用いてセラミックグリーンシートを積み重ねる方法などが挙げられる。熱圧着装置としては、例えば、油圧式プレス機などが挙げられる。熱圧着温度は90~130℃が好ましく、熱圧着圧力は5~20MPaが好ましい。 The second aspect of the method for manufacturing a laminate of the present invention is
Obtaining a plurality of ceramic green sheets with conductive patterns by the method described above, and
It is preferable to include a step of laminating and thermocompression bonding a plurality of ceramic green sheets with conductive patterns. Examples of the lamination method include a method of stacking ceramic green sheets using guide holes. Examples of the thermocompression bonding device include a hydraulic press machine. The thermocompression temperature is preferably 90 to 130°C, and the thermocompression pressure is preferably 5 to 20 MPa.
前述の方法により複数の導電パターン付きセラミックグリーンシートを得る工程、および、
複数の導電パターン付きセラミックグリーンシートを積層して熱圧着する工程
を有することが好ましい。積層方法としては、例えば、ガイド孔を用いてセラミックグリーンシートを積み重ねる方法などが挙げられる。熱圧着装置としては、例えば、油圧式プレス機などが挙げられる。熱圧着温度は90~130℃が好ましく、熱圧着圧力は5~20MPaが好ましい。 The second aspect of the method for manufacturing a laminate of the present invention is
Obtaining a plurality of ceramic green sheets with conductive patterns by the method described above, and
It is preferable to include a step of laminating and thermocompression bonding a plurality of ceramic green sheets with conductive patterns. Examples of the lamination method include a method of stacking ceramic green sheets using guide holes. Examples of the thermocompression bonding device include a hydraulic press machine. The thermocompression temperature is preferably 90 to 130°C, and the thermocompression pressure is preferably 5 to 20 MPa.
本発明における導電パターン付きセラミックスグリーンシートや積層体は、焼成して焼成体として用いることができる。焼成体の厚みは、焼成時の断線を抑制する観点から、2μm以上が好ましい。一方、焼成体の厚みは、焼成時の膨れを抑制する観点から、20μmが好ましい。また、焼成体における導電パターンの線幅は、焼成時の断線を抑制する観点から、5μm以上が好ましい。一方、焼成体における導電パターンの線幅は、アスペクト比を向上させる観点から、40μm以下が好ましい。
The ceramic green sheet or laminate with a conductive pattern in the present invention can be fired and used as a fired product. The thickness of the fired body is preferably 2 μm or more from the viewpoint of suppressing wire breakage during firing. On the other hand, the thickness of the fired body is preferably 20 μm from the viewpoint of suppressing swelling during firing. Further, the line width of the conductive pattern in the fired body is preferably 5 μm or more from the viewpoint of suppressing disconnection during firing. On the other hand, the line width of the conductive pattern in the fired body is preferably 40 μm or less from the viewpoint of improving the aspect ratio.
本発明の焼成体の製造方法は、
前述の製造方法により導電パターン付きセラミックグリーンシートまたはその積層体を得る工程、および、得られた導電パターン付きセラミックグリーンシートまたはその積層体を焼成する工程
を有することが好ましい。焼成方法としては、例えば、300~600℃で5分間~数時間熱処理した後、さらに850~900℃で5分間~数時間熱処理する方法などが挙げられる。 The method for producing a fired body of the present invention includes:
It is preferable to have a step of obtaining a ceramic green sheet with a conductive pattern or a laminate thereof by the above-described manufacturing method, and a step of firing the obtained ceramic green sheet with a conductive pattern or a laminate thereof. Examples of the firing method include a method in which heat treatment is performed at 300 to 600°C for 5 minutes to several hours, and then further heat treatment is performed at 850 to 900°C for 5 minutes to several hours.
前述の製造方法により導電パターン付きセラミックグリーンシートまたはその積層体を得る工程、および、得られた導電パターン付きセラミックグリーンシートまたはその積層体を焼成する工程
を有することが好ましい。焼成方法としては、例えば、300~600℃で5分間~数時間熱処理した後、さらに850~900℃で5分間~数時間熱処理する方法などが挙げられる。 The method for producing a fired body of the present invention includes:
It is preferable to have a step of obtaining a ceramic green sheet with a conductive pattern or a laminate thereof by the above-described manufacturing method, and a step of firing the obtained ceramic green sheet with a conductive pattern or a laminate thereof. Examples of the firing method include a method in which heat treatment is performed at 300 to 600°C for 5 minutes to several hours, and then further heat treatment is performed at 850 to 900°C for 5 minutes to several hours.
本発明の焼成体の製造方法の一例として、積層チップインダクタの製造方法を以下に説明する。
As an example of the method for manufacturing the fired body of the present invention, a method for manufacturing a laminated chip inductor will be described below.
まず、本発明の導電パターン付きセラミックグリーンシートの製造方法により、第1の導電パターンを形成し、導電パターン付きセラミックグリーンシートを得る。次に、第1の導電パターン付きセラミックグリーンシートの導電パターン側にセラミックグリーンシートを形成する。さらに形成したセラミックグリーンシートにビアホールを形成し、ビアホールに導体を埋め込むことにより、層間接続配線を形成する。ビアホール形成方法としては、例えば、レーザー照射などが挙げられる。セラミックグリーンシートが感光性を有する場合は、ビア形状をもつマスクを介して、露光、現像することにより、精度よくビアを形成することができる。層間接続配線を形成する方法としては、例えば、スクリーン印刷法により導体ペーストを埋め込み、乾燥する方法などが挙げられる。導体ペーストとしては、例えば、銅、銀、銀-パラジウム合金を含有するペーストが挙げられる。続けて、導電パターン付きセラミックグリーンシートを形成したセラミックグリーンシートに本発明の製造方法により第2の導電パターンを形成する。これらを繰り返すことにより、積層体を得ることができる。また、本発明における導電パターン付きセラミックグリーンシートを複数準備して、積層して熱圧着することによっても、積層体を得ることができる。
First, a first conductive pattern is formed by the method for manufacturing a ceramic green sheet with a conductive pattern of the present invention, and a ceramic green sheet with a conductive pattern is obtained. Next, a ceramic green sheet is formed on the conductive pattern side of the first ceramic green sheet with a conductive pattern. Further, a via hole is formed in the formed ceramic green sheet, and a conductor is embedded in the via hole to form an interlayer connection wiring. Examples of the via hole forming method include laser irradiation. When the ceramic green sheet is photosensitive, vias can be formed with high precision by exposing and developing the sheet through a mask having a via shape. Examples of the method for forming the interlayer connection wiring include a method of embedding conductive paste using a screen printing method and drying it. Examples of the conductive paste include pastes containing copper, silver, and silver-palladium alloys. Subsequently, a second conductive pattern is formed on the ceramic green sheet with a conductive pattern formed thereon by the manufacturing method of the present invention. By repeating these steps, a laminate can be obtained. Further, a laminate can also be obtained by preparing a plurality of ceramic green sheets with conductive patterns according to the present invention, stacking them and thermocompression bonding them.
得られた積層体を所望のチップサイズにダイシングし、焼成し、端子電極を塗布し、メッキ処理をすることにより、積層チップインダクタを得ることができる。これらの方法としては、特開2019-215446号公報において、積層チップインダクタの製造方法として例示した方法が挙げられる。
A multilayer chip inductor can be obtained by dicing the obtained multilayer body into a desired chip size, firing it, applying terminal electrodes, and plating it. Examples of these methods include the method exemplified as a method for manufacturing a multilayer chip inductor in JP-A-2019-215446.
以下、実施例及び比較例を挙げて、本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
各実施例および比較例において用いた材料は以下のとおりである。
The materials used in each example and comparative example are as follows.
導電粒子(a):粒径(D50)2.1μm、比抵抗1.6×10-8Ω・mのAg粒子(以下、Ag粒子と称す)。なお、導電粒子の粒径(D50)は、粒度分布測定装置(Microtrac HRA Model No.9320-X100;日機装(株)製)を用いて、レーザー光散乱法により測定した。
Conductive particles (a): Ag particles (hereinafter referred to as Ag particles) having a particle size (D50) of 2.1 μm and a specific resistance of 1.6×10 −8 Ω·m. The particle size (D50) of the conductive particles was measured by a laser light scattering method using a particle size distribution measuring device (Microtrac HRA Model No. 9320-X100; manufactured by Nikkiso Co., Ltd.).
非導電粒子(b):粒径(D50)12nm、絶縁性のシリカ粉末“AEROSIL(登録商標)”R972(日本アエロジル(株)製)(以下、アエロジルR972と称す)。なお、非導電粒子の粒径(D50)は、非導電粒子を水に加え、300秒間超音波処理を行った後、Nanotrac WaveII-UZ251(MicrotracBEL社製)を用いて、動的光散乱法により測定した。
Non-conductive particles (b): Particle size (D50) 12 nm, insulating silica powder "AEROSIL (registered trademark)" R972 (manufactured by Nippon Aerosil Co., Ltd.) (hereinafter referred to as Aerosil R972). The particle size (D50) of the non-conductive particles was determined by adding the non-conductive particles to water, performing ultrasonic treatment for 300 seconds, and then using a dynamic light scattering method using Nanotrac Wave II-UZ251 (manufactured by Microtrac BEL). It was measured.
アルカリ可溶性樹脂(c):
c-1:メタクリル酸/メタクリル酸メチル/スチレン=54/23/23(モル比)の共重合体のカルボキシル基100モル部に対して、40モル部のグリシジルメタクリレートを付加反応させることでカルボキシル基含有アクリル系共重合体(c-1)を得た。(不飽和二重結合有、重量平均分子量30,000、ガラス転移温度110℃)。 Alkali-soluble resin (c):
c-1: Carboxyl groups are added by adding 40 moles of glycidyl methacrylate to 100 moles of carboxyl groups of a copolymer of methacrylic acid/methyl methacrylate/styrene = 54/23/23 (mole ratio). A containing acrylic copolymer (c-1) was obtained. (Contains unsaturated double bonds, weight average molecular weight 30,000, glass transition temperature 110°C).
c-1:メタクリル酸/メタクリル酸メチル/スチレン=54/23/23(モル比)の共重合体のカルボキシル基100モル部に対して、40モル部のグリシジルメタクリレートを付加反応させることでカルボキシル基含有アクリル系共重合体(c-1)を得た。(不飽和二重結合有、重量平均分子量30,000、ガラス転移温度110℃)。 Alkali-soluble resin (c):
c-1: Carboxyl groups are added by adding 40 moles of glycidyl methacrylate to 100 moles of carboxyl groups of a copolymer of methacrylic acid/methyl methacrylate/styrene = 54/23/23 (mole ratio). A containing acrylic copolymer (c-1) was obtained. (Contains unsaturated double bonds, weight average molecular weight 30,000, glass transition temperature 110°C).
c-2:JONCRYL690(不飽和二重結合無、重合平均分子量16,500、ガラス転移温度102℃;BASFジャパン(株)製)。
c-2: JONCRYL690 (no unsaturated double bonds, polymerization average molecular weight 16,500, glass transition temperature 102°C; manufactured by BASF Japan Co., Ltd.).
c-3:JONCRYL819(不飽和二重結合無、重合平均分子量14,500、ガラス転移温度57℃;BASFジャパン(株)製)。
c-3: JONCRYL819 (no unsaturated double bonds, polymerization average molecular weight 14,500, glass transition temperature 57°C; manufactured by BASF Japan Co., Ltd.).
感光剤(d):オキシム系光重合開始剤“オプトマー(登録商標)”N-1919((株)ADEKA製)(以下、N-1919と称す)。
Photosensitizer (d): Oxime-based photopolymerization initiator "Optomer (registered trademark)" N-1919 (manufactured by ADEKA Co., Ltd.) (hereinafter referred to as N-1919).
溶剤(e):
e-1:シクロヘキサノールアセテート“セルトール(登録商標)”CHXA((株)ダイセル製、大気圧下における沸点:173℃)。 Solvent (e):
e-1: Cyclohexanol acetate “Celtol (registered trademark)” CHXA (manufactured by Daicel Corporation, boiling point at atmospheric pressure: 173° C.).
e-1:シクロヘキサノールアセテート“セルトール(登録商標)”CHXA((株)ダイセル製、大気圧下における沸点:173℃)。 Solvent (e):
e-1: Cyclohexanol acetate “Celtol (registered trademark)” CHXA (manufactured by Daicel Corporation, boiling point at atmospheric pressure: 173° C.).
e-2:プロピレングリコールモノメチルエーテルアセテート(大気圧下における沸点:146℃)。
e-2: Propylene glycol monomethyl ether acetate (boiling point at atmospheric pressure: 146°C).
感光性モノマー:エステル構造含有ウレタンアクリレートNKオリゴUA-122P(粘度7.0Pa・s、重量平均分子量1,100、新中村化学工業(株)製)(以下、UA-122Pと称す)。
Photosensitive monomer: ester structure-containing urethane acrylate NK oligo UA-122P (viscosity 7.0 Pa·s, weight average molecular weight 1,100, manufactured by Shin Nakamura Chemical Co., Ltd.) (hereinafter referred to as UA-122P).
レベリング剤:“ディスパロン(登録商標)”L-1980N(楠本化成(株)製)(以下、L-1980Nと称す)。
Leveling agent: “Disparon (registered trademark)” L-1980N (manufactured by Kusumoto Kasei Co., Ltd.) (hereinafter referred to as L-1980N).
分散剤:フローレンG-700(共栄社化学(株)製)(以下、G-700と称す)。
Dispersant: Floren G-700 (manufactured by Kyoeisha Chemical Co., Ltd.) (hereinafter referred to as G-700).
<セラミックグリーンシート付き基板の製造>
セラミックス粉末“パルセラム(登録商標)”BT149(日本化学工業(株)製)250g、前述のアルカリ可溶性樹脂(c)240g、可塑剤としてフタル酸ジブチル80g、光重合開始剤として“IRGACURE(登録商標)”651(BASF社製)30g、溶媒としてエチレングリコールモノブチルエーテル160gを計量し、混合し、3本ローラーを用いて混練して組成物を得た。 <Manufacture of substrate with ceramic green sheet>
250 g of ceramic powder "Pulceram (registered trademark)" BT149 (manufactured by Nihon Kagaku Kogyo Co., Ltd.), 240 g of the above-mentioned alkali-soluble resin (c), 80 g of dibutyl phthalate as a plasticizer, and "IRGACURE (registered trademark)" as a photopolymerization initiator. 651 (manufactured by BASF) and 160 g of ethylene glycol monobutyl ether as a solvent were weighed, mixed, and kneaded using three rollers to obtain a composition.
セラミックス粉末“パルセラム(登録商標)”BT149(日本化学工業(株)製)250g、前述のアルカリ可溶性樹脂(c)240g、可塑剤としてフタル酸ジブチル80g、光重合開始剤として“IRGACURE(登録商標)”651(BASF社製)30g、溶媒としてエチレングリコールモノブチルエーテル160gを計量し、混合し、3本ローラーを用いて混練して組成物を得た。 <Manufacture of substrate with ceramic green sheet>
250 g of ceramic powder "Pulceram (registered trademark)" BT149 (manufactured by Nihon Kagaku Kogyo Co., Ltd.), 240 g of the above-mentioned alkali-soluble resin (c), 80 g of dibutyl phthalate as a plasticizer, and "IRGACURE (registered trademark)" as a photopolymerization initiator. 651 (manufactured by BASF) and 160 g of ethylene glycol monobutyl ether as a solvent were weighed, mixed, and kneaded using three rollers to obtain a composition.
厚み100μmのPETフィルム上に、得られた組成物を塗布し、乾燥してセラミックグリーンシート付き基板を作製した。
The obtained composition was applied onto a PET film with a thickness of 100 μm and dried to produce a substrate with a ceramic green sheet.
各実施例および比較例における評価方法を以下に示す。
The evaluation methods for each example and comparative example are shown below.
<感光性層の厚み>
各実施例および比較例において作製した感光性層について、触針式段差計(“サーフコム(登録商標)”1400;(株)東京精密製)を用いて厚みを測定した。 <Thickness of photosensitive layer>
The thickness of the photosensitive layer prepared in each Example and Comparative Example was measured using a stylus-type step meter ("Surfcom (registered trademark)"1400; manufactured by Tokyo Seimitsu Co., Ltd.).
各実施例および比較例において作製した感光性層について、触針式段差計(“サーフコム(登録商標)”1400;(株)東京精密製)を用いて厚みを測定した。 <Thickness of photosensitive layer>
The thickness of the photosensitive layer prepared in each Example and Comparative Example was measured using a stylus-type step meter ("Surfcom (registered trademark)"1400; manufactured by Tokyo Seimitsu Co., Ltd.).
<感光性層中における溶剤含有量>
各実施例および比較例において作製した感光性層付き基材から感光性層のみを剥離してその重量を測定した後、熱風オーブンを用いて、100℃で3時間加熱した後、再度重量を測定した。加熱前後の重量変化量を算出し、加熱前の感光性層の重量に対する割合(%)から感光性層中の溶剤含有量を算出した。
溶剤含有量[重量%]={(加熱前の感光性層重量[g]-加熱後の感光性層重量[g])÷(加熱前の感光性層重量)[g]}×100。 <Solvent content in photosensitive layer>
After peeling only the photosensitive layer from the photosensitive layer-coated substrate prepared in each example and comparative example and measuring its weight, the weight was measured again after heating at 100°C for 3 hours using a hot air oven. did. The weight change before and after heating was calculated, and the solvent content in the photosensitive layer was calculated from the ratio (%) to the weight of the photosensitive layer before heating.
Solvent content [weight %] = {(weight of photosensitive layer before heating [g] - weight of photosensitive layer after heating [g]) ÷ (weight of photosensitive layer before heating) [g]} x 100.
各実施例および比較例において作製した感光性層付き基材から感光性層のみを剥離してその重量を測定した後、熱風オーブンを用いて、100℃で3時間加熱した後、再度重量を測定した。加熱前後の重量変化量を算出し、加熱前の感光性層の重量に対する割合(%)から感光性層中の溶剤含有量を算出した。
溶剤含有量[重量%]={(加熱前の感光性層重量[g]-加熱後の感光性層重量[g])÷(加熱前の感光性層重量)[g]}×100。 <Solvent content in photosensitive layer>
After peeling only the photosensitive layer from the photosensitive layer-coated substrate prepared in each example and comparative example and measuring its weight, the weight was measured again after heating at 100°C for 3 hours using a hot air oven. did. The weight change before and after heating was calculated, and the solvent content in the photosensitive layer was calculated from the ratio (%) to the weight of the photosensitive layer before heating.
Solvent content [weight %] = {(weight of photosensitive layer before heating [g] - weight of photosensitive layer after heating [g]) ÷ (weight of photosensitive layer before heating) [g]} x 100.
<転写性>
各実施例および比較例の転写工程または積層工程において、熱圧着温度50~130℃、熱圧着圧力0.1~0.3MPa、熱圧着時間30s(固定)の条件範囲で、低温、低圧条件から転写工程、積層工程を行い、感光性層から基材を剥離した後、基材表面を目視観察し、基材上に感光性層の残存が認められない条件を転写性の評価とした。 <Transferability>
In the transfer process or lamination process of each example and comparative example, the thermocompression temperature was 50 to 130°C, the thermocompression pressure was 0.1 to 0.3MPa, and the thermocompression time was 30s (fixed), from low temperature and low pressure conditions. After the transfer process and the lamination process were performed and the base material was peeled off from the photosensitive layer, the surface of the base material was visually observed, and the transferability was evaluated under conditions in which no photosensitive layer remained on the base material.
各実施例および比較例の転写工程または積層工程において、熱圧着温度50~130℃、熱圧着圧力0.1~0.3MPa、熱圧着時間30s(固定)の条件範囲で、低温、低圧条件から転写工程、積層工程を行い、感光性層から基材を剥離した後、基材表面を目視観察し、基材上に感光性層の残存が認められない条件を転写性の評価とした。 <Transferability>
In the transfer process or lamination process of each example and comparative example, the thermocompression temperature was 50 to 130°C, the thermocompression pressure was 0.1 to 0.3MPa, and the thermocompression time was 30s (fixed), from low temperature and low pressure conditions. After the transfer process and the lamination process were performed and the base material was peeled off from the photosensitive layer, the surface of the base material was visually observed, and the transferability was evaluated under conditions in which no photosensitive layer remained on the base material.
<微細パターン加工性>
各実施例および比較例により得られた導電パターン付きセラミックグリーンシートに対して、導電パターン部を、光学顕微鏡を用いて倍率1,000倍で拡大観察し、断線および剥がれが認められない最小線幅とした。 <Fine pattern processability>
The conductive pattern portion of the ceramic green sheets with conductive patterns obtained in each example and comparative example was observed under magnification of 1,000 times using an optical microscope, and the minimum line width without disconnection or peeling was observed. And so.
各実施例および比較例により得られた導電パターン付きセラミックグリーンシートに対して、導電パターン部を、光学顕微鏡を用いて倍率1,000倍で拡大観察し、断線および剥がれが認められない最小線幅とした。 <Fine pattern processability>
The conductive pattern portion of the ceramic green sheets with conductive patterns obtained in each example and comparative example was observed under magnification of 1,000 times using an optical microscope, and the minimum line width without disconnection or peeling was observed. And so.
また、各実施例および比較例により得られた導電パターン付きセラミックグリーンシートに対して、露光マスク開口幅15μmに対応する導電パターンを線幅方向に断裁し、パターン断面を、走査型電子顕微鏡(S2400;(株)日立製作所製)を用いて、倍率3,000倍で拡大観察し、導電パターンの頂部の幅と底部の幅を測定し、頂部幅と底部幅の差を算出した。
Further, for the ceramic green sheets with conductive patterns obtained in each example and comparative example, a conductive pattern corresponding to an exposure mask opening width of 15 μm was cut in the line width direction, and a cross section of the pattern was examined using a scanning electron microscope (S2400). (manufactured by Hitachi, Ltd.) at a magnification of 3,000 times, the top width and bottom width of the conductive pattern were measured, and the difference between the top width and the bottom width was calculated.
<線幅均一性>
各実施例および比較例により得られた線幅均一性評価用導電パターン付きセラミックグリーンシートに対して、25ブロックの各ブロックにおける露光マスク開口幅15μmに対応する導電パターンを、光学顕微鏡を用いて倍率1,000倍で拡大し、導電パターン上部の線幅をそれぞれ測定し、その最大値と最小値の差を算出した。 <Line width uniformity>
For the ceramic green sheets with conductive patterns for line width uniformity evaluation obtained in each of the Examples and Comparative Examples, conductive patterns corresponding to the exposure mask opening width of 15 μm in each of the 25 blocks were examined using an optical microscope at a magnification. The line widths above the conductive patterns were each measured under magnification of 1,000 times, and the difference between the maximum and minimum values was calculated.
各実施例および比較例により得られた線幅均一性評価用導電パターン付きセラミックグリーンシートに対して、25ブロックの各ブロックにおける露光マスク開口幅15μmに対応する導電パターンを、光学顕微鏡を用いて倍率1,000倍で拡大し、導電パターン上部の線幅をそれぞれ測定し、その最大値と最小値の差を算出した。 <Line width uniformity>
For the ceramic green sheets with conductive patterns for line width uniformity evaluation obtained in each of the Examples and Comparative Examples, conductive patterns corresponding to the exposure mask opening width of 15 μm in each of the 25 blocks were examined using an optical microscope at a magnification. The line widths above the conductive patterns were each measured under magnification of 1,000 times, and the difference between the maximum and minimum values was calculated.
<断線確率>
各実施例および比較例により得られた断線確率評価用導電パターン付きセラミックグリーンシート各100個を、880℃で10分間焼成し、焼成体を得た。得られた焼成体に対して、デジタルマルチメータ(CDM-16D;カスタム社製)を用いて、抵抗値を測定し、抵抗値が測定できない場合を断線とした。焼成体100個中における断線発生サンプル個数の割合(%)を断線確率とした。 <Probability of disconnection>
100 ceramic green sheets each with a conductive pattern for evaluating disconnection probability obtained in each of the Examples and Comparative Examples were fired at 880° C. for 10 minutes to obtain fired bodies. The resistance value of the obtained fired body was measured using a digital multimeter (CDM-16D; manufactured by Custom Co., Ltd.), and a case where the resistance value could not be measured was determined to be a disconnection. The ratio (%) of the number of samples in which wire breakage occurred among 100 fired bodies was defined as the wire breakage probability.
各実施例および比較例により得られた断線確率評価用導電パターン付きセラミックグリーンシート各100個を、880℃で10分間焼成し、焼成体を得た。得られた焼成体に対して、デジタルマルチメータ(CDM-16D;カスタム社製)を用いて、抵抗値を測定し、抵抗値が測定できない場合を断線とした。焼成体100個中における断線発生サンプル個数の割合(%)を断線確率とした。 <Probability of disconnection>
100 ceramic green sheets each with a conductive pattern for evaluating disconnection probability obtained in each of the Examples and Comparative Examples were fired at 880° C. for 10 minutes to obtain fired bodies. The resistance value of the obtained fired body was measured using a digital multimeter (CDM-16D; manufactured by Custom Co., Ltd.), and a case where the resistance value could not be measured was determined to be a disconnection. The ratio (%) of the number of samples in which wire breakage occurred among 100 fired bodies was defined as the wire breakage probability.
(実施例1)
<感光性ペーストの調製>
200mLクリーンボトルに、14.8gのc-1、2.0gのN-1919、60.0gのe-1、7.5gのUA-122P、0.4gのL-1980N、0.4gのG-700を入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、85.1gの樹脂溶液を得た。得られた樹脂溶液と、248.1gのAg粒子、1.6gのアエロジルR972を混ぜ合わせ、3本ローラー (EXAKT M-50;EXAKT社製)を用いて混錬し、334.8gの感光性ペーストを得た。 (Example 1)
<Preparation of photosensitive paste>
In a 200mL clean bottle, 14.8g c-1, 2.0g N-1919, 60.0g e-1, 7.5g UA-122P, 0.4g L-1980N, 0.4g G -700 and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 85.1 g of a resin solution. The obtained resin solution, 248.1 g of Ag particles, and 1.6 g of Aerosil R972 were mixed and kneaded using three rollers (EXAKT M-50; manufactured by EXAKT) to form 334.8 g of photosensitive material. Got the paste.
<感光性ペーストの調製>
200mLクリーンボトルに、14.8gのc-1、2.0gのN-1919、60.0gのe-1、7.5gのUA-122P、0.4gのL-1980N、0.4gのG-700を入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、85.1gの樹脂溶液を得た。得られた樹脂溶液と、248.1gのAg粒子、1.6gのアエロジルR972を混ぜ合わせ、3本ローラー (EXAKT M-50;EXAKT社製)を用いて混錬し、334.8gの感光性ペーストを得た。 (Example 1)
<Preparation of photosensitive paste>
In a 200mL clean bottle, 14.8g c-1, 2.0g N-1919, 60.0g e-1, 7.5g UA-122P, 0.4g L-1980N, 0.4g G -700 and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 85.1 g of a resin solution. The obtained resin solution, 248.1 g of Ag particles, and 1.6 g of Aerosil R972 were mixed and kneaded using three rollers (EXAKT M-50; manufactured by EXAKT) to form 334.8 g of photosensitive material. Got the paste.
<感光性層付き基板の製造>
厚み50μmのPET基材上に、前述の方法により得られた感光性ペーストを、スクリーン印刷法により塗布し、温度55℃で15分間乾燥して、厚み11μmの感光性層を形成し、感光性層付き基板を得た。感光性層の溶剤(e)含有量は1.0質量%であった。 <Manufacture of substrate with photosensitive layer>
The photosensitive paste obtained by the above method was applied by screen printing onto a PET substrate with a thickness of 50 μm, and dried at a temperature of 55° C. for 15 minutes to form a photosensitive layer with a thickness of 11 μm. A layered substrate was obtained. The content of solvent (e) in the photosensitive layer was 1.0% by mass.
厚み50μmのPET基材上に、前述の方法により得られた感光性ペーストを、スクリーン印刷法により塗布し、温度55℃で15分間乾燥して、厚み11μmの感光性層を形成し、感光性層付き基板を得た。感光性層の溶剤(e)含有量は1.0質量%であった。 <Manufacture of substrate with photosensitive layer>
The photosensitive paste obtained by the above method was applied by screen printing onto a PET substrate with a thickness of 50 μm, and dried at a temperature of 55° C. for 15 minutes to form a photosensitive layer with a thickness of 11 μm. A layered substrate was obtained. The content of solvent (e) in the photosensitive layer was 1.0% by mass.
<転写工程>
次に、前述のセラミックグリーンシート付き基板と、得られた感光性層付き基板とを、感光性層がセラミックグリーンシートに接するように対向させて、プレス機を用いて感光性層をセラミックグリーンシート上に転写した。この時の転写条件は、熱圧着温度:100℃、熱圧着時間:30秒間、熱圧着圧力:0.3MPaの条件であった。 <Transfer process>
Next, the above-mentioned substrate with a ceramic green sheet and the obtained substrate with a photosensitive layer are placed facing each other so that the photosensitive layer is in contact with the ceramic green sheet, and a press is used to press the photosensitive layer onto the ceramic green sheet. transcribed above. The transfer conditions at this time were: thermocompression temperature: 100° C., thermocompression time: 30 seconds, and thermocompression pressure: 0.3 MPa.
次に、前述のセラミックグリーンシート付き基板と、得られた感光性層付き基板とを、感光性層がセラミックグリーンシートに接するように対向させて、プレス機を用いて感光性層をセラミックグリーンシート上に転写した。この時の転写条件は、熱圧着温度:100℃、熱圧着時間:30秒間、熱圧着圧力:0.3MPaの条件であった。 <Transfer process>
Next, the above-mentioned substrate with a ceramic green sheet and the obtained substrate with a photosensitive layer are placed facing each other so that the photosensitive layer is in contact with the ceramic green sheet, and a press is used to press the photosensitive layer onto the ceramic green sheet. transcribed above. The transfer conditions at this time were: thermocompression temperature: 100° C., thermocompression time: 30 seconds, and thermocompression pressure: 0.3 MPa.
<露光工程A>
露出した感光性層に露光マスクを接触させ、露光装置(PEM-6M;ユニオン光学(株)製)を用いて、365nmの波長換算で300mJ/cm2全線露光を行った。露光マスクとしては、開口幅5~40μmの範囲で1μm刻みの細線を有するものを用いた。また、線幅均一性評価用サンプルとして、縦横5ブロックずつ合計25ブロックに、それぞれ前記線幅の細線を有する露光マスクを用いた。また、断線確率評価用サンプルとして、図1に示す形状を有する、開口幅(L)40μm、長さ4.0cmの開口部を有する露光マスクを用いた。 <Exposure process A>
An exposure mask was brought into contact with the exposed photosensitive layer, and full-line exposure was performed at 300 mJ/cm 2 in terms of a wavelength of 365 nm using an exposure device (PEM-6M; manufactured by Union Optical Co., Ltd.). The exposure mask used had thin lines in 1 μm increments with an opening width in the range of 5 to 40 μm. Further, as a sample for evaluating line width uniformity, an exposure mask having thin lines with the above-mentioned line widths was used in a total of 25 blocks, 5 blocks in each direction and 5 blocks in each direction. Further, as a sample for evaluating the disconnection probability, an exposure mask having the shape shown in FIG. 1 and having an opening with an opening width (L) of 40 μm and a length of 4.0 cm was used.
露出した感光性層に露光マスクを接触させ、露光装置(PEM-6M;ユニオン光学(株)製)を用いて、365nmの波長換算で300mJ/cm2全線露光を行った。露光マスクとしては、開口幅5~40μmの範囲で1μm刻みの細線を有するものを用いた。また、線幅均一性評価用サンプルとして、縦横5ブロックずつ合計25ブロックに、それぞれ前記線幅の細線を有する露光マスクを用いた。また、断線確率評価用サンプルとして、図1に示す形状を有する、開口幅(L)40μm、長さ4.0cmの開口部を有する露光マスクを用いた。 <Exposure process A>
An exposure mask was brought into contact with the exposed photosensitive layer, and full-line exposure was performed at 300 mJ/cm 2 in terms of a wavelength of 365 nm using an exposure device (PEM-6M; manufactured by Union Optical Co., Ltd.). The exposure mask used had thin lines in 1 μm increments with an opening width in the range of 5 to 40 μm. Further, as a sample for evaluating line width uniformity, an exposure mask having thin lines with the above-mentioned line widths was used in a total of 25 blocks, 5 blocks in each direction and 5 blocks in each direction. Further, as a sample for evaluating the disconnection probability, an exposure mask having the shape shown in FIG. 1 and having an opening with an opening width (L) of 40 μm and a length of 4.0 cm was used.
<現像工程>
0.2質量%のNa2CO3溶液に、露光した感光性層を有する基板を浸漬した後、超純水によるリンス処理を行い、導電パターン付きセラミックグリーンシート基板を得た。 <Developing process>
The substrate having the exposed photosensitive layer was immersed in a 0.2% by mass Na 2 CO 3 solution, and then rinsed with ultrapure water to obtain a ceramic green sheet substrate with a conductive pattern.
0.2質量%のNa2CO3溶液に、露光した感光性層を有する基板を浸漬した後、超純水によるリンス処理を行い、導電パターン付きセラミックグリーンシート基板を得た。 <Developing process>
The substrate having the exposed photosensitive layer was immersed in a 0.2% by mass Na 2 CO 3 solution, and then rinsed with ultrapure water to obtain a ceramic green sheet substrate with a conductive pattern.
前述の方法により評価した結果を表1に示す。
Table 1 shows the results evaluated by the method described above.
(実施例2~3、比較例1)
<感光性層付き基板の製造>において、乾燥条件を表1に記載のとおりに変更したこと以外は実施例1と同様にしたところ、感光性層の溶剤(e)含有量は表1のとおりであった。得られた感光性層付き基板を用いて、実施例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Examples 2-3, Comparative Example 1)
<Manufacture of photosensitive layer-equipped substrate> was carried out in the same manner as in Example 1 except that the drying conditions were changed as shown in Table 1, and the solvent (e) content of the photosensitive layer was as shown in Table 1. Met. Using the obtained substrate with a photosensitive layer, a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1. Table 1 shows the results evaluated by the method described above.
<感光性層付き基板の製造>において、乾燥条件を表1に記載のとおりに変更したこと以外は実施例1と同様にしたところ、感光性層の溶剤(e)含有量は表1のとおりであった。得られた感光性層付き基板を用いて、実施例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Examples 2-3, Comparative Example 1)
<Manufacture of photosensitive layer-equipped substrate> was carried out in the same manner as in Example 1 except that the drying conditions were changed as shown in Table 1, and the solvent (e) content of the photosensitive layer was as shown in Table 1. Met. Using the obtained substrate with a photosensitive layer, a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1. Table 1 shows the results evaluated by the method described above.
(実施例4~6、比較例2)
<転写工程>にかえて感光性層付き基板の基材を剥離しない<積層工程>とし、<露光工程A>にかえて露光マスクを感光性層付き基板の基材に接触させ、露光後に基材を剥離する<露光工程B>としたこと以外はそれぞれ実施例1~3および比較例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Examples 4 to 6, Comparative Example 2)
Instead of the <transfer step>, a <lamination step> is performed in which the base material of the substrate with a photosensitive layer is not peeled off, and instead of <exposure step A>, an exposure mask is brought into contact with the base material of the substrate with a photosensitive layer, and the base material is removed after exposure. Ceramic green sheets with conductive patterns were obtained in the same manner as in Examples 1 to 3 and Comparative Example 1, except that <exposure step B> in which the material was peeled off was used. Table 1 shows the results evaluated by the method described above.
<転写工程>にかえて感光性層付き基板の基材を剥離しない<積層工程>とし、<露光工程A>にかえて露光マスクを感光性層付き基板の基材に接触させ、露光後に基材を剥離する<露光工程B>としたこと以外はそれぞれ実施例1~3および比較例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Examples 4 to 6, Comparative Example 2)
Instead of the <transfer step>, a <lamination step> is performed in which the base material of the substrate with a photosensitive layer is not peeled off, and instead of <exposure step A>, an exposure mask is brought into contact with the base material of the substrate with a photosensitive layer, and the base material is removed after exposure. Ceramic green sheets with conductive patterns were obtained in the same manner as in Examples 1 to 3 and Comparative Example 1, except that <exposure step B> in which the material was peeled off was used. Table 1 shows the results evaluated by the method described above.
(実施例7~8)
<感光性ペーストの調製>
200mLクリーンボトルに、7.4gのc-1、7.4gのc-2、2.0gのN-1919、60.0gのe-1、7.5gのUA-122P、0.4gのL-1980N、0.4gのG-700を入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合 して、85.1gの樹脂溶液を得た。得られた樹脂溶液と、248.1gのAg粒子、1.6gのアエロジルR972を混ぜ合わせ、3本ローラー (EXAKT M-50;EXAKT社製)を用いて混錬し、334.8gの感光性ペー ストを得た。 (Examples 7-8)
<Preparation of photosensitive paste>
In a 200mL clean bottle, 7.4g c-1, 7.4g c-2, 2.0g N-1919, 60.0g e-1, 7.5g UA-122P, 0.4g L -1980N, 0.4g of G-700 was added and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to produce 85.1g of resin. A solution was obtained. The obtained resin solution, 248.1 g of Ag particles, and 1.6 g of Aerosil R972 were mixed and kneaded using three rollers (EXAKT M-50; manufactured by EXAKT) to form 334.8 g of photosensitive material. I got the paste.
<感光性ペーストの調製>
200mLクリーンボトルに、7.4gのc-1、7.4gのc-2、2.0gのN-1919、60.0gのe-1、7.5gのUA-122P、0.4gのL-1980N、0.4gのG-700を入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合 して、85.1gの樹脂溶液を得た。得られた樹脂溶液と、248.1gのAg粒子、1.6gのアエロジルR972を混ぜ合わせ、3本ローラー (EXAKT M-50;EXAKT社製)を用いて混錬し、334.8gの感光性ペー ストを得た。 (Examples 7-8)
<Preparation of photosensitive paste>
In a 200mL clean bottle, 7.4g c-1, 7.4g c-2, 2.0g N-1919, 60.0g e-1, 7.5g UA-122P, 0.4g L -1980N, 0.4g of G-700 was added and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to produce 85.1g of resin. A solution was obtained. The obtained resin solution, 248.1 g of Ag particles, and 1.6 g of Aerosil R972 were mixed and kneaded using three rollers (EXAKT M-50; manufactured by EXAKT) to form 334.8 g of photosensitive material. I got the paste.
<感光性層付き基板の製造>において、乾燥条件を表1に記載のとおりに変更したこと以外は実施例1と同様にしたところ、感光性層の溶剤(e)含有量は表1のとおりであった。得られた感光性層付き基板を用いて、実施例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。
<Manufacture of a substrate with a photosensitive layer> was carried out in the same manner as in Example 1 except that the drying conditions were changed as shown in Table 1, and the solvent (e) content of the photosensitive layer was as shown in Table 1. Met. Using the obtained substrate with a photosensitive layer, a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1. Table 1 shows the results evaluated by the method described above.
(実施例9~10)
<感光性ペーストの調製>
200mLクリーンボトルに、7.4gのc-1、7.4gのc-3、2.0gのN-1919、60.0gのe-1、7.5gのUA-122P、0.4gのL-1980N、0.4gのG-700を入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合 して、85.1gの樹脂溶液を得た。得られた樹脂溶液と、248.1gのAg粒子、1.6gのアエロジルR972を混ぜ合わせ、3本ローラー (EXAKT M-50;EXAKT社製)を用いて混錬し、334.8gの感光性ペー ストを得た。 (Examples 9-10)
<Preparation of photosensitive paste>
In a 200mL clean bottle, 7.4g c-1, 7.4g c-3, 2.0g N-1919, 60.0g e-1, 7.5g UA-122P, 0.4g L -1980N, 0.4g of G-700 was added and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to produce 85.1g of resin. A solution was obtained. The obtained resin solution, 248.1 g of Ag particles, and 1.6 g of Aerosil R972 were mixed and kneaded using three rollers (EXAKT M-50; manufactured by EXAKT) to form 334.8 g of photosensitive material. I got the paste.
<感光性ペーストの調製>
200mLクリーンボトルに、7.4gのc-1、7.4gのc-3、2.0gのN-1919、60.0gのe-1、7.5gのUA-122P、0.4gのL-1980N、0.4gのG-700を入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合 して、85.1gの樹脂溶液を得た。得られた樹脂溶液と、248.1gのAg粒子、1.6gのアエロジルR972を混ぜ合わせ、3本ローラー (EXAKT M-50;EXAKT社製)を用いて混錬し、334.8gの感光性ペー ストを得た。 (Examples 9-10)
<Preparation of photosensitive paste>
In a 200mL clean bottle, 7.4g c-1, 7.4g c-3, 2.0g N-1919, 60.0g e-1, 7.5g UA-122P, 0.4g L -1980N, 0.4g of G-700 was added and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to produce 85.1g of resin. A solution was obtained. The obtained resin solution, 248.1 g of Ag particles, and 1.6 g of Aerosil R972 were mixed and kneaded using three rollers (EXAKT M-50; manufactured by EXAKT) to form 334.8 g of photosensitive material. I got the paste.
<感光性層付き基板の製造>において、乾燥条件を表1に記載のとおりに変更したこと以外は実施例1と同様にしたところ、感光性層の溶剤(e)含有量は表1のとおりであった。得られた感光性層付き基板を用いて、実施例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。
<Manufacture of a substrate with a photosensitive layer> was carried out in the same manner as in Example 1 except that the drying conditions were changed as shown in Table 1, and the solvent (e) content of the photosensitive layer was as shown in Table 1. Met. Using the obtained substrate with a photosensitive layer, a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1. Table 1 shows the results evaluated by the method described above.
(実施例11~12)
<感光性ペーストの調製>において、溶剤e-1にかえてe-2を用い、<感光性層付き基板の調製>において、乾燥条件を表1に記載のとおりに変更したこと以外は実施例1と同様にしたところ、感光性層の溶剤(e)含有量は表1のとおりであった。得られた感光性層付き基板を用いて、実施例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Examples 11-12)
Example except that in <Preparation of photosensitive paste>, solvent e-2 was used instead of solvent e-1, and in <Preparation of substrate with photosensitive layer>, the drying conditions were changed as shown in Table 1. The solvent (e) content of the photosensitive layer was as shown in Table 1. Using the obtained substrate with a photosensitive layer, a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1. Table 1 shows the results evaluated by the method described above.
<感光性ペーストの調製>において、溶剤e-1にかえてe-2を用い、<感光性層付き基板の調製>において、乾燥条件を表1に記載のとおりに変更したこと以外は実施例1と同様にしたところ、感光性層の溶剤(e)含有量は表1のとおりであった。得られた感光性層付き基板を用いて、実施例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Examples 11-12)
Example except that in <Preparation of photosensitive paste>, solvent e-2 was used instead of solvent e-1, and in <Preparation of substrate with photosensitive layer>, the drying conditions were changed as shown in Table 1. The solvent (e) content of the photosensitive layer was as shown in Table 1. Using the obtained substrate with a photosensitive layer, a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1. Table 1 shows the results evaluated by the method described above.
(実施例13~14)
<転写工程>にかえて感光性層付き基板の基材を剥離しない<積層工程>とし、<露光工程A>にかえて露光マスクを感光性層付き基板の基材に接触させ、露光後に基材を剥離する<露光工程B>としたこと以外はそれぞれ実施例11~12と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Examples 13-14)
Instead of the <transfer step>, a <lamination step> is performed in which the base material of the substrate with a photosensitive layer is not peeled off, and instead of <exposure step A>, an exposure mask is brought into contact with the base material of the substrate with a photosensitive layer, and the base material is removed after exposure. Ceramic green sheets with conductive patterns were obtained in the same manner as in Examples 11 and 12, except that the material was peeled off in <Exposure Step B>. Table 1 shows the results evaluated by the method described above.
<転写工程>にかえて感光性層付き基板の基材を剥離しない<積層工程>とし、<露光工程A>にかえて露光マスクを感光性層付き基板の基材に接触させ、露光後に基材を剥離する<露光工程B>としたこと以外はそれぞれ実施例11~12と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Examples 13-14)
Instead of the <transfer step>, a <lamination step> is performed in which the base material of the substrate with a photosensitive layer is not peeled off, and instead of <exposure step A>, an exposure mask is brought into contact with the base material of the substrate with a photosensitive layer, and the base material is removed after exposure. Ceramic green sheets with conductive patterns were obtained in the same manner as in Examples 11 and 12, except that the material was peeled off in <Exposure Step B>. Table 1 shows the results evaluated by the method described above.
(実施例15~22)
<感光性層付き基板の製造>における感光性層の厚みおよび乾燥条件を表1に記載のとおりに変更したこと以外は実施例1と同様に感光性層付き基板の基材を得た。得られた感光性層付き基板の基材を用いて、露光工程を表1に記載のとおりに変更したこと以外は実施例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Examples 15-22)
A base material for a substrate with a photosensitive layer was obtained in the same manner as in Example 1, except that the thickness of the photosensitive layer and the drying conditions in <Production of a substrate with a photosensitive layer> were changed as shown in Table 1. Using the obtained base material of the substrate with a photosensitive layer, a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1, except that the exposure process was changed as shown in Table 1. Table 1 shows the results evaluated by the method described above.
<感光性層付き基板の製造>における感光性層の厚みおよび乾燥条件を表1に記載のとおりに変更したこと以外は実施例1と同様に感光性層付き基板の基材を得た。得られた感光性層付き基板の基材を用いて、露光工程を表1に記載のとおりに変更したこと以外は実施例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Examples 15-22)
A base material for a substrate with a photosensitive layer was obtained in the same manner as in Example 1, except that the thickness of the photosensitive layer and the drying conditions in <Production of a substrate with a photosensitive layer> were changed as shown in Table 1. Using the obtained base material of the substrate with a photosensitive layer, a ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1, except that the exposure process was changed as shown in Table 1. Table 1 shows the results evaluated by the method described above.
(比較例3)
<転写工程>にかえて、セラミックグリーンシート付き基板のセラミックグリーンシート上に、感光性ペーストを直接塗布し、温度120℃で4分間乾燥して、厚み11μmの感光性層を形成した。感光層中の溶剤(e)の含有量は表1のとおりであった。得られた感光性層付き基板の基材を用いて、実施例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Comparative example 3)
Instead of the <transfer step>, a photosensitive paste was directly applied onto the ceramic green sheet of the ceramic green sheet-equipped substrate and dried at a temperature of 120° C. for 4 minutes to form a photosensitive layer with a thickness of 11 μm. The content of the solvent (e) in the photosensitive layer was as shown in Table 1. A ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1 using the obtained base material of the substrate with a photosensitive layer. Table 1 shows the results evaluated by the method described above.
<転写工程>にかえて、セラミックグリーンシート付き基板のセラミックグリーンシート上に、感光性ペーストを直接塗布し、温度120℃で4分間乾燥して、厚み11μmの感光性層を形成した。感光層中の溶剤(e)の含有量は表1のとおりであった。得られた感光性層付き基板の基材を用いて、実施例1と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Comparative example 3)
Instead of the <transfer step>, a photosensitive paste was directly applied onto the ceramic green sheet of the ceramic green sheet-equipped substrate and dried at a temperature of 120° C. for 4 minutes to form a photosensitive layer with a thickness of 11 μm. The content of the solvent (e) in the photosensitive layer was as shown in Table 1. A ceramic green sheet with a conductive pattern was obtained in the same manner as in Example 1 using the obtained base material of the substrate with a photosensitive layer. Table 1 shows the results evaluated by the method described above.
(比較例4~5)
<露光工程>において、露光マスクを接触させずに露光したこと以外はそれぞれ実施例1~2と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Comparative Examples 4-5)
Ceramic green sheets with conductive patterns were obtained in the same manner as in Examples 1 and 2, except that in the <exposure step>, exposure was carried out without contacting the exposure mask. Table 1 shows the results evaluated by the method described above.
<露光工程>において、露光マスクを接触させずに露光したこと以外はそれぞれ実施例1~2と同様に導電パターン付きセラミックグリーンシートを得た。前述の方法により評価した結果を表1に示す。 (Comparative Examples 4-5)
Ceramic green sheets with conductive patterns were obtained in the same manner as in Examples 1 and 2, except that in the <exposure step>, exposure was carried out without contacting the exposure mask. Table 1 shows the results evaluated by the method described above.
L 開口幅
L Opening width
Claims (13)
- 基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有し、溶剤(e)の含有量が5.0質量%以下である感光性層を有する感光性層付き基材を準備し、感光性層を基材上からセラミックグリーンシート上に転写する工程(転写工程)、
感光性層に露光マスクを接触させて露光する工程(露光工程A)、および、
露光後の感光性層を現像して導電パターンを形成する工程(現像工程)
をこの順に有する、導電パターン付きセラミックグリーンシートの製造方法。 On the base material, conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) are contained, and the content of solvent (e) is 5.0. A step of preparing a substrate with a photosensitive layer having a photosensitive layer of less than % by mass and transferring the photosensitive layer from the substrate onto a ceramic green sheet (transfer step),
A step of bringing an exposure mask into contact with the photosensitive layer and exposing it to light (exposure step A), and
Step of developing the photosensitive layer after exposure to form a conductive pattern (development step)
A method for producing a ceramic green sheet with a conductive pattern, the method comprising: in this order. - 基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有し、溶剤(e)の含有量が5.0質量%以下である感光性層を有する感光性層付き基材を準備し、感光性層がセラミックグリーンシートに接するように感光性層付き基材をセラミックグリーンシート上に積層する工程(積層工程)、
感光性層付き基材の基材に露光マスクを接触させて露光する工程(露光工程B)、および、
露光後の感光性層を現像して導電パターンを形成する工程(現像工程)
をこの順に有する、導電パターン付きセラミックグリーンシートの製造方法。 On the base material, conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) are contained, and the content of solvent (e) is 5.0. A process of preparing a base material with a photosensitive layer having a photosensitive layer of less than % by mass, and laminating the base material with a photosensitive layer on the ceramic green sheet so that the photosensitive layer is in contact with the ceramic green sheet (lamination process) ,
A step of bringing an exposure mask into contact with the base material of the photosensitive layer-attached base material to expose it to light (exposure step B), and
Step of developing the photosensitive layer after exposure to form a conductive pattern (development step)
A method for manufacturing a ceramic green sheet with a conductive pattern, having the following in this order. - 感光性層における溶剤(e)の含有量が0.1質量%以上である、請求項1または2記載の導電パターン付きセラミックグリーンシートの製造方法 The method for producing a ceramic green sheet with a conductive pattern according to claim 1 or 2, wherein the content of the solvent (e) in the photosensitive layer is 0.1% by mass or more.
- 前記アルカリ可溶性樹脂(c)が不飽和二重結合を有さないカルボキシル基含有樹脂を含み、ガラス転移温度が110℃以下である、請求項1または2記載の導電パターン付きセラミックグリーンシートの製造方法。 The method for producing a ceramic green sheet with a conductive pattern according to claim 1 or 2, wherein the alkali-soluble resin (c) contains a carboxyl group-containing resin having no unsaturated double bonds and has a glass transition temperature of 110° C. or lower. .
- 前記アルカリ可溶性樹脂(c)が、ガラス転移温度が30℃以上70℃以下である、請求項4記載の導電パターン付きセラミックグリーンシートの製造方法。 The method for producing a ceramic green sheet with a conductive pattern according to claim 4, wherein the alkali-soluble resin (c) has a glass transition temperature of 30°C or more and 70°C or less.
- 感光性層にポリエーテル変性ポリジメチルシロキサンを含む、請求項1または2記載の導電パターン付きセラミックグリーンシートの製造方法。 The method for producing a ceramic green sheet with a conductive pattern according to claim 1 or 2, wherein the photosensitive layer contains polyether-modified polydimethylsiloxane.
- 基材上に、導電粒子(a)、非導電粒子(b)、アルカリ可溶性樹脂(c)、感光剤(d)および溶剤(e)を含有する感光性ペーストをスクリーン印刷法により塗布し、乾燥して感光性層を形成することにより前記感光性層付き基材を得る工程をさらに有する、請求項1または2記載の導電パターン付きセラミックグリーンシートの製造方法。 A photosensitive paste containing conductive particles (a), non-conductive particles (b), alkali-soluble resin (c), photosensitizer (d) and solvent (e) is applied onto the base material by screen printing and dried. The method for producing a ceramic green sheet with a conductive pattern according to claim 1 or 2, further comprising the step of obtaining the photosensitive layer-coated substrate by forming a photosensitive layer.
- 前記溶剤(e)として、大気圧下における沸点が150~300℃の溶剤を含む、請求項1または2記載の導電パターン付きセラミックグリーンシートの製造方法。 The method for producing a ceramic green sheet with a conductive pattern according to claim 1 or 2, wherein the solvent (e) contains a solvent having a boiling point of 150 to 300° C. under atmospheric pressure.
- 前記感光性層の厚みが10μmを超え25μm以下である、請求項1または2記載の導電パターン付きセラミックグリーンシートの製造方法。 The method for producing a ceramic green sheet with a conductive pattern according to claim 1 or 2, wherein the photosensitive layer has a thickness of more than 10 μm and less than 25 μm.
- 前記セラミックグリーンシートに感光性有機成分を含む、請求項1または2記載の導電パターン付きセラミックグリーンシートの製造方法。 The method for producing a ceramic green sheet with a conductive pattern according to claim 1 or 2, wherein the ceramic green sheet contains a photosensitive organic component.
- 導電パターン付きセラミックグリーンシートを複数積層してなる積層体の製造方法であって、
請求項1または2記載の導電パターン付きセラミックグリーンシートの製造方法により、第1の導電パターンを形成し、導電パターン付きセラミックグリーンシートを得る工程、
第1の導電パターン付きセラミックグリーンシートの導電パターン側にセラミックグリーンシートを形成する工程、および、
第1の導電パターン付きセラミックグリーンシートを形成したセラミックグリーンシート上に、請求項1または2記載の導電パターン付きセラミックグリーンシートの製造方法により、第2の導電パターンを形成する工程
を有する、積層体の製造方法。 A method for manufacturing a laminate formed by laminating a plurality of ceramic green sheets with conductive patterns, the method comprising:
forming a first conductive pattern by the method for producing a ceramic green sheet with a conductive pattern according to claim 1 or 2, and obtaining a ceramic green sheet with a conductive pattern;
forming a ceramic green sheet on the conductive pattern side of the first conductive patterned ceramic green sheet, and
A laminate comprising the step of forming a second conductive pattern on the ceramic green sheet on which the first conductive patterned ceramic green sheet is formed by the method for producing a conductive patterned ceramic green sheet according to claim 1 or 2. manufacturing method. - 導電パターン付きセラミックグリーンシートを複数積層してなる積層体の製造方法であって、
請求項1または2記載の導電パターン付きセラミックグリーンシートの製造方法により、複数の導電パターン付きセラミックグリーンシートを得る工程、および、
複数の導電パターン付きセラミックグリーンシートを積層して熱圧着する工程
を有する、積層体の製造方法。 A method for manufacturing a laminate formed by laminating a plurality of ceramic green sheets with conductive patterns, the method comprising:
Obtaining a plurality of ceramic green sheets with conductive patterns by the method for producing ceramic green sheets with conductive patterns according to claim 1 or 2, and
A method for manufacturing a laminate, which includes a step of laminating and thermocompression bonding a plurality of ceramic green sheets with conductive patterns. - 請求項1または2に記載の製造方法により導電パターン付きセラミックグリーンシートを得る工程、および、得られた導電パターン付きセラミックグリーンシートを焼成する工程を有する、焼成体の製造方法。 A method for manufacturing a fired body, comprising the steps of obtaining a ceramic green sheet with a conductive pattern by the manufacturing method according to claim 1 or 2, and firing the obtained ceramic green sheet with a conductive pattern.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-103220 | 2022-06-28 | ||
JP2022103220 | 2022-06-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024004461A1 true WO2024004461A1 (en) | 2024-01-04 |
Family
ID=89382686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/019487 WO2024004461A1 (en) | 2022-06-28 | 2023-05-25 | Method for producing ceramic green sheet with conductive pattern |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202419966A (en) |
WO (1) | WO2024004461A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05212833A (en) * | 1991-11-29 | 1993-08-24 | Asahi Chem Ind Co Ltd | Laminate having membrane like photopolymerizable conductive paste composition layer |
JP2017182901A (en) * | 2016-03-28 | 2017-10-05 | 東レ株式会社 | Photosensitive conductive paste and manufacturing method of electronic component using the same |
-
2023
- 2023-05-25 WO PCT/JP2023/019487 patent/WO2024004461A1/en unknown
- 2023-06-02 TW TW112120711A patent/TW202419966A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05212833A (en) * | 1991-11-29 | 1993-08-24 | Asahi Chem Ind Co Ltd | Laminate having membrane like photopolymerizable conductive paste composition layer |
JP2017182901A (en) * | 2016-03-28 | 2017-10-05 | 東レ株式会社 | Photosensitive conductive paste and manufacturing method of electronic component using the same |
Also Published As
Publication number | Publication date |
---|---|
TW202419966A (en) | 2024-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102656350B1 (en) | Photosensitive conductive paste and method for producing patterned green sheets using the same | |
TW201139577A (en) | Photosensitive conductive paste and method for producing conductive pattern | |
KR19990037659A (en) | Photosensitive Ceramic Green Sheet, Ceramic Package and Manufacturing Method Thereof | |
CN111149056A (en) | Photosensitive conductive paste and film for forming conductive pattern | |
JP2017182901A (en) | Photosensitive conductive paste and manufacturing method of electronic component using the same | |
TW201727364A (en) | Photosensitive electroconductive paste and process of producing electroconductive pattern | |
WO2024004461A1 (en) | Method for producing ceramic green sheet with conductive pattern | |
KR20190042000A (en) | Photosensitive paste, ceramic green sheet, electronic component, method of manufacturing pattern and manufacturing method of electronic component | |
JP3885285B2 (en) | Process for producing patterned ceramic green sheets | |
JPH10265270A (en) | Photosensitive ceramic composition | |
JP7230347B2 (en) | PHOTOSENSITIVE PASTE, CURED FILM USING THE SAME, FIRED BODY, ELECTRONIC COMPONENT, AND MANUFACTURING METHOD THEREOF | |
WO2023032536A1 (en) | Photosensitive conductive paste, method for producing base material with conductive pattern, method for producing electronic component, cured film, fired body and electronic component | |
JP3586957B2 (en) | Pattern forming film | |
WO2017208428A1 (en) | Structure provided with resin part containing cured product of photosensitive resin composition | |
JP2024024156A (en) | Manufacturing method of ceramic green sheet with conductive pattern | |
WO2022030382A1 (en) | Photosensitive conductive paste, cured article, sintered body, electronic component, method for producing circuit pattern-equipped insulative ceramic layer, method for producing electronic component, method for producing circuit pattern-equipped substrate and method for producing inductor | |
TW202244068A (en) | Photosensitive composition and use thereof | |
JP2023134944A (en) | Photosensitive conductive paste, method for producing substrate with conductive pattern, cured film, method for producing fired body, fired body, and electronic component | |
JP2005136007A (en) | Composite sheet and manufacturing method for laminated part | |
KR20180121875A (en) | Method for manufacturing a substrate having a photosensitive conductive paste and a conductive pattern | |
KR20180084044A (en) | Insulating paste for supporting electrode layer, touch panel, manufacturing method of touch panel | |
WO2020110453A1 (en) | Photosensitive conductive paste, film for use in conductive pattern forming, and layered member | |
JPH10209334A (en) | Ceramic substrate and its manufacture | |
JP2006153938A (en) | Photosensitive material, photosensitive sheet and method for manufacturing multilayer circuit board using the same | |
JP2001185858A (en) | Producing method for multilayered substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023532473 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23830912 Country of ref document: EP Kind code of ref document: A1 |